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Loder, A. and Axhausen, K.W. 1

ABSTRACT5

In much of Switzerland, public transport offers high levels of accessibility to workplaces and6

other places that make season tickets legitimate substitutes for a car. These similar patterns of7

accessibility provided by both modes result in high levels of correlation between the accessibility8

measures of both modes. This correlation almost always precludes a travel behavior analysis9

with several accessibility measures and cannot provide any insights into the effects of the10

differences in accessibility levels by both modes. We propose a principal component analysis of11

the accessibility measures to extract as much information as possible. We interpret the principal12

components obtained as: general accessibility, comparatively better accessibility by public13

transport and comparatively better job accessibility.14

The new accessibility variables are used in a model of car and season ticket ownership and15

the number of car, public transport and non-motorized trips using data from the 2010 Swiss16

transportation microcensus. These outcomes are jointly estimated with a probit-based model17

for mixed types of outcomes because we anticipated simultaneous choices and that choices are18

dependent on each other. We find that greater levels of general accessibility, comparatively19

better accessibility by public transport and comparatively better job accessibility increase the1

probability of season ticket ownership, while the probability of car ownership decreases. We2

realize that ownership and use must be jointly modeled to consistently estimate the structural3

effects of mobility tool ownership on use.4
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INTRODUCTION5

Mobility tools available to an individual, e.g. car or public transport season ticket, are central to6

his or her activity pattern and mode choice (Guo et al., 2007; Eluru et al., 2010; Paleti et al.,7

2013; Le Vine et al., 2013). In much of Switzerland, quality public transport makes season8

tickets legitimate substitutes for a car. With average annual costs of around CHF 10’000 for a9

car and CHF 4’000 for a nation wide season ticket, public transport offers within many cities10

and between the large cities similar, but more reliable travel times, e.g. the travel time from11

Bürkliplatz at Lake Zurich to the airport is around 22 min, while, depending on traffic, car travel12

times range from 16-26 min, both according to Google’s journey planner. The spatial distribution13

of these areas can be described by concepts of the built environment (Ewing and Cervero, 2010):14

destination accessibility, using the private or public mode, and distance to - and quality of -15

public transport. The close competition of modes in Switzerland leads to similar patterns of16

accessibility provided by public transport and cars and results in a strong correlation of these17

measures. In understanding travel behavior, this correlation imposes the risk of multicollinearity.18

Although the choices of mobility tool ownership and use are related, the competing nature of19

private and public modes - measured by accessibility - in analyzing multi modal travel choices20

has not been prominently addressed in literature.21

So far, most mobility tool ownership studies focused on car ownership (de Jong et al., 2004;22

Anowar et al., 2014), but some also included other mobility tools (e.g., Scott and Axhausen,23

2006; Yamamoto, 2009); the same holds for ownership and use with a focus on cars (e.g., Bhat24

and Sen, 2006; Tanner and Bolduc, 2014) and less on cars and public transport (e.g., Simma25

and Axhausen, 2001). However, Bhat and colleagues’ recently proposed methodology to jointly26

model mixed types of outcomes offers as a flexible framework to analyze multi modal travel27

choices of mobility tool ownership and use (Paleti et al., 2013; Bhat et al., 2014; Bhat, 2015).28

Regarding the competition of modes, the comparison of the accessibility by both modes has1

rarely attempted as most studies focused either on accessibility by car or public transport (Ewing2

and Cervero, 2010) and only a few combined both modes (e.g., Kuzmyak et al., 2006; Shen,3

2000; Scott and Axhausen, 2006; Jäggi et al., 2012).4
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In this paper, we contribute with the proposal of a principal component analysis of correlating5

accessibility measures to extract as much information as possible for the analysis of mode6

competition in understanding travel behavior without risk of multicollinearity. We obtain a7

Hansen (1959)-based measure of accessibility, based on travel times from the Swiss nation-wide8

transport model for the private and public mode. We use the idea of Shen’s 2000 general9

accessibility index and obtain values from a principal component analysis. From this analysis,10

we derive, in total, three new accessibility variables for each Swiss municipality: general11

accessibility, comparatively better accessibility by public transport and comparatively better job12

accessibility. These variables are used in a joint statistical model of mobility tools ownership13

and number of trips by car, public transport and non-motorized modes (Bhat et al., 2014;14

Bhat, 2015). In addition to the new accessibility variables, we add two more measures of the15

built environment: quality of public transport at the household location and a spatial typology16

definition of urban center, agglomeration and countryside. In our model, we also control for17

socio-demographic factors such as income, age and gender to avoid the omitted variable bias.18

The next section provides a literature overview in Section 3.1 on the relationship between19

travel and the built environment and in Section 3.2 on methodologies to analyze travel behavior.20

Then, we present the available data and computation of accessibility variables. In Section 5, we21

present the statistical model, followed by estimation results in Section 6. The paper concludes22

with a discussion and conclusion.23

BACKGROUND24

This section provides a literature overview for each of the two related fields; the volume of25

existing literature necessitates just a sketch. Section 3.1 addresses the relationship between the26

built environment and travel behavior with a focus on destination accessibility and distance to1

public transport, because both are relevant for this analysis. In the following, we treat destination2

accessibility and accessibility as synonyms. Thereafter, Section 3.2 summarizes methodologies3

to model travel behavior choices.4
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Influence of the built environment5

The built environment or land-use of an area is frequently found to be a strong predictor of6

travel behavior. Ewing and Cervero (2001, 2010, 2017) provided extensive and comprehensive7

overviews on the relationship between the built environment and travel behavior. Their studies8

follow the three Ds categorization of built environment measures, as introduced by Cervero9

and Kockelman (1997): density, diversity and design, but also include two further D variables:10

destination accessibility and distance to - and quality of - public transport. In the following, we11

focus on the latter measures as they describe the interaction of the transport and land-use system12

relevant for this analysis.13

Accessibility is a generalization of the population-over-distance relationship (Hansen, 1959)14

and a measure of generalized cost of travel (Weis and Axhausen, 2009). Metz (2008) argued that15

accessibility corresponds to the long-term benefits of transport investments. For a region with N16

locations, the Hansen (1959) definition of accessibility at location i links all opportunities O j17

at other places j to the travel cost (time) ci j of reaching these opportunities. Typically, more18

distant opportunities are less favored; weighting opportunities by a function of travel costs f (ci j )19

considers this. A conventional formulation of accessibility is Ai =
∑N

j=1 O j f (ci j ). Among20

others, the function f (ci j ) can be the inverse of travel costs or an exponential function with a21

negative parameter. Depending on analysis, various measures for opportunities can be used, e.g.22

number of employed (Hansen, 1959), population (Killer et al., 2013) and housing and retail23

(Crozet et al., 2012). Besides Hansen’s definition of accessibility, other models exist, e.g. based24

on logit models’ systematic utilities (Ben Akiva and Lerman, 1985), individuals’ travel costs to25

their activities (Le Vine et al., 2013), or the cumulative opportunities measure around a location26

(Handy and Niemeier, 1997). For a general discussion on accessibility perspectives, we refer the27

interested reader to the review by Geurs and van Wee (2004).28

Ewing and Cervero (2010) reported that in general better accessibility reduces car usage,1

while less distance to the public transport stop favors walking and public transport use. Houston2

et al. (2014) analyzed the effect of the age of rail corridors and found less car use for older3

rail corridors than for newer. The effect of distance to public transport stops also is found for4
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car ownership (e.g., Bento et al., 2005; Zegras, 2010). These findings suggest the hypotheses5

that car ownership and use is reduced with better accessibility and better local access to public6

transport, while the opposite holds for public transport and walking.7

Modeling travel behavior - mobility tool ownership and use8

Modeling mobility tool ownership almost always means car ownership modeling (Le Vine et al.,9

2013). Car ownership models range from aggregate level models to disaggregate household and10

individual level models, for which different methodologies exist to describe the decision-making11

process. In lieu of a comprehensive overview here, we refer to literature reviews by de Jong12

et al. (2004), de Jong and Kitamura (2009) and Anowar et al. (2014).13

From a methodological perspective, Anowar et al. (2014) divided ownership models into14

four groups. First, exogenous static models consider ownership choices independently of15

other choices. These models deploy standard discrete choice models, e.g. logit, probit or16

the multinomial logit (MNL) (e.g., Vovsha and Petersen, 2009; Zegras, 2010; Potoglou and17

Kanaroglou, 2008; Karlaftis and Golias, 2002). The second group describes endogenous static18

models capturing other choices as well (e.g., Bhat and Guo, 2007; Cao et al., 2007). The last19

two groups are the dynamic counterparts of the first two static model types. In particular, the20

third group describes exogenous dynamic models and the fourth group endogenous dynamic21

models, using panel data (e.g., Dargay, 2002; Nolan, 2010).22

Joint modeling of multiple related outcomes, e.g. car ownership and use, is motivated23

by potential common, underlying, unobserved factors in the decision-making process that24

simultaneously affect outcomes and endogeneity. Ignoring jointness in choices can lead to25

inefficient estimates of effects and inconsistent estimates of structural effects (Bhat et al., 2016).26

Jointness can be established in several ways. First, multivariate probit-based models consider27

common underlying factors in multiple outcomes via error term correlation (e.g., Yamamoto,1

2009; Scott and Axhausen, 2006; Andrés and Gélvez, 2014). If two outcomes exhibit a positive2

correlation, common underlying factors affect both outcomes in the same direction, i.e. they are3

complementary goods, while a negative correlation indicates substitute goods. Building on the4
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multivariate probit, Bhat and colleagues extended the multivariate probit to model mixed types5

of dependent variables, e.g. nominal, ordinal, count and continuous outcomes, e.g. location, car6

ownership, number of trips and trip distance (Bhat et al., 2014; Bhat, 2015). This modeling7

approach has also proved suitable for accommodating spatial or social interactions (Bhat et al.,8

2016). Second, copula based models define linking functions between the error terms of9

outcomes other than the normal distribution, i.e. Gaussian copula (e.g., Spissu et al., 2009).10

Third, in the multiple discrete-continuous extreme value (MDCEV) model (Bhat, 2005) the11

consumption of both, discrete goods, e.g. cars, and continuous goods, e.g. annual mileage, enters12

the same utility function that is maximized (e.g., Bhat and Sen, 2006; Jäggi et al., 2012; Tanner13

and Bolduc, 2014). Last, structural equation modeling with car and season ticket ownership and14

their use as dependent variables offers another way to incorporate jointness (e.g., Simma and15

Axhausen, 2001).16

DATA17

Socio-economic data18

Data on mobility tool ownership, number of trips and accompanying socio-demographic infor-19

mation is provided by the Swiss national transportation microcensus for the year 2010. The20

transportation microcensus is a large-scale survey carried out every five years with approximately21

1 % of the Swiss population. In 2010, 59’771 households and - within these households, 62’86822

individuals - were interviewed about their travel behavior (Swiss Federal Office of Statistics23

(BFS) and Swiss Federal Office of Spatial Development (ARE), 2012). We exclude anyone who24

can only move with outside support, all cases where we cannot impute the income and all cases25

younger than 18 from the sample. When two persons of a household reported on their travel26

behavior in the census, the second observation was in most cases a child. The final sample has27

52’476 complete observations.28

This analysis models individuals’ decision making. For each individual in the data set, we1

extract five dependent variables of interest, car and season ticket ownership and the number of2

car, public transport and non-motorized trips as follows: car ownership is defined as having a3

car exclusively available. All individuals without driver’s license are coded as having no car4
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available. Season ticket ownership is defined as having any kind of season ticket subscription5

offering unlimited use of public transport, on either a regional or national scale. The number6

of trips is taken from the microcensus’ travel diary, encompassing a single day. In each of the7

three trip variables, we pool the count outcomes of 1 and 2 trips into a single outcome and all8

outcomes larger than 11 to the outcome of 11. We did the first because just one trip was rarely9

observed and the latter because we wanted to avoid long tails in the distribution. Table 1 shows10

descriptive statistics of the five dependent variables in this analysis.11

Table 1(a) shows that 55.96 % of all observations only have a car, 18.1 % have neither a car12

nor a season ticket, 15.83 % have only a season ticket and 10.11 % have both mobility tools13

available. For each of the three count outcomes in Table 1(b), we observe that at least 40 %14

of the observations reported zero trips. The total share of immobile persons in the dataset is15

10.6 %. However, we cannot ignore the potential influence of soft-refusal, especially for the16

non-motorized trips (Madre et al., 2007). The accumulation of zero trips is highest for public17

transport trips and lowest for car trips, which also shows the longest tail. In Table 1(c) we18

present the average number of trips distinguished by mobility tool ownership. Intuitively, car1

ownership increases the number of car trips and reduces the number of public transport and2

non-motorized trips, while the opposite occurs for season ticket ownership. For season ticket3

ownership, we observe a slight increase in the number of non-motorized trips.4
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TABLE 1 Statistics on the five dependent variables in the analysis of mobility tool own-
ership and use. Table 1(a) shows the cross tabulation of both mobility tools,
Table 1(b) the frequencies of the three count outcomes and Table 1(c) the av-
erage value of the three trip variables conditional on mobility tool ownership.

(a) Jointness in mobility tool ownership, illustrated by the cross tab-
ulation of car and season ticket ownership. Data from the Swiss
transportation microcensus 2010.

Mobility tool Season ticket
No Yes Total

N % N % N %

Car No 9’496 24.4 8’309 61 17’805 33.9
Yes 29’364 75.6 5’307 39 34’671 66.1

Total 38’860 100 13’616 100 52’476 100

(b) Distribution of number of trips. Around 50 % of the population
reported a car trip, while 20 % reported at least one trip by public
transport. Data from the Swiss transportation microcensus 2010.

Number Car Public transport Non-motorized

N % N % N %

0 23’833 45.40 42’704 81.40 26’700 50.90
1 to 2 13’758 26.20 7’719 14.70 16’811 32.00
3 4’134 7.90 1’194 2.30 3’628 6.90
4 5’208 9.90 661 1.30 2’915 5.60
5 2’333 4.40 124 0.20 1’114 2.10
6 1’628 3.10 58 0.10 759 1.40
7 724 1.40 12 0.00 278 0.50
8 414 0.80 0 0.00 148 0.30
9 223 0.40 3 0.00 55 0.10
10 119 0.20 1 0.00 35 0.10
> 10 102 0.20 0 0.00 33 0.10

(c) Average number of car public transport and non-motorized trips condi-
tional on mobility tool ownership. The ownership of a car or a season
ticket corresponds to an increase in car or public transport trips, respec-
tively. Data from the Swiss transportation microcensus 2010.

Number of trips
Mobility tool Car Public transport Non-motorized modes

Car No 0.489 0.477 1.103
Yes 1.660 0.130 0.727

Season ticket No 1.489 0.088 0.831
Yes 0.616 0.701 0.922

Total 1.262 0.247 0.855
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As explanatory variables, we select from the microcensus gender, age (grouped by age5

categories), employment status, university degree and monthly gross household income1. We6

describe the residential location of each observation by three spatial variables: first, a general-7

ization of a Hansen (1959)-based accessibility measure that we introduce in greater detail in8

the next section; second, a spatial typology definition from the Swiss Federal Office of Spatial9

Development (ARE) et al. (2011) to differentiate between urban, agglomeration and non-urban10

environment and, third, the quality of public transport at household location. For each location,11

the Swiss Federal Office of Spatial Development (ARE) (2011) categorized the quality of public12

transport based on distance to the next station, frequency at this station and available lines on13

a five-level scale, ranging from from Level E (worst) to A (best). The Appendix provides a14

detailed description of the calculation of this scale.15

We are aware of potential multicollinearity between the three variables describing residential16

location, but the correlations do not exceed 0.5. Table 2 shows sample summary statistics for17

all variables in the model. In the upper part, we list the shares of the categorical and binary18

variables and in the lower part, statistics of continuous predictors.19

Accessibility data20

The Hansen (1959)-based measure of accessibility for Switzerland is based on travel times21

from the 2010 national macroscopic transport models for car and public transport. In both22

transport models, zoning follows the municipality boundaries, except for large cities that are23

further subdivided. Thus, this accessibility measure is not at the household’s location, but at the1

household’s municipality level. In total, both models have 2949 zones within Switzerland. We2

compute for each zone / municipality i its accessibility value Ai with Equation 1.3

Ai = log *.
,

N∑
j=1

O j · exp
(
βci j

)+/
-
. (1)4

1We recode the stated gross monthly household income classes into a continuous scale by assigning the midpoint
value of each class to the household. As 24 % of all households did not report on their income, we impute the
income with an ordered logit model. For each household that did not report income, we assign the sum of the
product of probability of belonging to a class with the midpoint income class value. Results available on request.
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TABLE 2 Sample summary statistics

Categorical variables
Share

Person is male 45.53 %
Age categories

> 70 16.96 %
61-70 17.39 %
51-60 17.59 %
41-50 19.09 %
31-40 15.11 %
< 31 13.86 %

Employed 62.26 %
University degree 16.32 %
Quality of public transport at household location

Level A: very good 12.60 %
Level B: good 16.11 %
Level C: moderate 20.85 %
Level D: low 26.70 %
Level E: very low 23.76 %

Spatial typology at household location
City 32.50 %
Agglomeration 48.45 %
Countryside 19.05 %

Continuous variables
Mean SD Min Max

General accessibility 1.53 1.56 -10.09 5.14
Better accessibility by public transport -0.01 0.61 -1.76 2.26
Better job accessibility 0.03 0.12 -0.40 0.42
Log of gross monthly household income in CHF 8.75 0.56 7.31 9.90

The accessibility Ai is a measure of destination accessibility to all other zones N with O j being5

the number of accessible opportunities in other zones j. ci j are the generalized cost of travel6

from i to j. The distance decay parameter β takes into account that more distant destinations are7

less attractive. For Switzerland, the β has been estimated for each mode by Sarlas et al. (2015):8

βCar = −0.261 and βPT = −0.034. The generalized cost of travel ci j are equal to the in-vehicle9

time from i to j for each mode, but for public transport additionally contains access/ egress time,10

waiting time and transfers. In our analysis, we compute accessibility by both modes to the two1

different opportunities O j employment and population in each municipality.2

Four accessibility measures are thus available, differentiated by opportunities (population3

and employment) and mode to reach these opportunities (car or public transport): (1) popu-4
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TABLE 3 Results of the principal component analysis of the four accessibility variables

a) Summary statistics

Component 1 Component 2 Component 3 Component 4

Eigenvalue 3.67715 .310054 .0112005 .00159724
Proportion of the Eigenvalue 0.9193 0.0775 0.0028 0.0004
Cumulative proportion 0.9193 0.9968 0.9996 1

N = 2949

b) Loadings

Population accessibility by car 0.5019 - 0.4697 -0.6857 -0.2394
Job accessibility by car 0.4969 - 0.5306 0.6427 0.2419
Population accessibility by public transport 0.4997 0.5099 -0.2160 0.6660
Job accessibility by public transport 0.5015 0.4877 0.2647 -0.6638

c) Correlations of factors and items

Population accessibility by car 0.9624 -0.2615 -0.0726 -0.0096
Job accessibility by car 0.9529 -0.2955 0.0680 0.0097
Population accessibility by public transport 0.9582 0.2839 -0.0229 0.0266
Job accessibility by public transport 0.9616 0.2716 0.0280 -0.0265

lation accessibility by car, (2) job accessibility by car, (3) population accessibility by public5

transport, and (4) job accessibility by public transport. The four accessibility measures are a6

highly correlated. Arguably, both modes have a similar coverage because their infrastructures,7

residential areas and work places overlap. To reduce the probability of multicollinearity, we8

carry out a principal component analysis following the idea of Jäggi et al. (2012) to reduce the9

four variables to a meaningful scale for this analysis (Jolliffe, 2002). Results of the analysis are10

presented in Table 3.11

A prominent criterion for the selection of the number of principal components is the Eigen-12

value criterion. All components with an Eigenvalue of equal or greater than one should be13

selected. However, in our analysis, we find the first component exhibiting an Eigenvalue greater14

than one and we should selected, following this criterion, only the first component. Nevertheless,1

for three principal reasons we do not follow this criterion and select the first three principal2

components. First, we identify for the first three components an interpretation of in the context3

of this analysis. Second, if we would consider only the first principal component, which is4

Submitted for the WSTLUR 2017 Conference, Brisbane



Loder, A. and Axhausen, K.W. 12

highly similar to each of the four accessibility measures, the principal component analysis would5

be pointless because only this variable does not address the question in this analysis on how to6

incorporate highly correlated accessibility measures in understanding travel behavior. Third, we7

compared different model specifications including either only the first, the first two or the first8

three principal components with a likelihood ratio test and found that using all three components9

improves the model significantly. The first component explains more than 90 % (as measured10

in the proportion of the Eigenvalue) of the variation in the data and we interpret it as general11

accessibility. The second component explains 7.6 % of the variation and describes comparatively12

better accessibility by public transport and the third component explains 0.3 % of the variation13

in the data and describes comparatively better job accessibility. The fourth component does not14

have a meaningful interpretation for this analysis and is thus omitted.15

After the estimation of the principal components, we predict for each traffic analysis (mu-16

nicipality) zone the score values for the first three components from the accessibility measures17

and the obtained loadings. We then merge the score values of the first three components to the18

observations in transportation microcensus. We use these score values as explanatory variables19

and to illustrate the spatial distribution of the principal components in Figure 1 and 2. Figure 120

shows that the general accessibility is highest in metropolitan regions and the densely populated21

Swiss plateau, but low in Alpine regions. We have added the Swiss motorway (white lines) and22

railway (black lines) network to the map. The zones with high levels of general accessibility23

overlap with motorways and dense railway networks in large parts of the country. Figure 224

shows spatial distribution of the second component, comparatively better accessibility by public25

transport. Again, we have added the motorway and railway network to the map. The value26

distribution does not follow the population distribution, as in the case of the general accessibility,27

but we observe that many municipalities close to the motorway network score low in this1

accessibility measure. The values do not score highest in centers of metropolitan regions, but in2

the agglomeration and countryside/ Alpine regions. We can, for example, explain high values in3

Alpine regions by citing existing railway and limited car networks.4
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FIGURE 1 General accessibility levels in Switzerland. The values correspond to the
scores calculated from the accessibility values of each municipality and the
loading from Table 3. Higher values mean greater general accessibility. The
white lines show the Swiss highway network while the black lines correspond
to the main railway network.

MODEL5

We model mobility tool ownership and use with a multivariate probit-based model for mixed6

type of outcomes, as introduced by Bhat and his colleagues (Paleti et al., 2013; Bhat, 2015; Bhat7

et al., 2016). For a detailed description, we refer the interested reader especially to Bhat et al.8

(2014). In this model, relationships between choice outcomes are established by allowing for9

correlations of error terms and endogenous variables’ structural effects. This probit based model10

is an extension of the traditional multivariate probit, e.g. (Scott and Axhausen, 2006; Yamamoto,11

2009; Andrés and Gélvez, 2014).1

For the readers’ convenience, we omit in all equations the subscript for number of the2

outcome equation because it appears in every outcome equation. The choice of owning a3

mobility tool is modeled with a binary probit. We define a latent propensity Y ∗ = βx + ε, with4

Submitted for the WSTLUR 2017 Conference, Brisbane



Loder, A. and Axhausen, K.W. 14
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FIGURE 2 Comparatively better accessibility by public transport. The values corre-
spond to the scores calculated from the accessibility values of each munic-
ipality and the loading from Table 3. Higher values mean comparatively
better accessibility by public transport. The white lines show the Swiss high-
way network while the black lines correspond to the main railway network.

β a vector of coefficients to be estimated, x a vector of exogenous covariates and the normally5

distributed error term ε. If Y ∗ > 0, the observed outcome is chosen i.e. Y = I (Y ∗ > 0). The6

outcome of number of trips is modeled as a generalized ordered probit, with more details again7

in Bhat et al. (2014) and Bhat (2015). The generalized ordered probit also has a latent propensity8

Y ∗ = ε, which is mapped to the observed count outcome j by threshold parameters ψn. For1

the observed count value j = n, the following condition holds ψn−1 < Y ∗ < ψn. The threshold2

parameters ψn are determined by the function3

ψn = Φ−1 *
,

(1 − c)θ

Γ (θ)

n∑
r=0

(
Γ (θ + r) cr

r!

)
+
-

+ ϕn (2)4

Submitted for the WSTLUR 2017 Conference, Brisbane



Loder, A. and Axhausen, K.W. 15

with5

c =
exp

(
βx

)
exp

(
βx

)
+ θ

(3)6

Dispersion parameter θ and flexibility parameter ϕ in Equations 2 and 3 allow flexible7

count distribution modeling. Φ is the cumulative normal distribution function, Γ is the gamma8

function, x is a vector of exogenous and endogenous covariates and β a vector of parameters to9

be estimated. Error terms of each outcome equation correlate pairwise with ρ and constitute the10

correlation matrix P. For identification, we set ϕ−1 = −∞, ϕ0 = 0 and ϕn>0 = ϕ for each count11

outcome. The model parameters β, θ, ϕ and P are estimated with maximum likelihood. For12

each observation the likelihood is defined by13

L
(
β, θ, φ, P

)
=

∫ γupp

γlow

φ5 (ũ|P) dũ (4)14

The probability is obtained by integrating the five-dimensional normal density distribution φ515

from γlow to γupp, both five-dimensional vectors. For the binary outcome, the lower integration16

bound is −∞ and the upper integration bound is determined by evaluating the corresponding17

outcome equation for Y ∗. For the count outcome, the integration domain is determined by18

individual threshold values ψn−1 and ψn. We use the maximum approximate composite marginal19

likelihood (MACML) estimator for finding the optimal parameters (Bhat and Sidharthan, 2011;20

Bhat et al., 2014). We programmed the routine in Stata (StataCorp., 2015).21

RESULTS22

In Table 4, we present, for each of the five outcomes, the univariate estimates; multivariate23

results are shown in Table 5. Comparing univariate and multivariate estimates, it appears1

that the effect size differs for most covariates in the second or third significant figure, but2

the differences appear to be greater for mobility tool’s structural effects on the number of3

trips. Bhat et al. (2014) discussed this issue. Although the univariate estimates display the4
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same tendency as the multivariate estimates, univariate model estimates could be biased. In5

addition, univariate estimates cannot provide the behavioral insights generated by cross equation6

correlations presented in Table 6. In both the univariate and multivariate model, we find all7

count parameters to be significantly different from zero. Therefore, the count model is between8

a traditional negative binomial and a Poisson count model.9

In the following, we focus on multivariate estimates and on the effects of the three spatial10

variables: accessibility, quality of public transport and spatial typology, as well as the structural11

effects. The other explanatory variables are as expected and consistent with previous research12

(Simma and Axhausen, 2001; Ewing and Cervero, 2010; Kowald et al., 2016; Dargay et al.,13

2007), except for two effects reported by Simma and Axhausen (2001) with data from 1994.14

First, the authors reported a negative effect from males on the number of public transport trips,15

which in our case is insignificant. Second, the authors reported an age effect on public transport16

trips, directly opposed to our findings.17

Each of the three new derived measures of accessibility - general accessibility, comparatively18

better access by public transport and comparatively better job accessibility - show a negative19

effect on car ownership. The effects on season ticket ownership are positive for all three20

variables. We find, for gradually decreasing quality of public transport at household locations,21

likelihood of car ownership increases and likelihood of season ticket ownership decreases. In22

the agglomeration, car ownership is greater than in the urban center and the countryside, while23

car ownership is greater in rural areas than in the city center. Living in the city center shows24

a greater likelihood of subscribing to a season ticket than living in the agglomeration and the25

countryside.26

For each of the three count outcomes of the number of trips we find significant structural27

effects of the two mobility tools. The observed differences for the number of car trips and28

season ticket ownership in Table 1 are replicated by the model estimates in Table 5, except for1

the effects of season ticket on the number of non-motorized trips. Table 1(c) show a slightly2

greater average of non-motorized trips for season tickets holder, but the effect in Table 5 is3

negative. This is anticipated because in Table 1(c) many other covariates are not considered,4
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TABLE 4 Univariate estimation results

Mobility tool ownership Number of trips

Car Season ticket Car Public transport Non-motorized

Person is male 0.461∗∗∗ (0.012) −0.163∗∗∗ (0.013) 0.119∗∗∗ (0.012) a −0.083∗∗∗ (0.014)
Age categories

> 70 (base)
61-70 0.324∗∗∗ (0.021) −0.178∗∗∗ (0.022) 0.212∗∗∗ (0.022) 0.222∗∗∗ (0.040) 0.196∗∗∗ (0.024)
51-60 0.124∗∗∗ (0.024) −0.158∗∗∗ (0.025) 0.293∗∗∗ (0.024) 0.331∗∗∗ (0.044) 0.141∗∗∗ (0.024)
41-50 0.106∗∗∗ (0.024) −0.220∗∗∗ (0.026) 0.381∗∗∗ (0.024) 0.294∗∗∗ (0.044) 0.190∗∗∗ (0.023)
31-40 0.010 (0.025) −0.169∗∗∗ (0.026) 0.366∗∗∗ (0.025) 0.350∗∗∗ (0.045) 0.120∗∗∗ (0.025)
< 31 −0.623∗∗∗ (0.024) 0.385∗∗∗ (0.025) 0.506∗∗∗ (0.026) 0.614∗∗∗ (0.041) −0.061∗ (0.026)

Employed 0.322∗∗∗ (0.017) 0.041∗ (0.017) 0.310∗∗∗ (0.016) 0.163∗∗∗ (0.029) a

University degree −0.050∗∗ (0.018) 0.156∗∗∗ (0.017)
Quality of public transport at household location

Level A: very good (base)
Level B: good 0.165∗∗∗ (0.022) −0.097∗∗∗ (0.022)
Level C: moderate 0.310∗∗∗ (0.024) −0.245∗∗∗ (0.024)
Level D: low 0.415∗∗∗ (0.025) −0.348∗∗∗ (0.025)
Level E: very low 0.554∗∗∗ (0.027) −0.475∗∗∗ (0.027)

Spatial typology at household location
City (base)
Agglomeration 0.236∗∗∗ (0.015) −0.174∗∗∗ (0.015) 0.202∗∗∗ (0.014) −0.150∗∗∗ (0.023) −0.321∗∗∗ (0.016)
Countryside 0.149∗∗∗ (0.022) −0.165∗∗∗ (0.023) 0.129∗∗∗ (0.019) −0.285∗∗∗ (0.041) −0.344∗∗∗ (0.020)

General accessibility −0.040∗∗∗ (0.005) 0.105∗∗∗ (0.006) −0.050∗∗∗ (0.004) 0.173∗∗∗ (0.009) a

Comparatively better accessibility by public transport −0.071∗∗∗ (0.011) 0.025∗ (0.011)
Comparatively better job accessibility −0.574∗∗∗ (0.056) 0.850∗∗∗ (0.059)
Log of gross monthly household income in CHF 0.439∗∗∗ (0.013) 0.038∗∗ (0.013)
Car always available 0.992∗∗∗ (0.015) −0.704∗∗∗ (0.024) −0.451∗∗∗ (0.016)
Subscription to season ticket −0.550∗∗∗ (0.016) 1.777∗∗∗ (0.025) −0.050∗∗ (0.017)
Constant −4.180∗∗∗ (0.106) −0.737∗∗∗ (0.107) −0.996∗∗∗ (0.024) −2.440∗∗∗ (0.041) 0.525∗∗∗ (0.024)

Dispersion parameter θ 1.367∗∗∗ (0.024) 1.482∗∗∗ (0.103) 0.817∗∗∗ (0.016)
Flexibility parameter ϕ 0.103∗∗∗ (0.007) 0.316∗∗∗ (0.019) 0.319∗∗∗ (0.008)

Observations 52 476 52 476 52 476 52 476 52 476
Log likelihood at convergence −29 009 −27 361 −75 641 −25 986 −65 418
Log likelihood constant only model −33 614 −30 042 −81 353 −32 361 −66 278
Pseudo R2 0.137 0.089 0.070 0.190 0.013

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
a Estimated, but not significant different from zero.
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TABLE 5 Multivariate estimation results

Mobility tool ownership Number of trips

Car Season ticket Car Public transport Non-motorized

Person is male 0.461∗∗∗ (0.006) −0.164∗∗∗ (0.006) 0.118∗∗∗ (0.006) a −0.087∗∗∗ (0.006)
Age categories

> 70 (base)
61-70 0.324∗∗∗ (0.009) −0.179∗∗∗ (0.011) 0.214∗∗∗ (0.011) 0.217∗∗∗ (0.020) 0.193∗∗∗ (0.011)
51-60 0.123∗∗∗ (0.011) −0.161∗∗∗ (0.012) 0.293∗∗∗ (0.012) 0.325∗∗∗ (0.022) 0.139∗∗∗ (0.011)
41-50 0.106∗∗∗ (0.011) −0.223∗∗∗ (0.013) 0.382∗∗∗ (0.012) 0.286∗∗∗ (0.022) 0.188∗∗∗ (0.011)
31-40 0.010 (0.011) −0.172∗∗∗ (0.013) 0.367∗∗∗ (0.012) 0.346∗∗∗ (0.022) 0.119∗∗∗ (0.011)
< 31 −0.623∗∗∗ (0.011) 0.381∗∗∗ (0.012) 0.503∗∗∗ (0.013) 0.624∗∗∗ (0.020) −0.056∗∗∗ (0.011)

Employed 0.322∗∗∗ (0.007) 0.041∗∗∗ (0.009) 0.307∗∗∗ (0.008) 0.158∗∗∗ (0.014) a

University degree −0.049∗∗∗ (0.008) 0.154∗∗∗ (0.009)
Quality of public transport at household location

Level A: very good (base)
Level B: good 0.163∗∗∗ (0.010) −0.098∗∗∗ (0.011)
Level C: moderate 0.307∗∗∗ (0.011) −0.245∗∗∗ (0.012)
Level D: low 0.411∗∗∗ (0.011) −0.347∗∗∗ (0.012)
Level E: very low 0.548∗∗∗ (0.012) −0.473∗∗∗ (0.014)

Spatial typology at household location
City (base)
Agglomeration 0.237∗∗∗ (0.007) −0.174∗∗∗ (0.008) 0.205∗∗∗ (0.007) −0.152∗∗∗ (0.011) −0.319∗∗∗ (0.007)
Countryside 0.149∗∗∗ (0.010) −0.164∗∗∗ (0.012) 0.132∗∗∗ (0.009) −0.282∗∗∗ (0.021) −0.342∗∗∗ (0.009)

General accessibility −0.040∗∗∗ (0.002) 0.104∗∗∗ (0.003) −0.051∗∗∗ (0.002) 0.173∗∗∗ (0.004) a

Comparatively better accessibility by public transport −0.071∗∗∗ (0.005) 0.025∗∗∗ (0.005)
Comparatively better job accessibility −0.572∗∗∗ (0.025) 0.848∗∗∗ (0.029)
Log of gross monthly household income in CHF 0.438∗∗∗ (0.006) 0.040∗∗∗ (0.006)
Car always available 0.973∗∗∗ (0.008) −0.680∗∗∗ (0.013) −0.431∗∗∗ (0.009)
Subscription to season ticket −0.527∗∗∗ (0.009) 1.749∗∗∗ (0.014) −0.053∗∗∗ (0.008)
Constant −4.166∗∗∗ (0.047) −0.747∗∗∗ (0.053) −0.984∗∗∗ (0.012) −2.438∗∗∗ (0.020) 0.514∗∗∗ (0.011)

Dispersion parameter θ 1.353∗∗∗ (0.012) 1.447∗∗∗ (0.050) 0.817∗∗∗ (0.007)
Flexibility parameter ϕ 0.105∗∗∗ (0.004) 0.319∗∗∗ (0.004) 0.319∗∗∗ (0.004)

Observations 52 476
Log likelihood at convergence −983 768
Log likelihood constant only model −1 051 388
Pseudo R2 0.064

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
a Estimated, but not significant different from zero.
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TABLE 6 Additional model parameter estimates

Parameter Description

ρ21 Car and season ticket −0.489∗∗∗ (0.007)
ρ31 Car and car trips −0.022∗∗ (0.008)
ρ41 Car and public transport trips 0.036∗∗∗ (0.010)
ρ51 Car and non-motorized trips 0.016∗∗ (0.006)
ρ32 Season ticket and car trips 0.028∗∗∗ (0.008)
ρ42 Season ticket and public transport trips −0.037∗∗∗ (0.009)
ρ52 Season ticket and non-motorized trips −0.006 (0.008)
ρ43 Car trips and public transport trips −0.355∗∗∗ (0.007)
ρ53 Car trips and non-motorized trips −0.281∗∗∗ (0.005)
ρ54 Public transport trips and non-motorized trips −0.013 (0.008)
Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

e.g. spatial typology. The number of car trips increases in the countryside and even more in the5

agglomeration. The number of public transport trips is highest in the city center and decreases6

in the agglomeration and even more so in the countryside. This pattern is also observed for the7

number of non-motorized trips. With increasing general accessibility, the number of car trips8

declines and the number of public transport trips increases. The effect of general accessibility9

on the number of non-motorized trips is insignificant.10

In Table 6, we list cross-equation parameters of all five outcomes. Except for the correlations11

between equations of season ticket ownership and number of non-motorized trips and between12

equations of the number of public transport trips and non-motorized trips, all correlations are13

significant. A negative correlation means that common unobserved factors affect both outcomes14

in opposite directions, e.g. the motivation for buying a season ticket can be contrary to having a15

car, while a positive correlation means that common unobserved factors affect both outcomes in16

the same direction. In case of an insignificant correlation, we find no common unobserved factors17

that affect both outcomes simultaneously. The negative correlation between car and season18

ticket ownership indicates that both mobility tools are substitutes. This finding is consistent with1

previous findings (Scott and Axhausen, 2006). Correlation between number of car and public2

transport trips and between car and non-motorized trips is negative, indicating that these types3

of travel are substitutes.4
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The values of all significant correlations that represent the structural effects between mobility5

tools and number trips are less than 0.1 in magnitude. We find that the correlation between car6

ownership and car trips as well as season ticket ownership and public transport trips is negative.7

We expect that, in both cases, the negative correlations might capture unobserved factors8

such as the impetus to use the mobility tool due to a large financial commitment. For positive9

correlations of structural effects, we assume they might describe a general factor of demanding10

mobility. To validate the negative correlations for the two structural effects, we estimate Poisson11

and linear regression models with endogenous mobility tool ownership and also find negative12

correlations. We conclude that joint modeling of outcomes is necessary, because most cross-13

equation correlations are significant. Thus, univariate estimates are biased.14

DISCUSSION15

We find that our results are consistent with previous findings, e.g. for the effects of the built16

environment (Ewing and Cervero, 2010) and for Switzerland (Simma and Axhausen, 2001;17

Kowald et al., 2016). However, we have to address certain methodological and data issues.18

We decided to jointly model car and season ticket ownership, as well as the number of car19

trips, public transport and non-motorized modes for two main reasons. First, public transport is,20

in most regions of Switzerland, an attractive alternative to a car. Thus, we expect that the choice21

between both mobility tools is therefore made simultaneously. Second, owning a mobility tool22

is a large financial commitment to a mode and therefore a powerful predictor of using that mode.23

Therefore, the ownership of a mobility tool is endogenous. Based on these reasons, we decided24

to use Bhat’s probit-based model for mixed types of outcomes; see Bhat et al. (2014) and Bhat25

(2015). However, we could also have applied other methodologies to compare our estimates.26

With interest only in mobility tool ownership, we could have modeled the decision making27

process with a multivariate probit (e.g., Yamamoto, 2009), or a multinomial logit (e.g., Vovsha28

and Petersen, 2009; Kowald et al., 2016). For the combination of jointly modeling ownership1

and travel activity, we could also have used copula based models (Spissu et al., 2009) or allowed2

for complementary and substitution patterns in multiple discrete continuous models (Bhat et al.,3

2015).4
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With the joint modeling approach, we also tried to capture not only the structural effects of5

ownership on use, but also the commitment or lock-in in the correlation matrix of the unobserved6

factors. However, in future research we have to consider these effects with special focus on7

the influence of residential location choice (self-selection), attitudes and spatial interactions8

(Mokhtarian and Cao, 2008; Cao et al., 2009; Ewing and Cervero, 2010; Bhat et al., 2016). In9

addition, we can extend this analysis to the influence of the workplace location for the employed.10

Last, we could consider instead of the number of trips the distance or time traveled by mode11

using Copula or multiple discrete-continuous extreme value models12

Finally, we estimated model parameters using the maximum approximate composite marginal13

likelihood (MACML)(Bhat et al., 2010; Bhat and Sidharthan, 2011), for which Bhat et al. (2010)14

reported that the MACML approach recovers estimates just as well as the simulation approach15

and that reduction in efficiency by the marginal compared to the simulation approach is “in the16

range of nonexistent to small”. However, we could also use the simulation approach (Train,17

2003) to compare the estimates and to obtain more insights into the question of whether the18

univariate estimates are biased.19

In this analysis, we used data from the Swiss transportation microcensus offering a one-day20

travel diary. We could estimate this model using a multiple day travel diary (e.g., Zimmermann21

et al., 2001), to recover more effects from the data: for example, linking activities to trips22

and adding the activity-based accessibility measure introduced by Le Vine et al. (2013). The23

model could also be expanded by using spatial information on each trip’s start and end points,24

to estimate the effect of start and end locations on mode choice. In Switzerland, there are25

different options for buying a season ticket, i.e. local or nation-wide. In future research, we26

could distinguish between ticket types (see Loder and Axhausen, 2016; Becker et al., 2017),27

but also validate the negative error correlation for the structural effects of car ownership and car28

trips, as well as season ticket and public transport trips using other data sets. Last, the introduced1

accessibility measure makes it difficult to predict how changes in accessibility by one mode2

affect all choices. When making predictions under these circumstances, researchers must change3

the input accessibility variable and transform it with component loadings before forecasting.4
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CONCLUSIONS5

In this paper, we present an approach to accommodate highly-correlated destination accessi-6

bility measures in travel behavior models, carrying out a principal component analysis on the7

accessibility measures and using the principal components in the modeling instead. We use the8

new accessibility variables as explanatory variables in modeling mobility tool ownership and9

number of car, public transport and non-motorized trips in Switzerland, employing a multivariate10

probit-based model for mixed types of outcomes (Bhat et al., 2014). We found with a likelihood11

ratio test that the joint modeling approach improves the model significantly when compared to a12

model with the correlation matrix constraint to the identity matrix. Furthermore, we scrutinized13

the fit of the model by investigating the log likelihood for outliers (Ben Akiva and Lerman,14

1985). In the distribution we observe that 10 % of the sample have a likelihood value several15

magnitudes away from the mean and median. We checked the extreme cases for consistency but16

did not experience conflicting outcomes. Further, we checked the sensitivity of the estimates17

when removing the most extreme outliers (less than 1 %) but did not find noticeable changes.18

The model results show the expected signs that increasing general accessibility, compara-19

tively better accessibility by public transport and comparatively better job accessibility reduces20

the probability of car ownership and increases the probability of season ticket ownership. Struc-21

tural effects of mobility tool ownership on number of trips show the expected signs, e.g. car22

ownership increases the number of car trips. We observe that car and season ticket ownership23

are substitutes, as well as car and public transport trips. The effects of our other control vari-24

ables in the model are consistent with previous research (Simma and Axhausen, 2001; Scott25

and Axhausen, 2006; Kowald et al., 2016). We conclude that jointly estimating mobility tool26

ownership and number of trips is necessary to avoid a bias in the estimated effects and to recover27

common unobserved factors affecting multiple outcomes.28

The proposed approach for deriving accessibility measures through principal component1

analysis is of interest for all researchers in the field of built environment and modeling travel2

behavior. The model estimates are important for Swiss transport planners, because we present3

the first joint mobility tool ownership and travel activity model covering the private, public and4
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non-motorized mode.5
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TABLE 7 Public transport stop classification

Means of transportation

Headway Rail junction Rail Tram, bus, ship Cablecar

<5min I I II V

5-10min I II III V

10-20min II III IV V

20-40min III IV V V

40-60min IV V V V

APPENDIX5

Calculation of the local access to public transport measure6

The five level scale of the local access to public transport is obtained as follows. First, each7

public transport stop is characterized by means of transportation and headway on a five level8

scale from I to V according to Table 7. For multiple means of transportation at a stop, the lowest9

value is chosen. For the estimation of the local access, the above classification is paired with10

each household’s distance to this stop according to Table 8. For each household, the best stop11

determines the level. All households located farther away than 1000m from the next stop are12

classified in Level E.13
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