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Abstract 
This paper examines how well a wide range of parametric distributions can reproduce given target 
distributions, which are constructed to reflect common assumptions about taste variation in transport 
models. Using ExpertFit to fit the distributions and to measure the differences between the fitted and the 
target distribution, a large data set of performance measures is constructed, revealing some systematic 
patterns of bias. Mixed results are obtained for the given target distributions (Normal 
censored/uncensored and with/without mass points, Johnson Sb and Lognormal). They show that 
flexible distributions, such as the Johnson SU, Gamma, Beta, Erlang, Laplace and Logistic have certain 
advantages over inflexible distributions, but these advantages disappear for specific constellations. The 
analysis also shows the usual problems with the heavy tails of the Lognormal distribution, but 
worryingly also suggests that the recently much-heralded Johnson-SB distribution does not perform well 
in all scenarios. The analysis shows that the use of symmetrical distributions, such as the Normal, can 
lead to problems with the tails, such that, if the Normal is used, no information should be inferred on the 
basis of its tail behaviour, though it can offer valid estimates of the mean and variance. Overall, these 
results suggest that, in the absence of software allowing for the use of empirical distributions, or 
mixtures between continuous and discrete distributions, the most flexible distribution should be used to 
minimise the risk of biased results. 

Keywords 
Distributional assumptions – Mixed Logit – Random taste heterogeneity 
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1. Introduction 
Discrete choice models have become the preferred tool for the analysis of individual choices 
in transportation research. While the majority of applications still make use of closed-form 
models such as Multinomial Logit (MNL) and Nested Logit (NL), researchers (and to a lesser 
degree practitioners) are increasingly turning their attention to the Mixed Multinomial Logit 
(MMNL) model. The MMNL model has the advantage of being able to accommodate random 
variations in tastes across the population, i.e. variations in the sensitivity to explanatory 
factors such as travel-time and travel-cost. 

The MMNL model uses integration of MNL choice probabilities over the assumed 
distribution of the taste coefficients, where almost exclusively, continuous statistical 
distributions are used as the mixing distributions. A major issue in the specification of an 
MMNL model is the choice of an appropriate mixing distribution, especially so in the absence 
of a priori information about the true shape of the distribution for a given coefficient, or in a 
more general sense, the sign of the coefficient. 

A misguided choice of mixing distribution can lead to poor model performance, and 
misleading conclusions. A large number of different distributions are available, including 
unbounded distributions such as the Normal, distributions bounded on one side, such as the 
Lognormal, and distributions bounded on both sides, such as the Triangular and SB 
distributions. For the bounded distributions, a further important distinction needs to made on 
the basis of whether the bounds are preset (e.g. Lognormal), or estimated (e.g. Triangular and 
SB). This issue is discussed in detail by Hess et al. (2005a), who note that the latter type of 
distribution has the advantage of still being able to signal problems with data impurities or 
model misspecifications, which could manifest themselves in the form of a large share for 
counter-intuitively signed coefficient values, something that is not possible with strictly 
bounded distributions. 

In the case where an a priori assumption exists about the true shape of the distribution, or 
about its nature in terms of bounds, an appropriate choice of mixing distribution can reduce 
the risk of bias. Nevertheless, it should be recognised that, even in this case, theoretical 
distributions will not generally be able to offer a perfect approximation to the true 
distribution. The fact that researchers are generally limited in their choice of distribution by 
the software package they are using further increases the risk of a significant bias in the 
approximation. Indeed, the most widely used estimation tools are limited to the Normal and 
Uniform distribution, and direct transformations thereof, such as the Lognormal and SB in the 
case of the Normal, and the Triangular in the case of the Uniform distribution. 

The above discussion has shown that, given the risk of bias in the approximation to the true 
distribution, it is of interest to use as flexible a distribution as possible. In this paper, we 
discuss specifically the ability of several continuous distributions, including the most heavily 
used ones in MMNL modelling, to approximate the shape of a range of hypothetical true 
distributions. The analysis also discusses the potential of several distributions that have, to the 
authors’ knowledge, thus far not been used in MMNL modelling. Furthermore, the paper 
discusses the potential of adapting continuous distributions such as to allow for a heightened 
mass at a given value, which can for example be useful in the analysis of the prevalence of 
travellers with a zero value-of-time.  

Rather than setting this comparison inside the framework of an actual MMNL analysis, we 
conduct a purely theoretical analysis. However, the paper offers guidance on how to estimate 
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MMNL models specified with distributions that are not commonly used in the representation 
of taste heterogeneity. 

The remainder of this paper is organised as follows. In the next section, we briefly review the 
theory on the Mixed Logit model and discuss the issue of the choice of distribution. Section 3 
discusses the empirical framework, while section 4 presents the results. Finally, section 5 
summarises the findings of the research and makes some recommendations for improved 
practice. 

2. Distributional Assumptions in the MMNL model 
Over recent years, the MMNL model (c.f. McFadden & Train, 2000) has seen increased use in 
the area of transportation research. The MMNL model has the potential to address the 
shortcoming of the Multinomial Logit (MNL) model (McFadden, 1974) by allowing for 
random taste heterogeneity across decision-makers and variable inter-alternative correlation in 
the unobserved parts of utility. Furthermore, the MMNL model can be specified so as to 
explicitly account for the repeated choice nature that is a characteristic of many of the more 
complex datasets used in transportation. Finally, the model can also allow for 
heteroscedasticity in the error-terms.  

In this paper, we will concentrate on the random-coefficients formulation of the MMNL 
model. In this notation, the MMNL choice probabilities are expressed by means of the 
integral of MNL choice probabilities over the assumed distribution of the random taste-
coefficients: 

( ) ( ) βdΩβfβPP
β

nini ∫=  ,                                                  …[1] 

where Pni(β) is the MNL choice probability for alternative i and decision-maker n, given by: 

( )
∑
=

= I

j

V

V

ni
nj

ni

e

eβP

1

 ,                                                 …[2] 

where Vni is the observed part of utility, which can be rewritten as f(β,xni), where β is a vector 
of taste-coefficients and xni is a vector of the attributes of alternative i, as faced by decision-
maker n (possibly with interactions with individual-specific socio-demographic attributes). 
The function f(β|Ω) is the density of the distribution function of the tastes across decision-
makers, where the vector Ω gives the attributes of this distribution across the population, 
typically the mean and standard deviation. In model calibration, the likelihood of the model is 
maximised with regards to Ω, in order to obtain the most likely parameters of the distribution 
of β across the sample population. 

Except in the case of a trivial distribution function for β, the choice probabilities in equation 
[1] do not have a closed-form solution, and numerical techniques, typically simulation, need 
to be used in the estimation and application of the MMNL model. For a discussion of the 
issues involved with simulation, see for example Hess et al. (2005b). 

The choice of distribution for the randomly distributed coefficients (i.e. f(β|Ω)) is one of the 
central issues in the specification of an MMNL model, especially in the case where an a priori 
assumption exists about the sign of a given coefficient, such as for example a travel-time 
coefficient. For recent discussions of this issue, see for example Train (2003), Hensher & 
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Greene (2003) and Hess et al. (2005a). By using an unbounded distribution, such as the 
Normal, researchers in effect make an a priori assumption that positive as well as negative 
values for the given coefficient may exist in the population. The problem is that, due to the 
shape of the Normal distribution (notably because it is symmetrical), it is not clear a priori 
whether results indicating a non-zero probability of a positive travel-time coefficient do in 
effect reveal the presence of such values, or whether these results are simply an effect of the 
nature of the Normal distribution. This thus clearly constitutes a major drawback of the 
Normal distribution. On the other hand, the use of the classical choice of bounded 
distribution, the Lognormal, makes an a priori assumption that the sign of the specific 
coefficient stays constant across individuals. For this reason, Hess et al. (2005a) recommend 
the use of distributions bounded on either side, where the bounds are estimated from the data, 
during model calibration. While results indicating a positive probability of a non-negative 
travel-time coefficient can in this case still be seen as an artefact of the model specification 
(due to the use an incomplete specification of utility), the risk of bias due to distributional 
assumptions decreases significantly. Examples of such distributions include the SB 
distribution and the Triangular distribution. For more details on possible distributions, see for 
example Hensher & Greene (2003). 

While a large number of different available distributions have been used in MMNL 
modelling, there is as yet a distinct lack of empirical evidence aimed at showing which 
distribution might be most appropriate in a given scenario. The analysis of the ability of the 
different distributions to recover the nature of an assumed true distribution is the main aim of 
the analysis described in this paper. 

3. Empirical framework 
An empirical framework was set up to assess the ability of different distributions to recover 
the behaviour of an underlying “true” distribution of the marginal utility of travel-time. A set 
of true distributions were used to generate a number of datasets, to which certain distributions 
were then fitted, before analysing the results in terms of various criteria. The following three 
sections describe the separate steps in this process. 

3.1 Generation of datasets 

Three groups of datasets were generated for the analysis; one based on the Normal 
distribution (including adapted versions), one based on the SB distribution, and one based on 
the Lognormal distribution. 

Aside from the simple Normal distribution, three adapted versions were used; 

• a Normal distribution with a specific mass at a given point 
• a truncated Normal distribution  
• a censored Normal distribution, with any censored mass assigned to the lower 

endpoint 

For the basic Normal distribution, the following four settings were used: 

• µ=3, σ=1 
• µ=6, σ=1 
• µ=2, σ=3 
• µ=1, σ=6 
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These represent cases with a mean larger than the standard deviation, and cases with the 
standard deviation larger than the mean, as well as cases with an essentially exclusively 
positive domain, and cases with a spread over the positive as well as negative part of the 
space of real numbers. There is no need to additionally use a case with a purely negative 
domain; a simple sign change could be used in the model fitting exercise to revert to the 
purely positive case. This set of experiments thus allows for the representation of cases of 
attributes with purely signed effects, as well as attributes that some individuals value 
positively, while some others value them negatively. 

The next set of experiments uses a Normal distribution with a mass at a given point, allowing 
for example for the representation of special cases in value-of-time modelling, such as a zero 
value-of-time for part of the population (c.f. Cirillo & Axhausen, 2004). 

 The settings used were as follows: 

• µ=0.6, σ=2, mass of 0.1 at 0 
• µ=0.6, σ=0.15, mass of 0.1 at 0 
• µ=0.6, σ=0.15, mass of 0.2 at 0 
• µ=0, σ=1, mass of 0.1 at 0 

This includes cases of a centrally-located mass-point, a mass below the lower 95% confidence 
limit, as well as a mass at zero for attributes that some individuals care about positively, some 
negatively, and some don’t at all. There is no interest in further using a purely positive case 
with a mass somewhere in the middle, or a case with a mass at the upper end-point, as both 
can be obtained as minor modifications of the above cases. 

In the truncated case, with mean µ and standard deviation σ, and lower truncation point α, the 
truncated Normal draw produced on the basis of a uniform draw r is given by: 

( ) ( )[ ]rr +⋅−Ψ⋅+ σµαϕσµ ,,1 ,      …[3] 

where Ψ is in the inverse standard cumulative Normal distribution, and φ is the cumulative 
Normal distribution. The parameter values used with this distribution were: 

• µ=0.6, σ=2, α=0.2 
• µ=0.6, σ=2, α=0 
• µ=0.4, σ=0.2, α=0 
• µ=0.4, σ=0.6, α=0.4 

This again covers a selection of cases, and there is no need to use examples with upper 
truncation, as it can be obtained by simple reflection. 

The final type of distribution is based on producing a set of draws from a Normal distribution, 
and replacing all values below the lower censor by the value of that censor. The parameter 
values used with this distribution were: 

• µ=0.6, σ=0.6, α=0 
• µ=0.6, σ=0.3, α=0 
• µ=0.6, σ=0.9, α=0 
• µ=0.6, σ=0.3, α=0.3 

Again, the case of an upper censor can be obtained by simple reflection. 

For the Lognormal distribution, the following settings were used: 
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• µ =-3, σ =2 
• µ =-2, σ =1 
• µ =0, σ =0.5 
• µ =-2, σ =0.5 

This includes varying cases with means closer or further away from zero, and variations in the 
weight of the tail of the distribution. Cases with a sign-change are not explored in the present 
analysis; given the exact symmetry, the results of the approximations would be identical, as a 
sign-change can be used in conjunction with any distribution. 

Finally, for the SB distribution, the following settings were used: 

• mu=0, s=1, a=0.1, b=0.3 
• mu=-2, s=1, a=0, b=0.5 
• mu=2, s=1, a=0.5, b=0.7 
• mu=1, s=9, a=0.1, b=0.5 

In addition to the parameters of the underlying Normal distribution, the specification has two 
additional parameters, a and b, which define the bounds of the distribution (transformation 
from the initial 0-1 domain). The above four cases include a symmetrical example (with a flat 
plateau), a left-skewed example, a right-skewed example, and a bi-modal example. 

For every choice of distribution, a dataset of 8,000 independent observations was generated 
using the statistical package R, resulting in 24 separate datasets. 

3.2 Fitting of distributions 

In the analysis of the approximation performance of different distributions, the distribution 
fitting software ExpertFit (EF) was used. This optimises the parameters of a target distribution 
so as to most closely replicate the behaviour of the true distribution. 

A total of thirty-two continuous distributions were available for the analysis. While some of 
these distributions have been used previously in MMNL modelling, a large number have not. 
To the authors’ knowledge, this for example includes the Beta distribution and the Johnson 
SU distribution. At this point, it should be noted that not all of the distributions given below 
could be used in each of the experiments, for model fitting reasons. Additionally, it should be 
noted that empirical distributions were not included at this stage of the analysis. 

The thirty-two distributions can be split into three separate categories, as follows. 

3.2.1 Unbounded distributions 

These ten distributions are unbounded on either side. As such, they are occasionally easier to 
estimate, but can produce problems in terms of producing high probabilities of counter-
intuitively signed coefficients (c.f. Hess et al., 2005a) 

• Cauchy    
o Symmetrical, mean and variance do not exist 

• Error    
o Symmetrical, µ=0 

• Exponential power 
o Symmetrical 
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• Extreme value type A  
o Right-skewed 

• Extreme value type B 
o Left-skewed 

• Johnson SU   
o Can be symmetrical & asymmetrical 

• Laplace    
o Symmetrical 

• Logistic 
o Symmetrical 

• Normal  
o Symmetrical   

• Student’s t, 
o Symmetrical, µ=0 

3.2.2 Left-bounded distributions 

These seventeen distributions are bounded on the left-hand side. For some distributions, the 
lower bound is fixed at zero, while for others, the distribution has an additional location 
parameter, allowing for a variable lower bound. In some cases, this bound is however fixed to 
be strictly positive. In all cases, an external shift of the final draws can however be used to 
transform the lower bound to essentially any desired real value. 

We now look at the individual distributions in more detail, each time giving the initial 
domain. 

• Chi-square  
o Domain = (0,∞), variance proportional to mean (σ2=2µ). 

• Erlang   
o Domain = (γ,∞), no constraints on γ 

• Exponential  
o Domain = (γ,∞), no constraints on γ 

• F   
o Domain = (0,∞) 

• Gamma   
o Domain = (γ,∞), no constraints on γ 

• Inverse Gaussian 
o Domain = (γ,∞), no constraints on γ 

• Inverted Weibull 
o Domain = (γ,∞), no constraints on γ  

• Log-Laplace  
o Domain = (γ,∞), no constraints on γ  

• Log-logistic  
o Domain = (γ,∞), no constraints on γ 

• Lognormal  
o Domain = (γ,∞), no constraints on γ, known for heavy tail 

• Pareto   
o Domain = (γ,∞), γ>0 

• Pearson type V 
o Domain = (γ,∞), no constraints on γ 
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• Pearson type VI  
o Domain = (γ,∞), no constraints on γ 

• Random walk  
o Domain = (γ,∞), no constraints on γ 

• Rayleigh  
o Domain = (γ,∞), no constraints on γ 

• Wald   
o Domain = (γ,∞), no constraints on γ 

• Weibull, 
o Domain = (γ,∞), no constraints on γ 

3.2.3 Distributions bounded on both sides 

The final five distributions available are bounded on both sides, with bounds estimated from 
the data. This minimises the risk of results wrongly indicating a positive probability of a 
counter-intuitively signed coefficient, while still allowing for such values to manifest 
themselves, for example due to data or model irregularities (c.f. Hess et al., 2005a). 

• Beta 
o Can be symmetrical or asymmetrical, in which case it can be left-skewed or 

right-skewed, can be bi-modal 
• Johnson SB 

o Can be symmetrical or asymmetrical, in which case it can be left-skewed or 
right-skewed, can be bi-modal, moments extremely complicated, generally 
simulated 

• Power function 
o Can be flat, linear, or left or right-skewed 

• Triangular 
o Can be symmetrical or asymmetrical, in which case it can be left-skewed or 

right-skewed 
• Uniform 

o Equal probability for all values in domain 

4. Results 
After fitting a distribution to a dataset, EF provides statistics on quality of fit, including the 
mean difference in the density function between the true and target distribution, the maximum 
difference between the density functions, and the likelihood-function value. This latter 
measure gives the probability of obtaining the data from the given distribution, where with 
density f(x), and observed points x1,…,xN, the likelihood is given by f(x1)·… ·f(xN). The 
software additionally provides the moments of the sample and the target distribution (where 
possible to compute), and the percentile tables. 

Finally, EF computes three goodness-of-fits tests on the basis of the true and estimated 
density function, namely the Anderson-Darling Test, the Kolmogorov-Smirnov Test, and the 
Equal-Probable Chi-Square Test. The former two tests have the problem that they cannot be 
computed for all the distributions used in the present analysis. Although hampered by other 
shortcomings, the Equal-Probable Chi-Square test faces no restrictions in terms of applicable 
distributions, and as such, was used in the present analysis. 
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Aside from the retrieval of the mean and variance of the distribution, the difference in the 
density function, and the overall likelihood function, it is of interest to look at the 
performance of the different distributions in the tails of the distribution. This applies 
specifically to the share of observations below a given value, for example observations that 
are not of the expected sign. EF is unable to produce these directly, so that a substitute was 
used, in the form of the difference between the true and fitted distribution in the values for the 
lower respectively upper octiles of the distribution.  

Additionally, two non-linear measures were defined, emphasising the tails of the distribution. 
These measures use a weighted sum between the differences of different percentiles. In the 
first case, the measure is defined as: 

2
7,..1 ,, )

100
50

1()()(∑=

−
+−=

i
i

fitiA

p
pfpfW ,    …[4] 

where 
 pi = Percentile 
 with:  
 i=1: minimum 
 i=2: lower octile 
 i=3: lower quartile 
 i=4: median 
 i=5: upper quartile 
 i=6: upper octile 
 i=7: maximum 
 f(pi,t) = Value of the target distribution percentile pi 
 f(pi,f) = Value of the fitted distribution percentile pi 

The inclusion of the extremes in this measure can cause problems in the presence of large 
outliers, such that an additional version is defined without the extreme values, as: 

2
6,..2 ,, )

100
50

1()()(∑=

−
+−=

i
i

fitiB

p
pfpfW     …[5] 

 

We now look at the actual results obtained in the fitting exercises. The first group of tests 
includes the full set of distributions, while in the second group, which additionally uses 
segmentation by true distributions, only the best-performing target distributions are included. 

4.1 All distributions 

The sets of comparisons presented here use the full group of target distributions, and the 
various measures are calculated across all experiments in which the specific distributions 
were used. For most distributions, this number was equal to 24, i.e. the distributions were 
used in all experiments. However, it was occasionally not possible to fit a given distribution, 
such that the number varies. This is especially the case for the Johnson SU distribution, which 
was used in only 11 experiments, as well as the two Pearson distributions, and the Pareto 
distribution. As such, the reliability of the results for these distributions is somewhat lower, 
especially for the SU distribution. Additionally, in some of the comparisons, the number is 
lower as the specific measure of performance could not be evaluated. Finally, the number of 
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experiments for the Wald distribution is 26, as two different fitting approaches were used in 
two experiments. Box-plots are used for the comparisons, to give an indication of the spread 
of performance across experiments as well as across distributions. 

4.1.1 Equal chi-squared test 

The first measure used in the comparison of the different target distributions, across all 24 
experiments, is the equal chi-squared test. Despite restrictions with this method (given the 
missing guidance on optimal interval size), the measure gives an indication of the 
performance of the different distributions.  

The results are summarised in Figure 1, with distributions ranked according to the mean test-
value across experiments. The analysis shows some variation in performance, with very poor 
performance by a set of distributions. Two commonly used distributions, the Triangular and 
the Lognormal, show great variation in performance, although the mean performance of the 
Lognormal distribution is better than that of the Normal distribution. Good performance is 
obtained by a set of distributions (essentially everything below Cauchy), including the two 
Johnson distributions, the Gamma, and the Weibull. 
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Figure 1 Equal-Probable Chi-Square test, all experiments and all distributions 
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4.1.2 Recovery of true mean 

The recovery of the mean of the true distribution is of crucial importance in Mixed Logit 
analysis. As such, the comparison between the mean values produced by true and target 
distributions is an important measure of performance. The Cauchy distribution was not 
included in this comparison (moments not available), while in addition to the distributions 
listed in the introduction to section 4.1., only a limited number of comparisons were possible 
for the Inverted Weibull distribution.  

The results are summarised in Figure 2, with distributions sorted by the mean difference 
between the means of the true and target distributions. The analysis shows good overall 
performance by the distributions, with some exceptions, with distributions leading to over-, 
respectively underestimated means. Exceptions in the first group include the Lognormal, 
which, although offering good median performance, is ranked poorly because of some huge 
outliers. Other examples in this group include the Inverted Weibull, Uniform, and Triangular 
distributions, with the Error and Wald distributions leading to bias to the left of the true mean 
value. 
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Figure 2 Recovery of mean values, all experiments and all distributions 
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4.1.3 Recovery of true variance 

In the analysis of the recovery of the variance of the true distribution, five distributions had to 
be excluded from the analysis, as the variance was not available; these are the Pearson Type 
V, Pareto, Johnson SB, Inverted Weibull, and Cauchy distributions. In addition to the 
distributions listed in the introduction to section 4.1., only a limited number of comparisons 
could be made for the Log-Logistic and Log-Laplace distributions. 

The results are summarised in Figure 3, ranked by the mean difference in the variance. Most 
distributions overestimate the true variance, but while this overestimation is acceptable for 
about half of the distributions, problems exist for example in the case of the Lognormal 
(acceptable median performance, but some big outliers) and Triangular distributions. 
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Figure 3 Reproduction of variance, all experiments and all distributions 
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4.1.4 Likelihood 

In the analysis of the performance in terms of likelihood, the relative likelihood was used. As 
such, for each experiment, the mean likelihood across distributions was calculated in each 
experiment, and the relative likelihood for each distribution (in relation to the mean 
likelihood) was used as the measure of performance. As such, a value larger than 1 indicates 
above average performance for that distribution. 

The results are summarised in Figure 4. They show very good performance by the two 
Johnson distributions, the Beta and Gamma distributions and the Weibull distributions. For 
other distributions, such as the Pearson distributions, the performance is highly variable. This 
is also the case for the commonly used Lognormal and Normal distributions, where especially 
the latter sometimes offers better-than-average, and sometimes lower-than-average 
performance. 
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Figure 4 Relative likelihood performance, all experiments and all distributions 

0.00 1.00 2.00 3.00

relative likelihood  per observation

Wald
Pareto

Error
Uniform

Triangular
Inverse-Gaussian
Inverted-Weibull

Exponential
Pearson-Type-V

Extreme-Value-A
Chi-Square

Cauchy
Power-Function

Extreme-Value-B
Normal

Laplace
Random-Walk

Logistic
Erlang

Lognormal
Log-Logistic

Log-Laplace
Pearson-Type-VI

Weibull
Gamma

Johnson-SU
Beta

Johnson-SB
AA

AA AA

A

AAA

A

AA

AA

A

A AA

A

AAA

AA

AA A

A

AA

A

A

AA AAA

A

S S

S S

SS

S

S S

SSS

S

S

S

S S

S

SS

n= 22

n= 24
n= 24

n= 23

n= 24

n= 24

n= 24

n= 23

n= 24

n= 24
n= 24

n= 24

n= 11

n= 24

n= 23
n= 24

n= 24

n= 24

n= 24

n= 14

n= 12

n= 17

n= 24

n= 24

n= 23
n= 24

n= 24

n= 24

4.1.5 Lower Octile 

The next part of the analysis looks at the recovery of the lower octile, with results shown in 
Figure 5. Again, some performance perform very well, notably the two Johnson distribution, 
and the Beta and Gamma, while others, namely the Triangular and Uniform, overestimate the 
lower octile, and others, most notably the Extreme Value A and Error distributions, 
underestimate the lower octile. The mean performance of the Normal is acceptable, though 
there are some outliers, with underestimated lower octiles. This is caused mainly by the 
experiments using true distributions bounded to the left, where the symmetric nature of the 
Normal can lead to problems with the lower limits, as stressed by Hess et al. (2005a). 
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Figure 5 Recovery of lower octile, all experiments and all distributions 
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4.1.6 Upper Octile 

A clearer picture emerges for the analysis using the recovery of the upper octile as the 
performance measure, as shown in Figure 6. Here, significant problems with overestimation 
are exhibited by the Pearson Type V, Pareto and Inverted Weibull distributions, while some 
problems with overestimated upper octiles (in some of the experiments), exist for Uniform, 
Triangular, and Lognormal distributions, amongst others. The Normal performs very well in 
these experiments, which may be a reflection of the use of true distributions with a longer tail 
to the right.  



Swiss Transport Research Conference 
________________________________________________________________________________March 9-11, 2005 

16 

Figure 6 Recovery of upper octile, all experiments and all distributions 
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4.1.7 DF-mean 

The results of the comparison using the mean difference between the true and target density 
function are summarised in Figure 7. They show good performance for a set of distributions, 
including the Johnson SU, Logistic and Normal, with acceptable performance by the Gamma, 
Johnson SB and Beta, amongst others. 
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Figure 7 Mean difference in density function, all experiments and all distributions 

0.0 0.2 0.4 0.6

Johnson-SU
Logistic

Normal
Laplace

Extreme-Value-B
Extreme-Value-A

Erlang
Weibull

Gamma
Johnson-SB

Cauchy
Log-Logistic

Beta
Log-Laplace
Random-Walk

Pearson-Type-VI
Lognormal

Inverse-Gaussian
Exponential

Power-Function
Chi-Square

Pearson-Type-V
Triangular

Inverted-Weibull
Error

Pareto
Wald

Uniform

AA

AA

AA

A

A

A

A

AA

S SSS

S S S

S

SS S

S S

S

S

n= 23

n= 24

n= 24

n= 23

n= 24

n= 24

n= 24
n= 24

n= 24

n= 24

n= 24

n= 24

n= 11

n= 24

n= 24

n= 24

n= 24

n= 24

n= 24

n= 15

n= 13

n= 17

n= 24

n= 25

n= 23

n= 24
n= 26

n= 24

4.1.8 DF-max 

The results using the maximum difference between the true and target density functions are 
shown in Figure 8; they are largely consistent with those in section 4.1.7., and 4.1.1. 
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Figure 8 Maximum difference in density function, all experiments and all 
distributions 
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4.1.9 Weighted difference approach A 

As expected, the use of the first weighted difference approach, given by equation [4] yields 
very high values for some of the distributions, showing problems with the extremes of the 
distributions. As shown in Figure 9, this is for example the case with the Lognormal 
distribution, highlighting the well-documented problems with the heavy tail for this 
distribution. With this measure, the best performance is obtained by the Beta distribution. 
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Figure 9 Weighted difference approach A, all experiments and all distributions 

4.1.10 Weighted difference approach B 

The results using the approach described by equation [5] are comparable to those obtained 
with equation [4], but with fewer extreme values, as highlighted in Figure 10. This is notably 
the case for the Lognormal distribution, which now offers better performance; this suggests 
that the problems with the heavy tails are principally due to the upper few percentiles, towards 
the upper end of the upper octile. The best performance is now offered by the Johnson SU 
distribution. 



Swiss Transport Research Conference 
________________________________________________________________________________March 9-11, 2005 

20 

Figure 10 Weighted difference approach B, all experiments and all distributions 
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4.1.11 Summary for first set of comparisons 

The results of this first set of comparisons have shown some differences depending on the 
measure used. Nevertheless, some consistent results are obtained. These notably show good 
performance for the two Johnson distributions, and, depending on the measure used, also the 
Gamma, Beta and Erlang distributions. The Normal offers acceptable performance overall, 
while the well-documented problems with the upper tail of the Lognormal are also highlighted 
by some of the measures. 

4.2 Best fitting distributions 
The second part of the analysis uses only the best-fitting distributions, but additionally uses 
segmentation by dataset, thus showing the performance of the different target distributions on 
the separate true distributions. 

We first summarise the results from section 1, by ranking the distributions according to the 
different criteria, as shown in Table 1. In this comparison, the absolute values were used for 
non-strictly signed measures, to avoid cancelling-out effects. In this way, left-ward bias is 
judged in the same way as right-ward bias, at least in this ranking. 
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Table 1: Overall ranking of distributions by different criteria 
absolute 
difference 
in mean 

absolute 
difference 
in variance 

Log-
Likelihood 
Function 

absolute 
difference 
in lower 
octile 

absolute 
difference 
in upper 
octile 

DF-Mean DF-Max weighted 
difference 7 
percentiles 

weighted 
difference 5 
percentiles 

Erlang Normal Pearson-V Pearson-VI Joh.-SU Joh.-SU Joh.-SU Beta Joh.-SU 
Exponential Pearson-V Pearson-VI Gamma Logistic Logistic Logistic Erlang Logistic 
R-Walk Beta Joh.-SB Pearson-V Beta Normal Weibull P.-Funct. Beta 
Inv.-Gau. Joh.-SU Weibull Joh.-SU Laplace Laplace Normal Joh.-SB Erlang 
Normal Erlang Gamma Log-Logis. Erlang E-Val.-B E-Val.-B Logistic Gamma 
         
Gamma Logistic Log-Lapl. Lognormal Gamma E-Val.-A Log-Logis. Gamma Weibull 
Joh.-SU Gamma Log-Logis. Erlang Normal Erlang Joh.-SB Triangular Laplace 
Joh.-SB Laplace Beta Logistic Weibull Weibull Laplace E-Val.-B Pearson-VI 
Beta E-Val.-B R-Walk Beta Cauchy Gamma Gamma Joh.-SU E-Val.-B 
Logistic Log-Logis. Lognormal Weibull E-Val.-B Joh.-SB Erlang Normal Normal 
         
E-Val.-B Error Logistic Joh.-SB Pearson-VI Cauchy Log-Lapl. Laplace Joh.-SB 
Laplace R-Walk Erlang E-Val.-B Joh.-SB Log-Logis. Cauchy R-Walk Cauchy 
Log-Logis. Chi-Square Laplace Log-Lapl. Error Beta Lognormal Error R-Walk 
Pearson-V Log-Lapl. E-Val.-B Laplace R-Walk Log-Lapl. Beta Uniform Inv.-Gau. 
Pearson-VI Pearson-VI Cauchy Normal Inv.-Gau. R-Walk Pearson-VI E-Val.-A Lognormal 
         
Log-Lapl. Exponential Normal Pareto E-Val.-A Pearson-VI E-Val.-A Exponential Log-Logis. 
Chi-Square E-Val.-A Pareto R-Walk Lognormal Lognormal R-Walk Inv.-Gau. Chi-Square 
E-Val.-A P.-Funct. P.-Funct. Inv.-Gau. Chi-Square Inv.-Gau. Chi-Square Wald Log-Lapl. 
Error Triangular Chi-Square Chi-Square Log-Logis. Exponential Exponential Pearson-VI Error 
P.-Funct. Uniform Joh.-SU Cauchy Exponential P.-Funct. Inv.-Wei. Weibull Exponential 
         
Weibull Inv.-Gau. Exponential Inv.-Wei. Wald Chi-Square Pearson-V Cauchy E-Val.-A 
Pareto Wald Inv.-Wei. P.-Funct. Log-Lapl. Pearson-V P.-Funct. Chi-Square P.-Funct. 
Wald Weibull E-Val.-A Triangular P.-Funct. Triangular Triangular Log-Logis. Wald 
Triangular Lognormal Inv.-Gau. Exponential Triangular Inv.-Wei. Inv.-Gau. Log-Lapl. Triangular 
Uniform  Uniform Wald Uniform Error Pareto Lognormal Uniform 
         
Inv.-Wei.  Error Error Inv.-Wei. Pareto Uniform Pareto Inv.-Wei. 
Lognormal  Triangular Uniform Pareto Wald Error Inv.-Wei. Pareto 
  Wald E-Val.-A Pearson-V Uniform Wald Pearson-V Pearson-V 

Although there are some differences across criteria, some overall conclusions are possible, as 
already indicated in section 4.1.11. It seems like the Triangular is lacking flexibility, that the 
Lognormal offers terrible performance for mean and variance, as expected, and that the 
Normal does very well for mean and variance, while it performs poorly for the lower octile, 
especially in the presence of left-bounded distributions, as we will see later. 

From the original set of distributions, the following thirteen were retained. They include the 
best-fitting distributions, along with some of the most-commonly used ones. Additionally, 
they give a fairly representative selection from the three groups of distributions, although the 
balance has somewhat shifted towards unbounded distributions, when compared to the 
frequencies in the list set out in sections 3.2.1. and 3.2.2. 

 

 



Swiss Transport Research Conference 
________________________________________________________________________________March 9-11, 2005 

22 

 

• Retained unbounded distributions 
o Extreme Value Type B 
o Johnson SU 
o Laplace 
o Logistic 
o Normal 

• Retained left-bounded distributions 
o Erlang 
o Gamma 
o Log-Logistic 
o Lognormal 
o Pearson Type VI 
o Weibull 

• Retained distributions bounded on both sides 
o Beta 
o Johnson SB 

It is of interest to look at the frequencies for the different distributions in the specific 
experiments, as summarised in Table 3. They show low representation for the Johnson SU 
and also for the Pearson Type VI, although the latter is used in at least one experiment in each 
group. 

Table 2 Experiments by distribution and data-set 
  Dataset  
 

 
Normal Normal 

truncated
Normal 

censored

Normal 
with 

mass 
SB Lognormal Total 

Beta 4 4 4 4 4 3 23 
Erlang 4 4 4 4 4 3 23 
Extreme-Value-B 4 4 4 4 4 4 24 
Gamma 4 4 4 4 4 4 24 
Johnson-SB 4 4 4 4 4 4 24 
Johnson-SU 3 0 1 4 0 3 11 
Laplace 4 4 4 4 4 4 24 
Log-Logistic 4 4 4 4 4 4 24 
Logistic 4 4 4 4 4 4 24 
Lognormal 4 4 4 4 4 4 24 
Normal 4 4 4 4 4 4 24 
Pearson-Type-VI 1 4 4 2 2 4 17 

Ta
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Weibull 4 4 4 4 4 4 24 
 Total 48 48 49 50 46 49 290 

Given the experiences from section 3, only three measures of performance were retained for 
the analysis using the more limited set of distributions, namely the mean and maximum 
difference in the density function, and the weighted approach using 5 percentile points 
(equation [5]). 

With a few exceptions (notably the Lognormal), the distributions used in this part of the 
analysis give relatively stable performance, such that only the mean values were used in the 
comparison, where an additional segmentation by dataset was however used (reducing the 
number of values to a maximum of 4 in each average). In each case, the results also include 
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the mean performance across datasets for each distribution, taking into account the number of 
experiments in each group. 

4.2.1 DF-mean 

The first analysis in this part of the paper looks at the mean difference between the true and 
target density functions, with results summarised in Table 3 and Figure 11.  

Only a very limited number of comparisons were available for the Johnson SU distribution, 
but those available show very good performance, with by far the best performance on 
average. Surprisingly, it also seems to outperform the Lognormal distribution on the actual 
Lognormal data (along with the Johnson SB), which could be an indication of high sampling 
error in the data. 

Very good performance is also obtained with the Logistic distribution, and to a lesser extent 
the Laplace distribution. The performance of the Normal distribution is also generally good, 
though it struggles somewhat when the true distribution is SB or Lognormal, as do the 
Logistic and Laplace. Finally, while the Beta works well in some cases, it seems to have 
major problems when the true distribution is SB. Furthermore, all distributions have problems 
with true distributions with a mass at a point (either as an endpoint or in between), though 
some are able to cope with it better than others, above all the Logistic and Laplace, and, 
where available, the Johson SU. 

Table 3 Performance for best-fitting distributions, mean difference in density function 
  Dataset  
 

 
Normal Normal 

truncated
Normal 

censored
Normal 

with 
mass 

SB Lognormal Weighted 
Mean 

Beta 0.0061 0.0075 0.0651 0.0932 0.2190 0.0084 0.0691 
Erlang 0.0138 0.0278 0.0422 0.0723 0.0605 0.0072 0.0386 
Extreme-Value-B 0.0270 0.0140 0.0226 0.0603 0.0585 0.0064 0.0326 
Gamma 0.0130 0.0187 0.0891 0.0830 0.0353 0.0043 0.0421 
Johnson-SB 0.0099 0.0190 0.1333 0.1199 0.0108 0.0018 0.0512 
Johnson-SU 0.0014  0.0019 0.0156  0.0009 0.0034 
Laplace 0.0165 0.0210 0.0217 0.0303 0.0637 0.0113 0.0281 
Logistic 0.0062 0.0160 0.0147 0.0262 0.0506 0.0109 0.0212 
Log-Logistic 0.0162 0.0432 0.1601 0.0899 0.0593 0.0060 0.0649 
Lognormal 0.0227 0.0550 0.1827 0.1145 0.0629 0.0038 0.0766 
Normal 0.0012 0.0181 0.0154 0.0301 0.0614 0.0159 0.0240 
Pearson-Type-VI 0.0239 0.0436 0.1142 0.1745 0.0925 0.0042 0.0786 
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Weibull 0.0057 0.0084 0.0969 0.0691 0.0519 0.0066 0.0412 
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Figure 11 Performance for best-fitting distributions, mean difference in density 
function 
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4.2.2 DF-max 

The results for the analysis using the maximum difference in the density function as the 
measure of performance are summarised in Table 4 and Figure 12. It is of interest to look at 
the correlation between these results and those obtained for the mean differences in the 
density function. The overall correlation (looking at the weighted mean performance) is quite 
high, at 0.77. When looking at the correlation in separate groups, i.e. different true 
distributions, as in Table 5, it becomes visible that this applies only to a lesser degree for the 
Lognormal and censored Normal datasets. The distribution-specific correlation-levels also 
show high correlation in most cases. The correlation is lower for the Normal distribution, 
Laplace, Logistic and Extreme-Value-B, while it is surprisingly negative for the Logistic, 
suggesting that good mean performance is linked to poor maximum error in this case, and 
vice-versa. Overall, for stability reasons, distributions with high levels of correlation between 
the two measures are preferable, which again speaks in favour of the Johnson distributions, 
and the Gamma and Beta distributions, where the problems of the latter with some target 
distributions however causes concerns. The problems of the Laplace, Logistic and Normal 
distributions with the SB and Lognormal distributions persist. 
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Table 4 Performance for best-fitting distributions, maximum difference in density function 
  Dataset  
 

 
Normal Normal 

truncated
Normal 

censored

Normal 
with 

mass 
SB Lognormal Weighted 

Mean 

Beta 0.0216 0.0270 0.2067 0.2139 0.3030 0.0604 0.1422
Erlang 0.0448 0.0828 0.1768 0.1797 0.1624 0.0704 0.1216
Extreme-Value-B 0.0617 0.0457 0.0929 0.1373 0.1567 0.1180 0.1014
Gamma 0.0431 0.0523 0.2325 0.1986 0.1149 0.0702 0.1207
Johnson-SB 0.0305 0.0549 0.2705 0.2232 0.0325 0.0139 0.1082
Johnson-SU 0.0080  0.0064 0.0819  0.0144 0.0186
Laplace 0.0463 0.0967 0.0645 0.0917 0.1849 0.2099 0.1116
Logistic 0.0192 0.0772 0.0549 0.0895 0.1403 0.1773 0.0894
Log-Logistic 0.0376 0.0700 0.2198 0.1614 0.1155 0.0184 0.1075
Lognormal 0.0637 0.1054 0.2971 0.2283 0.1214 0.0201 0.1445
Normal 0.0073 0.0703 0.0605 0.0909 0.1559 0.2183 0.0954
Pearson-Type-VI 0.0675 0.0962 0.2594 0.3398 0.1268 0.0483 0.1610
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Weibull 0.0208 0.0271 0.2093 0.1649 0.0886 0.0544 0.0959

 

Figure 12  Performance for best-fitting distributions, maximum difference in 
density function 
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Table 5  Correlation between mean and maximum difference 
in density function, segmentation by true distribution 

Normal Normal 
truncated 

Normal 
censored 
and mass 
point 

Normal 
with 
mass 
point 

Sb Lognormal 

0.887134 0.807444 0.563389 0.86657 0.885776 0.679837 

 

Table 6 Correlation between mean and maximum difference in density 
function, segmentation by target distribution 

Johnson-SB 0.99759 

Lognormal 0.99142 

Johnson-SU 0.98877 

Gamma 0.97176 

Weibull 0.97028 

Pearson-Type-VI 0.96140 

Beta 0.92244 

Erlang 0.89678 

Extreme-Value-B 0.67717 

Normal 0.47738 

Laplace 0.33554 

Log-Logistic 0.31148 

Logistic -0.30801 

4.2.3 Weighted difference, 5-points 

The final part of the analysis looks at the performance obtained when using the weighted 
difference defined by equation [5], with results summarised in Table 7, and Figure 13, where 
the Figure had to be censored above, due to the very poor performance of the Log-Logistic 
and Lognormal on the Normal dataset. The results repeat the problems that the Normal has in 
the case of the Lognormal dataset. A closer analysis shows this to be due largely to the poor 
performance for the lower extreme value, the lower octile, and to lesser degree the lower 
quantile. This is especially the case in the example using a mean close to zero, with a high 
standard deviation. This validates claims and empirical results by Hess et al. (2005a), who 
note that the Normal may in this case falsely indicate a large negative share for the 
distribution. 
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Table 7 Performance for best-fitting distributions, weighted difference using 5 percentiles 
  Dataset  
 

 
Normal Normal 

truncated
Normal 

censored

Normal 
with 

mass 
SB Lognormal Weighted 

Mean 

Beta 1.0854 0.2229 0.9773 1.2648 0.3819 0.2910 0.7218
Erlang 1.4284 1.0043 0.6793 1.0848 0.1746 0.1522 0.7801
Extreme-Value-B 3.5961 0.5488 0.4971 1.5198 0.1732 0.4813 1.1645
Gamma 1.2984 0.3683 1.2136 1.1357 0.2812 0.4267 0.8030
Johnson-SB 1.2947 0.7608 2.9349 1.8631 0.0214 0.0905 1.2075
Johnson-SU 0.1109  0.0000 0.4985  0.0222 0.1089
Laplace 1.4838 1.0786 0.5969 0.8624 0.1986 0.8686 0.8473
Logistic 0.7745 0.7073 0.4603 0.4596 0.1315 0.8543 0.5520
Log-Logistic 1.4371 1.0393 18.7060 2.0883 0.1263 0.1088 4.0832
Lognormal 2.4975 1.3993 13.9130 2.6118 1.4114 0.1085 3.8112
Normal 0.1818 0.5612 0.3598 0.4852 0.1691 5.0859 0.9690
Pearson-Type-VI 0.9872 1.1347 1.9039 1.9373 0.3127 0.1364 1.1092

Ta
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Weibull 0.8736 0.1893 1.9003 1.1051 0.3398 0.3424 0.8113

 

Figure 13  Performance for best-fitting distributions, weighted difference using 5 
percentiles 
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4.2.4 Summary 

As a final summary, the measure from section 4.3.3. was used to calculate the ranking of the 
different distributions in the different experiments, as shown in Table 8. Overall, these are 
consistent with the results found when using the measures in section 4.3.1. and 4.3.2., though 
with some differences, notably for the Beta distribution. It should be noted that the seemingly 
better performance by the Johnson SU than by the Normal on Normal data is down to lower 
number of experiments with Johnson SU, and sampling error. A similar reasoning applies 
when the true distribution is Lognormal. 

In summary, the following observations can be made: 

• The best overall performance is offered by the Johnson SU distribution, though it 
remains to be seen whether its applicability is similarly limited in practice (i.e. Mixed 
Logit analysis) as it is in ExpertFit. The performance is also somewhat masked by the 
low number of comparisons conducted for this distribution. 

• Good performance is also in general obtained with the seemingly thus far unused (or 
at least not commonly used) Beta, Erlang, Gamma, Logistic, and Weibull 
distributions. 

• For the SB distribution, good performance is only obtained on the SB and Lognormal 
datasets, which causes some concerns. 

• The Lognormal distribution offers some of the poorest performances, largely due to its 
tail and strict shape assumptions. 

• Good performance is in some cases also obtained by the Extreme-Value Type B 
distribution. 

• It seems that the Normal distribution performs very well in most cases, though the 
performance on the Lognormal dataset causes a lot of concern. Also, the results from 
section 4.2.3., and 4.1. in general, highlight the need to be careful not to infer 
conclusions based on the tail behaviour of this distribution (and other unbounded 
ones). 

 

Table 8 Ranking of different distributions, using 5-point weighted difference 
  Dataset  
 

 
Normal Normal 

truncated
Normal 

censored

Normal 
with 

mass 
SB Lognormal Weighted 

Mean 

Beta 6 2 7 8 11 7 3 
Erlang 9 8 6 5 6 6 4 
Extreme-Value-B 13 4 4 9 5 10 10 
Gamma 8 3 8 7 8 9 5 
Johnson-SB 7 7 11 10 1 2 11 
Johnson-SU 1  1 3  1 1 
Laplace 11 10 5 4 7 12 7 
Logistic 3 6 3 1 3 11 2 
Log-Logistic 10 9 13 12 2 4 13 
Lognormal 12 12 12 13 12 3 12 
Normal 2 5 2 2 4 13 8 
Pearson-Type-VI 5 11 10 11 9 5 9 
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Weibull 4 1 9 6 10 8 6 



Swiss Transport Research Conference 
________________________________________________________________________________March 9-11, 2005 

29 

It should be noted that none of the distributions performs overly well in the presence of a 
point with heightened mass, though some are able to deal with it better than others. For this, 
the most reliable measure seems to be the maximum difference in the density function, which 
suggests better-than-average performance for the Johnson SU (where available), the Laplace 
and Logistic distributions, and surprisingly also the Normal distribution. 

 

5. Summary, Conclusions and Recommendations 
In this paper, we have conducted an empirical comparison of various continuous distributions, 
with the aim of offering guidance for the choice of distribution in Mixed Logit analysis. The 
comparison included a large number of target distributions, with 6 different types of true 
distributions being used to generate the 24 separate datasets used in the analysis. 

The results from the analysis are mixed. They show that flexible distributions, such as the 
Johnson SU, Gamma, Beta, Erlang, Laplace and Logistic have certain advantages over 
inflexible distributions. However, in some cases, problems with model fitting may arise with 
the use of these distributions. The results also show that the commonly used Normal 
distribution performs well in terms of recovering the mean and variance of the true 
distribution, as well as the overall shape of the density function, but that its symmetrical 
nature can lead to problems in the tails of the distribution, if the true distribution is 
asymmetrical. The analysis also shows the usual problems with the heavy tails of the 
Lognormal distribution, but worryingly also suggests that the recently much-heralded 
Johnson-SB distribution does not perform well in all scenarios. 

In the context of recent discussions of the distribution of value of travel-time savings (VTTS) 
(c.f. Cirillo & Axhausen, 2004, Hess et al., 2005a), it is of interest to look at the performance 
of the different distributions in the presence of a true distribution bounded at one end, and 
distributions having an inflated mass at one point, with a view to allowing for a zero VTTS.  

The analysis shows that the use of symmetrical distributions, such as the Normal, can lead to 
problems with the tails, such that, if the Normal is used, no information should be inferred on 
the basis of its tail behaviour, though it can offer valid estimates of the mean and variance. 
Problems can also be caused by distributions bounded to one side, as their generally long tails 
to the other side can cause problems. On the other hand, it also seems that distributions 
bounded on both sides, such as the Johnson SB, offer suboptimal performance in some cases. 
At least in the examples presented here, unbounded, but flexible distributions (allowing for 
asymmetry), such as the Johnson SU, Laplace and Logistic seem to be preferable. In this case, 
it is however still important to be careful not to infer too much information on the basis of the 
extreme values in the tails of the distributions. 

In terms of recovering a mass at a given point, none of the distributions seems to be able to 
cope very well. As such, it is of interest to use mixtures of distributions. In the case where the 
main distribution is to be continuous, with an inflated mass at one point, only zero should 
really be seen as a candidate for such a point, given its specific role. As such, the location of 
the mass need not be estimated; this belongs to the domain of purely discrete mixtures of 
discrete choice models, as described by Hess et al. (2005c). Fixing the location of the support 
point also greatly facilitates the estimation of the model.  

In this case, the following approach can be used. Let’s assume we want to use a Normal 
distribution, with a mass at zero. In this case, we estimate three parameters; the mean of the 
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Normal distribution, µ, its standard deviation, σ, and the mass at zero, γ. In the estimation 
code, simulation over the distribution is used at each iteration of the optimisation algorithm. 
In each iteration of the simulation process, a random draw (or quasi-random draw), say r, is 
used, where r is contained between 0 and 1. With this draw r, a draw from the N(µ,σ) 
distribution with a mass of γ at zero is produced as follows. If the draw r is smaller than γ, the 
value of the draw from the distribution at this iteration of the simulation algorithm is set to 0. 
Otherwise, it is set to  

µ+σ·Φ-1((r-γ)/(1-γ)),        …[6] 

where Φ-1() is the Inverse Cumulative Normal distribution. 

As an example, with µ=3.5, σ=1, and γ=0.1, the distribution obtained with this approach has 
the shape shown in Figure 14 (using 10,000 draws). A similar approach can be used with any 
other underlying continuous distribution, by replacing Φ-1() by the appropriate inverse 
transform. 

 

Figure 14 Distribution of N(3.5,1) with 10% mass at 0 
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