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Abstract 

Gas-solid systems comprising non-spherical particles are frequently encountered in 

industry and are the basis of various reactor concepts, e.g. gas-fluidized and packed 

beds or rotary kilns. However, our fundamental understanding of these systems is still 

rather limited which is, at least partially, due to the very complex particle-fluid 

interactions. Thus, an improved understanding of particle-fluid interactions (i.e. 

momentum, heat and mass transfer) is essential to predict more accurately the 

dynamics of these systems.  

In this work, cubic particles are represented using two different approaches: (1) 

Construction from individual, identical spheres; (2) Representation by a continuous 

function, i.e. the super-quadric equation.  

Firstly, we developed a drag force correlation for assemblies of approximately 

cubic particles that were constructed from eight identical spheres for Re ≤ 200 and 

ϕ ≤ 0.45. A comparison with drag force correlations proposed for assemblies of 

spheres (derived also numerically) demonstrated that the drag force acting on 

assemblies of approximately cubic particles is much larger than that acting on 

assemblies of equal volume spheres. Subsequently, the method was extended to 

determine the drag force acting on assemblies of super-quadric cubes. The simulation 

data were compared with empirical (experimentally derived) and numerically derived 

correlations. It was shown that a general empirical drag force correlation for 

assemblies of non-spherical particles or a drag force correlation derived from a coarse 

level representation of non-spherical particles (e.g. constructed by several identical 

spheres) is currently associated with a large error. Hence, a drag force correlation for 

assemblies of super-quadric cubes was proposed based on the simulation data. 

In addition to correlations for the drag force acting on cubic particles, the heat 

transfer in assemblies of spheres and super-quadric cubes was studied using a thermal 

lattice Boltzmann method. To model the heat transfer between the gas and the 

particles, a Dirichlet boundary condition to impose a constant temperature at the 

surface of the particle was proposed for the thermal lattice Boltzmann method. The 

thermal lattice Boltzmann method was used subsequently to compute the average 

Nusselt number for assemblies of spheres for Re ≤ 100 and ϕ ≤ 0.5. Based on the 

simulation data, a new Nusselt number correlation was proposed which was obtained 

from thermally fully-developed flows. Subsequently, the fluid-particle heat transfer in 

random assemblies of super-quadric cubes was calculated for ϕ ≤ 0.45. Defining the 

Reynolds number based on the hydraulic diameter of the packing (𝑅𝑒ℎ), the newly 

proposed Nusselt number correlation for assemblies of spheres was transformed into a 

modified form that is a function of 𝑅𝑒ℎ. The new Nusselt number correlation was 

shown to be able to predict the Nusselt number for assemblies of super-quadric cubes 

if the Sauter diameter was chosen as the characteristic size of the cube. The new drag 

force and Nusselt number correlations proposed in this work are expected to improve 

the accuracy of Euler-Euler and Euler-Lagrangian simulations of non-isothermal 

flows comprising cubic particles. 
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Zusammenfassung 

In der Industrie finden man häufig Gas-Feststoff-Systeme vor, die aus 

nicht-kugelförmigen Teilchen bestehen und wesentlicher Bestandteil verschiedener 

Reaktorkonzepte sind, z.B. Wirbelschichten, Festbettreaktoren und Drehrohröfen. 

Unser grundlegendes Verständnis solcher Systeme ist nach wie vor recht begrenzt, 

was zumindest teilweise auf die sehr komplexen Wechselwirkungen von Partikeln und 

Fluid zurückzuführen ist.  Ein verbessertes Verständnis der 

Partikel-Fluid-Wechselwirkungen (sprich, Impuls, Wärme- und Stofftransport) ist 

deshalb zwingend erforderlich um die Dynamiken solcher Systeme besser 

voraussagen zu können.  

In dieser Dissertation werden nicht-kugelförmige Partikel (z.B. kubische Partikel) 

durch zwei unterschiedliche Ansätze modelliert: (1) Zusammensetzung aus 

individuellen, identischen Kugeln; (2) Darstellung durch eine kontinuierliche 

Funktion, die Super-Quadrik Gleichung.  

In dieser Arbeit wird zuerst eine Korrelation für die Widerstandskraft von 

Gruppen von annähernd kubischen Teilchen, die sich aus acht identischen Kugeln 

zusammensetzen, für den Bereich Re ≤ 200 und ϕ≤ 0.45 entwickelt. Beim Vergleich 

mit Widerstandskraftkorrelationen für Gruppen bestehend aus Kugeln (ebenfalls 

numerisch bestimmt) konnte gezeigt werden, dass die Widerstandskraft, die auf 

Gruppen annähernd kubischer Partikeln wirkt, viel grösser ist als die Widerstandskraft 

die auf Gruppen bestehend aus Kugeln gleichen Volumens wirkt. Die Methode wurde 

danach erweitert um die Widerstandskraft, die auf Gruppen von Super-Quadrik 

Würfeln wirkt, zu bestimmen. Die Ergebnisse der Computersimulationen wurden mit 

Korrelationen verglichen, die empirisch (in Experimenten bestimmt) und numerisch 

hergeleitet wurden. Es konnte aufgezeigt werden, dass eine allgemeine empirische 

Widerstandskraftkorrelation für Gruppen nicht-kugelförmiger Partikel und eine 

Widerstandskraftkorrelation, die aus einer groben Abbildung nicht-kugelförmiger 

Partikeln (z.B. zusammengestellt aus einer Vielzahl identischer Kugeln) abgeleitet 

wurde, derzeit mit einer grossen Ungenauigkeit behaftet ist. Auf Grundlage der 

Ergebnisse der Computersimulationen wurde deshalb vorgeschlagen, eine 

Widerstandskraftkorrelation für Gruppen von Super-Quadrik Würfeln zu verwenden.  

Zusätzlich zu den Korrelationen für die Widerstandskraft, die auf 

nicht-kugelförmige Partikeln wirkt, wurde der Wärmetransport in Gruppen von 

Kugeln und Super-Quadrik Würfeln mittels einer thermischen 

Lattice-Boltzmann-Methode untersucht. Um den Wärmetransport zwischen Gas und 

Partikeln zu modellieren, wurde eine Dirichlet Randbedingung für die thermische 

Lattice-Boltzmann-Methode vorgeschlagen, um die Temperatur auf der Oberfläche 

des Partikels konstant zu halten. Die thermische Lattice-Boltzmann-Methode wurde 

anschliessend verwendet um die durchschnittliche Nusselt-Zahl für Gruppen von 

Kugeln für den Bereich Re ≤ 100 und ϕ≤ 0.5 zu berechnen. Auf Grundlage der 

Ergebnisse der Simulationen für thermisch vollständig entwickelte Strömungen wurde 

eine neue Korrelation für die Nusselt-Zahl entwickelt. Für ϕ ≤ 0.45 wurde daraufhin 

der Fluid-Partikel Wärmetransport von zufälligen Gruppen von Super-Quadrik 



III 
 

Würfeln berechnet. Die neue Korrelation für die Nusselt-Zahl wurde in eine 

modifizierte Form überführt, so dass sie als Funktion von 𝑅𝑒ℎ, der Reynolds-Zahl 

basierend auf dem hydraulischen Durchmesser der Packung der Gruppe von 

Super-Quadrik Würfeln, dargestellt werden kann. Es wurde gezeigt, dass die neue 

Korrelation die Nusselt-Zahl für Gruppen bestehend aus Super-Quadrik Würfeln 

genau vorhersagen kann, wenn der Sauterdurchmesser als charakteristische Grösse 

der Würfel verwendet wird. Es ist davon auszugehen, dass die neuen Korrelationen 

für die Widerstandskraft und Nusselt-Zahl, die in dieser Dissertation bestimmt wurden, 

die Genauigkeit von Simulationen von nicht-isothermische Strömungen welche auf 

Euler-Euler oder Euler-Lagrange Modellen basieren  erheblich verbessern werden. 
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Nomenclature 

 

V        volume of the computational domain 

∇P       pressure gradient cross the volume V 

�⃗�𝑡𝑜𝑡      total average fluid particle interaction force 

�⃗�𝑡𝑜𝑡
′       total fluid particle interaction force acting on a particle 

N        number of particles in the volume V 

�⃗�𝑑
′        average drag force acting on a particle 

𝐹𝑑       normalized average drag force acting on a particle 

𝑑𝑝       diameter of the sphere 

�⃗⃗⃗�, �⃗⃗�𝑠     superficial velocity 

�⃗⃗�𝑝       particle velocity 

Re       Reynolds number 

𝑅𝑒𝑉      Reynolds number based on volume equivalent diameter 

𝑅𝑒ℎ      Reynolds number based on Sauter diameter 

𝑑𝑉       volume equivalent sphere diameter 

𝑑𝐴       projected area equivalent sphere diameter 

𝑑𝑁       surface area equivalent sphere diameter 

𝑑ℎ       hydraulic diameter 

𝑑𝑠       Sauter diameter 

𝑉𝑝       volume of the particle 

𝐴𝑝       projected area of the particle in its direction of motion 

𝑃𝑝       projected perimeter of the particle in its direction of motion 

𝑐𝑟       circularity of the particle 

𝑐𝑑       drag coefficient 

𝑓𝑖       discrete density distribution function 

𝑓𝑖
𝑒𝑞

      discrete equilibrium density distribution function 

𝑔𝑖       discrete energy distribution function 

𝑔𝑖
𝑒𝑞

      discrete equilibrium energy distribution function 

𝑒𝑖        lattice direction vector 

c        lattice constant 

𝛥𝑥       physical length between two neighbouring lattice nodes 

𝛥𝑡       physical time corresponding to each time step 

t        physical time 

�⃗�        physical coordinates of the lattice node 

�⃗⃗�𝑓       velocity of fluid in lattice unit 

𝑤𝑖       weighting factor for equilibrium distribution 
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𝐵𝑣, 𝐵𝑐     weighting function 

𝑟ℎ        hydraulic radius 

Nu       Nusselt number for spherical particle 

𝑁𝑢𝑉      Nusselt number based on particle volume equivalent diameter of the cube 

𝑁𝑢𝑠      Nusselt number based on particle Sauter diameter of the cube 

Pr        Prandtl number 

D        thermal diffusivity of the fluid 

𝑐𝑝𝑓       specific heat capacity 

𝑘𝑓        thermal conductivity of the fluid 

𝑇𝑓        fluid temperature 

h         heat transfer coefficient 

�̇�𝑖        particle heat transfer rate 

�̅�𝑓        average fluid temperature around a particle 

𝑇𝑠        particle temperature 

�⃗⃗�         unit vector in the normal direction of the particle surface 

L         the size of the computational domain 

 

Greek letters 

 

ϕ         solid volume fraction 

𝜇𝑓        dynamic viscosity 

Φ         sphericity 

Φ∥         lengthwise sphericity 

Φ⊥        crosswise sphericity 

𝜌𝑓         fluid density 

𝜏𝑣, 𝜏𝑐       relaxation time 

ν          kinematic viscosity 

Ω𝑖,𝑣
𝑝 , Ω𝑖,𝑐

𝑝
    additional collision term 

α         form-drag coefficient 

φ         energy of the fluid 

𝜙𝑥        local solid volume fraction of a lattice that is covered by the solid 

particles 

ε         bed voidage  

𝜑𝑠        particle temperature 

 

Abbreviations 

 

CFD     computational fluid dynamics 

DEM     discrete element method 

TFM     two-fluid model 

LBM     lattice Boltzmann method 

IBM      immersed boundary method 
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LBE      lattice Boltzmann equation 

DNS      direct numerical simulation 
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1 General Introduction 

 

1.1 Introduction 

 

Gas-solid, non-isothermal flows are encountered frequently in industry, e.g. 

gas-fluidized and packed bed reactors. In particular gas-fluidized beds have attracted 

significant attention due to their favourable characteristics which include rapid mixing, 

fairly uniform temperature distribution and good gas-solid contacting. However, 

despite their wide-spread use in industry, the fundamentals of fluidized beds e.g. the 

formation of bubbles at orifices or the coalescence and splitting of bubbles, are still 

only poorly understood. Hence, improving our understanding of the complicated 

interaction between fluid mechanical and thermal effects is essential to improve 

further their design and, hence, improve their efficiency. Over the past decades, 

computational fluid dynamics (CFD) has been applied extensively to compute the 

fluid flow, heat transfer and chemical reactions in gas-fluidized beds. However, in 

gas-fluidized systems the flow structure spans over a wide range of length scales, e.g. 

from (sub-) millimeter (particle level) to (sub-) meter (large bubbles or slugs). In this 

context, a multiscale modeling strategy was proposed by van der Hoef et al. (2008). 

At the most detailed level, direct numerical simulations (DNS) fully resolve the fluid 

flow around individual particles by imposing appropriate boundary conditions on the 

particle surface. Such a modelling approach allows for example the momentum and 

heat transfer between the fluid and particles to be calculated directly (and accurately). 

Additionally, DNS simulation data can be used to derive closure relationships such as 

a drag force correlation and heat transfer coefficient that are required for less-resolved 

modelling approaches such as computational fluid dynamics coupled to a discrete 

element method (CFD-DEM) or the two-fluid model (TFM). However, due to the 

requirement of a very fine discretization of the domain in DNS, a routine simulation 

of say laboratory scale gas-fluidized beds is currently out of reach. This gap is closed 

by higher-level modelling approaches such as CFD-DEM or the two-fluid model. In 

CFD-DEM, the particles are tracked individually and the fluid is modelled using the 

volume averaged Navier-Stokes equation that are solved on a comparatively large grid 

size, typically about three times the particle diameter. The fluid particle interaction(s) 

can be modeled using experimentally or numerically derived closure relationships (e.g. 

drag force correlation). The particle-particle and particle-wall interactions are 

described by appropriate models for the contact mechanics (typically a soft sphere 

approach is considered). Similar as for the DNS model, the CFD-DEM simulations 

can be used to derive closures required to describe particle-particle interactions in the 

two fluid model (e.g. particle energy loss due to collisions). The two-fluid model 

requires a series of closure relationships to describe appropriately the particle-particle 

(Lun et al, 1984) and particle-fluid (e.g. Gidaspow, 1994) interactions. At the current 

state, only the two-fluid model is applicable to simulate industrial-sized gas-fluidized 

beds.   
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Turning to closure relationships, currently empirical correlations (experimentally 

derived) for the momentum and heat transfer are implemented in the numerical 

models described above (Ergun, 1952; Wen & Yu, 1966; Gunn, 1978; Wakao et al., 

1979). However, it is under debate whether these correlations can be used for the wide 

range of solid volume fractions that are typically encountered in gas fluidized beds 

(Gidaspow, 1994). For example, Tavassoli (2014) argued that the commonly applied 

Nusselt number correlation of Gunn (1978) is valid only for solid volume fractions 

ϕ < 0.3. Due to the inherent difficulty to perform temporally and spatially resolved 

experiments in gas-solid systems (Müller et al., 2006; Holland et al., 2008; Müller et 

al., 2011), direct numerical simulations (DNS) have been employed to improve the 

accuracy (and the parameter space) of drag force and Nusselt number correlations (e.g. 

Hill et al., 2001b; Beetstra et al., 2007; Tavassoli et al., 2015; Sun et al., 2015).  

 

It is worth noting that the correlations listed above have been developed for spherical 

particles. Indeed, very few efforts have been reported for developing drag force and 

Nusselt number correlations for assemblies of non-spherical particles. Hilton et al. 

(2010) modified Di Felice’s drag force correlation (1994) (originally derived for 

assemblies of spheres) by simply replacing the drag coefficient correlation for 

individual spheres with the drag coefficient correlation for single non-spherical 

particles (Hölzer et al., 2008). The correlation proposed by Hilton et al. (2010) has 

been employed to simulate a gas-fluidized bed containing non-spherical particles (e.g. 

cubes, spheroids). The particles used in these simulations (e.g. Hilton et al., 2010) 

were represented by the super-quadric equation. The advantage of the super-quadric 

equation is that the surface normal of the particle can be computed readily (Lu et al., 

2015). A different approach to model non-spherical particles was followed by Zhong 

et al. (2009) who simulated a 3D gas-fluidized bed containing cylindrical particles 

that were constructed from identical spheres using CFD-DEM. The fluid-particle drag 

force was calculated using the drag force correlation proposed by Tran-Cong et al. 

(2004), originally derived for a single, non-spherical particle. Zhong et al. (2009) 

reported that the simulation results agreed well with the experimental data of 

gas-fluidized beds containing cylindrical particles. Ren et al. (2011) proposed a drag 

force correlation for single cylindrical particles by measuring their settling velocity in 

a uniform gas flow. The correlation developed was used subsequently (Ren et al., 

2014) to model a spouted bed of cylindrical particles that were constructed from 

identical spheres. When compared to experimental measurements, the CFD-DEM 

simulations were found to predict the pressure drop well at different bed positions.  

 

The simulation of heat transfer in gas-solid flows containing non-spherical particles 

has been studied so far rather sparsely. In one of the few reports, Richter and 

Nikrityuk (2012) calculated the Nusselt number for single non-spherical particles in 

uniform flows (e.g. cubes, spheroids) and proposed a Nusselt number correlation 

which takes into account particle shape (i.e. sphericity) and orientation (crosswise 

sphericity, i.e. the ratio of the projected area of the particle to the cross section area of 
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the volume equivalent sphere). Yang et al. (2010) calculated the Nusselt number for 

ordered packings of ellipsoids (face centred cubic packings of ellipsoids) and 

proposed a Nusselt number correlation by modifying the equation of Wakao (Wakao 

et al., 1979). Tavassoli et al. (2015) simulated the heat transfer between the fluid and 

particles in an assembly of equal-sized spherocylinders for Re ≤ 100 and ϕ ≤ 0.6. 

It was reported that the Nusselt number correlation proposed by Tavassoli et al. (2015) 

for assemblies of spheres can be applied to predict the Nusselt number for 

spherocylinders if the diameter of the spherocylinder was chosen as the characteristic 

size of the particle.  

 

Considering the lack of suitable drag force and Nusselt number correlations for 

assemblies of non-spherical particles, we model here the fluid flow over assemblies of 

cubes using a lattice Boltzmann method as a DNS technique. These simulations are 

used subsequently to develop drag force and Nusselt number correlations that are 

applicable for Euler-Euler and Euler-Lagrangian simulations. The cubic particles are 

represented using two different approaches: (1) constructed from eight identical 

spheres (Figure 1.1(a)) and (2) continuous function representation, i.e. the 

super-quadric equation (Figure 1.1(b)). 

 

 

Figure 1.1. Different representations of cubic particles: (a) a cube constructed from 

eight identical spheres; (b) super-quadric cube. 

 

Turning now to different discretization/modelling approaches, the lattice Boltzmann 

method provides an interesting alternative to conventional approaches (e.g. finite 

volume solver) to solve the Navier-Stokes equation to model fluid flow. When 

compared to “conventional” approaches , the lattice Boltzmann method has several 

advantages: (1) the convective and collisional operators are linear; (2) the fluid 

pressure can be calculated simply by an equation of state; (3) complex boundaries are 

relatively easy to implement and (4) ease of parallelization as computations are local 

(Chen & Doolen, 1998). The thermal lattice Boltzmann equations for the momentum 

and energy equations are as follows: 

(a) (b) 
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Where 𝑓𝑖, 𝑔𝑖 are the density and energy distribution functions at position �⃗� and 

time 𝑡 with velocity 𝑒𝑖. The superscript ‘eq’ denotes the equilibrium state, 𝜏𝑣 and 

𝜏𝑐 are the single relaxation times related to the viscosity and thermal diffusivity, 

respectively and ∆𝑡 is the time step applied. The numerical implementation of the 

thermal lattice Boltzmann equation involves two steps: 

1. Collision 
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2. Streaming 

'( , ) ( , )i i if x e t t t f x t                    (1.5) 

'( , ) ( , )i i ig x e t t t g x t                    (1.6) 

The D3Q19 and D3Q7 lattice (Figure 1.2) for the density and energy distributions 

are given as follows: 
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with 𝑐 being the ratio of ∆𝑥 and ∆𝑡. The discrete equilibrium density function is 

expressed as: 
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where 𝜌𝑓 and �⃗⃗�𝑓 are the fluid density and velocity. The discrete energy distribution 

function is 
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Figure 1.2. Lattice structures for the (a) D3Q19 and (b) D3Q7 lattices 

 

The density, momentum and energy of the fluid can be calculated as: 

f i

i

f  , 
f f i i

i

u f e  , 
i

i

g             (1.10) 

The kinematical viscosity and thermal diffusivity of the fluid are calculated as: 

21
( )

3 2
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c 


   

21
( )

4 2
c

t
D c 


                        (1.11) 

 

The lattice Boltzmann method has been used extensively to model isothermal (Ladd, 

1994; Aidun et al., 1998; Beetstra et al., 2007; Third et al., 2016) and thermal flows 

(Yoshida & Nagaoka, 2010; Li et al., 2013; Wang et al., 2016). As a consequence, 

various non-slip hydrodynamic boundary conditions (Ladd, 1994; Zou and He, 1997; 

Noble and Torczynski, 1998; Guo et al., 2002; Feng et al., 2004) and thermal 

boundary conditions (Ginzburg, 2005; Li et al., 2013; Wang et al., 2016) have been 

developed. Among these boundary conditions, the half-way bounce back scheme for 

solid boundaries is the easiest to implement. The density (𝑓𝑖(𝑥𝑓 , t + ∆t)) and energy 

(a) (b) 
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(𝑔𝑖(𝑥𝑓 , t + ∆t)) distribution functions at fluid nodes 𝑥𝑓  are unknown during the 

streaming step since the distribution functions at the wall nodes 𝑥𝑤 are undefined 

(Figure 1.3). The bounce back scheme for the unknown distributions 𝑓𝑖(𝑥𝑓 , t + ∆t) 

(Eq. (1.12), Figure 1.3a) and 𝑔𝑖(𝑥𝑓 , t + ∆t)  (Eq. (1.13), Figure 1.3b) can be 

described as: 

 

,( , ) ( , ) 6i f i f f i v w if x t t f x t w u e c                 (1.12) 

1
( , ) ( , )

4
i f i f wg x t t g x t T                      (1.13) 

 

In Eqs. (1.12) and (1.13) – i denotes the opposite direction of i and u⃗⃗w and Tw are 

the wall velocity and energy (or temperature), respectively. If the wall is located in the 

middle of a fluid node and a wall node, the half-way bounce back scheme is second 

order accurate. However, in fluidized beds, curved solid boundaries are encountered 

often. Therefore, employing more accurate solid boundary conditions is essential to 

predict accurately the fluid-particle interactions in gas-fluidized beds.  

 

 

 

 

Figure 1.3. Half-way bounce back scheme for (a) non-slip hydrodynamic boundary 

condition and (b) thermal boundary condition (i.e. Dirichlet boundary condition) 

 

Hence, in this work, a new Dirichlet boundary condition for a thermal lattice 

Boltzmann method was developed which can be considered as an extension of the 

non-slip hydrodynamic boundary condition proposed by Noble and Torczynski 

(1998). 

 

1.2 Outline of the thesis 

 

In chapter 2, the drag force acting on assemblies of approximately cubic particles that 

were constructed from eight identical spheres is calculated using a lattice Boltzmann 

method. The results are compared with the predictions of numerically and 

(a) (b) 
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experimentally derived correlations for assemblies of spheres. Based on the 

simulation data, a new drag force correlation for assemblies of approximately cubic 

particles is presented. 

 

In Chapter 3, a drag force correlation for assemblies of cubes is developed. The cubic 

particles are represented using the super-quadric equation, a popular approach in 

DEM simulations. The correlation is compared with drag force correlations for 

assemblies of non-spherical particles that are available in the literature.  

 

Chapter 4 introduces a Dirichlet boundary condition for the thermal lattice Boltzmann 

method. Asymptotic analysis of the boundary condition confirms that it is of second 

order accuracy. The method is then used to simulate heat transfer between the fluid 

and individual particles. The simulation results are compared with previous direct 

numerical simulations. 

 

In Chapter 5, the Nusselt number for assemblies of spheres is calculated using a 

thermal lattice Boltzmann method. The simulation data are compared with 

experimentally and numerically derived Nusselt number correlations for assemblies of 

spheres. Based on the simulation data, a new Nusselt number correlation for 

assemblies of spheres is developed. 

 

Chapter 6 focuses on the use of the thermal lattice Boltzmann method to simulate the 

heat transfer in an assembly of super-quadric cubes. A Reynolds number that is based 

on the hydraulic diameter of the packing (𝑅𝑒ℎ ), is hereby used to develop a 

correlation for the Nusselt number. The new correlation obtained is able to predict the 

Nusselt number for assemblies of super-quadric cubes if the Sauter diameter of the 

cubes is chosen as their characteristic length. 

 

Finally, the last Chapter summarizes the results presented in the thesis and provides an 

outlook for future work.  
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2  

A drag force correlation for approximately cubic particles 

constructed from identical particles 

 

2.1 Abstract 
 

The lattice Boltzmann method has been used to compute the drag force acting on 

assemblies of approximately cubic particles constructed from 8 spheres for a wide 

range of Reynolds numbers. Based on the simulation data we propose a new drag 

force correlation for assemblies of approximately cubic particles. We have compared 

the drag force obtained with that predicted by the correlation proposed by Beetstra et 

al. (2007), originally proposed for spheres, by considering either the drag acting on 

individual spheres, or the drag acting on an approximately cubic particle composed of 

8 spheres. The comparisons showed that Beetstra's correlation cannot predict the 

system well. The correlation proposed in this paper enables Euler-Euler and 

Euler-Lagrangian simulations of approximately cubic particles, allowing the influence 

of the solid volume fraction in these models to be assessed. 

 

2.2 Introduction 
 

Gas-solid systems are of significant industrial importance and are the basis of various 

reactor concepts, e.g. gas-fluidized and packed beds or rotary kilns. However, with 

regards to numerical modelling of these systems, very little is known about the force 

exerted on the individual particles when a fluid flows through an assembly of particles, 

i.e. the drag force. A good understanding of particle-fluid interactions is essential to 

predict more accurately the dynamics of these systems. In previous studies, it was 

found that the pattern formation in gas fluidized beds was significantly affected by the 

momentum exchange between the gas phase and the solid phase (Li & Kuipers, 2003). 

A theoretical solution for the drag acting on an isolated sphere in unbounded flow was 

derived only for the zero Reynolds number limit (Batchelor, 1967). Hinch (1977) 

calculated the drag force for random assemblies of spheres in dilute limit suspensions 

by taking into account of the presence of neighboring particles. Kim et al. (1985) 

extended the work of Hinch (1977), and proposed a drag force correlation for volume 

fractions up to 0.5, but only the first few terms (Ο(𝜙2)) can be evaluated analytically. 

For large volume fractions, the drag force can be estimated from the Carman equation 

(1937). However, the practical value of these theories is rather limited since they are 

only valid for very low Reynolds numbers. The interaction of particles with a fluid 

can also be modelled using Stokesian Dynamics (Brady & Bossis, 1998). However, 

this method is also restricted to low Reynolds numbers. For this reason, empirical 

correlations obtained from pressure drop measurement or terminal velocities 

measurement of sedimenting particles for higher Reynolds numbers and volume 
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fractions are commonly used in engineering practice, i.e. correlations of Ergun (1952) 

and Wen & Yu (1966). In recent years, drag laws generated from direct numerical 

simulations have become available. Koch (Koch et al., 1999; Hill et al., 2001a, b) was 

the first to develop a drag force correlation based on lattice Boltzmann simulations. 

Van der Hoef and Beetstra (van der Hoef et al., 2004; Beetstra et al., 2007) extended 

the work of Hill et al. (2001a, b), establishing new drag force correlations for mono- 

and bi-disperse arrays of spheres. In these simulations the flow field around a random 

array of spheres was computed using the lattice Boltzmann method with a lattice 

spacing that was sufficiently small to allow the detailed flow around the spheres to be 

modelled. Coupled computational fluid dynamics-discrete element method 

(CFD-DEM) simulations (Bokkers et al., 2004) performed using the drag model 

proposed by Hill et al. (2001b) showed better agreement with experimental 

measurements than those performed using the traditional Ergun and Wen & Yu 

correlations. 

 

In most practical applications of gas-fluidised beds, the particles are not spherical and 

the drag force is affected by solid volume fraction and particle orientation. Due to a 

lack of drag force correlations for assemblies of non-spherical particles, numerical 

simulations of gas-fluidized beds have largely been restricted to beds containing 

spherical particles. The effect of particle shape on the drag force has been investigated 

for isolated particles. For example, Tran-Cong et al. (2004) measured the drag force 

coefficients for isolated non-spherical particles constructed from several identical 

spheres. Beetstra et al. (2006) performed LBM simulations of individual 

non-spherical particles constructed from spheres. Excellent agreement was reported 

between the LBM data and the experimental results given by Tran-Cong et al. (2004). 

Hölzer et al. (2008), using experimental data and numerical simulations, correlated 

the drag force acting on single non-spherical particles with particle orientation and 

Reynolds number. However, these correlations cannot be applied directly to simulate 

gas-fluidized beds since they do not account for the influence of the solids volume 

fraction on the drag coefficient. In this paper, we use the lattice Boltzmann method to 

develop a drag force correlation for an assembly of approximately cubic particles that 

are constructed from 8 identical spheres, a common approach in the DEM. The 

approximately cubic particles constructed this way are unbreakable and undeformable. 

The effect of the solid volume fraction and the Reynolds number on the drag force is 

studied in detail. The new drag force correlation proposed here is suitable for 

Euler-Euler and Euler-Lagrangian simulations of gas-fluidized beds comprised of 

approximately cubic particles. 

 

2.3 Drag force correlations for mono-disperse spheres 

 

The total average fluid-particle interaction force acting on each particle within a 

volume 𝑉 is usually expressed as: 

'

tot d

V
F P F

N


                            (2.1) 
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where ∇𝑃 is the pressure gradient across the volume, ϕ is the solid volume fraction, 

𝑁 is the number of particles in the volume, �⃗�𝑑
′  is the average drag force due to fluid 

solid friction at the surface of sphere. The total average force �⃗�𝑡𝑜𝑡 is determined as 

1

𝑁
∑ �⃗�𝑡𝑜𝑡

′
𝑁 , where �⃗�𝑡𝑜𝑡

′  is the total force acting on each particle in the computational 

domain calculated by equation (2.24). From a force balance over volume 𝑉, we  

obtain −𝑉𝛻𝑃 = 𝑁�⃗�𝑡𝑜𝑡 . Substituting −𝑉𝛻𝑃 = 𝑁�⃗�𝑡𝑜𝑡  into equation (2.1) gives an 

expression to calculate �⃗�𝑑
′ , with �⃗�𝑑

′ = (1 − ϕ)�⃗�𝑡𝑜𝑡 . In this paper, we define 𝐹𝑑 

(𝐹𝑑 = �⃗�𝑑
′ /3𝜋𝜇𝑓 �⃗⃗⃗�𝑑𝑝, �⃗⃗⃗� is the superficial velocity, 𝑑𝑝 is the diameter of the particle, 

𝜇𝑓 is the dynamic viscosity) as the normalized drag force, which is the common 

choice in chemical engineering (Di Felice, 1995). 

 

Ergun (1952) derived a correlation from pressure drop measurements for a packed 

bed: 

2 2

150 1.75 Re

18 (1 ) 18 (1 )
dF



 
 

 
                   (2.2) 

It should be noted that Ergun carried out the experiment with a small range of 

porosities (0.43-0.54), therefore, the correlation is typically valid for low porosity 

systems. Wen & Yu (1966) proposed a different type of correlation obtained from 

measurement of terminal velocity in sedimentations. 

0.687 3.65

3.65

(1 0.15Re )(1 )

0.44Re
(1 )

24

dF









  


 




                    (2.3) 

Currently, these two drag force correlations are widely used in CFD simulations. 

However, it is still unclear whether the correlations can be used for all the volume 

fractions and Reynolds numbers. With the development of computing power, direct 

numerical simulations (DNS) can be employed to derive the drag force for random 

assemblies of spheres for a wide range of volume fractions and Reynolds numbers, 

one such approach is the lattice Boltzmann method (LBM). DNS methods give high 

resolution at the surface of the particles, and the flow around the particles can be 

modeled in detail. Hill et al. (2001a, b) proposed the drag force correlation for random 

assemblies of spheres using LBM simulations: 

0 3 RedF F F                          (2.4) 

with 
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1/2

2 3

0

2

(1 )(1 3 2 135 / 64 ln 16.14 )
, 0.4

1 0.681 8.48 8.16

10 , 0.4
(1 )

F

    


  






    


  
 
 
 

     (2.5) 

And 𝐹3 = 0.03365(1 − 𝜙) + 0.106(1 − ϕ)ϕ + 0.0116/(1 − 𝜙)4 . Beetstra et al. 

(2007) modified the Ergun equation in order to account for the effect of moderate 

fluid inertia on the particles. They proposed the following correlation for the drag 

force: 

1 0.343
2

2 2 3 (1 4 )/2

0.413Re (1 ) 3 (1 ) 8.4Re
( ,Re) 10 (1 ) (1 1.5 ) [ ]

(1 ) 24(1 ) 1 10 Re
dF

 

   
  

 

 

 

   
    

  

(2.6) 

 

2.4 Previous studies of non-spherical particles 

 

2.4.1 Shape factors for non-spherical particle 

 

So far, nearly all the simulations for gas-solid flows are restricted to perfect spheres, 

since it is very simple to implement (Müller et al., 2008 and 2009). However, in most 

engineering applications the particles are non-spherical, which makes them more 

complicated to analyse. In order to describe the deviation from spherical shape, the 

sphericity factor Φ is introduced. Wadell (1934) defined the sphericity factor as the 

ratio of the surface area of a sphere with the same volume as the non-spherical 

particle to the surface area of the non-spherical particle. In engineering handbooks 

(Crowe, 2010) drag correlations for non-spherical particles are developed from 

correlations for spherical particles with corrections in terms of sphericity factor. 

However, this single characteristic value cannot differentiate the flow behavior, since 

differently shaped particles could have the same sphericity factor. Thus, various shape 

factors have been defined to classify non-spherical particles (Clift et al. 1978; Torobin 

et al. 1960). For example, the volume equivalent sphere diameter is defined as 

follows: 

3 6 /V pd V                       (2.7) 

where 𝑉𝑝 is the particle volume. The projected area equivalent sphere diameter 𝑑𝐴 

is equal to: 

4 /A pd A                         (2.8) 

where 𝐴𝑝 is the projected area of the particle. The circularity of the particle is 

defined as follows: 

/r A pc d P                         (2.9) 

where 𝑃𝑝 is the projected perimeter of the particle in its direction of motion. 
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2.4.2 Drag force for non-spherical particles 

 

For non-spherical particles, the drag force is often expressed in terms of drag 

coefficient, defined as: 𝑐𝑑 = 8|�⃗�𝑑
′ |/𝜌𝜋𝑑𝑝

2 �⃗⃗⃗�2 . In the Stokes region Leith (1987) 

proposed the following equation for the drag coefficient 𝑐𝑑: 

8 16

Re Re

NA
d

V V

dd
c

d d
                          (2.10) 

where 𝑑𝑁 is the surface area equivalent diameter. Ganser (1993) gave a correlation 

for the Newton region (2000<Re<300000): 

0.57431.8148( log )0.42 10dc                         (2.11) 

with Leith's equation for the Stokes region. Tran-Cong et al. (2004) correlated the data 

from settling experiments with agglomerates of spheres and proposed the following 

correlation for the drag coefficient: 

2

0.687

4 1.16

0.42( )
24 0.15

1 ( Re)
Re

1 4.25 10 ( Re)

A

VA A
d

V Vr A
r

V

d

dd d
c

d dc d
c

d



 
   

      
 

        (2.12) 

On the basis of experimental data and numerical study, Hölzer et al. (2008) gave the 

following correlation for the drag coefficient: 

0.20.4( log )

3

|| 4

8 1 16 1 3 1 1
0.42 10

Re Re Re
dc  



    
 



               (2.13) 

where Φ∥ and Φ⊥ are the lengthwise and crosswise sphericity, respectively. It is 

worth noting that all these correlations are for single, isolated particles. Thus, they 

cannot be applied to gas-fluidized beds directly, since they do not take into account 

the solid volume fraction. 

 

2.5 Approach 

 

2.5.1  Lattice Boltzmann Method 

 

The lattice Boltzmann method (Succi, 2001) provides an alternative approach to solve 

the Navier-Stokes equation. A detailed description of the method can be found in 

Ladd (1994a, b). The lattice Boltzmann equation (LBE) is a finite difference form of 

the Boltzmann equation (He and Luo, 1997). The LBE with single relaxation time 

used in the present work is as follows: 

( , ) ( , ) [ ( , ) ( , )]eq

i i i i i

t
f x e t t t f x t f x t f x t




                     (2.14) 

where 𝑓𝑖 is the single particle distribution function with velocity 𝑒𝑖 at the position 
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�⃗� and time 𝑡, 𝑓𝑖
𝑒𝑞

 is the discrete equilibrium distribution and τ is the relaxation 

time. 

(0,0,0), 0

( 1 0 0) (0, 1,0) ,(0,0, 1) , 1...6

( 1, 1,0) ,( 1,0, 1) ,(0, 1, 1) , 7...18

i

i

e c c c i

c c c i




    
       

，， ，               (2.15) 

with 𝑐 being the ratio of 𝛥𝑥 and 𝛥𝑡. The LBE can be implemented by two steps, 

namely the collision step: 

( , ) ( , ) [ ( , ) ( , )]eq

i i i i

t
f x t f x t f x t f x t





                  (2.16) 

and the streaming step: 

( , ) ( , )i i if x e t t t f x t                         (2.17) 

In the D3Q19 model, the discrete equilibrium distribution function is 

2 2

2 4 2

( , ) ( ( , )) ( , )9 3
( , )[1 3 ]

2 2

i f i f feq

i i f

e u x t e u x t u x t
f w x t

c c c


 
               (2.18) 

1
, 0

3

1
, 1...6

18

1
, 7...18

36

i

i

w i

i







 






                     (2.19) 

where �⃗⃗�𝑓(�⃗�, t) is the velocity of the fluid. The macroscopic properties of the fluid are 

obtained through the following equations: 

( , ) ( , )f i

i

x t f x t   

( , ) ( , ) ( , )f f i i

i

x t u x t f x t e                         (2.20) 

The viscosity is given by: 

21
(2 )

6
c t                            (2.21) 

 

2.5.2 Boundary condition for immersed particles 

 

In this study, we employ an immersed moving boundary condition (Noble and 

Torczynski, 1998) for the solid phase which allows solid particles to overlap the 

lattice Boltzmann (LB) lattice. The LB equation is modified to enforce the non-slip 

condition, that is, 
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( , ) ( , ) (1 )[ ( , ) ( , )]eq p

i i i i i i

t
f x e t t t f x t B f x t f x t B




                   (2.22) 

Where 𝐵 is a weighting function that depends on the local solid volume fraction and 

relaxation time: 

1
( )

2( , )
1

(1 ) ( )
2

x

x

x

tB

t




 







  


                         (2.23) 

Ω𝑖
𝑝
 is an additional collision term that bounces back the non-equilibrium part of the 

distribution 

( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , ))p eq eq

i i i i f p i f ff x t f x t f x t u x t f x t u x t                   (2.24) 

where �⃗⃗�𝑝(�⃗�, t) is the particle velocity at time 𝑡, and −i denotes the distribution 

component which has the opposite direction to i. Compared with the bounce back 

boundary condition, this method shifts the boundary smoothly at the solid-fluid 

interface. It allows sub grid resolution of moving boundaries. The total hydrodynamic 

force exerted on the particle can be calculated by summing up the momentum transfer 

that occurs over the n nodes covered by the particle as 

2
' p

tot n i i

n i

x
F B e

t


 


                   (2.25) 

2.6 Validation of the LBM code 

 

The LBM code was validated by comparing the drag coefficient calculated from 

simulations of the flow past an isolated sphere with the empirical equation from Bird 

et al. (2007). Since it is difficult to validate simulations of dense suspensions that use 

periodic boundary conditions with experiments, we compare our results with previous 

numerical investigations. 

 

2.6.1 Drag force acting on a single sphere in an unbounded flow 

 

The drag force acting on an isolated sphere in an unbounded flow is a well-studied 

problem which has an analytical solution for low Reynolds numbers and many 

experimental data covering a wide range of Reynolds numbers (here the Reynolds 

number is defined as: 𝑅𝑒 = |�⃗⃗⃗�|𝑑𝑝/𝜐, where �⃗⃗⃗� was equal to the undisturbed field 

velocity far from the sphere). The drag coefficient of the sphere is defined as: 

'

2 2

8 d

d

p

F
c

d U
                         (2.26) 

To verify the 3D flow past a single sphere, the drag coefficient as a function of 𝑅𝑒 

was calculated. For low Reynolds numbers (Re ≤ 1), a relatively large box dimension 
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(10𝑑𝑝 × 10𝑑𝑝 × 10𝑑𝑝) is required to obtain highly accurate values for drag force 

(equation (2.26)). On the other hand a smaller domain size (5𝑑𝑝 × 5𝑑𝑝 × 5𝑑𝑝) is 

sufficient for Re > 1, thus, the solid volume fraction of the system was 0.00052 and 

0.0042, respectively. The value of 𝑑𝑝 was 10 lattice units for Re ≤ 150, and greater 

than 10 lattice units for Re > 150, reaching 30 lattice units at Re = 200. The center 

of the sphere was located at the center of the domain. At the inlet, a constant velocity 

boundary condition was used. At the outlet boundary, a stress free condition was 

specified, periodic boundary conditions were applied to the other two directions. 

Figure 2.1 shows a comparison between the LBM data, the empirical equation of Bird 

et al. (2007) and the Stokes solution. The LBM results lie slightly above the empirical 

equation and the Stokes solution for low Reynolds numbers. This is due to the finite 

computational domain used in the simulations. In contrast the empirical equation and 

Stokes solution were developed for a single particle in an infinite medium. 

 

Figure 2.1. Drag coefficient for a single sphere as a function of Reynolds number. The 

black squares show data obtained from the LBM simulations reported here. The solid 

line is the Stokes solution, the dashed line is the empirical equation of Bird et al. 

(2007). 

 

2.6.2 Stokes flow past a sphere in body centred cubic lattice 

 

Hasimoto (1959) calculated the total force on spheres in dilute simple cubic, 

body-centered cubic and face-centered cubic arrays by use of Fourier series. For 

simple cubic arrays the total force is given by 

1 8

23 3
3

1 1.7601 1.5593 ( )
f p

tot

d U

F


                   (2.27) 

where 𝜇𝑓 is the dynamic viscosity. The first term on the right-hand side is the Stokes 
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result for an isolated sphere in unbounded flow; the next three terms are due to the 

finite domain size. For a given volume fraction (ϕ = 0.0024, domain size 6𝑑𝑝 ×

6𝑑𝑝 × 6𝑑𝑝), we use the LBM to simulate the flow and measure the drag acting on the 

sphere. Figure 2.2 plots the normalized total force as a function of the diameter. The 

simulation agreed well with the analytical solution if the diameter was larger than 7 

lattice units. 

 
Figure 2.2. Total force acting on spheres arranged in a body centred cubic lattice (i.e. 

periodic boundary condition). The solid volume fraction is ϕ = 0.0024 and Re is 

0.01. 

2.6.3 Drag force on random assemblies of spheres 

 

Stokes flow past random assemblies of spheres has been studied in detail by several 

researchers (Hill et al., 2001a; van der Hoef et al., 2005). In Fig. 2.3 we compare the 

drag force obtained from LBM simulations with the result of van der Hoef et al. 

(2005). The diameters of the spheres lie in range 17.5-30. The dynamic viscosity is 

𝜇𝑓 = 0.01 (lattice units: distance between neighbouring nodes). Due to the finite 

resolution of the flow field, the drag force may deviate from the result of infinite 

resolution. To assess the influence of the grid resolution on the drag force, we have 

performed a set of simulations using different grid resolutions for the identical 

configuration. In these simulations, the particle size and Reynolds number were kept 

constant. An estimate for the resolution between particles is given by the hydraulic 

radius 𝑟ℎ = 𝑑𝑝(1 − 𝜙)/6𝜙. From Fig. 2.4 we can see that the drag force is a function 

of 1/𝑟ℎ
2  for assemblies of spheres. From Fig. 2.5 we observe the same linear 

dependence of 𝐹𝑑  on 1/𝑟ℎ
2  for assemblies of approximately cubic particles. 
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Therefore, simulations with four different values of 𝑟ℎ were performed for each 

system. The final drag force was obtained by extrapolating to1/rh
2 = 0, which 

corresponds to the case of infinite resolution. For a Re ≥ 100 (Re = |U⃗⃗⃗|dp/ν) the 

drag force is not a linear function of 1/rh
2 for assemblies of approximately cubic 

particles, i.e. Fig. 2.6. For high Reynolds numbers the values of 𝐹𝑑 obtained for 

different values of 𝑟ℎ were averaged to obtain 𝐹𝑑 for each configuration. Table 2.1 

summarizes the drag force acting on assemblies of spheres for different volume 

fractions (𝑅𝑒 = 104.9 and 209.9) using different drag force correlations (Here HKL 

and BHK refer to Hill et al. (2001a, b) and Beetstra et al. (2007), respectively). The 

data summarized in Table 2.1 demonstrate that our LBM simulations are in excellent 

agreement with the results of BHK. The validation tests described in this section 

indicate that our LBM simulations are capable to be applied in our studies. 

 

Figure 2.3. Drag force acting on a random assembly of spheres. The Reynolds number 

is 0.01 and ν = 0.01. 
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Figure 2.4. Normalized drag force as a function of 1/𝑟ℎ
2 (lattice units) for a low 

Reynolds number (Re = 0.01) using random assemblies of spheres. The solid volume 

fraction is 0.5 and the dynamic viscosity is 0.01. 
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Figure 2.5. Normalized drag force as a function of 1/𝑟ℎ
2 for Re = 50 for random 

assemblies of approximately cubic particles. The viscosity is ν = 0.01. (a) ϕ = 0.3, 

(b) ϕ = 0.4, (c) ϕ = 0.45. 
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Figure 2.6. Normalized drag force as a function of 1/𝑟ℎ
2 for Re = 100 and random 

assemblies of approximately cubic particles. The dashed line is the average value of 

𝐹𝑑 using four different values of 1/𝑟ℎ
2. The viscosity is ν = 0.00427. 
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ϕ Re LBM HKL BHK Ergun Wen & Yu 

0.3 104.9 19.43 16.48 20.70 25.92 17.13 

209.9 29.65 26.36 32.72 16.75 25.39 

0.4 104.9 31.20 25.17 31.92 37.59 30.11 

209.9 47.87 39.36 49.54 65.95 44.56 

0.5 104.9 48.56 44.01 48.70 57.46 58.59 

209.9 75.09 68.05 74.81 98.29 86.70 

Table 2.1. Drag force acting on random assemblies of spheres for Re = 104.9 and 

209.9. The simulations performed here (LBM) are compared with the results of Hill et 

al. (2001a, b) (HKL ) and Beetstra et al. (2007) (BHK). Furthermore, predictions 

using the correlations of Ergun (1952) and We & Yu (1966) are also given. 

 

2.7 Simulation and Results 

 

We began our simulations by randomly distributing approximately cubic particles in 

cubic, periodic domains. There is no clear definition of a random system for this type 

of particles, however, it is assumed that the configurations generated by this Monte 

Carlo method are sufficiently random for this work. The particles considered here are 

constructed from 8 identical spheres, each with a diameter of 𝑑𝑝. The surface of 

adjacent spheres is in contact but the spheres do not overlap. This configuration is 

shown in Fig. 2.7a. There are several methods to generate packings for spheres. One 

approach used in the literature is to drop spheres into a box sequentially, the packing 

is obtained when the spheres come to a stable rest state (Lebon et al., 1996). Another 

method uses a granular dynamics simulation based on the DEM (Rong et al., 2013). 

In this paper we use a Monte Carlo method to generate the packing (Frenkel and Smit, 

1996). All the approximately cubic particles are placed initially in an ordered 

configuration. Subsequently, each particle is moved and rotated randomly. If there is 

no overlap with other particles at new position, the orientation and coordinates of the 

approximately cubic particles are updated, otherwise the move is rejected. A sample 

configuration produced by this method is shown in Fig. 2.7b. 
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Figure 2.7. (a) Configuration of 8 identical spheres; (b) Random array of 

approximately cubic particles constructed from 8 identical spheres, 𝑁 = 25, ϕ = 0.3. 

 

All quantities used in the simulations are defined in lattice Boltzmann units (l. u.). In 

the simulations, N = 25 approximately cubic particles are arranged randomly in a 

cubic box via a Monte Carlo procedure, where 𝑑𝑝 has a value in the range 7 to 32.5 

lattice spaces. To access a range of Re, various fluid viscosity values (𝜇𝑓 = 0.01 and 

𝜇𝑓 = 0.00427 [l. u.]) were used. The fluid velocity is very low (< 0.01 [l. u.]) in 

order to ensure numerical stability. Periodic boundary conditions are used in all 

(a) 

(b) 
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directions. All particles are moved with the same constant velocity �⃗⃗�𝑝 in some 

arbitrary direction, so there is no relative motion between the approximately cubic 

particles. A uniform force is applied to the fluid phase to balance the total force from 

the moving particles on the fluid phase. This ensures that the total momentum of the 

fluid is zero. The superficial velocity �⃗⃗⃗� was equal to −�⃗⃗�𝑝. The particle Reynolds 

number of the approximately cubic particle is defined based on the diameter of a 

volume-equivalent sphere, i.e. Re = |�⃗⃗�𝑝|(2𝑑𝑝)/𝜈, and the drag force of the particle 

was normalized by 3π𝜇𝑓𝑢𝑝(2𝑑𝑝). After the simulation has reached steady state, the 

force was averaged over a large period of time (30000-200000 time steps). A second 

average was performed over 6 different combinations of particle configurations and 

flow directions. In this work, we did not include the data which deviated more than 

three times the standard deviation from the mean value. 

 

2.7.1 Drag force for assemblies of approximately cubic particles 

 

Figure 2.8 shows the simulation data for the normalized drag force for random 

assemblies of approximately cubic particles as a function of Reynolds number. The 

following function fits the data well: 

4 0.343

2 0.3 2 3 ( 0.5 2 )

10 10 0.413Re 0.058(1 ) 2.16(1 ) 23 (1 ) 8.4Re
( ,Re) [ ]

(1 ) 1 1.14 24(1 ) 1 10 Re
dF

 

     


  

 

 

      
  

   

           (2.27) 

The first two terms are the drag force for low Reynolds numbers. The form of the 

second term was selected based on the Carman equation and the coefficients were 

determined by minimising the difference between the correlation and the simulation 

data. The third term is a modification of Beetstra et al.'s inertial part by adding a 

voidage (1 − ϕ) term following the drag force correlation proposed by Hill et al. 

(2001b). In Fig. 2.9 we plot our simulation data and Ergun equation for α(ϕ, Re) 

(α =
𝐹𝑑(𝜙,𝑅𝑒)−𝐹𝑑(𝜙,0)

𝑅𝑒
) multiplied by (1 − 𝜙)2, as a function of ϕ. We find that the 

Ergun equation cannot be applied to the non-spherical particles constructed from 

spheres directly even for high packing fractions. Our data indicate that α  is 

dependent on the Reynolds number. This is demonstrated more clearly in figure 2.10, 

where we plot α(1 − 𝜙)2 as a function of Reynolds numbers. It can be seen that the 

slope of the curve decreases with Re. For Re > 50, α is not very sensitive to the 

exact value of Re. Figures 2.11, 2.12 and 2.13 compare the results for the drag force 

andα(1 − 𝜙)2 from the simulations with the correlation proposed by Beetstra et al. 

(2007), i.e. eq. (2.6). Figure 2.11 shows that Beetstra et al.'s correlation over-predicts 

the drag force for the individual spheres. The configurations of spheres used in 

Beetstra et al.'s simulations were considered to be random and the systems were 

homogeneous. In contrast, the simulations reported here consider approximate cubic 

particles constructed from 8 identical spheres. Consequently the spheres are not 

homogeneously distributed in these simulations. In our systems with a low porosity 

the size of the pores are not that so different, ensuring a more homogeneous flow field 
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than at higher porosity configurations, so the agreement with Beetstra et al. (2007) is 

better. In dilute systems some particles will be shielded by particles which are in front 

of them in the direction of flow. Consequently these shielded particles will experience 

a lower drag force (Liang et al., 1996). Therefore at high porosities the drag force is 

substantially different to the predictions of Beetstra et al. (2007), whereas at low 

porosities (i.e., ϕ=0.4, 0.45) the drag force approaches the value for randomly 

arranged particles. Increasing the Reynolds number for high packing fractions 

increases the difference between our simulation data and the correlation proposed by 

Beetstra et al. (2007), indicating that the drag force is significantly affected by the 

sphere configuration at moderate Reynolds numbers. Figures 2.12 and 2.13 show the 

form-drag coefficient α as a function of ϕ and Re.  It is clear that the inertial 

contribution to the drag force is significantly affected by the packing configuration. 

The inertial contribution has a smaller value than the one for random packings. 

Figures 2.14 and 2.15 compare the newly proposed drag force correlation with 

Beetstra et al. (2007) based on the same Reynolds number definition, i.e. Re =

|�⃗⃗�𝑝|(2𝑑𝑝)/𝜈. They show that Beetstra et al.'s correlation (Eq. 2.6) does not represent 

the data well. In most of the cases it over-predicts the drag force acting on the 

approximately cubic particle. The data presented above indicate that Beetstra et al.'s 

correlation cannot be applied directly to non-spherical particles constructed from 

spheres, i.e. by considering the approximately cubic particles as a sphere of equal 

volume. 
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Figure 2.8. Normalized drag force for approximately cubic particles as a function of 

Reynolds number. The data points show the results of current LBM simulations. The 

lines show the newly proposed correlation, e.g. highest line represents ϕ = 0.45. 
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Figure 2.9. Plot of α(1 − 𝜙)2 as a function of solid fraction for assemblies of 

approximately cubic particles. The data points show the results of current LBM 

simulations. The red, blue and green lines are the newly proposed drag force 

correlation for Re=10, 50 and 200, respectively and the dashed line plots the Ergun 

equation. 
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Figure 2.10. Plot of α(1 − 𝜙)2 as a function of Reynolds number for assemblies of 

approximately cubic particles. The data points show the results of current LBM 

simulations. The red, blue and green lines are the newly proposed drag force 

correlation for ϕ=0.1, 0.3 and 0.45, respectively and the dashed line plots the Ergun 

equation. 
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Figure 2.11. Normalized drag force acting on the individual spheres (approximately 

cubic particles simulations) as a function of the Reynolds number. The data points 

show the results of current LBM simulations. The lines show Beetstra's correlation, 

where the highest line represents ϕ=0.45, and the lowest ϕ=0.1. 
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Figure 2.12. Comparison of the drag force acting on a single sphere (approximately 

cubic particles simulations) with the correlation proposed by Beetstra et al. (2007). 

The data points show the results of current LBM simulations. The red, blue and green 

lines are the drag force correlation proposed by Beetstra et al. (2007) for Re=5, 25 and 

100, respectively. 
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Figure 2.13. Comparison of the drag force acting on a single sphere (approximately 

cubic particles simulations) with the correlation proposed by Beetstra et al. (2007). 

The red, blue and green lines plot the predictions of the drag force correlation 

proposed by Beetstra et al. (2007) for ϕ=0.1, 0.3 and 0.45, respectively. 
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Figure 2.14. Comparison of the newly proposed drag force correlation for assemblies 

of approximately cubic particles with the correlation proposed by Beetstra et al. 

(2007). The data points show the results from current LBM simulations. The 

comparison is performed by modelling the approximately cubic particles as volume 

equivalent spheres. 
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Figure 15. Comparison of the newly proposed drag force correlation for assemblies of 

cubic particles with the correlation proposed by Beetstra et al. (2007). The data points 

show the results from current LBM simulations. The comparison is performed by 

modelling the approximately cubic particles as volume equivalent spheres. 

 

2.8 Conclusions 

 

The lattice Boltzmann method has been used to compute the drag force acting on 

assemblies of approximately cubic particles constructed from 8 spheres for a wide 

range of Reynolds number. Based on the simulation data we propose a new drag force 

correlation for this kind of particles. Since there is no trivial method to couple ϕ and 

Re in a drag force correlation, we use a Beetstra-type equation to fit the data. We 

have compared the drag force obtained in our simulations with that predicted by the 

correlation proposed by Beetstra et al. (2007). This comparison was done by 

considering either the drag acting on individual spheres, or the drag acting on an 

approximately cubic particle composed by 8 spheres. These comparisons showed that 

Beetstra et al.'s correlation cannot predict the system well. The drag force acting on a 

single sphere is smaller than that predicted by the correlation proposed by Beetstra et 

al. (2007), and the drag force acting on an approximately cubic particle is also smaller 

than that predicted by Beetstra's correlation based on the same Reynolds number 

definition. The discrepancy arises because grouping the spheres into approximately 

cubic particles results in a less homogeneous packing than the packings studied by 

Beetstra et al. (2007). The difference is particularly pronounced for high Reynolds 
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numbers. The correlation proposed in this paper will enable CFD-DEM and 

Euler-Euler simulations of approximately cubic particles, allowing the influence of 

the solid volume fraction in CFD-DEM models to be assessed. 
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3  

The effect of solid volume fraction and Reynolds number 

on the drag force acting on assemblies of cubic particles 

 

3.1 Abstract 

 

The accurate prediction of the drag force exerted by a fluid on assemblies of particles 

is critical to simulate key characteristics of gas-solid systems such as the bed 

expansion in fluidized beds. To this end, a lattice Boltzmann method has been applied 

to compute the drag force acting on assemblies of cubes for a wide range of Reynolds 

numbers, Re = 0 − 200, and solid volume fractions, ϕ = 0.1 − 0.45. The numerical 

data was used to propose a new drag force correlation for assemblies of cubes as a 

function of the Reynolds number and solid volume fraction. The new drag force 

correlation is expected to improve the accuracy of Euler-Euler and Euler-Lagrangian 

simulations of cubic particles. 

 

3.2 Introduction 

 

The numerical simulation of gas-solid systems, e.g. fluidized beds, relies critically on 

the accurate formulation of the drag force exerted by a fluid on the particulate phase. 

For example, Li et al. (2003) reported that the bed expansion in a gas fluidized bed is 

very sensitive to the dependence of the drag force on the voidage for the different 

drag-force correlations assessed. The most commonly used drag force correlations in 

the field, i.e. the correlations by Ergun (1952) and Wen & Yu (1966) were derived 

experimentally by measuring the pressure drop in packings and the sedimentation 

velocity, respectively. However, it is under debate whether these correlations can be 

used for the wide range of solid volume fractions typically encountered in fluidized 

beds (Gidaspow, 1994). Due to the difficulty to perform highly resolved (both 

temporally and spatially) experiments in gas-solid systems (Müller et al., 2006; 

Holland et al., 2008; Müller et al., 2011), recently, direct numerical simulations (DNS) 

have been employed to improve the accuracy (and parameter space) of drag force 

correlations. In direct numerical simulations the fluid flow around the particles is fully 

resolved and the drag force acting on the individual particles can be calculated 

accurately. Hill et al. (2001b) were the first to derive a drag force correlation for 

assemblies of spheres using a lattice Boltzmann method as a DNS technique. Beetstra 

et al. (2007) extended the work of Hill et al. (2001b) and proposed new drag force 

correlations for mono- and bi-disperse assemblies of spheres. Recent works dedicated 

to improve the accuracy of predictions of the drag force acting on assemblies of 

spheres for a wide range of Reynolds number have focused on two aspects: (1) 

developing highly accurate solid-fluid boundary conditions (Tenneti et al., 2011; Tang 



35 
 

et al., 2014) and (2) introducing granular temperature into the drag force correlation 

for assemblies of spheres (Tang et al., 2016). For example, Tenneti et al. (2011) 

applied an immersed boundary method with a grid resolution sufficiently fine such 

that the values determined for the drag force became grid independent, allowing them 

to propose a new drag force correlation for mono-disperse spheres. When compared 

to the correlation of Beetstra et al. (2007) differences of up to 30% in the Reynolds 

number range 100 -300 were observed. Tenneti et al. (2011) argued that the 

differences were largely due to differences in the grid resolution of the underlying 

DNS simulations. Tang et al. (2014) developed an accurate immersed boundary 

method using effective hydraulic diameters, allowing them to keep the computational 

cost relatively low. Using their simulation data a new drag force correlation was 

proposed for static and dynamic arrays of spheres (Tang et al., 2015, 2016). Despite 

the recent progress in this area, the drag force correlations listed above are restricted 

to spherical particles only. Indeed, very little progress has been made in the 

development of drag force correlations for non-spherical particles. The first attempt 

for a drag force correlation for non-spherical particles was made by Haider and 

Levenspiel (1989), who formulated a general expression for a drag coefficient for 

single spherical and non-spherical particles in incompressible flow. Subsequently, 

several new drag force correlations for different particle shapes (and orientations) 

were proposed (Tran-Cong et al., 2004; Yow et al., 2005; Hölzer et al., 2008). 

However, these correlations do not take into account the effect of solid volume 

fraction on the drag force (i.e. are for single particles only). The correlation derived 

by Hölzer et al. (2008) has been employed for the simulations of gas-solid flows 

comprising mono-dispersed non-spherical particles, i.e. cuboids and ellipsoids (Hilton 

et al., 2010, 2011).  The work of Hilton et al. (2010) highlighted the limitations of 

approximating non-spherical particles by spheres and emphasized that particle shape 

is a critical parameter to determine accurately drag force correlations. To this end, we 

conduct direct numerical simulations of fluid flowing over assemblies of cubes and 

develop a drag force correlation that is applicable for Euler-Euler and 

Euler-Lagrangian simulations. 

 

3.3 Previous studies of the drag force acting on non-spherical particles  

 

3.3.1 Shape description of non-spherical particles 

 

The drag force acting on a non-spherical particle is expressed commonly in the form 

of a drag coefficient that is a function of the particle Reynolds number and particle 

shape. The deviation of a particle shape from a sphere is typically quantified through 

a sphericity factor Φ. Wadell (1933) defined the sphericity factor (Φ) as the ratio of 

the surface area of a volume equivalent sphere to the surface area of the non-spherical 

particle. However, the sphericity factor cannot describe the orientation of the particle 

with respect to the flow. Moreover, the sphericity factor cannot distinguish between 

different shapes, i.e. differently shaped particles could have the same sphericity factor. 

Hence, further equivalent diameters have been introduced to characteristic a particle’s 
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dimensions (with the same shortcomings as the sphericity factor). For example, the 

volume equivalent sphere diameter is defined as: 

3 6 /V pd V                          (3.1) 

where 𝑉𝑝 is the particle volume. The projected area equivalent sphere diameter 𝑑𝐴 

is equal to  

2 4 /A pd A                             (3.2) 

where 𝐴𝑝 is the projected area of the particle. The surface area equivalent sphere 

diameter, 𝑑𝑁, is calculated as: 

                                                              

2 /N pd S                              (3.3) 

Here, 𝑆𝑝 is the particle surface area. The Sauter diameter of a particle is: 

                    3 2/s V Nd d d                            (3.4) 

Therefore, the sphericity can be re-written as: 

2

2

V

N

d

d
                                (3.5) 

                                    

3.3.2 Drag coefficient for a single, non-spherical particle 

 

For a single particle immersed in a fluid, the drag coefficient is defined as: 

                 𝑐𝑑 = 8⌈�⃗�𝑑
′ ⌉/𝜌𝑓𝜋𝑑𝐴

2�⃗⃗⃗�2                      (3.6) 

where 𝜌𝑓 is the fluid density and �⃗�𝑑
′  is the drag force acting on the particle. For the 

Stokes regime, Leith (1987) proposed the following expression for the drag 

coefficient 𝑐𝑑: 

8 16

Re Re

NA
d

V V

dd
c

d d
                          (3.7) 

The first and second terms on the right hand side of Eq. (3.7) describe the drag acting 

on a sphere with an identical projected area and an identical surface area, respectively.  

Fitting of the experimental measurements of drag coefficients for isometric particles 

(e.g. cubes, spheroids), Pettyjohn & Christiansen (1948) and Ganser (1993) proposed 

the following equation to predict the drag coefficient of a single, non-spherical 

particle up to Reynolds number 1×10
5
. 
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𝑐𝑑 =
24

𝑅𝑒
(

𝑑𝐴
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2𝑑𝑁
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                             (3.8) 

Measuring the settling velocities of six different agglomerates that were constructed 

by gluing together spheres, Tran-Cong et al. (2001) derived the following expression 

for the drag coefficient of non-spherical particles: 
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            (3.9) 

where 𝑐𝑟  is the particle circularity defined as 𝑐𝑟 = 2𝜋𝑑𝐴/𝑃, P is the projected 

perimeter of the particle with respect to the flow direction. Combing experimental 

data of the drag coefficients of differently shaped particles from literature and their 

own numerical data, Hölzer et al. (2008) proposed the following correlation to 

calculate the drag coefficient of a single, non-spherical particle: 

0.20.4( log )
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8 1 16 1 3 1 1
0.42 10
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        (3.10) 

Here Φ⊥ is the crosswise sphericity defined as the ratio between the cross-sectional 

area of the volume equivalent sphere and the projected cross-sectional area of the 

particle. The mean relative error of Eq. (3.10) was 14.4% with respect to the data used 

for fitting. 

 

3.3.3 Drag force correlation for assemblies of non-spherical particles 

 

When an incompressible fluid percolates through a static, packed bed with constant 

interstitial velocity �⃗⃗�𝑓, the total, average fluid-particle interaction force that acts on 

each particle located in volume V can be expressed as: 

      

< �⃗�𝑡𝑜𝑡 >=
−𝜙𝑉

𝑁
∇𝑃+< �⃗�𝑑

′ >                    (3.11) 

where ∇P is the pressure gradient over the volume, ϕ is the solid volume fraction, 

N is the number of particles in the volume and 〈�⃗�𝑑
′ 〉 is the average drag force due to 

fluid-solid interactions. Here, 〈�⃗�𝑡𝑜𝑡〉 is calculated as 
1

𝑁
∑ �⃗�𝑡𝑜𝑡,𝑖

𝑁
𝑖=1 , where �⃗�𝑡𝑜𝑡,𝑖 is the 

total force acting on the i-th particle in the computational volume. Since the fluid is 

forced to move with a constant velocity, a force balance over volume V gives 

−𝑉𝛻𝑃 = 𝑁〈�⃗�𝑡𝑜𝑡〉. Substituting −𝑉𝛻𝑃 = 𝑁〈�⃗�𝑡𝑜𝑡〉 into equation (3.11) we obtain an 
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expression for 〈�⃗�𝑑
′ 〉, viz. 〈�⃗�𝑑

′ 〉 = (1 − 𝜙)〈�⃗�𝑡𝑜𝑡〉. In this work, the Reynolds number is 

based on the volume equivalent diameter of the particle, viz. Re = 𝜌𝑓|�⃗⃗⃗�|𝑑𝑉/𝜇𝑓 (𝜌𝑓 

and 𝜇𝑓  are density and dynamic viscosity of the fluid, respectively. �⃗⃗⃗�  is the 

superficial velocity of the fluid, viz. �⃗⃗⃗� = (1 − 𝜙)�⃗⃗�𝑓). The average drag force (〈�⃗�𝑑
′ 〉) 

is normalized by the Stokes drag (3π𝜇𝑓 �⃗⃗⃗�𝑑𝑉), viz. 𝐹𝑑 = 〈�⃗�𝑑
′ 〉/3π𝜇𝑓 �⃗⃗⃗�𝑑𝑉 (Di Felice, 

1995). 

 

A common approach to include particle shape in a drag force correlation, is by 

introducing a shape factor into e.g. the Ergun (1952) equation (Li et al., 2011; Nemec 

et al., 2005; Liu et al., 1994). It should be noted that the characteristic size of the 

particles used in the Ergun equation (1952) is the Sauter diameter. Therefore, the 

coefficients A and B in equation (3.12) are 150/Φ2 and 1.75/Φ, respectively, if the 

volume equivalent sphere diameter is chosen as the characteristic size of the particle. 

 

2 2
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( ,Re)

18(1 ) 18(1 )
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               (3.12) 

In many applications, the particles are assumed to be spheres, viz. Φ = 1. Li & Ma 

(2011) proposed a drag force correlation for non-spherical particles (hollow spheres, 

cylinders) by simply replacing the Sauter diameter with the product of a sphericity 

factor and the Sauter diameter (Φ𝑑𝑠) in the Ergun equation. In this case, the A and B 

in Eq. (3.12) are equal to 150/Φ4  and 1.75/Φ2 , respectively. Comparing the 

predictions of the modified Ergun equation (Li & Ma, 2011) with the experimental 

measurements of Li & Ma (2011), a good agreement was observed for high Reynolds 

numbers and high packing fractions. However, the modified Ergun equation 

over-predicts the pressure drop for low Reynolds numbers.  

 

Due to the lack of drag force correlations for assemblies of non-spherical particles 

that span a wide range of Reynolds numbers and solid fractions, numerical 

simulations of gas-fluidized beds have been restricted largely to beds containing 

spherical particles. Indeed, only very few efforts that model fluidized beds containing 

non-spherical particles have been reported so far. In one of these studies, Hilton et al. 

(2010, 2011) modified the drag force correlation of Hölzer et al. (2008) with a 

voidage-dependent expression of Di Felice (1994) to model non-spherical particle 

assemblies of ellipsoids and cuboids, viz: 

                                                  

𝐹𝑑 =
𝑅𝑒

24
𝑐𝑑𝜀−3.7+0.65exp [−

1

2
(1.5−log Re)2]                 (3.13) 
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where 𝑐𝑑 is given by equation (3.10). Equation (3.13) relies on the assumption that 

the dependence of 𝐹𝑑 on voidage is independent of particle shape. This, however, is 

probably an over-simplification, as Kriebitzsch et al., (2013) showed that the 

functional form of the voidage dependence of the drag force acting on individual 

particles is highly affected by the local packing structure which in turn is affected by 

particle shape. One of the very few drag force correlations that were derived 

numerically for assemblies of non-spherical particles of a specific shape (i.e. 

assemblies of approximately cubic particles constructed from eight identical spheres) 

was proposed by Chen et al. (2015):  
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       (3.14) 

In this equation, the orientation of the non-spherical particles (with respect to the fluid 

flow) is, however, not considered. Indeed, this information would not be available for 

Euler-Euler simulations. The disadvantage of the correlation of Chen et al. (2015) is 

that cubes are approximated by 8 spheres of equal size. However, in recent years, an 

increasing number of studies focusing on alternative non-spherical particle 

representations that avoid the use of assemblies for spheres has been reported. One 

increasingly popular approach is the use of the super-quadric equation (Lu et al., 2012, 

2014, 2015, 2017). Thus, this paper is concerned with the development of a drag force 

correlation for assemblies of cubes that are described by the super-quadric equation. 

The fluid flow is modelled using a lattice Boltzmann method. The effect of the solid 

volume fraction and the Reynolds number on the drag force is studied in detail and 

incorporated into the new correlation. The new drag force correlation proposed here is 

suitable for both Euler-Euler and Euler-Lagrangian simulations of gas-fluidized beds 

comprised of super-quadric cubes. 

 

3.4 Simulation method 

 

In the simulations reported here, a lattice Boltzmann method (LBM) (Ladd, 1994a) 

was applied to resolve the flow around the moving particles. The lattice Boltzmann 

equation (LBE) using a single relaxation time is used in the present work, viz. 

( , ) ( , ) [ ( , ) ( , )]eq

i i i i i

t
f x e t t t f x t f x t f x t




                  (3.15) 

where 𝑓𝑖 is the single particle distribution function with velocity 𝑒𝑖 at the position 

�⃗�  and time t, 𝑓𝑖
𝑒𝑞

 is the discrete equilibrium distribution and τ  is the single 

relaxation time. For the three-dimensional D3Q19 model, the lattice velocities are  

(0,0,0), 0

( 1 0 0) (0, 1,0) ,(0,0, 1) , 1...6

( 1, 1,0) ,( 1,0, 1) ,(0, 1, 1) , 7...18

i

i

e c c c i

c c c i




    
       

，， ，            (3.16) 

with c being the ratio of Δ𝑥 to Δ𝑡. The discrete equilibrium distribution function is 
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where �⃗⃗�𝑓(x, t) is the velocity of the fluid. The macroscopic properties of the fluid are 

obtained as follows: 

( , ) ( , )f i

i

x t f x t   

( , ) ( , ) ( , )f f i i

i

x t u x t f x t e                     (3.18) 

The viscosity is given by: 

21
(2 )

6
c t                          (3.19) 

An immersed moving boundary condition (Noble and Torczynski, 1998) is employed 

to enforce the non-slip boundary condition at the surface of the particles. Here, the LB 

equation is modified to account for the interaction between the solid and gas phases: 

( , ) ( , ) (1 )[ ( , ) ( , )]eq p

i i i i i i

t
f x e t t t f x t B f x t f x t B




                     (3.20) 

where B is a weighting function that depends on the local solid volume fraction for 

each lattice covered by particles and relaxation time, i.e. 

1
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                    (3.21) 

where 𝜙𝑥 is the local solid volume fraction at position �⃗� and Ω𝑖
𝑝
 is an additional 

collision term that bounces back the non-equilibrium part of the distribution: 

( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , ))p eq eq

i i i i f p i f ff x t f x t f x t u x t f x t u x t               (3.22) 

Here, �⃗⃗�𝑝(𝑥, 𝑡) is the particle velocity at position �⃗�  and time t (-i denotes the 

distribution component which has the opposite direction to i). 

 

3.5 Validation of the lattice Boltzmann method 

 

Prior to simulating assemblies of non-spherical particles, the LBM code  was 

validated comprehensively for spheres using three different flow conditions (Chen et 

al., 2015): (1) Comparison of the drag coefficient of a single sphere in an uniform 

flow with the correlation of Bird et al. (2007); (2) Comparison of the total force acting 
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on a cubic array of spheres in a creeping flow with the results of Hasimoto (1959); (3) 

Comparison of the drag force of a random assembly of spheres for Reynolds numbers 

up to 209.9 with the results reported by van der Hoef et al. (2005) and Beetstra et al. 

(2007). In the current work, the non-spherical particles are represented using the 

super-quadric equation (equation (3.23)). Figure 3.1 shows snapshots of super-quadric 

particles that are obtained by varying the parameters a, b, c and m in equation (3.23). 

1

m m m
x y z

a b c

     
       

     
                    (3.23) 

 

 

 

 

 

 

Figure 3.1. Differently-shaped super-quadric particles. 

 

Next, our LBM simulations were validated by comparing the drag coefficients of 

single cubes and spheroids in an uniform flow with the data reported by Richter et al. 

(2012). Richter et al. (2012) calculated the drag coefficients of spheres, prolate 

spheroids and cubes using a commercial finite volume solver (ANSYS FLUENT). For 

the prolate (a = 2b = 2c) two different orientations with respect to the flow direction, 

i.e. its major axis is parallel (prolate 1) or perpendicular (prolate 2) to the flow, were 

modelled. The major axis of the cube (a = b = c) was parallel to the flow.  The value 

of b was 5 lattice units for Re ≤ 50, whereas 8 lattice units were used for Re > 50. 

The drag coefficient of the particle is defined as: 𝑐𝑑 = 8|�⃗�𝑑
′ |/𝜌𝑓𝜋𝑑𝑉

2 �⃗⃗⃗�2. The domain 

size was 20𝑏 × 20𝑏 × 20𝑏 and ν = 0.01. Figure 3.2 shows a comparison between 

our LBM data and the simulation results of Richter et al. (2012) together with the 

predictions of Eqs. (3.8), (3.9) and (3.10). Our LBM data agrees very well with the 

simulations of Richter et al. (2012). The blue lines plot the drag coefficient of a cube 

as predicted by Eqs. (3.8) and (3.9). The solid lines plot the drag coefficients of 

prolate 1, the cube and prolate 2 as predicted by Eq. (3.10). The predictions of 

equations (3.8) and (3.9) are slightly below our LBM results. In general, the 

agreement is good since equations (3.8) and (3.9) are valid for differently-shaped 

particles and a wide range of Reynolds numbers. On the other hand, equation (3.10) 

can predict accurately the drag coefficient of a single cube and prolates in uniform 

flows. Compared to Eqs. (3.8) and (3.9), Eq. (3.10) is easier to implement and more 

accurate. Our LBM model was validated further by simulating an oblate spheroid 

Super-quadric cube Prolate Oblate 

𝑎 = 𝑏 = 𝑐, 𝑚 = 5 𝑎 = 2𝑏 = 2𝑐, 𝑚 = 2 2𝑎 = 𝑏 = 𝑐, 𝑚 = 2 
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rotating in a shear flow. The shear flow was generated by two parallel walls moving 

in opposite directions. The computational domain was 200 × 80 × 40  and the 

semi-axes of the oblate were 16, 16 and 8. Figure 3.3 plots the period of the tumbling 

motion of the oblate spheroid as a function of the Reynolds number. The tumbling 

period scales as a function of Re with 𝑇 = 200 × (80 − 𝑅𝑒)−0.5. This result is very 

close to the predictions of Aidun et al. (1998) (𝑇 = 200 × (81 − 𝑅𝑒)−0.5). We 

conclude that the lattice Boltzmann method reported here reproduces accurately a 

series of reference simulations. 

 
Figure 3.2. Drag coefficients of different, non-spherical particles (individual particles) 

as a function of the Reynolds number. The red symbols show the results of the LBM 

simulation. 
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Figure 3.3. Tumbling period of an oblate spheroid in a shear flow as a function of 

Reynolds number. 

 

3.6 Simulations and Results 

 

3.6.1 Simulation setup 

 

In this work packings of cubes were generated by randomly distributing super-quadric 

cubes in cubic, periodic domains. Several methods have been proposed to generate 

random packings of spheres, e.g. sequential addition or collective rearrangement (Liu 

et al., 1999). However, there is no clear definition of a random packing of cubes 

available. Thus, here we assumed that configurations generated by a Monte Carlo 

method (Frenkel and Smit, 1996) are sufficiently random for this work. Specifically, 

the following method was applied: Initially, all cube centres are placed randomly 

without any overlap at lattice points with a cube size that is half (a/2) of the nominal 

value of the cube (a). Subsequently the cubes are randomly moved translationally and 

rotated in a sequential fashion (one cube after another). Simultaneously the size of the 

cubes is increased by a predetermined increment (a/1000). If there is no overlap with 

another cube at the new position (the particles are allowed to contact with each other), 

the orientation, coordinates and size of the cube is updated, otherwise the operation is 

rejected. To this end, the discrete element method for super-quadric shaped particles 

reported by Lu et al. (2012) was used for overlap detection. After reaching the desired 

cube size, the randomization is continued but without increasing the size of the cube 

further until a number of pre-determined time steps (500000 time steps) has been 
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completed. A sample configuration obtained by this randomization method is shown 

in Figure 3.4. 

 

Figure 3.4. An example of a random configuration of super-quadric cubes (ϕ = 0.4). 

 

In the following all quantities are given in lattice units (l. u.) and the following scaling 

is applied: 

𝑢𝑝ℎ𝑦 = 𝑢𝑙𝑢
∆𝑥

∆𝑡
, 𝑑𝑉,𝑝ℎ𝑦 = 𝑑𝑉,𝑙𝑢∆𝑥, 𝜈𝑝ℎ𝑦 = 𝜈𝑙𝑢

∆𝑥2

∆𝑡
       (3.24) 

The subscript ‘phy’ denotes physical units. Each simulation contained 𝑁 = 25 cubes 

and 𝑑𝑉 was calculated using the volume of the super-quadric cube. Values for 𝑑𝑉 

were in the range 17 – 33 (l. u.). To vary the Reynolds number, Re, viscosities in the 

range 0.000838 - 0.01 (l. u.) were used. The particle velocity was very low (<

0.02[l. u. ]) to ensure numerical stability. Periodic boundary conditions were used in 

all of the directions. All of the particles were moved with a constant velocity �⃗⃗�𝑝 in 

the same (arbitrary) direction. Thus, there was no relative motion between the 

individual cubes. A uniform force which induces a backflow velocity �⃗⃗�𝑓 was applied 

to the fluid phase such that the total momentum of the fluid was zero (Van der Hoef et 

al., 2005), viz. 

(1 ) 0p fu V u V                          (3.25) 
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Taking the particles as a fixed reference frame, we obtain the superficial velocity of 

the fluid as 

pU u                          (3.26) 

After reaching a steady state, the force acting on the cubes was averaged over 

30000-200000 time steps. For each Reynolds number and solid fraction, 12-18 

different configurations were modelled and the values obtained were averaged. In this 

work, we did not include the data which deviated more than three times the standard 

deviation from the mean value. 

 

3.6.2 Drag force acting on assemblies of super-quadric cubes 

 

To probe the influence of the (finite) grid resolution on the calculated drag force, a set 

of simulations that use different grid resolutions for identical particle configurations 

was performed (the particle size was kept constant). The hydraulic radius that was 

used to estimate the average “pore size” of the interstices between spherical particles 

in a packed bed (van der Hoef, 2005) is defined as: 𝑟ℎ = 𝑑(1 − 𝜙)/6𝜙. If 𝑟ℎ is 

small, it may not be sufficient to fully resolve the fluid flow around the particles. 

Increasing the diameter of the particle (d) in lattice units, increases the hydraulic 

radius in lattice units. Van der Hoef et al. (2005) found that the average drag force 

acting on assemblies of spheres scales with 1/𝑟ℎ
2.  

 

Here, analogous to spheres, we define the hydraulic radius for cubes using the volume 

equivalent diameter, viz. 𝑟ℎ = 𝑑𝑉Φ(1 − 𝜙)/6𝜙. In Figure 3.5, the average drag force 

acting on cubes (identical particle configuration) as a function of 1/𝑟ℎ
2 (Re = 100) is 

plotted for different grid resolutions (𝑑𝑉). We observe that also the drag force acting 

on cubes scales with 1/𝑟ℎ
2 (for solid fractions of ϕ=0.3 and 0.4). In figure 3.5 (a), 

the largest value of 𝑟ℎ modelled implies that the flow around cubic particles is 

resolved on average by 8 lattice points. The difference in 𝐹𝑑 between the largest 𝑟ℎ 

and 𝑟ℎ → ∞ is 0.9% (Figure 3.5(a)). When the drag force is extrapolated to an 

infinite resolution, i.e. 1/𝑟ℎ
2 → 0, the “correct” drag force is obtained. Therefore, for 

each configuration, simulations with three different values of 𝑟ℎ were performed and 

the drag force was extrapolated to the case of infinite resolution using a linear 

relationship between 𝐹𝑑 and 1/𝑟ℎ
2. Interestingly, for ϕ = 0.45 (Fig. 3.5), the drag 

force is independent of 1/𝑟ℎ
2 which implies that the drag force has reached its 

asymptotic value already with the grid resolutions employed (𝑑𝑉 > 30 in lattice 

units). Therefore, for ϕ = 0.45 the values of 𝐹𝑑 obtained for different values of 𝑟ℎ 

were averaged to obtain 𝐹𝑑  for each configuration. For ϕ =0.1 and 0.2, the 

difference in 𝐹𝑑 for 𝑑𝑉 ≈ 20 and 𝑑𝑉 ≈ 30 is within 1.5% (Re=200).  Hence, it is 

not necessary to extrapolate the drag force to infinite resolution when 𝑑𝑉 > 20 was 

used for ϕ=0.1 and 0.2 in the simulations.  

 

                                                                                                                                                                                                                                                                                                                                   



46 
 

 

(a) ϕ = 0.3 
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(b) ϕ = 0.4 
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(c) ϕ = 0.45 

Figure 3.5. Average, normalized drag force acting on a single particle in an assembly 

of super-quadric cubes as a function of 1/𝑟ℎ
2 for Re=100. The kinematic viscosity 

was ν = 0.00427. 

 

In Figure 3.6, we compare our simulation data with the Ergun equation (1952) and the 

modified Ergun equation (Li & Ma, 2011). The inherent shortcoming of the 

experimentally-derived Ergun correlation (and correlations based on it) is its 

restriction to dense packings, although, in practice the Ergun equation is used often to 

calculate the drag force over a large range of solid volume fractions (Gidaspow, 1994). 

In addition, even for dense packings, three different regimes were identified (Fand et 

al., 1987), i.e. Darcy regime Re<2.3, Forchheimer regime 5<Re<80, turbulent regime 

Re>120 and the transition regions in between them. For each regime, the coefficients 

A and B were derived separately by fitting, e.g. A=192.24 and B=0 for Re<2.3. Hence, 

one set of values for A and B is not expected to predict accurately the drag force for 

dense packings over a wide range of Reynolds numbers. Compared to our simulation 

data, both the Ergun and the modified Ergun equations over-predict significantly the 

drag force for super-quadric cubes at high Reynolds numbers, while under-predicting 

the drag force in the Stokes regime. As pointed out before, the experimental data used 

to correlate the Ergun equation comprise pressure drop measurements of packed beds 

containing also non-spherical particles (e.g. round sand, cylinders, etc.). It should be 

noted, that the prediction of the Ergun equation for the drag force for assemblies of 

spheres are significantly higher than the predictions of numerically derived 



49 
 

correlations (e.g. Hill et al., 2001b; Beetstra et al., 2007; Tenneti et al., 2011 ) 

(Tenneti et al., 2011). Since the shape of a super-quadric cube (Φ = 0.9559) is close 

to a sphere, it is possible that the Ergun equation over predicts the drag force for 

assemblies of super-quadric cubes. The modified Ergun equation proposed by Li & 

Ma (2011) was based on pressure drop measurements in packed beds that contained 

hollow spheres or cylinders (only four differently shaped particles were used in the 

experiments). Since the shape of a super-quadric cube is significantly different from 

that of a hollow sphere or cylinder, it is not overly surprising that there is an 

appreciable difference between the equation proposed by Li & Ma (2011) and our 

numerical data. Following Li & Ma’s method (2011), we re-fitted Eq. (3.12) using our 

simulation data to assess whether an Ergun-type equation could represent well our 

data. Eq. (3.27) was obtained for assemblies of super-quadric cubes (the coefficients 

A and B are equal to, respectively, 213.7/Φ4 and 1.13/Φ2 with Φ = 0.9559). 

Figure 3.7 plots the normalized average drag force of assemblies of super-quadric 

cubes predicted by Eq. (3.27). Due to the linear dependence of Eq. (3.27) on the 

Reynolds number, the relative deviation between Eq. (3.27) and our LBM data is high 

for low Reynolds numbers. The maximum relative deviation is 22 %. One possible 

solution to increase the accuracy of an Ergun-type equation is to identify different 

flow regimes, and then determine coefficients A and B for each regime separately. 

However, such an approach is probably of very little practical use. An alternative 

approach is to adopt a non-linear Reynolds number dependency of 𝐹𝑑 such as Eq. 

(3.14) or Beetstra et al. (2007).  

4 2 2 2

213.7 1.13 Re
( ,Re)

18(1 ) 18(1 )
dF




 
 

   
                (3.27) 

                                           

Although implemented in CFD-DEM simulations of gas-fluidized beds comprising 

non-spherical particles (e.g. cubes, cylinders) (Hilton et al., 2010; Zhou et al., 2011; 

Oschmann et al, 2014), the validity of Eq. (3.13) was not yet assessed explicitly by 

experiments or direct numerical simulations. Figure 3.8 compares the predictions of 

equations (3.13) and LBM data for ϕ=0.2 and 0.45. For a solid volume fraction and a 

Reynolds number, the drag force acting on individual cubes in six different 

configurations is calculated using Eq. (3.13). In Figure 3.8, we observe that Eq. (3.13) 

under-predicts the drag force for assemblies of super-quadric cubes. The discrepancy 

between Eq. (3.13) and the LBM data is most likely due to the fact that the exponent 

of the voidage term in Eq. (3.13) was derived originally for assemblies of spheres.  

At low Reynolds numbers, the relative deviation between Eq. (3.13) and the LBM 

data is up to 50%. Therefore, the error of Eq. (3.13) in predicting the drag force for 

assemblies of super-quadric cubes is substantial. 

 

The predictions of the drag force correlations of Tang et al. (2015), Chen et al. (2015) 

and our LBM data are compared in Figure 3.9. The equation of Tang et al. (2015) was 

proposed originally for assemblies of spheres. From figure 3.11, we can see that the 

drag force acting on assemblies of super-quadric cubes and volume equivalent spheres 
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is comparable. For ϕ = 0.1, Tang’s equation agrees well with our LBM data. 

However, the difference between our LBM data and the equation of Tang et al. (2015) 

increases with increasing solid volume fraction and Reynolds number. Somewhat 

surprisingly, we observe that the difference in the drag force between super-quadric 

cubes and approximately cubic particles constructed from eight spheres (Eq. (3.14)) is 

substantial. The reason for this very large difference is probably that fluid can flow 

through the “cubes” constructed from eight spheres, which increases appreciably the 

contact surface area of the fluid. From the comparisons above, it is clear that the drag 

force is significantly affected by particle shape. It seems that only for relatively small 

Reynolds numbers (Re<10) super-quadric cubes can be approximated by volume 

equivalent spheres. At higher Reynolds numbers, this approximation would induce a 

large error (up to 56%) in estimating the gas-solid interaction and lead, in turn, to 

large errors in modelling the dynamics of e.g. gas-solid fluidized bed. Hence, 

correlating our LBM data, we propose Eq. (3.28) to model accurately the drag force 

for assemblies of super-quadric cubes. The first two terms of equation (3.28) describe 

the contribution of viscous forces to the drag force. The functional form of the second 

term is based on an expression for low Reynolds numbers that was initially proposed 

by van der Hoef et al. (2005). The third term is a modification of the inertial 

contribution to the drag force as proposed by Beetstra’s (Beetstra et al., 2007).  

Figure 3.10 plots the LBM-derived normalized drag force acting on random 

assemblies of super-quadric cubes as a function of the Reynolds number. Equation 

(3.30) represents the simulation data pretty well.  

 
1 0.15 0.24

0.5 0.5

2 2 2 ( 0.5 2 )

10 0.413Re 1.17(1 ) 0.45 (1 ) 8.4Re
( ,Re) (1 ) ( 0.2 5.6 ) [ ]

(1 ) 24(1 ) 1 10 Re
dF



 

   
  

 

  

 

    
     

  

               (3.28) 
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Figure 3.6. Normalized drag force as a function of Reynolds number. The data points 

plot the LBM data, whereas the blue and red lines represent the Ergun and the 

modified Ergun equation (Li & Ma, 2011), respectively. 
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Figure 3.7. Comparison of the normalized drag force predicted by Eq. (3.27) and the 

LBM data obtained in this work. 
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Figure 3.8. Comparison of the LBM data and Eq. (3.13) (Hilton et al., 2010) for 

ϕ=0.2, 0.45. The dashed lines represent the average drag force for cubes calculated 

using Eq. (3.13). The squares and triangles plot the LBM data.  
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Figure 3.9. Drag force for assemblies of spheres, approximately cubic particles 

constructed from eight identical spheres and super-quadric cubes as a function of 

Reynolds number. The blue and red lines plot the correlations of Tang et al. (2015) 

and Eq. (3.14), respectively. 
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Figure 3.10. Normalized drag force as a function of Reynolds number. The green 

symbols represent the LBM simulation results. The lines plot the predictions of 

equation (3.28). 

 

3.7 Conclusions 

 

The lattice Boltzmann method has been used to compute the drag force acting on 

assemblies of super-quadric cubes for a wide range of solid volume fractions and 

Reynolds numbers. Correlating our simulation data we propose a new drag force 

correlation for super-quadric cubes. We have compared the drag forces calculated 

here with those predicted by the Ergun equation (1952) and the correlations proposed 

for assemblies of spheres (Tang et al., 2015) and assemblies of non-spherical particles 

(Li & Ma, 2011; Chen et al., 2015; Hilton et al., 2010). The correlations proposed by 

Li & Ma (2011) and Chen et al. (2015) over-predict the drag force for super-quadric 

cubes in particular for high solid volume fractions and Reynolds numbers. Hence, a 

general drag force correlation for assemblies of non-spherical particles or a drag force 

correlation derived from a coarse level representation of non-spherical particles (e.g. 

constructed by few identical spheres) is currently associated with a large error. The 

correlation used by Hilton et al. (2010) under-predicts the drag force for super-quadric 

cubes. Despite the fact that Eq. (3.10) is accurate to estimate the drag coefficients of 

individual cubes and prolates, the reason for the under-prediction of the drag force of 

assemblies of super-quadric cubes is the fact that the exponent of the voidage 
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dependence in Eq. (3.13), originally derived for assemblies of spheres, is not suitable 

to describe accurately the effect of the solid volume fraction on the drag force for 

cubes. Interestingly, the Ergun equation (1952) shows appreciable differences with 

our LBM data for both low and high Reynolds numbers for solid volume fractions in 

the range 0.1-0.45. Our results indicate that it is essential for Euler-Euler and 

Euler-Lagrangian simulations of cubic particles to implement drag force correlations 

that are indeed proposed from cubic particle data and not to use correlations that were 

initially developed for spherical particles. We expect that the correlation proposed 

here will improve CFD-DEM and Euler-Euler simulations of cubic particles. 
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4  

A Dirichlet boundary condition for thermal lattice 

Boltzmann method 

 

4.1 Abstract 

 

In this work a thermal boundary condition based on the bouncing back of the 

non-equilibrium distribution of energy distribution function are presented for thermal 

lattice Boltzmann simulations that contain a Dirichlet boundary condition. To this end 

the thermal lattice Boltzmann equation is modified by introducing an additional 

collision term that takes into account the thermal diffusivity and local solid volume 

fraction of a lattice (partially) covered by the solid phase. Asymptotic analysis of the 

boundary condition confirms a second order accuracy of the new boundary condition. 

The method is validated using an analytical solution for Nusselt number correlation of 

a single sphere in unbounded stationary fluid and previous direct numerical 

simulations of fluid particle heat transfer.  

 

4.2 Introduction 

 

Particulate two phase, non-isothermal flows are encountered widely in industrial 

applications, e.g. gas-fluidized reactors. Understanding the complicated interaction 

between fluid mechanics and thermal effects are essential to improve the design 

reactors commonly applied in the chemical industry and improving their efficiency. In 

the past decades, Computational fluid dynamics (CFD) has been applied extensively 

to compute the fluid flow, heat transfer and chemical reactions in complex systems, 

e.g. packed or fluidized reactors. However, the flow structure in these systems spans a 

wide range of length scales, e.g. from millimeters (particle) to meters (bubble). 

Freund et al. (2003) simulated single phase reacting flows in a randomly packed bed 

using lattice Boltzmann method and found that the integral quantities such as pressure 

drop were significantly influenced by the local packing structure, a feature which was 

neglected in the CFD simulations. On contrary, in direct numerical simulations (DNS), 

the flow around individual particles is fully resolved and interactions between fluid 

and particles are directly taken into account by imposing boundary conditions at the 

particles’ surface. Additionally, DNS has the potential to complement experiments as 

DNS provides a versatile tool to extract data that is otherwise extremely difficult if 

not impossible to obtain experimentally. Among the different DNS methods available, 
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the lattice Boltzmann method has several advantages when compared to conventional 

numerical methods (Chen & Doolen, 1998) (e.g. Finite volume method): (1) The 

convective and collision operators are linear; (2) The fluid pressure can be calculated 

simply by an equation of state; (3) Complex boundaries are relatively easy to 

implement; (4) ease of parallelization as computations are local.   

Recently the extension of LBM to thermal flows has received significant attentions 

(Yoshida & Nagaoka, 2010; Li et al., 2013; Pareschi et al., 2016; Wang et al., 2016). 

In general, three different approaches have been proposed: a multispeed model 

(Alexander et al., 1993), a passive-scalar model (Bartoloni et al., 1993; Shan, 1997), 

and a double population model (He et al., 1998).  

Alexander et al. (1993) developed the multispeed approach which only needs a 

density distribution function for thermal flows. However, additional speeds are 

required and equilibrium density distribution functions including higher order velocity 

terms are necessary so that the temperature can be evaluated at the macroscopic level. 

Moreover, the model suffers from numerical instability for high Rayleigh number 

flows and temperature variation in the simulations is limited to a narrow range 

(McNamara et al., 1995). In the passive-scalar model (Bartoloni et al., 1993; Shan, 

1997), the temperature is considered as a passive scalar and simulated using a separate 

distribution function which is independent of density distribution function. This 

approach enhances the numerical stability when compared to the multispeed model 

(Guo et al., 2002). The main disadvantage of passive scalar model is that the viscous 

dissipation and compression work done by the pressure is not taken into account. He 

et al. (1998) proposed a double-population model at incompressible limit. The 

temperature distribution function in double population model is derived directly from 

the second order moment of density distribution function (internal energy). As a result, 

the viscous dissipation and compression work done by pressure are involved in the 

temperature evolution equation. To avoid the implicitness of temperature evolution 

equation, new variables for temperature evolution equation are introduced. Hence, the 

temperature evolution equation is transformed to the form of new variables. However, 

the shortcoming of double population model is that the temperature evolution 

equation includes temporal and spatial derivatives of macroscopic fluid velocity, 

which increases the complexity of the implementation. In addition, the bounce back 

boundary condition for the non-equilibrium distribution of the distribution functions is 

only valid for the old variables (i.e. density and temperature distribution functions). 

Peng et al. (2002) proposed a simplified thermal lattice Boltzmann model for 

incompressible thermal flow which overcomes the shortcomings of double-population 

model (He et al., 1998), yet maintains the bounce back rule for the thermal boundary 
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condition. As the work reported here is based on the model proposed by Peng et al. 

(2002). Equations (4.1) and (4.2) are the density and energy evolution equations, 

respectively. 

      

𝑓𝑖(�⃗� + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝑖(�⃗�, 𝑡) −
∆𝑡

𝜏𝑣
[𝑓𝑖(�⃗�, 𝑡) − 𝑓𝑖

𝑒𝑞(�⃗�, 𝑡)]           (4.1) 

 

𝑔𝑖(�⃗� + 𝑒𝑖∆𝑡, 𝑡 + ∆𝑡) = 𝑔𝑖(�⃗�, 𝑡) −
∆𝑡

𝜏𝑐
[𝑔𝑖(�⃗�, 𝑡) − 𝑔𝑖

𝑒𝑞
(�⃗�, 𝑡)]          (4.2) 

where 𝑓𝑖 and 𝑔𝑖 are the density and energy distribution functions with velocity 𝑒𝑖 

at the position �⃗�  and time t, respectively. The superscript ‘eq’ denotes the 

equilibrium state,  𝜏𝑣 and 𝜏𝑐 are the single relaxation times related to viscosity and 

thermal diffusivity, respectively and Δ𝑡 is the time step applied in the model. The 

model of Peng et al. (2002) is based on the assumption that the viscous dissipation 

and compression work done by pressure can be neglected in real incompressible flows. 

The numerical simulation of natural convection in a square cavity showed that the 

simplified thermal model had the same accuracy with the model proposed by He et al. 

(1998). The D3Q19 and D3Q7 lattices (Figure 4.1) for the density and energy 

distributions are given as follows: 

(0,0,0), 0
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i
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c c c i




    
       

，， ，            (4.3) 

with c being the ratio of Δ𝑥 and Δ𝑡. The discrete equilibrium density distribution 

function can be expressed as  
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where �⃗⃗�𝑓(𝑥, 𝑡)  is the velocity of the fluid. The discrete equilibrium energy 

distribution is: 
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                          (4.5) 

The macroscopic properties such as density, momentum and energy can be obtained 

through the following summations: 

f ii
f  , f f i ii

u f e  , ii
g                   (4.6) 

The relationships to obtain the viscosity and thermal diffusivity are: 

       
21
( )

3 2
v

t
c 


   

21
( )

4 2
c

t
D c 


                       (4.7)      

 

 

 

Figure 4.1. Lattice structure for the (a) D3Q19 and (b) D3Q7 lattices. 

 

A key aspect in every numerical scheme is the accurate description of the boundary 

condition, in particular for multi-boundary systems such as packed or fluidized beds. 

For the energy equation, the method that is easiest to implement in thermal LBM is 

the bounce back scheme. He et al. (1998) extended the bounce back rule for 

(a) (b) 
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non-equilibrium distribution proposed by Zou & He (199) to thermal boundary 

condition. Ginzburg (2005) proposed a multi-reflection approaches for Dirichlet 

boundary condition which is a general form of interpolation based bounce back 

scheme. Li et al. (20) developed a bounce-back-based interpolation method for 

Dirichlet boundary condition for multiple relaxation time-thermal lattice Boltzmann 

method. By tuning the interpolation parameters, the method can achieve second order 

accuracy. In addition to bounce back scheme, Guo et al. (2002) proposed a 

non-equilibrium extrapolation method for double population model by decomposing 

the distribution into equilibrium and non-equilibrium parts at the boundary nodes. In 

this method, the equilibrium part of the temperature distribution at the boundary node 

is calculated using known wall temperature, whereas the non-equilibrium part is 

extrapolated from neighboring fluid nodes. To improve the accuracy of interpolation 

based boundary conditions, cut cell or sub-grid information is introduced. However, 

the computational cost and selection of interpolation scheme have to be taken into 

account when addressing complex boundaries.  

In this Chapter, the hydrodynamic boundary condition proposed by Noble and 

Torczynski (1998) for isothermal flows is extended to the thermal lattice Boltzmann 

method. The original method for the hydrodynamic boundary condition can easily 

handle boundary dominated problems (e.g. porous media) in which the solid-fluid 

interface does not confirm to the grid. In addition, this method takes into account the 

sub-grid effects and viscosity so that the solid fluid interface shifts smoothly.    

 

4.3 Boundary conditions 

 

In this section, the treatments for hydrodynamic and thermal boundary conditions are 

presented. The hydrodynamic boundary condition proposed by Noble and Torczynski 

(1998) is implemented for the isothermal lattice Boltzmann method. The extension of 

the method to the thermal lattice Boltzmann method is developed for Dirichlet 

boundary conditions. 

 

4.3.1 Hydrodynamic boundary condition 

 

An immersed moving boundary condition (Noble and Torczynski, 1998) is 

incorporated to enforce the no-slip condition at the surface of each particle. The lattice 

Boltzmann equation is therefore modified to account for the interaction between the 

solid and fluid phases: 
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               (4.8) 

where 𝐵𝑣 is the weighting function that depends on the local solid volume fraction 

𝜙𝑥 of a lattice covered by the particles and relaxation time 𝜏𝑣, according to: 
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                  (4.9) 

Ω𝑖,𝑣
𝑝

 is an additional collision term that bounces back the non-equilibrium part of the 

distribution: 

, ( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , ))p eq eq

i v i i i f p i f ff x t f x t f x t u x t f x t u x t           (4.10) 

where �⃗⃗�𝑝(𝑥, 𝑡) is the particle velocity at position �⃗� and time t, and -i denotes the 

distribution component which has the opposite direction to i. 

 

4.3.2 Dirichlet thermal boundary condition 

 

Figure 4.2 plots the unknown distribution at the boundary. The energy distribution 

function 𝑔𝑖 at the boundary node, which streams into the fluid lattice at next time 

step, is unknown.  To calculate 𝑔𝑖, the bounce back rule for a non-equilibrium 

energy distribution (Peng et al., 2003) is applied: 

neq neq

i ig g                          (4.11) 

Thus  

( , ) ( , ) ( ( , ) ( , ))eq eq

i B i s f i B i Bg x t g u g x t g x t             (4.12) 
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Figure 4.2. Schematic plot of the unknown distribution at the boundary. 

Analogous to the hydrodynamic boundary condition, the evolution equation for the 

energy distribution function is therefore modified  

,( , ) ( , ) (1 )[ ( , ) ( , )]eq p

i i i c i i c i c

c

t
g x e t t t g x t B g x t g x t B




               (4.13) 

where Ω𝑖,𝑐
𝑝

 is an additional collision term, and 𝐵𝑐 is the weighting function which 

has a similar form  to 𝐵𝑣. 

, ( , ) ( , ) ( , ) ( , )p eq eq
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                      (4.15) 

where 𝜙𝑠  is the particle energy at the position �⃗�  and time t. 𝐵𝑐 =0 and 𝐵𝑐 =1 

correspond to pure fluid nodes and solid nodes, respectively. 

 

Figure 4.3 shows the calculation of the local solids volume fraction for each lattice for 

a spherical particle. If the lattice is partially covered by the particle, the lattice is then 

subdivided into uniform cubes, e.g. 𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑢𝑏 × 𝑁𝑠𝑢𝑏. If the center of the cube is 

inside of the particle, then the volume of the cube is taken into account. Looping all 

the cubes, we obtain the solids volume fraction 𝜙𝑥 for the lattice. In current work the 

𝑁𝑠𝑢𝑏 is 10. 

ig  

ig  fluid 

solid 
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Figure 4.3. Schematic description of calculating local solids volume fraction covered 

by a spherical particle 

 

4.4 Asymptotic analysis of the thermal boundary condition 

 

In this section, asymptotic analysis of a thermal boundary condition proposed by 

Yoshida et al. (2010) is applied. Prior to asymptotic analysis, the following 

dimensionless variables are introduced: 

'
U

t t
L

 , 
' 1

x x
L

 , 
x
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                       (4.16) 

where L is the reference length, 𝑈 is the reference speed and ε is a small parameter 

used for expansion. U is defined as follows: 

x
U

t






                      (4.17) 

Thus  

2
't t

t





                       (4.18) 

After introducing the dimensionless variables, the energy evolution equation becomes 

/ subx N  

x  
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Where �⃗⃗�𝑓
′ =

�⃗⃗⃗�𝑓

𝑈
. The energy distribution function and macroscopic ϕ are expanded 

in terms of powers of ε, respectively. 

(0) (1) (2) 2

i i i ig g g g                        (4.21) 

(0) (1) (2) 2                           (4.22) 

According to equation (4.6), we get 

( ) ( )m m

ii
g                          (4.23) 

Where 𝑚 is the order of the expansion. Expanding the left hand side (LHS) of 

equation (4.19) using Taylor expansion (here the Einstein convention is used): 
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Where α, β, γ are the coordinates in 3D space. After inserting equations (4.21) and 

(4.22) into the right hand side of equation (4.19), we find 
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Equating the coefficients of the same power of ε for equation (4.19), we find the 

following equations: 

Zeroth-order 𝜀0: 
(0) (0)

, 0i i cg w                 (4.26) 

First-order 𝜀1: 
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Taking the Taylor expansion of equation (4.13) at the boundary node �⃗�𝐵  and 

assuming that the boundary locates between nodes �⃗�′ and �⃗�′ + 𝑒𝑖𝜀, we find:  

, ' (1 )i B i cx e x e B     , , '

B i cx x e B               (4.28) 
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Equation (4.13) expressed in zeroth order with respect to ε is: 
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(4.34) 

Using equation (4.26), equation (4.34) becomes 

(0)

,i i c sg w                         (4.35) 

Taking the zeroth moment of equation (4.35): 
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(0)

s                          (4.36) 

Therefore, the zeroth order solution 𝜙(0) satisfies the Dirichlet boundary condition. 

The first order of equation (4.13) in   is 
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Substituting equations (4.26) and (4.27) into equation (4.37), we find 
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Thus, summing the equation (4.38) over i, we find 

(1) 0                              (4.40) 
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Recalling equations (4.22) and (4.36), the following expression is therefore obtained: 

2( )s                          (4.41) 

Equation (4.41) indicates that the proposed boundary condition is satisfied with up to 

second order accuracy with 𝜙(0) solving the thermal lattice Boltzmann equation. 

 

4.5 Numerical validation of the thermal boundary condition 

 

In this section, the new boundary condition is applied to solve several problems with 

curved boundaries. The goal is to validate the method by comparison with theoretical 

solutions and previous direct numerical simulations. The accuracy of the boundary 

condition and convergence with grid refinement are confirmed numerically. Moreover, 

the second and third tests indicate that the method is robust to predict heat transfer 

due to convection between fluid and particles with both static and moving curved 

boundaries. 

 

4.5.1 Heat diffusion of a hot sphere in unbounded stationary fluid 

 

A sphere with constant temperature (𝑇𝑠 = 1) is immersed in an unbounded stationary 

fluid at t=1. The temperature 𝑇∞ of the fluid that is far away from the sphere is 0. 

The analytical solution of the fluid temperature 𝑇(𝑟, 𝑡) in radial direction is as 

follows: 

( , )
(1 ( ))

4s

T r t T R r R
erf

T T r tD





 
 


                   (4.42) 

Where 𝑅 is the radius of the sphere, 𝑟 is the radial distance from the sphere centre, 

𝑟 > 𝑅. The Nusselt number, which is defined as 𝑁𝑢 = ℎ𝑓(2𝑅)/𝑘𝑓, where ℎ𝑓 is the 

heat transfer coefficient and 𝑘𝑓  is the thermal conductivity of the fluid, is 

theoretically calculated as a function of time 𝑡: 

2
( ) 2

R
Nu t

Dt
                       (4.43)  

In the simulations, the particle diameter is 1mm, and the thermal diffusivity is 

𝐷 = 10−6 𝑚2/𝑠. The time step is 10
-4 

s. Four different resolutions of sphere are used, 
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𝑑𝑝=15, 20, 25 and 30. The domain size is set to 8𝑑𝑝. The setup and fluid properties 

are therefore the same as Tavassoli et al. (2013), who used an immersed boundary 

method with a finite different method to solve the momentum and energy equations. 

The normal derivative of temperature at all domain boundaries is set to zero. 

Figure 4 shows the non-dimensional temperature distribution around the sphere at 

time 𝑡 = 0.6 s for 𝑑𝑝 = 20. Table 4.1 reports the Nusselt number calculated by the 

LBM, Tavassoli et al. (2013) and equation (4.43) at different times. It shows that the 

grid resolution of 𝑑𝑝 = 15 is sufficient. The comparison indicates that the current 

model is more accurate than the model reported by Tavassoli et al. (2013). Figure 4.5 

plots the instantaneous non-dimensional temperature profile obtained by LBM and the 

analytical solution for 𝑑𝑝 = 20. It demonstrates that the model successfully predicts 

the temperature evolution of the fluid. Figure 4.6 shows the relative deviation for 

Nusselt number between LBM results and equation (4.43) as a function of particle 

resolution at t=0.1 s. The log-log plot indicates that the proposed boundary condition 

has quadratic convergence with grid refinement. Moreover, the LBM simulations 

converge quickly with regards to grid resolution since the accuracy does not 

apparently increase with increasing resolution if 𝑑𝑝 ≥ 15 . Therefore, the new 

boundary condition can achieve a high accuracy at relatively low grid resolution. To 

probe the accuracy of the boundary condition numerically, the maximum error 

between LBM simulations and analytical solution is calculated for different 

resolutions at t=0.1 s. 𝐸∞ is defined as follows: 

, ,
LBM

x y z
E Max Nu Nu                          (4.44)    

Figure 4.7 plots 𝐸∞ as a function of grid resolution. The plot confirms that the new 

thermal boundary condition is second order accurate. 
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Figure 4.4. Non-dimensional temperature distribution around the sphere at time t=0.6 

s for 𝑑𝑝 = 20. The relaxation time is 0.66. 

 

 

 

Time 

(s) 

LBM Tavassoli et al. (2013) Eq. 

(4.39) 
15pd   20pd   25pd   30pd   15pd   20pd   25pd   30pd   

0.4 2.90 2.89 2.89 2.89 3.01 2.97 2.95 2.93 2.89 

0.6 2.73 2.73 2.73 2.72 2.83 2.80 2.78 2.77 2.73 

0.8 2.63 2.63 2.63 2.63 2.73 2.70 2.68 2.67 2.63 

1.0 2.57 2.56 2.57 2.56 2.66 2.63 2.61 2.60 2.56 

Table 4.1. Comparison of Nusselt number obtained from LBM, Tavassoli et al. (2013) 

and the analytical solution 



71 
 

 

 

Figure 4.5.Comparison of radial temperature distribution between LMB and the 

analytical solution. The relaxation time is 0.66. 

0.1t s  

0.4t s  

0.7t s  

1t s  
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Figure 4.6. Relative deviation between LBM data and the analytical solution as a 

function of resolution for 𝜏𝑐 = 0.5899. 

Slope=2 
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Figure 4.7. The maximum error 𝐸∞ as a function of grid resolution at t=0.1 s. The 

relaxation time is 05899. 

 

4.5.2 Thermal evolution of a sphere in uniform flow 

 

A cold sphere is suddenly immersed in a hot fluid at time t=0. Due to the heat transfer 

from the surrounding fluid to the sphere, the temperature of the sphere increases with 

time and approaches the far field fluid temperature. If the diffusion time scale inside 

the sphere is much smaller than the convective time scale of the flow outside, the 

temperature distribution inside the sphere can be considered homogeneous which 

means that there is no temperature gradient inside the sphere. The temperature of the 

sphere can be calculated as follows: 

s

p s

dT D
T nds

dt V





                        (4.45) 

Slope=2 
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where 𝑃𝑟  is the Prandtl number, defined as 𝑃𝑟 = 𝜈/𝐷  ( 𝑃𝑟 = 0.7  in the 

simulations),  �⃗⃗� denotes the norm direction pointing into the fluid at the surface of 

the sphere and 𝛾 = (𝜌𝐶𝑝)
𝑓

/(𝜌𝐶𝑝)
𝑠
, where 𝐶𝑝 is the heat capacity. 𝑉𝑝 is particle 

volume. To validate our boundary condition, the temperature evolution of the sphere 

in a uniform flow is calculated and compared with the results of Balachandar et al. 

(2001) who used a spectral method in spherical coordinates to solve the problem. The 

number of lattices is 300 × 150 × 150. The particle diameter is 25 in lattice units. 

The Reynolds number is 50. The time step is 0.00004 s. The lattice size is 0.00008 m. 

A uniform flow is specified at the inlet. A stress free boundary is taken at the outlet. 

The symmetry boundary condition is imposed at the side walls. At the particle surface, 

the no-slip condition is enforced. The fluid temperature at the inlet is set to 1, and the 

particle temperature is initialized as zero. Adiabatic boundary conditions are applied 

at all other boundaries. In the simulation, γ is set to 0.1, 0.02, 0.004. The time is 

normalized by 𝑑𝑝/𝑢𝑠 , where �⃗⃗�𝑠  is the fluid velocity at the inlet. Figure 4.8 

compares the LBM results with that calculated by Balachandar et al. (2001). In 

general, the agreement is good. It should be pointed out that Balachandar et al. (2001) 

used a very fine grid to resolve the boundary layer of the sphere. Moreover, the grid in 

radial direction was non-uniform in the prior work. However, a uniform grid is used 

in our simulations. Because of the computational time, we could not use as large of a 

domain size as Balachandar et al. (2001) did. 
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Figure 4.8. Evolution of particle temperature in a uniform flow. The lines with circles 

are the simulation results calculated by Balachandar et al. (2001). 

 

4.5.3 Settling of a sphere in a semi-infinite channel 

 

Before validating the method against the results of Dan et al. (2010) for a 

non-isothermal case, we first validate the boundary condition for hydrodynamics 

using an isothermal case. The hydrodynamic boundary condition has been applied to 

calculate the drag force for assemblies of spheres and approximately cubic particles 

(Chen et al., 2015). To validate the capacity of addressing moving boundaries, a 

sphere settling in a box is simulated. Ten Cate et al. (2002) measured the spherical 

particle sedimentation velocity in a box for several Reynolds numbers. The box size is 

160 mm×100 mm×100 mm and the diameter of the particle is 0.015 m. The density 

of the particle is 1120 kg/m
3
. In the simulations, the grid size is 0.001 m, and the time 

step is 0.00005s. Figure 4.9 reports the settling velocity of the particle together with 

the experimental data (Ten Cate et al., 2002) and simulation results of Dan et al. 

(2010). The comparison between LBM simulations and the results of Dan et al. (2010) 

is rather good. In general, the LBM simulation results have a good agreement with the 
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experimental results. The discrepancy in the deceleration regime may be due to the 

coarse grid resolution since the grid size is 1 mm. In addition, we do not employ any 

lubrication model when the particle approaches the bottom wall.  

 

If a hot sphere sediments in a cold fluid, the sphere can be considered as a heat source. 

Due to the heat transfer between sphere and surrounding fluid, the temperature of the 

fluid changes with time. The Boussinesq approximation is used so that the 

temperature change only modifies the fluid density: 

0 0[1 ( )]f f f f fT T                           (4.46) 

Where 𝜌𝑓0, 𝑇𝑓0 are the initial fluid density and temperature, respectively. 𝛽𝑓 is the 

fluid thermal expansion coefficient. 𝑇𝑓 is the instantaneous fluid temperature. As a 

result, a body force which is equal to 𝜌𝑓�⃗� is applied to the fluid. The Grashof 

number, which is the ratio of buoyancy to viscous force, is defined as follows: 
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                         (4.47) 

The reference velocity, which is defined as the theoretical sedimentation velocity 

(𝑈𝑟𝑒𝑓) of a single particle in unbounded flow, is used to estimate the Reynolds 

number.  
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                      (4.48) 

The last validation test is a sphere settling in a semi-infinite channel with different 

Grashof numbers which was studied by Dan et al. (2010) using the finite element 

method (FEM). The Reynolds number (Re = 𝑈𝑟𝑒𝑓𝑑𝑝/𝜈) is 35, 50 and 100. The Pr 

and γ are set to 1. 𝜌𝑠/𝜌𝑓  is in the range of 1.002 to 1.1. The domain size is 

20𝑑𝑝 × 20𝑑𝑝 × 20𝑑𝑝. The lattice size and time step are 0.00008 m and 0.00008 s, 

respectively. The particle diameter is 0.0016 m. Once the particle moves one lattice, 

we remove one layer of fluid at the top and add one layer of fluid to the bottom (Dan 

et al., 2010). This ensures the infinite long channel in the particle settling direction. 

Zero velocity and stress free boundary conditions are assigned at the bottom and top 

boundaries. No-slip boundary condition is specified at the side walls and the particle 

surface. Figure 4.10 shows the vertical velocity and temperature contour for Re=50 

and Gr=100 at the central plane. Figure 4.11 plots the terminal settling velocity 
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normalized by 𝑈𝑟𝑒𝑓 as a function of Reynolds number. It shows that the positive Gr 

decreases the terminal settling velocity of the particle since the body force induces 

upward flow which increases the relative velocity between the particle and 

surrounding fluid. However, with increasing Reynolds number, the Grashof number 

(Gr=±100) has a negligible effect on the terminal settling velocity. Figure 4.11 shows 

a good agreement between current simulations and the results of Dan et al. (2010). 

Therefore the present method can accurately handle thermal and curved moving 

boundaries. 

 

 

 

Figure 4.9. Particle settling velocity as a function of time in a box. The symbols are 

the experimental data extracted from Ten Cate et al. (2002). The blue dashed lines 

plot the simulation results of Dan et al. (2010). 
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Figure 4.10. (a) Vertical velocity contour for Gr=100, Re=50 at the central plane. (b) 

Corresponding temperature contour. 

 

(a) (b) 
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Figure 4.11. Sedimentation of sphere in a semi-infinite long channel for different 

Grashof numbers. 

 

4.6 Conclusions 

 

A new Dirichlet boundary condition for the thermal lattice Boltzmann method has 

been developed and applied to simulate heat diffusion and convection for spheres 

immersed in a fluid. Asymptotic analysis of the method shows that the boundary 

condition has second order accuracy with respect to the lattice spacing. Comparison 

with the analytical solution for pure heat diffusion numerically confirms that the new 

boundary condition is second order accurate and has approximately quadratic 

convergence with grid refinement. In addition, the predictions for fluid temperature 

and Nusselt number match the analytical solution. Further validations indicate that the 

new boundary condition can accurately capture the heat convection for curved 

boundaries between particles and fluids. Based on these validation cases, the new 

thermal boundary condition is robust to simulate static and moving curved boundaries. 
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In the future, the thermal lattice Boltzmann method will be applied to investigate the 

heat transfer in packed or fluidized beds. The effect of Prandtl number, Reynolds 

number and solid volume fraction on the heat transfer coefficient in packed or 

fluidized beds can be studied in detail. Additionally, the thermal boundary condition 

will be extended to problems with Neumann boundary condition. 
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5  

Lattice Boltzmann simulation of gas-solid heat transfer in 

random assemblies of spheres: The effect of solids volume 

fraction on the average Nusselt number for 𝐑𝐞 ≤ 𝟏𝟎𝟎 

 

5.1 Abstract 

 

A thermal lattice Boltzmann method has been applied to simulate gas-solid heat 

transfer in a random assembly of spheres using an immersed moving boundary 

approach. The numerical data was correlated to propose an expression for the Nusselt 

number as a function of the Reynolds number and solid volume fraction over a wide 

range of solids volume fractions (ϕ = [0,0.5]) for Reynolds numbers up to 100. It is 

hoped that the new Nusselt number correlation for gas-solid systems improves the 

accuracy of Euler-Euler and Euler-Lagrangian simulations of gas-solid heat transfer in 

packed and fluidized beds. 

 

5.2 Introduction 

 

Gas-solid, non-isothermal flows are encountered widely in industry, e.g. gas-fluidized 

bed reactors.  In this context, an improved understanding of the complex interplay 

between fluid flow and thermal effects, e.g. the formation of hot spots, is essential to 

improve the reactor design and optimize process conditions. In the past few decades, 

computational fluid dynamics (CFD) has been used extensively to model fluid flow, 

heat transfer and chemical reactions in gas-solid systems (Deen et al., 2014). However, 

the accuracy of numerical predictions of thermal, gas-solid systems relies critically on 

the availability of accurate closure relationships, such as drag force or heat transfer. 

For example, Li et al. (2003) reported that the bed expansion in gas-fluidized beds 

was very sensitive to the dependence of the drag force on the void fraction in the 

different correlations implemented. Feng et al. (2008) simulated the non-isothermal 

sedimentation of particles and demonstrated that the drag force acting on the particles 

was strongly affected by the Reynolds and Grashof numbers (ratio of the buoyancy to 

the viscous force acting on the fluid). The buoyancy current(s) induced by a pair of 

hot particles could reverse or prevent the well-known drafting-kissing-tumbling (DKT) 

motion which is commonly encountered in isothermal sedimentation flows. Indeed, 

the development of drag force correlations based on the direct numerical simulation 
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(DNS) of small (idealized) gas-solid systems has attracted substantial attention during 

the last two decades and has progressed appreciably. Hill et al. (2001a, b) were the 

first to develop a drag force correlation using direct numerical simulations. Beetstra et 

al. (2007) extended the work of Hill et al. (2001b) and proposed additional drag force 

correlations for mono- and bi- dispersed particles for Reynolds numbers up to 1000. 

Conceptually, improvements in the accuracy of drag force correlations can be divided 

into two groups: (1) Development of accurate solid boundary descriptions (Tenneti et 

al., 2011; Tang et al., 2014) that reduce the numerical error due to the discrete 

representation of a particle’s surface and (2) introduction of granular temperature to 

the drag force correlation (Tang et al., 2016).  

Although DNS has been used widely to investigate heat transfer for particulate flows 

(Shao et al., 2012; Deen et al., 2013; Tenneti et al; 2013; Derksen, 2014; Feng et al., 

2014), very few efforts have been reported for the development of heat transfer 

correlations for randomly packed assemblies using particle-level, direct numerical 

simulations. Yang et al. (2010), using the commercial code CFX10, proposed 

correlations for the Nusselt number of ordered packings (i.e. simple cubic, body 

center cubic and face center cubic packings with spheres and ellipsoids) for turbulent 

flows. The comparison of their Nusselt number predictions with an empirical 

correlation (Wakao et al., 1979) showed that the empirical correlation over-predicts 

the Nusselt number in ordered packings. Deen et al. (2012) using an immersed 

boundary method simulated randomly packed beds comprising 1326 spheres to 

determine the heat transfer coefficient. The solids volume fraction and Prandtl number 

were 0.3 and 0.8, respectively. The results of Deen et al. indicate that the commonly 

used Gunn equation (1978) over-predicts the heat transfer coefficients for Re < 100. 

Following Deen’s work, Tavassoli et al. (2015) proposed a Nusselt number 

correlation for packed beds of 54 spheres for Reynolds numbers 0-100 and solid 

volume fraction 0.1-0.6. Sun et al. (2015) using particle-resolved direct numerical 

simulations developed a Nusselt number correlation for Reynolds numbers in the 

range 1-100 and solid volume fraction covering the range 0-0.5. The difference 

between the Nusselt numbers predicted by the correlations of Tavassoli et al. (2015) 

and Sun et al. (2015) is, however, considerable. Sun et al. (2015) argued that the 

discrepancy was due to different set ups of the numerical simulations. The numerical 

set up of Sun et al. (2015) will be discussed in detail in the following section. 

Currently, empirical heat transfer correlations, in which the Nusselt number is 

expressed as a function of the Reynolds number, voidage and Prandtl number are used 

to model at a macroscopic (i.e. not particle resolved) level gas-solid systems. 

However, at small Reynolds number, the bed is in a state of thermal equilibrium (or 



83 
 

very close to it) (Shen et al., 1981). As a consequence it is difficult to measure 

experimentally the Nusselt number under such conditions. Hence, it is not surprising 

that the experimental data reported by different studies differ by indeed orders of 

magnitude for Re ≤ 10 (Gunn, 1978). Also the confidence in empirical correlations 

(Gunn, 1978; Wakao et al., 1979) for Re < 100 is low since those correlations were 

developed commonly for a wide range of Reynolds number (up to 10
4
-10

5
). Hence in 

this work, we propose a Nusselt number correlation for assemblies of spheres for 

Re ≤ 100 based on lattice Boltzmann simulations.  

The lattice Boltzmann method provides an alternative numerical approach to model 

fluid flow, heat transfer and chemical reactions. Compared to conventional numerical 

methods (e.g. finite volume method), the lattice Boltzmann method has several 

advantages: (1) The convective and collision operators are linear; (2) The fluid 

pressure can be calculated simply by an equation of state; (3) It is easy to handle 

complex boundary conditions and (4) it can be parallelized readily, since all 

computations are local. Here we use the immersed moving boundary approaches 

proposed by Noble & Torczynski (1998) and Chen & Müller (Chapter 4) to enforce, 

respectively, a no-slip and a constant temperature boundary condition at the particle 

surface. The boundary methods used here are suitable for boundary-dominated 

problems, such as the flow in porous media, fluidized or packed beds. 

 

5.3 Governing equations 

 

In this work the flow is assumed to be incompressible and viscous heat dissipation is 

neglected. With these assumptions the Navier-Stokes and energy equations can be 

written as: 
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f

f f f f f
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u u p u
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                     (5.2) 

Where 𝜌𝑓, 𝜇𝑓, 𝑐𝑝𝑓, 𝑘𝑓, �⃗⃗�𝑓, 𝑃 and 𝑇𝑓 are the density, dynamic viscosity, specific 

heat capacity, thermal conductivity, velocity, pressure and temperature of the fluid, 

respectively. The continuity equation for incompressible flows is: 

0fu                               (5.3) 
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The flow properties (e.g. fluid density and viscosity) are assumed to be independent 

of the fluid temperature. The Reynolds number is calculated based on the particle 

diameter (𝑑𝑝) and the superficial fluid velocity (�⃗⃗�𝑠) which is defined as the fluid 

velocity averaged over the total volume of the bed: 

Re
f s p

f

u d


                             (5.4) 

The Prandtl number is given by: 

Pr
pf f

f

c
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                              (5.5) 

The heat transfer coefficient for a spherical particle can be calculated as: 

ℎ =
�̇�

𝜋𝑑𝑝
2∆𝑇

                              (5.6) 

       ∆𝑇 = 𝑇𝑓−𝑎𝑣𝑒 − 𝑇𝑠                            (5.7) 

where �̇� , 𝑇𝑓−𝑎𝑣𝑒 and 𝑇𝑠  are the heat transfer rate, average temperature of the 

surrounding fluid and the particle temperature, respectively. In practice, the heat 

transfer coefficient ℎ is expressed in terms of the Nusselt number: 
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According to the definition of 𝑇𝑓−𝑎𝑣𝑒 , two different local Nusselt numbers are 

proposed. The ‘mixing cup’ temperature is the average fluid temperature of a plane 

which is perpendicular to the streamwise direction, viz. 
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For example, Tenneti et al. (2013) used this temperature to compute the local Nusselt 

number.  
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Here, P is the perimeter obtained by cutting the particles with the plane at location x 

and �̇�(𝑥) is the total interphase heat transfer rate per unit length of the fluid particle 

interface in the plane (Tenneti et al., 2013). The average Nu number for an assembly 

of spheres is obtained by averaging Eq. (5.10) along the streamwise direction (Eq. 

(5.11)). 

1
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Nu Nu x
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                         (5.11) 

where N is the number of planes along the streamwise direction. 

An alternative approach to calculate the average Nu number is to compute first the Nu 

number of the individual particles. The Nu number of the i-th particle is calculated as: 
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                       (5.12) 

In equation (5.12), �⃗⃗�𝑓 is the local average fluid temperature, �̇�𝑖 is the heat transfer 

rate between particle i and the surrounding fluid: 

pi

i f f

S

q k T nds                            (5.13) 

,

,

( , , ) ( , , )

( , , )

b

b

f x f

V

f

f x

V

u x y z T x y z dxdydz

T
u x y z dxdydz






                (5.14) 

where 𝑆𝑝𝑖 is the surface of the i-th particle, 𝑉𝑏 is a cubic box, the centre of which 

has the same position as the centre of gravity of the particle. 𝑢𝑓,𝑥 is the fluid velocity 

in x direction. In this work, the size of the box was 3𝑑𝑝. The average Nu number of 

the packed bed is then obtained as: 
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1 pN
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Nu Nu
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                       (5.15) 

where 𝑁𝑝 is the number of particles in the assembly. It should be pointed out that 

other definitions of 𝑇𝑓−𝑎𝑣𝑒 are also used in literature. For instance, Feng et al. (2014) 

took the initial fluid temperature as 𝑇𝑓−𝑎𝑣𝑒 to calculate Nu numbers in fluidized beds. 

It was reported that the bed expansion and the fluid superficial velocity are 
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significantly affected by the overall average Nu number. The Nu number was greater 

for higher bed expansions since the cool fluid was able to penetrate deeper into the 

bed. However, increasing the superficial velocity of the fluid did not only increase the 

bed expansion but also enhanced the forced convection. Therefore, the relationship 

between bed expansion and the average Nu number in fluidized beds is still unclear. 

 

5.4 Nusselt number of randomly packed beds and fluidized beds 

 

Based on experimental data and theoretical analysis, Gunn (1978) proposed a Nusselt 

number correlation for fixed and fluidized beds: 

2 0.2 1/3 2 0.7 1/3(7 10 5 )(1 0.7Re Pr ) (1.33 2.4 1.2 )Re PrNu              (5.16) 

where ε is the bed voidage. The Gunn’s correlation is valid for voidages in the range 

0.35-1.0 and Reynolds numbers up to 10
5
. Wakao et al. (1979) proposed the following 

Nusselt number correlation for packed beds: 

0.6 1/32 1.1Re PrNu                       (5.17)  

Equation (5.17) is valid for voidage 0.4. As we have outlined above, the confidence of 

Eqs. (5.16) and (5.17) for Re < 100 is low (Shen et al., 1981).  

Figure 5.1 sketches the computational set-up of Tavassoli et al. (2015) to model 

gas-solid heat transfer. At the inlet, a uniform velocity profile and constant 

temperature are assigned to the gas. At the outlet, the derivative of the velocity and 

temperature in the x direction is zero. Periodic boundary conditions are applied in the 

y and z directions. The particles are homogeneously distributed in the packed section. 

As the gas flows over the hot particles, the gas is continually heated up along the x 

direction. The overall average 𝑁𝑢  number for the whole domain can then be 

calculated as: 

0 00 (1 )h h hNu ANu A Nu                  (5.18) 

The first term of Eq. (5.18) is the contribution of the heat transfer in the transient 

region (𝑥 < ℎ0, thermally-developing region. ℎ0 is the minimum domain size for the 

flow to become thermally fully-developed) to the overall average Nu number. The 

second term is the contribution of the heat transfer in the thermally fully-developed 

region (𝑥 > ℎ0) to the overall, average Nu number. A is the weighting coefficient 

depending on the calculation method of the overall average Nu number. If the overall, 
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average Nu number is computed using Eq. (5.11), A is the ratio of the number of 

planes in the domain section 𝑥 < ℎ0 to the number of planes in the whole domain in 

the x direction. On the other hand, if Eq. (5.15) is used to calculate the overall average 

Nu number, A is the ratio of the number of particles in the domain section 𝑥 < ℎ0 to 

the number of particles in the whole domain. If ℎ0 > ℎ (h is the domain size), Eq. 

(5.18) only contains the first term leading to a larger average Nu number. In contrast, 

if ℎ0 ≪ ℎ, the first term in Eq. (5.18) can be neglected. As a result, the boundary 

effect in the x direction becomes negligible in this set-up.  

Tavassoli et al. (2015) computed the average Nu number for random assemblies of 54 

spheres using Eq. (5.11). To minimize the effect of domain boundaries, a certain 

fraction of the computational domain that is close to the inlet and outlet boundaries in 

the x direction was excluded from the calculation of the average Nu number based on 

the variation of Nu(x). Using their numerical data, Tavassoli et al. (2015) re-assessed 

Gunn’s equation (1978) and proposed the following correlation: 

2 0.2 1/3 2 0.7 1/3(7 10 5 )(1 0.1Re Pr ) (1.33 2.19 1.15 )Re PrNu             (5.19) 

Tenneti et al. (2013) used a periodic boundary condition for the temperature in the x 

direction. It was assumed that a statistically homogeneous, gas-solid flow is 

analogous to a fully developed pipe flow and hence, also the heat transfer in a 

statistically homogenous, gas-solid flow was expected to be an analogous to a 

thermally fully-developed flow in a pipe with isothermal walls. The heat ratio (𝑟ℎ, 

ratio of the difference between the fluid temperature of the bulk and the particle 

temperature at the inlet to the difference between the temperature of the bulk fluid and 

the particle temperature at the outlet) and the dimensionless fluid temperature (𝜓) 

were defined such that the periodic boundary condition can be applied to 𝜓. The 

calculation of these variables (i.e. 𝑟ℎ and 𝜓) and boundary condition are given below: 
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where L is the domain size in the x direction and 〈𝑇𝑓(0)〉 and 〈𝑇𝑓(𝐿)〉 are obtained 

using Eq. (5.9). Once the heat ratio has reached a steady state, the temperature field 

was considered to be fully developed. Sun et al. (2015) extended Tenneti’s work 
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(2013) and proposed a Nusselt number correlation for 1 ≤ Re ≤ 100 and 0 ≤ ϕ ≤

0.5. The following correlation was proposed:   

2 3 2 0.7 1/3( 0.46 1.77 0.69 ) / (1.37 2.4 1.2 )Re PrNu               (5.21) 

However, it is currently not clear whether the analogy to pipe flow as proposed by 

Tenneti et al. (2013) can indeed predict accurately the heat transfer coefficient in 

packed beds. Comparing the Nu number predictions of the correlations of Tavassoli et 

al. (2013) and Sun et al. (2015) appreciable differences, in particular for low solids 

volume fractions (ϕ ≤ 0.3), are observed. Thus, in the current work, we employ a 

fully periodic domain for both velocity and temperature in three directions. The 

periodic boundary conditions can eliminate the effect of the inlet and outlet regions on 

the average Nu number.  

 

Figure 5.1. Schematic description of the computational domain used by Tavassoli et al. 

(2014) 
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5.5 Numerical method 

 

5.5.1 Thermal lattice Boltzmann method 

 

The thermal lattice Boltzmann method proposed by Peng et al. (2003) for 

incompressible flow is used here to solve the momentum and energy equations.  
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where 𝑓𝑖 and 𝑔𝑖 are the density and energy distribution functions at time t and 

position �⃗�  with velocity 𝑒𝑖  and 𝜏𝑣  and 𝜏𝑐  are the relaxation times related to 

viscosity and thermal diffusivity, respectively. The superscript ‘eq’ denotes the 

equilibrium state. The D3Q19 and D3Q7 lattices are used for density and the energy 

distribution functions, respectively. 
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Here c is the ratio of ∆𝑥 to ∆𝑡 and is set to 1. The equilibrium distributions for the 

density and energy distribution functions are given as: 
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The macroscopic variables density, momentum and energy can be obtained through 

the following equations, respectively: 

f ii
f  , f f i ii

u f e  , ii
g                 (5.29) 

The viscosity and thermal diffusivity are computed using the following expressions: 
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5.5.2 Boundary conditions for thermal lattice Boltzmann method 

 

The immersed boundary condition proposed by Noble and Torczynski (1998) is 

implemented to enforce the no-slip boundary conditions for the fluid velocity at the 

particle surface. The thermal boundary condition for a Dirichlet boundary problem as 

proposed by Chen et al. (Chapter 4) is used to enforce a constant temperature at the 

particle surface. The evolution equation for the density and energy distribution 

functions are modified to account for the interaction between the solid and fluid 

phases: 
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where Ω𝑖,𝑣
𝑝

 and Ω𝑖,𝑐
𝑝

 are additional collision terms that bounce back the 

non-equilibrium parts of the density and energy distributions, respectively. 

, ( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , ))p eq eq

i v i i i f p i f ff x t f x t f x t u x t f x t u x t             (5.34) 
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, ( , ) ( , ) ( , ( , )) ( ( , ), ( , ))p eq eq

i c i i i s f i fg x t g x t g u x t g x t u x t              (5.35) 

�⃗⃗�𝑝 is the particle velocity at position �⃗�, 𝜑𝑠 is the temperature of the particle and 𝐵𝑣 

and 𝐵𝑐 are weighting functions, which can be calculated as follows: 
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Here 𝜙𝑥 is the local solids volume fraction of a lattice that is covered (partially or 

fully) by the solid particles. The hydrodynamic boundary condition has been 

comprehensively validated for single spheres and assemblies of spheres and applied to 

calculate the drag force for cubic particles (Chen et al., 2015; Chen et al., Chapter 3). 

The thermal boundary condition has been shown to have second order accuracy (Chen 

et al., Chapter 4).  

 

5.5.3 Validation of the thermal lattice Boltzmann method 

 

For validation, the Nusselt numbers of a single sphere and a linear array of spheres are 

calculated and compared with previous simulation results. The first test is a hot sphere 

in a uniform flow. The domain size is 240 × 120 × 120. The particle diameter is 15 

in lattice units. The temperature of the particle is set to 1. The initial temperature of 

the fluid is set to 0. The Prandtl number is 0.744. A uniform velocity and a constant 

temperature of the fluid are specified at the inlet. At the outlet, the derivative of the 

velocity and temperature of the fluid in the x  direction is set to zero. At the side 

boundaries, symmetry boundary conditions are imposed for the velocity and 

temperature. Fitting experimental data, Whitaker (1972) proposed the following 

Nusselt number correlation for a single sphere: 

1/2 2/3 0.42 (0.4Re 0.06Re )PrNu                       (5.38) 

Figure 5.2 plots the results of the LBM simulations and the predictions of the 

Whitaker (1972) correlation. A good agreement is observed. Richter et al. (2012) used 

a commercial finite volume solver (ANSYS FLUENT) to calculate the Nu number for 
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a single sphere in a uniform flow. The predicted Nu numbers are slightly higher than 

our predictions (relative deviation is 5%), nonetheless, the agreement is good.   

 

Figure 5.2. Nusselt number for a single sphere in a uniform flow as a function of 

Reynolds number. 

 

The second validation test conducted was the calculation of the Nu number for a 

linear array of spheres in a uniform flow (Figure 5.3). Ramachandran et al. (1989) 

computed the Nusselt number for a linear array of spheres using a finite element 

method. Tavassoli et al. (2013) simulated the same problem to validate their 

immersed boundary method. Here the domain size and particle diameter in lattice 

units are identical to the settings of Tavassoli et al. (2013). The centre to centre 

distance s  between the spheres is set to 2𝑑𝑝 or 4𝑑𝑝. The diameter of the particle is 

15 in lattice units. The Prandtl number is 0.74. The numbers of lattices nodes are 

150 × 150 × 195 and 150 × 150 × 255 for 𝑠 = 2𝑑𝑝  and 𝑠 = 4𝑑𝑝 , respectively. 

The leading sphere is 4.5𝑑𝑝 away from the inlet, and the third sphere is 4.5𝑑𝑝 away 
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from the outlet. Uniform velocity and constant temperature are assigned to the fluid at 

the inlet. At the outlet, the derivatives of the velocity and the temperature in the x 

direction are set to zero. The temperature of the particles is set to 1 and the initial fluid 

temperature is set to 0. Symmetry boundary conditions for the velocity and 

temperature are specified at the side boundaries. The Nu number for each particle is 

calculated using Eqs. (5.12) and (5.13). �̅�𝑓 is the temperature difference between the 

particle and the initial fluid temperature. Table 5.1 reports the calculated Nu numbers 

for each sphere together with the simulation results of Ramachandran et al. (1989) and 

Tavassoli et al. (2013). The results show that the shielded particles have a smaller Nu 

number. This is due to the interactions between the wake of the first sphere and the 

flow over the shielded particles. Comparing our data to the results of Ramachandran 

et al. (1989) shows good agreement. The small differences may be due to differences 

in grid resolution. Ramachandran et al. (1989) used a non-uniform grid with a very 

fine grid in the proximity of the particles to resolve the boundary layer of the particles. 

In addition, the lengths of the inlet and outlet regions may affect the simulation results 

as well. The discrepancy between our data and Tavassoli et al. (2013) is about 4-8% 

for the first and third spheres for Re = 50. The LBM data are closer to the simulation 

results of Ramachandran et al. (1989). From the comparisons above, we conclude that 

the lattice Boltzmann method reported here reproduces accurately a series of 

reference simulations. 

 

 

 

 

Figure 5.3. Schematic description of the computational set up. 
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Re 𝑠/𝑑𝑝 LBM Ramachandran et al. 

(1989) 

Tavassoli et al. 

(2013) 

1
st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 1

st
 2

nd
 3

rd
 

10 2 3.33 2.35 2.16 3.37 2.32 2.03 3.45 2.40 2.21 

10 4 3.42 2.78 2.58 3.28 2.79 2.49 3.51 2.83 2.62 

50 2 5.31 3.38 3.03 5.50 3.39 2.98 5.72 3.55 3.19 

50 4 5.42 4.01 3.63 5.40 4.18 3.60 5.80 4.21 3.81 

Table 5.1. Nusselt number for a linear array of three spheres in a uniform flow. 

 

5.6 Simulations and Results 

 

In this work, packings of spheres were generated by randomly distributing spheres in 

cubic, periodic domains using a Monte Carlo method (Frenkel and Smit, 1996). 

𝑁𝑝 = 54 particles were placed in the domain for ϕ ≤ 0.4, while 𝑁𝑝 = 61 particles 

were used for ϕ > 0.4. The Prandtl number was 0.7. The diameter of the particles 

was varied in the range from 22 to 42 in lattice units. For ϕ > 0.3, the particle 

diameter was larger than 35 in lattice units. For each given Reynolds number and 

solids volume fraction, 6-12 different configurations were modelled and the values 

obtained were averaged. The method for assigning a steady state Nu number as 

proposed by Yang et al. (2011) was adopted. When the change of the Nu number in 

the final 20% of the computational time was less than 1%, the computation was 

assumed to have reached a steady state. Figure 5.4 plots the Nu number as a function 

of simulation time (The time is normalized by 𝑑𝑝/𝑢𝑠). The high Nu number at the 

start of the simulation is due to the large temperature gradient at the particle fluid 

interface when initiating the heat transfer. The particle Nusselt number (𝑁𝑢𝑖) along 

the x direction for Re = 50 and ϕ = 0.4 at time 10 is plotted in Figure 5.5, which 

confirms that at the given time the flow was thermally fully-developed. 

In the first set of simulations, we tested the effect of domain “shape” on the average 

Nu number. A cuboid domain of size 350 × 100 × 100  was used to simulate 

Re = 10  and ϕ = 0.3 . The average Nu number for six different particle 

configurations was 4.93, while the average Nu number for a cubic domain of size 150
3
 

was 4.89 (the deviation between these two different numerical set-ups is within 1%). 

Hence we conclude that the simulation results are not affected by domain shape. 

Second, the effect of domain size on the Nu number calculated was assessed. Three 

different domain sizes are used for ϕ = 0.4 and Re = 10. The average Nusselt 

numbers for domain size 130 × 130 × 130 , 150 × 150 × 150and 160 × 160 ×
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160 were 5.53, 5.34 and 5.31, respectively. Hence, in the following we used a 

domain size of 150
3
 for solids volume fractions 0.1 and 0.2, while domain sizes of 

155
3
, 160

3
 and 165

3
 were used for solids volume fractions of 0.3, 0.4, and 0.5, 

respectively. 

 

 

 

Figure 5.4. Nusselt number as a function of simulation time for ϕ = 0.4. The Prandtl 

number is 0.7. 
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Figure 5.5. The particle Nusselt number along the x direction at 
t𝑢𝑠

𝑑𝑝
= 10 for 

Re = 50 and ϕ = 0.4. The Prandtl number is 0.7. 

 

Figure 5.6 shows an example of the temperature distribution in three planes within a 

random assembly of spheres. The average Nu number obtained from these simulations 

is plotted as a function of Reynolds number in Figure 5.7. It was possible to fit well 

our simulation data for assemblies of spheres to the following correlation: 

2 0.5 1/32 0.77 0.64 (0.6 1.1 )Re PrNu                     (5.39) 

It is worth noting that if ϕ = 0, Eq. (5.39) reduces to the well-known Froessling 

equation (1938) for the Nu number of a single sphere in unbounded flow. In the 

literature, there is currently no consensus about the Nu number as a function of the 

solids volume fraction at low Reynolds numbers for random particle assemblies. For 

instance, at Re = 0, Gunn’s equation (1978) reduces to: 

27 10 5Nu                            (5.40) 
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For ε = 0.4, Eq. (5.40) is equal to 3.8, whereas Wakao’s equation (Wakao et al., 

1979) is equal to 2. Since the particles and surrounding fluid are almost in thermal 

equilibrium for Re ≤ 10, it is very difficult to accurately measure experimentally the 

Nu number in the Stokes regime (Shen et al., 1981). Hence, it is hoped that the 

numerical simulation results for Re = 1 reported here can provide a good estimate 

for the Nu number in the Stokes regime.  The functional form of the Reynolds 

number independent and dependent terms of Eq. (5.39) are polynomial expressions of 

the solid volume fraction ϕ and show some similarity to Gunn’s equation (1978). 

The coefficients were determined by minimizing the difference between the 

correlation and the simulation data.  

 

Figure 5.6. Example of the temperature distribution in a random assembly of spheres 

(Re = 50 and ϕ = 0.4). The Prandtl number is 0.7. 
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Figure 5.7. Nusselt number as a function of Reynolds number. The lines plot Eq. 

(5.39). The Prandtl number is 0.7. 

 

Figure 5.8 compares Gunn’s equation and equation (5.39) with our LBM simulation 

data for solid volume fractions 0.1, 0.3 and 0.5. Generally, the trend of the simulation 

data is consistent with Gunn’s equation (Gunn, 1978) for Re ≤ 100. However, 

Gunn’s equation over-predicts the Nu number, in particular for ϕ = 0.5 . The 

maximum relative difference between Gunn’s equation and the simulation data are 29% 

and 20% for a solid volume fraction of 0.1 and 0.3, respectively. The highest 

deviations are observed for Reynolds numbers in the range 1 - 10. A possible reason 

for this observation is that Gunn’s equation was obtained from experimental data that 

differed by several orders of magnitude at a given (small) Reynolds number (Re ≤

10). At high Reynolds numbers, the agreement between the LBM data and Gunn’s 

equation is good for solid volume fractions 0.1 and 0.3. For a solid volume fraction of 
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0.5, the difference between Gunn’s equation and the LBM data is, however, again 

considerable, i.e up to 61%. Tavassoli et al. (2015) also reported that Gunn’s equation 

is only accurate for low solid volume fractions for Re ≤ 100, i.e. ϕ < 0.3.  

 

 

Figure 5.8. Comparison of the Nusselt number as predicted by Gunn’s equation (Gunn, 

1978), equation (5.39) and simulation data. The Prandtl number is 0.7. 

 

Figure 5.9 compares the Nu number predicted by Tavassoli et al. (2015), Sun et al. 

(2015) and equation (5.39) for a solid volume fraction of 0.1, 0.3 and 0.5. Generally, 

the correlation of Tavassoli shows a good agreement with the LBM data for solid 

volume fractions 0.1 and 0.3. It is worth noting that the smallest Reynolds number 

Tavassoli et al. (2015) simulated was 10. Thus, predictions of the Nu number for 

small Reynolds numbers (Re < 10) using Tavassoli et al.’s (2015) correlation is, 

unsurprisingly, associated with some error (8%). At high Reynolds numbers (Re >

60), the prediction by Tavassoli et al. (2015) is slightly higher than our LBM data for 

solid volume fractions 0.1 and 0.3. However, the difference between the Nu number 
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as obtained from LBM simulations and the equation of Tavassoli et al. (2015) for a 

solid volume fraction of 0.5 is again considerable for Re > 20. The observations 

summarized above can be rationalized as follows. For small solid volume fractions 

(ϕ ≤ 0.3) or small Reynolds numbers (Re ≤ 20), the thermally developing region  

ℎ0  is small when compared to the domain size h. Since some part of the 

computational domain in the x direction was excluded in Tavassoli’s work (Tavassoli, 

2014) from the calculation of the average Nu number based on the variation in 𝑁𝑢(𝑥), 

the predictions of Tavassoli et al. (2015) agree well with our LBM data. At high solid 

volume fractions and Reynolds numbers, ℎ0 may be under-estimated by Tavassoli et 

al. (2014). As a result, the difference between the correlation of Tavassoli et al. (2015) 

and our LBM data becomes appreciable. Furthermore, we also observe that the 

difference between the average Nu number as predicted by Sun et al. (2015) and our 

LBM data is considerable for all solid volume fractions and Reynolds numbers. This 

may be due to the fact that the proposed analogy between a fully-developed thermal 

pipe flow with isothermal walls and a packed bed is somewhat inaccurate, and thus 

the boundary conditions applied in the simulations are not realistic for a packed bed 

configuration (Sun et al., 2015). 
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Figure 5.9. Comparison of the predictions of Sun et al. (2015) and Tavassoli et al. 

(2015) with Eq. (5.39) for solid volume fractions of 0.1, 0.3 and 0.5. The Prandtl 

number is 0.7. 

 

 

Finally, the numerically derived Nusselt number correlations (i.e. Tavassoli et al., 

2015, Sun et al., 2015 and Eq. (5.39)) were compared with the empirical correlation 

(experimentally derived) proposed by Wakao et al. (1979) which is only valid for 

dense packings (ε = 0.4) and the simulation results of Guardo et al. (2005) for 

ϕ = 0.6 and 𝑃𝑟 = 0.71.  Guardo et al. (2005) computed the Nu number for a 

packed bed comprising 44 spheres and a sphere-to-tube diameter ratio of 3.923 using 

a Reynolds-averaged Navier-Stokes model for Re < 1000 . In figure 5.10, we 

observed that the predictions of Tavassoli et al. (2015) and Sun et al. (2015) are 

higher than the values determined by Wakao et al. (1979), while the predictions of Eq. 

(5.39) are lower than those predicted by Wakao et al. (1979). However, there is good 

agreement between the predictions of equation (5.39) and Wakao et al. (1979) for 
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Re < 30. As the Reynolds number increases, the discrepancy between equation (5.39) 

and Wakao et al. (1979) increases. The maximum discrepancy is 14%. The numerical 

results of Guardo et al. (2005) agree well with the predictions by Eq. (5.39).  The 

comparison shown in Figure 5.10 indicates that Eq. (5.39) can estimate accurately the 

Nu  number for packed beds with porosity 0.4. 

 

Figure 5.10. Comparison of the different numerically derived Nusselt number 

correlations with the empirical correlation of Wakao (Wakao et al., 1979). The 

symbols give the simulation results extracted from Figure 6 of Guardo et al. (2006). 

𝑉𝑐𝑒𝑙𝑙 and 𝑉𝑝 are the grid and particle volumes in the respective simulations. 

 

5.7 Conclusions 

 

In this work, a thermal lattice Boltzmann method using an immersed moving 

boundary approach was used to compute the average Nu number for assemblies of 

spheres for a wide range of solid volume fractions and Re ≤ 100. Fully periodic 

boundary conditions for the fluid velocity and temperature were applied at all domain 

boundaries for the fluid to generate thermally fully-developed flows, a key difference 
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to previous attempts.  The newly proposed Nusselt number correlation has been 

compared to experimentally and numerically derived correlations. The experimentally 

derived correlations (Gunn, 1978; Wakao et al., 1979) significantly over-predict the 

average Nu number for assemblies of spheres for Re ≤ 100. The reason for this is 

that the experimentally derived correlations are valid for a wide range of Reynolds 

numbers (10
4
-10

5
), the confidence of these correlations (e.g. Gunn, 1978) are low for 

Re ≤ 100 (Shen et al., 1981). The numerically derived correlations (Tavassoli et al., 

2015; Sun et al., 2015) are influenced by the boundary conditions applied. At high 

solid volume fractions and Reynolds numbers, the flows in Tavassoli et al.’s (2015) 

simulations are thermally not fully-developed yielding a higher average Nu number. 

In addition, the analogy between a thermally fully-developed pipe flow with 

isothermal walls and a packed bed (Sun et al., 2015) is probably not valid to 

determine the heat transfer in random assemblies of spheres. The correlation for the 

Nusselt number for assemblies of spheres proposed here is based on the simulation 

data obtained from thermally fully-developed flows. We expect that the new Nusselt 

number correlation introduced here will improve the accuracy of Euler-Euler and 

Euler-Lagrangian simulations of non-isothermal gas-solid flows.  
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6  

Heat transfer to gas in random assemblies of cubes: the 

effect of solid volume fraction on the average Nusselt 

number for 𝐑𝐞 ≤ 𝟏𝟎𝟎 

 

6.1 Abstract 

 

The thermal lattice Boltzmann method with immersed moving boundary conditions 

was employed to calculate the particle-to-fluid heat transfer in an assembly 

comprising super-quadric cubes. The simulations were performed for solid volume 

fractions 0.1-0.45 for 𝑅𝑒𝑉 ≤ 100 (based on the volume equivalent diameter of the 

cube). Defining the Reynolds number based on the hydraulic diameter of the packing 

(𝑅𝑒ℎ), the Nusselt number correlation (Chapter 5) proposed for assemblies of spheres 

was transformed into a form that is a function of 𝑅𝑒ℎ. The new Nusselt number 

correlation can fit the simulation data for assemblies of super-quadric cubes fairly 

accurately if the Sauter diameter was chosen as the characteristic size of the particle. 

 

6.2 Introduction 

 

Gas solid non-isothermal flows are encountered widely in industrial applications, e.g. 

catalytic reactors. Understanding the complicated flows and thermal phenomena is 

essential to design and control the process. Therefore, empirical correlations as a 

function of Reynolds number, solid volume fraction and Prandtl number have been 

developed to quantify the heat transfer between particles and surrounding fluids. 

Gunn (1978) proposed a Nusselt number correlation valid for a single particle, packed 

beds and fluidized beds for Reynolds numbers up to 10
5 

based on the theoretical 

solution and experimental measurements of the Nusselt number for packed and 

fluidized beds. Tavassoli et al. (2014) identified that Gunn’s equation (1978) was 

valid for ϕ < 0.3. Chen et al. (Chapter 5) also showed that Gunn’s equation (1978) 

agreed well with the simulation data for ϕ < 0.3. At high solid volume fraction, 

Gunn’s equation (1978) significantly over predicts the Nusselt number for packed bed 

for Re < 100 (based on the sphere diameter). Wakao et al. (1979) proposed a 

Nusselt number correlation based on the experimental data as a function of Reynolds 

number and Prandtl number for packed bed. The solid volume fraction was not 

explicitly incorporated into the correlation. Scott et al. (2004) measured the heat 
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transfer to a single sphere immersed in beds of particles supplied by gas in packed and 

fluidized beds. Based on the experimental data, a Nusselt number correlation for an 

immersed sphere was proposed as a function of minimum fluidization velocity and 

diameter ratio of the immersed sphere to the particles in the bed. However, the 

empirical correlations rely on the macroscopic experimental measurements which 

ignore the effect of local flow structure on the heat transfer. Romkes et al. (2003) 

simulated particle-to-fluid heat transfer in a packed bed with different 

channel-to-particle diameter ratios using a commercial computational fluid dynamics 

software and showed that the local packing structure significantly affects the overall 

heat transfer in a packed bed. Guardo et al. (2005) computed the Nusselt number for 

packed bed comprising 44 spherical particles and a sphere-to-tube diameters ratio of 

3.923 using Reynolds-averaged Navier-Stokes model for Re < 1000 . The 

comparison with Wakao et al. (1979) demonstrated that Wakao’s equation over 

predicts the Nusselt number in the Reynolds number range from 10 to 100. Deen et al. 

(2012) simulated randomly packed beds comprising 1326 spheres for heat transfer 

using the immersed boundary method for solid volume fraction 0.3 and Prandtl 

number 0.8. The results indicated that Gunn’s equation (1978) over predicted the heat 

transfer coefficients for packed beds for Re < 100. The comparisons of Nusselt 

number with empirical correlations and experiments (Romkes et al., 2003; Guardo et 

al., 2005; Deen et al., 2012) indicates that computational fluid dynamics is a reliable 

tool to predict particle-to-fluid heat transfer in packed beds.  

Recently, direct numerical simulations have been used to calculate the average 

Nusselt number for random assemblies of spheres. Tavassoli et al. (2015) proposed a 

Nusselt number correlation for assemblies of spheres for Reynolds number 0-100 and 

solid volume fraction 0.1-0.6 based on direct numerical simulations. In the 

simulations, Tavassoli et al. (2013, 2015) applied uniform velocity and constant 

temperature to the fluid at the inlet. At the outlet, the normal derivatives of the 

velocity and temperature were set to zero. Periodic boundary conditions were 

specified at the other domain boundaries. The particles were homogeneous distributed 

in the bed. As the gas flowing over the hot particles, the gas is continually heated 

along the streamwise direction. Such flow includes a thermally developing entrance 

region and a thermally fully developed region. In the thermally developing entrance 

region, the heat transfer of particles has a significant contribution to the overall 

average Nusselt number, which however results in a large overall average Nusselt 

number especially at high solid volume fractions and Reynolds numbers. The method 

was then extended to calculate the heat transfer coefficients for assemblies of 

spherocylinders (Tavassoli et al., 2015). The Nusselt number correlation for 

assemblies of spheres was shown to be able to predict the average Nusselt number for 
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assemblies of spherocylinders if the proper effective diameter (diameter of the 

spherocylinder) was chosen to characterize the particle to fluid heat transfer. However, 

the diameter of the spherocylinder cannot distinguish the effect of aspect ratio (ratio 

of the length of the spherocylinder to the diameter of the spherocylinder) on the heat 

transfer coefficient. 

Sun et al. (2015) using particle-resolved direct numerical simulations developed a 

Nusselt number correlation for Reynolds numbers 1-100 and solid volume fractions 

0-0.5 for assemblies of spheres. The critical assumption which was made in their 

work is that the heat transfer in statistically homogenous gas-solid flow is expected to 

be analogous to single phase thermally fully-developed flow in pipes with isothermal 

walls. The difference of predicted Nusselt number using Tavassoli et al. (2015) and 

Sun et al. (2015) is considerable. Sun et al. (2015) stated that the difference was due 

to the different boundary conditions applied in the simulations. 

Chen et al. (Chapter 5) proposed a Nusselt number correlation based on the direct 

numerical simulations of gas-solid flows. The domain boundary conditions for fluid 

velocity and temperature were fully periodic. The comparison of average Nusselt 

numbers predicted by Tavassoli et al. (2015) and Chen et al. (Chapter 5) is good for 

ϕ < 0.3. For high solid volume fraction, the discrepancy between Tavassoli et al. 

(2015) and Chen et al. (Chapter) increases with increasing Reynolds number which is 

due to the particle to fluid heat transfer in thermally developing region. The 

comparison with Sun et al. (2015) shows that the predictions by Sun et al. (2015) are 

very different from the predictions by Chen et al. (Chapter 5) in the whole range of 

Reynolds number and solids volume fraction. It is possible that the analogy between 

thermally fully-developed pipe flow with isothermal walls and packed bed is 

questionable, and thus the boundary conditions applied in the simulations of Sun et al. 

(2015) are problematic. 

In this work, fully periodic boundary conditions for fluid velocity (Eq. (6.1)) and 

temperature (Eq. (6.2)) are applied to the domain boundaries for fluid.  

, ,(0, , ) ( , , )f x f x xu y z u L y z  

, ,( ,0, ) ( , , )f y f y yu x z u x L z  

, ,( , ,0) ( , , )f z f z zu x y u x y L                   (6.1) 

(0, , ) ( , , )f f xT y z T L y z  
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( ,0, ) ( , , )f f yT x z T x L z  

( , ,0) ( , , )f f zT x y T x y L                    (6.2) 

where 𝑢𝑓,𝑥, 𝑢𝑓,𝑦 and 𝑢𝑓,𝑧 are the fluid velocity in x, y and z directions, respectively. 

𝐿𝑥, 𝐿𝑦 and 𝐿𝑧 are the domain size in x, y and z directions, respectively. 𝑇𝑓 is the 

temperature of fluid. The periodic boundary conditions can eliminate the effect of the 

inlet and outlet regions on the average Nusselt number. The goal is to assess whether 

the Nusselt number correlation for assemblies of spheres can be applied to predict the 

particle to fluid heat transfer for assemblies of super-quadric cubes. 

 

6.3 Governing equations 

 

The flow is assumed to be incompressible and the viscous heat dissipation is 

neglected. Therefore, the Navier-Stokes and energy equations are as follows: 

2( )
f

f f f f f

u
u u p u

t
 


     


                (6.3) 

2( )
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f pf f f f f

T
c u T k T
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                   (6.4) 

Where 𝜌𝑓 , 𝜇𝑓 , 𝑐𝑝𝑓  and 𝑘𝑓  are the density, dynamic viscosity, specific heat 

capacity and thermal conductivity of the fluid, respectively. �⃗⃗�𝑓 is the fluid velocity. 

𝑃 is the fluid pressure. The continuity equation for impressible flow is: 

0fu                           (6.5) 

The flow properties (e.g. fluid density and viscosity) are assumed to be independent 

of fluid temperature. The particle Reynolds number is calculated based on the volume 

equivalent sphere diameter (𝑑𝑉 = (
6𝑉𝑝

𝜋
)

1/3

, 𝑉𝑝 is the volume of the particle) and the 

fluid superficial velocity (�⃗⃗�𝑠) which is defined as the fluid velocity averaged over the 

total volume of the domain: 

Re
f s V

V

f

u d


                         (6.6) 
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The Prandtl number is given by: 

Pr
pf f

f

c

k


                          (6.7) 

The heat transfer coefficient can be calculated as: 

p

q
h

S T



                         (6.8) 

       f sT T T                           (6.9) 

Where �̇�, �̅�𝑓 and 𝑇𝑠 are the heat transfer rate, average temperature of surrounding 

fluid, and particle temperature, respectively. 𝑆𝑝 is the surface area of the particle. In 

practice, the heat transfer coefficient ℎ is always expressed in terms of Nusselt 

number: 

p

f

hd
Nu

k
                           (6.10) 

𝑑𝑝 is the characteristic length of the particle. In this work, the volume equivalent 

diameter (𝑑𝑉) and Sauter diameter (𝑑𝑠) are used as 𝑑𝑝, viz. 𝑑𝑉 = (
6𝑉𝑝

𝜋
)

1/3

 and 

𝑑𝑠 = Φ𝑑𝑉 , Φ  is the sphericity. In packed bed, the average Nusselt number is 

obtained by averaging individual particle Nusselt number. The Nusselt number of the 

i-th particle is calculated as follows: 

( )

i p

i

p f s f

q d
Nu

S T T k



                       (6.11) 

Based on the characteristic size of the particle, two different particle Nusselt number 

are defined: 

 ,
i V

i V

p f s f

q d
Nu
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( )
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p f s f

q d
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                   (6.12) 
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In equation (6.11), �̇�𝑖 is the heat transfer rate between particle i and surrounding 

fluid,  

pi

i f f

S

q k T nds                           (6.13) 

,

,

( , , ) ( , , )

( , , )

b

b

f x f

V

f

f x

V

u x y z T x y z dxdydz

T
u x y z dxdydz






                 (6.14) 

Where 𝑆𝑝𝑖 is the surface of i-th particle, 𝑉𝑏 is a cubic box with centre coinciding 

with the particle centre. �⃗⃗� is a unit vector in the normal direction of the particle 

surface. In this work, the size of the box is 3𝑑𝑉. The average Nusselt number of the 

packed bed is then obtained based on the characteristic size of the particle: 

,

1

1 pN

V i V

ip

Nu Nu
N 

   

,

1

1 pN

s i s

ip

Nu Nu
N 

                        (6.15) 

Except defining the Reynolds number based on the characteristic length of an 

individual particle, other definitions of Reynolds number are also proposed for 

developing the Nusselt number correlation for packed beds. Bird et al. (1960), 

Incropera & Dewitt (1990) and Nsofor & Adebiyi (2001) defined a characteristic 

length of packed bed, which is the ratio of the volume of the bed to the total surface of 

the particles: 

p

b

p

V
d

S
                           (6.16) 

For the bed comprising equal size spherical particles, Eq. (6.16) is calculated as 

follows: 

6

V
b

d
d


                           (6.17) 

Yang et al. (2010, 2012) defined the Reynolds number based on the hydraulic 

diameter of packed bed which can be calculated as follows: 
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                     (6.18) 

Therefore, the Reynolds number is  

Re
f s h

h

f

u d


                         (6.19) 

With this Reynolds number, Yang et al. (2010, 2012) correlated the experimental or 

simulation data and formulated Nusselt number correlations for packed beds. 

 

6.4 Numerical Method 

 

The thermal lattice Boltzmann method with immersed boundary conditions for 

momentum and temperature has been described and used in Chen et al. (Chapter 4). 

Here we provide a brief description of the method. The evolution equations for the 

density and energy distribution functions are modified to account for the interaction 

between solid and fluid phases: 

,( , ) ( , ) (1 )[ ( , ) ( , )]eq p

i i i v i i v i v

v

t
f x e t t t f x t B f x t f x t B




                   (6.20) 

,( , ) ( , ) (1 )[ ( , ) ( , )]eq p

i i i c i i c i c

c

t
g x e t t t g x t B g x t g x t B




                (6.21) 

Where 𝑓𝑖 and 𝑔𝑖 are the density and energy distribution functions at time 𝑡 and 

position �⃗� with velocity 𝑒𝑖. In this work, D3Q19 and D3Q7 models are used for 

density and energy evolution equations, respectively. 𝜏𝑣 and 𝜏𝑐 are relaxation times 

related to viscosity and thermal diffusivity, respectively. The superscript ‘eq’ denotes 

the equilibrium state. Ω𝑖,𝑣
𝑝

 and Ω𝑖,𝑐
𝑝

 are additional collision terms that bounce back 

the non-equilibrium parts of the density and energy distributions, respectively. 

, ( , ) ( , ) ( ( , ), ( , )) ( ( , ), ( , ))p eq eq

i v i i i f p i f ff x t f x t f x t u x t f x t u x t            (6.22) 

, ( , ) ( , ) ( , ( , )) ( ( , ), ( , ))p eq eq

i c i i i s f i fg x t g x t g u x t g x t u x t             (6.23) 
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𝑢𝑝 is the particle velocity at position �⃗�. 𝜑𝑠 is the temperature of the particle. 𝐵𝑣 

and 𝐵𝑐 are weighting functions, which can be calculated as follows: 
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Where 𝜙𝑥 is the volume fraction of a lattice that is covered by the solid particles. 

𝐵𝑐 = 1 and 𝐵𝑣 = 1 are corresponding to pure fluid and solid nodes, respectively. 

The macroscopic properties for density, momentum and energy can be obtained 

through the following equations, respectively: 

f ii
f                            (6.26) 

f f i ii
u f e                         (6.27) 

ii
g                            (6.28) 

The viscosity and thermal diffusivity are computed via the following equations: 

21
( )

3 2
v

t
c 


                         (6.29) 

21
( )

4 2
c

t
D c 


                         (6.30) 

 

6.5 Simulations and Results 

 

Prior to calculating the heat transfer coefficients for packed beds, a simple validation 

of the method for use with cubic particles was performed. The thermal lattice 

Boltzmann method with immersed boundary conditions has been comprehensively 

validated for isothermal (e.g. drag coefficients of sphere, cube and spheroids; drag 

force for assemblies of spheres) and non-isothermal (e.g. Nusselt number for a single 

sphere in uniform flows) flows (Chen et al., 2015; Chapter 3; Chapter 4; Chapter 5). 

Here we compare the Nusselt numbers of a single perfect cube in uniform flows with 
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the simulation results reported by Richter et al. (2012). Richter et al. (2012) used a 

commercial finite volume solver (ANSYS FLUENT) to calculate the 𝑁𝑢𝑉 number 

for a single cube in a uniform flows. The domain size in current simulations was 

240 × 120 × 120 lattice units. At the inlet, uniform fluid velocity and constant 

temperature are applied. At the outlet, the normal derivative of the velocity and 

temperature was set to zero. Symmetry boundary conditions for velocity and 

temperature were assigned to the side domain boundaries. The length of the cube was 

15 in lattice units. Figure 6.1 plots the Nusselt number obtained by LBM simulations 

and simulation results extracted from Richter et al. (2012). The comparison 

demonstrates that the lattice Boltzmann method can reproduce the results of standard 

simulations. 

For packed bed simulations, 𝑁𝑝 = 54 equal size super-quadric cubes were randomly 

distributed in a periodic, cubic domain using standard Monte Carlo method (Frenkel 

& Smit, 1996) (Figure 6.2). The cubes ( 𝑚 = 5 ) were represented using the 

super-quadric equation (Eq. (6.31)). 

1

m m m
x y z

a b c

     
       

     
                      (6.31) 

The volume equivalent diameter (𝑑𝑉) of the super-quadric cubes used ranged from 22 

to 41 in lattice units. The domain size was 150
3
 for solid volume fractions 0.1, 0.2 and 

0.3. Domain sizes of 155
3
 and 160

3
 were used for solid volume fraction 0.4 and 0.45, 

respectively. Fully periodic domain boundaries were employed for the velocity and 

temperature of the fluid. The particle Reynolds numbers (𝑅𝑒𝑉) were set to 1, 10, 25, 

50 and 100, respectively. The Prandtl number was 0.7. For each given 𝑅𝑒𝑉 and solid 

volume fraction, 6 different packing configurations were modelled and the values 

obtained were averaged. The method used for assigning a steady state Nusselt number 

was proposed by Yang et al. (2011) who calculated the heat transfer for a sphere in 

simple shear flow. If the change of the Nusselt number in the last 20% computational 

time was less than 1%, the computation was assumed to have reached steady state. 

Figure 6.3 shows the 𝑁𝑢𝑉 as a function of time (The volume equivalent diameter 

was taken as the characteristic size of the cube). The high 𝑁𝑢𝑉 at the starting time is 

due to the large temperature gradient at the particle fluid interface when initiating the 

heat transfer. Figure 6.4 plots the Nusselt number (𝑁𝑢𝑖,𝑉) for individual super-quadric 

cubes along the streamwise direction at steady state conditions. It shows that the flow 

is thermally fully-developed since there is no statistically significant change in 

Nusselt number for individual particles along the flow direction. Due to the local flow 
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velocity and temperature gradient, the 𝑁𝑢𝑖,𝑉 in a single cross section varies from 

particle-to-particle.  

Figure 6.1. Nusselt number as a function of Reynolds number for a single perfect cube 

in a uniform flow. 
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Figure 6.2. An example particle configuration in a periodic box. Temperature 

contours are shown in three planes for 𝑅𝑒𝑉 = 50 and ϕ = 0.4. The Prandtl number 

is 0.7. 
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Figure 6.3. Average Nusselt number as a function of time for ϕ = 0.4 for random 

assemblies of super-quadric cubes. The Prandtl number is 0.7. 
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Figure 6.4. Nusselt number of individual particles along the streamwise direction for 

𝑅𝑒𝑉 = 50 and ϕ = 0.4 at t𝑢𝑠/𝑑𝑉 = 10.The Prandtl number is 0.7. 

 

Based on the simulation data, a Nusselt number correlation for assemblies of spheres 

was developed in Chapter 5: 

2 0.5 1/32 0.77 0.64 (0.6 1.1 ) Re PrVNu                 (6.32) 

Figure 6.5 plots the simulation results (the volume equivalent diameter was taken as 

the characteristic size of the cube) for assemblies of super-quadric cubes and the 

prediction of Eq. (6.32), respectively. At low solid volume fraction (ϕ < 0.3), the 

prediction of Nusselt number by Eq. (6.32) agrees well with the simulation data. At 

high solid volume fraction, Eq. (6.32) significantly under predicts the Nusselt number 

for assemblies of super-quadric cubes. Therefore, the Eq. (6.32) cannot be applied to 

predict the particle to fluid heat transfer for assemblies of super-quadric cubes using 

volume equivalent diameter of the cube.  



117 
 

To characterize the shape of the super-quadric cube, the surface area equivalent 

diameter and sphericity are defined as follows: 

p

N

S
d


 ; 

2

2

V

N

d

d
                         (6.33)  

Inserting Eq. (6.33) into Eq. (6.18), the hydraulic diameter of the packing comprising 

equal size super-quadric cubes is as follows: 
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                         (6.34) 

According to Eq. (6.19), the 𝑅𝑒ℎ (based on the hydraulic diameter) is calculated as 

follows: 
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Inserting Eq. (6.6) into Eq. (6.35), we obtain  

2(1 )
Re Re

3
h V






                       (6.36) 

Inserting Eq. (6.36) into Eq. (6.32), we find 

2 0.5 1/3 0.53
2 0.77 0.64 (0.6 1.1 ) Re Pr ( )

2(1 )
hNu


  


    

 
       (6.37) 

Figure 6.6 plots the simulation data (𝑁𝑢𝑉) for assemblies of super-quadric cubes as a 

function of 𝑅𝑒ℎ  and the predictions by Eq. (6.37), respectively. The Reynolds 

numbers (𝑅𝑒𝑉) for the simulation data are transformed to 𝑅𝑒ℎ according to Eq. 

(6.36). The simulation data agree well with Eq. (6.37) for low solid volume fractions 

(ϕ ≤ 0.3). At high solid volume fraction, Eq. (6.37) slightly under predicts the 𝑁𝑢𝑉 

for assemblies of super-quadric cubes. Finally, the Sauter diameter (𝑑𝑠) is used to 

characterize the particle to fluid heat transfer in random assemblies of super-quadric 

cubes. As a result, the Nusselt numbers (𝑁𝑢𝑉) obtained from the simulations (based 

on the volume equivalent diameter) were transformed to the values for Sauter 

diameter (𝑁𝑢𝑠, viz. 𝑁𝑢𝑠 = Φ𝑁𝑢𝑉). The simulation data (𝑁𝑢𝑠) and the predictions of 

Nusselt number by Eq. (6.37) are shown in Figure 6.7. The comparison demonstrates 

that Eq. (6.37) can accurately estimate the particle to fluid heat transfer for assemblies 
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of super-quadric cubes if the Sauter diameter was used to characterize the particle to 

fluid heat transfer in the assembly.  

 

 

Figure 6.5. Nusselt numbers as a function of 𝑅𝑒𝑉 for assemblies of super-quadric 

cubes. The lines plot Eq. (6.32). The Prandtl number is 0.7. 
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Figure 6.6. Nusselt numbers based on volume equivalent diameter for assemblies of 

super-quadric cubes as a function of 𝑅𝑒ℎ. The lines plot Eq. (6.37). The Prandtl 

number is 0.7. 
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Figure 6.7. Nusselt number based on the Sauter diameter for assemblies of 

super-quadric cubes as a function of 𝑅𝑒ℎ. The lines plot Eq. (6.37). The Prandtl 

number is 0.7. 

 

6.6 Conclusions 

 

In this work, the thermal lattice Boltzmann method with immersed moving boundary 

conditions was used to compute the average Nusselt number acting on assemblies of 

super-quadric cubes for a wide range of solid volume fraction for 𝑅𝑒𝑉 ≤ 100 in 

cubic, periodic domains. The comparison between the simulation data for assemblies 

of super-quadric cubes and the predictions by Nusselt number correlation for 

assemblies of spheres (Chapter 5) indicates that only substituting volume equivalent 

diameter (𝑑𝑉) is not sufficient to characterize heat transfer for cubic particles using 

Nusselt number correlations for assemblies of spheres if the Reynolds number was 

defined based on the volume equivalent diameter of the cube. Defining the Reynolds 

number based on the hydraulic diameter of the packing (𝑅𝑒ℎ), the Nusselt number 

correlation proposed for assemblies of spheres (Chapter 5) was transformed into a 

form that is a function of 𝑅𝑒ℎ. The new Nusselt number correlation can be applied to 
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predict the heat transfer of cubic particles in an assembly if the Sauter diameter was 

chosen as the characteristic size of the cube. 
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7 Conclusions and Outlook 

 

7.1 Conclusions 

 

Particulate two phase, non-isothermal flows are encountered widely in industrial 

applications. Understanding the complicated interaction between fluid mechanics and 

thermal effects are essential to improve the design of reactors that are commonly 

applied in the chemical industry and hence their efficiency. Due to the lack of drag 

force and Nusselt number correlations for assemblies of non-spherical particles, the 

simulations of gas-fluidized beds are restricted to beds containing spherical particles. 

In practical applications, the particles in gas-fluidized beds are, however, often 

non-spherical. Therefore, developing momentum exchange and heat transfer 

correlations for gas-solid flows comprising non-spherical particles based on the direct 

numerical simulation of such systems is critical to predict accurately and hence 

improve the design of such systems. 

 

In this work, drag force and Nusselt number correlations for assemblies of cubes were 

developed. The cubes were represented by two different methdods: (1) Construction 

from several, identical spheres, that are unbreakable and undeformable; (2) 

Representation by a continuous function, i.e. the super-quadric equation.  

 

In chapter 2, the drag force acting on assemblies of approximately cubic particles that 

were constructed from eight identical spheres was calculated using a lattice 

Boltzmann method for Re ≤ 200  and ϕ ≤ 0.45 . The simulation data were 

compared with predictions that have been derived numerically (Beetstra et al., 2001). 

The comparison indicates that Beetstra’s correlation under-predicts the drag force 

acting on assemblies of approximately cubic particles in particular for high solid 

volume fractions and Reynolds numbers. Subsequently, the method was extended to 

compute the drag force acting on assemblies of super-quadric cubes (Chapter 3). The 

simulation data were compared with the predictions of Ergun-based correlations, 

Hilton et al. (2010), Tang et al. (2015) and Chen et al. (2015). It was found that the 

Ergun-based correlations and the correlation for assemblies of approximately cubic 

particles cannot predict the drag force for assemblies of super-quadric cubes. The 

correlation proposed by Hilton et al. (2010) significantly under-predicted the drag 

force for super-quadric cubes, although the correlation has been employed previously 

to simulate gas-fluidized beds comprising cubic particles (Hilton et al., 2010, 2011; 

Oschmann et al., 2014). In addition, the comparison with Tang’ correlation 

demonstrated that only for relatively small Reynolds numbers ( Re ≤ 10 ) 

super-quadric cubes can be approximated by volume equivalent spheres. At higher 

Reynolds numbers, this approximation would induce a large error (up to 56%) in 

estimating the gas-solid interaction and lead, in turn, to large errors in modelling the 

dynamics of e.g. gas-solid fluidized bed. Hence, based on the simulation data, we 

proposed a new drag force correlation for assemblies of super-quadric cube. 
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Secondly, Nusselt number correlations for assemblies of spheres and super-quadric 

cubes were developed. To this end, we propose a new Dirichlet boundary condition 

for thermal lattice Boltzmann methods (Chapter 4). The thermal boundary condition 

was second order accurate and suitable for boundary-dominated problems, e.g. porous 

medium. The thermal lattice Boltzmann method was used to calculate the Nusselt 

number for assemblies of spheres. The simulation data were compared with 

experimentally and numerically derived correlations. The experimentally derived 

correlations (Gunn, 1978; Wakao et al., 1979) significantly over-predicted the Nusselt 

number for assemblies of spheres since these correlations are valid for a wide range of 

Reynolds numbers (10
4
-10

5
). The numerically derived correlations have inherent 

shortcomings since the data used to correlate the correlations were affected by the 

domain boundary conditions applied (Chapter 5). The comparison with Tavassoli et al. 

(2015) showed that the agreement was good if the data were obtained from the 

simulations of thermally fully-developed flows. Otherwise, a large difference between 

the LBM data and Tavassoli et al. (2015) was observed. In Sun’s simulations (Sun et 

al., 2015), the heat transfer in a statistically homogenous, gas-solid flow was assumed 

to be analogous to a single phase thermally fully-developed flow in pipes with 

isothermal walls. However, the results of Sun et al. (2015) showed some difference to 

the data of Tavassoli et al. (2015) and the LBM. Hence, based on the LBM data, a 

new Nusselt number correlation was proposed for assemblies of spheres for 

Re ≤ 100  and ϕ ≤ 0.5  which is expected to be more accurate than previous 

numerically derived correlations. Finally, the LBM method was extended to simulate 

the heat transfer for assemblies of super-quadric cubes. By defining the Reynolds 

number based on the hydraulic diameter of the packing (𝑅𝑒ℎ), the Nusselt number 

correlation proposed for assemblies of sphere (Chapter 5) was transformed to a 

modifed form that is a function of 𝑅𝑒ℎ. The new Nusselt number correlation can be 

applied to predict the Nusselt number for assemblies of super-quadric cubes if the 

Sauter diameter is chosen as the characteristic size of the particle. We expect that the 

new correlations proposed in this thesis can improve the accuracy of Euler-Euler and 

Euler-Lagrangian simulations of gas-solid non-isothermal flows in packed and 

fluidized beds comprising cubic particles. 

 

7.2 Future work 
 

7.2.1 Effect of particle orientation on the drag force 

 

In this work, we have developed a drag force correlation for assemblies of 

super-quadric cubes. The effect of solid volume fraction on the drag force was taken 

into account. However, it is well-known that the orientation of a cube with respect to 

the flow direction has also a significant effect on the drag force which is not 

considered in Eq. (3.28). In future, DNS simulations of cubic particles with 

preferential orientations with respect to the flow direction (e.g. 0, 
𝜋

4
) shall be 



124 
 

performed. This will be a first step to investigate the influence of particle orientation 

on the drag force. Hölzer and Sommerfeld (2008) proposed a correlation for the drag 

coefficient of single, non-spherical particles as a function of crosswise sphericity (Φ⊥), 

sphericity (Φ) and Reynolds number. To apply this correlation to the modelling of 

gas-fluidized beds containing cubic particles, a “correction” for the effect of solid 

volume fraction on the drag force has to be developed. Based on Eq. (3.13) (Hilton et 

al., 2010), DNS simulations of assemblies of cubic particles can be used to propose a 

term to incorporate the voidage dependence in Eq. (3.13). 

 

7.2.2 Wet granular flows 

 

Wet particles behave completely different to dry particles. The collision between wet 

particles is complicated due to the presence of a liquid film/layer of varying thickness. 

During particle motion and/or collision a film can form, deform or rupture. A 

fundamental understanding of the contact mechanics of collisions in “wet” particle 

systems will be essential to model wet granular flows. Several experimental studies 

concerning the interaction between wetted particles have been reported, however, in 

these works typically the particles are immersed in a liquid to mimic wet particle 

collisions. On the other hand, DNS approaches may provide the required insight to 

formulate simplified, yet appropriate, collision models for such systems. Jain et al. 

(2012) simulated the collision between a particle and a liquid film using an immersed 

boundary method (IBM) in a volume of fluid (VOF) framework. The simulation 

results agreed well with the experimental data obtained by Antonyuk et al. (2009). In 

the future, a combined lattice Boltzmann method-volume of fluid approach may be 

used to model the liquid between interacting particles. To model the liquid spreading 

on the particle surface, a contact angle boundary condition (Brackbill et al., 1992, 

Patel et al., 2017) is required at the contact lines (gas-solid-liquid interface). 

Subsequently, the DNS simulations can be used to propose improved models to 

determine the effective (wet) restitution coefficient.  
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