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The author list of the article by Michels-Clark et al. [J. Appl. Cryst. (2016), 49,

497–506] is amended with the addition of Michal Chodkiewicz, Thomas Weber

and Hans-Beat Bürgi. The complete list of authors is Tara Michels-Clark,

Andrei Savici, Vickie Lynch, Xiaoping Wang, Michal Chodkiewicz, Thomas

Weber, Hans-Beat Bürgi and Christina Hoffmann.

The author list of the publication by Michels-Clark et al.

(2016) is amended, with Michal Chodkiewicz, Warsaw

University, Thomas Weber, ETH Zürich, and Hans-Beat

Bürgi, Universities of Bern and Zürich, as full-fledged co-

authors. Tara Michels-Clark, Andrei Savici, Vickie Lynch,

Xiaoping Wang and Christina Hoffmann apologize for the

omissions.

The contributions of the individual authors to the article are

as follows:

Tara Michels-Clark, Vickie Lynch, Andrei Savici, Xiaoping

Wang and Christina Hoffmann prepared the manuscript,

compared different correction algorithms for the diffuse

scattering neutron diffraction data, and analyzed and devel-

oped the data processing workflow. The mathematical treat-

ment of the Lorentz-correction and statistical weighting

scheme was devised by Andrei Savici and Tara Michels-Clark.

The neutron data were obtained in a joint experiment

between the ORNL and Zürich groups. Neutron single-crystal

diffraction data from the SNS TOPAZ diffractometer were

collected and refined by Tara Michels-Clark, Christina Hoff-

mann and Xiaoping Wang. Complementary X-ray data at

100 K were measured and refined by Tara Michels-Clark and

Christina Hoffmann. Tara Michels-Clark statistically

compared the Bragg data obtained by different processing

protocols.

Tara Michels-Clark analyzed the diffuse data using the

Monte Carlo crystal builder and intensity calculations in

ZODS. Michal Chodkiewicz, Thomas Weber and Hans-Beat

Bürgi developed the ZODS software for model building and

refinement. Hans-Beat Bürgi co-mentored Tara Michels-

Clark’s PhD thesis with Christina Hoffmann.
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Evidence is mounting that potentially exploitable properties of technologically

and chemically interesting crystalline materials are often attributable to local

structure effects, which can be observed as modulated diffuse scattering (mDS)

next to Bragg diffraction (BD). BD forms a regular sparse grid of intense

discrete points in reciprocal space. Traditionally, the intensity of each Bragg

peak is extracted by integration of each individual reflection first, followed by

application of the required corrections. In contrast, mDS is weak and covers

expansive volumes of reciprocal space close to, or between, Bragg reflections.

For a representative measurement of the diffuse scattering, multiple sample

orientations are generally required, where many points in reciprocal space are

measured multiple times and the resulting data are combined. The common

post-integration data reduction method is not optimal with regard to counting

statistics. A general and inclusive data processing method is needed. In this

contribution, a comprehensive data analysis approach is introduced to correct

and merge the full volume of scattering data in a single step, while correctly

accounting for the statistical weight of the individual measurements. Develop-

ment of this new approach required the exploration of a data treatment and

correction protocol that includes the entire collected reciprocal space volume,

using neutron time-of-flight or wavelength-resolved data collected at TOPAZ at

the Spallation Neutron Source at Oak Ridge National Laboratory.

1. Introduction

Crystalline materials are primarily characterized by long-

range order, which is reflected in the diffraction pattern as a

series of delta functions, i.e. Bragg diffraction (BD). Local

variations of structural subunits yield a modulated diffuse

scattering (mDS) pattern. Recent examples show that a

description of the local structure proved essential to interpret

the structure–property relationships that underpin the mate-

rial’s functionality (Aebischer et al., 2006; Tu et al., 2013;

Welberry & Goossens, 2008; Rao et al., 2013). The Bragg

structure is represented by a smallest overall unit cell with

translational symmetry defining the long-range order in direct

space. Bragg data processing and structure refinement are

essentially routine and largely automated for monochromatic

X-ray diffraction. However, interpretation of the local struc-

ture from diffuse diffraction data (including measurement and

appropriate application of corrections in order to prepare the

data for integration) and computational modeling are much

more complex (Weber & Bürgi, 2002; Bürgi et al., 2005;

Michels-Clark et al., 2013; Welberry & Goossens, 2008). The

size of the distortion in real space, D, affects the size of the
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scattering distribution in reciprocal space, �q, following

�q ’ 2�=D (Nield & Keen, 2001). The inverse relationship

implies that the scattered intensities resulting from small local

disturbances in direct space are distributed throughout reci-

procal space and are generally orders of magnitude weaker in

intensity than Bragg scattering. The diffuse scattering intensity

distribution depends on the nature of the local structure and

may be spread in one, two or three dimensions of reciprocal

space (Welberry, 2004). Separating the diffuse intensities from

the contributions of various independent sources of back-

ground is not trivial and needs to be addressed on a case by

case basis (Bürgi et al., 2005).

The majority of diffuse scattering exploration has been

done for data collected on monochromatic synchrotron or

home-laboratory X-ray sources. Common limitations, due to

the accumulating nature of most two-dimensional area X-ray

detectors, are data overflow, detector dead time and over-

saturation of Bragg reflections. This necessitates separate

individual data collection and data treatment of BD and mDS,

and impairs consistent and simultaneous data processing and

analysis. Preparation of mDS data for analysis in modeling

software means that the collected raw data require complete

reciprocal volume reconstructions from a series of single-

wavelength wedges (= frames), which entails careful scaling

schemes, removal of overexposed Bragg peaks and subtraction

of background to extract representative diffuse intensities in

one-, two- and three-dimensional space as lines, layers and

volumes, respectively. The dimensionality of diffuse data is

specific to the experiment and sample. Generally, a similar

treatment is applied to BD and mDS in neutron diffraction.

Here we introduce a comprehensive protocol of combined

BD and mDS data processing, equally treating the full scat-

tering volume of reciprocal space. Data treatment and analysis

are explored for time-of-flight (TOF) Laue neutron scattering

patterns collected on the SNS TOPAZ single-crystal diffract-

ometer. The instrument is equipped with state-of-the-art area

detectors, with continuous readout of individual neutron

events. This circumvents limitations of data overflow and

oversaturation of Bragg reflections, eliminating the necessity

of a separate weighting scheme for the diffuse intensities. The

total scattering (Bragg + Diffuse) data of single-crystal

samples are collected in volumes of reciprocal space. Every

neutron is counted as an event and saved. Since event data are

not accumulated into predefined bins, histograms can be

defined dynamically as part of the data processing protocol.

The underlying premise of conventional data processing is

based on the assumption that each Bragg peak is approxi-

mated as diffraction at one wavelength, resulting in discrete

intensity points in reciprocal space. According to Bragg’s law,

this produces a sparse grid leaving most of reciprocal space to

background. As this only yields a minute reciprocal space

volume of interest for analysis, and computing resources

traditionally have been limited, it is generally sufficient to

integrate the raw Bragg intensities first, and then apply scat-

tering symmetry, instrument and wavelength dependent

corrections only on the integrated Bragg intensities. The

Bragg peaks are saved individually. However, in the case of

diffuse data, which are distributed over considerably larger

volumes of reciprocal space, a single-point correction is not

applicable. Moreover, the sparse grid of BD needs to be

transformed into a fine grid that covers the mDS volume, with

adequate resolution to account for variations in scattering

geometry and in wavelength, for the case of time-of-flight

Laue data. Both requirements (dense grid and corrections)

can be met simultaneously by processing the volume of reci-

procal space as a whole in momentum space. Because the

Bragg and modulated diffuse scattering are system dependent,

the appropriate grid size needs to be adjustable for every case.

Therefore, event based collection, without predefined histo-

grams, is the ideal data acquisition mode.

In this work, data processing is examined theoretically,

expanding the correction protocol and simultaneously taking

the wavelength variations of TOF into account, to normalize a

complete data set. Original and new data analysis procedures

are compared for both Bragg and diffuse scattering for a single

crystal of Er3þ doped �-NaLaF4 (hexagonal phase), from a

family of light emitting sodium lanthanide tetrafluorides.

Information about the sample is presented in x2.1. The current

data processing approach to Bragg peaks is shown in x2.2. The

proposed revised protocol is described theoretically in x2.3,

while an example of implementation is shown in x2.4. The

results are discussed in x3.

2. Materials and methods

2.1. Example material description: technically exploitable
b-NaLaF4

Several of the rare earth doped sodium lanthanide tetra-

fluoride compounds are efficient light up-conversion phos-

phors. They have been studied for their ability to act as

luminescence host matrices (Haase & Schafer, 2011), a func-

tion based on efficient luminescent sites, which are generally

triggered by locally asymmetric environments. The average

(Bragg) crystal structure determined by X-ray diffraction

(Burns, 1965) showed high symmetry and revealed no obvious

link to the material properties. However, spectroscopic

investigations indicated that the average structure displays an

idealized high symmetry for the La atoms located at the

suspect center positions (Aebischer et al., 2006; Tu et al., 2013).

Subsequent investigation of the local structure arrangement

through analysis of the associated diffuse diffraction data

supported the spectroscopic findings. This shows that

complementary information provided by mDS is needed to

allow insight on the true structure–property relationship

(Auzel, 2004; Krämer et al., 2004; Aebischer et al., 2005, 2006;

Tu et al., 2013), and understanding of the local structure is

critical for targeted development and improvement of mate-

rials, in this case up-conversion properties.

Neutron diffraction provides complementary data to X-ray

diffraction, owing to differences in scattering strength for the

elements present. It is a mechanism to verify and enhance the

description of the local structure derived from the diffuse

X-ray data. Aebischer et al. (2006) reported a qualitative
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estimate of a diffuse X-ray pattern, which is dominated by

La3+ (57 electrons) relative to F and Na (with only nine and 11

electrons, respectively). The combination of heavy and light

elements present in �-NaLaF4 makes neutron diffraction a

particularly useful technique as Na and F have more favorable

coherent scattering lengths of 3.63 fm (Na) and 5.654 fm (F)

compared with 8.24 fm for La (Sears, 1992).

A high-flux neutron beam is required for quantitative

diffuse scattering studies. The TOPAZ single-crystal diffract-

ometer at the SNS was used for data collection on �-NaLaF4.

Subsequently, the new processing protocol for neutron elastic

scattering data was applied and a quantitative local structure

model was simulated using ZODS, computational modeling

software in development (Chodkiewicz et al., 2010). The

methodology described may be applied in general to neutron

diffraction data measured in TOF event mode.

2.2. Standard neutron scattering experiment

Niobium doped vanadium is a purely incoherent scatterer

and therefore isotropic by definition, providing a mechanism

to correct for incident flux in momentum space. Diffraction

data for the incoherent scattering were collected for 48 h from

a spherical (r = 0.1375 cm) niobium doped vanadium sample.

A background measured with an empty instrument was

collected for a similar time, scaled to the same incident flux as

the vanadium data and then subtracted. A spherical absorp-

tion correction was applied to the niobium doped vanadium

data after background removal. The resulting data set was

used for detector efficiency calculation and for calculating the

wavelength dependent incident flux.

A single crystal of �-NaLaF4 (approximately one cubic

millimetre) was selected from a batch of crystals grown using

the Bridgeman technique by collaborators at the University of

Bern (Bürgi, 2011). The crystal was mounted on an aluminium

pin using Super Glue (cyanoacrylate) and placed on the

goniometer equipped with a 100 K nitrogen cryostream

(Cryostream 700 Plus). Neutron event data were collected

using a pulsed neutron beam with a wavelength band of 0.5–

3.5 Å, at 60 Hz. The first Bragg reflections were integrated live

using the EventViewer program in ISAW (Worlton et al., 2004)

during data collection. The quality of the single-crystal sample

was determined by examining Bragg peaks in the live data, in a

matter of minutes. A single crystal without splitting or

multiple Bragg peaks was selected for the study.

Using the strong Bragg peaks, the reduced cell (Niggli cell)

and orientation in the instrument, which together define the

UB matrix, were determined using a fast Fourier transform

(FFT) algorithm and least-squares refined. This UB matrix

was then used to index the found Bragg peaks within the

specified tolerance of �0.1 Å�1 deviation from individual

reciprocal lattice units. As the unit cell is of hexagonal

primitive (P6) symmetry, no further cell transformation was

necessary. The UB matrix was used to plan the experiment

using the Crystal Plan software (Zikovsky et al., 2011), which

maximizes the coverage of reciprocal space by optimizing the

crystal orientations with a genetic algorithm. The data were

collected using 11 goniometer settings for approximately 11 h

each. A three-dimensional volume of reciprocal space was

collected within the wavelength band at each orientation. All

orientations combined cover the volume of reciprocal space to

be analyzed.

Neutron events, which were detected in detector space (x, y

and TOF), were mapped to three-dimensional reciprocal

space. The integration algorithm first found strong Bragg

peaks and indexed them using the UB matrix. The single-

crystal Bragg peaks were integrated by defining the shape of

the integration domain in reciprocal space as a sphere around

the center of the Bragg peak (Schultz et al., 2014). Integration

was performed by summing all neutron events inside a chosen

radius (in Å�1) around each peak center point in reciprocal

space. Since the error associated with each event is assumed to

be random and independent (Poisson distribution), the errors

were summed in quadrature. If the chosen radius resulted in

an integration volume that was either partially or entirely off

the detector edge, the peak was discarded. The background

was estimated by defining a second integration volume, a shell

of a specified thickness around the peak, and subtracted.

Using the statistics versus integration radius utility written

by Schultz et al. (2014) and the �-NaLaF4 data, the best radius

for integration in reciprocal space was between 0.13 and

0.16 Å�1, based on the number of peaks integrated and their

I=�ðIÞ ratios. The integrated intensities were corrected for the

wavelength dependence of the incident spectrum, detector

efficiency, sample absorption and the Lorentz factor, as

described by Schultz et al. (2014). The processed intensities

(structure factors) of the indexed peaks were used for struc-

ture refinement. In x3, the values were used for comparison

with the new general correction protocol, described in x2.3.

The diffuse scattering data were then treated using the

standard procedure. The raw event data of each orientation

were processed using the MANTID (Manipulation and

Analysis Toolkit for Instrument Data) (Arnold et al., 2014)

software. A geometric detector calibration was applied to

correct detector positions relative to the sample and incident

beam. The detector spatial distortion was taken into account

through calibration at the detector firmware level (Riedel et

al., 2015). The number of events collected per orientation

varies according to the neutron flux and the exposure time. In

order to combine the data from multiple orientations, the

integrated raw events were normalized by the associated beam

monitor counts after absorption, spectrum/detector depen-

dent and Lorentz corrections had been applied. The result was

a series of individual corrected and normalized data sets

representing different volumetric regions of reciprocal space.

A reciprocal space reconstruction was attempted by

combining the processed data sets. Simply adding three data

sets increases the intensity in the overlapping regions, as can

be seen in Fig. 1 (left). Since combining orientations of

inherently low statistics (diffuse data) relative to Bragg

diffraction is the goal, the non-additive nature of the neutron

differential cross section d�=d� must explicitly be taken into

account. This is done by averaging the cross section at every

reciprocal space point. Adding the processed data sets and
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applying the arithmetic mean, or an unweighted mathematical

average, by dividing the sum of data per bin (= grid point) by

the number of data sets contributing per bin, results in more

coverage but does not improve the data (see Fig. 1, right).

Visually, the graininess of the figure does not decrease. Data

sets obtained by applying symmetry operations can be treated

the same way. Arithmetic averaging is sufficient when all

regions of reciprocal space are measured with the same

statistical weight.

Combining 11 orientations of diffuse TOF diffraction data

by arithmetic averaging is depicted in Fig. 1 (right). Welberry

et al. (2005) show that the approach works well for good

quality data. However, simple averaging of good quality and

noisy measurements yields noisy data. The expectation from a

physics point of view is that combining a statistically improved

with a poor measurement should improve the overall data

quality. If the data quality does not improve, regions where

quality is poor are usually discarded. Multiple measurements

with lower statistics can be useful for data analysis, if the data

are treated properly (compare Fig. 1, right, and Fig. 2, bottom

left). Here we present an approach to take into account the

statistical weight of the measured data at varying neutron flux.

2.3. New data processing approach for diffuse scattering

To correctly account for the statistical weight of the data, we

begin with the definition of the differential scattering cross

section (Lovesey, 1984):

d�

d�
¼

N

�d�
; ð1Þ

where N is the number of scattered neutrons per unit time in

an infinitesimal volume (dQ) of reciprocal space, around a

momentum transfer Q, divided by the incident flux (�) and

the solid angle of the detector (d�). When using multiple

detectors, multiple experimental configurations (sample

orientations measured for different times or different wave-

lengths) or polychromatic incident beams, the previous

equation needs to be rewritten as

d�

d�
¼

P
i NiP

ið�id�iÞ
; ð2Þ

where the summation occurs over all

detectors and configurations that

contribute to the scattering in the reci-

procal space volume element dQ. For a

given detector i, with solid angle d�i,

counting Ni neutrons in such a region,

the flux �i is only that part of the

incident beam that can contribute to the

scattering around Q. This is especially

important for polychromatic beams.

While counting all neutrons that

scatter in a certain region of the reci-

procal space is straightforward, the

calculation of the flux that contributes

to that particular scattering is not so obvious. However, as will

be shown, this quantity can easily be measured. Equation (2) is

applied to an incoherent scatterer, such as niobium doped

vanadium. The differential scattering cross section for this

material is constant, since the scattering is isotropic:

d�

d�
¼
�I

4�
; ð3Þ

where �I is the total incoherent scattering cross section. If the

measurement for the vanadium sample occurs in the same

conditions (sample orientation and incident flux) as that for

the sample of interest, thenX
i

ð�id�iÞ ¼
X

i

Vi=
�I

4�
; ð4Þ

where Vi are the neutron counts from vanadium. The sum

yields

d�

d�
¼
�I

4�

P
i NiP
i Vi

: ð5Þ

The Ni and Vi values should be corrected to account for

sample and vanadium absorption.

For a single contribution to a particular point in reciprocal

space, this is equivalent to the protocol described by Howe et

al. (1989) and used in the software for data processing at the

SXD instrument at ISIS (Keen & Nield, 1996). In these

previous papers, the authors divide the scattering intensity

from the sample by the scattering intensity from the vanadium

(Ni=Vi in our notation), then apply some corrections to

account for inelasticity, multiple scattering etc. In the case of

multiple contributions, or multiple symmetry operations

(Welberry et al., 2005), their protocol uses a simple arithmetic

mean of various Ni=Vi contributions. However, a weighted

average should be used instead.

We can rewrite equation (5) as

d�

d�
¼
�I

4�

P
i ViNi=ViP

i Vi

¼
�I

4�

P
i wiNi=ViP

i wi

: ð6Þ

The weight in this case is the number of counts from the

incoherent scatterer, in exactly the same region of the reci-
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Figure 1
Left: a two-dimensional slice (L =�4.5) showing diffuse scattering data from three different sample
orientations that were processed the same way as the Bragg scattering, then added together. The
scattering cross section cannot simply be added; the increased intensity in the overlap region
indicates that an averaging protocol is required. Right: arithmetic mean of contributions from 11
orientations with application of a 180� rotation around the L direction.



procal space, wi ¼ Vi. The simple arithmetic mean is a parti-

cular case where wi ¼ 1 or all wi contributions are equal.

As stated earlier, the measurement of vanadium has to

occur in the same conditions (sample orientation and incident

flux) as the measurement of the sample of interest. This does

not mean that the vanadium is not isotropic; it is just the

simplest way to correctly keep track of the weights in equation

(6). If we assign the same unit cell and orientation to the

vanadium as for the sample, the same detectors will contribute

with the same incident fluxes for sample and vanadium to each

individual region in the reciprocal space.

The same reasoning can be used for symmetrization.

Symmetry operations can be applied to the data, as long as the

same symmetry operations are applied to the incoherent

scattering data, to correctly count the weight at each point in

the reciprocal space. The results (11 different orientations and

a 180� rotation around the ½00L� direction) are shown in Fig. 2.

The symmetrized data are considered new data sets, so

normalization is calculated independently for each rotation,

and symmetrized data and normalizations are added to the

original ones, before performing the division. Contrary to the

procedure used for Fig. 1, the overlap region has now been

correctly taken into account. This

general protocol works for all regions

of reciprocal space including both

Bragg and diffuse scattering.

Moreover, by correctly accounting

for the statistical weights in the overlap

region (Fig. 2) we intrinsically apply

both Lorentz and spectrum corrections,

as noted by Mayers (1984). To prove

that this is indeed the case, the way

these corrections are calculated must be

revisited. The coherent scattering

differential cross section is related to

the unit-cell structure factor Fð�Þ by

(Lovesey, 1984)

d�c

d�
¼

Nc

vc

ð2�Þ3
X

s

�ðQ� sÞjFðsÞj2;

ð7Þ

where Nc is the number of coherent

scatterers, vc is the unit-cell volume of

the scattering crystal, Q ¼ ki � kf is the

momentum transfer to the sample and s
is a reciprocal lattice vector. To obtain

the number of scattered neutrons from

a particular Bragg peak, we integrate

over the solid angle of the detector and

multiply by the incident integrated flux

as follows:

Ic ¼

Z
d�Nð�Þ d�f

d�c

d�
: ð8Þ

In structure refinements, Ic is measured

by counting all scattered neutrons in a

particular region of reciprocal space, in our case a sphere (but

not necessarily).

Given the definition of wavelength, �, in terms of

momentum, k, it follows that

� ¼
2�

k
; ð9Þ

d� ¼ �
2�

k2
dk; ð10Þ

k ¼ jkij ¼ jkfj: ð11Þ

Following the convention that the incident beam is along

the ẑz direction and x̂x is in the horizontal plane, perpendicular

to the incident beam,

Qx ¼ �k sin � cos ’; ð12Þ

Qy ¼ �k sin � sin ’; ð13Þ

Qz ¼ k� k cos �; ð14Þ
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Figure 2
Several two-dimensional slices (L = �2.5, �3.0, . . . , �5.0) showing diffuse and Bragg scattering.
Data from 11 different sample orientations were processed using the new protocol described in the
text. The smooth transitions in the overlap regions are proof that the statistical weight of the
measurement has been correctly taken into account.



where � is the conventional polar angle of a spherical coor-

dinate system (not the crystallographic 2� angle) and ’ is the

azimuthal angle.

The Jacobian for the transformation from Q to spherical

coordinates of kf is given by�����
@Qx=@k @Qx=@� @Qx=@’
@Qy=@k @Qy=@� @Qy=@’
@Qz=@k @Qz=@� @Qz=@’

����� ¼ k2 sin � �2 sin2 �

2

� �
: ð15Þ

Simplifying of the Jacobian yields for the integration

volume element dQ

dQ ¼ �2 sin2
ð�=2Þ

� �
k2 dk sin � d� d’: ð16Þ

The last three terms on the right hand side represent the

scattering solid angle d�f.

Using the transformation to spherical coordinates, the

intensity for a Bragg peak is given by

Ic ¼

Z
dk Nð�Þ d�f

d�c

d�

�2�

k2
ð17Þ

¼ V
ð2�Þ4

v2
ck4

Z
dk k2�2 sin2

ð�=2Þ

2 sin2
ð�=2Þ

d�fNð�Þ�ðQ� sÞjFðsÞj2:

ð18Þ

Applying equation (16), and integrating the � function,

yields

Ic ¼ VNð�Þ
�4jFðsÞj2

2v2
c sin2
ð�=2Þ

; ð19Þ

where the sample volume is V ¼ Nvc.

The structure factor is then related to the integrated

intensity by

jFðsÞj2 / Ic

1

Nð�Þ

sin2
ð�=2Þ

�4
: ð20Þ

The first fraction represents the spectrum correction; the last is

the Lorentz correction and takes into account the amount of

time a given reflection remains in the diffraction condition

(Buras & Gerward, 1975). Note that in common crystal-

lographic convention the scattering angle is called 2�, so the

Lorentz correction appears as sin2 �=�4. The Lorentz correc-

tion has a different form if the experiment is performed on a

monochromatic incident beam and the integrated intensity is

measured by rocking the crystal.

Similarly, the intensity for an incoherent scattering process

is calculated as

d�i

d�
¼ Ni

�i

4�
; ð21Þ

where Ni is the number of incoherent scatterers, with a total

incoherent scattering cross section �i.

The corresponding incoherent integrated intensity is given

by

Ii ¼

Z
d�Nð�Þ d�f

d�i

d�
ð22Þ

¼ �2�Ni

�i

4�

Z
dk

1

k4
k2 d�f

�2 sin2
ð�=2Þ

�2 sin2
ð�=2Þ

Nð�Þ; ð23Þ

¼
Ni�i

4

Z
dQ

�4

2ð2�Þ4 sin2
ð�=2Þ

Nð�Þ: ð24Þ

If the data are integrated over a small volume, it can be

assumed that � and � are approximately constant and can be

taken outside of the integral together with Nð�Þ. The integral

of dQ remains, which is the integration volume in reciprocal

space and may be chosen as a user-defined constant �Q.

Following the considerations for the coherent intensity, the

incoherent scattering intensity is given similarly by

Ii ¼ Nð�Þ
Ni�Q�i

4ð2�Þ4
�4

2 sin2
ð�=2Þ

: ð25Þ

Given that the integration is defined to be over the same

small volume for the Bragg peak and the incoherent scattering

[equation (25)], the flux term and Lorentz factor are identical,

yielding

jFðsÞj2 ¼ cIc=Ii; ð26Þ

where c is a constant that is wavelength and detector inde-

pendent.

The ratios of the integral form of the Lorentz correction,

equation (24), and the analytical form, equation (25), for

selected incident neutron wavelengths and two integration

box sizes (0.10 and 0.05 Å�1) were calculated and compared in

order to estimate the quality of a constant � and � approx-

imation for a defined integration region, �Q, as shown in

Fig. 3. For this comparison we assume that the neutron flux is

independent of wavelength for the integration volume. It is

apparent that the deviation from the ideal case (ratio = 1)

increases with increasing d spacing for all wavelengths. The

increase is faster for shorter wavelengths. The deviation is
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Figure 3
The deviation from the Lorentz correction is shown as a function of d
spacing for wavelengths in the flux range of 0.5–3.5 Å�1 for two different
box sizes, 0.10 and 0.05 Å�1. Larger d spacing and a smaller integration
box will result in a smaller deviation from the Lorentz correction.



more pronounced for the larger,

0.10 Å�1, integration box than the

smaller, 0.05 Å�1, box. This is an

expected effect, since an integration

region in reciprocal space represents a

larger region in detector space at low

scattering angles.

We should note that the arithmetic

averaging of Ni=Vi contributions is

noisier and has larger error bars than

the new weighted mean. A comparison

of intensities from Figs. 1 and 2 is

shown in Fig. 4.

An even more convincing proof is

obtained by performing a one-dimen-

sional cut, as shown in Fig. 5. The cuts are along the [0K0]

direction, at H = 0, L = �4.5. The arithmetic mean approach

produces data that are less regular and have larger error bars

than the proposed weighted mean protocol.

The smaller error resulting from the new protocol can be

shown analytically. If we assume the vanadium is measured for

a much longer time than the sample (as is most often the case),

this implies that the resulting incoherent scattering measure-

ment error is negligible in comparison to that of the coherent

scattering. Additionally, in the limit of very good statistics for

coherent scattering measurements, all Ni=Vi values approach a

single constant I. The ratio of scattering cross sections from

the two methods is

d�
d� jold
d�
d� jnew

¼
ð1=nÞ

P
i Ni=ViP

i ViNi=Vi

�P
i Vi

¼
ð1=nÞ

P
i IP

i IVi

�P
i Vi

¼
I

I
¼ 1: ð27Þ

Using Poisson statistics, the error bars for Ni are equal to

N
1=2
i . The ratio of the variances for the scattering differential

cross sections, Errold and Errnew, is then given by adding in

quadrature the errors from each contribution:

Err2
old

Err2
new

¼

P
iðN

1=2
i =nViÞ

2P
i ðN

1=2
i Þ

2� P
i Vi

� 	2
¼
ðI=n2Þ

P
i 1=ViP

i IVi

� P
i Vi

� 	2

¼ ð1=n2
Þ
P

i

1=Vi

� � P
i

Vi

� �
: ð28Þ

Since Vi > 0, we can use the Cauchy–Schwartz inequality

(Cauchy, 2015) on the previous equation to yield

Err2
old

Err2
new

�
1

n2

X
i

1

Vi

Vi

 !2

¼ 1: ð29Þ

Equality is achieved only when the weights Vi are equal.

The error bars for the new method are therefore smaller.

2.4. Experimental testing of the new data processing protocol

A direct comparison between the integration and correction

methods described in xx2.2 and 2.3 is impossible for diffuse

scattering data, since the integration area is continuous,

although it may be done for Bragg scattering. Two integrated

data sets of �-NaLaF4 were used for benchmarking the

original and new data processing methods through structure

refinement: the first from the original post-integration Bragg-

only correction method and the second from the new

comprehensive reciprocal space correction pre-integration

method. For post integration, sample absorption, spectrum

and Lorentz corrections were calculated at peak centers and

applied to the integrated intensities. Bragg peaks measured at

different sample orientations are considered separately, even

if they correspond to the same position in the reciprocal space.

In considering the normalization of diffuse scattering data

measured on TOPAZ, other corrections including multiple

scattering, Debye–Waller factor and any inelasticity effects are

negligible and can be ignored. However, it is worth noting that

the inelasticity effect is dependent on the ratio of scattered to

incident flight paths (Mayers, 1984), which is insignificant for

the TOPAZ instrument, but might be important for other

instruments.

Using the same processing protocol for the Bragg data as

for diffuse scattering data, the raw data were binned on a

regular grid in the HKL space. The spacing of the grid was

chosen in such a way that the expected Bragg peaks were in
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Figure 5
Comparing the old, arithmetic mean protocol (blue circles) and the new,
weighted mean protocol (red squares). The cut along the [0K0] direction
is taken at H = 0, L = �4.5. The new method yields less noisy data and
smaller error bars.

Figure 4
Comparing the old, arithmetic mean protocol (left hand side) and the new, weighted mean protocol
(right hand side). The slices at L = �4.5 have the same color scale.



the center of each HKL box and were completely contained

inside individual bins. After the corrections had been applied

to all reciprocal space the intensity contained in such a box

was considered the integrated intensity of a Bragg peak. The

average intensities of the surrounding boxes were calculated

as background and subtracted from the signal.

In order to test the proposed procedure with a conventional

structure refinement, the Bragg peaks of each orientation

were corrected and integrated individually and not combined

as has been done to visualize the diffuse scattering. The same

reciprocal space point of the sample can be measured in

different sample orientations on a different detector and/or at

a different neutron wavelength. For every sample orientation

we scaled the vanadium data to the same time-integrated

incident flux. We associated the same lattice parameters and

sample orientation with vanadium as for the corresponding

�-NaLaF4 measurements. This ensures correction with inco-

herent scattering at the same position in reciprocal space of

the sample with the same statistical weight.

The scattering from vanadium has the same energy

dependent spectrum in each detector pixel, up to a pixel

dependent multiplicative constant (the efficiency of the

detector). This constant varies within 6% of the average for

each detector module. However, detector pixels are located at

different distances from the sample, so neutrons with the same

energy arrive at different detectors at different times; for

simplicity all neutron flight times were converted to

momentum. Any quantity that depends on neutron velocity

could have been selected, such as wavelength, but a constant

grid in wavelength results in a logarithmic grid when trans-

formed to the reciprocal space of the sample. A linear grid in

momentum space yields a linear grid in momentum transfer.

From equation (26), a low neutron count for vanadium will

produce large errors. To decrease background, and avoid

regions with a low number of counts, both the coherent and

incoherent data were cropped to lie in the [1.85, 9.5] Å�1

interval. This also eliminates detected events due to the very

high energy neutrons associated with the prompt pulse

(Carpenter & Yelon, 1986). To increase statistics, the

momentum dependence of vanadium scattering in detector

pixels was averaged with similar energy response. The data

were binned using a 0.01 Å�1 interval, as the averaging cannot

be done in event mode. The bin width was chosen so that it is

small enough to be representative of a continuous spectrum

but within computational limits for processing the large

number of events (20 billion). The binned data were smoothed

over each of the 256 by 256 pixels per detector and this

average value was expanded over all pixels in each detector.

The average values of each detector pixel were multiplied by

the integrated value of the detector counts over the

momentum range.

3. Results and discussion

The integrated intensities from the standard workflow and

new protocol were compared to determine the linearity of

their correlation. The intensity statistics as a function of

spherical integration radius indicated an optimal integration

radius of approximately 0.14 Å�1 in Q space (x2.2). Integra-

tion radii from 0.13 to 0.16 Å�1 in 0.005 Å�1 increments were

tested.

A grid commensurate with the lattice was chosen so that all

the Bragg peaks were in the same position inside corre-

sponding HKL boxes and to reduce the number of compu-

tations. To integrate approximately the same volume in HKL

space as is used for spherical integration, the box size was

defined as a cube of �0.1 reciprocal lattice units in each

direction.

The same peaks as integrated with the spherical integration

method were used in the new integration procedure. Peaks

with I=�ðIÞ> 3 were used for structure refinement. Outlier

reflections, where jF2
obs � F2

calcj=�ðF
2
obsÞ � 10, were excluded

from the final refinement. The integrated intensities using the

original workflow and new protocol were compared. The

correlation between the intensities of the two methods

calculated as the sample covariance divided by the product of

each data set’s standard deviation is high, r ¼ 0:937 (R

Development Core Team, 2008), and the residuals are

randomly distributed about y ¼ 0, indicating a high positive

linear correlation between the two sets of intensities. The error

bars in Fig. 6 show the standard deviations in both methods,

which are comparable.

Full anisotropic refinements, including a secondary extinc-

tion correction, were performed with the GSAS (Larson &

Von Dreele, 2000) program, using the EXPGUI (Toby, 2001)

graphical interface, on structure factors of �-NaLaF4 obtained

from both methods. A summary of the refinement statistics is

given in Table 1.

The refinement results show that the Bragg structure

statistics are similar for both integration methods, with 13

reflections rejected in the final round of refinement for the box

method. The different shape of the integration and back-

ground regions could explain more reflections being accepted

for the sphere integration.

In the case of major structural differences or refinement

issues, the anisotropic displacement parameters (ADPs)

would be uncorrelated. However, the results shown in Fig. 7

are highly correlated (R2 ¼ 0:995). The F statistic is 3465 with
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Figure 6
Log–log plot of Bragg peak intensities corrected using the standard
processing workflow with spherical integration versus the new box
integration combined with incoherent scattering normalization.



a corresponding p value of 2:2� 10�16, indicating that there is

excellent agreement between structural refinement results

from sphere and grid integration and the null hypothesis that

there is no linear correlation between the data sets should be

rejected (R Development Core Team, 2008).

An X-ray data set was collected as a basis for comparison

with the neutron data using a crystal from the same batch [see

supporting information; refinement performed using

SHELX97 (Sheldrick, 2008)]. The ADPs of both neutron

integration methods were highly correlated to the X-ray

ADPs; R2 was approximately 0.88 for spherical integration

and 0.85 for the new grid integration (R Development Core

Team, 2008). The slightly lower correlation of ADPs between

the X-ray and neutron experiments can be explained by the

difference in scattering cross sections measured by different

methods. These Bragg results demonstrate the validity of the

proposed method for the reduction of diffuse intensity data

for local structural analysis.

As a proof of principle the new

normalization protocol was then used to

integrate the diffuse intensities of four

layers (L = �2.5, �3.5, �4.5 and �5.5).

A supercell was defined by doubling the

c axis, resulting in integer values for L

for computational modeling (Chodkie-

wicz et al., 2010). We masked the

aluminium powder rings from the

sample pin corresponding to the 111,

200, 220 and 311 reflections using the

MANTID (Arnold et al., 2014) software.

The data sets were binned with a step

size �Q = 0.1 in reciprocal lattice units.

In principle, a much smaller step size

may be needed to extract the diffuse

intensities and their associated standard

uncertainties for quantitative computa-

tional modeling (Michels-Clark et al.,

2013) as the grid definition is not

restricted by the necessity of integer

HKL values. Intensities were calculated

on the same grid as the experimental

data using a Monte Carlo model of the

local structure, as described by Aebi-

scher et al. (2006), in a diffuse scattering

modeling software currently under

development, ZODS (Zurich Oak Ridge

Disorder Simulations; Chodkiewicz et

al., 2010). The four simulated diffuse layers are shown in Fig. 8.

The measured data in Fig. 2 are in good agreement with the

simulation. Comparing with X-ray data from Aebischer et al.

(2006) the complementarity of scattering length differences

between X-rays and neutrons is evident and can be used as a

seed for comprehensive analysis development.
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Figure 8
Simulated diffuse neutron scattering in �-NaLaF4. The calculation was performed on the same grid
as the measured intensities, for layers at L = �2.5, �3.5, �4.5 and �5.5. Layers separated by
�L ¼ 2 show similar scattering patterns.

Figure 7
Comparison of anisotropic displacement parameters (slope = 0.98)
obtained by GSAS refinement for the two methods described in the text.

Table 1
GSAS Bragg refinement statistics from spherical integration in the
original workflow and new protocol grid integration.

The spherical integration radius for the old method is 0.14 Å�1. The box size
for the new method is 0:2� 0:2� 0:2 reciprocal lattice units. Peaks are
rejected if jF2

obs � F2
calcj=�ðF

2
obsÞ � 10.

Method Peaks 	2 RwðF
2
oÞ RðF2

oÞ RwðFoÞ RðFoÞ Extinction Rejected

Sphere 938 3.434 0.102 0.084 0.051 0.048 1:57� 10�4 0
Grid 929 6.063 0.075 0.087 0.038 0.051 1:22� 10�4 13



4. Summary

In this work, we present a comprehensive correction and

normalization protocol for total scattering data. The ratio of

integrated intensities, over the same small volume in the

reciprocal space, for the coherent and incoherent scattering

intensity is shown to implicitly account for the flux term and

Lorentz contributions. GSAS Bragg refinements of structure

factors from the new and old methods produce highly

comparable structural results, with low R values and highly

correlated ADPs. This enables the use of corrected diffuse

structure factor data as input to local structure modeling

software. It is imperative that all coherent data and all inco-

herent data are processed comprehensively, each of them

summed separately for different orientations, and normalized

only at the end. The same principle applies to symmetrization:

symmetrize data, add it to the original data, symmetrize

normalization and add it to the original normalization, then

divide the sums. This way the statistical weights of the

measurements are preserved. The methods presented here

work equally well on event or histogrammed data, and provide

a first step for automated processing of total scattering

neutron TOF single-crystal diffraction data.
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