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FORMAL LANGUAGES, FORMALLY AND COINDUCTIVELY

DMITRIY TRAYTEL

Institute of Information Security, Department of Computer Science, ETH Zürich, Switzerland
e-mail address: traytel@inf.ethz.ch

Abstract. Traditionally, formal languages are defined as sets of words. More recently,
the alternative coalgebraic or coinductive representation as infinite tries, i.e., prefix trees
branching over the alphabet, has been used to obtain compact and elegant proofs of classic
results in language theory. In this article, we study this representation in the Isabelle proof
assistant. We define regular operations on infinite tries and prove the axioms of Kleene
algebra for those operations. Thereby, we exercise corecursion and coinduction and confirm
the coinductive view being profitable in formalizations, as it improves over the set-of-words
view with respect to proof automation.

1. Introduction

If we ask a computer scientist what a formal language is, the answer will most certainly be: a
set of words. Here, we advocate another valid answer: an infinite trie. This is the coalgebraic
approach to languages [30], viewed through the lens of a lazy functional programmer.

This article shows how to formalize the coalgebraic or coinductive approach to formal
languages in the Isabelle/HOL proof assistant in the form of a gentle introduction to
corecursion and coinduction. Our interest in the coalgebraic approach to formal languages
arose in the context of a larger formalization effort of coalgebraic decision procedures for
regular languages [36, 37]. Indeed, we present here a reusable library modeling languages,
which lies at the core of those formalized decision procedures. A lesson we have learned from
this exercise and hope to convey here is that often it is worthwhile to look at well-understood
objects from a different (in this case coinductive) perspective.

The literature is abound with tutorials on coinduction. So why bother writing yet another
one? First, because we finally can do it in Isabelle/HOL, which became a coinduction-friendly
proof assistant recently [6]. Earlier studies of coinduction in Isabelle had to engage in
tedious manual constructions just to define a coinductive datatype [25]. Second, coinductive
techniques are still not as widespread as they could be (and we believe should be, since they
constitute a convenient proof tool for questions about semantics). Third, many tutorials [11,
14,18,19,21,33], with or without a theorem prover, exercise streams to the extent that one
starts to believe having seen every single stream example one can imagine. In contrast,
Rutten [30] demonstrates that it is entirely feasible to start a tutorial with a structure
slightly more complicated than streams, but familiar to every computer scientist. Moreover,
Rot, Bonsangue, and Rutten [28, 29] present an accessible introduction to coinduction up to
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2 DMITRIY TRAYTEL

congruence using the coinductive view of formal languages. Our work additionally focuses
on corecursion up-to and puts Rutten’s exposition in the context of a proof assistant.

When programming with infinite structures in the total setting of a proof assistant,
productivity must be ensured. Intuitively, a corecursive function is productive if it always
eventually yields observable output, e.g., in form of a constructor. Functions that output
exactly one constructor before proceeding corecursively or stopping with a fixed (non-
corecursive) value are called primitively corecursive—a fragment dual to well-understood
primitively recursive functions on inductive datatypes. Primitively corecursive functions are
productive. While sophisticated methods involving domain, measure, and category theory for
handling more complex corecursive specifications have been proposed [7,23] and implemented
in Isabelle [5], we explore here how far primitive corecursion can get us. Restricting ourselves
to this fragment is beneficial in several ways. First, our constructions become mostly
Isabelle independent, since primitive corecursion is supported by all coinduction-friendly
proof assistants. Second, when working in the restricted setting, we quickly hit and learn to
understand the limits. In fact, we will face some non-primitively corecursive specifications on
infinite tries, which we reduce to a composition of primitively corecursive specifications. Those
reductions are insightful and hint at a general pattern for handling certain non-primitively
corecursive specifications.

Infinite data structures are often characterized in terms of observations. For infinite tries,
which we define as a coinductive datatype or short codatatype (Section 2), we can observe the
root, which in our case is labeled by a Boolean value. This label determines if the empty word
is accepted by the trie. Moreover, we can observe the immediate subtrees of a trie, of which
we have one for each alphabet letter. This observation corresponds to making transitions in
an automaton or rather computing the left quotient La = {w | aw ∈ L} of the language L
by the letter a. Indeed, we will see that Brzozowski’s ingenious derivative operation [10],
which mimics this computation recursively on the syntax of regular expressions, arises very
naturally when defining regular operations corecursively on tries (Section 3). To validate
our definitions, we formally prove by coinduction that they satisfy the axioms of Kleene
algebra. Thereby, we use two similar but different coinduction principles for equalities and
inequalities (Section 4). After having presented our formalization, we step back and connect
concrete intuitive notions (such as tries) with abstract coalgebraic terminology (Section 5).
Furthermore, we discuss our formalization and its relation to other work on corecursion and
coinduction with or without proof assistants (Section 6).

This article extends the homonymous FSCD 2016 paper [38] with the definition of
the shuffle product on tries (Subsection 3.3), a trie construction for context-free grammars
(Subsection 3.4), the coinductive treatment of inequalities (Subsection 4.2) instead of reducing
them to equalities, and the proof that the trie construction for context-free grammars is
sound (Subsection 4.3). The material presented here is based on the publicly available
Isabelle/HOL formalization [35] and is partly described in the author’s Ph.D. thesis [37].

Preliminaries. Isabelle/HOL is a proof assistant for higher-order logic, built around a small
trusted inference kernel. The kernel accepts only non-recursive type and constant definitions.
High-level specification mechanisms, which allow the user to enter (co)recursive specifications,
reduce this input to something equivalent but non-recursive. The original (co)recursive
specification is later derived as a theorem. For a comprehensive introduction to Isabelle/HOL
we refer to a recent textbook [24, Part I].
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In Isabelle/HOL types τ are built from type variables α, β, etc., via type constructors κ
written postfix (e.g., α κ). Some special types are the sum type α + β, the product type
α× β, and the function type α→ β, for which the type constructors are written infix. Infix
operators bind less tightly than the postfix or prefix ones. Other important types are the type
of Booleans bool inhabited by exactly two different values > (truth) and ⊥ (falsity) and the
types α list and α set of lists and sets of elements of type α. For Boolean connectives and sets
common mathematical notation is used. A special constant is equality = :: α→ α→ bool ,
which is polymorphic (it exists for any type, including the function type, on which it is
extensional, i.e., (∀x. f x = g x) −→ f = g). The functions Inl and Inr are the standard
embeddings of +. Lists are constructed from [] :: α list and # :: α → α list → α list ; the
latter written infix and often omitted, i.e., we write aw for a#w. Likewise, list concatenation
++ is written infix and may be omitted. The notation |w | stands for the length of the list w ,
i.e., |[]| = 0 and |aw | = 1 + |w |.

2. Languages as Infinite Tries

We define the type of formal languages as a codatatype of infinite tries, that is, (prefix)
trees of infinite depth branching over the alphabet. We represent the alphabet by the type
parameter α. Each node in a trie carries a Boolean label, which indicates whether the (finite)
path to this node constitutes a word inside or outside of the language. The function type
models branching: for each letter x :: α there is a subtree, which we call x-subtree.

codatatype α lang = L (o : bool) (δ : α→ α lang)

The codatatype command defines the type α lang together with a constructor L :: bool →
(α → α lang) → α lang and two selectors o :: α lang → bool and δ :: α lang → α → α lang .
For a binary alphabet α = {a, b}, the trie even shown in Figure 1 is an inhabitant of
α lang . The label of its root is given by o even = > and its subtrees by another trie
δ even a = δ even b = odd . Similarly, we have o odd = ⊥ and δ odd a = δ odd b = even.
Note that we could have equally written even = L > (λ_. odd) and odd = L ⊥ (λ_. even)
to obtain the same mutual characterization of even and odd .

>

⊥ ⊥

> > > >

. . . . . . . . . . . .

a b

a b a b

a b a b a b a b

Figure 1: Infinite trie even

We gave our type the name α lang , to remind us to think of its inhabitants as formal
languages. In the following, we use the terms language and trie synonymously.

Beyond defining the type and the constants, the codatatype command also exports
a wealth of properties about them such as o (L b d) = b, the injectivity of L, or more
interestingly the coinduction rule. Informally, coinduction allows us to prove equality of tries
which cannot be distinguished by finitely many selector applications.
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Clearly, we would like to identify the trie even with the regular language of all words
of even length {w ∈ {a, b}∗ | |w| mod 2 = 0}, also represented by the regular expression
((a + b) · (a + b))∗. Therefore, we define the notion of word membership ∈∈ on tries by
primitive (or structural) recursion on the word using Isabelle’s primrec command.

primrec ∈∈ :: α list → α lang → bool where
[] ∈∈ L = o L
aw ∈∈ L = w ∈∈ δ L a

Using ∈∈, each trie can be assigned a language in the traditional set of lists view.

definition out :: α lang → α list set where
out L = {w | w ∈∈ L}

With this definition, we obtain out even = {w ∈ {a, b}∗ | |w| mod 2 = 0}.

3. Operations on Tries

So far, we have only specified some concrete infinite tries informally. Formally, we will use
primitive corecursion, which is dual to primitive recursion. Primitively recursive functions
consume one constructor before proceeding recursively. Primitively corecursive functions
produce one guarding constructor whose arguments are allowed to be either non-recursive
terms or a corecursive call (applied to arbitrary non-recursive arguments). We call a
function truly primitively corecursive if not all of the constructor’s argument are non-
recursive. The primcorec command reduces a primitively corecursive specification to a
non-recursive definition, which is accepted by Isabelle’s inference kernel [6]. Internally, the
reduction employs a dedicated combinator for primitive corecursion on tries generated by the
codatatype command. The primcorec command slightly relaxes the above restriction of
primitive corecursion by allowing syntactic conveniences, such as lambda abstractions, case-,
and if-expressions, to appear between the guarding constructor and the corecursive call. The
relaxation is resembling the syntactic guardedness check used in type theory [12, Section 2.3],
however still allowing only exactly one constructor to guard a corecursive call.

3.1. Primitively Corecursive Operations. We start with some simple examples: the
languages of the base cases of regular expressions. Intuitively, the trie ∅ representing the
empty language is labeled with ⊥ everywhere and the trie ε representing the empty word
language is labeled with > at its root and with ⊥ everywhere else. The trie A a representing
the singleton language of the one letter word a is labeled with ⊥ everywhere except for the
root of its a-subtree. This intuition is easy to capture formally.

primcorec ∅ :: α lang where
∅ = L ⊥ (λx. ∅)

primcorec ε :: α lang where
ε = L > (λx. ∅)

primcorec A :: α→ α lang where
o (A a) = ⊥
δ (A a) = λx. if a = x then ε else ∅

Among these three definitions only ∅ is truly primitively corecursive.
The specifications of ∅ and ε differ syntactically from the one of A. The constants ∅

and ε are defined using the so called constructor view. The constructor view allows the user
to enter equations of the form constant or function equals constructor, where the arguments



FORMAL LANGUAGES, FORMALLY AND COINDUCTIVELY 5

of the constructor are restricted as described above. Such definitions should be familiar to
any (lazy) functional programmer.

In contrast, the specification of A is expressed in the destructor view. Here, we specify the
constant or function being defined by observations or experiments via selector equations. The
allowed experiments on a trie are given by its selectors o and δ. We can observe the label at
the root and the subtrees. Specifying the observation for each selector—again restricted either
to be a non-recursive term or to contain the corecursive call only at the outermost position
(ignoring lambda abstractions, case-, and if-expressions)—yields a unique characterization
of the function being defined.

It is straightforward to rewrite specifications in either of the views into the other one.
The primcorec command performs this rewriting internally and outputs the theorems
corresponding to the user’s input specification in both views. The constructor view theorems
serve as executable code equations. Isabelle’s code generator [17] can use these equations
to generate code which make sense in programming languages with lazy evaluation. In
contrast, the destructor view offers safe simplification rules even when applied eagerly during
rewriting as done by Isabelle’s simplifier. Note that constructor view specifications such as
∅ = L ⊥ (λx. ∅) will cause the simplifier to loop when applied eagerly.

Now that the basic building blocks ∅, ε, and A are in place, we turn our attention
to how to combine them to obtain more complex languages. We start with the simpler
combinators for union, intersection, and complement, before moving to the more interesting
concatenation and iteration. The union + of two tries should denote set union of languages
(i.e., out (L + K) = out L ∪ out K should hold). It is defined corecursively by traversing the
two tries in parallel and computing for each pair of labels their disjunction. Intersection ∩ is
analogous. Complement simply inverts every label.

primcorec + :: α lang → α lang → α lang where
o (L + K) = o L ∨ o K
δ (L + K) = λx. δ L x + δ K x

primcorec ∩ :: α lang → α lang → α lang where
o (L ∩ K) = o L ∧ o K
δ (L ∩ K) = λx. δ L x ∩ δ K x

primcorec :: α lang → α lang where
o L = ¬ o L
δ L = λx. δ L x

Let us look at the specifying selector equations which we have seen so far from a different
perspective. Imagine L and K being not tries but instead syntactic regular expressions, A,
+, ∩, and constructors of a datatype for regular expressions, and o and δ two operations
that we define recursively on this syntax. From that perspective, the operations are familiar:
rediscovered Brzozowski derivatives of regular expressions [10] and the empty word acceptance
(often also called nullability) test on regular expressions in the destructor view equations for
the selectors δ and o. There is an important difference, though: while Brzozowski derivatives
work with syntactic objects, our tries are semantic objects on which equality denotes language
equivalence. For example, we will later prove ∅ + L = L for tries, whereas ∅ + L 6= L holds
for regular expressions. The coinductive view reveals that derivatives and the acceptance
test are the two fundamental ingredients that completely characterize regular languages and
arise naturally when only considering the semantics.
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>

> ⊥

. . . . . .

a b

a b a b

o K + K. . .

K. . .
+ o K ⊥ + ∅. . .

. . . . . .

a

b

a b a b

Figure 2: Tries for L (left) and the concatenation L · K (right)

o K

o K
δ K a. . .

⊥
δ K b. . .

. . . . . .

a b
a′ b′

a b
a′ b′

a b
a′ b′

δ K a. . . δ K b. . . ∅. . . ∅. . .

Figure 3: Trie for deferred concatenation L ·̂ K

3.2. Reducing Corecursion Up-to to Primitive Corecursion. Concatenation · is the
next regular operation that we want to define on tries. Thinking of Brzozowski derivatives
and the acceptance test, we would usually specify it by the following two equations.

o (L · K) = o L ∧ o K
δ (L · K) = λx. (δ L x · K) + (if o L then δ K x else ∅)

(3.1)

A difficulty arises here, since this specification is not primitively corecursive—the right
hand side of the second equation contains a corecursive call but not at the topmost position
(but rather under + here). We call this kind of corecursion up to +.

Without tool support for corecursion up-to, concatenation must be defined differently—
as a composition of other primitively corecursive operations. Intuitively, we would like to
separate the above δ-equation into two along the + and sum them up afterwards. Technically,
the situation is more involved. Since the δ-equation is corecursive, we cannot just create two
tries by primitive corecursion.

Figure 2 depicts the trie that should result from concatenating an arbitrary trie K to
the concrete given trie L. Procedurally, the concatenation must replace every subtree T of
L that has > at the root (those are positions where words from L end) by the trie U + K
where U is the trie obtained from T by changing its root from > to o K. For uniformity
with the above δ-equation, we imagine subtrees F of L with label ⊥ at the root as also being
replaced by F + ∅, which, as we will prove later, has the same effect as leaving F alone.

Figure 3 presents one way to bypass the restrictions imposed by primitive corecursion.
We are not allowed to use + after proceeding corecursively, but we may arrange the arguments
of + in a broader trie over a doubled alphabet formally modeled by pairing letters of the
alphabet with a Boolean flag. In Figure 3 we write a for (a, >) and a′ for (a, ⊥). Because it
defers the summation, we call this primitively corecursive procedure deferred concatenation ·̂.

primcorec ·̂ :: α lang → α lang → (α× bool) lang where
o (L ·̂ K) = o L ∧ o K
δ (L ·̂ K) = λ(x, b). if b then δ L x ·̂ K else if o L then δ K x ·̂ ε else ∅
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Note that unlike in the Figure 3, where we informally plug the trie δ K x as some x′-subtrees,
the formal definition must be more careful with the types. More precisely, δ K x is of type
α lang , while something of type (α× bool) lang is expected. This type mismatch is resolved
by further concatenating ε to δ K x (again in a deferred fashion) without corrupting the
intended semantics.

Once the trie for the deferred concatenation has been built, the desired trie for concate-
nation can be obtained by a second primitively corecursive traversal that sums the x- and
x′-subtrees before proceeding corecursively.

primcorec ⊕̂ :: (α× bool) lang → α lang where
o (⊕̂ L) = o L
δ (⊕̂ L) = λx. ⊕̂ (δ L (x, >) + δ L (x, ⊥))

Finally, we can define the concatenation as the composition of ·̂ and ⊕̂. The earlier
natural selector equations (3.1) for · are provable for this definition.

definition · :: α lang → α lang → α lang where
L · K = ⊕̂ (L ·̂ K)

The situation with iteration is similar. The selector equations following the Brzozowski
derivative of L∗ yield a non-primitively corecursive specification: it is corecursive up to ·.

o (L∗) = >
δ (L∗) = λx. δ L x · L∗

(3.2)

As before, the restriction is circumvented by altering the operation slightly. We define the
binary operation deferred iteration L ∗̂ K, whose language should represent L · K∗ (although
we have not defined ∗ yet). When constructing the subtrees of L ∗̂ K we keep pulling copies
of the second argument into the first argument before proceeding corecursively (the second
argument itself stays unchanged).

primcorec ∗̂ :: α lang → α lang → α lang where
o (L ∗̂ K) = o L
δ (L ∗̂ K) = λx. (δ (L · (ε + K)) x) ∗̂ K

Supplying ε as the first argument to ∗̂ defines iteration for which the original selector
equations (3.2) hold.

definition _∗ :: α lang → α lang where
L∗ = ε ∗̂ L

We have defined all the standard regular operations on tries. Later we will prove that
those definitions satisfy the axioms of Kleene algebra, meaning that they behave as expected.
Already now we can compose the operations to define new tries, for example the introductory
even = ((A a + A b) · (A a + A b))∗.
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3.3. Adding Further Operations. In the coinductive representation, adding new opera-
tions corresponds to defining a new corecursive function on tries. Compared with adding a
new constructor to the inductive datatype of regular expressions and extending all previously
defined recursive functions on regular expressions to account for this new case, this a is
rather low-cost library extension. Wadler called this tension between extending syntactic
and semantic objects the Expression Problem [40].1

As an example library extension, we define the regular shuffle product operation on
languages, which adheres to the following selector equations.

o (L ‖ K) = o L ∧ o K
δ (L ‖ K) = λx. (δ L x ‖ K) + (L ‖ δ K x)

(3.3)

Intuitively, for words w ∈∈ L and v ∈∈ K, the shuffle product L ‖ K contains all possible
interleavings of w and v. As it is the case for concatenation, the selector equations for the
shuffle product ‖ are corecursive up to +. Thus, as for ·, we first define a deferred shuffle
product operation, which keeps the + occurring outside of the corecursive calls in the second
equation “unevaluated” by using the doubled alphabet α× bool instead of α.

primcorec ‖̂ :: α lang → α lang → (α× bool) lang where
o (L ‖̂ K) = o L ∧ o K
δ (L ‖̂ K) = λ(x, b). if b then δ L x ‖̂ K else L ‖̂ δ K x

A second primitively corecursive traversal sums the (a, >)- and (a, ⊥)-subtrees using the
same function ⊕̂ as in the definition of concatenation. Then, the shuffle product can be
defined as the composition of ‖̂ and ⊕̂.

definition ‖ :: α lang → α lang → α lang where
L ‖ K = ⊕̂ (L ‖̂ K)

3.4. Context-Free Grammars as Tries. Tries are not restricted to regular operations.
We define an operation that transforms a context-free grammar (in a particular normal form)
into the trie denoting the same context-free language. The operation borrows ideas from
Winter’s et al. [41] coalgebraic exposition of context-free languages.

For the rest of the subsection, we fix a context-free grammar given by the type of
its terminal symbols T , the type of its non-terminal symbols N , a distinguished starting
non-terminal S :: N , and its productions P :: N → (T +N ) list set—an assignment of a
set of words consisting of terminal and non-terminal symbols for each non-terminal. For
readability, we write T for Inl :: T → T +N and NT for Inr :: N → T +N in this section.
The inductive semantics of such a grammar is standard: a word over the alphabet T is
accepted, if there is a finite derivation of that word using a sequence of productions. (For a
formal definition, see Subsection 4.3.) For example, the grammar given by the productions

P N = if N = S then {[], [T a], [T b], [T a, NT S, T a], [T b, NT S, T b]} else {}
1Note that codatatypes alone are not the solution to the Expression Problem—they just populate the

other side of the spectrum with respect to datatypes. In fact, adding new selectors to tries would be as painful
as adding new constructors to the datatype of regular expressions. Rendel et al. [27] outline how automatic
conversions between the inductive and the coinductive view can help solving the Expression Problem.
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where a, b :: T with a 6= b, denotes the non-regular language of palindromes over {a, b}. In
conventional syntax, we would write the above productions as S→ ε | a | b | aSa | bSb.

To give a coinductive semantics in form of a trie to a grammar, we must solve the word
problem for context-free grammars and use that algorithm to assign corecursively the Boolean
labels in the trie. Different algorithms solve the word problem for context-free grammars.
Earley’s algorithm [13] is the most flexible (but also complex) one: it works for arbitrary
grammars without requiring a syntactic normal form. To simplify the presentation, we work
with a syntactic normal form that allows us to use a much simplified version of Earley’s
algorithm. We require the productions to be in weak Greibach normal form [41]: every
produced word should either be the empty list or start with a terminal. Formally:

∀N. ∀α ∈ P N. case α of NTM #_⇒ ⊥ | _⇒ >

Weak Greibach normal form is a relaxation of the standard Greibach normal form [15], which
additionally requires the starting terminal to be followed only by non-terminals. The example
palindrome grammar is in weak Greibach normal form but not in Greibach normal form.

The intermediate states α, β, . . . of a word derivation are words of type (T +N ) list ,
which are reachable from the initial non-terminal. We observe that such a state can only
produce the empty word according to P, if it consists only of non-terminals, each of which
can immediately produce the empty word, i.e., [] ∈ P N . Note that due to weak Greibach
normal form any non-[] production will produce at least one terminal symbol. We compute
recursively whether a state can produce the empty word according to P .

primrec oP :: (T +N ) list → bool where
oP [] = >
oP (x# α) = case x of T _⇒ ⊥ | NT N ⇒ [] ∈ P N ∧ oP α

A second useful function δP “reads” a terminal symbol a in a state from the left, yielding
a set of successor states to choose from non-deterministically. The recursive definition of
δP is based on a similar observation as the one of oP. If the state starts with a terminal b,
the only successor state is the tail of the state if a = b. There is no successor state if a 6= b.
If the state starts with a non-terminal N , we consider all non-empty productions in P N
starting with a and replace N with their tails. Additionally, if N may produce the empty
word, we drop it and continue recursively with the next terminal or non-terminal symbol of
the state, which possibly results in additional successor states. Formally:

primrec δP :: (T +N ) list → T → (T +N ) list set where
δP [] _ = {}
δP (x# α) a = case x of

T b⇒ if a = b then {α} else {}
| NT N ⇒ {β++α | (T a)#β ∈ P N} ∪ if [] ∈ P N then δP α a else {}

Finally, we obtain a trie from a set of states by primitive corecursion using the two above
functions to specify the observations. Note that the set of states changes when proceeding
corecursively. For this definition we use the constructor view.

primcorec close :: (T +N ) list set → T lang where
close X = L (∃α ∈ X. oP α) (λa. close

(⋃
α∈X δP α a

)
)

The initial state, in which no terminal has been read yet, is the singleton list [S]. We
obtain the trie G corresponding to our fixed grammar.
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definition G :: T lang where
G = close {[S]}

3.5. Arbitrary Formal Languages. Before we turn to proving, let us exercise one more
corecursive definition. Earlier, we have assigned each trie a set of lists via the function out.
Primitive corecursion enables us to define the converse operation.

primcorec in :: α list set → α lang where
o (in L) = [] ∈ L
δ (in L) = λa. in {w | aw ∈ L}

The function out and in are both bijections. We show this by proving that their
compositions (either way) are both the identity function. One direction, out (in L) = L,
follows by set extensionality and a subsequent induction on words. The reverse direction
requires a proof by coinduction, which is the topic of the next section.

Using in we can turn every (even undecidable) set of lists into a trie. This is somewhat
counterintuitive, since, given a concrete trie, its word problem seems easily decidable (via
the function ∈∈). But of course in order to compute the trie out of a set of lists L via in
the word problem for L must be solved—we are reminded that higher-order logic is not a
programming language where everything is executable, but a logic in which we write down
specifications (and not programs). For regular operations and context-free grammars from
the previous subsections the situation is different. For example, Isabelle’s code generator can
produce valid Haskell code that evaluates abaa ∈∈ (A a · (A a + A b))∗ to > and abaa ∈∈ G
to ⊥, where G is the trie for the palindrome grammar from Subsection 3.4. The latter is
possible, despite the seemingly non-executable existential quantification and unions in the
definition of close, due to Isabelle’s code generator, which makes (co)finite sets executable
through data refinement to lists or red-black trees [16].

4. Reasoning about Tries

We have seen the definitions of many operations, justifying their meaningfulness by appealing
to the reader’s intuition. This is often not enough to guarantee correctness, especially if
we have a theorem prover at hand. So let us formally prove in Isabelle that the regular
operations on tries form a Kleene algebra by proving Kozen’s famous axioms [20] as equalities
(Subsection 4.1) or inequalities (Subsection 4.2) on tries and prove the soundness our our trie
construction for a context free grammar with respect to the standard inductive semantics of
grammars (Subsection 4.3).

4.1. Proving Equalities on Tries. Codatatypes are equipped with the perfect tool for
proving equalities: the coinduction principle. Intuitively, this principle states that the
existence of a relation R that is closed under the codatatype’s observations (given by
selectors) implies that elements related by R are equal. Being closed means here that for all
R-related codatatype elements their immediate (non-corecursive) observations are equal and
the corecursive observations are again related by R. In other words, if we cannot distinguish
elements of a codatatype by (finite) observations, they must be equal. Formally, for our
codatatype α lang we obtain the following coinduction rule.
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1 theorem ∅ + L = L
2 proof (rule coinduct lang)
3 def R L1 L2 = (∃K. L1 = ∅ + K ∧ L2 = K)

4 show R (∅ + L) L by simp

5 fix L1 L2

6 assume R L1 L2

7 then obtain K where L1 = ∅ + K and L2 = K by simp
8 then show o L1 = o L2 ∧ ∀x. R (δ L1 x) (δ L2 x) by simp
9 qed

Figure 4: A detailed proof by coinduction

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R (δ L1 x) (δ L2 x)) coinduct lang
L = K

The second assumption of this rule formalizes the notion of being closed under observations:
If two tries are related then their root’s labels are the same and all their subtrees are related.
A relation that satisfies this assumption is called a bisimulation. Thus, proving an equation
by coinduction amounts to exhibiting a bisimulation witness that relates the left and the
right hand sides.

Let us observe the coinduction rule, which we call coinduct lang , in action. Figure 4 shows
a detailed proof of the Kleene algebra axiom that the empty language is the left identity of
union that is accepted by Isabelle. After applying the coinduction rule backwards (line 2),
the proof has three parts. First, we supply a definition of a witness relation R (line 3).
Second, we prove that R relates the left and the right hand side (line 4). Third, we prove
that R is a bisimulation (lines 5–8). Proving R (∅ + L) L for our particular definition of R
is trivial after instantiating the existentially quantified K with L. Proving the bisimulation
property is barely harder: for two tries L1 and L2 related by R we need to show o L1 = o L2

and ∀x. R (δ L1 x) (δ L2 x). Both properties follow by simple calculations rewriting L1 and
L2 in terms of a trie K (line 7), whose existence is guaranteed by R L1 L2, and simplifying
with the selector equations for + and ∅.

o L1 = o (∅ + K) = (o ∅ ∨ o K) = (⊥ ∨ o K) = o K = o L2

R (δ L1 x) (δ L2 x) = R (δ (∅ + K) x) (δ K x)
= R (δ ∅ x + δ K x) (δ K x) = R (∅ + δ K x) (δ K x)
= (∃K ′. ∅ + δ K x = ∅ + K ′ ∧ δ K x = K ′) = >

The last step is justified by instantiating K ′ with δ K x.
So in the end, the only part that required ingenuity was the definition of the witness R.

But was it truly ingenious? It turns out that in general, when proving a conditional equation
P x −→ l x = r x by coinduction, where x denotes a list of variables occurring freely in
the equation, the canonical choice for the bisimulation witness is R a b = (P x ∧ ∃x. a =
l x ∧ b = r x). There is no guarantee that this definition yields a bisimulation. However,
after performing a few proofs by coinduction, this particular pattern emerges as a natural
first choice to try. Indeed, the choice is so natural, that it was worth to automate it in the
coinduction proof method [6]. This method instantiates the coinduction rule coinduct lang
with the canonical bisimulation witness constructed from the goal, where the existentially
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quantified variables must be given explicitly using the arbitrary modifier. Then it applies
the instantiated rule in a resolution step, discharges the first assumption, and unpacks the
existential quantifiers from R in the remaining subgoal (the obtain step in the above proof).
Many proofs collapse to an automatic one-line proof using this convenience, including the
one above. Some examples follow.

theorem ∅ + L = L by (coinduction arbitrary : L) auto

theorem L + L = L by (coinduction arbitrary : L) auto

theorem L1 + L2 = L2 + L1 by (coinduction arbitrary : L1 L2) auto

theorem (L1 + L2) + L3 = L1 + L2 + L3 by (coinduction arbitrary : L1 L2 L3) auto

theorem in (out L) = L by (coinduction arbitrary : L) auto

theorem in (L ∪ K) = in L + in K by (coinduction arbitrary : L K) auto

As indicated earlier, sometimes the coinduction method does not succeed. It is instructive
to consider one example where this is the case: o L −→ ε + L = L.

If we attempt to prove the above statement by coinduction instantiated with the
canonical bisimulation witness R L1 L2 = (∃K. L1 = ε + K ∧ L2 = K ∧ o K), after some
simplification we are stuck with proving that R is a bisimulation.

R (δ L1 x) (δ L2 x) = R (δ (ε + K) x) (δ K x)
= R (δ ε x + δ K x) (δ K x) = R (∅ + δ K x) (δ K x)
= R (δ K x) (δ K x) = (∃K ′. δ K x = ε + K ′ ∧ δ K x = K ′ ∧ o K ′)

The remaining goal is not provable: we would need to instantiate K ′ with δ K x, but
then, we are left to prove o (δ K x), which we cannot deduce (we only know o K). If we,
however, instantiate the coinduction rule with R=

L1 L2 = R L1 L2 ∨ L1 = L2, we are able to
finish the proof. This means that our canonical bisimulation witness R is not a bisimulation,
but R= is. In such cases R is called a bisimulation up to equality [32].

Instead of modifying the coinduction method to instantiate the rule coinduct lang with
R

=, it is more convenient to capture this improvement directly in the coinduction rule. This
results in the following rule which we call coinduction up to equality or coinduct=lang .

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R
=
(δ L1 x) (δ L2 x)) coinduct=langL = K

Note that coinduct=lang is not just an instance of coinduct lang , with R replaced by R=.
Instead, after performing this replacement, the first assumption is further simplified to
R L K—we would not use coinduction in the first place, if we could prove R=

L K by
reflexivity. Similarly, the reflexivity part in the occurrence on the left of the implication
in the second assumption is needless and therefore eliminated. The resulting coinduction
up to equality principles are independent of the particular codatatypes and thus uniformly
produced by the codatatype command. Using this coinduction up to equality rule, we have
regained the ability to write one-line proofs.

theorem o L −→ ε + L = L by (coinduction arbitrary : L rule : coinduct=lang) auto

One might think that the principle coinduct=lang is always preferable to coinduct lang .
This is true from the expressiveness point of view: whatever can be proved with coinduct lang ,
can also be proved with coinduct=lang . However, for proof automation coinduct=lang is often
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less beneficial: to prove membership in R=we need to prove a disjunction which may result
in a larger search space, given that neither of the disjuncts is trivially false. In summary,
using the weakest rule that suffices to finish the proof helps proof automation.

This brings us to the next hurdle. Suppose that we already have proved the natural
selector equations (3.1) for concatenation ·. (This requires finding some auxiliary properties
of ·̂ and ⊕̂ but is an overall straightforward usage of coinduction up to equality.) Next, we
want to reason about ·. For example, we prove its distributivity over +: (L + K) ·M =
(L ·M) + (K ·M). As before, we are stuck proving that the canonical bisimulation witness
R L1 L2 = (∃L′ K ′ M ′. L1 = (L′ + K ′) ·M ′ ∧ L2 = (L′ ·M ′) + (K ′ ·M ′)) is a bisimulation
(and this time even for up to equality).

R
=
(δ L1 x) (δ L2 x) = R

=
(δ ((L′ + K ′) ·M ′) x) (δ ((L′ ·M ′) + (K ′ ·M ′)) x)

=



R
=
((δ L′ x + δ K ′ x) ·M ′)
((δ L′ x ·M ′) + (δ K ′ x ·M ′)) if ¬o L′ ∧ ¬o K ′

R
=
((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′ + δ M ′ x) + (δ K ′ x ·M ′)) if o L′ ∧ ¬o K ′

R
=
((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′) + (δ K ′ x ·M ′ + δ M ′ x)) if ¬o L′ ∧ o K ′

R
=
((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′ + δ M ′ x) + (δ K ′ x ·M ′ + δ M ′ x)) if o L′ ∧ o K ′

=


> if ¬o L′ ∧ ¬o K ′

R
=
((δ L′ x + δ K ′ x) ·M ′ + δ M ′ x)

((δ L′ x ·M ′ + δ K ′ x ·M ′) + δ M ′ x) otherwise

The remaining subgoal cannot be discharged by the definition of R. In principle it could
be discharged by equality (the two tries are equal), but this is almost exactly the property we
originally started proving, so we have not simplified the problem by coinduction but rather
are going in circles here. However, if our relation could somehow split its arguments across
the outermost + highlighted in gray, we could prove the left pair being related by R and the
right pair by =. The solution is easy: we allow the relation to do just that. Accordingly, we
define the congruence closure R+of a relation R under + inductively by the following rules.

L = K

R
+
L K

R L K

R
+
L K

R
+
L K

R
+
K L

R
+
L1 L2 R

+
L2 L3

R
+
L1 L3

R
+
L1 K1 R

+
L2 K2

R
+
(L1 + L2) (K1 + K2)

The closure R+ is then used to strengthen the coinduction rule, just as the earlier reflexive
closure R=strengthening. Note that the closure R=can also be viewed as inductively generated
by the first two of the above rules. In summary, we obtain coinduction up to congruence of
+, denoted by coinduct+lang .

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R
+
(δ L1 x) (δ L2 x)) coinduct+langL = K

This rule is easily derived from plain coinduction by instantiating R in coinduct lang with R+

and proceeding by induction on the definition of the congruence closure.
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As intended coinduct+lang makes the proof of distributivity into another automatic one-
liner. This is because our new proof principle, coinduction up to congruence of +, matches
exactly the definitional principle of corecursion up to + used in the selector equations (3.1) of ·.

theorem (L + K) ·M = (L ·M) + (K ·M)
by (coinduction arbitrary : L K M rule : coinduct+lang) auto

Coinduction up to congruence of + allows us also to prove properties of the shuffle
product, e.g., commutativity L ‖ K = K ‖ L and associativity (K ‖ L) ‖M = K ‖ (L ‖M).

For properties involving iteration ∗, whose selector equations (3.2) are corecursive up to ·,
we will need a further strengthening of the coinduction rule (using the congruence closure
under ·). Overall, the most robust solution to keep track of the different rules is to maintain
a coinduction rule up to all previously defined operations on tries: we define R• to be the
congruence closure of R under +, ·, and ∗ and then use the following rule for proving.

R L K ∀L1 L2. R L1 L2 −→ (o L1 = o L2 ∧ ∀x. R
•
(δ L1 x) (δ L2 x)) coinduct•langL = K

We will not spell out all equational axioms of Kleene algebra [20] and their formal
proofs [35] here. Most proofs are automatic; some require a few manual hints in which order
to apply the congruence rules.

4.2. Proving Inequalities on Tries. A few axioms of Kleene algebra also contain inequali-
ties, such as ε + L · L∗ ≤ L∗, and even conditional inequalities, such as L +M · K ≤M −→
L · K∗ ≤M . On languages, L ≤ K is defined as L + K = K, such that in principle proofs by
coinduction also are applicable here. However, we can achieve even better proof automation,
if we formulate and use the following dedicated coinduction principle for ≤.

R L K ∀L1 L2. R L1 L2 −→ ((o L1 −→ o L2) ∧ ∀x. R (δ L1 x) (δ L2 x))
coinduct≤

L ≤ K
This theorem has the same shape as the usual coinduction principle coinduct lang , however
the relation R is only required to be a simulation instead of a bisimulation. In other words
R still needs to be closed under corecursive observations, however the immediate observation
of the first argument must only imply the one of the second argument (as opposed to being
equal to it). We call this coinduction principle coinduct≤ and prove it by unfolding the
definition of ≤ and then using the equational coinduction principle coinduct lang .

While coinduct≤ allows us to prove simple properties like r ≤ r + s, it is not strong
enough to automatically prove the inequational Kleene algebra axioms, which involve con-
catenation and iteration. As in the case of equations, up-to reasoning is the familiar way
out of this dilemma. However, since R is only a simulation, and thus in general not an
equivalence relation, we can not consider its congruence closure. Instead, we follow Rot et
al. [29] and define inductively the so-called precongruence closure R•

≤
.

L ≤ K

R
•

≤
L K

R L K

R
•

≤
L K

R
•

≤
L1 L2 R

•

≤
L2 L3

R
•

≤
L1 L3

R
•

≤
L1 K1 R

•

≤
L2 K2

R
•

≤
(L1 + L2) (K1 + K2)

R
•

≤
L1 K1 R

•

≤
L2 K2

R
•

≤
(L1 · L2) (K1 · K2)

R
•

≤
L K

R
•

≤
(L∗) (K∗)

R
•

≤
L1 K1 R

•

≤
L2 K2

R
•

≤
(L1 ∩ L2) (K1 ∩ K2)
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With this definition we are able to prove the following strengthened coinduction principle
up to precongruence closure, called coinduct•≤.

R L K ∀L1 L2. R L1 L2 −→ ((o L1 −→ o L2) ∧ ∀x. R
•

≤
(δ L1 x) (δ L2 x))

coinduct•≤L ≤ K
The proof of coinduct•≤ is structurally very similar to the one of coinduct•lang : after using
the plain coinduct≤ rule, we are left with proving that the precongruence closure R•

≤
is

a simulation. This follows by induction on the definition of the preconguence closure.
Crucially, the complement operation is not included in this definition. For simulation
up-to preconguence closure to be a simulation, all operations must be monotone with respect
to their immediate observations o, which is not the case for [29].

Finally, we are capable to write automatic proofs for inequalities.

theorem ε + L · L∗ ≤ L∗ by (coinduction rule : coinduct•≤) auto

theorem o K −→ L ≤ L · K by (coinduction arbitrary : L rule : coinduct•≤) auto

We remark that working with inequalities also has its cost. The reason for this is that
Isabelle excels at equational reasoning. Isabelle also provides automation for reasoning with
orders, but it is noticeably less powerful than the one for =. On the other hand, equations
of the form L + K = K, which one gets after unfolding the definition of ≤, are not ideal
for rewriting. Proofs that reduce inequalities to equalities ofter require manual hints to
expand K into L + K at the right places. In the end, when using up-to simulations a careful
setup of rewriting rules and classical reasoning support for ≤ results in a higher degree of
automation. This is especially perceivable for more complicated inequational properties like
L +M · K ≤M −→ L · K∗ ≤M .

4.3. Reasoning about Context-Free Languages. We connect our trie construction from
Subsection 3.4 for a context-free grammar in weak Greibach normal form to the traditional
inductive semantics of context-free grammars. We use the notational conventions and
definition of Subsection 3.4, including fixing the starting non-terminal S :: N and the
productions P :: N → (T +N ) list set . First, we formalize the traditional inductive semantics
using an inductive binary predicate ∈∈P :: T list → (T +N ) list → bool (written infix).
Intuitively, w ∈∈P α holds if and only if w is derivable from α in finitely many production
steps via P, where each time we replace the leftmost non-terminal first.

[] ∈∈P []
w ∈∈P α

(a# w) ∈∈P (T a# α)

∃β ∈ P N. w ∈∈P β ++ α

w ∈∈P (NT N # α)

Note that ∈∈P gives a way to assign the language {w | w ∈∈P [N ]} to each non-terminal
N , and in particular the language {w | w ∈∈P [S]} for the whole grammar given by P and
S. We now prove that our trie G for the fixed grammar represents the same language,
i.e., G = in {w | w ∈∈P [S]}. Our proof uses an auxiliary intermediate inductive predicate
∈∈oδP :: T list → (T +N ) list set → bool (written infix) that reflects the change of the set of
states during corecursion in close function (which is used to construct G).

∃α ∈ X. oP α
[] ∈∈oδP X

w ∈∈oδP (
⋃
α∈X . δP α a)

(a# w) ∈∈oδP X

In some sense, ∈∈oδP is the inductive view on the close function, as established next.
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α
s //

f ��

α F
mapF f��

β
t // β F

Figure 5: Commutation property of a coalgebra morphism

theorem close X = in {w | w ∈∈oδP X} by (coinduction arbitrary : X) auto

The proof uses the simplest coinduction rule coinduct lang and relies on injectivity of in.
Next, we establish that w ∈∈P α holds if and only if w ∈∈oδP {α} holds. We prove the two

directions separately. Thereby we generalize the “if”-direction.

theorem w ∈∈oδP X −→ ∃α ∈ X. w ∈∈P α
theorem w ∈∈P α −→ w ∈∈oδP {α}

We do not show the proofs for the above statements about since both are standard inductions
on the inductive definitions of ∈∈oδP and ∈∈P. Out of all theorems shown in this subsection,
only the last one requires the grammar to be in weak Greibach normal form. Putting the
three theorems together, we obtain the desired characterization: G = in {w | w ∈∈P [S]}.

We remark that a definition of the trie G via a full Earley parser, would not only
remove the need of weak Greibach normal form, but also enable coinductive reasoning about
arbitrary grammars. For example, one could also formalize and prove correct the translation
of grammars to certain normal forms without resorting to the traditional inductive semantics
(and thus induction). We leave this study as future work, as it may burst the scope of an
introduction to coinduction.

5. Coalgebraic Foundations

We briefly connect the formalized but still intuitive notions, such as tries, from earlier
sections with the key coalgebraic concepts and terminology that is usually used to present
the coalgebraic view on formal languages. Thereby, we explain how particularly useful
abstract objects gave rise to concrete tools in Isabelle/HOL. More theoretical and detailed
introductions to coalgebra can be found elsewhere [19,31].

Given a functor F an (F -)coalgebra is a carrier object A together with a map A→ F A—
the structural map of a coalgebra. In the context of higher-order logic—that is in the category
of types which consists of types as objects and of functions between types as arrows—a
functor is a type constructor F together with a map function mapF :: (α→ β)→ α F → β F
that preserves identity and composition: mapF id = id and mapF (f ◦ g) = mapF f ◦mapF g.
An F -coalgebra in HOL is therefore simply a function s :: α→ α F . A function f :: α→ β
is a coalgebra morphism between two coalgebras s :: α→ α F and t :: β → β F if it satisfies
the commutation property t ◦ f = mapF f ◦ s, also depicted by the commutative diagram in
Figure 5.

An (F -)coalgebra to which there exists a unique morphism from any other coalgebra is
called a final (F -)coalgebra. Not all functors F admit a final coalgebra [31, Section 10]. Two dif-
ferent final coalgebras are necessarily isomorphic. Final coalgebras correspond to codatatypes
in Isabelle/HOL. Isabelle’s facility for defining codatatypes maintains a large class of functors—
bounded natural functors [39]—for which a final coalgebra does exists. Moreover, for any
bounded natural functor F , Isabelle can construct its final coalgebra with the codatatype
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τ
s //

coiter s ��

τ D
mapD (coiter s)��

α lang
〈o, δ〉 // α lang D

Figure 6: Unique morphism coiter s to the final coalgebra (α lang , 〈o, δ〉)

τ
s //

corec s ��

(α lang + τ) D
mapD [id, corec s]��

α lang
〈o, δ〉 // α lang D

Figure 7: Characteristic theorem of the corecursor

CF as the carrier and define a bijective constructor CF :: CF F → CF and its inverse, the
destructor DF :: CF → CF F . The latter takes the role of the structural map of the coalgebra.

codatatype CF = CF (DF : CF F )

Finally, we are ready to connect these abstract notions to our tries. The codatatype of
tries α lang is the final coalgebra of the functor β D = bool × (α→ β) with the associated
map function mapD g = id× (λf. g ◦ f), where (f × g) (x, y) = (f x, g y). The structural
map of this final coalgebra is the function DD = 〈o, δ〉, where 〈f, g〉 x = (f x, g x).

The finality of α lang gives rise to the definitional principles of primitive coiteration and
corecursion. In Isabelle the coiteration principle is embodied by the primitive coiterator
coiter :: (τ → τ D) → τ → α lang , that assigns to the given D-coalgebra the unique
morphism from itself to the final coalgebra. In other words, the primitive coiterator allows
us to define functions of type τ → α lang by providing a D-coalgebra on τ , i.e., a function of
type τ → bool × (α → τ) that essentially describes a deterministic (not necessarily finite)
automaton without an initial state. To clarify this automaton analogy, it is customary
to present the F -coalgebra s as two functions s = 〈o, d〉 with τ being the states of the
automaton, o : τ → bool denoting accepting states, and d : α→ τ → τ being the transition
function. From a given s, we uniquely obtain the function coiter s that assigns to a separately
given initial state t : τ the language coiter s t : α lang and makes the diagram in Figure 6
commute. Note that Figure 6 is an instance of Figure 5.

Corecursion differs from coiteration by additionally allowing the user to stop the coitera-
tion process by providing a fixed non-corecursive value. In Isabelle this is mirrored by another
combinator: the corecursor corec :: (τ → (α lang + τ) D)→ τ → α lang where the sum type
+ offers the possibility either to continue corecursively as before (represented by the type
τ) or to stop with a fixed value of type α lang . The corecursor satisfies the characteristic
property shown in Figure 7, where the square brackets denote a case distinction on +, i.e.
[f, g] x = case x of Inl l ⇒ f l | Inr r ⇒ g r. Corecursion is not more expressive than
coiteration (since corec can be defined in terms of coiter), but it is more convenient to use.
For instance, the non-corecursive specifications of ε and A, and the else branch of ·̂ exploit
this additional flexibility.

The primcorec command [6] reduces a user specification to a non-recursive defini-
tion using the corecursor. For example, the union operation + is internally defined as
λL K. corec (λ(L, K). (o L ∧ o K, λa. Inr (δ L a, δ K a))) (L, K). The D-coalgebra
argument to corec resembles the right hand sides of the selector equations for + (with
the corecursive calls replaced by Inr). In fact, for this simple definition mere coiteration
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would suffice. An example that uses the convenience that corecursion provides, is the
deferred concatenation ·̂. Its internal definition reads: λL K. corec (λ(L, K). (o L ∧
o K, λ(x, b). if b then Inr (δ L x, K) else if o L then Inr (δ K x, ε) else Inl ∅). As
end users, most of the time we are happy being able to write the high-level corecursive
specifications, without having to explicitly supply coalgebras.

It is worth noting that the final coalgebra α lang itself corresponds to the automaton,
whose states are languages, acceptance is given by o L = o L, and the transition function
by d a L = δ L a. For these definitions, we obtain corec 〈o, d〉 (L : α lang) = L. For regular
languages this automaton corresponds to the minimal automaton (since equality on tries
corresponds to language equivalence), which is finite by the Myhill–Nerode theorem. This
correspondence is not very practical though, since we typically label states of automata with
something finite, in particular not with languages (represented by infinite tries).

A second consequence of the finality of α lang is the coinduction principle that we have
seen earlier. It follows from the fact that final coalgebras are quotients by bisimilarity, where
bisimilarity is defined as the existence of a bisimulation relation.

6. Discussion and Related Work

Our development is a formalized counterpart of Rutten’s introduction to the coalgebraic
view on languages [30]. In this section we discuss further related work.

Coalgebraic View on Formal Languages. The coalgebraic approach to languages has re-
cently received some attention. Landmark results in language theory were rediscovered
and generalized. Silva’s recent survey [34] highlights some of those results including the
proofs of correctness of Brzozowski’s subtle deterministic finite automaton minimization
algorithm [8]. The coalgebraic approach yields some algorithmic advantages, too. Bonchi and
Pous present a coinductive algorithm for checking equivalence of non-deterministic automata
that outperforms all previously known algorithms by one order of magnitude [9]. Another
recent development is our formally verified coalgebraic algorithm for deciding weak monadic
second-order logic of one successor (WS1S) [36]. This formalization employs the Isabelle
library presented here.

Formal Languages in Proof Assistants . The traditional set-of-words view on formal languages
is formalized in most proof assistants. In contrast, we are not aware of any other formalization
of the coalgebraic view on formal languages in a proof assistant.

Here, we want to compare our formalization with the Isabelle incarnation of the set-
of-words view developed by Krauss and Nipkow for the correctness proof of their regular
expression equivalence checker [22]. Both libraries are comparably concise. In 500 lines Krauss
and Nipkow prove almost all axioms of Kleene algebra and the characteristic equations for
the left quotients (the δ-specifications in our case). They reuse Isabelle’s libraries for sets and
lists, which come with carefully tuned automation setup. Still, their proofs tend to require
additional induction proofs of auxiliary lemmas, especially when reasoning about iteration.
Our formalization is 700 lines long. We prove all axioms of Kleene algebra and connect
our representation to the set-of-words view via the bijections out and in. Except for those
bijections our formalization does not rely on any other library. Moreover, when we changed
our 5000 lines long formalization of a coalgebraic decision procedure for WS1S [36] to use the
infinite tries instead of the set-of-words view, our proofs about WS1S became approximately
300 lines shorter. Apparently, a coalgebraic library is a good fit for a coalgebraic procedure.
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Paulson presents a concise formalization of automata theory based on hereditarily finite
sets [26]. For the semantics he reuses Krauss and Nipkow’s set-of-words formalization.

Non-Primitive Corecursion in Proof Assistants . Automation for corecursion in proof assistants
is much less developed than its recursive counterpart. The Coq proof assistant supports
corecursion up to constructors [11]. Looking at our examples, however, this means that Coq
will not be able to prove productivity of the natural concatenation and iteration specifications
automatically, since both go beyond up-to constructors. Instead, our reduction to primitive
corecursion can be employed to bypass Coq’s productivity checker.

Recently, we have added the support for corecursion up to so called friendly operations to
Isabelle/HOL [5,7]. (Before this addition, Isabelle supported only primitive corecursion [6].)
An operation is friendly if, under lazy evaluation, it does not peek too deeply into its
arguments, before producing at least one constructor. For example, the friendly operation
L + K = L (o L ∨ o K) (λx. δ L x + δ K x) destructs only one layer of constructors, in
order to produce the topmost L. In contrast, the primitively corecursive equation deep L =
L (o L) (λx. deep (δ (δ L x) x)) destructs two layers of constructors (via δ) before producing
one and is therefore not friendly. Indeed, we will not be able to reduce the equation
bad = L > (λ_. deep bad) (which is corecursive up to deep) to a primitively corecursive
specification. And there is a reason for it: bad is not uniquely specified by the above equation,
or in other words not productive.

Since + is friendly, and · and ‖ are corecursive up to +, this new infrastructure allows
us to use the constructor view version of the natural selector equations (3.1) and (3.3) for ·
and ‖ instead of the more complicated primitively corecursive definitions from Section 3.

corec (friend) + :: α lang → α lang → α lang where
L + K = L (o L ∨ o K) (λx. δ L x + δ K x)

corec (friend) · :: α lang → α lang → α lang where
L · K = L (o L ∧ o K) (λx. (δ L x · K) + (if o L then δ K x else ∅))

corec (friend) ‖ :: α lang → α lang → α lang where
L ‖ K = L (o L ∧ o K) (λx. (δ L x ‖ K) + (L ‖ δ K x))

The corec command defines the specified constants and the friend option registers them
as friendly operations by automatically discharging the emerging proof obligations ensuring
that the operations consume at most one constructor to produce one constructor. Since · is
friendly, too, we can define the corecursive up to · iteration ∗ using its natural equations (3.2).

corec (friend) _∗ :: α lang → α lang where
L∗ = L > (λx. δ L x · L∗)

Internally, corec reduces the corecursive specification to a primitively corecursive one
following an abstract, category theory inspired construction. Yet, what this abstract con-
struction yields in practice is relatively close to our manual construction for concatenation.
(In contrast, the iteration case takes some shortcuts, which the abstract view does not offer.)

On the reasoning side, corec provides some automation, too. It automatically derives
the corresponding coinduction up-to rules for the registered (sets of) friendly operations.
Overall, the usage of corec compresses our development from 700 to 550 lines of Isabelle text.

Agda’s combination of copatterns (i.e., destructor view) and sized types [3, 4] is the
most expressive implemented support for corecursion in proof assistants to date. However,
using sized types often means that one has to encode proofs of productivity manually in the
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type of the defined function. Thus, it is possible to define concatenation and iteration using
their natural equations (3.1) and (3.2) in Agda. Recently, Abel [1,2] has formalized those
definitions of regular operations up to proving the recursion equation L∗ = ε + L · L∗ for
iteration in 219 lines of Agda text, which correspond to 125 lines in our version. His definitions
are equally concise as the ones using corec, but his proofs require more manual steps.

7. Conclusion

We have presented a particular formal structure for computation and deduction: infinite
tries modeling formal languages. Although this representation is semantic and infinite, it
is suitable for computation—in particular we obtain a matching algorithm for free on tries
constructed by regular operations. Deduction does not come short either: coinduction is
the convenient reasoning tool for infinite tries. Coinductive proofs are concise, especially for
(in)equational theorems such as the axioms of Kleene algebra.

Codatatypes might be just the right tool for thinking algorithmically about semantics.
We hope to have contributed to their dissemination by outlining some of their advantages.
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