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Abstract Yeast is a powerful model for systems genetics. We present a versatile, time- and

labor-efficient method to functionally explore the Saccharomyces cerevisiae genome using

saturated transposon mutagenesis coupled to high-throughput sequencing. SAturated Transposon

Analysis in Yeast (SATAY) allows one-step mapping of all genetic loci in which transposons can

insert without disrupting essential functions. SATAY is particularly suited to discover loci important

for growth under various conditions. SATAY (1) reveals positive and negative genetic interactions in

single and multiple mutant strains, (2) can identify drug targets, (3) detects not only essential

genes, but also essential protein domains, (4) generates both null and other informative alleles. In a

SATAY screen for rapamycin-resistant mutants, we identify Pib2 (PhosphoInositide-Binding 2) as a

master regulator of TORC1. We describe two antagonistic TORC1-activating and -inhibiting

activities located on opposite ends of Pib2. Thus, SATAY allows to easily explore the yeast genome

at unprecedented resolution and throughput.

DOI: 10.7554/eLife.23570.001

Introduction
Saccharomyces cerevisiae is an invaluable model for cell biology (Weissman, 2010). Despite the sim-

plicity of its genome, its inner working mechanisms are similar to that of higher eukaryotes. Further-

more, its ease of handling allows large-scale screenings. Yeast genetic screens have classically been

performed by random mutagenesis, followed by a selection process that identifies interesting

mutants. However elegant the ‘tricks’ implemented to expose the sought-after mutants, this selec-

tion phase remains a tedious process of finding a needle-in-a-haystack (Weissman, 2010). The selec-

tion phase can limit the throughput and the saturation of classical yeast genetic screens.

To circumvent these problems, a second-generation genetic screening procedure has been devel-

oped. Ordered deletion libraries for every non-essential gene have been generated (Giaever et al.,

2002). The growth of each individual deletion strain can be assessed, either by robot-mediated

arraying, or by competitive growth of pooled deletion strains, followed by detection of ‘barcodes’

that identify each deletion strain. These second-generation approaches also have limitations. First,

ordered libraries of complete deletions only cover non-essential genes. Second, deletion strains are

prone to accumulate suppressor mutations (Teng et al., 2013). To alleviate these problems, deletion

libraries can be propagated in a diploid-heterozygous form. Additional steps are then required to

make them haploid. In addition, while single genetic traits can be crossed into a pre-existing library,

allowing for instance pairwise genetic-interaction analysis (Costanzo et al., 2010), introducing multi-

ple and/or sophisticated genetic perturbations becomes problematic, since crossing requires a

selection marker for each important trait. Typically, deletion libraries are missing in most biotechnol-

ogy-relevant backgrounds. Finally, manipulating ordered libraries requires non-standard equipment,

such as arraying robots, limiting the pervasiveness of these approaches.
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Recently, an innovative approach called Transposon sequencing (Tn-seq) was developed in vari-

ous bacterial models (Christen et al., 2011; Girgis et al., 2007; van Opijnen et al., 2009), and in

the fungus Schizosaccharomyces pombe (Guo et al., 2013). By allowing en masse analysis of a pool

of transposon mutants using next-generation sequencing, this strategy eliminates the drawbacks of

previous genetic screens.

Here, we describe an adaptation of the Tn-seq strategy for S. cerevisiae, that combines the

advantages of both first and second generation screens, while alleviating their limitations. The

method is based on the generation of libraries of millions of different clones by random transposon

insertion (Figure 1A). Transposons inserted in genes that are important for growth kill their hosts

and are not subsequently detected. These genes therefore constitute transposon-free areas on the

genomic map. Transposon-based libraries can be grown in any condition to reveal condition-specific

genetic requirements. Unlike ordered deletion libraries, transposon-based libraries can easily be

generated de novo from different strain backgrounds, are not limited to coding sequences and do

not require the usage of robots.

This method can successfully uncover sets of genes essential in given conditions, genome-wide

genetic interactions and drug-targets. Transposon insertions can generate loss- and gain-of-function

variants. Finally, our approach not only shows which protein is important for growth, but also which

part of the protein is essential for function, allowing genome-wide mapping of structural protein

domains and screening of phenotypes at a sub-gene resolution.

Results

Library generation
The detailed procedure can be found in the Materials and methods section. The method utilizes the

Maize Ac/Ds transposase/transposon system in yeast (Lazarow et al., 2012; Weil and Kunze,

2000). Briefly, cells in which the ADE2 gene is interrupted by the MiniDs transposon are induced to

express the transposase Ac, on galactose-containing adenine-lacking synthetic defined medium (SD

+galactose -adenine). Transposase-induced MiniDs excision is followed by repair of the ADE2 gene.

eLife digest Genes are stretches of DNA that carry the instructions to build and maintain cells.

Many studies in genetics involve inactivating one or more genes and observing the consequences. If

the loss of a gene kills the cell, that gene is likely to be vital for life. If it does not, the gene may not

be essential, or a similar gene may be able to take over its role.

Baker’s yeast is a simple organism that shares many characteristics with human cells. Many yeast

genes have a counterpart among human genes, and so studying baker’s yeast can reveal clues

about our own genetics. Michel et al. report an adaptation for baker’s yeast of a technique called

“Transposon sequencing”, which had been used in other single-celled organisms to study the

effects of interrupting genes. Briefly, a virus-like piece of DNA, called a transposon, inserts randomly

into the genetic material and switches off individual genes. The DNA is then sequenced to reveal

every gene that can be disrupted without killing the cell, and remaining genes are inferred to be

essential for life.

The approach, named SATAY (which is short for “saturated transposon analysis in yeast”), uses

this strategy to create millions of baker’s yeast cells, each with a different gene switched off.

Because the number of cells generated this way vastly exceeds the number of genes, every gene will

be switched off by several independent transposons. Therefore the technique allows all yeast genes

to be inactivated several times in one single experiment. The cells can be grown in varying

conditions during the experiment, revealing the genes needed for survival in different situations.

Non-essential genes can also be inactivated beforehand to uncover if any genes might be

compensating for their absence.

In the future, this technique may be used to better understand human diseases, such as cancer,

since many disease-causing genes in humans have counterparts in yeast.

DOI: 10.7554/eLife.23570.002
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Figure 1. Principle of the method. (A) Outline of the experimental procedure. Left, the transposon (green) can

insert either into non-essential DNA (blue) and give rise to a clone, or into essential DNA (orange), in which case

no clone is formed. Right, procedure to identify transposon insertion sites by deep-sequencing. (B) Profile of the

transposon density across the whole genome, when the transposon original location is either a centromeric

Figure 1 continued on next page
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Cells with repaired ADE2 will be able to form colonies. The excised transposon then re-inserts at ran-

dom genomic locations with a frequency of ~60% (Lazarow et al., 2012).

We have generated seven libraries, displayed together in all figures to illustrate the reproducibil-

ity of the approach. All libraries were generated in ade2D strains derived from BY4741 and BY4742

backgrounds. Additional mutations (dpl1D, dpl1D psd2D, VPS13(D716H), mmm1D VPS13(D716H),

YEN1on, Table 1) will be described in the following sections. The complete dataset is available

(Supplementary file 1) and searchable here: http://genome-euro.ucsc.edu/cgi-bin/hgTracks?hgS_

doOtherUser=submit&hgS_otherUserName=benjou&hgS_otherUserSessionName=23bDePuYrk

Detection of transposon insertion sites
Typically 7,000–10,000 colonies with a narrow size distribution (Figure 1—figure supplement 1) can

be generated on a 8.4 cm-Ø petri dish. In the case of wild-type library 1, 240 plates yielded ~1.6E6

clones (Table 1). To detect transposon insertion sites, transposed cells were scraped off the 240

plates and pooled (Figure 1A). This pool was used to reinocculate SD medium lacking adenine (SD

+Dextrose -Adenine), and the culture was grown to saturation. This step was used to dilute non-

Figure 1 continued

plasmid (top) or the endogenous ADE2 locus on chromosome XV (bottom). The dashed lines indicate the

chromosome centromeres. (C) Six examples of genomic regions and their corresponding transposon coverage in

seven independent transposon libraries of indicated genotypes. Each vertical grey line represents one transposon

insertion event. Genes annotated as essential are shown in orange, others in blue. Green arrowheads indicate the

places where the absence of transposon coverage coincides with an essential gene. (D) Histogram of the number

of transposons found in every annotated gene (CDS). The vertical dashed line is the median of the distribution. (E)

Same as D, with genes categorized as non-essential (blue) and essential (orange) according to previous

annotations.

DOI: 10.7554/eLife.23570.003

The following figure supplements are available for figure 1:

Figure supplement 1. Size distribution of the colonies appearing on SD +Galactose -Ade.

DOI: 10.7554/eLife.23570.004

Figure supplement 2. Genome-wide analysis of transposon insertion sites.

DOI: 10.7554/eLife.23570.005

Figure supplement 3. Transposon density in essential and non-essential genes.

DOI: 10.7554/eLife.23570.006

Table 1. Characteristics of the libraries

Library
Number of
colonies

Reads
mapped

Transposons
mapped

Median read per
transposon

Number of MiSeq
runs

Overlap between MiSeq
runs

Wild-type 1 ~1.6�106 31794831 284162 22 2* 54%, 88%*

Wild-type 2 ~2.4�106 15303285 258568 12 1 NA

VPS13(D716H) ~4.7�106 24958456 414114 13 2† 41%, 42%†

Mmm1D
VPS13(D716H)

~1.9�106 17799948 303323 12 1 NA

dpl1D ~2.3�106 15077156 401126 8 1 NA

dpl1D psd2D ~2.9�106 11649561 363179 9 1 NA

YEN1on ~2.8�106 9517877 495125 6 1 NA

Wild-type 2 +
rapamycin

~2.4�106 9664956 169322 9 1 NA

* The harvested library was grown in two flasks, one at 30˚C and the other at 37˚C. DNA was extracted separately from the two cultures and sequenced

in two separate MiSeq runs

† The library was harvested as ten subpools, which were grown in ten separate flasks. DNA was extracted separately. In one case, DNA from all ten sub-

pools was pooled and processed to sequencing in one MiSeq run. In the other case, DNAs were kept separate and processed until the PCR step (1 �

100 ml PCR by subpool). PCR products were pooled and sequenced as another MiSeq run.

DOI: 10.7554/eLife.23570.007
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transposed ade- cells still present on the petri dishes. The culture was then harvested by centrifuga-

tion. Genomic DNA was extracted and digested with frequent-cutting restriction enzymes, followed

by ligase-mediated intramolecular circularization. Circular DNA was PCR-amplified using transposon-

specific outwards-facing primers. PCR products were then sequenced on a MiSeq machine

(Figure 1A).

Analysis of transposon insertion sites
We aligned the sequencing reads of the wild-type library (Table 1) to the reference yeast genome

and counted the number of mapped transposons. To account for the fact that Illumina sequencing is

imperfectly accurate, we considered that two reads of the same orientation mapping within two bp

of each other originated from the same transposon (see Source code 1). In this analysis, 284,162

independent transposons could be mapped onto the genome, representing an average density of

one transposon every 42 bp, and a median number of 22 reads per transposon. No large area of the

genome was devoid of transposon (Figure 1B). Consistent with analyses in Maize (Vollbrecht et al.,

2010), no strong sequence preference was detected in the insertion sites (Figure 1—figure supple-

ment 2A).

In many instances, though, insertion frequency was modulated along the genome with a periodic-

ity of ~160 bp. Superimposing nucleosome occupancy data (Lee et al., 2007) showed that this was

due to favored transposon insertion in inter-nucleosomal DNA (Figure 1—figure supplement 2B,

Gangadharan et al., 2010). This effect can be appreciated at the genome-scale. Indeed, an autocor-

relation analysis unraveled a ~160 bp periodic signal in the genome-wide transposon density (mea-

sured using a 40 bp moving average, Figure 1—figure supplement 2C). This periodicity was

comparable to that of the nucleosomal density data (Lee et al., 2007). Finally, while no large region

was devoid of transposon, some regions were actually preferentially targeted by transposons. These

were the pericentromeric regions (Figure 1B, top), which were specifically enriched by ~20% of the

transposon insertions (Figure 1—figure supplement 2D). The explanation for this phenomenon may

pertain to nuclear architecture and to the propensity of our transposon to insert close to its excision

site (Lazarow et al., 2012). Because the transposon is initially excised from a centromeric plasmid,

and because centromeres cluster in the nuclear periphery (Jin et al., 2000), the transposon might

tend to reinsert in the pericentromeric regions of other chromosomes. We confirmed this assump-

tion by sequencing a small-scale library (~30 000 insertions mapped) in which the MiniDS transposon

was originally at the endogenous ADE2 locus, rather than on a centromeric plasmid. In this library,

preferential targeting was not observed at pericentromeric regions, but rather in the vicinity of

ADE2, confirming our assumption (Figure 1B, bottom).

Identification of essential genes
The transposon map clearly showed that a fraction of the coding DNA sequences (CDS) were devoid

of insertions. These coincided almost exactly with genes annotated as essential (Figure 1C, green

arrowheads). The median number of transposons inserted in the CDSs of all genes was 18 per gene

(Figure 1D). This number raised to 21 for annotated non-essential genes, but dropped to three for

annotated essential genes (Figure 1E). This decrease was not due to a difference in the length

between essential and non-essential genes, since normalizing the number of transposon insertions

to the CDS length (transposon density) did not abrogate this effect (Figure 1—figure supplement

3). Thus our method distinguishes, in a single step, genes that are required for growth from those

that are not.

Several genes, although annotated as non-essential, harbored no or very few transposons

(Supplementary file 2). This can be attributed to the following reasons. (1) Because sequencing

reads mapping to repeated sequences were discarded during alignment, repeated genes appear as

transposon-free. (2) Several annotated dubious ORFs overlap with essential genes, and thus appear

as transposon-free. (3) Several genes are necessary for growth in particular conditions, and are there-

fore not annotated as essential, yet are required in our growth conditions (SD +galactose -adenine).

These include genes involved, for instance, in galactose metabolism and adenine biosynthesis.
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Identification of protein domains
It came as a surprise that some genes annotated as essential were tolerant to transposon insertion.

While some of these clearly corresponded to annotation inconsistencies, many reflected an unantici-

pated outcome of our approach. We observed many instances of ‘essential’ CDSs containing trans-

poson-permissive regions. A striking example is GAL10 (Figure 2A). GAL10 encodes a bifunctional

enzyme with an N-terminal epimerase, and a C-terminal mutarotase domain (Majumdar et al.,

2004). While the epimerase activity is indispensable in our conditions, the mutarotase activity is dis-

pensable, as cells were fed a mixture of a- and b-D-Galactose, thus not requiring the conversion of

one into the other. In accordance, the 3’ end of GAL10 was permissive for transposon insertion. The

junction between the permissive and non-permissive domains of GAL10 corresponds exactly to the

junction of the two domains in the Gal10 protein. Several examples of essential genes with dispens-

able 3’-ends are shown in Figure 2A. We confirmed the dispensability of the 3’ end for two genes,

TAF3 and PRP45 (Figure 3).

TAF3 encodes a 47 kDa central component of TFIID (Sanders et al., 2002). Our data show that

only the first 76 amino acids are necessary for growth. Using homologous recombination, we

replaced all but the sequence coding for the first 90 amino acids with an HA tag and a G418-resis-

tance cassette (KanMX6) in a diploid strain. Sporulation and progeny segregation confirmed that

strains expressing only the first 90 amino acids of Taf3 were viable (Figure 3A). By contrast, com-

plete replacement of TAF3 gave rise to only two viable, G418-sensitive spores per meiosis, confirm-

ing that TAF3 is essential (Figure 3B). The essential region of Taf3 corresponds to a predicted

histone-like bromo-associated domain (Doerks et al., 2002).

PRP45 encodes a central component of the spliceosome. From our data, only the first 140 amino-

acids of Prp45 are necessary for growth, which we confirmed using the same strategy as for TAF3

(Figure 3C–D). Prp45 is predicted to be intrinsically disordered, thus no clear domain boundaries

are available to rationalize our data. However, a recent cryo-EM structure of the S. cerevisiae spliceo-

some offers clues on the structure of Prp45 (Wan et al., 2016). Prp45 is centrally located within the

spliceosome, has an extended conformation and makes several contacts with various proteins and

snRNAs. In particular, the most conserved region of Prp45 is a loop that makes extensive contacts

with U2 and U6 snRNAs close to the active site (Figure 3E–F, yellow). This loop belongs to the dis-

pensable part of Prp45, surprisingly suggesting that splicing can occur without it. Our method thus

offers insights that neither sequence conservation nor structural analysis could have predicted.

We also observed CDSs in which the 5’ end is permissive for transposon insertion while the 3’

end is not (Figure 2B–C). Again, our data show a general good coincidence between indispensable

regions and annotated domains. It is surprising that transposons can be tolerated in the 5’ of such

genes, since several stop codons in all frames of the transposon should interrupt translation and pre-

vent the production of the essential C-terminus. We speculate that the production of the C-terminus

is enabled by spurious transcription events. A remarkable example is SEC9 (Figure 2C). SEC9 enco-

des a SNARE protein. The essential SNARE domain, located at the C-terminus (Brennwald et al.,

1994), is devoid of transposons. The N-terminus of the protein is known to be dispensable for

growth (Brennwald et al., 1994). We indeed observe several transposons inserted upstream of the

SNARE domain. The extreme 5’ of the gene constitutes another transposon-free region even though

it encodes a dispensable part of the protein (Brennwald et al., 1994). It is possible that transposon

insertion in this 5’ region generates an unexpressed, unstable or toxic protein. Other examples of

genes showing various combinations of essential domains are shown in Figure 2C.

We devised an algorithm to score genes according to their likelihood of bearing transposon-toler-

ant and -intolerant regions (Source code 2). In short, we computed for each CDS the longest interval

between five adjacent transposons, multiplied it by the total number of transposons mapping in this

CDS, and divided the result by the CDS length. We additionally imposed the following criteria: the

interval must be at least 300 bp, must represent more than 10% and less than 90% of the CDS

length, and a minimum of 20 transposons must map anywhere within the CDS. ~1200 genes fulfilled

these requirements (Figure 2—figure supplement 1), of which the 400 best-scoring ones showed

clear domain boundaries (Figure 2—figure supplements 2–5). Essential subdomains are only

expected in essential genes and indeed, this gene set was overwhelmingly enriched for previously-

annotated essential genes (Figure 2—figure supplement 1).
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Figure 2. Examples of genes showing partial loss of transposon coverage. The grey level is proportional to the

number of sequencing reads. Known functional domains are indicated. (A) Essential genes for which C-terminal

truncations yield a viable phenotype. (B) Essential genes for which N-terminal truncations yield a viable phenotype.

(C) Essential genes for which various truncations yield a viable phenotype.

DOI: 10.7554/eLife.23570.008

The following figure supplements are available for figure 2:

Figure supplement 1. Detection of essential protein domains.

DOI: 10.7554/eLife.23570.009

Figure supplement 2. Transposon maps in the 100 highest scoring genes.

Figure 2 continued on next page
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Thus, our method allows to identify not only genes, but also subdomains that are important for

growth, yielding valuable structure-function information about their cognate proteins.

Comparison of independent libraries reveals genetic interactions
Our approach can easily identify essential genes and essential protein domains. In addition, its ease

makes it a potential tool to uncover genes that are not essential in standard conditions but become

Figure 2 continued

DOI: 10.7554/eLife.23570.010

Figure supplement 3. Transposon maps in the genes scoring 101 to 200.

DOI: 10.7554/eLife.23570.011

Figure supplement 4. Transposon maps in the genes scoring 201 to 300.

DOI: 10.7554/eLife.23570.012

Figure supplement 5. Transposon maps in the genes scoring 301 to 400.

DOI: 10.7554/eLife.23570.013
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Figure 3. TAF3 and PRP45 can be truncated without visible effects on cell growth. (A) A truncation of TAF3 was generated in a heterozygous diploid

strain (left) by introduction of an HA tag and a G418-resistance cassette (HA kanr). The strain was tetrad dissected (middle). Tetrads 2 and 3 were further

analyzed by PCR to confirm the Mendelian segregation of the truncated allele (right). (B) A complete TAF3 deletion was generated in a heterozygous

diploid strain (left) by introduction of a G418-resistance cassette (kanr). Meiosis yields only two viable, G418-sensitive spores per tetrad, confirming that

TAF3 complete deletion is lethal. (C–D) As in (A–B) but applied to PRP45. Asterisks in the right panel designate PCR reactions that were inefficient at

amplifying the large truncated allele. The genotype of these spores can nevertheless be inferred from the Mendelian segregation of the G418

resistance. (E) Top, cryo-EM structure of the S. cerevisiae spliceosome (PDB accession 5GMK, Wan et al., 2016). Bottom, the same structure stripped

of every protein except Prp45. The essential portion of Prp45 as defined in (C) is in green and the non-essential part is in red and yellow. U2, U6, U5

and substrate RNAs are depicted in pale blue, pink, dark blue and orange, respectively. The red circle indicates the catalytic active site of the

spliceosome. (F) Alignment of the Human, S. cerevisiae, and S. pombe Prp45 orthologs. The green, red and yellow boxes are colored as in (E). The

yellow box features the most conserved region of the protein.

DOI: 10.7554/eLife.23570.014
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important in specific conditions. Indeed, our approach yields two measures — the number of trans-

posons mapping to a given gene, and the corresponding numbers of sequencing reads. Since in

most cases, transposon insertion obliterates the gene function, both measures may be used as a

proxy for fitness. We assessed the usefulness of these metrics in various genetic screens.

Synthetic genetic interaction screening is an extremely powerful approach to establish networks

of functional connections between genes and biological pathways, and to discover new protein com-

plexes (Costanzo et al., 2010; Schuldiner et al., 2005). We have recently identified single amino-

acid substitutions in the endosomal protein Vps13 that suppress the growth defect of mutants of the

ER-mitochondria encounter structure (ERMES) (Lang et al., 2015b). Suppression is dependent on

the proper function of the mitochondrial protein Mcp1 (Tan et al., 2013) and on the endosomal pro-

tein Vam6/Vps39 (Elbaz-Alon et al., 2014; Hönscher et al., 2014). We generated a transposon

library from a strain bearing both the VPS13 suppressor allele VPS13(D716H) and a deletion of the

ERMES component MMM1. In these conditions, we expected VPS13, MCP1 and VAM6/VPS39 to

become indispensable, while ERMES components (MDM10, MDM12 and MDM34) should become

dispensable.

Figure 4A shows, for each of the 6603 yeast CDSs, the number of transposon insertion sites

mapped in the wild-type (x-axis) and in the mmm1D VPS13(D716H) library (y-axis). Most CDSs fall on

a diagonal, meaning that they were equally transposon-tolerant in both libraries. Consistent with the

ERMES suppressor phenotype of the VPS13(D716H) mutation, ERMES components fell above the

diagonal (that is, they bore more transposons in the mmm1D VPS13(D716H) than in the wild-type

library, Figure 4A–B). By contrast, VPS13, MCP1 and VAM6/VPS39 fell under the diagonal, as

expected (Lang et al., 2015a, Figure 4A, C). Many other genes known to display synthetic sick or

lethal interaction with mmm1D (Hoppins et al., 2011) were also found, including TOM70, VPS41,

YPT7, VMS1 and YME1 (Figure 4A, C).

As a second proof-of-principle, we generated a library from a strain in which the dihydrosphingo-

sine phosphate lyase gene DPL1 (Saba et al., 1997) was deleted, and another library from a strain in

which both DPL1 and the phosphatidylserine decarboxylase 2 gene PSD2 (Trotter and Voelker,

1995) were deleted (Figure 4D,F). In this latter double-deleted strain, phosphatidylethanolamine

can only be generated via the mitochondrial phosphatidylserine decarboxylase Psd1, and thus any

gene required for lipid shuttling to and from mitochondria should become indispensable

(Birner et al., 2001).

LCB3, which displays synthetic sick interaction with DPL1 (Zhang et al., 2001), was less transpo-

son-tolerant in both the dpl1D and the dpl1D psd2D libraries (Figure 4D). By contrast PSD1, which

displays a synthetic lethality with PSD2 on media lacking choline and ethanolamine (Birner et al.,

2001), was transposon-intolerant in the dpl1D psd2D library only (Figure 4F–G). Interestingly, we

also found that VPS13 was less transposon-tolerant in the dpl1D psd2D, consistent with a role for

Vps13 in interorganelle lipid exchange (AhYoung et al., 2015; Kornmann et al., 2009; Lang et al.,

2015a, 2015b).

Additionally, when comparing the dpl1D and wild-type libraries, one of the best hits was the histi-

dine permease HIP1 (Figure 4D–E). This did not, however, reflect a genetic interaction between

HIP1 and DPL1, but instead between HIP1 and HIS3; during the construction of the strains, ADE2

was replaced by a HIS3 cassette in the wild-type strain, while it was replaced by a NAT cassette in

the dpl1D strain. The histidine-auxotroph dpl1D strain, therefore required the Hip1 permease to

import histidine.

Thus, synthetic genetic interactions are visible through pairwise comparison of the number of

transposons per genes. However, this metrics leads to a significant spread of the diagonal

(Figure 4A,D,F). This spread is due to the intrinsic noise of the experiment. Indeed, the number of

transposons per gene is expected, for each gene, to follow a binomial distribution. Sampling vari-

ability may thus mask biologically relevant differences. To overcome this limitation, we reasoned that

comparing sets of one or more libraries against each other, rather than comparing two libraries in a

pairwise fashion (as in Figure 4), would greatly improve the signal-to-noise ratio. We thus calculated

an average fold-change of the number of transposons per gene between the experimental and refer-

ence sets, as well as a p-value (based on a Student’s t-test) associated with this change. The fold-

change and p-values were then plotted as a volcano plot (Figure 4—figure supplement 1,

Supplementary file 3). In volcano plots, synthetic genes appeared well separated from the bulk of
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Figure 4. Genetic interaction analyses. Libraries in panels B, C, E and G are displayed in the same order as in

Figure 1C. (A) Comparison of the number of transposons inserted in each of the 6603 yeast CDSs in the wild-type

(x-axis) and mmm1D VPS13(D716H) (y-axis) libraries. (B) Transposon coverage of genes encoding ERMES

components is increased in libraries from strains bearing the VPS13(D716H) allele. (C) Examples of genes showing

Figure 4 continued on next page
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neutral genes, showing that parallel library comparison is a robust way to increase the signal-to-noise

ratio.

Synthetic lethality is one type of genetic interaction. Another type is rescue of lethal phenotype,

where a gene deletion is lethal in an otherwise wild-type strain but can be rescued by a suppressor

mutation. We describe two such phenomena observed in our libraries. The first concerns the septin

gene CDC10. Septin proteins are cytoskeletal GTPases that form a ring at the bud neck. This struc-

ture is necessary for vegetative growth in S. cerevisiae, and all septin genes are essential with the

exception of CDC10 (Bertin et al., 2008; McMurray et al., 2011). Indeed, at low temperature,

cdc10D cells are viable and able to assemble a septin ring. This Cdc10-less ring is based on a Cdc3-

Cdc3 interaction, instead of the normal Cdc3-Cdc10 interaction (McMurray et al., 2011). Because

the propensity of Cdc3 to self-assemble is weak, low temperature is thought to be necessary to sta-

bilize the interaction. Since we grew all libraries at moderately high temperature (30˚C), CDC10 was,

as expected, essentially transposon-free in most libraries (Figure 5A). In the dpl1D psd2D library,

however, the number of transposons mapping within CDC10 increased significantly, indicating that

the absence of Psd2 and Dpl1 suppressed the cdc10D phenotype (Figure 5A, Figure 4—figure sup-

plement 1, bottom left). Genetic analysis revealed that the dpl1D allele alone allowed cdc10D cells

to grow at higher temperature, indicating that the Cdc10-less septin ring was stabilized in the

absence of Dpl1 (Figure 5B–C). Genetic analysis also demonstrated that the rescue of cdc10D by

dpl1D was independent of PSD2. It is unclear why the suppressive effect was detected in the dpl1D

psd2D library, but not in the dpl1D library. We speculate that differences in growth conditions

between experiments have obscured either the suppression in the dpl1D library or the involvement

of Psd2 in our tetrad analyses.

Dpl1 is an ER protein that does not contact any of the septin subunits; its destabilizing effect on

the septin ring must therefore be indirect. Since Dpl1 is a regulator of sphingolipid precursors

(Saba et al., 1997) and since the septin ring assembles in contact with the plasma membrane

(Bertin et al., 2010), it is most likely the changing properties of the membrane in DPL1-deficient

cells that allow or restrict the assembly of Cdc10-less septin rings. This hypothesis is particularly

appealing because temperature has a profound effect on membrane fluidity and composition

(Ernst et al., 2016). Thus, the stabilizing effect of low temperature on Cdc10-less septin rings might

not only be the result of a direct stabilization of Cdc3-Cdc3 interaction, but also of changes in

plasma membrane properties, which can be mimicked by DPL1 ablation.

The second example of rescue of a lethal phenotype was observed in a library made from a strain

expressing a constitutively active version of the Holliday-junction resolvase Yen1, a member of the

Xeroderma Pigmentosum G (XPG) family of 5’-flap endonucleases (Ip et al., 2008). In wild-type

strains, Yen1 is kept inactive during the S-phase of the cell cycle via Cdk-mediated phosphorylation

(Matos et al., 2011). Rapid dephosphorylation at anaphase activates Yen1 for the last stages of

mitosis. When nine Cdk1 target sites are mutated to alanine, Yen1 becomes refractory to inhibitory

phosphorylation and active during S-phase (Yen1on) (Blanco et al., 2014). To investigate the cellular

consequence of a constitutively active Yen1, we generated a library in a YEN1on background. We

discovered that, under these conditions, the essential gene DNA2 became tolerant to transposon

insertion (Figure 5D). Further genetic analyses confirmed that the presence of the YEN1on allele led

to a rescue of the lethal phenotype of dna2D strains; spores bearing the dna2 deletion failed to

grow unless they additionally bore the YEN1on allele (Figure 5E). Moreover, at 25˚C, the colony size

of dna2D YEN1on spores was comparable to that of the DNA2 counterparts (Figure 5E, right).

Figure 4 continued

synthetic sick/lethal interaction with mmm1D VPS13(D716H). (D) Comparison of the number of transposons

inserted in each of the 6603 yeast CDSs in the wild-type (x-axis) and dpl1D (y-axis) libraries. (E) Transposon

coverage of the HIP1 locus in the dpl1D his3D library and in all the other libraries (HIS3). (F) Comparison of the

number of transposons inserted in each of the 6603 yeast CDSs in the dpl1D (x-axis) and dpl1D psd2D (y-axis)

libraries. (G) Transposon coverage of the PSD1 locus in the dpl1D psd2D and in all other libraries.

DOI: 10.7554/eLife.23570.015

The following figure supplement is available for figure 4:

Figure supplement 1. Volcano plots comparing libraries or combinations of libraries as indicated.

DOI: 10.7554/eLife.23570.016
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However, FACS analysis of DNA content revealed that dna2D YEN1on cells accumulated in S- and

G2-phases (Figure 5F).

DNA2 encodes a large protein with both helicase and endonuclease activities (Budd and Camp-

bell, 1995). Interestingly, while the helicase activity can be disrupted without affecting yeast viability,

the nuclease activity is essential (Ölmezer et al., 2016), presumably due to its involvement in proc-

essing long 5’-flaps of Okazaki fragments. Our genetic data now reveal that Yen1 is able to partially

fulfill the essential roles of Dna2, provided that its activity is unrestrained in S-phase. Since the spec-

trum of Yen1 substrates includes 5’-flap structures (Ip et al., 2008), Yen1on may be able to substitute

the essential function of Dna2 by providing 5’-flap nuclease activity in S-phase. This finding extends

previous work showing that Yen1 serves as a backup for the resolution of replication intermediates

that arise in helicase-defective mutants of Dna2 (Ölmezer et al., 2016).

Thus, our method can be used to screen for negative and positive genetic interactions in a rapid,

labor-efficient and genome-wide manner, in strains bearing single and multiple mutations.

Chemical genetics approach
To assess our method’s ability to uncover drug targets, we used the well-characterized immune-sup-

pressive macrolide rapamycin. Rapamycin blocks cell proliferation by inhibiting the target of rapamy-

cin complex I (TORC1), through binding to the Fk506-sensitive Proline Rotamase Fpr1

(Heitman et al., 1991). The TORC1 complex integrates nutrient-sensing pathways and regulates cel-

lular growth accordingly. Rapamycin treatment therefore elicits a starvation response, which stops

proliferation. We generated and harvested a wild-type library, then grew it in medium containing

Figure 5. Synthetic rescue of lethal phenotypes. (A) Transposon coverage of CDC10 in the seven libraries. The coverage is increased in the dpl1D

psd2D library. (B) Tetrad dissection of a PSD2/psd2D DPL1/dpl1D CDC10/cdc10D triple heterozygote at 30˚C (left) and 25˚C (right). The cdc10D spores

of ascertained genotype are circled with a color-coded solid line. cdc10D spores for which the genotype can be inferred from the other spores of the

tetrad are circled with a color-coded dashed line. (C) Quantification of growing and non-growing cdc10D spores of the indicated genotype obtained

from 48 tetrads (three independent diploids). (D) Transposon coverage of DNA2 in the seven libraries. The coverage is increased in the YEN1on library.

(E) Tetrad dissection of a DNA2/dna2D YEN1/YEN1 single heterozygote and of a DNA2/dna2D YEN1/YEN1on double heterozygote at 30˚C (left) and

25˚C (right). All viable dna2D spores additionally carry the YEN1on allele (red circle). (F) FACS profile of propidium-iodide-stained DNA content in DNA2

and dna2D YEN1on strains exponentially growing at 30˚C (left) and 25˚C (right). For DNA2 panels, each profile is an overlay of two independent strains.

For dna2D YEN1on panels, each profile is an overlay of four independent strains.

DOI: 10.7554/eLife.23570.017
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rapamycin at low concentration. To compare it to an untreated wild-type library, we counted the

number of sequencing reads mapping to each of the 6603 yeast CDSs in both conditions

(Figure 6A). Most genes fell on a diagonal, as they do not influence growth on rapamycin. By con-

trast, a few genes were robustly covered by sequencing reads in the rapamycin-treated library, indi-

cating that their interruption conferred rapamycin resistance. Expectedly, the best hit was FPR1,

encoding the receptor for rapamycin (Hall, 1996). Other hits included RRD1 (Rapamycin-Resistant

Deletion 1), TIP41, GLN3, SAP190, PSP2, CCS1, ESL2 and members of the PP2A phosphatase

PPH21 and PPM1 (Figure 6A). These genes are either directly involved in rapamycin signaling or

known to confer rapamycin resistance upon deletion (Xie et al., 2005).

Finding the TORC1 regulator PIB2 (Kim and Cunningham, 2015) was however unexpected,

because PIB2 deletion confers sensitivity, not resistance, to rapamycin (Kim and Cunningham, 2015;

Parsons et al., 2004). To solve this conundrum, we looked at the distribution of transposons on the

PIB2 coding sequence. All the insertions selected by rapamycin treatment mapped to the 5’-end of

the gene (Figure 6B). On the contrary, the rest of PIB2 was less covered in the rapamycin-treated

than in non-rapamycin-treated libraries (Figure 6—figure supplement 1A). Insertions in the 5’ end

of PIB2 therefore conferred rapamycin resistance, while insertions elsewhere, like complete deletion

of PIB2, conferred rapamycin sensitivity.

To confirm this result, we engineered N-terminal truncations of Pib2, guided by the transposon

map. Strains expressing Pib2 variants that were truncated from the first until up to amino acid 304

were hyperresistant to rapamycin (Figure 6C, top). We also confirmed that, by contrast, complete

PIB2 deletion caused rapamycin hypersensitivity. A larger N-terminal truncation extending beyond

the mapped territory of rapamycin resistance-conferring transposons, did not mediate hyperresist-

ance to rapamycin (Figure 6G, Pib2426-635).

To assess whether rapamycin-hyperresistant PIB2 truncations behaved as gain-of-function alleles,

we co-expressed Pib2165-635 and full-length Pib2. In these conditions, the rapamycin hyperresistance

was mitigated, indicating that the effect of the truncated Pib2 protein was semi-dominant

(Figure 6C, bottom). Expressing the truncation from a high-copy (2 m) vector did not further increase

resistance to rapamycin, indicating that higher expression levels did not change the semi-dominance

of the PIB2 truncation allele.

Thus, Pib2 truncation leads to a gain-of-function that translates into semi-dominant rapamycin

hyperresistance. Because gain-of-function alleles of PIB2 lead to rapamycin resistance, while loss-of-

function alleles lead to sensitivity, our data suggest that Pib2 positively regulates TORC1 function.

To test this idea further, we investigated the effects of full-length and various truncations of Pib2 on

TORC1 signaling. Switching yeast cells from a poor nitrogen source (proline) to a rich one (gluta-

mine) triggers a fast activation of TORC1 (Stracka et al., 2014), leading to a transient surge in the

phosphorylation of Sch9, a key target of TORC1 in yeast (Urban et al., 2007). We cultured cells on

proline-containing medium and studied TORC1 activation 2 min following addition of 3 mM gluta-

mine by determining the phosphorylation levels of Sch9-Thr737. Pib2 deficiency severely blunted

TORC1 activation in these conditions (Figure 6D, top). In a control experiment, a strain lacking

GTR1 – a component of the TORC1-activating EGO (Exit from rapamycin-induced GrOwth arrest)

complex, which is orthologous to the mammalian Rag GTPase-Ragulator complex

(Chantranupong et al., 2015; Powis and De Virgilio, 2016) – showed a similarly blunted response

with respect to TORC1 activation following glutamine addition to proline-grown cells (Figure 6D,

top). By contrast, glutamine-mediated TORC1 activation appeared normal in a strain expressing an

N-terminally truncated Pib2 variant (pPIB2165-635, Figure 6D, bottom). Thus, like Gtr1, Pib2 is neces-

sary to activate TORC1 in response to amino acids. The N-terminus of Pib2 appears to be an inhibi-

tory domain. The ablation of this domain confers rapamycin resistance, yet is not sufficient to

constitutively activate TORC1 (e.g. in proline-grown cells).

Having identified an inhibitory activity at the N-terminus of Pib2, we proceeded to address the

function of other Pib2 domains. To this aim, we used a split-ubiquitin-based yeast-two-hybrid assay

to probe the interaction of Pib2 fragments with the TORC1 component Kog1, and studied the rapa-

mycin resistance of strains expressing various truncations of Pib2 (Figure 6E–F). We found that Pib2

harbored at least two central Kog1-binding regions, since two mostly non-overlapping fragments

(Pib21-312 and Pib2304-635) showed robust interaction with Kog1 (Figure 6F and Figure 6—figure

supplement 1B). Kog1 binding is, however, not essential for Pib2-mediated TORC1 activation, since
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Figure 6. Detection of rapamycin resistant strains. (A) Comparison of the number of sequencing reads mapping to

each of the 6603 yeast CDSs in rapamycin-untreated (x-axis) and -treated (y-axis) libraries. Note the difference in

scale between both axis due to the high representation of rapamycin-resistant clones. (B) Distribution of

transposons and number of associated sequencing reads on the PIB2 gene. Transposons with high number of

sequencing reads in the rapamycin-treated library are clustered at the 5’-end of the CDS. (C) Wild-type (WT) and

pib2D strains were transformed with either an empty plasmid (;) or plasmids encoding full-length (FL) or indicated

fragments of Pib2 (see E, numbers refer to the amino acid position in the full-length Pib2 protein). 5-fold serial

dilutions of these strains were spotted on YPD or YPD containing 10 ng/ml rapamycin. Centromeric plasmids were

used in all strains, except in those denoted with 2 m, which carried multi-copy plasmids. (D) Strains of the indicated

genotypes, transformed with either an empty plasmid (;) or plasmids encoding full length (pPIB2) or truncated

Figure 6 continued on next page
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cells expressing a fragment without these Kog1-binding domains (Pib2426-635) were as rapamycin-

resistant as cells expressing full length Pib2 (FL, Figure 6G).

Pib2 harbors a phosphatidylinositol-3-phosphate (PI3P) -binding Fab1-YOTB-Vac1-EEA1 (FYVE)

domain (Figure 6E). Pib2 truncations lacking the FYVE domain are unable to bind PI3P, and hence

to properly localize to the vacuole (Kim and Cunningham, 2015). When cells expressed FYVE

domain-truncated Pib2 (Pib2D426-532), their rapamycin resistance decreased, but not as severely as

observed in pib2D strains (Figure 6G). This indicates that FYVE-domain-mediated vacuolar recruit-

ment is not absolutely required for Pib2 to activate TORC1.

Strikingly, cells expressing Pib2 variants that were either truncated at the extreme C-terminus

(PIB21-620) or carried a deletion within the C-terminus (PIB2D533-620) were as sensitive to rapamycin as

pib2D cells (Figure 6G). The C-terminus of Pib2 is therefore important to ensure proper TORC1

activation.

We conclude that Pib2 harbors the following functional domains: a large N-terminal Inhibitory

Domain (NID), and a C-terminal TORC1-Activating Domain (CAD); the central portion of the protein

harbors FYVE and Kog1-binding domains for proper targeting of Pib2 to the vacuole and TORC1,

respectively.

Could the NID act in an auto-inhibitory allosteric fashion by preventing the CAD from activating

TORC1? We reasoned that if this were the case, plasmid-encoded N-terminally truncated Pib2

should confer similar levels of rapamycin resistance independently of whether a genomic wild-type

PIB2 copy was present or not. However, wild-type cells expressing N-terminally truncated Pib2165-635

from a centromeric or a multi copy 2 m plasmid were less resistant to rapamycin than pib2D cells

expressing Pib2165-635 from a centromeric plasmid (Figure 6C). Thus, the NID activity of the endoge-

nously-expressed wild-type Pib2 is able to mitigate the rapamycin resistance conferred by ectopic

expression (or overexpression) of the CAD. Therefore, our data suggest that the NID does not auto-

inhibit the CAD within Pib2, but rather, that the NID and CAD act independently and antagonisti-

cally on TORC1.

This latter scenario predicts that, just as expressing NID-truncated Pib2 semi-dominantly activates

TORC1 (Figure 6C), expressing CAD-truncated Pib2 should semi-dominantly inhibit it. To test this

prediction, we expressed the two CAD truncations Pib2D533-620 and Pib21-620 in an otherwise wild-

type strain. The resulting strains were significantly more sensitive to rapamycin than their counter-

parts expressing only full length Pib2 (Figure 6H). Furthermore, when pib2D cells expressed the

Pib2 CAD truncation alleles, they became even more sensitive to rapamycin. Therefore, Pib2-NID

does not act in an auto-inhibitory manner, but rather inhibits TORC1 independently of the presence

of a Pib2-CAD.

Since the Rag GTPase Gtr1-Gtr2 module of the EGO complex also mediates amino acid signals

to TORC1 (Binda et al., 2009; Dubouloz et al., 2005, see also Figure 6D), we tested the possibility

that Pib2-NID inhibits TORC1 by antagonizing Gtr1-Gtr2. This does not appear to be the case; first,

the expression of Pib2D533-620 or Pib21-620 further enhanced the rapamycin sensitivity of gtr1D gtr2D

cells (Figure 6—figure supplement 1C), and second, the Pib2D533-620- or Pib21-620-mediated

Figure 6 continued

(pPIB2165-635) versions of Pib2, were grown exponentially in minimal medium with proline as nitrogen source. 3 mM

glutamine was added to the culture and the cells were harvested 2 min later. Protein extracts were resolved on an

SDS-page and probed with antibodies either specific for Sch9-pThr737 (P-Sch9), or for total Sch9 to assess TORC1

activity. (E) Schematic overview of Pib2 architecture and of the fragments used for genetic studies. (F) Summary of

yeast-two-hybrid interactions between Pib2 fragments and the TORC1 subunit Kog1 (Figure 6—figure

supplement 1). Fragments indicated by a black box interacted with Kog1, fragments indicated by a white box did

not. (G) pib2D cells expressing the indicated Pib2 fragments from plasmids (see E) were assayed for their

sensitivity to rapamycin (2.5 or 5 ng/ml) as in C. (H) WT or pib2D cells expressing the indicated Pib2 fragments

from plasmids were assayed as in G, except that cells were spotted on synthetic medium to apply a selective

pressure for plasmid maintenance.

DOI: 10.7554/eLife.23570.018

The following figure supplement is available for figure 6:

Figure supplement 1. A) Transposon coverage of the PIB2 gene.

DOI: 10.7554/eLife.23570.019
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rapamycin hypersensitivity was not suppressed by expression of the constitutively active, TORC1-

activating Gtr1Q65L-Gtr2S23L module (Binda et al., 2009; Figure 6—figure supplement 1D). These

results suggest that Pib2-NID inhibits TORC1 independently of the EGO complex.

In summary, Pib2 is targeted to TORC1 by binding to the vacuolar membrane through its FYVE

domain and to Kog1 via its middle portion. Pib2 harbors two antagonistic activities, one activating

and the other repressing TORC1. The dose-independent semi-dominant nature of the respective

truncations indicates that both repressing and activating activities influence TORC1 independently

and do not appear to compete for the same sites on TORC1.

We speculate that high-quality amino acids, such as glutamine, balance the antagonistic TORC1-

activating and -repressing activities of Pib2 to tune growth rate according to available resources. In

this context, it will be interesting to elucidate how the activities of Pib2 and the EGO complex are

coordinated to stimulate TORC1 in response to amino acids.

Discussion
Here we present a novel method based on random transposon insertion and next-generation

sequencing, to functionally screen the genome of Saccharomyces cerevisiae. SAturated Transposon

Analysis in Yeast (SATAY) can reveal positive and negative genetic interactions, auxotrophies, drug-

sensitive or -resistant mutants, and map functional protein domains. SATAY combines advantages

from both classical genetics and high-throughput robotic screens. SATAY can in principle be imple-

mented in any strain background, since it does not rely on the existence of available deletion librar-

ies and does not necessitate markers to follow genetic traits. Moreover, SATAY explores a wide

genetic space; exotic alleles can be generated as exemplified by PIB2 (Figure 6 and Figure 6—fig-

ure supplement 1), where transposon insertions in different regions of the gene generate opposite

phenotypes. Transposon insertion is not limited to CDSs; we observe that promoters of essential

genes are often transposon-intolerant (Figure 2, see GAL10, SGV1, MMS21, RET2, HRR25, NPA3,

SEC9, SWI1). We also observe that known essential tRNA, snRNA, as well as SRP RNA genes are

transposon intolerant (see Supplementary Dataset). Finally, our data reveal transposon-intolerant

areas of the genome that do not correspond to any annotated feature, indicating that SATAY could

help discover yet-unknown functional elements.

SATAY yields unprecedented insight on the domain structure-function relationship of important

proteins, and allows the mapping of important functional domains, without prior knowledge. Dis-

pensable domains in essential proteins might not be required for the essential function of these pro-

teins, but may have other roles. The sub-gene resolution enabled by SATAY may thus unveil yet-

unsuspected accessory or regulatory functions, even in otherwise well-studied proteins. In addition,

structure-function information revealed by SATAY may guide 3D-structure determination efforts by

indicating possibly flexible accessory domains.

The resolution of a SATAY screen is directly proportional to the number of transposons mapped

onto the genome. The current resolution is ~1/40 bp, which is amply sufficient to confidently identify

essential genes and protein domains. This resolution is achieved by mapping ~300,000 transposons,

starting from a 1.6E6-colonies library. Not every colony generates a detectable transposon. This is

due to several reasons. (1) Excised transposons only reinsert in 60% of the cases (our observations

and Lazarow et al., 2012). (2) 7% of the sequencing reads mapped onto repetitive DNA elements

(such as rDNA, Ty-elements and subtelomeric repeats) and were discarded because of ambiguous

mapping. (3) Two transposons inserted in the same orientation within two bp of each other will be

considered as one by our algorithm. This might be exacerbated at densely covered areas of the

genome, such as pericentromeric regions. (4) Some transposon insertion products may not be read-

ily amplifiable by our PCR approach.

We observe that increasing both the size of the original library and the sequencing depth leads

to an increase in mapped transposon number (albeit non-proportional, Table 1). Therefore, the reso-

lution of a screen can be tailored according to the question and the available resource.

We could not detect a preferred sequence for transposon insertion (Figure 1—figure supple-

ment 2A), yet two features of the yeast genome biased insertion frequency in select regions. The

first is nucleosome position; the Ds transposon has a tendency to insert more frequently within inter-

nucleosomal regions, indicating that, like other transposases (Gangadharan et al., 2010), Ac might

have better access to naked DNA (Figure 1—figure supplement 2B–C). The second pertains to a
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tendency of the transposon to integrate in the spatial proximity of its original location

(Lazarow et al., 2012). Indeed, when originated from a centromeric plasmid, the transposon has an

increased propensity to reinsert in the pericentromeric regions of other chromosomes. This is not

due to a particular feature of pericentromeric chromatin, since this propensity is lost when the trans-

poson original location is on the long arm of ChrXV (Figure 1B). Instead, the increased propensity is

likely resulting from the clustering of centromeres in the nuclear space (Jin et al., 2000), indicating

that centromeric plasmids cluster with the chromosomal centromeres. Thus, SATAY can be utilized

to probe, not only the function of the genome, but also its physical and regulatory features, such as

nucleosome position and 3D architecture.

Finally, SATAY does not require any particular equipment besides access to a sequencing plat-

form, and involves a limited amount of work. It can be easily multiplexed to perform several

genome-wide screens simultaneously. Each screen yields two measures, the number of transposons

and the number of sequencing reads, both of which, for each gene, reveal the fitness of the cognate

mutant. While the number of transposons per gene is appropriate to look for genes that become

important for growth, as in genetic interaction screens, the number of sequencing reads is better

suited to identify strains that are positively selected, like drug-resistant mutants. Both metrics suffer

from intrinsic noise, stemming from the inherently discrete structure of the data, and probably also

from unavoidable biases in the amplification and sequencing of the libraries. We show that this noise

can be reduced by comparing multiple libraries against each other (Figure 4—figure supplement

1). Moreover, comparing multiple libraries allows to tailor the composition of each library set to

needs. For instance, grouping the VPS13(D716H) with the mmm1D VPS13(D716H) libraries allows to

selectively detect synthetic interactions with VPS13(D716H) (e.g. ERMES components). By contrast,

comparing the mmm1D VPS13(D716H) library with all others, selectively finds genes important for

the ERMES suppression phenomenon. Thus, while signal-to-noise ratio might be a limiting factor for

the detection of genetic interactions, we anticipate that increasing the number of libraries, for

instance by generating multiple libraries in each condition, will likely decrease the incidence of false

positive and false negative. With the increasing number of screens performed in various conditions

will also come the ability to find correlation patterns among genes that are required or dispensable

for growth in similar sets of conditions. Such correlations are accurate predictors of common func-

tions and have been extensively used in synthetic genetic screens, such as the E-MAP procedure

(Kornmann et al., 2009; Schuldiner et al., 2005). However, while E-MAP screens compute patterns

of genetic interaction on a subset of chosen genetic interaction partners, SATAY allows to detect

genetic interactions at the genome scale.

Because the approach only necessitates a transposon and a transposase, it should not only be

feasible in S. cerevisiae and S. pombe (Guo et al., 2013), but also amenable to other industrially-,

medically- or scientifically-relevant haploid fungi, such as Y. lipolytica, C. glabrata, K. lactis and P.

pastoris.

The Ds transposon can in principle accommodate extra sequences with no known length limita-

tion (Lazarow et al., 2013). An interesting future development will be to incorporate functional units

in the transposon DNA, for instance strong promoters, repressors or terminators, IRESs, recognition

sites for DNA-binding proteins (LacI or TetR), recombination sites (LoxP, FRP), or coding sequences

for in-frame fusion, such as GFP, protein- or membrane-binding domains, signal sequences, etc.

Improved designs will not only permit finer mapping of protein domains without reliance on spurious

transcription and translation, but might allow the exploration of an even wider genetic space, for

instance by generating gain-of-function variants, thus enabling the development of novel

approaches to interrogate the yeast genome.

Materials and methods

Plasmids and strains
All yeast strains, oligonucleotides and plasmids used herein are listed in Tables 2, 3 and 4, respec-

tively. To generate pBK257, the ADE2 gene interrupted with the MiniDs transposon was PCR ampli-

fied from strain CWY1 (Weil and Kunze, 2000), using PCR primers #4 and #5. The PCR product and

pWL80R_4x (plasmid encoding the Ac transposase under the control of the GAL1 promoter,

Lazarow et al., 2012) were digested with SacI, then ligated together. This plasmid does not confer
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adenine prototrophy to ade2D cells unless the Ac transposase excises the MiniDS transposon, and

repairs the ADE2 gene.

Deletion strains were generated by PCR-mediated gene replacement using the Longtine toolbox

for KanMX6 and HIS3 replacement (Longtine et al., 1998) and the Janke toolbox for NATnt2

(Janke et al., 2004), with primers listed in Table 3. Strain YJM3916 carrying YEN1ON at the endoge-

nous locus was generated using the delitto perfetto method (Storici and Resnick, 2003).

Table 2. Yeast strains used in this study.

Name Parent Genotype Reference

CWY1 BY4723 MATa his3D0 ura3D0 ade2:Ds-1 Weil and Kunze
(2000)

ByK157 BY4743 MATa his3D1 leu2D0 lys2D0 ura3D0 VPS13(D716H) Lang et al.
(2015b)

ByK352 BY4741 MATa his3D1 leu2D0 met17D0 ura3D0 ade2D::HIS3* This study

ByK484 By4742 MATa his3D1 leu2D0 lys2D0 ura3D0 ade2D::HIS3* This study

ByK485 ByK352 and
ByK484

MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3*

This study

ByK446 ByK157 MATa his3D1 leu2D0 ura3D0 ade2D::HIS3* VPS13(D716H) This study

ByK528 ByK446 MATa his3D1 leu2D0 ura3D0 ade2D::HIS3* VPS13(D716H) mmm1D::KanMX6 This study

ByK530 ByK352 MATa his3D1 leu2D0 met17D0 ura3D0 ade2D::NAT* dpl1D::KanMX6 This study

ByK533 ByK352 MATa his3D1 leu2D0 met17D0 ura3D0 ade2D::HIS3* psd2D::KanMX6 dpl1D::NAT This study

ByK576 ByK485 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* prp45D::KanMX6/PRP45

This study

ByK579 ByK485 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* PRP451-462-HA(KanMX6)/ PRP45

This study

ByK583 ByK485 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* taf3D::KanMX6/TAF3

This study

ByK588 ByK485 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* TAF31-270-HA(KanMX6)/ TAF3

This study

ByK725 ByK533 and
ByK484

MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* psd2D::KanMX6/PSD2 dpl1D::NAT /DPL1

This study

ByK726 ByK533 and
ByK484

MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* psd2D::KanMX6/PSD2 dpl1D::NAT /DPL1

This study

ByK739 ByK725 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* psd2D::KanMX6/PSD2 dpl1D::NAT /DPL1 cdc10D::URA3/CDC10

This study

ByK740 ByK726 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* psd2D::KanMX6/PSD2 dpl1D::NAT /DPL1 cdc10D::URA3/CDC10

This study

ByK741 ByK726 MATa/a his3D1/his3D1 leu2D0/leu2D0 LYS2/lys2D0 met17D0/MET17 ura3D0/ura3D0 ade2D::HIS3*/
ade2D::HIS3* psd2D::KanMX6/PSD2 dpl1D::NAT /DPL1 cdc10D::URA3/CDC10

This study

YJM3916 ByK352 MATa his3D1 leu2D0 met17D0 ura3D0 ade2D::HIS3* YEN1on This study

YL516 BY4741/
BY4742

MATa his3D1 leu2D0 ura3D0 Binda et al.
(2009)

MB32 YL516 MATa his3D1 leu2D0 ura3D0 gtr1D::kanMX Binda et al.
(2009)

RKH106 YL516 MATa his3D1 leu2D0 ura3D0 pib2D::kanMX This study

RKH241 MB32 MATa his3D1 leu2D0 ura3D0 gtr1D::kanMX gtr2D::hphMX4 This study

NMY51 his3D200 trp1-901 leu2-3,112 ade2 LYS::(lexAop)4-HIS3 ura3::(lexAop)8- lacZ ade2::(lexAop)8-ADE2 GAL4 Dualsystems
Biotech AG

*ADE2 deleted �56 before ATG +62 after STOP with PCR primers #6 and #7 on pFA6a-His3MX6.

DOI: 10.7554/eLife.23570.020
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Table 3. Oligonucleotides used in this study.

# Original name Sequence Purpose

1 P5_MiniDs AATGATACGGCGACCACCGAGATCTACtccgtcccgcaagttaaata amplify library

2 MiniDs_P7 CAAGCAGAAGACGGCATACGAGATacgaaaacgaacgggataaa amplify library

3 688_minidsSEQ1210 tttaccgaccgttaccgaccgttttcatcccta sequence library

4 ADE2Fwd GGTTCGAGCTCCCTTTTGATGCGGAATTGAC clone ADE2
MiniDS

5 ADE2Rev GACCTGAGCTCTTACTGGATATGTATGTATG clone ADE2
MiniDS

6 Ade2PriFwd GTATAAATTGGTGCGTAAAATCGTTGGATCTCTCTTCTAAcggatccccgggttaattaa delete ADE2

7 Ade2PriRev TATGTATGAAGTCCACATTTGATGTAATCATAACAAAGCCgaattcgagctcgtttaaac delete ADE2

8 Dpl1_Janke_S1 AGCAAGTAGGCTAGCTTCTGTAAAGGGATTTTTCCATCTAATACAcgtacgctgcaggtcgac delete DPL1

9 Dpl1_Janke_S2 GCACTCTCGTTCTTTAAATTATGTATGAGATTTGATTCTATATAGatcgatgaattcgagctcg delete DPL1

10 Psd2_pringle_F GATGCTGTATCAATTGGTAAAGAATCCTCGATTTTCAGGAGCATCCAACGcgtacgctgcaggtcgac delete PSD2

11 Psd2_pringle_R CTTGTTTGTACACGCTATAGTCTATAATAAAGTCTGAGGGAGATTGTTCATGatcgatgaattcgagctcg delete PSD2

12 TAF3_R1 TGGATGAGATAATGACGAAAGAAAATGCAGAAATGTCGTTgaattcgagctcgtttaaac TAF3 partial
deletion

13 TAF3_aa90_F2 AGGTATTGTTAAGCCTACGAACGTTCTGGATGTCTATGATcggatccccgggttaattaa TAF3 partial
deletion

14 Taf3_Fwd GGCAAGATGTGATCAGGACG check TAF3
partial deletion

15 Taf3_Rev TCTTGAAGAAGCGAAAGTACACT check TAF3
partial deletion

16 TAF3_R1 TGGATGAGATAATGACGAAAGAAAATGCAGAAATGTCGTTgaattcgagctcgtttaaac TAF3 complete
deletion

17 TAF3_aa1_
F1

GAAAACAGCGATATCTTTGGGTCAATAGAGTTCCTCTGCTtgaggcgcgccacttctaaa TAF3 complete
deletion

18 PRP45_R1 ACTCAAGCACAAGAATGCTTTGTTTTCCTAGTGCTCATCCTGGGCgaattcgagctcgtttaaac PRP45 partial
deletion

19 PRP45_aa154_F2 AACGACGAAGTCGTGCCTGTTCTCCATATGGATGGCAGCAATGATcggatccccgggttaattaa PRP45 partial
deletion

20 PRP45_Fwd AGGTTGTAGCACCCACAGAA check PRP45
partial deletion

21 PRP45_Rev CAATCATCACACCTCAGCGA check PRP45
partial deletion

22 PRP45_R1 ACTCAAGCACAAGAATGCTTTGTTTTCCTAGTGCTCATCCTGGGCgaattcgagctcgtttaaac PRP45 complete
deletion

23 PRP45_aa1_F1 GCTCTGAGCCGAGAGGACGTATCAGCAACCTCAACCAAATtgaggcgcgccacttctaaa PRP45 complete
deletion

24 CDC10-Ura3_fwd AAGGCCAAGCCCCACGGTTACTACAAGCACTCTATAAATATATTAtgacggtgaaaacctctgac CDC10 complete
deletion

25 URA3-CDC10_rev TTCTTAATAACATAAGATATATAATCACCACCATTCTTATGAGATtcctgatgcggtattttctcc CDC10 complete
deletion

26 OJM370 ATGGGTGTCTCACAAATATGGG Amplify YEN1

27 OJM371 TTCAATAGTGCTACTGCTATCAC Amplify YEN1

28 OJM372 TTCAATAGTGCTACTGCTATCACTGTCACAGGCTCAAACCGGTCGACTG TTCGTACGCTGCAGGTCGAC Delitto perfetto
on YEN1

29 OJM373 ATGGGTGTCTCACAAATATGGGAATTTTTGAAGCCATATCTGCAAGATTCCCGCGCGTTGGCCGATTCAT Delitto perfetto
on YEN1

30 o3958 gacggtatcgataagcttgatatcgGCGCTGGCATCTTTAATCTC PIB2 cloning

31 o3959 actagtggatcccccgggctgcaggTGCTTGGATCCTTCTTGGTC PIB2 cloning

32 o3224 TAATA CGACT CACTA TAGGG various PIB2
truncations

Table 3 continued on next page
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Table 3 continued

# Original name Sequence Purpose

33 o3225 ATTAA CCCTC ACTAA AGGGA A various PIB2
truncations

34 o4034 atctagttcagggttcgacattctggtctccactac PIB2165-635

truncation

35 o4010 gtagtggagaccagaatgtcgaaccctgaactagat PIB2165-635

truncation

36 o4012 tagtggagaccagaatgttaccgcagcctgct PIB2304-635

truncation

37 o4035 tcaaattagaactagcattcattctggtctccactacaactgtg PIB2221-635

truncation

38 o4011 cacagttgtagtggagaccagaatgaatgctagttctaatttga PIB2221-635

truncation

39 o4062 atagttggtattaagttgattctcattctggtctccactacaactg PIB2426-635

truncation

40 o3996 cagttgtagtggagaccagaatgagaatcaacttaataccaactat PIB2426-635

truncation

41 o4063 cgtgtttgcgttatggttgtcgctgttcggaataga PIB2D426-532

truncation

42 o3997 tctattccgaacagcgacaaccataacgcaaacacg PIB2D426-532

truncation

43 o4064 cacagagccgataacactcgtggttgaaaggttctc PIB2D533-620

truncation

44 o3998 gagaacctttcaaccacgagtgttatcggctctgtg PIB2D533-620

truncation

45 o4065 gtctcgcaaaaaatgttcatcagcccaaaacatcattaccttct PIB21-620

truncation

46 o3999 agaaggtaatgatgttttgggctgatgaacattttttgcgagac PIB21-620

truncation

47 o1440 GCTAGAGCGGCCATTACGGCCCCGGAGATTTATGGACCTC KOG1 cloning
into pPR3N

48 o1442 CGATCTCGGGCCGAGGCGGCCTCAAAAATAATCAATTCTCTCGTC KOG1 cloning
into pPR3N

49 o3787 GCTAGAGCGGCCATTACGGCC GAATTGTACAAATCTAGAACTAGT cloning PIB2
fragments into
pCabWT*

50 o3788 CGATCTCGGGCCGAGGCGGCCAA GAAACTACTCCAATTCCAGTTTGC cloning PIB2
fragments into
pCabWT*

51 o3872 CGATCTCGGGCCGAGGCGGCCAAGCCCAAAACATCATTACCTTCTTCT cloning PIB2
fragments into
pCabWT*

52 o3871 CGATCTCGGGCCGAGGCGGCCAAATCTTCGCCCTCCTCAACGT cloning PIB2
fragments into
pCabWT*

53 o3870 CGATCTCGGGCCGAGGCGGCCAAGTTGATTCTGTCGCTGTTCG cloning PIB2
fragments into
pCabWT*

54 o3933 GCTAGAGCGGCCATTACGGCCAGGAAGAAATTACGCAATTACTAC cloning PIB2
fragments into
pCabWT*

55 o3934 GCTAGAGCGGCCATTACGGCC AGTGTTATCGGCTCTGTGCC cloning PIB2
fragments into
pCabWT*

56 o3868 CGATCTCGGGCCGAGGCGGCCAAATTAGTGCTCGAAGCAGGCT cloning PIB2
fragments into
pCabWT*

Table 3 continued on next page
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Library generation
ade2D strains were transformed with the pBK257 plasmid. These strains are phenotypically ade-,

since the ADE2 gene borne on the plasmid is interrupted by the MiniDs transposon. One liter of

freshly prepared SD -Ura +2% Raffinose +0.2% Dextrose is inoculated with ade2D cells freshly trans-

formed with pBK257, directly scraped off the transformation plates, at a final OD600 = 0.15. The cul-

ture is grown to saturation for 18 to 24 hr at 30˚C. Cells are spun for 5 min at 600x g, 20˚C, and
resuspended in their supernatant at a final OD600 = 39. 200 ml of this resuspension are plated

on ~250–300�8.5 cm plates containing 25 ml of SD +2% Galactose -Adenine using glass beads.

Plates are incubated in closed but not sealed plastic bags for 3 weeks at 30˚C. Clones in which trans-

poson excision has led to the repair of the ADE2 gene on pBK257 start to appear after 10–12 days.

The density of clones on the plate reaches 150–200 colonies/cm2, i.e. 8000-11000 colonies/plates

after 3 weeks. All colonies are then scraped off the plates using minimal volume of either water or

SD +2% Dextrose -Adenine, pooled, and used to inoculate a 2-liter SD +2% Dextrose -Adenine cul-

ture at a density of 2.5 106 cells/ml, which is allowed to grow to saturation. This step is used to dilute

any remaining ade- cells, which represent about 20% of the total number of cells, and ensures that

each transposition event is well represented. For example, reseeding a 2 106 clones library in 2L at a

density of 2.5 106 cells/ml will ensure that each clone is represented by ((2.500.000 � 1000�2)*0.8)/

2.000.000 = 2000 cells. The saturated culture is harvested by centrifugation (5 min, 1600x g), washed

with ddH2O, then cell pellets are frozen as ~500 mg aliquots.

Rapamycin treatment
Cells scraped off the plates were used to inoculate a 1-liter SD +2% Dextrose -Adenine culture at

OD 0.08. After growing for 15 hr to OD 0.5, the culture was diluted to OD 0.1 in 500 ml SD +2%

Dextrose -Adenine, treated with 10 nM (9.14 ng/ml) rapamycin (Sigma) and grown for 24 hr to OD

0.9. The culture was then diluted again to OD 0.1 in 500 ml SD +2% Dextrose -Adenine + 10 nM

rapamycin. The treated culture was grown to saturation (OD 1.9), harvested by centrifugation and

processed for genomic DNA extraction.

Genomic DNA
A 500 mg cell pellet is resuspended with 500 ml Cell Breaking Buffer (2% Triton X-100, 1% SDS, 100

mM NaCl, 100 mM Tris-HCl pH8.0, 1 mM EDTA) and distributed in 280 ml aliquots. 200 ml Phenol:

Chloroform:Isoamylalcool 25:25:1 and 300 ml 0.4–0.6 mm unwashed glass beads are added to each

aliquot. Samples are vortexed for 10 min at 4˚C using a Disruptor Genie from Scientific Industrial (US

Patent 5,707,861). 200 ml TE are added to each lysate, which are then centrifuged for 5 min at

16100x g, 4˚C. The upper layer (~400 ml) is transferred to a fresh tube, 2.5vol 100% EtOH are added

and the sample mixed by inversion. DNA is pelleted for 5 min at 16100x g, 20˚C. The supernatant is

removed and the pellets resuspended in 200 ml RNAse A 250 mg/ml for 15 min at 55˚C, 1000 rpm on

a Thermomixer comfort (Eppendorf). 2.5 vol 100% EtOH and 0.1 vol NaOAc 3 M pH5.2 are added

and the samples mixed by inversion. DNA is pelleted by centrifugation for 5 min at 16100x g, 20˚C.
The pellets are washed with 70% EtOH under the same conditions, the supernatant removed

Table 3 continued

# Original name Sequence Purpose

57 o3867 CGATCTCGGGCCGAGGCGGCCAAGTCATCCGTGAATGGCAACG cloning PIB2
fragments into
pCabWT*

58 o3866 CGATCTCGGGCCGAGGCGGCCAAGCCTGCCCCTGTTGAGCTCT cloning PIB2
fragments into
pCabWT*

59 o3865 CGATCTCGGGCCGAGGCGGCCAAGTCAGCACCGCTTTCCTCAT cloning PIB2
fragments into
pCabWT*

Oligonucleotides #1 and #2, ordered as PAGE-purified and lyophilized, are resuspended at 100 mM in water. Oligonucleotide #3, ordered as HPLC-puri-

fied and lyophilized, is resuspended at 100 mM in water and distributed into single-use aliquots.
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Table 4. Plasmids used in this study.

Name Parent Description Reference

pBK257 pWL80R_4x CEN/URA3, carries MiniDs in ADE2 and hyperactive Ac transposase under GAL1 promoter This study

pWL80R_4x CEN/URA3, carries hyperactive Ac transposase under GAL1 promoter Lazarow et al. (2012)

pCORE-UH Delitto pefetto URA3 cassette Storici and Resnick (2003)

pJM7 pENTRY-YEN1ON This study

pRS413 CEN/HIS3, empty vector Sikorski and Hieter, 1989

pRS415 CEN/LEU2, empty vector Sikorski and Hieter, 1989

pRS416 CEN/URA3, empty vector Sikorski and Hieter, 1989

p1822 pRS413 CEN/HIS3, GTR1 This study

p1451 pRS415 CEN/LEU2, GTR2 This study

p1821 pRS413 CEN/HIS3, GTR1Q65L This study

p1452 pRS415 CEN/LEU2, GTR2S23L This study

p3084 pRS416 CEN/URA3, PIB2 This study

p3099 p3084 CEN/URA3, PIB2165-635 This study

p3097 p3084 CEN/URA3, PIB2304-635 This study

p3101 p3084 CEN/URA3, PIB2221-635 This study

p3253 pRS426 2 �/URA3, PIB2 This study

p3255 pRS426 2 �/URA3, PIB2165-635 This study

p3163 p3084 CEN/URA3, PIB2426-635 This study

p3153 p3084 CEN/URA3, PIB2D426-532 This study

p3154 p3084 CEN/URA3, PIB2D533-620 This study

p3156 p3084 CEN/URA3, PIB21-620 This study

pPR3N 2 �/TRP1, NubG-HA Dualsystems Biotech AG

pCabWT CEN/LEU2, Ab-Cub-LexA-VP16 Dualsystems Biotech AG

p3081 pPR3N 2 �/TRP1, NubG-HA-KOG1 This study

p2966 pCabWT CEN/LEU2, Ab-PIB2-Cub-LexA-VP16 This study

p3002 pCabWT CEN/LEU2, Ab-PIB21-620-Cub-LexA-VP16 This study

p3007 pCabWT CEN/LEU2, Ab-PIB21-550-Cub-LexA-VP16 This study

p3001 pCabWT CEN/LEU2, Ab-PIB21-428-Cub-LexA-VP16 This study

p3051 pCabWT CEN/LEU2, Ab-PIB2440-550-Cub-LexA-VP16 This study

p3054 pCabWT CEN/LEU2, Ab-PIB2556-620-Cub-LexA-VP16 This study

p3052 pCabWT CEN/LEU2, Ab-PIB2621-635-Cub-LexA-VP16 This study

p3000 pCabWT CEN/LEU2, Ab-PIB21-312-Cub-LexA-VP16 This study

p2987 pCabWT CEN/LEU2, Ab-PIB2304-635-Cub-LexA-VP16 This study

p2999 pCabWT CEN/LEU2, Ab-PIB21-162-Cub-LexA-VP16 This study

p2986 pCabWT CEN/LEU2, Ab-PIB2165-635-Cub-LexA-VP16 This study

p2998 pCabWT CEN/LEU2, Ab-PIB21-101-Cub-LexA-VP16 This study

p2991 pCabWT CEN/LEU2, Ab-PIB2102-635-Cub-LexA-VP16 This study

p2997 pCabWT CEN/LEU2, Ab-PIB21-49-Cub-LexA-VP16 This study

p2990 pCabWT CEN/LEU2, Ab-PIB250-635-Cub-LexA-VP16 This study

DOI: 10.7554/eLife.23570.022
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completely, and the pellets dried for 10 min at 37˚C. The pellets are resuspended in a total volume

of 100 ml water for 10 min at 55˚C, 700 rpm on a Thermomixer comfort (Eppendorf).

DNA is run on a 0.6% 1X TBE agarose gel against a standard 1 kb GeneRuler, and quantified

using Fiji. 500 mg cell pellet should yield 20–60 mg DNA.

Library sequencing
Sequencing involves the following steps: (1) Digestion of genomic DNA with two four-cutter restric-

tion enzymes, (2) ligase-mediated circularization of the DNA, (3) PCR of the transposon-genome

junctions using outward-facing primers, (4) Illumina-sequencing of the combined PCR products.

2 � 2 mg of genomic DNA are digested in parallel in Non-Stick microfuge tubes (Ambion

AM12450) with 50 units of DpnII (NEB #R0543L) and NlaIII (NEB #R0125L), in 50 ml for 16 hr at 37˚C.
The reactions are then heat inactivated at 65˚C for 20 min and circularized in the same tube by liga-

tion with 25 Weiss units T4 Ligase (Thermo Scientific #EL0011) for 6 hr at 22˚C, in a volume of 400

ml. DNA is precipitated overnight or longer at �20˚C in 0.3 M NaOAc pH5.2, 1 ml 100% EtOH, using

5 mg linear acrylamide (Ambion AM9520) as a carrier, then centrifuged for 20 min at 16100x g, 4˚C.
Pellets are washed with 1 ml 70% EtOH, for 20 min at 16100 x g, 20˚C. After complete removal of

the supernatant, pellets are dried for 10 min at 37˚C. Each circularized DNA preparation is then

resuspended in water and divided into 10 � 100 ml PCR reactions. Each 100 ml PCR reaction con-

tains: 10 ml 10X Taq Buffer (500 mM Tris-HCl pH9.2, 22.5 mM MgCl2, 160 mM NH4SO4, 20%

DMSO, 1% Triton X-100 – stored at �20˚C), 200 mM dNTPs, 1 mM primer #1, 1 mM primer #2, 2.4 ml

homemade Taq polymerase. PCR is performed in an MJ Research Peltier Thermal Cycler PTC-200

using the following conditions:

Block: calculated – 95˚C 1 min, 35 � [95˚C 30 s, 55˚C 30 s, 72˚C 3 min], 72˚C 10 min.

The 2 � 10 PCR reactions are pooled into one NlaIII-digested pool and one DpnII-digested pool.

100 ml from each pool are purified using a PCR clean-up/gel extraction kit (Macherey-Nagel) accord-

ing to the manufacturer protocol, with the following modifications. DNA is bound to the column for

30s at 3000x g; 30 ml of elution buffer (10 mM Tris-HCl pH8.5, 0.1% Tween) is applied to the column

and incubated for 3 min, then spun for 1 min at 11000x g at 20˚C. The eluate is reapplied to the col-

umn and a second elution is performed under the same conditions. Purified PCR products are quan-

tified by absorbance at 260 nm. On a 1% agarose gel, the product runs as a smear from 250 bp to

1.2 kb, with highest density centered around 500 bp. The 867 bp size band present in the NlaIII-

treated sample and the 465 bp size band present in the DpnII-treated sample correspond to

untransposed pBK257. Equal amounts of DpnII- and NlaIII-digested DNA are pooled and sequenced

using MiSeq v3 chemistry, according to manufacturer, adding 3.4 ml of 100 mM primer #3 into well

12 of the sequencing cartridge.

Bioinformatics analyses
The fastq file generated is uploaded into the CLC genomics workbench, trimmed using adaptor

sequences ‘CATG’ and ‘GATC’ (the recognition sites for NlaIII and DpnII, respectively), allowing two

ambiguities and a quality limit of 0.05. The trimmed sequence is then aligned to the reference

genome, using the following parameters (mismatch cost, 2; insertion and deletion costs, 3; length

fraction, 1; similarity fraction, 0.95; non-specific match handling, ignore). The alignment is then

exported as a BAM file, which is further processed in MatLab, using the Source code 1, to detect

individual transposition events. The outputted bed file is uploaded to the UCSC genome browser.

Yeast annotations were downloaded from the Saccharomyces Genome Database (SGD). To generate

our list of essential genes, we used YeastMine and searched the SGD for genes for which the null

mutant has an ‘inviable’ phenotype (Balakrishnan et al., 2012).

Volcano plots were computed as follows. Two sets of libraries were defined. For each gene and

each library, the number of transposons per gene (tnpergene variable) was normalized to the total

number of transposons mapped in the library. For each gene, the fold-change is calculated as the

mean of the normalized number of transposons per gene in the experimental set, divided by that in

the reference set. The p-value is computed using the Student’s t-test by comparing, for each gene,

the normalized number of transposons per gene for each library in the experimental and reference

sets.
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Western blotting
Cells were grown to mid-log phase in synthetic minimal medium containing 0.5 g/L proline as a sole

nitrogen source and stimulated with 3 mM glutamine for 2 min. Cells were treated with 6.7% w/v tri-

chloroacetic acid (final concentration), pelleted, washed with 70% ethanol and then lyzed in urea

buffer (50 mM Tris-HCl [pH 7.5], 5 mM EDTA, 6 M urea, 1% SDS, 0.1 mg/ml Pefabloc/phosphatase

inhibitor mix). After disrupting cells with glass beads and incubating with Laemmli SDS sample

buffer, samples were subjected to regular SDS-PAGE and immunoblotting. The phosphorylation

level of Sch9-Thr737 and the total amount of Sch9 were assessed using the phosphospecific anti-

Sch9-pThr737 and anti-Sch9 antibodies, respectively (Péli-Gulli et al., 2015).

Split-ubiquitin yeast two-hybrid assay
The split-ubiquitin yeast two-hybrid system from Dualsystems Biotech AG was used following the

manufacturer’s instructions.

Pib2 fragments (full-length or truncated) and full-length Kog1 were cloned into pCabWT and

pPR3N plasmids, respectively, and transformed into the strain NMY51 as indicated. Protein-protein

interactions were detected as growth of the resultant strains on agar plates lacking adenine.

Accession numbers
Sequencing data have been deposited at EMBL-EBI ArrayExpress: E-MTAB-4885.
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