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Kurzfassung

Eine einzigartige Eigenschaft von ultrakaltem, fermionischem Lithium ist, dass Streu-
eigenschaften bei Zwei-Körper-Stössen durch eine präzis kontrollierbare Streulänge be-
stimmt sind. Diese kann in der Nähe einer Feshbach Resonanz über einen weiten Bereich
durchgestimmt werden. So können nichtwechselwirkende und wechselwirkende Fermiga-
se erzeugt werden. Unterhalb einer kritischen Temperature wird das wechselwirkende
Fermigas supraflüssig. Dies erlaubt es uns dann, Suprafluidität in Bereichen verschieden
starker Wechselwirkung zu untersuchen. Die relevante Längenskala in diesen Fermigasen
ist die Fermiwellenlänge von typischerweise 1µm.

In dieser Arbeit wird ein experimenteller Aufbau präsentiert, der Mikroskopie von
ultrakalten Fermigasen mit einer optischen Auflösung von 700nm ermöglicht. Innerhalb
von 15s werden Lithium Atome ausschliesslich mithilfe von optischen Kühltechniken auf
Temperaturen unterhalb der Fermitemperatur gekühlt. Dies erfolgt in mehreren Schrit-
ten: Zuerst werden die Atome mit einem Zeeman Abbremser zum Stillstand gebracht
und danach in einer magneto-optischen Falle gefangen. Anschliessend werden sie zur
evaporativen Kühlung in eine Resonatordipolfalle umgeladen. In einem weiteren Schritt
werden die Atome, gefangen im Fokus eines Laserstrahls, 27cm weit in eine Glasszelle
transportiert, die optischen Zugang für zwei Mikroskopobjektive bietet. Das zwischen
den axial ausgerichteten Mikroskopobjektiven platzierte Fermigas wird in einem letzten
Schritt evaporativ gekühlt, um schlussendlich ein entartetes Fermigas zu erhalten. In
dieser Anordnung können Mikrodipolpotentiale durch das eine Mikroskopobjektiv er-
zeugt werden. Mit dem zweiten werden die Mikropotentiale, Absorptions-, Fluoreszenz-
und Phasensignale von darin gefangenen Atomen lokal ausgelesen und charakterisiert.

Der Zustand eines atomaren Gases kann lokal durch Grössen wie der Dichte und der
Dichtefluktuationen bestimmt werden. Wir haben die Dichteprofile von Nichtwechsel-
wirkenden entarteten Fermigasen und molekularen Bose-Einstein Kondensaten nach-
gewiesen und zudem die lokale Dichte wie auch Dichtefluktuationen eines gefangenen
nichtwechselwirkenden Fermigases mit hoher optischer Auflösung gemessen. Im Falle
eines entarteten Fermigases wurden reduzierte Dichtefluktuationen beobachtet, die ei-
ne direkte Konsequenz des Pauli-Prinzips sind und somit die fermionische Natur der
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Atome zum Vorschein bringen. Weil das Fermigas während der Abbildung im ther-
mischen Gleichgewicht ist, kann das Fluktuations-Dissipations Theorem angewendet
werden. Dieses besagt, dass die Dichte und ihre Fluktutionen zueinander proportio-
nal sind, wobei die Temperatur die Proportionalitätskonstante ist. Wir haben gezeigt,
dass mit dieser auf Fluktuationsmessungen basierenden Methode die Temperatur eines
Fermigases bestimmen werden kann.
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Abstract

A unique feature of ultra-cold lithium atoms is that their scattering properties are
determined by a precisely controllable two-body scattering length, which can be tuned
over a wide range by accessing a Feshbach resonance. Non-interacting and interacting
Fermi gases can be created. At a critical temperature, the latter can undergo a phase
transition to a superfluid, which allows one to study fermionic superfluidity in different
interaction regimes with a single system. Its relevant length scale is the Fermi wave-
length, which is typically 1µm.

In this thesis, we present an experimental apparatus that enables microscopy of a
trapped ultra-cold gas of fermionic lithium with an optical resolution of 700nm. In
a time sequence of 15s, lithium atoms are cooled to degeneracy by applying optical
cooling technics only. The cooling procedure occurs in several steps: First, atoms
are Zeeman slowed and magneto-optically trapped. Then, they are transferred to a
high finesse resonator dipole trap for a first evaporative cooling step. In order to do
microscopy, atoms are transported in a running wave dipole trap over a distance of
27cm to a region of high optical access and cooled below the Fermi temperature. In the
final position, atoms are placed between two microscope objectives, which are aligned
along their common optical axis. In this configuration, optical micro dipole potentials
can be formed by means of the first microscope objective. With the second objective,
the created potentials as well as atomic absorption, fluorescence and phase signals of
atoms which are trapped in these potentials, can be locally detected and quantitatively
characterized.

The state of the atomic ensemble is locally revealed by observable quantities such
as the density and density fluctuations. Density profiles of non-interacting degenerate
Fermi gases and Bose-Einstein condensates of tightly bound pairs will be shown. High
resolution microscopy has allowed us to observe the local density and its fluctuations
of a trapped non-interacting Fermi gas in-situ. In the case of a degenerate Fermi gas,
a suppression of fluctuations has been observed, which is a direct manifestation of the
Pauli exclusion principle and hence of the fermionic nature of the atoms. Because
the atomic ensembles are in thermal equilibrium when being imaged, the fluctuation-
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dissipation theorem can be used to relate the mean density to its fluctuations, with
a proportionality constant, the temperature. With the obtained data, a fluctuation
based-temperature measurement has been demonstrated.
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1 Introduction

In a classical gas, atoms are treated as distinguishable, point-like particles. This as-
sumption is valid from a quantum mechanical point of view if the extension of the wave
packet of an atom, which is given by the thermal de Broglie wave length, is much smaller
than the interatomic distance. When reducing the temperature of the gas, the thermal
de Broglie wave length increases up to the point where the wave packets of neighboring
atoms start to overlap. These atoms can no longer be considered as classical particles;
they need to be treated as indistinguishable particles and their intrinsic angular mo-
mentum, the spin, starts to play a prominent role. For the case of atoms with integer
spin — bosons — wave packets can overlap. Below a critical temperature, this gives
rise to the phase transition to a Bose-Einstein condensate [1, 2, 3] — a macroscopic
number of atoms occupies the same state, which can regarded as one wave packet of
many atoms. As opposed to this, atoms with half integer spin — fermions — cannot
occupy the same quantum state according to Pauli’s principle [4] and effectively repel
each other despite the absence of interactions.

An intriguing aspect of trapped ultra-cold atomic gases is that their bosonic or
fermionic nature and physical quantities are macroscopically observable in the den-
sity distribution. For example, in the case of a non-interacting Fermi gas, the repulsion
of neighboring wave packets leads to a so-called Fermi pressure, which causes a spatial
extension of the gas that is larger than that of a classical gas [5, 6, 7]. Furthermore,
characteristics of Fermi statistics can be measured from the shape of the density distri-
bution.

In an attractively interacting two-component spin mixture, the atomic Fermi gas
can undergo a phase transition to a superfluid phase at a critical temperature. The
decrease in energy in the superfluid phase is enabled by pairing between fermions of
different spin. The two extreme cases of pairing are either fermions forming weakly
bound pairs, so-called Cooper pairs, or strongly bound molecules which can be treated
as composite bosons. The superfluid phase of Cooper pairs is described by the Bardeen-
Cooper-Schrieffer [BCS] state [8, 9] and that of molecules is a Bose-Einstein condensate
[BEC] [1, 2, 3]. Superfluidity of attractively interacting fermionic pairs is again revealed
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Chapter 1. Introduction

in their density distribution, which could be macroscopically demonstrated by exciting
a vortex pattern — a superfluid characteristic of a gas.

When we started setting up a new experimental apparatus in the year 2006, interest
in the field of ultra cold atomic Fermi gases was growing rapidly. In the previous
few years, methods developed to achieve Bose-Einstein condensation [10, 11, 12, 13]
had been successfully applied to cool Fermi gases to below the Fermi temperature [5].
These temperatures were achieved by cooling fermions first with resonant light, followed
by either evaporative cooling of a spin mixture or sympathetic cooling of a Bose-Fermi
mixture [14]. Research groups had managed to measure the density distribution of non-
interacting atomic Fermi gases and reveal the difference in Bose and Fermi statistics
[6, 7]. Even the physics of attractively interacting Fermi gases were within reach of
investigation, because the interaction strength could be tuned almost at will by making
use of Feshbach resonances [15, 16]. Strongly bound pairs could be formed and molecular
Bose-Einstein condensation could be demonstrated [17, 18, 19]. In the most recent
development, the pairing mechanism was studied with respect to the interaction strength
[20, 21, 22]. Superfluidity of fermionic pairs [23] has been observed in a regime, where
pairing can neither be described by Cooper pairs nor by molecules [24, 25, 26, 27,
28, 29]. It was the first time that this entire intermediate regime, the so-called BEC-
BCS crossover [30, 31, 32], could be accessed with a single system. With the precise
control over parameters such as temperature, atom number in each spin state [33, 34]
and interaction strength, the phase diagram of ultra-cold Fermi gases at the critical
temperature can be studied [35, 36, 37].

In most experiments, information about the ultra-cold atomic ensemble is gained by
optical imaging of its density distribution (see [38] and references therein). Because of
limited optical resolution, measurements on these ensembles have been carried out with
systems of very large size, and/or after free expansion from the trapping potential in
order to make use of the increased size of the expanded cloud. For the same reason,
optical dipole potentials to trap atoms were relatively large in size. In the case of
a periodic potential, its periodicity extends over the whole cloud [39]. Small local
substructures in the optical dipole potential could not be created. Naturally appearing
or artificially generated spatial substructures in the density distribution of the Fermi
gas could only be detected if their length scales were larger than the imaging resolution.

How powerful high resolution optical control can be has been demonstrated in an
experiment with a Bose-Einstein condensate trapped in a double well potential, where
tunneling dynamics could be measured [40, 41]. The artificially created substructure
is the barrier between the two wells. The dimension of this barrier is so small that
tunneling occurs between the two wells. With a sufficiently high imaging resolution,
the atom number in each well can be measured [42]. In the case of a Bose-Einstein
condensate, dynamics in the density distribution is governed by coherent tunneling,
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which is caused by the difference in chemical potential: the superfluid phase in each
well evolves such that an oscillating mass current between the wells known as Josephson
oscillation [43] can be observed. Here, the generation of the double well potential
represents local control with respect to tunneling dynamics. If the separation between
the two wells is larger than the optical resolution, but still small enough for a reasonably
high atomic tunneling rates, the dynamics in the atomic ensemble can be read out
locally.

In order to make optical control with high resolution accessible to Fermi gases, we
decided to build up an experiment that enables us to create and locally probe substruc-
tures in the density distribution of a trapped Fermi gas. This experimental setup allows
one to prepare a quantum gas of fermionic lithium close to absolute zero temperature
in a potential which can be arbitrarily controlled down to the length scale of the optical
scattering cross section — the smallest experimentally relevant length scale for optical
detection of the atomic density distribution. In addition, read out of the atomic density
distribution is possible at the same length scale.

The starting point was the conception of an experimental apparatus that integrates
the physics of strongly correlated ultra-cold fermions with local control and readout.
Atomic ensembles have to be prepared at temperatures below the Fermi temperature,
which are typically on the order of 1µK. At that temperature, the thermal de Broglie
wave length is approximately 200nm and typical interatomic separations are about
400nm. We aimed for optical resolutions on the length scale of the interatomic separa-
tion, both to create optical dipole potentials and to image atoms.

The actual design of an experimental apparatus and the potential for local measure-
ments strongly depend on the atomic element of choice. The preparation procedure
for experimenting with an ultra-cold atomic ensemble including cooling, trapping and
imaging is different for every element and imposes a variety of technical constraints.
There were several reasons for choosing 6Li. Previous experiments have shown, that 6Li
and 40K, which are two stable and commercially available fermionic alkali isotopes, can
be cooled down to degeneracy [5, 7, 44, 45, 46, 47, 48, 49, 50, 6, 51, 52, 53, 54, 55, 56, 57].
The ability to measure locally the dynamics of trapped atomic ensembles with a low
mass are more favorable, because the dynamics which are given by the tunneling rate
are exponentially decreasing with the mass of the element and the well separation. A
low mass, therefore, allows a less stringent requirement for the needed well separation
and hence optical resolution. Experimental progress in cooling lithium down to degen-
eracy by using optical techniques only [50, 58] as well as the fortunate technical aspect
of the recent availability of novel laser and tapered amplifier diodes for laser cooling
supported the choice.

A major experimental effort lies in cooling an atomic ensemble of 6Li below Fermi
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Chapter 1. Introduction

I

a b c d

Figure 1.1: An atomic beam, which traverses a decreasing magnetic field is deceler-
ated by a counter-propagating laser beam (a). Magneto-optically trapped atoms are
transferred first into a standing wave dipole trap (b) and then into a much smaller
running wave dipole trap (c), before being transported into the glass cell (d), the so-
called science chamber. There, high resolution microscopy of the atomic ensemble is
done.

temperature and placing it between two microscope objectives. First, enriched fermionic
lithium, which is commercially available in solid blocks of about 1g, is heated to about
400°C and evaporated into an ultra-high vacuum chamber. The atomic vapour is colli-
mated into a beam with a mean velocity of about 1000m/s.

In a second step, atoms are laser cooled with resonant photon scattering. The atoms
in the beam are decelerated to about 60m/s (corresponding to a temperature of 0.93K)
by a counter-propagating laser beam in a so-called Zeeman slower [59], before they are
trapped in a so-called magneto-optical trap (figure 1.1a)[60]. Three counter-propagating
laser beams exert dissipative forces on atoms. Due to a magnetic gradient field, forces
are position-dependent such that atoms are slowed and always repelled in a backwards
direction to their movement into the trap center. Inside this trap, atoms still move
randomly at a certain minimum threshold temperature of about 140µK, which is called
the Doppler temperature [14].

In a third step, atoms are evaporatively cooled [14, 61]. Evaporation is known as the
process when particles of highest energy leave the atomic ensemble, while the remaining
particles rethermilize to a lower mean temperature. In order to be able to cool the atoms
by evaporation, they first have to be transferred into a conservative potential to reduce
heating caused by resonant photon scattering, either in a magnetic or optical dipole
trap.

For efficient loading, both traps need to have good spatial overlap. Such a large
volume optical dipole trap can only be created with sufficiently large light power, which
is here obtained by the power enhancement inside an optical resonator [62]. With a
two mirror configuration, atoms are trapped in a standing wave dipole trap (figure
1.1b). During the evaporation process, the dipole trap depth is lowered and the atoms
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of highest energy always leave the atomic ensemble, i.e they escape from the trap. If
the remaining atoms simultaneously thermalize by elastic scattering, the Boltzmann
distribution is shifted to lower temperatures. Because scattering of identical fermions
at low temperatures is inhibited by the Pauli exclusion principle, we decided to cool a
spin mixture of fermionic lithium [50, 52]. While lowering the depth of the standing
wave dipole potential, a second much smaller dipole trap is turned on (figure 1.1c).
This time, the attractive potential is created by a tightly focused laser beam, a so-
called running wave dipole trap [63]. After turning off the standing wave dipole trap,
pre-cooled atoms remain in the running wave dipole trap with a trap depth of 300µK.
Here, the trap depth can be lowered much further for technical reasons to finally obtain
a degenerate Fermi gas.

The fourth and last step is the transport of the ultra-cold gas, which is still trapped
in the dipole potential of the tightly focused laser beam [64]. Atoms are moved from the
place, where they are initially cooled and trapped, to a region of high optical access,
where the two microscope objectives are installed. Since the atoms are also axially
confined by the focussed laser beam, they always remain at the focus (figure 1.1d). By
simply moving the lens that focusses the trapping laser beam, the atomic ensemble can
be placed between the two microscope objectives that are positioned above and below
a glass cell. After a final evaporation, the temperature of the atomic ensemble reaches
values below the Fermi temperature (200nK). Now, the degenerate Fermi gas can be
controlled and read out with high optical resolution.

Lithium atoms can be confined within or repelled from optical dipole potentials by
inducing a dynamic Stark shift with far off resonant light — in this case with laser
light at a wave length of 767nm or 532nm, respectively. For imaging, lithium atoms are
illuminated with resonant light at a wave length of 671nm to detect either fluorescence
or absorption [38]. In order to control atoms on a short length scale, light at these
wave lengths is focused by a specially designed and chromatically corrected microscope
objective. This enables local control and readout at the 700nm length scale of the
optical resolution.

For this experimental apparatus, two identical microscope objectives were axially
aligned above and below a glass cell (figure 1.2). The microscope objective above the
glass cell is used to create optical dipole potentials, while the one below is used to read
out either the light of created potentials or imaging light. In order to achieve such a
high optical resolution, the glass cell needs to be integrated in the optical system of the
two microscope objectives. In addition, the optical resolution can only be maintained
if alignment tolerances below 1µm in the x-,y- and z-directions and an angular tilt of
0.1° relative to the glass cell are not exceeded at any time. Very high passive and active
stability for the mounting and a reproducible adjustment procedure are also crucial.
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Chapter 1. Introduction

The high optical access offered by the octagonally shaped glass cell allows one to create
diverse optical dipole potentials either in static of dynamic configurations.

Figure 1.2: The illustration shows a
partially cut CAD drawing of the con-
figuration of two microscope objectives
mounted above and below a glass cell.
Atoms are schematically shown in the
center of the cell. They can be trapped
in a dipole trap that is created by a
laser beam focused by means of the up-
per microscope objective. The imaging
light is detected with the microscope
objective mounted below the glass cell.

In the axis of the two microscope objectives,
dipole potentials can be read out and quantita-
tively analyzed. This large variety of small scaled
potentials, which can be created in a controlled
way, opens up many possibilities for probing
fermionic ensembles in the BEC-BCS crossover
in different configurations.

Within the scope of this thesis we have de-
signed and built the experimental apparatus and
created ultra-cold Fermi gases. We have managed
to access the BEC-BCS crossover and to trap
and image attractively and non-interacting Fermi
gases with a resolution up to 700nm. The exper-
imental setup and the preparation procedure will
be presented in detail in section 3 and 4.

The optical resolution achieved has allowed us
to perform in-situ measurements of the density
distribution and especially of the density fluctua-
tions. In a classical gas, the variance of the atom
number δN2 in a small subsystem is equal to the
mean number of atoms 〈N〉. We succeeded to ob-
serve for the first time that in a degenerate Fermi
gas the variance is suppressed with respect to the
non-degenerate case. This manifestation of anti-
bunching is a direct result of the Pauli principle
and constitutes a local probe of quantum degen-
eracy.

At thermal equilibrium, the density fluctua-
tions are universally linked to the thermodynamic
properties of the gas through the fluctuation-
dissipation theorem, which can be expressed as:

kBT
∂〈N〉
∂µ

= δN2, (1.1)

where T is the temperature of the gas, µ the
chemical potential and kB the Boltzmann constant. We use this relation to demonstrate
a fluctuation based temperature measurement proposed recently [65]. The particularly
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appealing feature of this method is that it allows determining the temperature of the
gas irrespective of its equation of state or specific interaction. The single assumption
of a local density approximation enables one to assign a local chemical potential to
any position in the trap and to determine the compressibility ∂〈N〉

∂µ directly from the
mean density profiles. Measurement of the variance δN2 then yields the temperature.
We anticipate that this method will prove very fruitful for thermometry in strongly
correlated systems [66] and measurement of susceptibilities [67].

The work presented in this thesis was carried out in close collaboration with Torben
Müller, Jakob Meineke, Henning Moritz and Jean-Philippe Brantut.
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2 Ultra-cold gases of fermionic Lithium

Identical atoms in a classical gas occupy energy levels with a probability given by the
Boltzmann distribution, which applies whenever the quantum nature of the atomic
ensemble can be neglected, i.e. the mean occupation number of energy levels is much
smaller than unity. Otherwise, the distribution must take into account the spin degree
of freedom of the atom. Atoms with integer or half-integer spin are called bosons and
fermions, respectively. For fermions, the occupation of quantum states is restricted
by the Pauli exclusion principle [4]: two identical atoms must not populate the same
quantum state. When decreasing the temperature T , the occupation probability of the
energetically lowest levels gradually increases, finally reaching a state at T = 0, where
all the lowest levels are occupied with one fermion per spin state, up to Fermi energy
EF . The corresponding temperature is the Fermi temperature TF = EF /kB.

In this thesis, a quantum degenerate gas is experimentally realised with fermionic
lithium, the lightest fermionic atom in the alkali group. Using modern laser cooling
techniques [14], we cool the dilute gas down to temperatures below the Fermi temper-
ature, which is on the order of 1µK for our experimental conditions. Despite the fact
that the ground state at this temperature is solid, the atomic ensemble remains gaseous
due to its low density. For solidification, three-body recombination would be necessary
[68]. In this process, two atoms form a molecule by transferring the binding energy to
the third atom. However, this process is highly improbable within the time scales of
the experiment.

In ultra-cold gases, two-body scattering [69] is the dominant collision process. Here,
the spin symmetry of the scattering states plays a key role. The low kinetic energy
of the atoms only allows scattering with zero relative angular momentum, implying a
symmetric orbital wave-function. Since the total wave-function of two fermions must
be anti-symmetric, the spin wave-function must also be anti-symmetric and scattering
between two identical fermions is prohibited. The experiments are done with a mix-
ture of two hyper-fine spin states with equal population, where two-body scattering is
allowed and evaporative cooling is possible. In this case, the scattering properties are
determined by one single parameter, the scattering length a. By making use of the so-
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Chapter 2. Ultra-cold gases of fermionic Lithium

called Feshbach resonance, the scattering length a can be tuned by applying an external
magnetic field B [70, 71, 72]. This enables the control of interaction between fermions
over a wide range.

At a certain magnetic field, the scattering length can be tuned to zero, thus obtain-
ing a non-interacting Fermi gas [73]. Due to the absence of interaction, such fermionic
ensembles are simple to describe quantitatively. For a non-zero scattering length, at-
tractive two-body interactions can cause different kinds of pairing [30, 31, 32]. As pairs
of fermions, either weakly bound Cooper pairs [74] or strongly bound molecules, they
can be considered as composite bosons. They can occupy the same ground state and
form a superfluid state.

In an attractively interacting two-component Fermi gas, there is a phase transition
to a superfluid phase below a critical temperature. For weak attractive interactions,
fermions form Cooper pairs at the Fermi surface, which is a spherical shell of radius pF
in momentum space, with EF = p2

F /2m. Since the Fermi energy depends on the atom
numberN , Cooper pairing is a many-body phenomenon. The corresponding many-body
state, consisting of many Cooper pairs, is the Bardeen-Cooper-Schrieffer state [8, 9].

The situation is very different for strong attractive interactions where molecular pairs
are formed. Pairing can be described only with two-body physics and depends solely
on the scattering length a. Due to the larger binding energy Eb, pairing is much less
sensitive to temperature. Such molecular pairs behave like bosons that obey Bose
statistics, which allow the occupation of many molecules in one state. Below a critical
temperature, a majority of molecules will occupy the absolute ground state and form a
Bose-Einstein condensate [1, 2, 3].

With ultra-cold fermions, and in particular with 6Li, the tunability of the two-body
interaction allows one to study different pairing regimes. In the experimentally acces-
sible regime, fermionic pairs can not simply be described by one of the extreme cases,
which are weakly bound Cooper pairs or strongly bound molecules. The correspond-
ing superfluid is neither a BCS-state nor a BEC. This intermediate pairing regime is
called BEC-BCS crossover regime. It is characterized by the relative length scale of the
pairs, i.e. the ratio between pair size and interatomic distance. Ideally, the size of a
Cooper pair is much larger and that of a molecular pair much smaller than the mean
interatomic distance. But in this intermediate regime, these length scales are all of the
same magnitude. While the molecular pair size is proportional to the scattering length
a, the interatomic distance is proportional to the Fermi length scale k−1

F (which is the
length corresponding to the Fermi energy EF ). Therefore, the relative pair size can be
expressed by kFa, which is also known as the gas parameter. In figure 2.1, fermionic
pairing phases and their transition to a superfluid state are illustrated with respect to
their relative pair size at the critical temperature.
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Figure 2.1: Phase diagram of interacting fermi mixtures in a harmonic trap [75, 76].
The scales of the axes are the relative temperature T/TF and the inverse relative
pair size 1/kFa. Below the critical temperature at 1/|kFa| > 1, the phase diagram
shows pairing in a regime where states are approximate a BEC of molecules or a BCS
superfluid. The critical temperature of the BCS-state strongly depends on both kF and
a. The critical temperature of the BEC state on the other hand is mainly determined
by the Bose statistics of the molecules. The regime 1/|kFa| ≤ 1 is called the BEC-BCS
crossover. There, a distinction between molecules and Cooper pairs becomes irrelevant,
the corresponding many-body state is a resonance superfluid. Right at the Feshbach
resonance, where 1/|kFa| = 0, the system is in the so-called unitary regime. Above the
critical temperature at 1/kFa < 1, Cooper pairing does not occur because the thermal
energy is larger than the binding energy Eb. The fermionic ensemble behaves as an
interacting Fermi gas. However, at 1/kFa > 1, stable but not condensed molecular
pairs exist.

A smooth transition between the BEC and the BCS regime had already been predicted
[30, 31, 32, 77], before it was first experimentally observed in the year 2004 [24, 25, 26,
27, 28, 29]. Exploring this regime is of particular interest, because results can be applied
to describe systems which are not experimentally accessible. In the unitary regime for
example, properties of the Fermi gas become universal. The scattering length a is
much larger than any other length scale and interactions need not be considered in
the description of the interacting Fermi gas. The system can then be described as a
non-interacting Fermi gas [78, 79]: its physical quantities must be proportional to those
of a non-interacting Fermi gas with proportionality constants that are universal. The
pair size, for example, is proportional to k−1

F .
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Chapter 2. Ultra-cold gases of fermionic Lithium

There are still many open questions about the BEC-BCS crossover regime and the
availability of this phase diagram now may prove to be a starting point for a wealth of
physical exploration.

2.1 Non-interacting Fermi gas in a harmonic trap

At low temperature, physical quantities of a non-interacting Fermi [68, 75, 80] gas can
be derived from the Fermi distribution, which is given by the occupation probability

f(E, T ) =
1

e(E−µ(N,T ))/kBT + 1
, (2.1)

of a state with energy E. The chemical potential µ(N,T ) is determined by the total
number of atoms N and the temperature T for a given density of states D(E) as

N =
∫ ∞

0
D(E)f(E, T )dE . (2.2)

Without knowing details of the Fermi gas, estimates of practical use can be made, if it
is assumed that atoms are confined in a potential that can be harmonically approximated
and if the temperature is equal to zero. By definition, the chemical potential at zero
temperature µ(N, 0) is called the Fermi energy EF . If N fermions are now confined in
a harmonic potential V (r) with trap frequencies ωx, ωy and ωz, the density of state is
D(E) = E2/2~3ωxωyωz. With equation 2.2, the Fermi energy and temperature is then
given by

EF = kBTF = (N~)1/3ω , (2.3)

with ω = (ωxωyωz)1/3. The particle number N can be estimated from the size of the
trapped Fermi gas: in the Thomas-Fermi approximation, the trapping potential term
is considered to be much larger than the kinetic energy term, hence the kinetic energy
is neglected. The chemical potential µ(N, 0) = EF (N) is then equal to the trapping
potential 1

2mω
2
iR

2
TF,i at the maximal extension of the trapped atomic ensemble, the

so-called Thomas-Fermi radii RTF,i, with i = x, y, z. The total atom number can then
be estimated to be

N ' NTF =
1
~

(
1
2
m
ω2
i

ω
R2
TF,i)

3 (2.4)

By inserting the result into equation 2.3, the Fermi energy is obtained.
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2.1. Non-interacting Fermi gas in a harmonic trap

2.1.1 Density distribution at finite temperature

Many physical quantities of a harmonically trapped Fermi gas are derived from the Fermi
distribution f(T ). Because the distribution only gradually changes when lowering the
temperature T to zero, finite temperature must be taken into account. In experiments
with ultra-cold atoms, the temperature of an ensemble is usually extracted from the
shape of the density distribution n(r, T ). While the shape of the classical gas is given
by a gaussian density distribution n(r, T � TF ), that of a Fermi gas at T = 0 is

n(r, T = 0) =
1

6π2

(
2m
~2

)3/2

(EF − V (r))3/2 (2.5)

in a semi-classical approximation. The smooth transition from the classical to the
zero-temperature Fermi density distribution stems from the Fermi distribution f(T )
and thus reveals the temperature T . The following is an explanation of the method
used for determining the temperature from the density distribution.

The density distribution of the atomic ensemble is measured by resonantly illuminat-
ing the ensemble, a process commonly known as absorption imaging [38, 75]: Photons
are absorbed by the atomic ensemble and the shadow is detected on a CCD camera.
From the shadow picture, the integrated atomic density n2D(r, T ) along the illumina-
tion axis can be retrieved. Usually the atomic ensemble is small in size and optically
so dense that the density distribution cannot be inferred accurately from the shadow
picture. The atomic ensemble is therefore often released from the trapping potential
before it is illuminated. After expansion, the shape and the optical density, i.e. the
shadow of the atomic ensemble, can even be measured with an imaging system of lim-
ited optical resolution. The shadow corresponds to the integrated density distribution
of the expanded atomic ensemble, resulting in an atomic two-dimensional column dis-
tribution n2D(r, T, t), with an expansion time t. From that density distribution, the
initial distribution in trap, n2D(r, T, t = 0) can be obtained. Following is a description
of the relation between the Fermi distribution and the column density n2D(r, T ) to
finally obtain the temperature T :

First, the Fermi distribution given in equation 2.1 is expressed by

f(r,p, T ) =
1

e( p2

2m
+V (r)−µ(N,T ))/kBT + 1

, (2.6)

where the energy E is replaced by p2

2m + V (r). This is the so-called semi-classical
Fermi distribution. By integrating it over p, one directly obtains the three-dimensional
atomic density distribution
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n(r, T ) =
1

(2π~)3

∫
f(r,p, T )dp = − 1

λ3
dB

Li3/2

(
−e(µ(N,T )−V (r))/kBT

)
, (2.7)

where Lin(s) is the nth-order Polylogarithm and λdB =
√

2π~2

mkBT
is the so-called de

Broglie wavelength. From equation 2.7, the density distribution of the expanded atomic
ensemble is deduced. Since collisions in a non-interacting Fermi gas can be neglected
during expansion from the trapping potential, it can be assumed that the expansion is
ballistic: Apart from the size and the amplitude, the distinctive shape of the density
distribution remains unchanged over an expansion time t and can still be expressed by
the initial density distribution, using scaled variables r′,

n2D(r, T, t) = n2D(r′, T, 0) . (2.8)

The scaled variables r′i are equal to ri/bi(t), where bi(t) are scaling factors that depend
on the potential into which atoms are released [81, 82, 83]. The experimentally acces-
sible atomic column density is obtained by integrating the three-dimensional density
n(r′, T, 0) along the illumination direction:

n2D(x′, y′, T, 0) =
∫
n(r′, T, 0)dz = n2D,maxLi2

(
−e−(V (x′,y′)−µ)/kBT

)
/Li2(−eµ/kBT ) .

(2.9)

Usually, the confining potential V (x′, y′) is assumed to be harmonic. In this approx-
imation, the relative temperature T/TF (also called the degeneracy parameter), which
is a function of the fugacity eµ/kBT , can finally be obtained. By fitting the column
density distribution n2D(eµ/kBT ) to the measured shape of the density distribution, the
fugacity can be extracted and the relative temperature is then given by [84]

T/TF =
(
−6Li3(−eµ/kBT )

)−1/3
. (2.10)

In order to obtain an absolute temperature T , the Fermi temperature TF (N) =
EF (N)/kB, and hence the absolute particle number N , needs to be determined. While
the relative temperature measurement only depends on the shape of the detected shadow,
the absolute particle number N can only be gained from the absolute depth of the
shadow, which is given by the detected photon distribution. Converting this distribu-
tion into the exact two dimensional atomic column density distribution n2D(x′, y′) is
a challenging task, because it is sensitive to many experimental parameters. By inte-
grating n2D(x′, y′) over x′ and y′, the atom number N can be obtained. In the case
of a harmonic trapping potential, the result can be inserted in equations 2.3, to finally
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2.2. Interaction between atoms

calculate the Fermi temperature TF . Since Fermi gases are trapped in potentials with
a gaussian shape, the absolute temperature determination in the harmonic approxima-
tion overestimates the real temperature. This error is more pronounced the smaller the
relative temperature T/TF is.

2.2 Interaction between atoms

In a simplified physical picture, the scattering process between two atoms can be re-
placed by an elastic collision between two hard spheres of radius a [85]. Their interaction
potential U(r) in relative coordinates is infinitely large for distances r ≤ a and is other-
wise zero. The whole collision process can be described by one parameter, the so-called
impact parameter. This is the distance at which the two spheres would pass if there
were no interactions. The total scattering cross section is given by πa2. Although this
model seems to be too simple to describe scattering of two atoms, as it turns out, it en-
compasses the essential part of the scattering processes in an ultra-cold gas: The mean
interatomic distance is so large that the interaction is dominated by elastic two-body col-
lisions. The interaction potential can be described by a Lennard-Jones potential U(r),
which is spherically symmetric and vanishes at large distances, and most important:
the scattering process depends only on a single parameter.

The quantum mechanical scattering process is described by probability amplitudes
for scattering into a final state with a quantized relative angular momentum [69]. Due
to the low collision energy, the parameter, which governs the collision of two atoms, is
the probability amplitude of lowest angular momentum. This probability amplitude is
proportional to the scattering length a (section 2.2.1). Since the total cross section σ in
the quantum mechanical scattering process is 4πa2, the background scattering length a
can be considered as an effective radius a of a hard sphere, which leads us back to the
simple classical model.

The collision process of two atoms in an external magnetic field is still governed by
the scattering length a(B), which is now a function of the magnetic field B [71]. This
magnetic field dependence is due to the interaction potential U(r) that includes the
magnetic moment of the two atoms: with the spin degree of freedom, the interaction
potential is described by US(r) and UT (r) in a spin singlet or triplet configuration,
respectively. By making use of the Zeeman effect [68], the energy difference of the two
spin configurations can be tuned via the magnetic field (figure 2.2a). When the energy
of a bound state of the singlet interaction potential is close to the energy of the two
incoming atoms of the triplet interaction potential, they can virtually populate that
bound state. In this case, the scattering length a(B) is resonantly enhanced (section
2.2.2).
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Figure 2.2: a. Lennard-Jones potential U(r) ∼ 1
rn − 1

r6 of two fermions in a spin
triplet (red) and a spin singlet (blue) configuration. Bound state energy levels can be
tuned relative to the continuum (dashed line) by the magnetic field B. b. The resonant
enhancement of the scattering length a(B) (in units of Bohr radii a0) depends on the
relative position of the bound state and is described by equation 2.11.

In the case of lithium, a coupling between a bound state and the state of the two
incoming atoms exists and indeed, resonant enhancement of the scattering length occurs
[86, 87] by applying an external magnetic field B (section 2.2.3). The scattering length
a can be enhanced to values much larger than the background scattering length abg in
the case of zero coupling:

a = abg

(
1 +

∆B
B −Bres

)
. (2.11)

Here, the Feshbach resonance [70] is expressed in terms of ∆B and Bres representing
resonance width and position, respectively. In the picture of two freely scattering atoms,
the scattering length a < 0 can be attributed to an attractive interaction, which occurs
if the bound state is slightly above the continuum energy. Atoms only occupy a virtual
bound state. Alternatively, two atoms actually occupy the bound state and form a
molecule, even though the scattering length a > 0 is attributed to a repulsive interaction
in this picture (figure 2.2b). The following is an explanation of how the background
scattering length abg and coupling enter the expression of the effective scattering length
a.

2.2.1 Background scattering length

In general, an elastic scattering process of two atoms [69] can be written in relative
coordinates r, a relative wave vector k =

√
mE0/~2 and a reduced mass m. E0 is the

kinetic energy of the two atoms. The wave function in the far field is described by an
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2.2. Interaction between atoms

incident plane wave and a spherical wave that is generated during the scattering process
with the probability amplitude f(θ):

ψ(θ, r) ∼ exp ikz + f(θ)
exp ikr
r

. (2.12)

The angle θ is defined by r and the z-axis, which is the axis of the two incoming atoms.
The probability amplitude is called the scattering amplitude. Scattering is caused by a
Lennard-Jones potential U(r), which is proportional to r−6 at large distances. Because
the Lennard-Jones potential is spherically symmetric, the wave-function of scattered
particles can be separated into an angular term f(θ) and radial term Rkl(r), which
depends on the quantum number of angular momentum l. Because the Lennard-Jones
potential can be considered to be short ranged, the scattering amplitude f(θ) does not
depend on details of the potential. The only information about the potential U(r) is
revealed by a phase shift δl in the radial part of the wave function Rkl(r). This phase
shift is called scattering phase. In the far field, where the two atoms behave as free par-
ticles, their relative radial wave function is then expressed by Rkl(r) = sin (kr − π

2 + δl).
The scattering amplitude f(θ) is a sum over partial wave scattering amplitudes fl(θ)
that describe the probability of scattering into a state with relative angular momentum
l at an angle θ. Since the partial wave amplitudes scale like fl ∼ k2l, only the lowest
angular momentum l = 0 need to be taken into account in the low energy limit, where
E0 ∼ k2 ' 0. The partial wave amplitude fl=0 in the so-called s-wave scattering does
not depend on θ and hence scattering is isotropic. Finally, the relation between the par-
tial wave amplitude f0 and the background scattering length a is given by a = −f0 = δ0

k

and henceforth will be named abg. So, the background scattering length, which is often
considered as an effective atomic radius in the picture of two hard spheres, only depends
on one parameter, the relative phase lag δ0

2π induced by the scattering potential U(r).

2.2.2 Resonantly enhanced scattering length

The background scattering length abg, set by the scattering phase δ0, is constant for a
given interatomic scattering potential. However, the situation is different, if a bound
state with energy Ec < 0, referred to as closed channel |c〉, enters the interatomic
scattering potential. In that case, the background scattering length abg is resonantly
enhanced. This result is obtained by following a derivation of Landau and Lifschitz
[69]. There the non-physical assumption is made, that two atoms in the continuum
state with energy E0, referred to as open channel |o〉, scatter into the closed channel
|c〉, although the coupling strength γ between the two channels is zero. By assuming
smooth boundary condition between the open and the closed channel wave-function,
the s-wave scattering amplitude can be expressed by
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f0 = − ~√
(m|Ec|) + i

√
(mE0)

=
ac

1 + iack
. (2.13)

The scattering length, ac = tan δ0
k , simply represents a length scale that corresponds

to the energy difference

∆E = E0 − Ec = E0 + |Ec| ' |Ec| =
~2

ma2
c

, (2.14)

if E0 ' 0. The total scattering cross section is then given by

σ(k) = 4π|f0|2 = 4π
a2
c

(1 + a2
ck

2)
= 4π

~2

m∆E
' 4πa2

c , (2.15)

for k → 0. The scattering length ac and the total scattering cross section σ(k) diverge
if the energy difference ∆E is brought close to zero.

The nature of the scattering cross section changes qualitatively if ac diverges, because
the total scattering cross section depends only on k ∼

√
E0. An interesting regime is

then entered: if k and ac are replaced by the Fermi wave vector kF and the effective
scattering length a, one obtains the gas parameter kFa of the Fermi gas. According
to the phase diagram in figure 2.1, the scattering cross section σ(k) of a Fermi gas at
the scattering resonance, 1/kFa = 0, is therefore solely determined by the Fermi energy
EF . This is a manifestation of universality [78].

The resonantly enhanced scattering length ac is only a length scale introduced to
demonstrate the basic idea of a resonant enhancement of the scattering length. However,
it will turn out that apart from introducing a coupling strength γ, the basic concept
for obtaining the real scattering length is not altered and the main aspects of resonant
enhancement are already encompassed in the model introduced above.

2.2.3 Feshbach resonance

Only if there is coupling between the open channel |o〉 and the closed channel |c〉, the
scattering length a is resonantly enhanced. In the case of lithium atoms, there is a
coupling between different electronic spin states. Although the total spin F1,2 = S1,2 +
I1,2, is a fixed quantity during the scattering process, electronic spin S1,2 and nuclear
spin I1,2 are not separately conserved. Therefore, the electronic spin S1,2 = S1 + S2

can flip from a triplet state T to a singlet state S. Their energy difference ∆E(B) in a
magnetic field B mainly depends on the difference in magnetic moment between the two
spin states, given by ∆µ, which is known as the Zeeman effect. So, the energy threshold

18



2.2. Interaction between atoms

E0 = UT (r =∞, B) of the open channel can be tuned relative to an energy level Ec of
the closed channel with the magnetic field B, such that their energy difference is

∆E(B) = E0(B)− Ec = (E0(0) + ∆µB)− Ec . (2.16)

With a model presented by Cheng Chin [88], which includes coupling between the two
channels |o〉 and |c〉, the essential physics of a Feshbach resonance can be quantitatively
described. Because in large magnetic fields coupling between electronic and nuclear spin
S1,2 and I1,2 is small relative to the potential depth U(r), eigenstates of the coupled
system can be treated in first order perturbation. These are named |+〉 ∼ cos(φ)|o〉 +
sin(φ)|c〉 and |−〉 ∼ − sin(φ)|o〉 + cos(φ)|c〉, with a mixing angle φ � 1. At distances
r which are smaller than the characteristic length r0 of the potential, the new state of
two colliding atoms can be expressed as a superposition of eigenstates

|ψ(r < r0)〉 = A+(r)|+〉+A−(r)|−〉 , (2.17)

where the first and second term on the right hand side of the equation are mainly
determined by the open and the closed channel, respectively. At large distances r > r0,
there is no coupling between the channels and |ψ(r > r0)〉 is equal to the asymptotic
wave function of the open channel

|ψ(r > r0)〉 ' A0(a, r)|o(r > r0)〉. (2.18)

|ψ(r > r0)〉 carries the information of the potential U(r) in the scattering phase
δ0 which determines the effective scattering length a. Therefore A0 depends on a.
Ac|c(r ≥ r0)〉 must naturally be zero, because the closed channel does not exist at
distances r > r0. Again, by assuming smooth boundary conditions between |ψ(r0+)〉
and |ψ(r0−)〉 at r0, an equation can be obtained for the effective scattering length a:

1
−a

=
1

r0 − a
=

1
r0 − abg

− ~2γ

∆E(B)m
. (2.19)

The background and effective scattering length are expressed by abg = abg−r0 and a =
a−r0, which are reduced by the characteristic length of the potential. Coupling between
open and closed channels is given by γ. With equation 2.14, the energy difference ∆E(B)
can be described by the length ac(B), which leads to

a = abg
1

1 + γabga2
c(B)

. (2.20)

The effective scattering length a is a function a(abg, ac(B), γ). It follows from the
details of the calculation that the background scattering length abg is mainly determined
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Figure 2.3: The shape of the Feshbach resonance of 6Li at 834G is obtained with the
model described [88] and parameters [86] for ∆B and Bres, which are abg = -1405a0,
r0 = 29.9a0, γ−1/3 = 101a0 and ∆µ = 2.0µB . The zero-crossing of the scattering
length a is at 535G (experimentally obtained value: 528G).

by the constant A+(r0), which is dominated by the open channel wave function. This is
due to the fact that far off resonance (or without coupling between the two channels),
the scattering length is only determined by the shape of potential UT (r) and therefore
a = abg. The last term in equation 2.19, which is given by γa2

c(B), is determined
by A−(r0). This coefficient, which is dominated by the closed channel wave function,
naturally includes coupling and the relative energy difference to the open channel.

The effective scattering length a at a Feshbach resonance can be expressed as in
equation 2.11, with a width ∆B = −∆µ−1

(
~2

m

)
γabg and a resonance position Bres =

−∆µ−1 ~2

ma2
c

+ ∆B. In the case of lithium, there is a broad Feshbach resonance [86] at
Bres = 834G (figure 2.3). Due to its large width ∆B = 300G, precise tuning of the
scattering length is possible by an experimentally achievable control of the magnetic
field. At 528G, there is a zero-crossing [73] that allows one to treat the spin mixture as
a non-interacting Fermi gas.
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2.3 Fermionic pairs

a

b

Figure 2.4: Properties of fermionic pairs.
a. The scaled chemical potential µ/EF (black
dotted line) and the superfluid gap ∆/EF
(red line) of an interacting Fermi gas in the
BEC-BCS crossover regime at T = 0 [75].
The superfluid gap ∆ of the BCS state is
proportional to the binding energy Eb of the
Cooper pair. The chemical potential µ of the
extreme cases of a BEC at 1/kFa � 1 is
mainly determined by the binding energy of
the molecular pairs, µ ' Eb; that of a BCS
state at −1/kFa � 1 is mainly determined
by Fermi statistics, µ ' 2EF . b. Pair size
ξ0 =

√
〈ϕ(r)|r2|ϕ(r)〉
〈ϕ(r)|ϕ(r)〉 , with the pair wave func-

tion ϕ(r) and the distance r between the two
fermions [75].

At the Feshbach resonance, the scattering
length a can be tuned such that the two-
body interaction leads to pairing. In the
case of attractive interaction, pairing is nat-
urally expected, but not necessarily in the
case of repulsive interaction. The scatter-
ing length a can only be considered as a
parameter that characterizes the scattering
amplitude in the far field of two free atoms.
But as it turns out, a also describes the
binding energy and the size of bound pairs.
Before going into details of molecular and
Cooper pairing, how the scattering length
a relates to the paring mechanism will be
explained.

The formation of molecular pairs is ob-
served at a positive scattering length a.
Two atoms form a bound state by occu-
pying the highest vibrational energy level
of the scattering potential, with a binding
energy [88]

Eb = − ~2

ma2
. (2.21)

This relation is shown in figure 2.4a,
where the scaled chemical potential µ/EF
of an interacting Fermi gas at T = 0 is plot-
ted against the gas parameter (black dot-
ted line)[75]. At 1/kFa � 1, the binding
energy approximately equals the chemical
potential, µ ' Eb. These molecules are
called Feshbach molecules with a pair size
ξ0 proportional to a (figure 2.4b)[75].

Feshbach molecules can be considered as
point-like bosons, if two conditions are ful-
filled: the binding energy Eb must be larger
than the thermal energy kBT and the rela-
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tive pair size given by the gas parameter must be small. In the case of bosons, the gas
parameter is often expressed by nmola3

mol, with a molecular scattering length amol = 0.6a
[89] and an intermolecular distance n−1/3

mol . Because such Feshbach molecules follow Bose
statistics, they will undergo a phase transition to a Bose-Einstein condensate at a crit-
ical temperature Tc. This critical temperature is only determined by the statistics of
the Feshbach molecules and is independent of the binding energy Eb.

In the case of attractive interaction, atoms only virtually populate that molecular
state, which is attributed to a scattering length a < 0 . With a gas parameter−1/kFa�
1, two atoms can form a Cooper pair [74] with a binding energy

Eb =
8
e2
EF e

−π/kF |a| , (2.22)

if the thermal energy kBT is smaller the Eb. The character of a many-body effect
is revealed in the binding energy that depends on the two-body scattering length a as
well as on the Fermi energy. By including Cooper pairs of all momentum states k, the
Bardeen-Cooper-Schrieffer state is obtained [8, 9]. The binding energy Eb of a Cooper
pair is proportional to the superfluid gap ∆ of the BCS state (figure 2.4a, red line). The
binding energy becomes vanishingly small, when tuning the scatter length a to small
negative values. It is extremely difficult to access the BCS state with an ultra-cold
atomic gas [75] at experimentally achievable temperature. Here, the chemical potential
is governed by Fermi statistics. Adding two fermions to the Fermi gas raises the chemical
potential by µ ' 2EF (figure 2.4a, black dotted line), because Cooper pairing occurs at
the Fermi surface and the superfluid gap is small. Since only fermions with an energy
E + δE at the Fermi surface EF form pairs, the corresponding length scale of pairs is
ξ0 = 1/δk � 1/kF (figure 2.4b).

2.4 Molecular Bose-Einstein condensate

The formation of molecules occurs, because two lithium atoms attractively interact by
populating the highest vibrational molecular state (the branch of the Feshbach resonance
causing repulsion is not accessed). This is a dressed molecular state |ψm〉 that can
again be considered as the state of two freely scattering atoms which is perturbed by
a molecular bound state [88]. Hence, |ψm〉 is mostly a state of two freely scattering
atoms with a small admixture of the molecular state [25]. The spatial extent ξ0 of this
dressed molecular state is much larger than the characteristic length r0 of the interaction
potential [22] and scales with the scattering length a. This long range character ξ0 > r0

of the Feshbach molecule persists over the whole width of the Feshbach resonance in
the case of the lithium around 834G. Close to resonance, Feshbach molecules become
extremely large. Despite their large pair size, Feshbach molecules are stable [52, 90,
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91]. The two main decay processes — relaxation into a deeply bound molecule and
dissociation induced by collisions — are highly suppressed [89]. The first is improbable,
because the wave function of the Feshbach molecules has little overlap with the one
of deeply bound molecules. Only far removed from resonance, is relaxation enhanced
due to the smaller size of the molecules. There, the lifetime of the atomic ensembles
is limited because the relaxation processes cause heating. The second decay process is
the dissociation of molecules. There, two fermions would transfer their binding energy
to a close nearby third. However this process is largely suppressed due to the Pauli
exclusion principle and the low density. At low temperatures collision rates between
molecules scale as (T/TF )2 [16, 89]. Therefore, Feshbach molecules are good candidates
for stable molecules at low temperatures.

In the following, molecules are considered as composite bosons. In order to explain
the phase transition to a Bose-Einstein condensate, it is assumed that the molecules do
not interact. But since composite bosons do actually interact with a scattering length
amol, the physically more relevant case of an interacting Bose-Einstein condensate will
be described later.

2.4.1 The non-interacting Bose-Einstein condensate

Bosons consisting of two fermions have integer spin and are described by a symmetric
wave-function. This implies that more than one boson can occupy the same state. Below
a critical temperature, the energy of the bosonic ensemble is so low that the majority
of the bosons populate the ground state, and hence they can be described by one and
the same wave-function. Bosons populating this wave-function form a Bose-Einstein
condensate [68].

Again, at low temperatures physical quantities can only be deduced from the Bose
distribution, which is given by the occupation probability

fB(E, T ) =
1

e(E−µ(N,T ))/kBT − 1
(2.23)

of a state with energy E. The chemical potential µ is set by the condition that, after
summing over all possible energy levels, the total particle number N must be obtained:

N =
∫ ∞

0
D(E)fB(E, T )dE . (2.24)

Since the particle number N cannot be negative, the chemical potential µmust always
be smaller than the lowest energy level E0 = 0.

Here, we assume that the trapping potential can be approximated by a harmonic
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potential with a density of states D(E) = E2/2(~ω)3 and ω = (ωxωyωz)1/3. At the
critical temperature Tc, when bosons start to populate the ground state with energy E0,
the chemical potential approaches zero. When decreasing the temperature T further,
below Tc, the chemical potential remains zero and the particle number N(T < Tc)
obtained from equation 2.24 becomes smaller than the actual total particle N :

N(T < Tc) < N = N(Tc) = ζ(3)
(
kBTc
~ω

)3

, (2.25)

where ζ(3) = 1.202 is the Riemann zeta function. TheN0 = N−N(T < Tc) "missing"
bosons will occupy the ground state E0, which is obviously not accounted for in equation
2.24, since the density of states D(E0 = 0) is zero. These bosons condense to a so-called
Bose-Einstein condensate. Their relative number as a function of temperature is given
by

N0

N
= 1 +

(
T

Tc

)3

. (2.26)

Since all condensed bosons occupy the same ground state, they can be expressed by
a single particle wave function

Φ(r) =
√
N0φ(r) , (2.27)

with N0 =
∫
n0(r)d3r =

∫
|Φ(r)|2d3r. A Bose-Einstein condensate can be consid-

ered as a coherent matter wave revealing similar interference phenomena (first order
correlation) and statistics (second order correlation) as those of a coherent light wave.

2.4.2 The interacting Bose-Einstein condensate at T = 0

Although the non-interacting Bose gas is useful for understanding the condensation pro-
cess, the approximation of zero interaction does not apply to a Bose-Einstein condensate
of Feshbach molecules. Since the intermolecular scattering length given by amol = 0.6a
[89], cannot be neglected, interactions must be taken into account. As long as inter-
actions can be considered weak (n−1/3

mol amol � 1), the ground state wave function of
an interacting Bose-Einstein condensate (see [68] and references therein) can be calcu-
lated in a relatively simple way with only one additional energy term, the mean-field
interaction term

U(r) = nmol(r)
4π~2amol

2m
= nmol(r)g . (2.28)
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2.4. Molecular Bose-Einstein condensate

At zero temperature, the ground state can again be expressed by a single particle
wave function, whose main difference in shape is its larger width. This broadening,
which leads to a reduction of the mean density, is caused by the mean-field energy
term U : the total energy of the ground state is minimized by reducing a mean-field
interaction energy, which is proportional to the mean density, at the cost of a higher
potential energy. Despite the similarity in description, there is an important qualitative
difference between the interacting and the non-interacting case: due to this additional
interaction energy term, the excitation spectrum of the interacting BEC changes such
that, below a critical velocity, it cannot be excited. Therefore, the interacting BEC
behaves as a superfluid - a fluid with frictionless motion. The determination of the
ground state wave function in the mean field approximation is briefly outlined in the
following.

The substitution of two-body interactions through one mean-field energy term allows
one again to treat the many-body wave function Φ(r1, ..., rN0) as an actual single par-
ticle wave function Φ(r) (equation 2.27), where it is assumed that all molecules occupy
the same ground state. But since Φ(r) depends on nmol(r) = n0(r) = |Φ(r)|2 via the
mean-field term U(r), a solution has to be found in a self-consistent way. In order to ob-
tain the ground state wave function Φ(r), its energy is minimized under the constraint
that the molecule number N0 is conserved. This leads to the non linear Schrödinger
equation, the so-called Gross-Pitaevski equation

(
− ~2

2m
∇2 + V (r) + gN0|φ(r)|2

)
φ(r) = µφ(r) . (2.29)

The non linearity is caused by the mean-field interaction term g|Φ(r)|2 = gN0|φ(r)|2.
The eigenvalue µ is the chemical potential of the molecules, which does not include their
binding energy. For a given external potential V (r), the single particle ground state
wave function φ(r) can numerically be computed.

A practical alternative to obtain an approximated ground state wave function without
computation is the Thomas-Fermi approximation. This simplifies the Gross-Pitaevski
equation by dropping the kinetic energy term in equation 2.29. This assumption only
holds if the mean field interaction term g|n(r)| ∼ gN0/R

3 is much larger than the
kinetic energy term, which can be estimated to be ~2/2mR2, where R is the size of the
cloud. The criterion for a valid Thomas-Fermi approximation [68] is often expressed by

N0amol/aosc � 1 , (2.30)

since the ground state of the potential V (r) can be treated as a harmonic potential
with an oscillator length aosc = (~/mω)1/2 and an energy of approximately 1/2mω2R2.
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The Thomas-Fermi density profile nTF (r) = N0|φTF (r)|2 is an analytical solution of
the equation

V (r) + gN0|φTF (r)|2 = µTF (2.31)

for µTF ≥ V (r). In the harmonic approximation, nTF (r) has the shape of an inverted
parabola

nTF (r) = max

(
µTF − V (r)

g
, 0
)
. (2.32)

In experiments, the density distribution reveals a bimodal, i.e. gaussian and parabolic,
shape, when lowering the temperature T below Tc. Thermal molecules contribute to
the gaussian density distribution. From the ratio between the gaussian and parabolic
contribution, the condensate fraction N0/N , the number of condensed molecules N0 as
well as the relative temperature T/Tc (equation 2.26) is obtained.

In the Thomas-Fermi approximation, the chemical potential µTF of condensed molecules
can be calculated with the normalization condition

∫
nTF (r)d3r and equation 2.32:

µTF =
~ω
2

(
15N0amol
aosc

)2/5

. (2.33)

This leads to the Thomas-Fermi radius of the Bose-Einstein condensate RTFi, which
is determined by the length r, where the density nTF (r) vanishes:

RTF,i =

√(
2µTF
mω2

i

)
= aosc,i

(
15N0amol
aosc

)1/5( ω
ωi

)1/2

. (2.34)

In conclusion, we have obtained an expression that relates the scattering length amol
and hence the mean field energy to the broadening of the density distribution nTF (r) =
N0φ

2
TF (r).

2.5 Bardeen-Cooper-Schrieffer state

Fermions with weak attractive interaction g undergo a phase transition to a superfluid
— the BCS state — at a critical temperature Tc. Due to pairing of fermions, the
total energy of the system is decreased. The basic idea of this pair formation can be
explained with the Cooper problem [74]. There, two attractively interacting fermions
are added to a non-interacting Fermi sea in the ground state at T = 0. The new ground
state is then given by a Fermi sea and two fermions of opposite spin and momenta
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2.5. Bardeen-Cooper-Schrieffer state

~k1 = −~k2. While the new ground state energy of non-interaction fermions equals
EF , the two attractively interacting fermions decrease the total energy below EF if
they form a Cooper pair. The following is a brief outline of how pairing leads to this
decrease in energy [92].

The two fermions are described by a two-body wave-function ϕ(r). If pairing occurs,
ϕ(r) should not vanish for small relative distances r = r1− r2, hence the wave-function
must be symmetric and is expressed by ϕ(r) '

∑
k>kF

α(k) cos(kr). If this wave func-
tion is inserted into the interaction Hamiltonian

(−~2

m
∇2 + g)ϕ(r) = Eϕ(r) , (2.35)

and transformed into momentum space, one obtains an equation that relates the
interaction g to the energy E of the two-body wave function:

1
g

= D(EF )
∫ EF+Er

EF

1
ε− E

dε . (2.36)

ε(k) = ~2k2/m is the kinetic energy of two free fermions, which must be larger than
EF and smaller than EF + Er. Er = ~2/mr2 is the energy needed to confine two
fermions to a pair of size r. At zero temperature, the Fermi surface is a sharp boundary
between occupied and unoccupied states. Hence one can assume that the density of
states D(EF ) = mkF

2π2~2 [75] is constant at the Fermi surface. Integrating the right side
of equation 2.36 leads to an expression that can be approximated to

E ' 2EF − 2Ere−2/D(EF )g (2.37)

in the case of weak interactions where D(EF )|g| = kF |a|/π � 1. The energy E of
the two-body wave function is actually smaller than EF and hence it can be considered
as a bound state at the Fermi surface — a Cooper pair. This conclusion was a crucial
step in explaining the superfluidity of fermions. In the case of electrons in a metal, it
could be shown that electrons resonantly interact with the ion crystal of the solid and
interactions can indeed be attractive.

Unlike in the case of the Cooper problem, all fermion pairs are included in the problem
of finally obtaining the BCS state [8, 9]. The original description of a superfluid is given
by the phenomenological Ginzburg-Landau equation, which introduces a superfluid wave
function as a classical field in the same way that the Gross-Pitaevski equation does.
However, in a microscopic description, superfluidity can be explained directly as a many-
body state of Cooper pairs, which gives more insight in the pairing mechanism. Bardeen,
Cooper and Schrieffer first introduced a Hamilton operator to describe a superfluid that
only consists of Cooper pairs:
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Hcp =
∑
k,s

εkc
†
k,sck,s +

∑
k,k′

gk,k′c
†
k↑c
†
−k↓ck′↓ck′↑ . (2.38)

The creation and annihilation operator for a spin up or spin down fermion with
momentum k is expressed by c†k,↑(↓) and ck,↑(↓). The ground state of this Hamiltonian
is the BCS state

|ΦBCS〉 =
∏
k

(|uk + vkc
†
k↑c
†
−k↓)|0〉 . (2.39)

The probabilities |vk|2 and |uk|2 (with |uk|2 + |vk|2 = 1) determine if a Cooper pair
does or does not occupy state k, respectively. The superfluid gap at zero temperature
is close to the result for the binding energy of a Cooper pair and is given by

∆ =
8
e2
EF e

−π/2kF |a| (2.40)

The critical temperature of the phase transition is proportional to the superfluid gap:

Tc =
eχ

π
∆ , (2.41)

with χ = 1.78. The shape of the density distribution nBCS(r), from which the
temperature T is experimentally inferred, is very similar to that of a normal Fermi gas.
There are differences, but they are difficult to detect.

2.6 Crossover from BEC to BCS

A connection between the two regimes of a Bose-Einstein condensate of tighly bound
molecules and a BCS state of weakly bound Cooper pairs had already been proposed by
Eagles [30], when Leggett showed in 1980 [31], that there exists a smooth crossover in
many-body systems, where pairing dominated by two-body physics in real space evolves
into a state with pairing in momentum space.

While the BCS state, which is the one extreme case of superfluidity due to pairing
in momentum space with kFa→ 0−, was experimentally observed in a superconductor
already in 1911, it took until 1995 for the first realisation of a weakly interacting BEC
[10, 11, 12, 13]. This finding represents the other extreme case, where bosons can be
considered as extremely tightly bound fermions (kFa→ 0+), which are electrons bound
to the nucleus [93]. Examples of the crossover regime are superfluid 3He, observed in
1972 [94] and high temperature superconductivity, which was not known until 1986 [95].
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Although each of these observations was a major milestone in exploring the phe-
nomena of superfluidity and superconductivity, the interaction U between fermions in
none of these systems could be tuned, so that BEC-BCS crossover could only be ac-
cessed by comparing the different systems. The situation changed in 2004 with the first
observation of an ensemble of ultra-cold atomic gas of resonantly interacting fermions
[24, 25, 26, 27, 28, 29]. By accessing a Feshbach resonance, the scattering length a(B)
could be tuned via the magnetic field B such that finally, the entire crossover and also a
part of the BEC-regime could be approached by experimenterers with a single system.

Nozières and Schmitt-Rink [32], who extended Leggett’s model for finite temperatures
T , found expressions for the superfluid gap ∆ and the critical temperature Tc for the
two limiting cases of a BCS state and a molecular Bose-Einstein condensate, which are
given by

∆BCS =
8
e2
EF e

−π/2kF |a| (2.42)

and

∆BEC '
EF√
kFa

, (2.43)

respectively. The critical temperature for a harmonically trapped Fermi gas is

Tc,BCS ∼ ∆BCS (2.44)

and

Tc,BEC ∼ 0.55TF = 0.55EF /kB . (2.45)

While the critical temperature for a BCS state is proportional to the superfluid gap
∆BCS , that of a molecular Bose-Einstein condensate only depends on the Fermi temper-
ature TF , which is reached when the ground state starts to be populated by molecules.

Since the first observation of a resonantly interacting Fermions with tunable inter-
action strength U , the progress in this field has been rapid. In 2003, molecular Bose-
Einstein condensation was first observed [17, 18, 19] and the pairing gap at different
positions in the BEC-BCS crossover was measured [20, 22]. Already in 2005, a vortex
pattern in the atomic cloud could be observed , which can be considered as proof for
superfluidity in this parameter regime [23]. Different thermodynamic variables, such as
the heat capacity [96] and the entropy [97, 98] have also been measured.

Another research field has opened, where experiments with ultra-cold fermionic en-
sembles of imbalanced spin population have been performed. These atomic ensembles
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consist of a two component spin mixture of hyper-fine spin states, whose ratio is unequal
to one. This additional degree of freedom in the spin population is new. Before these
findings a spin imbalance in conventional superconductors could only have been created
by applying a external magnetic field. But according to the Meissner-Ochsenfeld effect
[99], this is impossible, since magnetic fields are suppressed inside a superconductor.
It has also been shown that in a trapped Fermi gas with imbalanced spin population,
the excess fermions of majority spin component are separated from the superfluid core.
This phase separation has been observed in the entire BEC-BCS crossover [33, 35, 100].
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3 Design of the experimental apparatus

The main challenge in designing the experimental apparatus presented here, was to
combine cooling and trapping techniques to obtain Fermi gases below Fermi temperature
and high resolution microscopy. To reach temperatures near 1µK, the atomic ensemble
must be kept in a thermally well-insulated environment. This is achieved by reducing the
ambient pressure to avoid collisions with atoms of the background gas. All experiments
with ultra-cold atoms are carried out in an ultra-high vacuum [UHV] environment,
where pressures of 10−11mbar are maintained. Inside the vacuum chamber, the lifetime
of an ultra-cold atomic ensemble is extended to more than one minute.

The atoms inside the vacuum chamber are manipulated with magnetic fields and laser
light. Space consuming magnetic field coils and optical viewports are placed around the
vacuum chamber. The design is such that optical access, which might be needed in
the future, is not obstructed. In addition, the construction of the apparatus must
be extremely stable, so that vibrations or long term drifts, which would jeopardize the
maximally allowed mounting tolerances of the microscope objectives, can be suppressed.

In our case, however, not only is the optical access for the two microscope objectives
obstructed at the location where atoms are initially trapped and cooled, but large
switching magnetic fields inducing eddy currents also would cause vibrations. Therefore,
the atomic ensemble is transported into a glass cell that offers high optical access and a
surrounding with non-conducting materials. The transport of the atoms is done with a
moveable optical dipole trap, a tweezer, that does not again obstruct the optical access
so gained. In the final position, which is in the center of a glass cell, microscopy of the
atomic ensemble is carried out.

Components of the experimental apparatus are introduced here in the order of the
general cooling procedure and explanations focus on design and technical aspects. First,
an overview of all components is given in the following section.
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Figure 3.1: Overview of the experimental apparatus showing the four sections: Oven
chamber, Zeeman slower, main chamber and glass cell. The overall length of the
apparatus is 2.2m (optics and optical breadboards obscuring the apparatus are not
shown). The heart of the experiment is the glass cell with two microscope objectives
above and below, embedded between large magnetic field coils.

3.1 Overview of the experimental setup

The vacuum chamber with surrounding and incorporated magnetic field coils and optics
can be separated into four sections: The oven chamber, where an atomic beam is
produced, the Zeeman slower that decelerates the atoms, the main chamber, in which
atoms are trapped and cooled with different optical techniques, and the glass cell, where
experiments are finally carried out (figure 3.1).

In the oven chamber, the two main components for the lithium beam production
are the oven itself and two apertures. The oven is used to heat and evaporate lithium
atoms, while the two apertures collimate the evaporated atoms to a beam. A high
oven temperature not only raises the partial pressure of lithium, but also the pressure
of the background gas. In order to maintain vacuum conditions in the main chamber
at 10−11mbar, the two chambers are partly separated. They are only connected by a
small, differential pumping tube and only the collimated lithium beam enters the main
chamber.

A Zeeman slower, consisting of a cone shaped magnetic field coil and a laser beam
entering through a viewport at the other end of the main chamber, slows the beam
down, before atoms approach the magneto-optical trapping region.

The atoms of the decelerated beam are then trapped in a magneto-optical trap [MOT]

32



3.2. Oven chamber

located at the center of the main chamber. With three orthogonal pairs of counter-
propagating laser beams, which are transmitted through six viewports, and two large
magnetic field coils, which create a quadrupole field, atoms are trapped and cooled.
Further cooling of the atoms is done in an optical dipole trap that about matches the
trap volume of the magneto-optical trap. Such a dipole trap can only be realized with
sufficiently large laser light intensities which we generate by making use of the intensity
enhancement achieved inside an optical resonator. Here, this optical resonator is placed
into the vacuum chamber. By lowering the intensity inside the optical resonator, the
depth of the standing wave dipole potential decreases and atoms are evaporatively
cooled. Because atoms can only be evaporated at certain magnetic fields, so-called
Feshbach coils at the center of the main chamber and the glass cell are installed. The
pre-cooled atomic ensemble is then loaded into a smaller running wave dipole trap and
transported to the glass cell.

The glass cell can be considered as the science chamber. There, the last evaporation
step takes place to reach the final temperature and experiments are carried out: micro
dipole potentials are created and ultra-cold ensembles of fermionic lithium are imaged
with high resolution by employing two microscope objectives.

3.2 Oven chamber

A new ensemble of ultra-cold atoms is prepared in each experimental sequence since
the applied measurement techniques are destructive. For efficient operation of the ex-
perimental apparatus, the one isotope of interest must be cooled and trapped within
seconds without contaminating the vacuum system.

Here, a lithium reservoir, which is part of the oven, is heated to achieve a high partial
pressure. Because commercially available lithium is not perfectly clean, the overall
pressure in the oven can rise to approximately 10−5mbar. Atoms are evaporated from
the oven nozzle into the pumping chamber, where the pressure is 8 · 10−10mbar. The
pumping chamber is connected to the main chamber by a differential pumping tube
that assures a maximal pressure ratio of 10−4; enough to maintain a pressure below
1.8 · 10−11mbar in the main chamber. Only a lithium beam passes through this tube.

The oven creates a flux and two apertures placed in the pumping chamber collimate
the evaporated atoms to a beam. Since the pumping and the main chamber are partly
separated during operation and totally separated by a gate valve during oven service,
vacuum conditions in each chamber are independently maintained by different pumps.
An overview of the oven chamber consisting of the oven and the pumping chamber is
shown in figure 3.2.
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Figure 3.2: Overview of the oven chamber, which is illustrated is a partially cut
CAD drawing. The oven chamber consists of a pumping chamber and the oven, which
are mounted on an adjustable table. The main components of the pumping chamber
are the two apertures, pumps and valves for initial pump-down.

3.2.1 Atomic beam and oven design

When designing an oven, a geometry has to be found to ensure efficient heating of the
lithium reservoir, while contamination of the pumping chamber, i.e. the increase of
background pressure, is sufficiently low. Furthermore, lithium atoms emanated from
the oven should be efficiently collimated to a beam.

For a fixed geometry of oven nozzle and apertures, the flux of the lithium beam is
proportional to the emission rate of atoms from the oven. Since the emission rate is
given by the partial vapor pressure of lithium pLi(T ) [101], the flux can be adjusted by
tuning the oven temperature. With increasing temperature, the mean atomic velocity
of the Boltzmann distribution simultaneously also increases. Since a Zeeman slower
only allows deceleration of atoms below certain threshold velocity vth, the percentage
of atoms, that can still be brought to standstill will drop. Hence, the product of the
lithium flux and the percentage of lithium atoms that can be decelerated results in an
effective lithium flux.

34



3.2. Oven chamber

The ratio between emitted lithium atoms and those collimated to a beam is set by
the design of the oven, the geometry of the oven nozzle and the two apertures. Simply
increasing the temperature would indeed increase the effective flux, but it would also
lead to a higher pressure in the pumping chamber. If the pressure ratio between main
and pumping chamber were larger than 10−4, the pressure in the main chamber would
increase. In addition, a higher percentage of lithium atoms which cannot be decelerated
would only enhance collisions with trapped lithium atoms. Eventually, viewports would
be reflection-coated with lithium much faster, especially the one used for the slowing
laser beam, which is counter-propagating to the atomic beam. Although oven and
apertures have been described as separate components, their exact setting determines
how efficient evaporated atoms are collimated to a beam.

Ideally, a small diameter nozzle that generates a lithium beam of already low angular
divergence, should be placed as close as possible to the apertures. The temperature of
the nozzle is above the 180°C melting point of lithium to make sure that the nozzle is not
obstructed by recondensed, solid lithium. Furthermore, the lithium reservoir is heated
to a temperature of about 400°C to achieve a partial vapor pressure of approximately
10−5mbar. Because the temperature, and hence pressure inside the pumping chamber,
must not be increased by heating the oven, nothing but very good thermal insulation
between oven and pumping chamber prevents the latter from being contaminated. For
this reason there are limitations on how compact the design can be.

A cut through the oven is shown in figure 3.3. The oven consists of a heated cylindrical
reservoir, a conical reflux stage — intended to bring condensed lithium atoms back to
the reservoir, and a heatable nozzle [102]. The entire oven is custom machined and
welded out of a block of special stainless steel (type 1.4429), which is suitable for high
temperatures and highly reactive materials. Nickel gaskets were used to avoid corrosion
and leakage.

The cylinder is filled with approximately 3g of enriched 6Li, which is evaporated at a
temperature of 402°C. The fraction that does not pass through the nozzle will condense
in the conical reflux region at a temperature of 267°C. Here capillary wells are eroded
along the cone axis to let lithium flow to regions of higher temperature. Furthermore,
the cylindrical reservoir is covered by a thin mesh to facilitate the reflux of condensed,
fluid lithium to the hottest region due to the capillary effect [102].

To prevent liquid lithium from reaching the nickel gasket and possibly causing cor-
rosion, a protection barrier is inserted, effectively forming a reservoir for superfluous
Lithium. Both, the nozzle and the oven temperature (300°C / 402°C) determine the
flux. The cylindrical reservoir and the nozzle are heated by a copper collar onto which
a thermocoax cable has been wound. The required heating power is 51W and 16W,
respectively. On the outside of the reservoir and the nozzle, fibreglass fabric is used
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Figure 3.3: A cut through the oven and neighboring components. The thin-walled
transition regions between the cylindrical reservoir, the conical reflux region and the
nozzle have low thermal conductivity to be able to heat the three sections indepen-
dently. The lithium beam passes through a 75mm long vacuum tube and is then
collimated by the two apertures. The bellows attached to the oven vertically are only
used for the initial pump-down.

for thermal insulation. The conical region is neither heated nor insulated, leading to a
significant drop in temperature.

3.2.2 Pumping chamber design

The lithium beam produced in the pumping chamber passes through the differential
pumping tube, which is 145mm long with an inner diameter of 3mm and connects to
the Zeeman slower. The pumping chamber is designed such that direction and position
of the lithium beam can be precisely adjusted. An overview of the oven chamber,
including the oven and the pumping chamber is shown in figure 3.2.

Two 3mm apertures in the center of the oven chamber collimate the divergent flux
coming from the nozzle. In order to maximize the number of atoms transmitted through
the differential pumping tube, the angle and position of the collimated lithium beam
can be adjusted using different adjustment nuts and screws that move the whole oven
chamber. To provide the flexibility necessary for the movement of the oven chamber
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relative to the Zeeman slower, the vacuum components are connected via short bellows.
Between the two apertures, a mechanical shutter can interrupt the atomic beam.

The oven is connected to the pumping chamber via two ports. The horizontal one
is connected to a 75mm long tube that provides additional thermal insulation. The
temperature at end of that tube is below the melting point of lithium so that lithium
contamination of the nickel gasket at the center piece of the pumping chamber is not
possible. The vertical port is connected to a valve, which is open during the initial
pump-down of the oven and the bake out. This is primarily done to enhance the
pumping of hydrogen, whose partial pressure dominates the background pressure in the
oven. Auxiliary components needed to create and maintain ultra-high vacuum [103] are
a valve only opened during initial pump-down, a 20l/s ion-getter pump and a titanium
sublimation pump. The pressure is measured by a combined Pirani/hot cathode UHV
pressure gauge. In the case of oven replacement, a gate valve can be closed to totally
disconnect the main chamber from the oven chamber.

3.2.3 Installation

Lithium is a highly reactive material. It oxidizes instantly and burns provided that
the humidity is high. Certain precautions have to be made to fill and install a lithium
oven properly. Prior to filling, lithium is cleaned with acetone and cut in smaller pieces
under an argon atmosphere. Then the oven is sealed. Next, the oven chamber, to
which the oven has not yet been connected, is evacuated to remove nitrogen and oxygen
and is then floated with high purity argon at a slight overpressure. The two CF16
blind flanges at the end of the bellows and the rear side of the eight port cylinder
are removed allowing the argon to flow out. The oven is then bolted to the cylinder
and to the bellows, before the whole chamber is evacuated again. The oven chamber
was baked out at about 200°C for seven days, while the oven was baked out at about
560°C for about 12 hours. Such high bake out temperatures are needed to remove any
residual hydrogen that will contaminate lithium. As for other vacuum components, the
temperature difference between bake out and operation temperature is about 200°C.
During bake out, the top valve to the oven is left open for efficient pumping of the oven
and later closed during operation. After sublimating titanium, an operating pressure of
about 8 · 10−10mbar was achieved.

3.3 Zeeman slower

The lithium beam produced in the oven chamber would enter the main chamber at a
longitudinal velocity of more than a 1000m/s, but only atoms up to a maximum velocity
of about 60m/s can be magneto-optically trapped. Here a (decreasing magnetic field)
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Zeeman slower [59] consisting of a laser beam and a cone shaped magnetic field coil
is employed to decelerate atoms. In the following, the general deceleration process is
explained, before the design of the magnetic field coil and the characteristics of the laser
beam is discussed.

The basic idea of a Zeeman slower is to decelerate atoms by means of resonant light
forces [14]. Atoms propagate in the opposite direction to a laser beam and resonantly
scatter photons. Photon momentum is transferred to the atom and then randomly
distributed by spontaneous emission. The resulting net force decelerates the atom.
Because of the Doppler effect, the effective resonance frequency of the atoms in the lab
frame changes as they are decelerated. Atoms are kept in resonance with the slowing
laser beam by exploiting the Zeeman effect: the transition frequency of the atom is tuned
by applying an external magnetic field B in such a way that the resonance condition is
fulfilled for all velocities.

Here, the magnetic field coil of a Zeeman slower is designed such that the frequency
shift caused by the Doppler effect is compensated while the atoms are decelerated from
a maximal velocity vth = 910m/s to nearly standstill. The Doppler frequency shift
linearly depends on the velocity as ∆ωD = 2π

λL
v(x), where λL is the resonance laser

wavelength (671nm). The frequency shift ∆ωZ caused by the Zeeman effect is linear
with respect to the magnetic field amplitude: ∆ωZ = ∆mµBB(x)

~ , where ∆m is the
difference in magnetic quantum number between ground and excited state [101], and
µB is the Bohr magneton. For a certain final velocity vend, one obtains the condition
for the cancelation of the two frequency shifts:

∆mµBB(x)
~

=
2π
λL
v(x)− 2π

λL
vend . (3.1)

There are two possibilites to control the velocity of the atoms. One is to choose
the final velocity vend reached when the magnetic field B(x) drops to zero. The final
velocity can be tuned by setting the corresponding frequency difference ωend with respect
to resonance frequency of an atom at rest to ωend = 2π

λL
vend. In our case, the frequency

of the counter-propagating laser is detuned to νend = ωend
2π = −86MHz, which results in

a final velocity of approximately 60m/s at zero magnetic field.

The other way to control the velocity is througth the spatial magnetic profile B(x),
which in effect controls the velocity profile v(x). There are obviously physical limits
to the maximum deceleration: as long as the laser frequency is in resonance with the
atoms in the moving frame, the scattering force Fsc can be assumed to be constant.
The scattering force only depends on the resonant photon scattering rate Γ and the
average photon recoil momentum pph. If the transition is driven with only half of the
saturation intensity, the corresponding maximal deceleration is a = Fsc

m = Γ
4
−|pph|
m . The

velocity profile can be expressed by
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v(x) =

√
2
(

Γ
4
pph
m

)
x+ v2

th , (3.2)

where m is the lithium mass. By combining equations 3.1 and 3.2, the shape of the
magnetic field B(x) can be determined.

3.3.1 Dimensions and construction of the Zeeman slower coil

All important coil parameters can be calculated with only two assumptions: The max-
imal initial velocity, vth, above which atoms cannot be decelerated and the maximal
scattering rate, which must of course be smaller than Γ. The former sets the maxi-
mally needed magnetic field amplitude (equation 3.1), which is Bmax = 929G in our
case. The latter determines the minimally needed laser light intensity and the minimal
length of the Zeeman slower (equation 3.2), which is I = 1.28W/cm2 and L = 442mm.
The construction of a Zeeman slower coil is experimentally feasible only because the
deceleration Fsc

m = 5.9 · 106m/s2.

The minimal inner radius of the coil is ultimately limited by the radius rzs of the
atomic beam. Because there is absorption and spontaneous emission in random direc-
tion, even a perfectly collimated atomic beam changes its radius along the beam axis
as

rzs(x) =
∫
vtrans(t)dt =

∫
vtrans(x)/v(x)dx , (3.3)

where vtrans(t) =
∫ t

0

(
1
3

√
Γ/4t′pph

)
dt′ is the transversal velocity. At the posi-

tion, were the lithium beam leaves the Zeeman slower vacuum tube, the beam radius
rzs,max = 9mm.

With the set of parameters Bmax, L and rzs,max, one can roughly estimate at what
current density the coil needs to be operated and if water cooling is required due to
ohmic heating. The Zeeman slower coil cannot be wound directly onto the vacuum
tube, since vibrations during coil turn off have to be avoided and any heat dissipation
during operation would negatively affect the vacuum conditions in the main chamber.
Nevertheless, the coil design should be as compact as possible to make operation at
lower current densities possible. A small radius at the end of the slower is advantageous
since it will enable a rapid magnetic field decay and less disturbance of the magnetic
field for the magneto-optical trap.

In figure 3.4, a cut through the Zeeman slower is shown. The innermost tube is a
custom made vacuum tube out of stainless steel. It consists of a micro conflate flange
(CF10), which is attached to the gate valve, a differential pumping tube, a main Zeeman
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water cooling tube gate valve
magnetic 
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Figure 3.4: Zeeman slower, which is illustrated as a partially cut CAD drawing.
Wires wound around the double-walled cooling tube, which is mounted separately from
the vacuum tube, produce a square root shaped magnetic field with a total number of
4190 windings and a wire length of 520m.

slower vacuum tube, whose inner radius is 10.5mm (slightly larger than the maximal
lithium beam radius rzs,max = 9mm in the tube) and a CF40 conflat flange. The coil
is wound around a double-walled copper tube with integrated water channels milled
along the inner tube, yielding a very compact coil mounting and cooling system with
an outer radius of only 17.5mm. The two copper tubes are vacuum-welded with an
electron beam to ensure that no cooling water leaks out.

The coil itself consists out of 17 double layers and a single layer of 1 x 3 mm2 high
temperature doubly enamelled copper wire. The layers are grouped in pairs, with each
double layer starting at a different position to realize the square root shaped magnetic
field required by equation 3.2. The longest double layer has 185 windings and a length of
571mm. Instead of winding the entire coils with one continuous piece of wire, every pair
is connected to a central board, where the various pairs are connected in series. This
precaution was taken to be able to disconnect layers in which shortcuts could occur after
coil bake out. The coil was wound by a professional coil manufacturer. No thermally
conducting glue was used since none of the available glues had a thermal expansion
coefficient similar to copper wire. Air confinements between coil layers and dried glue
would be a perfect thermal insulation after coil bake out. Instead, air confinements were

40



3.3. Zeeman slower

reduced by winding the coil at a constant force of 50N and a wire positioning precision
along the coil axis of about 1mm per meter. The coil was then sealed with aluminium
tape and all wire endings were fixed with clamps. An additional water cooling tape
made out of a stainless steel mesh with incorporated Teflon tubes was wound around
the coil. Only one power supply with 8A and 50V is used to operate the Zeeman
slower coil. Apart from the connection board, the whole installation can be baked at
temperatures as high as 250°C.

The coil was tested regarding thermal characteristics and the magnetic field shape.
The cooling system on the inside and the outside of the coil prevents overheating if it
is run at a duty cycle of 30%. The measured magnetic field B(x) was compared to the
simulation including all aspects of the dimensioning of the coil as explained above. The
simulated deceleration profile along the coil axis obtained with the actual magnetic field
shows that deviations between simulated and measured magnetic field curves should not
diminish performance (figure 3.5).

The mode of the laser beam that induces the decelerating atom-photon collisions is
approximately matched to the atomic beam size. At the starting positions of the Zeeman
slower, x = 0, the atomic beam diameter has about the size of the inner diameter of
the differential pumping tube, i.e. 3mm. At the end of the Zeeman slower, where the
acceleration drops to zero, the atomic beam radius rzs,end ' 14mm according to the
simulation. Here, to obtain a good overlap with the atomic beam, we use a telescope
with lenses of focal length f = 25mm and f = 200mm to enlarge the beam radius
and to focus the laser beam from an initial radius at the lens position of approximely
10mm to a radius of about 3mm. A minimal laser power of 20mW is needed to drive
the electronic transition at more than half of the saturation intensity at any position of
the atomic beam.

The laser beam is transmitted through a Sapphire viewport that is directly bonded
to a CF63 flange. Sapphire is optically birefringent, but has the advantage that it is
not corroded by lithium. Around the viewport, a heating cuff with an extra insulation
glass in front of the viewport was mounted to heat up and evaporate a potential lithium
coating on the window. Moreover, the CF40 gate valve (figure 3.1) should allow one to
replace the sapphire viewport without breaking the vacuum in the main chamber.

The transition 22S1/2, mJ = 1/2→ 22P3/2,mJ = 3/2 is driven by circularly polarized
laser light, where mJ are the magnetic quantum number of the electron (for details see
figure 3.22 on page 82). Seventeen per cent of the atoms in the beam have an initial
velocity below 910m/s at an oven temperature of 380°C. With this oven and Zeeman
slower configuration, we obtain a flux of slowed atoms of approximately 109 s−1, enough
for our experimental purposes.
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Figure 3.5: a. A cut through the Zeeman slower coil. b. Simulated curves are
the magnetic field curve B(x) of the Zeeman slower (red line), the gradient field of
the magneto-optical trap (green line) and the combined magnetic field (blue line).
Inserting the measured magnetic field values (black circles) into the simulation leads
to a deceleration profile (dashed line), which is scaled with aideal = Γ

4
−|pph|
m .

3.4 Main chamber

The decelerated atoms enter the main chamber where they are trapped and cooled, first
in a magneto-optical trap making use of spontaneous light forces, then in a standing
wave dipole trap created by the optical resonator and finally in a running wave dipole
trap, which is created by focused laser beam. The three traps are all located at the center
of the main chamber to reduce the effects of eddy currents caused by fast switching of
magnetic fields. The following is an overview of components in and around the main
chamber (figure 3.6a) and the main chamber itself (figure 3.6b).

The most prominent and technically challenging component in the main chamber is
the in-vacuo optical resonator, which basically sets the dimension of the main cham-
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Figure 3.6: Overview of the main chamber. a. Components in and around the main
chamber: optical resonator mirror supports with base flange setting the dimensions of
the main chamber and magnetic field coils for magneto-optical trapping and evapora-
tive cooling. b. Main chamber with connecting flanges for viewports, pumps and the
resonator base flange.

ber. The two resonator mirror mounts are directly attached to a CF200 base flange.
Light which is coupled into the resonator, passes through the CF16 viewport (15mm in
diameter) vertically and is afterwards redirected to the horizontal resonator axis.

Onto the base flange is mounted a custom made, TIG-welded stainless chamber, which
provides optical access for the magneto-optical trapping light and for the running wave
dipole trap. There are four CF40 anti-reflection-coated glass viewports (38mm in diam-
eter) horizontally and two housekeeper-sealed viewports vertically. Since housekeeper-
sealed viewports could not be coated, an anti-reflection-coated substrate with an index
matching oil was attached to the outside to the optical viewport to decrease reflec-
tions. A CF63 fused silica viewport (63mm in diameter) offers optical access for a
tightly focussed laser beam that creates a running wave dipole trap in which atoms are
transported to the glass cell and evaporated there. Two pairs of additional CF16 glass
viewports, whose axes are orthogonal, allow one to image atoms located in the center
of the main chamber.

All magnetic field coils are mounted around the chamber on mounts that are totally
separated from the chamber and the optical elements to reduce vibrations during coil
turn off. For the magneto-optical trap, there are two large coils in anti-Helmholtz
configuration to create the needed quadrupole field. For evaporation in the standing
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wave dipole trap, which is created by the optical resonator, as well as in the running
wave dipole trap, there is one pair of Feshbach coils. One is centered around the main
chamber, in inlets of the base and top flange to obtain large magnitude magnetic fields
at moderate currents (a second pair of Feshbach coils is centered around the glass
cell, where a final evaporation step and experiments are done). There are five smaller
auxiliary coils around the main chamber which are not shown in figure 3.6a.

In the main chamber, ultra-high vacuum is achieved with a residual pressure below
1.8 ·10−11mbar [103]. Two pumps maintain the vacuum. One is a 80l/s ion-getter pump
with differential pumping elements consisting of titanium and tantalium to improve
pumping of argon and helium. The other is a mini ball-point titanium sublimation
pump. The ion-getter pump is directly connected to the main chamber via a tube with
89mm diameter to obtain maximum pumping efficiency. Magnetic stray fields caused by
the ion-getter pump at the position of the magneto-optical trap and in the glass cell on
the order of mG/cm. The mini-ball titanium sublimation pump is mounted inside the
connecting tube. Its titanium ball is pointed at the main chamber to efficiently coat the
inside of the vacuum chamber. Some shields had to be placed to protect windows and
resonator optics from being coated directly. During sublimation, the gate valve at the
Zeeman slower is closed to protect the window. Pressure is measured by a hot cathode
pressure gauge, which is located in the connection between the ion-getter pump and the
main chamber. This gauge overestimates the actual pressures below 2 · 10−11mbar by
approximately a factor of two.

3.4.1 Installation

The main chamber and all standard components are made out of stainless steel (type
1.4401). Most of the sealings employed are preheated OFHC conflate flange copper gas-
kets. If there was a risk of lithium contamination, nickel gaskets were used, since lithium
corrodes copper. Before assembly, the main chamber was electro-polished. Apart from
the viewports, all components were first put into an ultra-sonic bath, cleaned with ace-
tone and then baked out in air at a temperature of 200°C. After assembly, the main
chamber was again baked out on air at 200°C before finally being evacuated. The
bake out in the evacuated state lasted 5 days. After sublimation of titanium, the final
pressure fell below the measuring range of the UHV pressure gauge.

3.5 Glass cell

All our experiments exploiting high resolution imaging are done in a glass cell, below
and above which two microscope objectives are installed. This octagonally shaped,
UHV-compatible cell (figure 3.7) is made out of fused silica plates.

44



3.5. Glass cell

Since the high resolution imaging and manipulation uses the optical access through
the upper and lower windows of the glass cell, it is imperative that the thickness of these
fused silica windows be known precisely and that the microscope objectives be corrected
for these windows. Thickness measurements of the glass provided by the manufacturer,
are 4± 0.005µm. The glass cell is anti-reflection coated for 532nm, 671nm and 761nm
on the outside of the upper, the lower as well as on front surface .

Because reflections from the inner walls cannot be avoided the octagon is turned by
3° counter clockwise around the z-axis. This reduces the detrimental effect of back-
reflections of the running wave dipole trap that is used for transport.

z

y
x

16mm

Figure 3.7: Illustration of the glass cell with glass-
metal transition and CF40 flange. The octagon is
made out of 4mm thick fused silica glass plates. Top
and bottom glass plate are separated by 8mm.

The glass cell is attached to a non-
magnetic glass-metal transition via a
rectangular feed through. The final
position of the glass cell could only
be adjusted by asymmetrically tight-
ening the screws of the rotatable con-
flate flange. The whole glass cell
is tilted by ∼ 1° counter clockwise
around the x-axis (figure 3.7). The
distance between upper and lower
surfaces was chosen to be as small
as possible to attain a short working
distance for the microscope objective
and hence a high numerical aperture
for the optical system. The minimum
size of the rectangular feed through
is limited by the minimum pumping

speed needed, which is approximately 7 l/s in our case.

Before installing the glass, it was cleaned on the inside and the outside. Evacuating
the vacuum chamber did not stress the surface or bend the glass plates, according
to measurements with a Hartmann-Shack sensor. The glass cell was encased within
a special metal housing serving as an oven for the bake-out, which was carried out at
175°C. The birefringence of the glass plate after pump-down and bake-out is not known.
Precautions have to be taken if the main chamber is floated, since the glass cell cannot
withstand any excess pressure.
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3.6 Optical traps

During the cooling procedure, atoms are trapped with two different techniques, which
are explained in more detail in the following section. Each trapping technique only
works for a limited temperature range. In our case, atoms that are magneto-optically
trapped with dissipative light forces, have a maximal temperature of 0.93K and can be
cooled down to a minimal temperature of 140µK [14, 60]. At the lower temperature
limit, heating and cooling caused by resonant scattering achieves a balance. For a
further reduction of temperature, the atomic ensemble needs to be transferred to a
different type of trap. This is a conservative potential which can be generated by either
magnetic [104] or optical dipole forces [63]. There, heating of atoms caused by resonant
photon scattering is largely reduced within the relevant time scale of one experiment
sequence, which lasts about 15s. Optical dipole traps have the two advantages that all
spin states can be trapped and that the magnetic field still remains as a free parameter.
The latter is important for evaporative cooling [14, 50, 58, 61]: because the scattering
cross section can be tuned to large values by the magnetic field by accessing a Feshbach
resonance, thermalization times can be shortened.

Compared to resonant light forces, the optical dipole force, and therefore its potential,
is weak. The mean temperature of an atomic ensemble inside an optical dipole trap
is mainly determined by its potential depth. An atomic ensemble at a mean tempera-
ture of 140µK is only efficiently transferred into a dipole trap generated by sufficiently
large laser intensities. By lowering the depth of the potential, the hottest atoms are
evaporated and the temperature can finally be reduced, in our case down to 200nK.

3.6.1 Magneto-optical trap

The magneto-optical trap [14, 60] serves as the final slowing stage of the atomic beam
and as an atom trap. By making use of resonant light forces, which correspond to
decelerations on the order of 106m/s2, the kinetic energy, and hence the temperature,
can be reduced by a factor of 104. The atomic beam enters the cooling and trapping
region of the magneto-optical trap at a velocity of 60m/s (0.93K) and is then decelerated
further, before atoms are trapped. In the magneto-optical trap, lithium atoms can be
cooled down to 140µK, which is the so-called Doppler temperature TD. Due to frequent
resonant light scattering, the minimal kinetic energy kBTD of the atoms is given by a
random photon recoil movement, which corresponds to a mean velocity of approximately
70cm/s. Because of the characteristics of the hyperfine splitting of the excited states of
lithium, the temperature can not be decreased below Doppler temperature with resonant
light [105].

The final slow-down of the atoms works as in the case of the Zeeman slower: atoms
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decelerate through the magneto-optical trap’s decreasing quadrupole magnetic field to
compensate for the Doppler shift. With equations 3.1 and 3.2, and a mean photon
scattering rate Γ

2 , a minimum deceleration distance of 0.15mm can be estimated, over
which the atoms are brought to standstill. At the turning point, the atoms are then
forced to reverse into the trap center. Because of the magnetic field gradient in the 3D
case, transitions between two Zeeman substates are only resonant at that position in
space given by an ellipsoidal shell with a thickness of more than 0.15mm.

The polarizations of the laser light are chosen such that only the laser beams, which
are counter-propagating to the motion of the atom are resonant. As soon as atoms ap-
proach the ellipsoidal shell, one of the three pairs of counter-propagating laser beams ex-
erts dissipative light forces to slow the atom down and again to force them to reverse di-
rection.

MOT laser 
beams (1 / 2 / 3) atomic beam

Zeeman slower 
laser beam

resonator 
mirror supports

resonator 
mirror supports

main 
chamber

Zeeman
slower coil

2

1

3

Figure 3.8: Top view of the main chamber. Three
orthogonal pairs of retro-reflected MOT laser beams
pass through viewports of 38mm in diameter and
trap atoms of the decelerated atomic beam. Res-
onator mirror supports are placed such that reso-
nant light is not reflected.

The shell is centered at the location of
the zero point of the magnetic field.
In order to trap a high number of
atoms, this ellipsoidal shell, at which
atoms are repelled into the trap cen-
ter, should be large. This, in turn,
asks for large laser beam diameters
and laser power.

Experimentally, the size of the trap-
ping region is limited by the diameter
of the three counter-propagating laser
beams and the available laser power.
Here, the laser power is equally split
into four beams, of which three are
used. After passing through the main
chamber, the three MOT-beams are
retro-reflected (figure 3.8). Because
the level structure of lithium at low
magnetic fields can be treated as an
actual three level system, with two
ground and one excited state, two
laser frequencies with equal power
are needed to drive the transitions
22S1/2, F = 3/2 → 22P3/2, F = 5/2
and 22S1/2, F = 1/2 → 22P3/2, F =

3/2, where F is the hyper-fine spin (for details see figure 3.20 on page 77). The average
intensity of each laser beam and each frequency, being transmitted through the CF40
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(38mm in diameter) is about saturation intensity. The laser frequency is de-tuned below
resonance between 3MHz (−0.5Γ) and 39MHz (−6.5Γ).

3.6.2 Optical dipole trap

Attractive potentials can be created by light fields that are far red de-tuned from the
resonance frequency. There, resonant photon scattering is largely suppressed and the
electrical fields of the laser light only induce electrical dipole moments in the atoms,
causing them to be attracted by regions of high intensity. This creates a conservative
potential, which is called optical dipole potential [63].

The optical dipole trap with a potential Udip(x, y, z) is given by the intensity distri-
bution I(x, y, z) of the light mode:

Udip(x, y, z) = −3πc2

2ω3

(
Γ

ω − ωL
+

Γ
ω + ωL

)
I(x, y, z) = −C(ωL)I(x, y, z) , (3.4)

where c is the speed of light, ω is the resonance frequency and ωL is the laser frequency.
Because resonant light scattering would significantly heat up the atomic ensemble, pa-
rameters should be chosen such that the photon scattering rate Γdip, which is given
by

Γdip(x, y, z) = − 3πc3

2~ω3
L

(ωL
ω

)( Γ
ω − ωL

+
Γ

ω + ωL

)2

I(x, y, z) (3.5)

is sufficiently low. Because the factor depending one the frequency difference ω− ωL
is linear and quadratic for the dipole trap depth and the photon scattering rate, far de-
tuned laser light at large intensities is chosen to achieve deep trapping potentials and
a low scattering rates. The following is a discussion about the creation of two different
dipole potentials employed in the experimental apparatus. Their intensity distribution
I(x, y, z) is given by a standing and a running wave.

3.7 Standing wave dipole trap

Atoms in the magneto-optical trap have a temperature TD = 140µK. To reduce the
temperature further, they are transferred into an optical dipole potential, where they
are evaporatively cooled. In order to efficiently transfer atoms, the depth of the optical
dipole trap should be on the order of the thermal energy of the atomic ensemble, about
kBTD, and the size of the potential should approximately match the atomic cloud size,
which is on the order of 1mm. At a wavelength of 1064nm, about 2100W of laser power
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would be needed to obtain an optical dipole potential comparable to the thermal energy
and size of a magneto-optically trapped atomic ensemble.

We transfer atoms into an optical dipole potential, which is created by intensity
enhanced standing wave inside an optical resonator [62]. In order to obtain a large
intensity enhancement, it is crucial that the mirrors be of high reflectivity as well as
losses be low inside the optical resonator. In this experimental setup, the two resonator
mirrors are placed inside the vacuum chamber to avoid losses otherwise caused by the
residual reflectance of viewports. Since readjustment of the resonator mirrors in vacuum
is impossible, a setup with long term stability had to be designed. With two resonator
mirrors, mainly one selected laser mode in longitudinal and transverse direction is en-
hanced, forming a standing wave dipole potential with an adjustable size in transverse
direction.

The following is a detailed discussion about the design of the optical resonator [106].
Important resonator parameters are introduced to explain how a large intensity en-
hancement and a large resonator mode size is obtained. Because the laser intensity
inside the optical resonator is only enhanced if the resonance condition is fulfilled, i.e.
the resonator length is a multiple of a wave length, active control of the laser frequency
and passive stability of the resonator setup are described. To conclude this section,
parameters of the created dipole potential are presented.

3.7.1 Intensity enhancement inside the resonator

Light travelling between two highly reflective mirrors builds up a standing wave whose
intensity, and hence the potential depth in the anti-nodes, grows with the number of
round trips. Naturally, the number of round trips as well as the intensity Icirc in the
resonator are maximized if light is perfectly reflected many times before it is finally
absorbed by or transmitted through one of the mirrors. Two mirrors of the highest
commercially available amplitude reflectivity r1 and r2 able to be accurately specified,
are used for the optical resonator. In order to obtain deep optical potentials with
the available laser power, the intensity enhancement S, which is the ratio between the
intensity Icirc in the resonator and the intensity Iinc that is coupled into the resonator,
must be as large as possible. S can be expressed in terms of the reflectivities r1 and r2

as

S =
Icirc
Iinc

=
t1t2

(1− r1r2l)2
, (3.6)

with amplitude transmissions t1 and t2 and resonator amplitude losses l.

At the same time, amplitude reflectivities are chosen such that ideally all of the
available incident laser light is coupled into the optical resonator. The highest efficiency
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of coupling is achieved if the light intensity reflected from the input port vanishes. This
can be expressed with the ratio

Irefl
Iinc

∼ r2
1(r1 − r2l)2 ≡ 0 . (3.7)

Coupling efficiency is highest, if the second mirror compensates for resonator losses
with a reduced amplitude reflectivity r2 = r1l < r1. In this situation, the two mirrors
are so-called impedance-matched.

3.7.2 Transversal mode size

Atoms that are trapped in the potential wells of the standing wave cannot move along
the resonator axis. This allows one to adjust the potential depth and size separately.
The potential depth depends only on the choice of the right amplitude reflectivities.
The transversal mode size of the optical resonator is matched to the size of the atomic
ensemble by setting the resonator geometry. Large transversal mode sizes, which are
required in our case, are obtained with an optical resonator operating close to the given
stability limit.

Here, we chose a two mirror configuration of a half near-concentric, or hemispherical
resonator, which we are able to operate very close to the stability limit. It consists
of a planar and a curved mirror M1 and M2 with a radius of curvature R1 = ∞ and
R2 = 150mm, respectively.

This configuration is stable as long as the resonator length, given by the distance L
between the two mirrors, is smaller than the radius of curvature R2. Here, we assume
that only modes with a gaussian beam profile, i.e. the transversal mode profile of lowest
order, are enhanced. By placing the two resonator mirrors close to the stability limit
∆L = R2 − L, the transversal mode size along the resonator axis can be expressed by

ω∆L(z) = ω0

√
1 +

z2

L∆L
, (3.8)

with laser beam waist ω0 = 42µm. For small distances ∆L, the beam radius ω∆L(R2)
at the location of the two mirrors M2 diverges. The resonator is placed such that the
magneto-optical trap is located in the center between the two mirrors at ∆L + L/2 '
L/2, where the transversal mode size scales with

√
L

∆L . In our case, the hemispherical
resonator is only 115µm from the stability limit. This results in a transversal mode size
of ω0 ≈ ω∆L(∆L) = 42µm and ω∆L(R2) = 1.52mm at mirror M1 and M2. The beam
radius at the place of the atoms ω∆L(L/2) ' 760µm.
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With increasing resonator length, the transversal mode size ω∆L(R2) at the mirror
M2 would become comparable to the diameter D of the mirror, D/ω∆L(R2) ≈ 1,
which reduces the angular tolerance between the perpendicular of mirror M1 and the
resonator axis. With any misalinement, a larger percentage of the mode would no longer
be incident on the mirror and losses would increase. However, in our case, the size D of
the mirror is much larger the transversal mode ω∆L(R2) and the only critical parameter
remaining is the resonator length L.

3.7.3 Measuring the standing wave dipole potential

In order to determine the actual dipole potential in the resonator, the intenstity dis-
tribution I(r, z), given by the power Pcirc in the standing wave and the gaussian beam
profile ω∆L(z), is measured.

For the transversal mode size ω∆L(z), the exact distance to the stability limit, and
hence the resonator length L, needs to be determined. This is done here by measuring
the frequency difference ∆νL(∆q,∆m,L) between the Gaussian (m = 0) and higher
order transversal modes (m > 0), as well as between different axial modes q, which
are functions of the resonator length L. These frequency differences can be obtained
by measuring the drop in reflection (equation 3.7) at the input port of the resonator,
which occurs if the laser frequency of the transversal modes are in resonance with the
optical resonator and light is actually coupled into the resonator.

The power Pcirc inside the resonator is obtained by measuring the power Pinc, which
is coupled into the resonator, and multiplying it with the power enhancement S. Since
the power enhancement S depends on the resonator losses (equation 3.6), an actual
resonator loss measurement has to be performed to finally obtain Pcirc. As in the case
of a damped oscillator, the energy dissipation, and hence loss, is characterized by the
quality factor Q. Its optical counter-part is the finesse F . It is used to characterize the
decrease of power inside the resonator optical. The finesse is obtained by first turning
off the laser at the input port and then measuring the exponential decay in power Ptrans.
From the decay time, the finess F (l) can be fitted to determine finally the resonator
loss coefficient l.

Due to imperfect mode matching, the power Pactual measured at the incoupling mir-
ror and relevant power Pinc matching the resonator mode can differ significantly. For
comparison, we can find the power inside the resonator, Pcirc = Ptrans/|t2|2, also by
independently calibrating the amplitude transmission t2 of the second mirror and by
measuring the transmitted power Ptrans. The ratio between power inside the resonator
Pcirc obtained from the two methods is a measure for the mode matching quality.

The following is a more detailed explanation of how ω∆L(z) and Pcirc are measured,
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before the estimated standing wave dipole potential as well as the resonator parameters
are listed at the end of this section.

Determination of the transversal mode size

The transversal modes are only enhanced inside the opitcal resonator, if their frequencies
fulfil the resonance conditions of the optical resonator: After one round trip inside the
resonator, the light must be phase shifted by a multiple of 2π to constructively interfere.
In that case, light is coupled into the resonator and a drop in reflection can be observed.
For a hemispherical resonator, transversal mode frequencies

νL(q,m,L) =
c

2L

(
q +

m+ 1
π

arccos

(√
R2 − L
R2

))
, (3.9)

depend on the axial as well as on transversal mode numbers q and m. The speed
of light is given by c. One can then measure the frequency difference between two
transversal modes, ∆νL(∆q = −1,∆m = 2, L) = νL(q,m,L) − νL(q − 1,m + 2, L) =
18MHz, and calculate L = 14.875mm with equation 3.9. Once the length is known, the
waist at the location of the magneto-optically trapped atoms, ω∆L(L/2) = 760µm can
also be calculated with equation 3.8 and ∆L = R2 − L.

Estimation of the power inside the resonator

The simplest way to estimate the power inside the resonator is to measure the trans-
mitted power Ptrans ' 100mW and the transmission coefficient |t2|2 ' 0.015% of the
second mirror. Then the power inside the resonator is Pcirc = Ptrans/|t2|2 ' 670W.
While we now know how much power is in the resonator, it is instructive to understand
what limits this power. The three limiting factors are the mode matching, the absolute
input power Pinc and the impedance matching and power enhancement, both contained
in S.

Power enhancement occurs because light travels a certain number of round trips inside
the resonator before it is either transmitted through one of the mirrors or lost. Naturally,
the power enhancement S depends on the characteristics of the mirrors, i.e. amplitude
reflectivity r, transmission t and losses l. While reflectivities r and transmission t of
the two mirrors are precisely specified by the manufacturer, resonator losses l have to
be measured. Losses are obtained by measuring the finesse F (l). As in the case of the
quality factor Q of weakly damped oscillators, which stands for the number of oscillation
before the energy of the oscillator has dropped by a factor e, the Finesse F is the quality
factor for optical resonators. The finesse is proportional to the number of round trips
nrt, before the energy inside the resonator drops by a factor e and is often expressed by
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3.7. Standing wave dipole trap

F =
Q

qrt
= 2πnrt, (3.10)

where qrt is the number of oscillations per round trip. Here, not the energy inside the
resonator, but the power Ptrans, is measured. After the incoupling laser light is turned
off, the light inside the resonator behaves like a weakly damped optical oscillator, whose
finesse can be extracted by measuring the exponentially decaying transmitted power

Ptrans(t) ∼ Pcirc(t) ∼ e−
t−t0
τ ∼ e−

2π
F

c
2L

(t−t0) . (3.11)

The resonator loss l can now be estimated with the expression

F (l) =
π
√

(r2l)
(1− r2l)

. (3.12)

With a finesse F = 10200, the given transmission coefficients t1 and t2, and equation
3.6, we obtain a power enhancement of S = 1580 and a power Pcirc = PactualS = 1030W.
The coefficient to characterize the mode matching is given by (Ptrans/|t2|2)/(PactualS) =
670W/1030W = 0.65.

Standing wave dipole potential and resonator parameters

With all optical resonator parameters either measured or deduced (table 3.1), this sub-
section can be concluded with an expression for the dipole potential, which is created by
a gaussian mode (m=0) inside a hemispherical resonator. By combining equations 3.4,
3.8 and the fact, that inside the resonator the intensity distribution is modulated with
a sinusoidal function, we obtain an approximated expression for the resonator dipole
potential:

Udip,res(r, z, ωL) ' −2C(ωL)
2Ptrans/|t2|2

πω2
∆L(z)

exp
−2r2

ω2
∆L(z)

sin2(
2ωL
c
z). (3.13)

With a maximal trap depth of Udip,res,max(0, L/2, λL = 1064) = kB46µK and an
assumed temperature of the magneto-optically trapped atomic ensemble of 140µK, we
expect a transfer efficiency of 12%. The measured transfer efficiency is 0.46% (the atom
number in the magneto-optical trap was determined by measuring the fluorescence signal
giving only an order of magnitude). Here, the potential depth is mainly limited by the
available laser power and the coupling efficiency due to limited impedance-matching.
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Resonator parameters

radius of curvature R1 / R2 150mm / ∞
resonator length L 1.485mm
distance to stability limit ∆L 115µm
beam waist ω0 42µm
beam radii ω∆L(L2 ) and ω∆L(L) 760µm / 1.52mm

reflectivities |r1|2 and |r2|2 99.98± 0.005 %
transmission |t1|2 and |t2|2 at 0° 0.015%
antireflection coating at 1064nm, reflection 0.0228%
resonator loss factor |l|2 0.999784

finesse F 10200
resonator linewidth ∆νres 98kHz
intensity enhancement S 1580

measured / theoretical coupling efficiency 32.5% / 50%
transmitted power Ptrans 100mW
maximum power Pcirc,max 670W
maximum intensity at L/2 1.5· 109W/m2

maximum potential depth Udip,res,max(0, L/2, λL = 1064) kB46µK
maximum trap frequencies for 6Li: wr, wz 100Hz / 4.1MHz
expected / measured atomic transfer efficiency 12% / 0.46%

Table 3.1: Properties of the optical resonator

3.7.4 Stabilizing the laser frequency

The power Pcirc of the light that has been coupled into an optical resonator is only
enhanced if its frequency fulfils the resonance condition given in equation 3.9, in our
case with a gaussian mode m = 0. But since vibrations and thermal drifts change the
resonator length L as well as the laser frequency ωL, it would not only be hard to keep
the power inside the optical resonator constant, it would also not be possible to reliably
couple light into the resonator without active stabilization of either the length or the
frequency. Especially in our setup, where the resonance width ∆ωres is reduced due to
the large power enhancement S,

∆νres =
c

2L
1
F
∼ 1
S
, (3.14)

the maximal relative length changes are extremely small and hence make the stabi-
lization challenging. In our case, the resonance width is only about ∆νres = 98kHz.
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3.7. Standing wave dipole trap

This width in frequency corresponds to a change in resonator length of only ∆Lres =
5.3 · 10−11m.

Here, we implemented two control loops to keep the resonance condition: one is the
electronic control of the resonator length via the electro-striction of a piezo crystal,
the other the laser frequency locked onto the resonator. The electronic control of the
resonator length via a piezo tube is limited to a stroke of only about a tenth of the
free spectral range and a bandwidth of only 200Hz. This limitation is most probably
caused by friction between the piezo tube and its housing. So, we decided to control
only the laser frequency. With a frequency modulation bandwidth up to 200kHz and a
maximum frequency deviation of about a quarter of the free spectral range, we achieved
a frequency stabilization with intensity fluctuations of approximately 1% rms.

The error signal for the laser frequency control is obtained with the Pound-Drever-Hall
technique [107]: The laser light for the resonator dipole trap has a carrier frequency ν =
νL + νaom, which is the frequency of the laser source νL shifted with an accusto-optical
modulator [AOM] by a frequency νaom. The carrier frequency ν is phase modulated
with an electro-optical modulator [EOM], generating sidebands at ν ± νeom. These are
used to detect the phase shift of the laser light reflected at the mirror M1 with respect
to the light entering the resonator and leaving it viaM1 (figure 3.9, gray box): The beat
signal at frequency νeom occurring between the carrier and the two sidebands is detected
with a photodiode and demodulated by frequency-mixing it with a local oscillator of
frequency νeom. The resulting DC-signal is proportional to the phase shift close to
resonance. A deviation of the carrier frequency from resonance frequency is therefore
converted into an unambiguous error signal δνerror. This error signal is fed back to a
(frequency) PID control. Its control signal νcontrol locks the carrier frequency onto the
resonator length via three devices (figure 3.9).

The first device is the accusto-optical modulator, which controls νaom with a high
regulation bandwidth on the order of 200kHz. The second is a piezo-electric element
that changes the laser cavity length and hence the laser frequency νL. The regulation
bandwidth of the laser cavity length is approximately 300Hz. The third is a tempera-
ture control of laser crystal and is implemented to correct for slow (< 1Hz), but large
deviations of the resonator length or laser frequency νL.

The frequency stabilization explained above can only suppress frequency dependent
power fluctuations, but not those caused by misalignment of optics and power drifts
of the laser source. Hence, the power inside the resonator Pcirc needs to be controlled
separately. The power Pcirc is proportional to the power Ptrans, which is transmitted
through the resonator. The latter can be measured and stabilized. As power control
element we use the deflection efficiency of the same accusto-optical modulator used for
the Pound-Drever-Hall lock.
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Figure 3.9: Schematic of the resonator frequency lock. The error signal δνerror
is obtained with the Pound Drever Hall (PDH) technique. Control elements of the
frequency ν are the AOM (200kHz), external laser cavity (300Hz) and laser crystal
temperature (<1 Hz). The resonator power is controlled with the same AOM.

Frequency and power control work independently as long as the stabilization level
Ptrans is constant. But during the preparation process, when atoms need to be evapo-
rated , the dipole potential and therefore the level of Pcirc is lowered to approximately
20% of the inital value. Because both the amplitude and the slope of the error signal
δνerror used for frequency control linearly depend on Ptrans, the gain for the frequency
lock changes and the control loop becomes unstable. We solved this problem by nor-
malizing the error signal to obtain a constant gain: the error signal is divided by the
signal Pset, which sets Ptrans.

3.7.5 Mechanical setup

In our apparatus, the resonator dipole trap is the key element for a fast and efficient
production of ultra-cold Fermi gases. Due to its large volume and its large enhancement,
it enables the transfer of a large number of atoms from the magneto-optical trap into
the resonator dipole trap with reasonable laser power. In order to obtain such a large
enhancement, the resonator losses have to be minimized. This is done by placing the
resonator mirrors into the vacuum chamber to avoid the most prominent loss source, the
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Feshbach coil
inlet
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Figure 3.10: Optical resonator, which is illustrated as a partically cut CAD drawing.
Two mirror mounts are precisely bolted onto a CF200 flange. Laser light, which is
coupled in and out of the resonator, passes through these mount (red arrows).

transmission through vacuum windows (approximately 2% per round trip). Resonator
losses are now dominated by the absorption and scattering losses of the mirrors, which
are now 0.022%.

Placing a resonator inside the vacuum chamber and operating it so close to the
stability limit is a high risk, because readjustment is impossible. Moreover, all materials
used have to be UHV compatible and withstand temperatures of 250°C during the bake
out of the vacuum chamber. In addition they need to be non-magnetic to assure high
passive stability even during sudden magnetic field changes.

In figure 3.10 a partially cut through the resonator is depicted: Two large stainless
steel supports (type 1.4436) are used to mount a resonator and a redirection mirror
each. Both supports are rigidly bolted onto a CF200 blind flange. The maximal length
deviation allowed before the resonator geometry is out of the stability region is 115µm,
which corresponds to a relative stability of 8 · 10−4. The distance between the two
supports is set by two parallel stop collars, that are machined into the CF200 flange
with very high absolute precision. Despite the obvious advantage of vibration isolation
we decided against it, since we feared that it might lead to drifts in the resonator length
and position.

In the left support, the planar resonator mirror M1 (R1 = ∞) is mounted in such
a way that there is only a translational degree of freedom along the resonator axis. A
laser beam, which is approximately mode matched to the resonator mode, is transmitted
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Figure 3.11: a. A cut through the planar mirror holder, which allows only a
translational degree of freedom. b. A cut through the curved mirror holder, which
allows only an angular degree of freedom.

through a CF16 viewport in upwards direction, reflected by a rigidly mounted 45° mirror
and coupled into the resonator through mirror M1. On the right support, the second,
curved mirror M2 (R2 = 150mm) is mounted. The transmitted light is coupled out
through mirror M2 and is redirected downwards, leaving the chamber through a CF16
viewport. The curved mirror is mounted in a mirror holder allowing angular adjustment
only. Details of the two resonator mirror holders are shown in figure 3.11.

The planar mirror holder shown in figure 3.11a, contains mirror M1 with a diameter
of 7.75mm and a thickness of 4mm. The mirror is placed inside a macor tube. Macor is
a ceramic whose surfaces can be precisely and smoothly machined. Inside that tube, the
mirror can glide axially. A stainless steel spring, which is precisely pre-stressed with a
custom machined adjustment screw, presses the mirror against a piezo-electric tube that
can be electronically elongated for fine adjustment of the resonator length. The macor
tube itself is put in a movable stainless steel capsule and the whole capsule is finally
inserted into the precisely matching bore of the large mirror support. The position of the
capsule can be coarsely adjusted axially by three set screws, with three springs acting as
restoring forces. The capsule is partially slit to feed two Capton coated wires through
for a high voltage connection of the piezo-electric tube. The wires were soldered directly
to the piezo tube with Castolin 157 (an allow made out of 50Sn, 47Ag and 82Pb), which
has a low melting point above 250°C and a sufficiently low vapor pressure to achieve
ultra-high vacuum. Soldering flux Castolin 157 used for alloys evaporates during pump
down.
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3.8. Running wave dipole trap

The curved mirror holder shown in figure 3.11b contains the mirror M2 with a diam-
eter of 10mm and and a thickness of 4mm. The mirror is mounted in a custom made
kinetics mirror holder and fixed with a steel ring to distribute forces equally onto the
mirror. The turning joint of the mirror mount is a non-magnetic sapphire ball. The
angle of the mirror can be adjusted by three micrometer screws that push the holder
against extremely stiff springs. The coarse outside thread of the micrometer screws
fits into a counterpart, which is machined from OFHC copper. Locking screws allow
to crush this relatively soft copper thread, which stops a creeping movement of the
micrometer screws. After adjustment, each micrometer screw is fixed by a counter-nut.
The whole mirror mount is clamped to reduce vibrations on the mirror.

3.8 Running wave dipole trap

In the standard preparation procedure of an ultra-cold Fermi gas, the atomic ensemble
is transfered from the resonator dipole trap into a running dipole trap, the transport
trap, which is created by a tightly focused laser beam. This transfer is essential for two
reasons: the first is that the atomic ensemble cannot be cooled to Fermi temperature
inside the resonator trap; the resonator power cannot be reduced to the required low
values since the Pound-Drever-Hall error signal becomes too small for a reliable fre-
quency control. Besides that, the evaporation process seems not to be very efficient in
the standing wave trap. In the running wave dipole trap however, the trap depth can be
precisely tuned over four orders of magnitude and hence the evaporation process is more
easily controlled. The second reason is that atoms need to be transported into the glass
cell to make use of the high resolution imaging. Here, atoms are transported from the
center of the main chamber to the glass cell over distance of 268.8mm by mechanically
moving a lens mounted on an air bearing translation stage [64].

Since atoms are also confined along the beam axis, they will follow the moving focus.
The transport is done smoothly in order not to heat atoms and with a µm-precision in
order to obtain comparable and reliable experimental data in every experimental cycle.

The following is an explanation of how atoms are transferred into the running wave
dipole trap and how they are transported into the glass cell. Then, technical aspects,
which focus on stability requirements and the control of the dipole trap depth, are
discussed.

3.8.1 Transferring atoms into the transport trap

In order to efficiently transfer atoms into the running wave dipole trap, the trap depth
should be on the order of the mean energy of the atoms trapped in the standing wave
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Figure 3.12: The top view of the main chamber and the partially cut glass cell
illustrates the optical transport in the final position. The drawn beam radius of the
transport laser beam, which is focussed by a lens with focal length f = 1000mm and
transmitted throught the CF63 viewport, is approximately four times larger than the
actual radius. Atoms which are initially trapped in the center of the main chamber
(starting position) are transported over a distance of 268.8mm in less than 1s to the
center of the glass cell (final position).

dipole trap, and the overlap region between the two traps should be as large as possible.
So, first atoms are evaporated in the standing wave dipole trap to reduce their tempera-
ture. After some limited evaporative cooling, atoms are still trapped in the wells of the
standing wave dipole potential at 20% of the initial potential depth, before the transfer
into the running wave dipole trap begins. A tightly focused laser beam, which creates
the running wave dipole trap, passes the standing wave dipole trap at an angle of 20°
and overlaps approximately 1000 wells. In their overlap region, atoms are transferred
from the wells of the standing wave potential into the running wave potential, before
the former is switched off. Finally they are trapped only in the dipole potential of the
tightly focused laser beam.

This dipole potential is created by a 10W fiber laser. After passing through an
accusto-optical modulator and transversal mode cleaning with an optical single mode
fibre, a maximum laser power P = 3.5W is available, which forms a dipole potential
that can be expressed with the intensity distribution of a gaussian beam [?, 63, 108]:
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Transport trap parameters

P = 3.5W P=10mW
beam waist ω0 22±1µm
Rayleigh length zR 1.3mm
maximum potential depth Udip,tt,max kB306µK kB355nK
trap frequencies wr / wz 9.9kHz / 112Hz 529Hz / 6Hz?

heating rate 2.93nK/s

Table 3.2: Properties of the transport trap. ?At a low laser power, the axial confine-
ment in the glass cell is determined by the magnetic field curvature of the Feshbach
coil pair: wmagn. = 2π

√
µBB′′

m with B′′ = (0.4145 T/m2A)·IFB and the current IFB
through the Feshbach coil.

Udip,tt(r, z) = −C(ω)I(r, z) = −C(ω)
2P

πω2(z)
e−2r2/ω2(z) (3.15)

The maximal depth of the potential is given by U0 = 2P/πω2
0. The beam radius

ω(z) = ω0

√
1 + ( z

zR
)2, with a measured beam waist ω0 = 22±1µm, a Rayleigh range

zR= 1.3mm.

With the given values, estimates about the trapping potential can be made, which
are listed in table 3.2.

3.8.2 A moveable dipole trap

Atoms which are trapped at the waist of the tightly focused laser beam can be trans-
ported by moving the focussing lens. For our experimental setup we chose a dipole trap,
which is sufficiently deep to avoid spilling of atoms from the trap during the transport:
while the radial confinement of atoms is only relevant in case of vibrations in transverse
direction to the transport axis, the axial confinement along the transport axis is critical,
because atoms should remain at the focus even at a higher acceleration of the trap.

First, we consider an accelerated gaussian trap in axial direction, whose effective
potential can be regarded as a tilted gaussian trap. If the restoring force Fdip,tt(z) of
the transport trap in the axial direction is smaller than the inertial force F = am, where
a is the acceleration and m is the mass, atoms will escape the trap. This relation can
be expressed by

− ∂

∂z
Udip,tt(0, z) = Fdip,tt(z) = C(ω)

2P
πω2

0

2
(1 + ( z

zR
)2)2

z

z2
R

= am. (3.16)
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Atoms, which are located far away from the beam waist (z > zR), will escape from
the trap if

z ≥ 3

√
C(ω)

2P
πω2

0

2z2
R

am
. (3.17)

With the beam configuration given in equation 3.15 and the low mass of 6Li, atoms
can be transported over a distance of 268.8mm in only 1s. Shorter transport times did
not cause a higher loss of atoms, but resulted in vibrations on the experiment table.
We are not power-limited during transport.

In order to minimize atom loss and heating due to vibrations, we employ an air
bearing translation stage and a tightly focussed the laser beam to achieve a strong axial
and radial confinement. The translation stage onto which the lens is mounted has a
maximum travel of 300mm. Brushless linear motors, driven by a linear power supply,
move the stage. The position is measured by Hall sensors and is fed back to a controller,
which can be actuated and triggered by the computer. The stage is accelerated and
decelerated over a distance of 268.8mm in less than a second, according to a smooth
velocity profile that can be programmed. Conventional oil free compressed air flows
into the air bearings at a pressure of 5.8bar after being filtered through a series of fine
filters. The performance of the experimental apparatus does not deteriorate by the air
flow of about 0.14l/s.

Due to the divergence of the gaussian beam and the large transport distance (figure
3.12), the beam radius at the position of the resonator support for the planar mirror and
the entrance port is ω(339.6mm) = 5.5mm and ω(429.2mm) = 6.9mm, respectively. To
limit reflections inside the vacuum chamber, the resonator mirror supports are designed
and placed such that the laser beam is not cut off up to a radius of 4ω. The supports
are positioned 15cm apart from each other and the resonator axis is tilted by 20° to still
achieve a good spatial overlap between the two traps.

Two inch optics including the f = 1000mm lens, mirrors for beam adjustment and a
CF63 (63mm in diameter) fused silica viewport are used in order not to cut into the
beam profile. The viewport is specially manufactured with surface flatness of λ/8 to
minimize wave front distortions of the focused beam, which would limit the minimal
achievable spot size. At the position of the lens, the beam radius ω(1000mm) = 16mm
is 1.6 times smaller than lens radius.

3.8.3 Stability criteria

In every experimental sequence, atoms should be loaded at the same position and trans-
ported to the same final position in order to obtain comparable transfer efficiency and
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hence reproducible experimental data. Especially in the final position, a positioning ac-
curacy below 10µm is required in order to obtain high resolution images of the atomic
ensemble at a depth of field on the same order. This requirement is challenging, since
the beam path of the transport laser, which is mainly given by the focal length of
the moving lens and the transport distance (adding up to a length of 1.3m) allows an
angular deviation of only 4.4·10−4 °.

Using an air bearing translation stage, we achieve angular and position deviations
such that initial and final position of the laser beam is reproducible to within 1µm
in each direction. The position error in axial direction is given by the measurement
error. Transverse to the transport direction, the position accuracy of the dipole trap
focus is determined by the rigidity of the moving table, inhibiting roll, pitch and yaw,
representing the maximum rotation angle around the transport axis, the horizontal and
vertical transverse axis during motion, respectively. Position rigidity is given by flatness
and straightness.

We observed transversal fluctuations of the final position of the atoms with a standard
deviation of approximately ±5µm. Deviations are probably caused by drifts in the
various mirror mounts. To solve this problem, the beam path is actively stabilized
by relaying the final beam position onto a quadrant photodiode. The resulting error
signal, calculated from the measured intensity difference in the vertical or horizontal
transverse direction, is fed back into a PID loop. The output of this control loop acts on
two piezo-electric elements. They tip and tilt a mirror in the beam path such that the
intensity is again equally distributed on the photodiode. After this improvement, the
standard deviation in atom position is less than 1µm. This corresponds to an angular
accuracy of 4.4·10−5° in our setup.

3.8.4 Logarithmic power control for evaporation

After the atoms are transferred into the transport trap and transported to their final
position, the final evaporation step is performed, again by decreasing the depth of the
optical dipole potential [14, 61]. While the initial power for the transfer is 3.5W, it is
lowered to values below 10mW during the evaporation. In order to make a laser power
control work over four orders of magnitude, a logarithmic photo diode is employed to
measure the actual power. The advantage is that even at very low optical powers, the
voltage at the photodiode output is still sizeable. Hence, residual electronic noise (e.g.
pickup in the cables) has less of a detrimental effect. The error signal obtained when
comparing the two logarithmic power levels, the measured and set power values, is a
relative error signal, which is proportional to a relative control signal. Yet in a PID loop,
the control element, which changes the laser power, acts on an absolute control signal.
The crucial step in a logarithmic PID control is to obtain a control signal proportional
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to the absolute error. This is achieved by multiplying the relative error signal with the
set signal using a variable gain amplifier.

Let us now follow the signal path of a logarithmic PID loop step by step: When a
laser beam of the power Pm is measured with a logarithmic photo diode, the output
signal m is proportional to the logarithm of the power, i.e. m ∼ logPm. In the PID-
loop, the measured signal m is compared to the set value s, which is the logarithm of
the desired power Ps, i.e. s ∼ logPs. In general, the difference between two logarithmic
values approximately equals their relative difference r:

s−m = logPs − logPm ' r = (Ps − Pm)/Ps, (3.18)

with r � 1. Since the control signal c at the output of a PID loop should be
proportional to the absolute error Ps−Pm, the relative difference r must be multiplied
by the set value Ps. This set value is only known in logarithmic form s = logPs. Hence,
the control signal c must be obtained from:

c = −GrPs = −Gr exp(s), (3.19)

with a PID gain G. Adjusting the offsets and base of the logarithmic amplifier and
the variable gain amplifier proved to be quite challenging. In our case, the minimum
level in power and therefore the dynamic range in the setup is limited by the dynamic
range of the accusto-optic modulator driver: Even for a zero control signal, some RF-
power reaches the acousto-optic modulator leading maximum extinction of the deflected
power of 0.3mW or 10−4.
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Figure 3.13: Top view of the
main chamber and the partially
cut glass cell with imaging laser
beams to illustrate the imag-
ing setups: fluorescence and
absorption imaging (1,2,3) of
atoms in the main chamber,
and imaging in the glass cell in
x- and y-directions in the glass
cell (4,5).

Besides the high resolution imaging systems em-
ploying the two microscope objectives, we use
several imaging systems [38, 75] along differ-
ent directions to image atomic ensembles in the
main chamber and in the glass cell, not only to
perform experiments, but also to adjust and cal-
ibrate the apparatus. These conventional imag-
ing setups consist of a collimated imaging laser
beam, two lenses and a CCD camera and achieve
a resolution of approximately 5µm. Five con-
ventional imaging setups were built to image the
atoms during various stages of the cooling pro-
cedure (figure 3.13).

The first imaging setup is employed to col-
lect fluorescence light on a photodiode for atom
number calibration in the magneto-optical trap.
To provide complementary information, two
more imaging setups are used to measure the
atom number in the magneto-optical trap, the
resonator trap or the transport trap in the ini-
tial position. Finally, another two setups image
the cloud at the final position of the transport
trap, one in y- and one in x-direction.

3.10 Microscope Objectives

The heart of this experimental apparatus is the high resolution imaging setup, which
allows us to measure density distributions and to shape dipole potentials down to a
length scale of approximately 700nm. Two custom made microscope objectives are
bolted onto actively stabilized mounts and axially aligned above and below a glass cell.
The objective installed above the glass cell is used to shape dipole potentials, the one
below reads out absorption and fluorescence. In order to obtain such a high resolution,
the upper and lower windows of the glass cell are integrated into the optical system and
are considered as two optical elements. The objectives are optimized for these windows
such that the two foci overlap in the center of the glass cell and wave front distortions
are kept below 7% rms, thus creating diffraction limited spots.
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The whole mechanical and optical setup for microscopy needs to be designed in such
a way that the adjustment of the objectives is not only feasible, but also reproducible
and that long term drifts and vibrations on the length scale of the optical resolution
are suppressed during operation. In addition, a rigidly built optical system to prepare
imaging beams of clean transversal beam profile and an EMCCD camera with single
photon sensitivity to detect the photon distribution are installed.

The following is an explanation of the optical setup, the mechanical setup for the two
microscope objectives and their technical specifications.

3.10.1 Optical setup for microscopy

The optical system consists of three main components: the glass cell and the two mi-
croscope objectives. In addition, there are optical components to prepare beams for
imaging and optical trapping.

The optics used to prepare laser beams for imaging and optical trapping, including
the upper microscope objective, are mounted on a 20mm thick Vetronit breadboard,
supported by a 360mm tall aluminium construction that is totally separated from the
magnetic field coil mounts. Single optical elements are aligned in cage systems to limit
relative position deviations. In order to locally probe the gas, the imaging beam radius
is enlarged and collimated by a telescope to a radius r of approximately 13mm, before it
passes through the microscope objective. The clear aperture of the microscope objective
is 20.8mm in diameter. Finally, spot sizes of approximately 700nm are achieved, which
is the minimal length scale on which atoms can be illuminated. This resolution can
only be obtained if the beam radius, collimation, the transversal mode profile as well as
the angle and position of the microscope objectives are optimized. The rather long and
complex alignment procedure will be explained in another work ([109] and references
therein). The trapping beam, which is also radially enlarged and collimated to a radius
of 13mm, is overlapped with the imaging beam. The polarization of the two beams can
be adjusted separately.

For detection, optics including the lower microscope objective are mounted directly
on the optical table. If atoms are imaged, the far off-resonant light to create dipole
potentials is filtered out, while resonant imaging light is transmitted and magnified by
a custom made telephoto objective and detected on a camera. If trapping potentials
are imaged, the filter is taken out and resonant light is blocked.

With the configuration of two axially aligned microscope objectives, created optical
potentials can be imaged, fitted and quantified experimentally. Moreover, there is a
high flexibility for creating arbitrary potentials since none of the optical access of the
upper microscope is taken up for detection.
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3.10.2 Stable mounting
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Figure 3.14: Mountings of the two micro-
scope objectives above and below the glass
cell. The optics breadboard is positioned
360mm above the experiment table.

Experiments with fermionic lithium
rely on relatively large and quickly
changing magnetic fields that cause
vibration, eddy currents and also
thermal drifts due to ohmic heat-
ing of the magnetic field coils. At
the same time, high resolution imag-
ing requires a very stable mount-
ing for the microscope objectives,
with a stability on the same or-
der as the optical resolution. The
two microscope objectives are sep-
arately mounted to allow separate
adjustment and relative positioning.
They are totally disconnected from
the magnetic field coil holder (figure
3.14). The objective mount above
the glass cell is attached to the fibre
glass bread-board supported by the
aluminium construction, the one be-
low is attached directly to the optics
table.

The objective mounts include
components for coarse and fine ad-
justment, which is realized in the
following way: For coarse adjust-
ment, both mounts consist of macor
tubes with a fine thread to move the
objectives in the vertical direction
and a mechanical translation stage
for movement in both horizontal di-
rections, x and y. For fine adjust-
ment and relative position adjust-
ment, a three-axes translation stage driven by a piezo actuator is used with a posi-
tioning precision of 10nm (7.2µm/V with the computer controlled set voltage). It is the
only component of the mount that includes some magnetic parts. The angle between
the microscope objectives and the glass cell can be set with a goniometer. Before two
objectives were actually installed, the installation procedure had been practiced in a
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test setup and technical specification were tested. Then the microscope objective was
adjusted above and below the glass cell, following the adjustment scheme described
above.

In order to image density distributions with a known resolution and maintain diffrac-
tion limited spot sizes needed for a controlled creation of dipole potentials, the mounting
tolerances of the objectives must not be exceeded at any time. The only movement of
the two microscope objective relative to each other that we observed was caused by
temperature changes of the Feshbach coils and fast magnetic field ramps. While the
relative movement caused by the temperature change appears within one hour after
changing the magnetic field ramps in the experimental sequence, that caused by the
fast ramps originates from the slightly magnetic three axes translation stages and hap-
pens during every magnetic field ramp. In order to keep the position of the microscope
objectives stable, an active stabilization was implemented. The relative change in po-
sition between the microscope objective and their three axis translation stage during
magnetic field ramps is measured by a strain gauge. Via a FPGA-based PID loop, the
error in position is fed back to the piezo translation stage to automatically readjust the
position.

3.10.3 Technical specifications of the objectives

The two microscope objectives employed are identical, custom designed, aligned and
characterized by the manufacturer. They consist of 7 anti-reflection-coated lenses and
are corrected for three wave lengths, 532nm, 671nm and 760nm. The effective focal
length is 18mm and the working distance from the glass cell is 1.2mm. The field of view
is 100 x 100 µm2. Light transmitted through the lower microscope objective passes a
custom made telephoto objective consisting of three lenses, before it is detected on an
EMCCD camera. The numerical aperture of the whole optical system is 0.53 and the
magnification is 54.

With both microscope objectives aligned along their common optical axis, a focal
spot created by the first objective can be imaged by the second. Such a spot is shown
in figure 3.15a. This allows us to characterize the created potential quantitatively: by
fitting a Gauss function to the imaged photon distribution, in this case of light with a
wavelength of 767nm, a spot size with a 1/e2 waist of ωx = 734nm and ωx = 726nm
is experimentally obtained at a relative axial objective position z = 0. The position
between the two objectives is tuned by the three axes piezo-driven translation stage to
measure the Rayleigh length and astigmatism of the focussed beam (figure 3.15), which
is approximately 2µm.

In our case, to still obtain a diffraction-limited spot, the maximally allowed angular
deviation of the objective axis to the perpendicular of the glass cell surface is 0.1°. The
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Figure 3.15: a. Image of a created focal spot (767nm) with an intensity distribution
at the relative axial microscope position z = 0. b. Spot sizes, given by the fitted
gaussian 1/e2 waist are plotted versus the relative axial microscope position z. There
is an astigmatism of approximately 2µm.

relative axial position shift for imaging a created focal spot is below the Rayleigh length
of approximately 2µm.

3.10.4 Detecting the photon distribution

For detecting the photon distribution either of created dipole potentials or fluorescence
and absorption, a back illuminated CCD camera with an electron multiplier is used.
This camera has single photon sensitivity, with maximally 53 counts per photon. The
detector area is 512 x 512 pixels, each with size of 16 x 16µm2. Including the magnifi-
cation of the imaging system, which is 54, the effective pixel size is only 300 x 300nm2,
which is approximately half of the imaging resolution. The effective pixel size is only a
relevant measure with respect to the optical resolution and the photon scattering cross
section: With such a small effective pixel size, created spots as well as fluorescence and
absorption signals can be well fitted. On the other hand, the atomic signal of scattered
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photons is distributed over an area of the scattering cross section, which corresponds to
approximately four pixels.

In order to suppress resonant stray light, different filtering techniques are applied.
First, the microscope objective itself acts as a spatial filter, since it only collects pho-
tons of a limited solid angle. Far off resonant light at 767nm needed to create micro
traps, which propagates in line with the resonant imaging light, is filtered out with an
interference filter to an undetectably low photon signal. At the same time, transmission
of resonant light is above 90%. Stray light close to 671nm, which is scattered onto the
objective, is suppressed by covering the whole imaging system with black fabric.

3.10.5 Measuring dipole potentials with microscope objectives in line

One important advantage of a configuration with two microscope objectives, installed
along the same optical axis, is that the intensity distribution of the trapping light created
in and out of the focal plane can be measured. This allows us to determine the trapping
potential of so-called micro traps into which atoms are then loaded. One example is
given here.

In order to measure the non-saturated intensity distribution on a EMCCD camera,
the trapping light is attenuated by a factor of about 10−3 to a few 10−9W. The power of
the original trapping beam is controlled by a logarithmic power control, which was also
set up for the laser creating these micro potentials. Taking the transversal (figure 3.15a)
and longitudinal (figure 3.15b) intensity distribution of the trapping light with a spot
size of approximately 700nm, a Rayleigh length of 2.1µm and a beam power of 1µW,
a dipole potential for 6Li atoms is obtained with a potential depth U0 = 200nK, and
radial and axial trapping frequencies νr = 7.60kHz and νx = 4.76kHz. If we assume that
the potential is a truncated harmonic trap, the approximate number of energy levels
which could be populated at zero temperature is N = 276.

3.11 Magnetic field coils

For magneto-optical trapping, evaporative cooling, as well as for imaging atoms, several
magnetic field coils are used. An overview is given in figure 3.16. All magnetic field
coils are centered around the main chamber or the glass cell. They are mounted on
a coil holder that is totally disconnected from the vacuum chamber and the optics to
minimize vibrations during coil turn off. Depending on the operating current density,
some coils are water-cooled. As a rule of thumb, wires of a coil are water-cooled from
the outside if the current density exceeds 5A/mm2, while wires with a current density
exceeding 10A/mm2 are water-cooled from the inside by using hollow wires. One power
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Figure 3.16: Overview of the magnetic field coils around the main chamber and the
glass cell. Main coils are operated at currents above 10A to produce high magnitude
magnetic fields. Auxiliary coils are operated up to 2A. Details of the magnetic field
coils around the glass cell are shown in figure 3.17.

supply drives all coils that are operated at currents above 10A. Controlled magnetic
field ramps are driven by a switch board with integrated PID loops for each coil. There
are several auxiliary coils that are operated with separate commercially available power
supplies.

The following present details about the different coil designs and the power supply.
This subsection is summarized in table 3.3 on page 74, including the relevant data of
the main coils implemented in the experiment.

3.11.1 Magnetic field coils for the magneto-optical trap

As explained in section 3.6.1, a magneto-optical trap makes use of a combination of laser
light and a magnetic quadrupole field. To generate a quadrupole field, two magnetic
field coils (MOT coils) in anti-Helmholtz configuration are placed around the main
chamber. The direction and the shape of the quadrupole field is smoothly matched to
the Zeeman slower field to optimize the loading efficiency (figure 3.5 on page 42). With
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the large dimension of the main chamber (CF200 flanges with a diameter of 254mm) and
the chosen MOT coil configuration, magnetic field gradients of 0.449 G

cm/A are realized.
In our case, the ideal field gradients to trap lithium are 6.75G/cm in the x- and y-
directions and -13.5G/cm in the z-direction (parallel to the axis of the two coils). At a
corresponding operating current of 30A, current densities are 6A/mm2. A coil holder
with integrated water cooling is used to keep the wires from overheating.

The MOT coils are made out of 1 x 5 mm2 high temperature doubly enamelled copper
wire that is wound around a double-walled aluminium ring of a diameter of 288mm. The
outer ring has three cooling ribs. The two coils between the cooling ribs, each containing
45 windings, are connected in series to form one MOT coil. Water is circulated around
the coil axis in the double-walled aluminium ring to cool the 16 layers of wire. The coil
could also permanently withstand higher current densities of up to 10A/mm2.

The trapped atoms are centered around the zero point of the magnetic field. With
so-called offset coils, the zero-point of the magnetic field, and hence the trap center,
can be shifted in all directions to later overlap the magneto-optical trap with resonator
dipole trap. Three such offset coils to move the trap center in the x- and y-directions
are shown in figure 3.16. Two offset coils are wound around the Feshbach coils (FB1

coil) to create a magnetic offset field in the z-direction. Currents up to 2A are supplied
by commercially available power supplies that can be externally controlled.

3.11.2 Feshbach coils for the standing wave dipole trap

Evaporative cooling only works if the remaining atoms rethermalize in the dipole trap via
elastic scattering. The scattering length is tuned with the magnetic field by accessing a
Feshbach resonance to accelerate the thermalization process and efficiently cool atoms.
In our experiment, we make use of the 6Li Feshbach resonance located at 834G. In
order to create such magnetic fields with reasonable currents, two so-called Feshbach
coils (FB1) are placed as close as possible to the resonator dipole trap, in custom made
recesses in the CF200 flanges outside of the vacuum chamber. The distance between
the two coils of 57mm is set by the diameter of the laser beams for the magneto-
optical trap and transport trap. Again, the coils are mounted totally independently
from the main chamber. For the given coil configuration, a magnetic field of 3.5G/A
is generated, which corresponds to a current of 238A at the magnetic field of 834G
and a current density of approximately 15A/mm2. Each coil consists of 99 windings
and 4 layers of 4 x 4 mm2 hollow copper wires with an inner diameter of 2.5mm. In a
standard experimental cycle, efficient evaporative cooling of atoms is also achieved at
300G, where the scattering length reaches a local maximum of |a| = 300a0. The coil
pair is therefore usually operated at only 92A.
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3.11.3 Magnetic field coils around the glass cell

Feshbach coil (FB2)Helmholtz coil (HH)

120mm

jump coil levitation coilclover leaf coils

Figure 3.17: Exploded view of the
upper set of coils around the glass
cell. The two main coils are the Fes-
hbach coil (FB2) and the Helmholtz
coil (HH). Auxiliary coils are the
jump coil for fast switching, and the
levitation and cloverleaf coils to add
gradients.

In order to probe atomic ensembles in dif-
ferent states and therefore at different scat-
tering lengths, magnetic fields need to be
ramped to values of up 1000G within mil-
liseconds in each experimental cycle. The
two main coil pairs around the glass cell
that create these magnetic field magnitudes
are the Feshbach coils (FB2 coils) and the
so-called Helmholtz coils (HH coils). The
Feshbach coil pair (FB2) is separated by
68mm. Each coil has a T-shaped cross sec-
tion with 8 and 18 layers of 4x4mm2 hollow
copper wire and consists of 146 windings.
In the given configuration a magnetic field
of 8.629G/A is generated at the center of
the glass cell. The hollow wires are cooled
from the inside. This allows us to produce
magnetic fields up to 2588G at a current of
300A, which is limited by the power supply.
The Helmholtz coil pair (HH) is installed to
generate magnetic fields of 5.42G/A with
very low curvature at the center of the glass
cell. The wires of the Helmholtz coils are
wound onto the Feshbach coil (an exploded
view of the two coils is shown in figure
3.17).

Apart from coils to generate high magnitude magnetic fields, coils for fast switching
and for field gradients are also required. There are different closely spaced coils set up
around the glass cell to be operated with reasonably high currents without wasting the
newly gained optical access: with a so-called jump coil pair, the magnetic field could
be ramped much faster over a small range than the main coil due to its small induc-
tance. Magnetic field gradients can be added with two levitation coils to compensate
for gravitation, and eight clover leaf coils can create a gradient ∂

∂rBz(r, z = 0) in the
focal plane of the glass cell with a distance r from the microscope axis.

All coils have been tested, but so far only the Feshbach coil and the levitation coil
have been in use. The current coil setup still leaves many possibilities.

73



Chapter 3. Design of the experimental apparatus

3.11.4 Data of magnetic field coils

The previous sections are summarized by table 3.3, along with the data of the main
magnetic field coils of this experimental apparatus:

Magnetic field coil parameters

Coil B/I B′z/I B′′/I R L wire windings water flow
[G/A] [ G

cm/A] [ G
cm2 /A] [Ω] [H] mm2 l/min

MOT 5.2 0.449 0.34 5 x 1 2 x 45 limited, 2.4
FB1 3.5 0.0292 76·10−6 4 x 4 99 0.53 at 6bar
FB2 8.629 0.4145 0.084 980·10−6 4 x 4 146 0.32 at 6bar
HH 5.42 ∼ 0 0.053 314·10−6 4 x 4 55 0.48 at 6bar

Table 3.3: Magnetic field and coil parameters of the magneto-optical trap coil
(MOT), the Feshbach coils at the main chamber (FB1) and the glass cell (FB2), and
the Helmholtz coils (HH). The relative magnitude B/I, the gradient B′z/I and the
curvature B′′/I of the magnetic field are given for coil pairs in the actual configura-
tion. The z-axis is the coil axis. The given values for the resistance R, the inductance
L, winding numbers and water flow are with respect to a single coil.

3.11.5 Power supply

One versatile power supply operates the main magnetic field coils. Here an externally
controlled switch mode power supply delivers currents up to 300A and voltages up to
80V with a maximal power limit of 9kW. Its internal current control time is approx-
imately 50ms, which is rather slow for our experimental purposes. We increase this
control time by implementing a switch box with an additional, much faster current
control (approximately 1kHz). When turning a coil on, the power supply is first turned
to a current set value, before the current is ramped to the set value by the switch box.
This switch box consists of insulated gate bipolar transistors (IGBT), one for each coil
pair. Although IGBTs are only made for fast switching, we managed to use them as
tunable resistors for current control. Following is a description of the power supply used
and of the basic idea of the IGBT driver.

Current control

In this experimental setup, the current source consists of three main components: the
power supply, the IGBTs and a PID loops, which are schematically illustrated for one
coil pair in figure 3.18. When the current through a coil pair is ramped up, the power
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Figure 3.18: Schematic of the current control: the large current flowing through
the coil is illustrated with a thick blue line. Analog signals of the PID loop and the
external input of the power supply are blue, digital signal are brown. The control
element is the IGBT whose resistance Rigbt is set such that Ups = RigbtIset.

supply first is turned to a voltage value Ups and a current value Ips, while the IGBT is
still closed. In order to obtain an actual controlled current Iactual, the resistance Rigbt
of the corresponding IGBT is set via a PID loop such that the actual current is equal
to the set current with Iactual = Iset < Ips. To be able to control the current, Ips has
be to larger than the set value Iset and the power supply always has to be operated in
the voltage limit with Ups = RigbtIset. The control signal is determined by measuring
the actual current value running through the coil with an external current sensor and
comparing it to the set value.

If the voltage Ups were too high, the IGBT would increase its resistance to keep the
current at the set value and a large power dissipation would eventually destroy the
IGBT. The IGBT is designed only for fast switching. Although the maximally allowed
power dissipation is about 4.5kW, it cannot continuously dissipate such a power, even if
the temperature of the device is kept constant. We found that as long as only a power
of approximately 3kW is dissipated during a time of about 50ms, the IGBT will not
be destroyed, even if being used for linear current control. Therefore, we implement an
energy dissipation interlock, that integrates the dissipated power over time and closes
the IGBT before it is destroyed. The dissipated energy is obtained by electronically
multiplying the measured current and the voltage drop across the IGBT. In addition to
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Figure 3.19: Schematic of an IGBT driver: The analog control signal Icontrol is
switched to zero, if either the computer-, time- or power trigger is zero. The power
trigger is zero, if the scaled dissipated energy Escaled in the IGBT exceeds 3kW·50ms.

that power interlock, the maximal operation time of each coil pair is limited by a time
logic to reduce the risk of overheating the coils. Induction voltages across the IGBT
larger than 80V, which occur during coil turn off, are limited by varistors.

IGBT driver

Usually, IGBTs are only used for switching currents. According to data sheets, control
voltages in the range between 0V to approximately 14V, i.e. a fully closed and fully
open switch, must be avoided. With a newly designed driver working in the intermediate
voltage regime, we managed to operate the power supply with the integrated current
control. Its final version is schematically shown in figure 3.19.

The main component of the IGBT driver is a high-power amplifier to control the gate
voltage of the IGBT. Due to the large capacity at the gate (G), fast current control is
only feasible with an amplifier that can deliver currents up to 5A at the gate. Three
logic channels, integrated in the driver, can turn the control signal Icontrol to zero in
order to close the IGBT. Two triggers set by the computer that controls the experiment,

76



3.12. Laser system

are connected to the IGBT driver. The first trigger is directly connected to the logic
of the driver. The second is first fed through an external time logic that limits the
maximal turn on time of each coil pair, before it is connected to the driver. The third is
a Schmitt-Trigger whose output is zero if the time integrated scaled power Pscaled, i.e.
the dissipated energy Escaled, is larger than a certain threshold value. The power P is
given by the product of the voltage V = RigbtIactual between collector (C) and emitter
(E) and the measured current signal A = Iactual.
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Figure 3.20: Level structure of 6Li [101,
110]: The hyperfine spin states given by F,
with F≤ |J ± I|, where J is the electronic and
orbital spin and I = 1 is the nuclear spin.

In order to adjust the power in-
terlock, it is important to realize
that the Schmitt-Trigger level as
well as the time integrated power
level needs to be adjusted such
that the dissipated energy cannot
exceed 3kW·50ms. Since current
sensors with different voltage-to-
current ratios are used, the scal-
ing factors between the actual dis-
sipated power and the Schmitt-
Trigger voltage level are also differ-
ent for every coil pair.

3.12 Laser system

The first part of the cooling proce-
dure, including Zeeman slowing and
magneto-optical trapping as well
as imaging of 6Li atoms, makes
use of resonant photon scattering.
The cycling transitions 22S1/2 →
22P3/2 of 6Li are driven by red laser
light with a wave length of λ =
670.997nm. The level structure of
6Li is illustrated in the diagram (fig-
ure 3.20). Since there are two hy-
perfine ground states (F= 1/2 and
F= 3/2) and three closely spaced excited states, which are considered as one combined
excited state, 6Li is treated as an actual three-level atom with two transition frequencies
ν1 and ν2 separated by 228.2MHz.
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In order to maintain constant photon scattering rates, which set the corresponding
light forces as well as the ratio of absorbed photons (relevant for absorption imaging),
the frequency of the exciting laser are stabilized to a line width of about 1MHz, which is
smaller than the natural, 6MHz line width of the excited state of 6Li. This corresponds
to a relative frequency accuracy of 10−9.

Laser light with different frequencies close to ν1 and ν2, and linewidth of 1MHz are
produced by grating stabilized diode lasers [111] and tapered amplifiers. One laser
source serves as a frequency reference. Its frequency is stabilized to a spectral feature
of lithium gained from a lock-in technique called frequency modulation spectroscopy
[112]. The frequency of all the other laser sources are stabilized to that reference by an
offset frequency lock-in technique [113].

The following is an explanation of the two lock-in techniques used here and of how
laser frequencies and powers are set. The technical realization of the laser setup, includ-
ing the characteristics of lasers sources and the 6Li vapour cell are described in detail
in another work [114].

3.12.1 Lock-in technique for the reference laser

For stabilizing the laser frequencies to a reference frequency, first an error signal that
can be used as a frequency standard needs to be created. Here, the error signal is gained
from frequency modulation spectroscopy, which combines spectroscopy and a frequency
lock-in technique [112]. Frequency fluctuations are then fed back to the frequency
control element of the diode laser, which is a piezo actuator that tunes the length of an
external laser cavity [111] and hence the frequency.

In order to obtain an error signal serving as a frequency standard, a phase modulated
laser beam with a carrier frequency and two sidebands ν± νm passes through a lithium
vapour cell to probe the spectral features of lithium. The generated sidebands at ν±νm
experience different phase shifts ϕ(ν ± νm) if the laser frequency νm is tuned over a a
resonance feature. The same lock-in technique as the Pound-Drever-Hall technique
(section 3.7.4) is now used: the beat signal at frequency ±νm occurring between the
carrier and the two sideband is detected by a photo diode. This beat signal is then
demodulated with the local oscillator frequency νm to obtain a dispersion-like DC error
signal (a linear function in frequency that vanishes at resonance), while the frequency
component at 2νm is filtered out. The resulting control signal of the PID loop, which
is proportional to the error signal, adjusts the external cavity length and hence the
laser frequency. Here, the dispersion feature used for frequency stabilisation is called
crossover, which is a peculiarity of the so-called Doppler-free saturation spectroscopy.
The crossover frequency νco is approximately the mean of the two transition frequencies
ν1 and ν2 (see figure 3.20), which is νco = ν1−114.1MHz = ν2+114.1MHz.
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3.12.2 Offset lock-in technique

If a laser frequency is stabilized to the reference laser with fixed offset frequency, the
offset lock-in technique is used [113]. Its error signal is generated in the following
way: the beat frequency ∆ν between the reference laser and the offset laser frequency
is detected on a photodiode and mixed with a certain set frequency ∆νset. While
the frequency component ∆ν + ∆νs is attenuated by a low-pass filter, the mixed signal
∆νmix = ∆ν−∆νset is split into two branches. The lock-in technique is now applied: one
part of the signal is transmitted through a radio-frequency cable serving as a frequency
dependent delay line to accumulate an extra phase before it is mixed again with the
original signal, which serves as a local oscillator. After passing a low-pass filter, we
obtain a frequency dependent DC error signal, which is proportional to cos(ϕ(∆ν)),
where ϕ(∆ν) is the phase lag experiences in the delay line. As described in the previous
section, the resulting error signal is used to adjust the external cavity length of the
diode laser [111], which in turn sets the laser frequency.

3.12.3 Laser setup

For Zeeman slowing, magneto-optical trapping as well as for imaging, frequency stabi-
lized laser sources are set up, each with a specific laser frequency and power. There
is one laser source providing light that serves as a frequency reference. The frequency
of this reference laser light is stabilized via frequency modulation spectroscopy to the
crossover frequency of 6Li. Frequencies of the light produced by other lasers are stabi-
lized via offset locks. The laser power is obtained with different types of diode lasers.
The diode laser setups with an external cavity provide light with power up to 25mW,
while tapered amplifier diode lasers can amplify input laser powers between 12mW to
18mW up to 500mW. For technical reasons, the light of the diode lasers is coupled into
single mode optical fibres, where the transversal mode is cleaned. About 50% of the
laser output power is transmitted through the fibre.

The following is an explanation of how components are arranged in order to obtain
all the required frequencies and powers. The laser setup is summarized in figure 3.21.
This section is intended for practical use.

Reference diode laser

The frequency standard to which the reference laser is stabilized, is the crossover
frequency νco, which lies approximately in between the transitions ν1 and ν2, with
νco = ν1 − 114MHz = ν2 + 114MHz. The laser source that sets the frequency reference
is a diode laser with a power of about 20mW. Its frequency is first shifted 200MHz to
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Figure 3.21: The laser setup producing resonant light for Zeeman slowing, magneto-
optical trapping and imaging, consists of three diode lasers and two tapered amplifiers.
Laser frequencies and powers are indicated at the output of the optical fibres. The
frequency standard is the crossover frequency νco, obtained from frequency modulation
spectroscopy. Seed and imaging laser frequencies are offset-locked to the reference laser
frequency νref .

the red by an accusto-optical modulator of frequency νaom1 , before it is stabilized to
the crossover. This results in a frequency reference νref = νco − νaom1 = ν2 − 86MHz.

Tapered amplifier for Zeeman slowing

As explained in section 3.3.1, the atomic beam is decelerated by the Zeeman slower
laser beam, whose power is such that the scattering rate is higher than Γ

4 everywhere
along the atomic beam axis. This corresponds to a minimum power of 20mW. Here,
the Zeeman slower is operated at a power of 66mW. In order to obtain a final velocity
of 60m/s, the laser frequency νzs needs to be 86MHz below the transition frequency ν2.
A tapered amplifier is seeded by the reference laser, whose frequency νref is equal to
νzs = ν2 − 86MHz.

80



3.12. Laser system

Seed laser and tapered amplifier for magneto-optical trapping

As explained in section 3.6.1 and shown in figure 3.20, fermionic lithium can be regarded
as an actual-three level system. Two laser frequencies ν1 and ν2, which are detuned to
the red by ∆min = 3MHz to ∆max = 39MHz, are needed to keep lithium atoms in
a cycling transition for magneto-optical trapping. The detuning ∆ depends on the
required size of the atomic cloud. The resulting frequencies are νmot1,2 = ν1,2−∆. The
power in each frequency component and each beam is equal, adding up to 180mW.

In order to obtain laser light with such frequencies and power, the frequency of a
diode laser is first offset-locked to the reference frequency with a frequency difference
νol1 , before a tapered amplifier is seeded. Afterwards, the amplified laser beam is split
into two branches. By means of an acousto-optical modulator, the frequency of one is
shifted by νaom2 = −114MHz to red, that of the other by νaom3 = +114MHz to the blue,
to finally obtain the needed laser frequencies νmot1,2 = ν1,2 −∆ = νref + νol1 + νaom2,3 ,
with 162MHz < νol1 < 197MHz. For the cooling procedure in the case of lithium to
finally obtain an ultra-cold gas it is crucial to be able to tune the relative power between
the two frequency components and their exact turn off times at the end of the magneto-
optical trapping phase (section 4). Therefore, the two accusto-optical modulators have
been built into the laser system.

Diode laser for imaging

In order to resonantly illuminate an atomic ensemble at zero magnetic field for measuring
absorption or fluorescence (henceforth simply called imaging), either the transition ν1

or ν2 is driven. Imaging is done by switching the illumination light on and off within 4µs
to 20µs with an acousto-optical modulator (aom4). This AOM shifts the laser frequency
by 80MHz to the red. The imaging laser frequency is offset-locked to the reference with
an offset lock frequency νol2 . For low field imaging of atoms, the frequencies ν1,2 =
νref + νol2 − 80MHz are obtained by choosing an offset lock frequency νol2 = 234MHz
and 6MHz, respectively. Since atoms are transferred into the 22S1/2, F =1/2 state at
the end of the magneto-optical trapping phase, only the offset frequency νol2 = 234MHz
is relevant for low field imaging.

In the case of imaging atoms at non zero magnetic fields, the magnetic field depen-
dence of the energy levels needs to be taken into account. The energy levels split into
Zeeman sublevels, which are shown in figure 3.22. By illuminating atoms populating
one of the ground states |1〉, |2〉 and |3〉 with circularly polarized σ+ light, transitions
|1〉 → |1′〉, |2〉 → |2′〉 and |3〉 → |3′〉 are driven.

Due to the different slopes in the energy shift between ground and excited state, the
corresponding offset lock frequencies νol2 depend on the magnetic field. In order to drive
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Figure 3.22: Zeeman splitting of ground and excited state levels [101, 110]. Imaging
transitions of atoms in the ground state are |a〉 → |a′〉, with a = 1, 2, 3. Only the
transitions |3〉 → |3′〉 and |6〉 → |6′〉 are closed transitions. The latter is driven during
Zeeman slowing of atoms.

the above described cycling transitions, νol2 needs to be tuned to

ν|1,2〉→|1′,2′〉(B) = 234MHz + ∆νgs(B)−∆νes(B) < ν1 (3.20)

and

ν|3〉→|3′〉(B) = 6MHz + ∆νgs(B)−∆νes(B) < ν2, (3.21)

respectively. Atoms are imaged at externally applied magnetic fields, which vary from
0 to 900G, which corresponds to a frequency shift up to approximately -1.26GHz. This
range is covered by the offset lock ol2.
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4 Performance of the apparatus

Being able to control the smooth interplay of the many newly developed components
of this experimental apparatus to prepare and image degenerate fermionic ensembles
determines its performance. Each component was tested and the time sequence of the
preparation procedure was optimized. This is of particular importance, because after
every measurement, which destroys the initial state of the atoms, a new experimental
sequence starts. The experimental apparatus must not only prepare and image a new
atomic ensemble in exactly the same manner, but also in the shortest possible time in
order to obtain reliable data.

The following is a description of an optimized experimental standard sequence. A
programmed time sequence controls laser light and magnetic fields, and also triggers
externally controlled devices via analog and digital channels to cool, transport and
image an atomic ensembles. At the end of each sequence, pictures of illuminated atoms
are made, from which information about physical quantities is gained.

Prime examples of degenerate Fermi gases, such as non-interacting Fermi gases and
molecular Bose-Einstein condensates, are presented and their density distribution, from
which the temperature is extracted, are shown.

4.1 Experimental preparation of an ultra-cold Fermi gas of
Li6

A standard experimental sequence lasts about 15s with an additional delay of 2s for
data processing and analysis. Each cycle starts with the magneto-optical trapping phase
[14, 59, 60], during which atoms are cooled from 670°K to about 140µK, which is the
Doppler limit.

Atoms which are evaporated from the oven, collimated to a beam and Zeeman slowed,
are magneto-optically trapped at a maximum velocity of 60m/s. With laser light at sat-
uration intensity and a frequency detuning ∆ = −6.5Γ below resonance, approximately
1010 atoms are trapped after a loading time of 4s (figure 4.1). This atom number is
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mainly set by the loading rate, i.e. the effective flux of the atomic beam, and the loss
rate, which is governed only by the collisional loss rate of lithium atoms inside the
magneto-optical trap.

2mm

Figure 4.1: Fluorescence
image of 1010 magneto-
optically trapped atoms,
detected at a laser frequency
detuning of ∆ = −3Γ.

The loss rate caused by scattering with atoms
of the background gas can be neglected to-
tally, because the life time of the magneto-
optically trapped atomic ensemble is approxi-
mately 15minutes. At the end of the trapping
phase, the laser beam and the magnetic field coils
of the Zeeman slower are turned off.

The second part of the experimental cycle is the
evaporation phase [61, 14], during which atoms
are cooled from about 140µK to about 200nK,
which is below Fermi temperature in our case.
While sub-Doppler cooling is very efficient for
other alkali atoms, it is not applicable in the case
of lithium [105].

A relatively hot atomic ensemble is transferred
into the resonator dipole trap [58, 62], where resonant photon scattering is largely
suppressed and much lower temperatures can be achieved. First, magneto-optically
trapped atoms are shifted in position and compressed to achieve good spatial overlap
with the resonator dipole trap.

2mm

Figure 4.2: Absorption im-
age of 3.5·107 atoms after 3ms
expansion from the resonator
dipole trap.

The position of the atomic ensemble is set by
moving the zero point of the magnetic gradient
field with the three offset coils pairs that are set
up in each direction. In order to compress the
atomic cloud, the frequencies of the magneto-
optical trapping light is tuned to νmot1,2 = ν1,2 −
∆, with ∆ = −1Γ. The atomic ensemble has
now a diameter of only about 1mm. Due to en-
hanced resonant photon scattering, inelastic loss
rates increase and the lifetime of the atomic en-
semble is significantly shortened to a millisecond
timescale. Before the magneto-optical trap is
turned off, atoms populating the 22S1/2, F =3/2
state are transferred to the 22S1/2, F = 1/2 hy-
perfine ground state to reduce inelastic collisions
[62] occurring between the Zeeman substates |1〉
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4.1. Experimental preparation of an ultra-cold Fermi gas of Li6

and |2〉, and higher lying states, in further cooling steps at higher magnetic fields.

2mm

Figure 4.3: Absorption im-
age of atoms along the trans-
port axis: Atoms transferred
to the transport trap are vis-
ible on a few bright pixels in
the center of the image, while
the other atoms are freely ex-
panding from the resonator
dipole trap.

This transfer is done by reducing the power
of the repumper light (with frequency νmot1 =
ν1 − ∆) that drives the transition 22S1/2, F =
1/2 → 22P3/2, F = 3/2 during 8ms, such that
only the state F = 1/2 is populated, which is a
so-called dark state and does not couple to the
light field. Finally, the two energetically low-
est Zeeman substates |1〉 and |2〉 will be occu-
pied, whose scattering length a can be precisely
tuned. After the laser light and magnetic field
gradients for magneto-optical trapping are turned
off, about 0.5% or 5·107 atoms remain in the res-
onator dipole trap, which was already turned on
during the magneto-optical trapping phase (fig-
ure 4.2). According to the intensity inside the res-
onator, the atomic ensemble inside the resonator
trap has a maximal temperature of about 46µK.
The evaporation process is started by turning the
Feshbach (FB1) coils on. At currents of 92A and
a corresponding magnetic field of 322G, the scat-
tering length between the two spin states |1〉 and |2〉 is approximately -300a0,which is
large enough for efficient evaporative cooling in our case.

2mm

Figure 4.4: Absorption im-
age of approximately 1.4·106

atoms after 2ms of free expan-
sion from the transport trap.

Within 2.7s, the light power inside the res-
onator is exponentially decreased to 20% of the
initial power. About 2 · 107 of the atoms initially
loaded remain. Before the first part of the evapo-
ration phase in the optical resonator started, the
transport dipole trap was turned on. In the over-
lap region between the two traps, about 1.5 · 106

atoms are transferred into the transport trap (fig-
ure 4.3 and 4.4) at an initial laser power of 3.5W,
which corresponds to a potential depth of approx-
imately kB300µK. Since the atoms are confined
in the radial as well as in the axial direction of
the focused laser beam, they can be moved to the
glass cell by simply translating the focussing lens
[64]. The laser light coupled into the resonator,
and the current through the Feshbach coils need
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to be turned off first. Both, the standing wave potential of the resonator as well as the
magnetic potential would inhibit an atomic motion in the transport direction.

Before transport, the laser power is decreased from 3.5W to 2W to reduce the resonant
scattering which would heat the atomic ensemble. Finally, atoms are moved to the glass
cell. In the final position, transversal position deviations are automatically readjusted
to the position of the magnetic field maximum of the Feshbach coil pair (FB2) around
the glass cell center. In order to start the final evaporation, the current in the Feshbach
coil pair at the glass cell is raised to 35A, which corresponds to 302G and a scattering
length of approximately 300a0. Within a total evaporation time of 3.1s, the power of the
transport laser beam is reduced to values of around 10mW. At the corresponding trap
depth, the atomic ensemble reaches degeneracy: 3 · 105 lithium atoms at a temperature
of 200nK and 0.16T/TF reveal the fermionic statistics. Depending on the magnetic
field, either a non-interacting Fermi gas or a strongly-interacting Fermi gas, which is
superfluid at these temperatures, is formed.

4.2 Characterization of the preparation procedure

In order to obtain reliable data after each experimental cycle and to efficiently operate
this experimental apparatus, a significant part of the work for this thesis was to optimize
the various preparation and measurement techniques, finally resulting in the standard
experimental cycle explained in the previous section.

A few key points of the optimization procedure are presented in the following section.
The data shown reflect the optimization procedure applied here, which basically involves
two tasks: First experimental parameters of the apparatus which are critical with respect
to the atom number and the temperature have been identified. The accuracy of these
parameters needs to be such that fluctuations in atom number and temperature are
minimized. In a second step, the whole optimization mainly focuses on achieving a
small final absolute temperature T , a high atom number N and for practical reasons, a
short experimental cycle time t. Although we are able to detect small atom numbers,
a large initial number of atoms in the transport trap is required to obtain a degenerate
Fermi gas after evaporation.

4.2.1 Loading the Magneto-optical trap

Approximately 1010 atoms are magneto-optically trapped at a phase space density ρ
of approximately 10−6 [115]. After this initial trapping and cooling phase, atoms are
transferred to two different types of dipole traps and are evaporatively cooled, resulting
in a major particle loss. In order to reach degeneracy (ρ = 1) with a final atom number
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of approximately 3 · 105, a large initial atom number in the magneto-optical trap is
crucial.

In order to efficiently trap a large number of atoms in a short time, the ratio between
the loading and loss rate l+ and l− needs to be maximized. Resonant light forces are
adjusted such that atoms with an initial velocity at 60m/s are decelerated and trapped
to obtain a high loading rate. When atoms traverse the magnetic gradient field, they
are in resonance with laser light only at positions x ∼ ∆/B′. In this ellipsoidal shell,
atoms are trapped. By tuning the frequency difference ∆ closer to zero, trap volume
Vmot decreases and hence the density n = N/Vmot increases. This results in a reduced
loading rate l+ due to a limited density nmax and an enhanced loss rate l−, which
is mainly caused by inelastic collisions between trapped atoms in the ground and the
excited state. At a small density (∆ = −6.5Γ), the life time of the magneto-optically
trapped ensemble is approximately 15min. So, losses occurring due to collisions between
trapped atoms as well as with the background gas can be neglected. At a high density
corresponding to a small frequency detuning ∆ < −1Γ, the life time is reduced to
milliseconds.

The ratio between loading and loss rate l+/l− is optimized by measuring the atom
number Nmot(∆, t) for different frequency detunings ∆ and after different loading times
t. This is done by collecting the fluorescence on a calibrated CCD camera, which is here
used as a photo diode (figure 4.5a). Before detecting the fluorescence signal in a time
span of 32µs, the laser frequency is tuned to −3Γ (−18MHz) to compress the atomic
ensemble and to increase the scattering rate. According to a rate equation including
loading and loss rates [116], the atom number Nmot(∆ = −6.5Γ, t) can be expressed by

Nmot(t) = Nmot,max

(
1− exp

(
− t

τmot

))
. (4.1)

The maximal atom number is determined by the equilibrium condition, where the
loading and the loss rates achieve a balance: Nmot,max = l+/l−. By fitting this function
to the measured data (figure 4.5b), one obtains a threshold value of the maximally
trappable atom number Nmot,max = 4 · 1010 and the characteristic loading time τmot =
11.5s for a certain set of experimental parameters given in table 4.1. The loading rate
l+ is approximately 2 · 109/s. In figure 4.5c, the atom number Nmot(∆, t = 4s), which
is proportional to l+/l−, is shown with respect to the frequency detuning ∆ during
loading. For frequency differences larger than ∆ = −8.5Γ, the magneto-optical trap
volume increases such that the trapping region becomes larger than the laser beam
radii. The loading rate l+ drops to zero. In an intermediate regime between −8Γ and
−6Γ, the ratio between loading and loss rate l+/l− is best. Very close to resonance with
∆ < −3Γ, magneto-optical trapping is inefficient for two reasons: the loading rate l+
drops, because the trap volume is too small and light forces of two counter-propagating
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Figure 4.5: Loading of the magneto-optical trap. a. Fluorescence pictures of
trapped atoms after different loading times. b. Loading curve Nmot(∆ = −6.5Γ, t)
with a loading time τmot = 11.5s and a maximal atom number Nmot,max = 4 · 1010. c.
Atom number Nmot(∆, t = 4s) ∼ l+/l− trapped at different frequency detunings ∆.

laser beams are resonant at the same position in space and start to cancel each other.
The loss rate l− is strongly enhanced due to the small volume of the trap.

4.2.2 Transfer into the standing wave dipole trap

The magneto-optically trapped atoms are transferred into the resonator dipole trap to
reduce heating caused by resonant photon scattering. In order to achieve similar trap
volume and depth for efficient transfer, the laser power inside the resonator dipole trap
is turned to its maximum of 158W corresponding to a potential depth of kB 11µK
and the atomic ensemble is compressed to approximately 1mm in diameter, which is
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Magneto-optical trapping parameters

oven temperature 402°C
cone temperature 267°C
nozzle temperature 300°C
Zeeman slower laser power 66mW
MOT laser power: νmot1 (repumper)/ νmot2 (cooler) 92mW / 85mW
MOT loading frequency detuning ∆ −6.5Γ = −39MHz

magnetic field gradients 6.75G/cm and −13.5G/cm

Table 4.1: Magneto-optical trapping parameters

done by tuning the laser frequency difference ∆ from −6.5Γ = -39MHz to only −1 =
−6MHz within 10ms. The compression time needs to be short compared to the life
time of the atomic ensemble to limited inelastic losses. In a narrow range of about
±0.3Γ = ±2MHz, we find the best ratio between particle losses and good overlap with
the standing wave dipole trap. Approximately 5·107 or 0.5% of the magneto-optically
trapped atoms are then transferred.

The number of atoms Nres transferred to the resonator dipole trap is here measured
by absorption imaging atoms after 3.5ms of free expansion from the trapping potential
and fitting a gaussian function to the density distribution (figure 4.6a). Nres(Nmot)
exponentially scales with the magneto-optically trapped atom number Nmot (figure
4.6b). For optimized parameters, the atom number threshold is Nres,max = 8.6 · 107.
The characteristic loading time τres = 4.5s, which includes simultaneous loading of the
magneto-optical trap, is obtained by measuring Nres(t) and by fitting the function given
in equation 4.1 to the data.

With the ideal parameters for compression and a loading time of 4s, the atom number
Nres(U0) is now measured with respect to the initial potential depth U0 of the resonator
dipole trap for transfer. We observe an atom number dependance Nres(U0) ∼ U1.61±0.13

0

(figure 4.6c), which is expected from the decrease in density of states given by

Nres(U0) =
∫
ρ(ε)dε ∼

√
U0

3
∫ √

u(x)
3
dx3 ∼

√
U0

3
(4.2)

with the scaled potential Ures(x) = U0u(x).

Once atoms are trapped in the resonator dipole trap, heating caused by resonant pho-
ton scattering is largely suppressed. Now, heating processes are governed by frequency
and intensity noise of the laser source. Here we characterize the atomic loss rate by
measuring the trapped atom number Nres(a, t) after different hold times t (figure 4.7)
for two different scattering length a. Measured data is fitted to an exponential loss

89



Chapter 4. Performance of the apparatus

0 20 40 60 80 100
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

 

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25

1

2

3

4

5

6

7

 

 

N
re

s
 

[
 

x1
07

]

Position [a.u.]

a

b

c

2s

8s

Atom number MOT [x1010]

Relative resonator power Pstart / Pmax

N
re

s
 

[a
.u

]

0 1 2 3 4 5 6 7 8 9

0.8

0.9

0.6

0.7

0.4

0.5

0.2

0.3

0.1

N
 [a

.u
.]2mm

2mm

Loading time 2s
Loading time 8s

Figure 4.6: Atom number after transfer into the resonator dipol trap. a. Absorption
image after 3.5ms of expansion from trap for 2s and 8s loading time (left) with the
corresponding horizontally integrated density distributions to extract atom numbers
Nres (right). b. NumberNres(Nmot) of transferred atoms with respect to the magneto-
optically trapped atom number. The maximal transfer efficiency is approximately
0.5%. c. Atom number Nres(U0) with respect to the initial resonator trap depth,
scaling with U3/2

0 .

curve [62], which is given by

Nres(t) = Nres,max exp
(
−t
τres

)
. (4.3)

The life time τres,0a0 of the atomic ensemble obtained at the maximal potential depth
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Figure 4.7: Atom loss in the resonator dipole trap. The life time of the atomic
ensemble is τres,0a0 = 2.7± 0.6s (black circles) and τres,300a0 = 0.6± 0.3s (red circles)
for a scattering length a = 0 and a = 300a0, respectively. The cycling transition for
imaging the atoms is not closed at low magnetic fields. Atoms which decay into a dark
state become invisible. To correct for the effectively reduced scattering cross section
of the atoms, measured atom numbers are scaled by those obtained from high field
imaging.

and at zero scattering length is τres,0a0 = 2.7 ± 0.6s. The atomic loss is mainly due to
the heating processes mentioned above. Atom loss due to evaporative cooling at the
s-wave scattering length a(B = 0)= 0 can be neglected.

At a magnetic field of 322G, where the s-wave scattering length a(B) is approximately
equal to −300a0, large atom number losses are measured. The lifetime of the atomic
ensemble is decreased to only τres,−300a0 = 0.6 ± 0.3s. A reason for this increased
atom loss is the evaporation of the atoms from the resonator dipole trap. Due to the
diverging density of states given by the gaussian trap [108] and the atomic distribution
at 140µK, it can be assumed that most of the atoms populate energy levels close to
the trap edge. This leads to a major atom loss, while the reduction in thermal energy
of those remaining in the trap is not very large. Evaporative cooling is expected to be
inefficient. As we will see in the following, this intial particle loss is an important step
in the evaporation process and leads to a larger phase space density in the end.
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Figure 4.8: Atom number Ntt(Pend, a = −300a0) in the running wave dipole trap
after evaporation to different trap depths U0 ∼ Pend. A gain in atom number Ntt of
a factor 2.3 is achieved by evaporating to laser powers Pend = 0.2Pmax.

4.2.3 Transfer into the running wave dipole trap

In order to efficiently transfer atoms from the standing into the running wave dipole
trap, the atoms populating higher lying states of the combined potential need to be
redistributed to lower lying states by evaporation. The evaporation process is controlled
by the laser power that sets the resonator potential depth U0(t) and by the magnetic
field that sets the scattering length a. When simultaneously lowering the trap depth
and letting the atoms collide, which is called forced evaporation, lower lying states
are populated and atoms are finally transferred into the running wave dipole trap.
The transfer has been characterized regarding the two parameters U0(t) and a. The
remaining atom number Ntt(U0, a) is measured after transport to the glass cell and a
second evaporation step, where the power of running wave is reduced from 3.5W to
50mW.

The number Ntt(U0, a = −300a0) of atoms trapped in the running wave dipole trap
was measured after evaporation at a scattering length a = −300a0 to different final
values of the final resonator power Pend, which is proportional to U0(t = 2.7s). In
figure 4.8, a linear increase N(Pend) is found when lowering Pend, which is limited by
an increase of number fluctuations for Pend < 0.2Pmax. The slope dU0(t)/dt proved to
be insensitive to the final atom number.

In figure 4.9, the atom number Ntt(Pend = 0.2Pmax, a) and the corresponding tem-
perature T in the running wave dipole trap after evaporation to Pend = 0.2Pmax are
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Figure 4.9: Number of atoms Ntt(Pend = 0.2Pmax, a) transferred to the running
wave dipole trap. The scattering length a descreases with the current IFB1 , resulting
in a less efficient transfer, i.e a reduced atom number, due to a less efficient evaporation
process. Atom loss and heating at IFB1=65A are attributed to inelastic losses at a
p-wave scattering resonance.

shown as a function of current IFB1 in the Feshbach coils, which sets the scattering
length a. At IFB1 = 92A corresponding to approximately -300a0, evaporation is most
efficient: Ntt is largest and low temperatures are obtained (T/TF = 0.4). By lowering
the current, the scattering length decreases and evaporation is less efficient. The redis-
tribution of atoms into lower lying states is hindered: the final atom number is lower
as well as the final temperature higher.

Two kinds of heating processes were identified during the evaporation. One is caused
by resonantly enhanced inelastic p-wave scattering, i.e. scattering into states with
relative momentum l = 1. The other is due to inelastic collision between the two
ground states and higher lying states.

In figure 4.9, evaporation at 65A leads to a small atom number and high temperatures
(T/TF = 1.7), although the s-wave scattering length a is still large. This heating process
can be attributed to inelastic collisions caused by resonantly enhanced p-wave scattering.
Usually, scattering into a final state with angular momentum l = 1 is suppressed, since
the partial wave amplitude scales with k2l. But at 214.9G (which would correspond to
61.4A at a relative magnetic field of 3.5G/A), it seems that a p-wave Feshbach resonance
[117] is accessed, where identical fermions in state |2〉 inelastically scatter.

The second heating process caused by inelastic collisions between atoms in the two
ground states |1〉 and |2〉, and higher lying states from the 22S1/2, F = 3/2 manifold
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Figure 4.10: Atom number Ntt(∆trepump) and the corresponding relative temper-
ature T with respect to the time delay, called repumper time ∆trepump, between the
turn off time of repumper and cooler.

is minimized by depopulating higher lying states. This is done by first turning off the
repumping transition with frequency νmot1 and by only driving the cooling transition
22S1/2, F = 3/2 → 22P3/2, F = 5/2 until all atoms decay into state 22S1/2, F = 1/2
[62]. In figure 4.10, the final atom number and the temperature in the running wave
dipole trap at 50mW is shown as a function of the time delay between the turn off time
of the repumper and the cooler. If this time delay, here called the repumper time, is
shorter than 8ms, heating and atom losses are observed.

4.2.4 Optical transport of the atomic ensemble

Atoms centered at the focus of transport trap are accelerated and decelerated [64]
according to a smooth velocity profile, which can be programmed. During the movement
of atoms centered at the focus of transport trap, too rapid acceleration and vibrations
will heat the atomic ensemble, which causes a loss of atoms. Either dipole oscillations
of the atomic ensemble are excited, or atoms are spilled from the trap or parametrically
heated.

We could not observe any oscillation. Atom loss due to resonant scattering and to
parametric heating the transport trap was measured by comparing a one way trip with
a three way trip from the center of the main chamber to the glass cell. While the former
is characterized by a transfer efficiency e1, the latter is given by e3 = e3

1. By comparing
atom numbers and temperatures after evaporation to a final laser power 50mW of a one
way transport with those of a three way transport , we obtain Ne1 = Ntt,1 = 3.9 · 105

and Ne3 = Ntt,3 = 2.3 · 105. With a corresponding transfer efficiency e1 = 76%, the

94



4.3. Observation of degenerate Fermi gases

atom total atom number loss is ∆N1 = 1.2 · 105. When applying the same method
to the relative temperature with (T/TF )1 = 0.23 and (T/TF )3 = 0.33, the resulting
heating rate is ∆(T/TF )1 = 0.05 for a one way transport.

4.3 Observation of degenerate Fermi gases

In this section, density distributions of degenerate non-interacting Fermi gases, molecu-
lar Bose-Einstein condensates at different temperatures and gases with imbalanced spin
population are shown.

In the center of the glass cell, fermions are evaporatively cooled in the running wave
dipole trap by reducing the laser power from 2W to different values below 50mW within
3.1s. Atom numbers N and temperatures T are extracted from the column density
distributions. These are measured with the conventional imaging setup in x-direction
after free expansion from the trapping potential, by fitting the corresponding functions
n2D(x, y). The trapping potential is harmonically approximated here, although fermions
are trapped in a gaussian trap. At low temperatures, the fitted temperature is overes-
timated, because the density distribution changes from a gaussian distribution to a dis-
tribution showing the characteristic shape of the trapping potential, n ∼ (µ−V (r))3/2.
The gaussian shape in the density distribution is interpreted as the contribution from
a thermal gas instead of the gaussian shape of the trap.

In order to convert the photon distribution detected on the camera to an atomic
density distribution, we assume that the atomic column density is proportional to the
optical density. This assumption is true if atoms are illuminated such that only a few
photons per atom are scattered to avoid a reduction in the photon scattering cross
section, the optical density (OD � 1) is small and the imaging light intensity is much
below saturation intensity (I � Isat) [118].

4.3.1 Non-interacting Fermi gas

In order to obtain non-interacting degenerate Fermi gases, atomic ensembles are evapo-
ratively cooled in the running wave dipole trap down to different final potential depths
Utt,0 at a magnetic field of 300G, which corresponds to a scattering length −300a0.
After a thermalization time of approximately 160ms, the magnetic field is turned to
528G, where the scattering length is zero. The atomic ensemble is then released from
the trap for 1.5ms, before it is illuminated with resonant light. In the insets of figure
4.11a, images of a degenerate Fermi gas after evaporation down to 5mW and 40mW are
shown. By fitting the corresponding functions to the obtained column density distribu-
tion, the temperature is extracted, which is 194nK (0.16T/TF ) and 364nK (0.23T/TF ),
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Figure 4.11: Non-interacting degenerate Fermi gas: a. Absorption images and
vertically integrated column density distribution after 1.5ms expansion from a trap
with a laser power of 5mW (left) and 40mW (right). From the fitted function (green
line), the atom number N and the temperature T is extracted, which are shown in b.

respectively. In figure 4.11b, the atom number N as well as the absolute and relative
temperature T and T/TF are shown with respect to the final trap depth after evapora-
tion.

If the trap depth is lowered at a magnetic field of 528G, where the scattering length a
is zero, atoms are not evaporatively cooled but just spilled from the dipole trap at zero
scattering length. The minimum temperature achieved is 1.6T/TF and the number of
atoms is approximately a factor of three smaller than after evaporation at a = −300a0.
Hence evaporative cooling is essential for obtaining a degenerate Fermi gas.
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4.3. Observation of degenerate Fermi gases

4.3.2 Molecular Bose-Einstein condensate

A molecular Bose-Einstein condensate is obtained by evaporative cooling close below
the Feshbach resonance. There, Feshbach molecules are formed during the evaporation
process, while the excess binding energy is transferred to atoms which then escape
form the trap. By reducing the temperature below 0.55T/TF , Feshbach molecules then
condense to a Bose-Einstein condensate.

In our case, atoms are evaporated at a magnetic field of 794G, which corresponds to
a scattering length of a ' 9100a0. After an expansion time of 3.5ms at a magnetic field
of 776G, corresponding to a scattering length of 5900a0, the molecular condensate is
resonantly illuminated. In figure 4.12a, the column density of a condensate measured
after evaporation down to 20mW and 50mW is shown. A bimodal function is fitted to the
density distribution. The fraction of atoms, which is fitted to a parabolic function (red
line) represents condensed molecules, while the underlying gaussian density distribution
(green line) contains thermal molecules.

The ratio between the condensed molecules N0 and total number of molecules N ,
i.e. the condensate fraction, is shown in figure 4.12b with respect to the final potential
depth, which is again set by laser power. The condensate fraction given in equation
2.26, is fitted to a function N0/N ∼ c1 − c2P

3
tt, with fitting parameters c1 = 0.68 and

c2 = 3.35 · 10−6mW−3, and the laser power Ptt, which is proportional to the potential
depth U0. According to this fit, the onset of Bose-Einstein condensation occurs at a
laser power of 59mW.

With decreasing potential depth, the total molecule number N as well as the ab-
solute temperature T decreases to N = 105 and a minimal detectable temperature of
approximately 150nK, respectively.

4.3.3 Realization of a spin imbalanced Fermi gas

In ultra-cold atomic Fermi gases, the relative spin population between the two lowest
hyperfine states can be controlled experimentally by either a radio-frequency transfer
between two hyperfine spin states or by accessing a p-wave Feshbach resonance to induce
inelastic losses of only one spin state.

Here, an imbalanced spin mixture was produced by accessing the |2〉 + |2〉 p-wave
Feshbach resonance at 214.9G with a width of 0.4G to remove atoms populating state
|2〉. The loss in this spin component is controlled by the time remaining on resonance,
which is 50ms, here. Afterwards, atoms are evaporatively cooled below the s-wave
Feshbach resonance at 776G. Again after 3ms expansion at a magnetic field of 703G
from the trap with a laser power of 28mW, each spin state is imaged separately (figure
4.13).
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Figure 4.12: Formation of molecular Bose-Einstein condensation. a. Absorption
images and vertically integrated column density distribution after a 3.5ms expansion
from the trapping potential with a final laser power of 20mW and 50mW. From a
bimodal fit, with a parabolic (red line) and gaussian shape (green line), the number
N0 and N −N0 of condensed and non-condensed molecules is extracted. b. The total
molecule number N , the absolute temperature T and the condensate fraction N0/N

with respect to the final laser power in the running wave dipole trap. From the fit (see
text), the onset of condensation is expected at 59mW.
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Figure 4.13: Absorption images (insets) and vertically integrated column density
distribution of a two component spin mixture of state |1〉 and |2〉 with a spin population
imbalance of 21%. The minority and majority spin components contain 39.5% and
60.5% of the total atom number, respectively. The temperature of the gas, obtained
from the bimodal fitting function of the minority component is 377nK.

The total atom number in state |1〉 in the left picture is equal to N|1〉 = 1.92 · 105,
the one in state |2〉 in the right picture equals to N|2〉 = 1.25 · 105. The former is called
the majority spin component, while the latter is called the minority spin component.
Here, the spin imbalance, which is defined as (N|1〉 − N|2〉)/(N|1〉 + N|2〉) is 0.21. By
fitting a bimodal function to the density distribution of each spin component, we obtain
a condensate fraction of 43% and 68% for the majority and minority components, re-
spectively. This corresponds to a condensed molecule number of N0 = 8.5 · 104 in both
cases.

In other work [33, 34, 35, 119], it could actually be shown, that the equal number in
the condensed phase is no coincidence, but really due to a phase separation between
the molecular Bose-Einstein condensate and the spin polarized Fermi gas consisting of
excess atoms in the majority components located in the wings of the profile.

4.4 Microscopy of a Fermi gas

The whole experimental setup was designed to finally obtain high resolution images
of trapped Fermi gases. This imaging system allows us to detect the atomic density
distribution with a resolution of 700nm, of which some example are are presented in
this section. For comparison, an absorption image of a trapped non-interacting Fermi
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20µm550µm

a b

Figure 4.14: Comparison between conventional and high resolution imaging. a. The
axial extension the trapped atomic ensemble absorption-imaged with the conventional
imaging setup along x-direction is approximately 550µm. b. The same ensemble is
detected with the high resolution imaging along the z-direction. The dimension of the
image is 152µm x 84µm. Approximately a quarter of the atomic ensemble is shown
here.

gas below Fermi temperature obtained with the conventional and the high resolution
imaging are shown in figure 4.14.

With a different imaging technique, the phase contrast imaging [120], differences in
the population, N↑ − N↓, of a two-component spin mixture can be measured locally.
Off-resonant light passing through an atomic emsemble experiences a detectable phase
shift. For an equal spin population at a certain frequency de-tuning, the phase shift
caused by the one spin state is negative with respect to that of the other. The phase
shift cancels and the atomic ensemble becomes transparent. If the spin population is not
equal in certain domains of the trapped atomic ensemble, there is a phase shift which
turns the direction of the linearly polarized light. With a polarizing beam splitting cube,
a change in polarization is converted into an intensity signal. If these domains are larger
than the imaging resolution, a local fluctuation in the spin population corresponding to
an intensity fluctuation appears on the detector (figure 4.15).

The last example is a fluorescence image of approximately N = 103 spin-polarized
fermions trapped in a micro potential, which is created by focussing red de-tuned laser
light (767nm) by means of the upper microscope objective (inset of figure 4.16). Here,
the optical resolution has been artificially reduced by a diaphragm to obtain a beam
waist ω0 = 2.4µm and a Rayleigh length of zR = 13.2µm. With the measured waist,
the Rayleigh length and the given laser power, trapping frequencies are νr = 58kHz
and νax = 4.1kHz in radial and axial directions, respectively (photon recoil frequency
= 73.7kHz). The corresponding Fermi energy is approximately 240kHz.

The fluorescence image shown in figure 4.16 was taken by illuminating the trapped
atomic ensemble with 2.5Γ = 15MHz blue de-tuned light at an intensity I � Isat for
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20µm

Figure 4.15: Phase-contrast image of a trapped non-interacting degenerate fermionic
ensemble located at the 20µm wide horizontal bar. The cloud is transparent unless
there are local differences in the spin population, which appear here as coarsely grained
fluctuations in intensity.
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Figure 4.16: Fluorescence image an atomic ensemble (inset) and the detected photon
distribution. The atoms is trapped in a micro dipole potential create by a focussed
laser beam with a waist ω0 = 2.4µm and a Rayleigh length z0 = 13.2µm. The fitted
diameter of the photon distribution is dr = 2.2µm.

4µs. The fluorescence signal was detected on the EMCCD camera by collecting photons
at the resonance wave-length (671nm) with the lower microscope and filtering out far
off-resonant light. By fitting a gaussian function to the detected photon distribution, a
maximum cloud diameter of dr = 2.2µm is obtained.

With simple estimates one can obtain a rough idea about the atomic ensemble under
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investigation. By assuming an axial extension of dax = drνr/νax, we obtain an approx-
imate volume V = d2

rdax = 154µm3, a density of 6.5·1012cm−3 and an optical density
Nσ0/d

2
r = 45 <OD. It can be assumed that the actual volume in which the atoms are

confined is smaller. At these high density, imaging is not yet understood because the
response of the atomic ensemble changes and the deduction of the atoms number in
trap from photon distribution is difficult.
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5 Local observation of antibunching in a
trapped Fermi gas

This chapter has been submitted to the Physical Review Letters and is published on
the preprint server, arXiv:1005.0302v1 [121].

A finite-size system in thermodynamic equilibrium with its surrounding shows char-
acteristic fluctuations, which carry important information about the correlation prop-
erties of the system. In a classical gas, fluctuations of the number of atoms contained
in a small sub-volume yield a Poisson distribution, reflecting the uncorrelated nature
of the gas. An intriguing situation arises when the thermal de Broglie wavelength
approaches the interparticle separation and the specific quantum statistics of the con-
stituent particles becomes detectable. For bosons, positive density correlations build-up,
until Bose-Einstein condensation occurs, as measured in Hanbury Brown-Twiss (HBT)
experiments [122, 123, 124, 125, 126, 127, 128]. The effect of bunching also manifests
itself in enhanced density fluctuations in real space [129]. In contrast, fermions obey the
Pauli principle. This gives rise to anti-correlations, which have been observed in HBT
experiments [130, 131, 132, 133, 134], and are expected to squeeze density fluctuations
below the classical shot noise limit. Moreover, for trapped fermions, the anti-correlations
vary in space, reaching a maximum in the dense center of the cloud, which should be
accessible to a local measurement.

In this letter we report on high-resolution in-situ measurements of density fluctuations
in an ultracold Fermi gas of weakly interacting 6Li atoms. We extract the mean and the
variance of the density profile from a number of absorption images recorded under the
same experimental conditions. Our measurements show that the density fluctuations
in the center of the trap are suppressed for a quantum degenerate gas as compared to
a non-degenerate gas. We analyze our data using the fluctuation-dissipation theorem,
which relates the density fluctuations of the gas to its isothermal compressibility. This
allows us to extract the temperature of the system [65].

We first describe the experimental procedure to obtain a quantum degenerate gas of
about 6× 104 6Li atoms equally populating the two lowest hyperfine states. Following
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Chapter 5. Local observation of antibunching in a trapped Fermi gas

the method described in [17], the atoms are loaded into an optical dipole trap created
by a far off-resonant laser with a wavelength of 1064 nm, focused to a 1/e2-radius of
(22± 1)µm (unless otherwise stated, errors are a combination of statistical errors and
uncertainties in the determination of experimental parameters). The cloud is then
optically moved [64] into a glass cell that provides high optical access, see Fig. 5.1(a).
In the glass cell, forced evaporation is performed by reducing the trap power from
initially 2 W to 4.7 mW. During evaporation a homogeneous magnetic field of 300 G is
applied to set the s-wave scattering length a for inter-state collisions to −300 a0, where
a0 is the Bohr radius. The magnetic field is then ramped to 475 G in 150 ms, changing a
to −100 a0, and finally the power of the trapping beam is increased to 10 mW in 100 ms.
Alternatively, we prepare the lithium gas at temperatures above quantum degeneracy.
For this, we evaporate to 50 mW before recompressing to 100 mW, followed by a 100 ms
period of parametric heating. In both cases, the cloud is allowed to thermalize for
350 ms before an absorption image is taken.
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Figure 5.1: (a) Setup for high-resolution imaging of the trapped 6Li gas. The shadow
cast by the atoms held in the dipole trap is imaged through the microscope objective
and a telephoto objective onto an EMCCD chip. The resolution (1/e2-radius) is
1.8µm at a wavelength of 671 nm and the magnification is 54 (the resolution of the
NA=0.55 microscope objective has been artificially reduced with a diaphragm in order
to increase the depth of field to the order of the cloud size). (b) Density distribution
(atoms per pixel) of the trapped atoms obtained by averaging over 20 realizations.
The effective pixel size measures 1.2µm (The size of a camera pixel corresponds to
300nm in the object plane. We do 4x4 software binning, yielding an effective pixel size
of 1.2µm. The image is ∼ 40µm wide and shows about one tenth of the cloud.

Our imaging setup is sketched in Fig. 5.1(a). The probe light, resonant with the
lowest hyperfine state of the |2S1/2〉 to |2P3/2〉 transition, is collected by a high-resolution
microscope objective and imaged on an electron-multiplying CCD (EMCCD) chip. The
atoms are illuminated for 8µs, each atom scattering about 20 photons on average. Fig.
5.1(b) shows the average density distribution obtained in 20 experiments.
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We now present our procedure for extracting the spatially resolved variance of the
atomic density. The position of each pixel in the imaging plane of the camera defines a
line of sight intersecting with the atomic cloud. Correspondingly, each pixel, having an
effective area A, determines an observation volume in the atomic cloud along this line
of sight. At low saturation, the transmission t of the probe light through an observation
volume containing N atoms reads t = e−σ·N/A, where σ is the photon absorption cross
section. As a consequence, for small Gaussian fluctuations of the atom number, the
relative fluctuations of the transmission coefficient are equal to the absolute fluctuations
of the optical density and are thus directly proportional to the number fluctuations:

δt2

〈t〉2
=
σ2

A2
δN2, (5.1)

where δt2, 〈t〉 and δN2 are the variance and the mean of the transmission coefficient,
and the variance of atom number, respectively.

Experimentally, repeated measurements of identically prepared clouds provide us with
a set of count numbers C for each pixel, i.e. each observation volume, corresponding
to a certain number of incoming photons registered by the EMCCD. We then compute
the variance δC2 and mean 〈C〉. The relative noise of the counts and the relative noise
of the transmission are related by:

δC2

〈C〉2
=

2g
〈C〉

+
δt2

〈t〉2
. (5.2)

Here, g is the gain of the camera for converting photoelectrons to counts. The first term
is the contribution of photon shot noise while the second term is the contribution of
atomic noise. The factor 2 in the photon shot noise term has its origin in excess noise
caused by the electron-multiplying register [135, 136]. We extract the contribution of
the atoms to the relative fluctuations of the counts, by subtracting photon shot noise on
each pixel according to (5.2). This requires the value of g which we determine from the
linear relationship between the variance and the mean of the number of counts in a set
of repeated measurements. The atom number fluctuations are subsequently obtained
from (5.1).

In order to reduce technical noise adding to these fluctuations, we reject images
showing the largest deviations of total atom number or cloud position (images deviating
more than 1.5 standard deviations in the mean position and more than 1.0 standard
deviations in the total atom number are excluded), which amounts to excluding about
30% of the images. The remaining shot-to-shot fluctuations of the total atom number
δN2

tot are taken into account by further subtracting the quantity δN2
tot/N

2
tot〈N〉2 (<

2% of N), which is essentially a rescaling of the data using the mean density profile
[129]. Applying this algorithm to each pixel of the images yields a local measurement
of the variance of the atom number. This process neither requires knowledge about
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the quantum efficiency of the camera nor a calculation of the absolute value of the
transmission coefficient for each shot and pixel. We thus avoid extra noise related to
the division operation by a reference picture.

As in standard absorption imaging, the mean atom number per pixel is calculated by
dividing the mean transmission profile by the mean of reference images taken without
atoms after each shot. The values for variance and mean, obtained by applying the
above procedures, are then averaged along equipotential lines of the trap. These lines
deviate from horizontal lines (x3-axis) in our images by less than half a pixel (0.6µm).

Fig. 5.2 shows the observed variance of the atom number plotted against the mean
atom number detected on a pixel. One set of data was taken for a gas at temperatures
above quantum degeneracy (red squares) and another set of data for a quantum de-
generate gas (blue circles). Above quantum degeneracy, the observed variance is found
to be proportional to the mean number of atoms. This linear behavior gives us con-
fidence in our data processing procedure and confirms that the fluctuations originate
from atomic shot noise.
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Figure 5.2: Observed variance versus mean of the atom number detected on a pixel.
Red squares show the data for a non-degenerate and blue circles for a quantum degen-
erate gas. The solid red line is a linear fit to the non-degenerate gas, yielding a slope of
0.20±0.02. For the data shown, 80 experiments were performed, 60 for the degenerate
case and 20 for the non-degenerate case. The error bars shown are estimated from the
subtraction of photon shot noise which is the dominant contribution.

In order to quantitatively understand the slope of the noise curve, which is fitted
to be 0.20 ± 0.02, two main effects have to be considered. These reduce the observed
variance and explain the deviation from a slope of one, which would be expected for the
full shot noise. First, the effective size of the pixel is of the order of the resolution of the
imaging system. As a consequence, the observed noise is the result of a blurring of the
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signal over the neighboring pixels. This effect is also observed in [129, 67], and explains
a reduction factor of 0.22 (by binning pixels over a 4x4 region, the observed slope is
increased up to 0.8, at the cost of a strong decrease of the signal to noise ratio). Second,
the probe light intensity used for the detection is (15± 1)% of the saturation intensity.
This leads to a reduction of the photon absorption cross section due to saturation by
0.95 and due to the Doppler-shift by about 0.9. Together, these effects lead us to expect
a slope of about 0.19, in good agreement with the observations.

We now turn to the data taken for the quantum degenerate gas (blue circles in
Fig. 5.2). At low densities, the variance is again found to be proportional to the
mean density. For increasingly higher densities, we observe a departure from the linear
behavior and the density fluctuations are reduced compared to the shot noise limit seen
for the non-degenerate gas. This is a direct consequence of the Pauli principle which
determines the properties of a quantum degenerate Fermi gas. One can think of the
Pauli principle as giving rise to an interatomic "repulsion" [137], which increases the
energy cost for large density fluctuations. This is similar to the case of bosonic systems
with strong interparticle interactions, where observations have shown a reduction of
density fluctuations [129] and squeezing of the fluctuations below the shot noise limit
[67, 42].

In contrast to previous measurements on antibunching [133, 134], we have measured
density fluctuations in a spatially resolved way. For the construction of Fig. 5.2, we
have averaged the observed variance for regions of equal mean density, whereas Fig.
5.3 shows the variance (blue circles) and the mean (black line) of the atom number as
a function of the radial position in the trap for a quantum degenerate gas. While the
variance is proportional to the mean in the wings, at low density, we observe a reduction
of the variance by about 2 dB close to the center, at higher density. The inset shows
data for a non-degenerate gas; in both cases the variance has been rescaled using the
slope fitted in Fig. 5.2. The reduction of fluctuations is a direct indication of the level of
quantum degeneracy of the gas. The larger the average occupation of a single quantum
state, the more the effect of the Pauli principle becomes important and fluctuations are
consequently suppressed. Fig. 5.3 thus represents a direct measurement of the local
quantum degeneracy, which is larger in the center of the cloud than in the wings.

In order to understand this quantitatively, we describe the atoms contained in an
observation volume in terms of the grand-canonical ensemble with a local chemical
potential fixed by assuming local density approximation. For a non-interacting gas,
the ratio of mean atom number and its variance is determined by the fugacity z of the
system. This leads to the equation

δN2

〈N〉
=

∫
Li1/2(−z(x1, x2))dx2∫
Li3/2(−z(x1, x2))dx2

, (5.3)
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Figure 5.3: Spatially resolved measurement of antibunching. The black line shows
the mean atom number and the blue circles the corresponding variance along the
x1-axis for a degenerate gas. The variance is rescaled using the slope fitted in Fig.
5.2. Error bars are estimated from the subtraction of photon shot noise, which is
the dominant contribution. The dashed line shows the variance derived from theory.
The shaded region indicates the uncertainty originating from uncertainties in the trap
parameters. The inset shows corresponding data for a non-degenerate gas.

where Lii is the i-th polylogarithmic function, x1 and x2 are radial coordinates of the
cloud and line-of-sight integration is performed along the x2-axis.

The dashed line in Fig. 5.3 is computed using (5.3). For the computation we make
use of the Gaussian shape of the trap, the central fugacity of 13+18

−4 , obtained in an in-
dependent time-of-flight experiment (see below), and the experimental density profile.
The agreement between theory and experiment also confirms our assumption of negli-
gible interactions as well as the description in terms of the grand-canonical ensemble
(the Fermi wavelength is of the order of the pixel size. However, column integration is
expected to average out possible correlations).

We now focus on the interpretation of our results using the fluctuation-dissipation
theorem. At thermal equilibrium, density fluctuations are universally linked to the
thermodynamic properties of the gas through the fluctuation-dissipation theorem, which
can be expressed as:
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kBT
∂〈N〉
∂µ

= δN2 (5.4)

where T is the temperature of the gas, µ the chemical potential and kB the Boltzmann
constant. Since the local density approximation allows one to assign a local chemical
potential to any position in the trap, it is possible to determine the compressibility ∂〈N〉

∂µ

directly from the mean density profiles [67]. From (5.4), the ratio of this quantity to the
measured variance profile of the cloud provides a universal temperature measurement
[65].
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Figure 5.4: Fluctuation-based temperature measurement. Variance of atom number
detected on an effective pixel versus dimensionless compressibility. The blue circles
and red squares show the data for the quantum degenerate and the non-degenerate
case, respectively. The slope gives a measure of the temperature in units of the trap
depth, according to (5.4). The dashed red line is fitted to the red squares.

We apply this procedure to our data by computing the compressibility, ∂〈N〉
∂µ =

∂〈N〉
∂x

(
∂µ
∂x

)−1
, where we take the Gaussian shape of the optical dipole trap into account.

To avoid the problems of numerically differentiating experimental data, we fit the mean
density profile with a linear combination of the first six even Hermite functions and use
the fitted curve as a measure of the density profile in (5.4). Fig. 5.4 shows the variance
of atom number plotted against the dimensionless compressibility U0

∂〈N〉
∂µ , where U0

is the trap depth. We observe the linear relation described by (5.4) with a slope of
kBT
U0

= 0.27 ± 0.04 for both data sets, the degenerate and the non-degenerate. From
the physics of evaporative cooling it is expected that both slopes are the same [138].
Using trap depths derived from the measured laser powers, we obtain temperatures of
(145±31) nK and (1.10±0.06)µK for the quantum degenerate and the non-degenerate
gas, respectively.
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Chapter 5. Local observation of antibunching in a trapped Fermi gas

To assess the quality of this measurement, we have also performed time-of-flight
measurements with clouds prepared under the same conditions. In this method, we
determine the temperatures by fitting the measured density profiles after free expansion
of 1.5 ms (1 ms for the non-degenerate gas) to the calculated shape of a non-interacting
gas released from a Gaussian trap. This procedure gives us slightly higher temperatures
for the degenerate and the non-degenerate clouds, which are (205 ± 30) nK (T/TF =
0.34 ± 0.1) and (1.6 ± 0.2)µK (T/TF = 1.9 ± 0.1), respectively. We attribute the
discrepancy between the two temperature measurements to deviations of the trapping
beam from a Gaussian shape and residual experimental fluctuations from shot to shot,
which both affect the two methods.

In conclusion, we have measured density fluctuations in a trapped Fermi gas lo-
cally, observing antibunching in a degenerate gas. In addition, we have determined the
temperature of the system by comparing the fluctuations with the predictions of the
fluctuation-dissipation theorem (for other fluctuation-based temperature measurements
see [139, 93]). In contrast to bosons, fermions cannot exhibit first-order long range
coherence due to the Pauli principle. However, when a Fermi system enters a quantum
correlated phase, e.g. a superfluid phase, long range even-order correlations build up
[93]. The spatially resolved measurement of density fluctuations, probing second-order
correlations, is thus a natural tool to study strongly correlated Fermi gases.
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6 Outlook

The ability to locally measure density fluctuations of a trapped non-interacting gas of
fermionic lithium below the Fermi temperature naturally leads to an intriguing question:
how will the fluctuations change in the presence of interactions?

Since pairing between fermions of opposite spin occurs in the BEC-BCS crossover
regime, the quantum statistics are expected to change qualitatively: in case of weakly
bound pairs, it is reasonable to assume that the fermionic nature revealed by reduced
number fluctuations δN(r) dominates. For tightly bound thermal molecules, enhanced
fluctuations are expected.

When investigating pairing between fermions of opposite spin in the BEC-BEC cross-
over regime, it should be possible to observe a qualitative change in quantum statistics
by measuring local fluctuations in the spin imbalance [140], δ(N↑ −N↓)(r). For exam-
ple in a non-interacting Fermi gas, spin imbalance and number fluctuation should be
proportional, because the atoms in each spin state can be regarded as two independent
systems. The situation is different for fermionic pairs: local spin fluctuations are ex-
pected to decrease with respect to those of the non-interacting Fermi gas because the
energy to break a pair and form a domain of unequal spin population increases.

The detection of number fluctuations of a trapped fermionic ensemble is experimen-
tally challenging because small deviations from the mean density profile have to be
measured. With the applied absorption imaging technique, the atoms are illuminated
with resonant light at intensities I � Isat for a sufficiently short time to avoid a reduc-
tion of the photon scattering cross section occurring after multiple photon scattering.
Due to the relatively high optical density of the trapped fermionic ensemble, only a
small photon number is detected, leading to a large photon shot noise, which limits the
signal to noise ratio.

From an implementation point of view, there is the opportunity of measuring spin
imbalance with significantly reduced photon shot noise: phase contrast imaging [120] can
be employed, a technique to determine local differences in the spin population directly
without subtracting a large mean value. The feasibility of this approach has been shown
in section 4.4. Because the fermionic ensemble is illuminated with off-resonant light,
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Chapter 6. Outlook

and thereby the photon scattering cross section reduced, both the intensity and time of
illumination can be increased to minimize photon shot noise.

With the experimental approach presented in this thesis, the pairing mechanism of
fermionic lithium in the BEC-BCS crossover regime can now be explored by measuring
local spin fluctuations with the high resolution phase contrast imaging technique.
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