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Abstract. Much of the DNA and RNA sequencing data available is in the form of high-throughput
sequencing (HTS) reads and is currently unindexed by established sequence search databases. Recent
succinct data structures for indexing both reference sequences and HTS data, along with associated
metadata, have been based on either hashing or graph models, but many of these structures are static
in nature, and thus, not well-suited as backends for dynamic databases.
We propose a parallel construction method for and novel application of the wavelet trie as a dynamic
data structure for compressing and indexing graph metadata. By developing an algorithm for merging
wavelet tries, we are able to construct large tries in parallel by merging smaller tries constructed
concurrently from batches of data.
When compared against general compression algorithms and those developed specifically for graph
colors (VARI and Rainbowfish), our method achieves compression ratios superior to gzip and VARI,
converging to compression ratios of 6.5% to 2% on data sets constructed from over 600 virus genomes.
While marginally worse than compression by bzip2 or Rainbowfish, this structure allows for both
fast extension and query. We also found that additionally encoding graph topology metadata improved
compression ratios, particularly on data sets consisting of several mutually-exclusive reference genomes.
It was also observed that the compression ratio of wavelet tries grew sublinearly with the density of
the annotation matrices.
This work is a significant step towards implementing a dynamic data structure for indexing large
annotated sequence data sets that supports fast query and update operations. At the time of writing,
no established standard tool has filled this niche.
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1 Introduction

1.1 Background

The ever-decreasing cost of high-throughput sequencing (HTS) has led to massive growth in the
availability of DNA and RNA sequencing data to researchers and the greater scientific commu-
nity [21]. Several large-scale projects, such as the 1000 Genomes Project [4], UK10K [33], and
many others [32, 35], have enabled us to much more extensively sample the genetic variation among
humans and other organisms of interest. In addition to providing raw sequencing reads, follow-up
projects such as ExAC and gnomAD have consolidated some of this data into large variant call sets
to facilitate subsequent analysis [16]. However, the rate of sequencing data generation continues to
exceed the rate at which these data can be indexed, processed, and analyzed [21].

Traditional sequence indexing and search methods, such as hash table-based seed-and-extend [2]
or Burrows-Wheeler transform (BWT)-based [6] read-to-reference alignment [18], are optimized for
relatively small1 databases of long reference sequences, and thus, HTS data have remained largely
unindexed and not efficiently searchable. The development of metagenomics has complicated the
issue even further, since sequence information from millions of as-of-yet uncharacterized organisms
is available only in HTS data sets [32, 9]. Without sufficient sequencing data or reference genomes to
properly assemble the genomes of individual species from these samples, much of this valuable data
is currently difficult to process for specialists and inaccessible to non-specialists from the greater
research community.

1.2 Recent models for metagenome indexing

Recent models for sequence indexing can be divided into two main groups: hashing-based and
graph-based.

Hashing-based methods use probabilistic data structures for lossy or lossless compression of
sequences, graph elements, or metadata, and allow for fast approximation of various queries, such
as similarity between pairs of sequences [23], membership in a set of sequences [24], or subsequence
counting [36]. Recently, sequence Bloom trees [29] and split-sequence Bloom trees [30] have been
introduced for indexing HTS data. However, due to their use of Bloom filters for sequence matching,
they require recomputation with different parameters as they saturate to maintain a given false
positive rate. Each hashing method is typically optimized for performing a narrow range of queries,
and thus, a separate copy must be stored for every query type supported.

Graph-based methods were first used for assembling short read sequencing data into long con-
tiguous sequences (contigs) [27]. Most of these can be described as variants of de Bruijn graphs [34],
overlap graphs [22], cactus graphs [25], and others [26]. The succinct representation of the uncom-
pacted de Bruijn graph by Bowe, Onodera, Sadakane, and Shibuya [5] (henceforth referred to as
BOSS) has acted as the basis for sequencing projects where the sheer sizes of the input data,
such as metagenomics data sets, have necessitated trading increased running times for dramatically
decreased storage [15, 17, 24, 20].

In order to use a de Bruijn graph as the backend for a sequence search method, however, an
additional method must be developed to encode and compress associated metadata (which we refer
to as graph colorings). When query sequences are mapped to paths on the graph, these paths induce
sequences of colors annotating sections along the paths. Colors on edges can be used as indicators
for various metadata categories (given some ordering of categories), such as their presence in certain
samples, genetic structures, or their implications in diseases[20]. These are encoded as a large bit

1 in terms of the number of sequences
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matrix (which we refer to as the annotation matrix ), with one row for each edge and one column
for each metadata category. One of the early methods for color encoding is the positional BWT [8],
where sample haplotypes are encoded as bit vectors on a reference sequence and a BWT is applied
before they are compressed. This method has also been extended to work with positions on string
graphs [22].

Recent methods using the BOSS representation for colored de Bruijn graphs, such as Bloom filter
tries [14], VARI [20], Rainbowfish [1], and deBGR [24], have proposed methods for succinct com-
pression of graph colors. The VARI pipeline concatenates the rows of its bit matrix and compresses
by Elias-Fano [11, 10] or Raman-Raman-Rao (RRR) [28] coding depending on the proportion of
set bits [20]. The method in Rainbowfish builds on this by computing Huffman codes for the edge
colors and compressing the concatenations of the codes by RRR coding [1]. Bloom filter tries are a
probabilistic data structure for storing the edge labels and colors of a colored de Bruijn graph [14],
while deBGR encodes these in a quotient filter and uses the colors of neighboring edges for er-
ror correction [24]. Although Rainbowfish achieves the best compression ratios among the lossless
methods, its use of Huffman codes does not take full advantage of correlations between columns in
the annotation matrix. In addition, it requires the distribution of the edge color frequencies to be
known beforehand.

These methods rely on static data structures for optimal compression, requiring full decompres-
sion, extension, and recompression steps to perform edits. In the case of Rainbowfish, extensions
can potentially reduce the efficiency of the coding if novel colors follow a different distribution from
those which were used to compute the codes. In the worst case, a full recomputation of all Huff-
man codes would be required at regular intervals to maintain a desired compression efficiency. The
static natures of these methods renders them inadequate for use as backends in dynamic sequence
databases.

We have recently been developing methods for the fast construction and storage of the BOSS
representation of de Bruijn graphs in both static (for fast querying) and dynamic (for fast updates)
data structures, with the ability to convert between internal representations depending on the
desired types of user interaction. In this work, we further extend these methods by proposing
a dynamic data structure for graph colorings compression that takes advantage of correlations
between columns of the annotation matrix and can be combined with other models for sequence
indexing as well.

1.3 Wavelet tries: a dynamic data structure for annotation compression

For the compression of graph colorings, we propose a novel application of the wavelet trie data
structure [13]. Briefly, a wavelet trie is an extension of the concept of a wavelet tree and takes the
shape of a compact prefix tree (a binary radix trie). Instead of compressing strings over a fixed
alphabet, wavelet tries compress tuples of bit vectors, where each vector is the binary encoding of
a string over an alphabet of arbitrary size. This allows the structure to compress dynamic strings
over arbitrary alphabets by finding common contiguous subsequences (or segments) among the bit
vector encodings of its characters. In the context of genome graph coloring, the tuple of bit vectors
can be defined as the rows of the annotation matrix in which the number of columns grows to
encode new categories of metadata. In the worst case, the height of a wavelet trie is equal to the
length of the longest bit vector being compressed (in the case where no common prefices are present
at every internal node).

To the authors’ knowledge, no implementation of this data structure has been reported. In this
manuscript, we present an implementation employing a parallel construction strategy via wavelet
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trie merging. The merging algorithm presented is a generalization of the algorithm provided by the
original manuscript for appending novel bit vectors to an existing wavelet trie [13].

2 Methods

2.1 Succinct de Bruijn graph construction

The Bowe, Onodera, Sadakane, and Shibuya (BOSS) representation of the de Bruijn graph was
chosen as the underlying genome model for this study [5]. Let k be some fixed positive integer and
G be a de Bruijn graph of order k. When the edges of G are sorted by the reverse lexicographical
ordering of the k-mer labels of their respective source nodes (using their own edge labels as tie
breakers), only the last character of each k-mer (vector F ), the edge labels (vector W ), and two
auxiliary bit vectors (vectors ` and W−) need to be stored to represent the graph. ` is an indicator
for the last outgoing edge of a node, while W− is an indicator for all but the first edge leading to a
node with an in-degree greater than one. In this representation, there is a one-to-one correspondence
between F and W , where the ith occurrence of a character c in W with W− value 0 corresponds to
the i occurrence of c in F with ` value 1 [5]. Construction of the BOSS representation of de Bruijn
graphs is done using a binned parallel approach [5, 17].

2.2 Graph coloring during de Bruijn graph construction

Colors are computed for each edge of the de Bruijn graph during construction based on the metadata
of the input sequences from which they are derived. During k-mer enumeration, assign each unique
metadata category a positive integer ID and use these IDs to assign each k-mer a list of category
IDs corresponding to its associated metadata categories. Then, convert the list of IDs to a bit
vector (called an edge color) such that the IDs determine which bits in the vector are set to 1.
When duplicate edges are removed during graph construction, combine their respective bit vectors
via bitwise OR operations to define the new color of the remaining edge. Alongside the succinct de
Bruijn graph, this process results in an auxiliary annotation matrix with n rows corresponding to
the edges of the graph and m columns corresponding to the total number of unique metadata strings
observed during construction. The resulting graph-matrix pair is a colored de Bruijn graph. When
this graph is queried, sequences are mapped to a path (a sequence of edges) and a corresponding
sequence of annotation matrix rows.

2.3 Graph color compression with wavelet tries

To greatly reduce the required storage space of the annotation matrix, while allowing for dynamic
extension and random access to matrix rows, we chose to employ the wavelet trie data structure.

Definitions and notation Given a bit vector b ∈ {0, 1}∗ (a finite string over the binary alphabet
{0, 1}), we use the notation |b| to refer to its length, b[i] to refer to its ith character, 1 ≤ i ≤ |b|,
b[j : k] to refer to the bit vector b[j] · · · b[k], b[: k] to refer to its prefix b[1 : k], and b[j :] to refer to
its suffix b[j] · · · b[|b|]. The empty vector is denoted ε.

The function rank0(b, j) (rank1(b, j)) counts the number of 0 (1) characters in b[: j], while
select0(b, j) (select1(b, j)) returns the index of the jth 0 (1) in b. Also, we will use the notation
2A to denote the power set of a set A and abuse the notation | · | to refer to both set cardinalities
and bit vector lengths.
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Construction The wavelet trie encoding the annotation matrix A ∈ {0, 1}n×m is constructed
recursively and is a binary tree of the form T = (V,E) (see Figure 1), where its nodes nj ∈ V ,
j ∈ {1, . . . , |V |} are of the form

nj = (αj , βj), αj , βj ∈ {0, 1}∗.

The αj are referred to as the longest common prefices (LCPs) and the βj are referred to as the
assignment vectors.

The algorithm starts with the root node n1. We define the initial set of input bit vectors to be
the rows of A, B1 = (b11, . . . , b

n
1 ), where bi1 ∈ {0, 1}m for all i ∈ {1, . . . , n}.

On the jth iteration, for a list of input bit vectors Bj = (b1j , . . . , b
`
j), b

i
j ∈ {0, 1}k, ∀i ∈ {1, . . . , `},

compute nj as follows: Compute the longest common prefix αj ← LCP({b1j , . . . , b`j}) for the bit

vectors in Bj . Formally, this function is defined as follows, LCP : 2{0,1}
∗ → {0, 1}∗,

LCP(S) = arg max
{α∈{0,1}∗| ∀s∈S ∃γ∈{0,1}∗: s=αγ}

|α|.

If the computed αj matches all the input bit vectors, nj is referred to as a leaf and let the assignment
vector be βj ← ε. Then terminate this branch. Otherwise, the set the assignment vector to be the
concatenation of next significant bits in each of the bij , i ∈ {1, . . . , `} after removing the common
prefix αj ,

βj ← b1j [|αj |+ 1] · · · b`j [|αj |+ 1].

Continue the recursion on the child nodes n2j and n2j+1 with the new sets of bit vectors B2j and
B2j+1, respectively, which are defined by partitioning Bj based on βj and removing the first |αj |+2
bits,

B2j ← (b
select0(βj ,1)
j [|αj |+ 2 :], . . . , b

select0(βj ,rank0(βj ,|βj |+1))
j [|αj |+ 2 :]),

B2j+1 ← (b
select1(βj ,1)
j [|αj |+ 2 :], . . . , b

select1(βj ,rank1(βj ,|βj |+1))
j [|αj |+ 2 :]).

Fig. 1. A wavelet tree (left) and a wavelet trie (right) constructed for the string GATTACA$ and the
binary encodings of its characters, respectively. Wavelet tree: Characters are each node of the wavelet trie
are divided equally amongst its two children, with a bit vector indicating these assignments. A node is a leaf when
it is assigned only one character. In internal nodes, only the bit vectors need to be stored to allow traversal to the
correct leaf when querying the wavelet tree. Wavelet trie: In a wavelet trie, strings are encoded as tuples of bit
vectors. At a node, the common prefix of the bit vectors is extracted and the next significant bit is used to assign
the bit vector suffices to that node’s children. A node is a leaf when all bit vectors assigned to it are equal. In both
structures, index queries are resolved by traversing the tree and performing rank operations on the distribution bit
vectors. In this example, ASCII codes are used to define the binary codes for each character.

.CC-BY-NC 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/236711doi: bioRxiv preprint first posted online Dec. 20, 2017; 

http://dx.doi.org/10.1101/236711
http://creativecommons.org/licenses/by-nc/4.0/
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2.4 Parallel construction via wavelet trie merging

To allow for parallel construction of wavelet tries, we developed an algorithm to merge wavelet
tries as a generalization of the wavelet trie extension method [13]. Merging proceeds by performing
an align and a merge step on each node, starting from the root (see Figure 2 for an illustration
of the process). Given two wavelet tries T ′ and T ′′ with node sets V ′ = {(α′j , β′j)}n

′
j=1 and V ′′ =

{(α′′j , β′′j )}n′′j=1 that we want to merge into a new trie T , the merging process can be summarized as:

1. Align: for the nodes (α′j , β
′
j) and (α′′j , β

′′
j ), compute the longest common prefix LCP({α′j , α′′j })

and make new nodes with this value and appropriate β vectors, set this to be the parent of the
current nodes,

2. Merge: once α′j and α′′j are equal, concatenate β′j and β′′j ,

3. Repeat: move down to j’s children and apply the same function until all leaves are reached.

In the context of compressing the edge colors of a de Bruijn graph, this method assumes that the
columns of two wavelet tries being merged are indicators for matching metadata categories.

For this method, we define the descendants function D : {1, . . . , |V |} → 2{1,...,|V |} for the wavelet
trie T = (V,E) with nodes V = {(αj , βj)}nj=1 by the recurrence

j ∈ D(j), ∀j ∈ {1, . . . , n},
k ∈ D(j) and βk 6= ε⇒ {2k, 2k + 1} ⊂ D(j).

The three steps in the merging operations are as follows:

Align Given nodes (α′j , β
′
j) and (α′′j , β

′′
j ), we compute their longest common prefix

αj ← LCP({α′j , α′′j }).

If αj 6= α′j , we let

β̂′j ← α′j [|αj |+ 1] · · ·α′j [|αj |+ 1]︸ ︷︷ ︸
|β′j |

and update the indices in T ′ by applying the transformation j ← 2j + α′j [|αj | + 1] and updating

all nodes k ∈ D(j) accordingly. We then let α′j ← αj and β′j ← β̂′j and truncate the prefix in the
newly created child nodes,

α′2j ← α′2j [|αj |+ 2 :] if β̂′j [1] = 0,

α′2j+1 ← α′2j+1[|αj |+ 2 :] if β̂′j [1] = 1.

If αj 6= α′′j , the second trie is processed accordingly.

Merge If β′j = ε and β′′j = ε, then terminate. Otherwise, if β′j = ε, set β′j ← 0 · · · 0 (of length
|B′b j

2
c|). (similarly for β′′j ). Then, merge the two assignment vectors

βj ← β′jβ
′′
j
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α: 11
β: 01

α: ε α: ε

α: 110
β: 01

α: 1 α: 1

α: ε
β: 01

α: ε

α: 1
β: 0

α: ε

α: 1
β: 0

α: 11
β: 00

+
α: ε
β: 010

α: ε

α: 1
β: 00

α: ε

α: 1
β: 0

α: 11
β: 0001

α: ε

T1

T1' T2 T1+T2

Fig. 2. Merging of wavelet tries T1 and T2 to form the wavelet trie T1 + T2. Starting from the root node,
the common prefix of the two α vectors is found and new β vectors are computed from the their remainders. These
become new parent nodes and the initial nodes’ α vectors are updated to their respective remainders after removing
the common prefix (e.g., the conversion from from T1 to T ′1). When the two αs are equal, their respective βs are
concatenated and the merging function is applied to their children. When a leaf is reached in one tree, but the
equivalent node in the other tree is internal (e.g., the left child of the root in T1 + T2), the leaf is merged by
appending or prepending additional zeros to the β vectors of all left ancestors. Note that extra leaf nodes producing
trailing zeros in the decoded bit vectors are added during the merging process. See Section 2.4 for more details.

Repeat The merging algorithm is then performed on nodes n2j and n2j+1 depth-first to continue
the recursion.

If two wavelet tries constructed from bit vectors of different lengths are merged, this merging
algorithm leads to the decoding of bit vectors with trailing zeros. Since we indend to use these
vectors as indicators for various metadata, the presence of extra trailing zeros in the decoded bit
vector does not represent false information.

2.5 Computational complexity of wavelet trie operations

Let A ∈ {0, 1}n×m be an annotation matrix. The height of a constructed wavelet trie T = (V,E)
depends on the degree to which the bit vectors share common segments, with the worst-case value
being h ≤ min(n,m) when no segments are shared. Since there can be at most n leaves, and the
maximum height of the tree is at most m, the number of nodes can be at most |V | ≤ min(n, 2m).

Given two wavelet tries T1 and T2, merging is performed in O(max(|V1|, |V2|)) time. Once a tree
is constructed, queries can be performed in O(h) time. To achieve this value, the βj are compressed
with RRR coding [28] to support rank operations in O(1) time.

2.6 Improving compression ratios using graph topology

One of the advantages of maintaining a graph-based model for genome storage is its ability to
efficiently represent an ordering on the k-mers. On the other hand, the ordering provided by the
BOSS representation is rarely optimal for compressing adjacent edge colors by run-length encoding,
since adjacent edges frequently come from different samples. There is, however, an additional degree
of freedom in that the ordering of annotation matrix columns is not fixed. Since the compression
ratio of a wavelet trie depends on both the ordering of the rows (defining the compressability of the
βs) and the similarity of the bit vectors after each assignment during construction (which defines
the height and balance of the tree), we explored whether graph structure could be used to help
provide additional prefix bits to help optimize row segregation.

If we assume that a certain set of paths in the de Bruijn graph (i.e., those corresponding to
reference genomes) act as backbones (whose indicator columns in the annotation matrix we refer to
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as backbone bits), while other paths represent sequence variation, then it is expected that the edge
colors of backbone paths are highly correlated with those of the variation paths. The edge colors
of variation paths can be supplemented by setting the columns of their corresponding backbones
to 1.

We now describe this process more precisely. Let b1, . . . , bn be the rows of the input annotation
matrix and let C = {1, . . . ,m}, where m is the number of columns of the annotation matrix.
Let R ⊂ C be the set of indices/IDs generated from backbone paths/genomes and let P map
elements of R to their corresponding paths in G. The user provides a map B : C → C such that
R = {j | B(j) = j j ∈ C} is the set of fixed points of B. Then, for each j ∈ C and each bi s.t.
bi[j] = 1, we set bi[B(j)]← 1.

When this process is not followed, we say that the backbone bits are unset, whereas applying
this process results in the backbone bits being set. For example, given an index i corresponding to
a backbone and j corresponding to a variant, we say that the backbone bit is set if i = j = 1 and
unset if i = 1 and j = 0.

3 Results

The following section covers our evaluation of the wavelet trie data structure on a variety of data
sets. This includes a comparison of its compression ratio against general compression algorithms
and to those developed specifically for graph colors. In addition, we evaluate the hypothesis that
setting backbone bits using prior knowledge improves compression ratios. Finally, we study how
the compression ratio of wavelet tries behaves as a function of the number of metadata categories
m and the density of the annotation matrix (the ratio of the number of bits set to 1 and nm) a
linear hierarchy (called a chain) of models ranging from 50 to 1000 virus genomes.

3.1 Data sets

Data sets originating from viruses (Virus100 and Virus1000), bacteria (simply Bacteria), and hu-
mans (chr22+gnomAD and hg19+gnomAD) are used in this study to construct graphs with varying
topologies to study their effects on the wavelet trie’s compression ratios. See Appendix Section A.1
for a precise description of the data sets used.

3.2 Wavelet trie compression ratios similar to gzip and bzip2, and better than
previous methods

As baseline comparisons, the compression ratio of wavelet tries was compared to those of the
standard UNIX compression utilities gzip and bzip2 (see Table 1). gzip is an implementation of the
LZ77 algorithm and encodes blocks of text, while bzip2 performs a sequence of transformations,
including run-length encoding, BWT, move-to-front transforms, and Huffman coding. In addition,
the compression performance of wavelet tries was compared to other methods developed specifically
for annotation matrices on succinct de Bruijn graphs, such as the methods presented in VARI [20]
and Rainbowfish [1]. We measured compression performance as numbers of bits stored by the
structures (which we denote s) divided by the total number of bits in the matrices (nm).

The results indicate that wavelet trie compression outperforms gzip and the VARI method.
bzip2 and the Rainbowfish method achieve similar compression ratios and slightly outperform our
method. The Virus1000 data set is notable in that wavelet tries exhibit the worst compression
performance among the methods tested, though much better results were achieved when backbone
bits were set. At the time of writing, the VARI method was unable to compress the annotations for
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the Virus100, Virus1000, and hg19 data sets. Setting backbone bits led to a three-fold improvement
in the compression performance on the Virus1000 data set (from 67.174 bits per edge to 22.756),
marginal improvements in the compression performance on the bacterial and chr22 data sets, and
a marginal decrease in performance on the Virus100 and hg19 data sets.

Table 1. Compression performance of wavelet tries and other algorithms. Performance is measured
as the average number of bits per edge. Wavelet tries on all but the Virus1000 data set outperformed gzip
and the VARI method, but were outperformed by bzip2 and the Rainbowfish method. At the time of writing, VARI
was unable to encode the Virus100, Virus1000, and hg19+gnomAD data sets. The quantities s and nm refer to the
number of set bits and the total number of bits in the annotation matrices, respectively, with backbone bits unset.
Thus, the quantity in the third column is a measure of matrix density. The headings WTr, Wtr (bb), and RF refer
to “wavelet trie”, “wavelet trie with backbone bits set”, and “Rainbowfish”, respectively.

Data set # edges/106 s
nm

(%) bits/edge WTr WTr (bb) gzip bzip2 VARI [20] RF [1]

Virus100 2.052 2.002 100 8.025 8.196 15.576 6.902 N/A 15.090
Virus1000 15.360 0.216 1000 67.174 22.756 38.239 12.606 N/A 36.011
Bacteria 18.713 7.936 45 6.979 5.876 8.805 5.311 33.761 4.851

chr22+gnomAD 54.723 1.703 10 3.221 3.159 5.860 2.990 18.498 2.464
hg19+gnomAD 2886.802 3.287 31 7.510 7.740 9.345 5.291 N/A 5.573

3.3 Setting backbone bits improves compression ratios

To test the hypothesis that the setting backbone bits (which by definition tend to occur in columns
with lower indices) reduces compression ratios, 100 random shufflings of the column ordering in the
Bacteria and Virus100 data sets were generated and the resulting data compressed to approximate
the null distribution of compression ratios (see Figure 3). The results indicate that the original
ordering of columns was optimal with respect to the defined null distribution when backbone bits
were set. As a negative control, when the backbone bits were unset, the resulting compressed file
sizes did not significantly differ from the means of the null distributions.

3.4 Wavelet trie size grows linearly with increased unique compression size

To test the scalability of wavelet trie compression, we generated a chain (a linear hierarchy) of virus
graphs ranging from 50 to 1000 random genomes in steps of 50 (i.e., G1 ⊂ · · · ⊂ G20) and measured
the compression ratios of the annotations for each graph. The compression ratios for the Virus50
to Virus1000 graphs exhibit an exponential drop from 12.5% to 6.5% when backbone bits are not
set and a steeper drop from 12% to 2% when backbone bits are set (see Figure 4). The compression
ratios grew sublinearly as the density of the annotation matrices grew, with little difference in the
growth characteristics with and without the backbone bits set. By definition, the matrix densities
tended to be marginally greater when backbone bits were set.

4 Discussion and Conclusions

In this study, we have tacked the problem of encoding sequence metadata as edge colors to construct
succinct colored de Bruijn graphs. Given a binary matrix encoding of metadata (with one row per
edge and one column per metadata category), we have presented a parallel construction method
and novel application of the wavelet trie data structure for matrix compression. The construction
method builds smaller wavelet tries on batches of data and merges them to form the full trie,
performing every step in a multithreaded fashion. The resulting structure is dynamic in that novel
edge colors of arbitrary size can be appended. In addition, we have demonstrated that when using
indicators for the backbone regions of the de Bruijn graph positioned in low-index columns of the
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Fig. 3. Distribution of the file sizes of wavelet tries over 100 random permutations of the annotation
matrix column order. The red line indicates the mapping between the positions in the CDFs of the
input column ordering determined by the graph. Setting the backbone bits in both cases leads to a decrease
in the sizes of the compressed files. On both data sets, the originally ordering of the columns leads to an optimal
compression ratio when backbone bits are set, an unoptimal ratio otherwise.
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Fig. 4. Compression ratio of the wavelet trie on virus graphs of increasing (a) genome count and
(b) annotation matrix density. An exponential drop in compression ratio, converging at 6.5%, is
observed as the number of metadata categories increases, with a steeper decline converging at 2%
when backbone bits are set. Analogously, a sublinear increase in the compression ratio was observed
as the density of the annotation matrix increased. The compression ratio is defined as the ratio of the file size
of the serialized wavelet tries and the total number of bits in the input annotation matrices (i.e., the number of edges
multiplied by the number of virus species). The annotation matrix density is defined as the percentage of matrix bits
which are set to 1. The Virus1000 graph was generated from a sampling of 1000 virus genomes from GenBack (see
Section 3.1), while the other 19 graphs were generated by taking the first j genomes in Virus1000, where j ranged
from 50 to 1000 in steps of 50. The trials were repeated 10 times with different random seeds, with the curve and
error bars representing the mean and standard deviations of the compression ratios, respectively.
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annotation matrix, we are able to improve compression ratios by assisting edge color segregation
during wavelet trie construction. Thus, we are able to take advantage of graph topology to improve
compression performance.

The results on the Virus1000 set of graphs indicate that our implementation of wavelet tries,
for sufficiently large graphs, stabilize at compression ratios of 6.5% and 2% when backbone bits are
unset and set, respectively. The data structure is less efficient on smaller graphs due to the greater
significance of the employed data structures’ overhead. The high variability among viral sequences
led to each added batch of sequences, on average, adding a constant amount of information to the
graph and its compressed annotation. With regard to their effect on trie structure, each new batch
creates a split in a node close to the root, forming a large separate subtrie, and thus, reducing
the chances of such splits occurring with each subsequent extension. While these graphs represent
cases of relatively few sequences with modest metadata category counts, larger graphs, such as
those constructed on larger collections of eukaryotic genomes will need to be constructed to further
study the wavelet trie’s growth characteristics.

One significant limitation of wavelet tries is their reliance on shared segments (contiguous sub-
sequences), especially in the first few columns of the annotation matrix, to effectively partition
the rows for optimal compression. While this is partially addressed by setting backbone bits in
the annotation matrix, a more principled approach with less user input will become necessary in
future releases. This would involve an analysis of the de Bruijn graph topology to algorithmically
determine paths to use for backbone bits.

An alternate approach for compressing graph colors which does not rely on this analysis would
be to use a directed acyclic graph as a model, as is typically applied for compressing dictionaries [3].
With this structure, matching nodes in different branches are merged into single nodes to further
reduce redundancy. However, the computational complexity of dynamically maintaining such a
structure, and the added complexity of preserving the ordering of the annotation rows (to support
row index queries) are challenges that must be addressed for such an approach to be appropriate
for compressing graph colors.

With regard to the original stated purpose of developing an annotated sequence graph for
indexing reference sequence and sequencing reads, an ideal implementation of such a database
would (1) employ a dynamic data structure which (2) supports fast queries and updates, and is
(3) optimal with regards to storage. At the time of writing, no database solution fulfilling all three
criteria on this type of data has been published. One observation, however, is that in real world
applications, database updates are much less frequent than queries. Thus, a dynamic data structure
with slower query times may, on average, underperform compared to one involving a static data
structure with fast query times that is updated periodically. We propose a solution in which the
backend is able to switch between static and dynamic states efficiently. This way, the average time
complexity of query and update operations is kept low through amortization.
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A Appendix

A.1 Data sets

Bacteria This data set is composed of 45 strains of bacteria in GenBank [7] from the Lactobacillus
species acidophilus, amylovorus, brevis, buchneri, and casei. The columns in this graph’s annotation
matrix indicate presence of an edge in each of the strains. Because of the low variability in the input
sequences, they are represented as a graph with a predominantly linear topology and short variant
paths (called bubbles). One genome from each of the species was chosen as a backbone path. The
resulting graph had 18,669,398 unique k-mers, 18,713,013 edges, and 536 unique edge colors (i.e.,
bit combinations). See Appendix Section A.3 for a list of the bacterial strains used.

Virus1000 This data set is composed of 1000 virus genomes randomly selected from GenBank,
meant to study a graph whose topology is a series of almost mutually-exclusive loops with slight
variation. The columns in this graph’s annotation matrix indicate presence of edges in each of the
virus genomes. Similar to the Bacteria data set, the viruses were grouped by the first word of their
names and the first species in each group was assigned as a backbone path. The resulting annotation
bit matrix is very sparse and adjacent rows are either almost identical or almost mutually exclusive.
This graph contains 15,342,369 unique k-mers, 15,360,442 edges, and 10,585 unique edge colors.

Virus100 This is a subset of the Virus1000 set containing only 100 virus strains used to facilitate
the permutation tests in Section 3.3. This graph contains 2,051,777 unique k-mers, 2,052,501 edges,
and 284 unique edge colors.

chr22+gnomAD This graph consists of chromosome 22 from the hg19 assembly of the human
reference genome as the main reference backbone. To provide genetic variability, the set of exome
variants from the gnomAD data set were incorporated into the graph [16]. This larger data set
is meant to analyze the properties of the trie when the underlying graph is large, but with little
variability. The columns in this graph’s annotation matrix are defined as indicators for its edges’
presence in 9 ethnic groups defined in the data set. The first column in the matrix is used to indicate
edges which are present in the reference genome and serves as the backbone bit. The graph contains
54,386,415 unique k-mers, 54,723,569 edges, and 595 unique edge colors.

hg19+gnomAD This graph was constructed from the same data sets as the one described above,
using data from the full human autosome. The same definition is used for the annotation matrix
columns, with 9 columns being used to indicate edges observed in the defined ethnic groups and
22 prefix columns being used to indicate presence in the first 22 reference chromosomes as the
backbone bits. This graph’s topology was designed to be analogous to the Virus1000 data set, but
with 1000× the number of rows and one-tenth of the number of annotation columns. It contains
2,880,005,212 unique k-mers, 2,886,801,846 edges, and 320,856 unique edge colors.

A.2 Implementation and source code availability

All algorithms were implemented in C++ 14 using the boost (arbitrary precision integers), htslib
(VCF parsing) [19], sdsl-lite (static succinct data structures) [12], and libmaus2 (dynamic suc-
cinct data structures) [31] libraries. Wavelet tries are stored in memory in a fashion similar to linked
lists, with Node objects containing pointers the objects that define their children. For serialization,
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this structure is packed into a std::unordered_map data structure mapping node indices to Node

objects.
Our implementation is provided as a header-only library and a standalone executable at
http://www.github.com/ratschlab/metannot.

A.3 List of bacterial strains used

– Lactobacillus acidophilus
• 30SC (uid 63605)
• La 14 (uid 201479)
• NCFM (uid 57685)

– Lactobacillus amylovorus
• GRL 1112 (uid 61179)
• GRL1118 (uid 160233)

– Lactobacillus brevis
• ATCC 367 (uid 57989)
• KB290 (uid 195560)

– Lactobacillus buchneri
• NRRL B 30929 (uid 66205)
• uid 73657

– Lactobacillus casei
• ATCC 334 (uid 57985)
• BD II (uid 162119)
• BL23 (uid 59237)
• LC2W (uid 162121)
• LOCK919 (uid 210959)
• W56 (uid 178736)
• Zhang (uid50673)

A.4 List of virus strains used

Due to their large number, the lists of virus strains used are made available in the previously-linked
GitHub repository.
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