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Nonlinear MPC for Fixed-wing UAV Trajectory

Tracking: Implementation and Flight Experiments

Thomas Stastny∗, Adyasha Dash†, Roland Siegwart‡

Swiss Federal Institue of Technology, (ETH) Zurich

Leonhardstrasse 21, 8092, Zurich, Switzerland

In this work we design a high-level Nonlinear Model Predictive Controller for lateral-
directional fixed-wing UAV trajectory tracking in wind. Model identificaiton of closed loop
low-level roll channel dynamics is conducted towards representing a low-order equivalent of
the low-level autopilot response to high-level commands. We show trajectory tracking with
various horizon lengths in high winds in simulation and demonstrate track convergence to
sequential Dubins Car segments in flight experiments with a small autonomous unmanned
aircraft using the designed algorithm. Discussion on appropriate objective formulation and
weighting is given.

I. Introduction

Unmanned aerial robots are becoming ubiquitous in today’s society. Whether from impactful public
exposure such as demonstrations of large scale three-dimensional aerial modeling projects,1 propositions
of forward-looking postal delivery,2 or increasing interest in airborne support for applications including
disaster relief,3,4 crop monitoring,5 and infrastructure inspection,6 the word “drone” (for better or worse)
is now within the common vernacular. Particularly interesting platforms, relative to rotor-craft, for their
longer endurance and speed in mapping and sensing applications, are fixed-wing unmanned aerial vehicles
(UAVs). Even more advantageous, within the fixed-wing vehicle class, are small scale and hand-launchable
platforms for their ease of deployment and minimal system complexity. While a wealth of work on advanced
control algorithm design, specifically towards such systems, is present in recent literature, much still remains
within the confines of simulation, and needs experimental validation.

One particular avenue within this realm is work on optimization-based approaches towards trajectory
tracking. In particular, Nonlinear Model Predictive Control (NMPC) algorithms offer a broad range of
possible formulations and applications. For instance, one of the earliest uses of NMPC for trajectory tracking
control of unmanned fixed-wing aircraft can be found in the work of Kang et al.7 Their cost function was
designed to minimize the normal distance from a UAV to a desired line segment thereby turning the tracking
problem into a regulation problem with an objective to drive the error to zero. The single line tracking cost
function is then extended to allow the tracking of multiple line segments with obstacle avoidance. Kang et
al. follow this up with stability analysis, and verification using hardware in the loop simulation.8 Both works
involve a kinematic model of an aircraft assuming planar motion and the existence of a low level controller
to track the high level NMPC commands. Yang et al. further extend the previous two works formulating an
adaptive NMPC for fixed-wing navigation through a cluttered environment, which varies the control horizon
according to the path curvature profile for tight tracking.9 By adding actuator slew limit to the optimization
termination requirement in addition to the cost monotonocity, they show that the proposed optimization
algorithm removes control input oscillations and tracks the trajectory more accurately than the conventional
fixed horizon NMPC.

The path-following problem for fixed-wing UAV in presence of wind disturbances is addressed by Rucco
et al.,10 where the objective of trajectory tracking with minimum control effort is fulfilled for a planar aircraft
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model using a sample-data Model Predictive Control (MPC) approach. Extension to three dimensions is
seen in11 , where Gavilan et al. describe a high-level guidance algorithm based on MPC using a nonlinear
3DoF aircraft model for state prediction. The nonlinear optimization problem is then solved using a iterative
scheme which uses a modified robust missile guidance law as hotstart to gaurantee feasibility.

As outlined from the literature, many possibilities exist for the use of NMPC in high-level fixed-wing
UAV control. However, real-time implementation has been challenging up until recently, owing to the
large computational complexity and time taken by the non-convex optimization problem posed. Efforts by
researchers such as Quirynen et al. have focused on exploiting the structure of nonlinear models with linear
subsystems using Implicit Runge Kutta methods, resulting in improved speeds of the solver.12 The tools have
since then been made available as a part of the ACADO toolkit,13 allowing user-friendly implementation of
system dynamics and objectives in a MATLAB or C interface, and generating real-time capable code. With
improved computational runtimes, an opportunity now exists to more broadly field NMPC algorithms on
small fixed-wing UAV platforms.

While many of the NMPC approaches cited tend only to consider vehicle kinematics, assuming lower-level
loops will sufficiently track the higher-level commands, the concept of identifying lower level dynamics has
promise in enhancing the performance of the controller. However, system identification of fixed-wing UAVs
in the classical sense, i.e. open-loop analysis, is often off-putting to researchers as it can be time consuming,
tedious, and moreover challenging when e.g. wind tunnel facilities are not available and flight test based
identification must be applied. As opposed to open-loop analysis where the system response is obtained with
no feedback control, e.g. a direct aileron→roll system model and/or an aileron→roll rate system model,
the objective of closed-loop system analysis is to obtain the system response to the low-level controller’s
command inputs (e.g. stick deflections or roll reference commands from the high-level controller) to actual
roll or roll rate output.

Early examples of system identification for control-augmented fixed-wing aircraft can be found in the
works of Murphy,14 and Mitchell et al.15 Their work concerns gaining an insight into pilot comfort levels
with the augmented systems of highly maneuverable fighter aircrafts by reducing the complex high order
longitudinal and lateral directional dynamics to Low Order Equivalent Systems (LOES), thereby obtaining
a quantitative measurement of pilot ratings, as well as possible explanations of unexpected aircraft behavior.
As an example, Murphy uses rudder pedal force and input stick deflection as inputs, with sideslip angle,
stability axis, roll rate, stability axis yaw rate, bank angle, and lateral acceleration as system states to identify
the closed-loop lateral dynamics. The system is treated as a Multiple Input Multiple Output (MIMO) system
and parameter estimation methods in Frequency domain are used. LOES models are typically fixed a priori
whose structure can be found in this detailed report.16 For all these systems, the input delays play a
significant role in flight quality performance and pilot experience.

Morelli took a similar approach to identify the closed loop system for both longitudinal and lateral
directions using LOES models.17 However, unlike the previous example, SISO approach is favored here.
Different types of maneuvers are executed, and it is found that certain multi-step maneuvers in combination
with appropriate identification methods could be used instead of frequency sweeps, which often take longer
times and are difficult to execute at high pitch angles.

In recent times, Luo et al.18 identified the inner closed-loop system of the roll-channel of a small fixed-
wing UAV as a first-order plus time delay model in order to design a fractional order (PI)λ controller. A
fifth order ARX model is calculated first using least squares algorithms which is then approximated to a
continuous time first order plus time-delay model.

Capitalizing on new methods for auto-generation of fast NMPC code and the experience of previous
authors in LOES modeling, we explore in this work the design of a high-level NMPC for real-time im-
plementation on a small UAV, as well as simplified closed-loop identification procedures for modeling low
order system equivalents of the low-level autopilot system. The identified model is incorporated into a
modular high-level NMPC for general trajectory tracking in wind and verified through simulation and flight
experiments.

II. System Overview

System identification, controller design, and flight experiments within this work are peformed on a
small, 2.6 m wingspan, light-weight 2.65 kg, low-altitude, and hand-launchable fixed-wing UAV, Techpod,
see Fig. 1a. The platform is a standard T-tail configuration, fixed-pitch, pusher propeller. Onboard avionics
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including a 10-axis ADIS16448 Inertial Measurement Unit (IMU), u-Blox LEA-6H GPS receiver, and Sen-
sirion SDP600 flow-based differential pressure sensor feed measurments to a Pixhawk Autopilot, an open
source/open hardware project started at ETH Zurich.19 Pixhawk features a 168 MHz Cortex-M4F microcon-
troller with 192 kB RAM for online state estimation and low-level control. A light-weight, robust Extended
Kalman Filter runs onboard fusing sensor measurements to provide state estimates including a local three-
dimensional wind vector, modeled statically with slow dynamics.20 As Techpod flies at a nominal airspeed
of 14 m s−1, the aircraft is easily susceptible to high winds present in low flight altitudes (below 500 m AGL),
motivating explicit consideration of wind estimates within high-level position control.

(a) Techpod Test Platform (b) Techpod Avionics/Hardware

As processing power on the Pixhawk microcontroller is somewhat limited, an additional onboard ODROID-
U3 computer with 1.7 GHz Quad-Core processor and 2 GB RAM, running Robotic Operating System (ROS)21

is integrated into the platform for experimentation with more computationally taxing algorithms. High-level
controllers can be run within ROS node wrappers which communicate with the Pixhawk via UART serial
communication; average communication latency was observed <3 µs, see Fig. 1b.

The control architecture implemented on Techpod in the current work can be seen in Fig. 2. The low-level
autopilot, all processed onboard the Pixhawk, contains a standard cascaded PID structure with additional
compensation for coordinated turns, i.e. a yaw damper signal, rr = g sinφ

V . Attitude errors are fed to a
PI block followed by rate errors running through a D block (proportional gain on rates), finally generating
appropriate actuator commands δe, δa, δr (elevator, aileron, and rudder deflections, respectively). The EKF
feeds back appropriate signals to each respective controller resulting in a stabilized closed loop low-level
system. For the purposes of this work, we consider only the typical flight regimes employed in the vast
majority of UAV missions, where flight is mostly planar, and maneuvers are mostly docile. Within this
regime, the described PID control architecture is reasonably fit to track attitude commands for higher level
trajectory following objectives.

High-level altitude and airspeed control is achieved with an implementation of the Total Energy Control
System (TECS), also onboard the Pixhawk Flight Management Unit (FMU). Airspeed references are mostly
tracked utilizing pitch commands, and altitude holds are maintained using throttle inputs δT . We assume
altitude and airspeed are reliably tracked, and our focus lies with lateral-directional trajectory tracking.
Detail into the last remaining blocks in the control architecture will be elaborated in Section IV.
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Figure 2: Control architecture

III. Flight Dynamics & Identification

In this section, we consider the lateral-directional kinematics of fixed-wing aircraft, expressed under a
coordinated turn assumption, as follows in the inertial frame, FI :

ṅ = V cos ξ + wn

ė = V sin ξ + we

ξ̇ = g tanµ
V

(1)

where n and e are the Northing and Easting positions, respectively, ξ is the heading, V is the air-mass-
relative airspeed, µ is the bank angle, g is the acceleration of gravity, and wn and we are the Northing and
Easting components of the wind vector, respectively. Note that bank, µ and heading, ξ angles are defined
about the air-mass-relative airspeed vector. This distinction is important when considering flight dynamics
in wind, where the ground-relative flight path of the vehicle is defined as the course angle, χ from North, n̂
to the ground speed vector, vg, see Fig. 6.

Making the assumption that the low-level controller is able to adequately regulate sideslip and altitude,
i.e. the airspeed vector lies on the body-x axis, we may reasonably make the simplification of equating roll,
φ and bank, µ angles, which are typically very close in value. This assumption is useful when prescribing
attitude references to the low-level controller, which considers estimated body-axis, FB defined Euler angles
as feedback.

The kinematics described in equation (1) can be further enhanced with knowledge of the underlying
low-level closed-loop plant dynamics. I.e. identifying a representable transfer function, φ/φr(s) from the roll
input, φr received by the low-level autopilot, to the resulting roll angle, φ measured in stabilized flight.

The objective of closed-loop system identification is to capture the dynamics of the aircraft with the
low-level controller in the loop, which guarantees the flight stability of the UAV under various maneuvers.
The low-level PID controller should be appropriately tuned before the system identification experiments,
though to what degree the low-level loops perform is not necessarily important (outside of instability), as
the identification should capture whatever dynamic is present for use in the high-level controller.

For identification of the roll channel, a series of multi-step inputs called 2-1-1 maneuvers were chosen. A
2-1-1 maneuver is a modified doublet input, which ideally consists of alternating pulses with pulse widths in
the ratio 2-1-1. As demonstrated by Morelli,17 flight time required for the 2-1-1 maneuver is approximately
one-sixth of the time required for the standard frequency sweep maneuver, thus enabling one to gather more
data in the same flight time, which is often limited by battery capacity. At the same time, concatenated 2-1-1
maneuvers make for suitable identification inputs for both frequency and time domain system identification
approaches, at par with frequency sweeps. For our purposes, a unit pulse width of 1 s was chosen. Amplitude
of these maneuvers were varied in the range allowed by the low-level controller, i.e., |φ| ∈ [0◦, 30◦].

Ordinarily, once in stabilized mode, the low-level controller receives its pitch and roll command references
from a high-level controller, such as L1-Navigation (also known as Nonlinear Guidance Law, NLGL)22 for
lateral-directional path following and TECS (Total Energy Control System) for airspeed and altitude control.
For system identification experiments, the autopilot source code was modified such that, once the system
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Figure 3: Sample system ID maneuver with respective roll angle output.

identification switch on the RC transmitter was on, pitch and roll commands from high level controller
are over-written by commands for system identification maneuvers. For roll channel identification, pitch
reference command to the low-level controller was kept at zero, while the roll reference command was varied
as per the 2-1-1 maneuvers. An example can be seen in Fig. 3. With appropriate settling time added before
and after the maneuvers, a set of two 2-1-1 maneuvers could be performed at a stretch, which facilitates
concatenation of data later for system identification. Several different data sets are collected in this manner,
including some with different roll amplitudes.

For system identification analysis, simple ARX models up to fifth order were chosen. Models beyond that
order were likely to overfit the data, and additionally, would add too many additional states to the high-level
controller, increasing computational complexity and size. For every data-set, 20 ARX models with different
numbers of pole-zero combination were created. Additionally, each of the 20 models was also evaluated with
and without a set of delays, resulting in 10 variations of every ARX model.

For system identification, time domain based Instrument Variables (IV) method is used considering the
ease of use facilitated by ready to use computation tools, and guaranteed good results18.17

Once the individual ARX models with and without delays for a particular order model were evaluated,
the best among them was chosen. This was then compared with similarly chosen ARX models of different
combinations of zeros and poles. With every data-set, fifth order models typically gave best individual fits
to the data sets, however second and third order models tended to generalize more and give better validation
fits. Further, the addition of delay did not have any significant effect on improving the model fits to validation
data. Since our NMPC is formulated in continuous time (see more information in Section IV), and modeling
of a delay there is more difficult, inclusion of delay for the sake of an insignificant increase in model fit is not
justified. The models of a particular order with the best fits among the different models of the same order
are shown in Fig. 5

Considering all the factors, namely ease of augmentation to the system dynamics and the size of com-
putational complexity thereby, and good model fits to validation data-sets, a second order model of the
following form was chosen.

b0
s2 + a1s+ a0

(2)

From this model, the kinematics in equation (1) are augmented in the time domaim with two differential
equations describing the identified second order roll channel dynamics. Note, again, that we assume µ ≈ φ.

˙(
µ

µ̇

)
=

(
µ̇

b0µr − a1µ̇− a0µ

)
(3)
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IV. Nonlinear Model Predictive Control

In this section, we formulate a high-level lateral-directional trajectory tracking controller in a Nonlinear
Model Predictive Control (NMPC) scheme. A general objective is constructed for minimizing the position
error to a given track,

et = (d− p)× T̄d (4)

where T̄d is the unit tanget vector at the closest point d from the UAV position p to the current path, while
also aligning the vehicle course with the desired trajectory direction, i.e. minimize

eχ = χd − χ (5)

where χd = atan2
(
T̄de , T̄dn

)
∈ [−π, π]. Here, we use the atan2 function from the standard C math library.

See also Fig. 6. Use of this general objective formulation allows inputing any path shape, so long as the
nearest point from the UAV position can be calculated and a direction of motion along the path (i.e. the
path tangent) is given for minimization throughout the horizon. In this paper, we limit our discussion circle
and line following, geometry for which finding the closest point in the two-dimensional plane has a simple
analytic form, the calculation of which will be omitted for brevity.

Figure 6: Inertial Frame Definitions

We define the state vector x = [n, e, µ, ξ, µ̇, xsw]
T

, and control input u = µr, where the augmented state
xsw is a switch state used within the horizon in the case that desired trajectories are piece-wise continuously,
or generally discretely, defined. The switch variable has no dynamic until a switch condition is detected
within the horizon, at which point an arbitrary differential is applied for the remainder of the horizon
calculations. I.e.

ẋsw =

α switch condition met ‖ xsw > threshold

0 else
(6)

The switch state, then, either has a value of zero (i.e. the aircraft has not met the switching condition), or
some value greater than zero, at which point the internal model within the controller will switch to tracking
the next path throughout the remainder of the control horizon. When a track switch has been fully achieved
(i.e. with respect to the actual current aircraft position/velocity), the value of the switch state is reset to
zero throughout the horizon.

A relevant example of such a case for fixed-wing vehicles is that of Dubins Car or Dubins Aircraft, in the
three-dimensional case, path following, see23 . Dubins paths can be used to describe the majority of desired
flight maneuvers in a typical fixed-wing UAV mission. Further, using continuous curves such as arcs and
lines allow time-invariant trajectory tracking, as oppose to desired positions in time, a useful quality when
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only spatial proximity to the track is desired and timing is less important; for instance, if energy conservation
is required and a single low airspeed reference is given to be tracked. For the remainder of the paper, we
will consider Dubins segments as path inputs to the high-level controller, though it should be noted that the
objective formulation is not limited to these.

We use the ACADO Toolkit13 for automatic generation of fast, embedded C-code implementations of
nonlinear solvers and integration methods. Though formulated in continuous time, a direct multiple shooting
technique is used to solve the optimal control problem (OCP), where dynamics, control action, and inequality
constraints are discretized over a time grid of a given horizon length N . A boundary value problem is
solved within each interval (or shooting node) and additional continuity constraints are imposed. Sequential
Quadratic Programming (SQP) is used to solve the individual Quadratic Programs using the active set
method implemented in the qpOASES solver.24 A Gauss-Newton based real-time iteration scheme is used
which iteratively improves the current online solution during each step of the process during runtime.25 Note
that the ACADO framework does not explicitly support non-smooth functions. Here, we exploit an option to
use externally defined C-based model and objective functions. Numerical jacobians are implemented using a
finite difference. Both control and numerical stability properties for this implementation are not guaranteed;
however, extensive simulation studies and flight experimentation have to-date shown no ill effects, provided
control input constraints are set. A more robust investigation into possible instabilities is to be conducted
in future work.

The OCP takes the following continuous form:

min
U,X

∫ T

t=0

(
(y(t)− yref (t))

T
Q (y(t)− yref (t)) + (u(t)− uref (t))

T
R (u(t)− uref (t))

)
dt

+ (y(T )− yref (T ))
T
P (y(T )− yref (T ))

subject to ẋ = f(x,u) (equations (1) & (3) & (6))

y = h(x,u)

u(t) ∈ U
x(0) = x (t0) .

(7)

where y = [et, eχ, µ, µ̇, µr]
T

and U : µrmin
≤ µr ≤ µrmax

. Here, µr is included in the objective function

doubly; once within the standard control penalty (i.e. (u(t)− uref (t))
T
R (u(t)− uref (t))), and again within

y, allowing the formulation of a slew rate ∆µr(t) = µr(t) − µrk−1
(t), i.e. the devation from the previous

horizon control solution, which may be penalized by the weight component Q∆µr
. The previous control

horizon µrk−1
is stored after the last NMPC iteration step and input as a reference value during the next.

Note, this is not identical to the typical slew rate penalty often utilized in discrete MPC formulations,
but actually a comparison at each shooting node to the previous control solution at that same node. The
difference between each subsequent time step within the horizon in a given optimization step is not considered.
This penalty is implemented to penalize bang-bang control action caused by unregulated action within the
first shooting node between each NMPC iteration. In particular, we are interested in relatively long horizons
for considering optimal path convergence in various windy scenarios where the ground speed may grow faster
than the chosen horizon allows adequate reaction time. Longer horizons can be achieved without overly
increasing the horizon length, and thus the dimensionality of the problem, by the use of larger discretization
steps, i.e. we use Tstep=0.1 s. This, however, in turn exacerbates the mentioned issue of bang-bang control
action, as the next NMPC iteration step measurement can possibly deviate enough to induce a large control
step. An example of the issue can be seen in Section V. As the next action in the control horizon is applied
to the vehicle at each iteration, the deviation in the first few shooting nodes should be penalized, but not
the latter steps, as this would result in an overall sluggish control performance. To remedy this discrepancy,
a decreasing quadratic function is defined in the control deviation weight horizon, so that latter nodes are
not penalized, and earlier nodes are.

Other online parameters augmented to the model and held constant through the horizon are the current
airspeed V , current wind vector w, and the current and next sets of Dubins path parameters Pcur, Pnext,
where line parameters include P = {type = 0,a,b}, a and b are two waypoints defining a straight segment,
and arc parameters include P = {type = 1, c, R, dir, ξ0,∆ξ}, c is the center point of the arc, R is the radius,
dir is the loiter direction, and ξ0, is the heading pointing towards the entrance point on the arc, and ∆ξ
is the arclength traveled. The path segments are managed and rotated based on an acceptance radius and
heading direction criteria.
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V. Simulations & Flight Experiments

In this section, we present simulation results as well as real world flight experiments with the Techpod
test platform using the designed NMPC with the identified low-level model.

Before testing on the platform, extensive two-dimensional simluation of the kinematics with augmented
second order bank dynamics was carried out to obtain a rough tuning of objective weights as well as experi-
ment with various magnitudes of wind. A sample of the simulation findings is shown. Displayed simluation
results were obtained using objective weights Qdiag = [0.01, 1, 0.1, 0.01, 100], Rdiag = 10 and end term ob-
jective weights Pdiag = [0.1, 10, 0, 0.01, 0]. The discretization time step within the horizon is Tstep=0.1 s, and
the NMPC is iterated every 0.05 s. In Fig. 7, two simulations, one with a control horizon length of N = 40,
set as a minimum to ensure capturing an entire 90° turn at maximum bank, and the other with N = 80 are
initialized at the same position and orientation and commanded to track a circle in high wind. The vehilces
in the simulation were set to an airspeed of 14 m s−1. Further, the desired loiter radius is smaller than the
minimum trackable radius at the given flight speed plus added wind component. Thus, as shown, the high
winds cause a large deviation from the track when the UAVs fly down wind. The UAV with the longer hori-
zon is able to forsee the future deviation, and plans an adverse control action earlier in the loiter to enable
less deviation over the remainder of the horizon. Despite the windy conditions, both horizons, however, are
able to converge initially to the circle when feasible. Further, bank angle rates are within acceptable limits,
and control input constraints are respected.
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Figure 7: N = 40 and N = 80 length horizons for circle tracking in we = −10 m s−1.

Fig. 8 demonstates the possible bang-bang effect when the deviation of the control horizon from the
previous solution is not penalized. The displayed control solutions are take from the same simulation shown
in Fig. 7.

After testing the controller in simulation. Two flight experiments were conducted to demonstrate various
trajectory following peformance. A horizon length of N = 40 was used with objective weights and end
term objective weights set to Qdiag = Pdiag = [0.01, 10, 0.1, 0.01, 100], R = 10. The discretization time
step within the horizon is Tstep=0.1 s, and the NMPC is iterated every 0.05 s. Solve times for the NMPC
running on the ODROID-U3 vary, depending on the type of path Pcur the aircraft is following, as well
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as the next path Pnext in the trajectory, if there are switches within the given horizon length. Table 1
shows the mean, standard deviation, and maximum computation times for the controller running during the
Dubins path following experiment (see Figure 11). Note these times include the solver as well as required
message handling, path management, and data conversion executed within each iteration of the ROS node.
Computation times are taken from portions of flight data wherein the aircraft is only tracking a line or
circle, respectively, throughout the control horizon. Switching within the horizon results in increases or
decreases in computations depending on which path is being tracked and for what portion of the horizon
(e.g. circle tracking times will decrease as a switch to a line path is observed within the control horizon).
Both experiments took place during very calm conditions, and the wind speed was negligible.

Table 1: NMPC computational load on ODROID-U3.

Mean [ms] Standard Dev. [ms] Maximum [ms]

Line following 9.96 0.250 10.5

Circle following 13.5 0.439 15.1

In Fig. 9, Techpod is commanded towards a box pattern until returning to a loiter circle. Minimal
overshoot is observed, considering the set acceptance radius of 35 m, and convergence within less than 1 m of
position error is observed for each line segment and the final loiter circle. Figure 10 shows the commanded
and actual roll angles as well as the roll rate, which are both kept within acceptable bounds.

In Fig. 11, an arbitrary sequence of Dubins segments were given to the high-level NMPC. Again, good
convergence to the path is seen, with acceptable state responses shown in Fig. 12. Steady-state position error
remained within 1 m after convergence to the path. Note this is without the inclusion of integral action, and
either model uncertainties, or variable wind conditions perhaps not properly estimated, or gusts could cause
larger track errors. The end of the shown flight path is stopped just before converging to the final loiter due
to rain fall starting during the flight experiment and manual take-over of the aircraft for landing.

It should be noted that each flight experiment shown here was also flown separately with L1 guidance for
roll command generation, achieving similar performance in these non-windy conditions. Our focus in this
work, however, is not on comparing methods, but verfiying the feasibility of the given NMPC formulation
in real flights. In higher wind scenarios such as those shown in simulation, similar control performance with
L1 loops would require some form of wind-dependent gain scheduling. Similar scheduling would also likely
be required for vector-field based approahes, notorious for being somewhat difficult to tune.23,26,27

VI. Conclusions & Future Work

In this paper, we outlined an approach for low order equivalent system modeling and identification of
control-augmented low-level roll channel dynamics for a small fixed-wing UAV and, further, demonstrated
the importance of their inclusion within the model of a high-level Nonlinear Model Predictive Controller.
The control-augmented model identification process was observed to significantly decrease identifying flight
time, as well as simplify the resulting model structure, when compared with open-loop, low-level aerodynamic
identification. Open-loop simulation of the identified dynamics also demonstrated predictable behavior, even
within long horizons, due to the stabilized dynamics; a useful trait for high-level controllers.

An NMPC was designed for Dubins car path following in the two-dimensional lateral-directional plane,
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Figure 9: Flight experiment: box tracking.
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Figure 10: Flight experiment: box tracking attitude and rates.
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Figure 12: Flight experiment: Dubins tracking attitude and rates.

12 of 14

American Institute of Aeronautics and Astronautics



and was shown capable of good tracking performance, even in high wind conditions (through simulation
experiments), and arbitrary path combinations, shown in flight experiments. Design of the objective function
was elaborated towards avoiding bang-bang control action, and including track switching behavior within
the control horizon. Computation times onboard the ODROID-U3 were observed to be well within feasible
limits for online solutions of adequate high-level command generation (or guidance). Horizon lengths up to
eight seconds were investigated in simulation, and four seconds within flight experiments, showing utility in
the determination of optimal flight path convergence to a given track in strong wind.

Though promising results, alternative objective functions could easily be designed and tested as off-shoots
from the given basic formulation, e.g. inclusion of obstacle avoidance, or more complex paths. The true
benefit of such an online optimization-based approach to control is the modularity of the cost function, as
well as the inherent online adaptability to changing environmental conditions. It is this point where more
simple analytic approaches, e.g. L1 navigation or vector field based approaches, often require gain scheduling
per condition, a process which takes time to properly tune.

Further future work will focus on extending the approach to three dimensions, with longitudinal dynamics
also included into the formulation. Implications of a three-dimensional controller on low-level model iden-
tification would likely necessitate MIMO Linear Time Invariant (LTI) plants, or possibly nonlinear model
structures, as longitudinal aircraft dynamics, even when stabilized, typically vary with airspeed and angle
of attack. Last, future work should include stability analysis, both in the control algorithm, as well as the
numerical methods used to solve the sometimes non-smooth optimization problem posed.
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