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"Essentially, all models are wrong, but some are useful" (George Box)
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Abstract

Concrete dams can be affected by long-term processes such as alkali aggregate reaction,
concrete ageing and irreversible rock mass deformation, from which they can suffer ser-
ious damage. Therefore, an early detection of deficiencies by the use of a proper mon-
itoring system in combination with a dam behaviour analysis model is essential. A dam
behaviour analysis model links measured behaviour indicators, e.g. displacements, with
the environmental conditions, i.e. mainly the water level and the temperature distribution
in the dam body. This is usually done empirically by statistical methods. The effects of
the environmental conditions are represented by model equations. A common approach
to represent the effects of the water level are polynomials and there are several approaches
proposed in the literature to represent the effects of temperature. Nevertheless, the differ-
ent temperature variables are likely to be correlated. Thus, multicollinearity and unstable
models result.

The goal of this thesis is to evaluate existing statistical approaches used in the field of
dam behaviour analysis and to improve them if necessary. The thesis is divided in the
following main parts: (i) heat transfer analysis, (ii) evaluation of existing models and (iii)
the presentation of new approaches and its (iv) application.

In concrete dams, heat conduction can be regarded as a one-dimensional problem between
the upstream and the downstream boundary. The analysis is done by the use of the fre-
quency domain solution of the heat conduction equation. Usually the thermometers are
embedded in the concrete body. Therefore, inverse heat conduction analysis has to be
performed. Since this is an ill-conditioned problem, stabilising procedures are needed.
Besides the evaluation of existing approaches, a new approach, based on the limitation
of the amplification of high frequencies, is proposed. It is successfully applied to several
case studies.

In a next step, well known statistical approaches are assessed. The evaluation of the
behaviour analysis procedures shows that the observation-prediction comparison, which
is commonly applied, can lead to results that are not robust. Hence, wrong conclusions
about the structural behaviour might be drawn. Thus, it is recommended to use adjusted
behaviour indicators. The latter are obtained by subtracting the reversible effects from the
measured behaviour indicator. It is shown that this approach is very robust and the results
are independent of the chosen calibration period.

Moreover, the evaluation of the approaches to consider temperature effects shows that
their performance mainly depends on the data and less on the models itself. All models
are able to detect artificial behaviour changes previously applied to the data. It is shown
that the magnitude of the behaviour changes found by a model correlates with its residual
standard error.
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Finally, new approaches are presented. Beam models are introduced to create physic-
ally based shape functions that can be used to create hybrid models. For gravity dams,
a cantilever beam model with an elastic abutment and for arch dams an arch-cantilever
model is set up. The models have been applied to several dams. Due to the fact that
only few uncorrelated variables result, multicollinearity does not occur. Therefore, beam
models are very robust. Furthermore, the beam model for gravity dams is used to perform
multi-objective calibration with the Markov Chain Monte Carlo method in a Bayesian
framework. The advantage of multi-objective calibration is that the measured displace-
ments are simultaneously matched with the model output on several levels. This leads to
simple models that allow for drawing comprehensible conclusions based on engineering
judgement. Moreover, due to the simultaneous analyses of the displacement at different
levels, a potential abnormal behaviour can be detected and correctly located.

Because the adjusted behaviour indicators are very robust with respect to different calib-
ration periods, it is recommended to use all available measurement data for model calibra-
tion. Consequently, extrapolations that may result in unstable predictions can be avoided.
This change in the concept of behaviour analysis can be seen as a paradigm shift from a
statistical prediction to a statistical inference problem.
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Kurzfassung

Talsperren können Langzeitprozessen wie Alkali-Aggregat-Reaktionen, Betonalterung
und Taldeformationen ausgesetzt sein. Durch die Talsperrenüberwachung sollen sol-
che sicherheitsrelevanten Prozesse möglichst frühzeitig erkannt werden. Für die Über-
wachung werden Verhaltensmodelle, welche gemessene Verhaltensindikatoren, z.B. die
Verformung auf Kronenniveau, mit den einwirkenden Umweltbedingungen in Relation
setzen, verwendet. Für die Überwachung der Deformation von Betonsperren sind der
Wasserspiegel und die Betontemperatur die Haupteinflussgrössen. In der Regel werden
statistische Verhaltensmodelle, welche die Grössen empirisch in Beziehung setzen, ver-
wendet. Die Beziehung wird dabei durch Modellgleichungen beschrieben und für die
Einwirkung des Wasserstands wird normalerweise ein Polynomansatz verwendet. Für
die Temperatureffekte gibt es verschiedene Ansätze aus der Literatur. Jedoch sind die
verschiedenen Temperaturvariablen, welche alle von der selben Umgebungstemperatur
abhängen, oft korreliert. Daher tritt bei diesen Modellen üblicherweise Multikollinearität
auf, was in instabilen Modellen resultiert.

Das Ziel dieser Dissertation ist, die existierenden statistischen Verfahren, welche im
Bereich der Verhaltensanalyse von Talsperren angewendet werden, zu evaluieren und
weiter zu entwickeln. Die Arbeit ist in die folgenden Hauptteile gegliedert: (i) Wär-
metransport, (ii) Evaluierung der bestehenden Ansätze, (iii) Entwicklung neuer Ansätze
und (iv) Anwendung an Fallbeispielen.

Die Wärmeleitung in Betontalsperren kann als eindimensionales Problem zwischen der
Wasser- und der Luftseite betrachtet werden. Die Lösung der Wärmeleitungsgleichung
kann im Frequenzbereich durchgeführt werden. Da die Thermometer mit einem bestimm-
ten Abstand zur Oberfläche im Beton eingebaut sind, muss inverse Wärmeleitung an-
gewendet werden, um die Temperaturinformation über die gesamte Mauer zu kennen.
Da inverse Wärmeleitung ein schlecht konditioniertes Problem ist, sind Stabilisierungs-
verfahren notwendig. Neben der Anwendung von bestehenden Stabilisierungsverfahren
wurde ein neuer Ansatz entwickelt. Dieser beruht auf der Limitierung der Amplifika-
tion der hohen Frequenzen. Der Ansatz wird erfolgreich an verschiedenen Fallstudien
angewendet.

In einem nächsten Schritt werden die aus der Literatur bekannten statistischen Verfahren
evaluiert. Die Analyse zeigt auf, dass der oft verwendete Soll-Ist-Vergleich zu nicht ro-
busten Resultaten und demzufolge zu falschen Aussagen führen kann. Daher wird em-
pfohlen, das Konzept des korrigierten Verhaltensindikators zu verwenden. Letzterer wird
durch die Subtraktion der reversiblen Effekte (z.B. aus Wasserstand und Temperatur) vom
gemessenen Verhaltensindikator erhalten. Es kann gezeigt werden, dass dieser Ansatz
sehr robust ist und die Resultate unabhängig von der Kalibrierungsperiode sind.
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Die Analyse der Ansätze zur Berücksichtigung der Temperatureffekte zeigt, dass die
Modellgüte vor allem von den Messdaten und nicht von den eingesetzten Modellen ab-
hängig ist. Alle untersuchten Modelle sind imstande, den Daten hinzugefügte, bekannte
Verhaltensänderungen zu finden. Des Weiteren kann gezeigt werden, dass die Grössen-
ordnung von Verhaltensänderungen, die mit einem Modell erkannt werden können, mit
dem Standardfehler der Modelle korreliert.

In einem letzten Schritt werden neue Ansätze aufgezeigt. Auf Stabstatik basierende
Modelle können dazu verwendet werden, physikalisch basierte statistische Ansatzfunk-
tionen zu erhalten. Dies führt zu hybriden Modellen. Für Gewichtsstaumauern wurde
ein Modell mit Kragarm mit einer elastischen Einspannung entwickelt und für Bogen-
staumauern ein Balkenrostmodell aufgesetzt. Die Modelle werden an verschiedenen Fall-
studien angewendet. Da bei solchen Modellen wenige Variablen resultieren, die nicht
korreliert sind, tritt keine Multikollinearität auf. Dies führ zu sehr robusten Modellen.
Darüber hinaus wurde das Balkenmodell für Gewichtstaumauern dazu benutzt, um eine
statistische Optimierung auf mehrere Zielfunktionen durchzuführen. Der Vorteil dabei
ist, dass die Deformation auf verschiedenen Höhenlagen gleichzeitig an die Messdaten
angepasst wird. Dazu wurde die sog. Markov Chain Monte Carlo Methode verwendet.
Dies führt zu einfachen Modellen, welche für Ingenieure gut nachvollziehbare Resultate
liefern. Durch die gleichzeitige Analyse des Verhaltens auf mehreren Höhenlagens kann
ein abnormales Verhalten nicht nur gefunden, sondern auch lokalisiert werden.

Da bei der Verwendung von korrigierten Verhaltensindikatoren von der Kalibrierungs-
periode unabhängige, sehr robuste Resultate erhalten werden, wird empfohlen, alle ver-
fügbaren Daten für die Kalibrierung zu verwenden. Dadurch können Extrapolationen
vermieden werden. Dieser Konzeptwechsel kann als Paradigmenwechsel von einem stat-
istischen Voraussageproblem hin zu einem statistischen Inferenzproblem gesehen werden.
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1 Introduction

1.1 Background
Dams are manmade structures that impound water by closing a valley. In general, they are
used to manage available water resources for the purpose of hydropower electricity pro-
duction, drinking water supply, irrigation, flood protection, low flow control and tourism
(Boes, 2015a). Many of them are built for multiple purposes. Usually, these structures
are located in mountainous or hilly areas upstream of villages and cities. The collapse
of a large dam would lead to an immense flood wave and to devastation downstream. To
guarantee safety throughout their service lives, it is essential to monitor such structures.

One can basically distinguish between concrete and embankment dams. The difference is
not only due to the material that was used for construction but also due to the behaviour
during the lifetime of the structure. Concrete dams can be influenced by various phe-
nomena that can affect their safety. These are mainly alkali aggregate reactions (AAR),
concrete ageing and valley deformations. AAR, the most common phenomenon, is a
chemical reaction between the components of the aggregates and the pore solutions in
concrete. It leads to concrete swelling which causes volume expansion or stress changes.
Additionally, the tensile strength and the Young’s modulus of the concrete can decrease.
The maximal expansion that can take place lies in the order of 0.2 - 0.5%, corresponding
to a thermal expansion of 200 - 500 °C (Saouma, 2014). Thus, as a worst-case scenario
AAR can lead to the deterioration of a structure. There is a number of dams worldwide
that were demolished and had to be rebuilt due to the effects of AAR. A recent study of
the Swiss Committee on Dams in Switzerland leads to the conclusion that around 50% of
the large concrete dams experience an irreversible displacement. In most of the cases, an
AAR is supposed to be the origin and it is estimated that 50% of the AAR affected dams
have to be rehabilitated in the future (Amberg, 2015). Since the developing progress of
an AAR is very slow, it becomes visible not before 20 - 30 years after the construction
(Amberg, 2011). While concrete dams, especially arch dams, are sensitive to valley de-
formations, embankment dams are not. The failure of embankment dams can mostly be
related to internal erosion (Johansson, 1997). Internal erosion means that the fine core
material that is important for the impermeability is washed out. This leads to increasing
drainage flow and turbidity of the drainage water at the bottom of the dam. Thus, it is
essential to monitor these parameters at embankment dams.

Generally, it is important to recognise an abnormal behaviour of the structure at early
stage to prevent failure. Therefore, the behaviour of dams must be monitored frequently.
The behaviour is expressed by measurable variables that represent the global behaviour
of the structure, called behaviour indicators. These are for instance the displacements at
the top level or the drainage flow at the bottom of the structure.
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A safety assessment can be done by comparing observed and predicted values of beha-
viour indicators. The predicted value can be calculated using a model based on input
variables such as environmental conditions (e.g. water level, temperatures). Basically,
there are two modelling approaches; the deterministic method links the behaviour of the
structure and input variables on the basis of physical laws, and the statistical method links
it by regression analysis. In dam behaviour analysis, statistical models are frequently used
since their implementation is straightforward. In 2004, the Swiss Federal Office of Energy
(SFOE) launched the Software DamReg (Weber, 2004), in which statistical models can
be set-up and evaluated. DamReg has recently been re-engineered at VAW and is now
called DamBASE (Gerber et al., 2015). In doing so, the R environment (R Core Team,
2013) has been integrated in the software to facilitate the application and testing of vari-
ous procedures for statistical analysis.

1.2 Research gap

The application of common statistical modelling approaches in dam behaviour analysis
can be challenging. For a behaviour analysis, a regressor model equation has to be
defined. It approximatively describes the relationship between the environmental condi-
tions and the behaviour of the structure. The model accuracy and the prediction accuracy
particularly depend on the chosen model equation.

Regarding the monitoring of displacements of concrete dams, the most difficult part is to
choose functions that consider the effect of the concrete temperature on the displacement
(Swiss Committee on Dams, 2003). There are various approaches in the literature. Many
of them work well for some dams, whereas they may lead to physically meaningless res-
ults for other dams. Since usually a large set of correlated temperature measurements
is available, multicollinearity likely occurs. This can lead to prediction instabilities and
consequently to wrong conclusions. There are different statistical approaches to consider
multicollinearity in the literature. Until now, there is no study in which these approaches
are systematically evaluated. Another approach to reduce the number of variables and
hence the effect of multicollinearity are physically-based models. Due to the integration
of the temperature variables, the individual weights of the temperature measurements are
considered by physical laws. Good results by the use of finite element models were ob-
tained in Obernhuber and Perner (2005) or De Sortis and Paoliani (2007), for example.
Unfortunately, the set-up of finite element models is time-consuming and has to be done
individually for each structure. The use of simplified beam models representing the be-
haviour of concrete dams for the purpose of dam behaviour analysis would allow a more
general use.

Furthermore, dam behaviour models are commonly set up and calibrated to fit the dis-
placement at one level above ground. If several levels are analysed, different sets of
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parameters are estimated. The instantaneous observation of several levels with a multi-
objective calibration would lead to the same parameters for the whole structure and there-
fore allow for drawing comprehensible conclusions based on engineering judgement.

In addition, there is a lot of discussion among practitioners about which part of the data
should be considered for model calibration. Some engineers say, if a good working model
has been achieved, its coefficients shall be fixed. Otherwise, behaviour changes would be
included in the new regression coefficients and thus be part of the model. Others say
that also newly available data shall be included for calibration, since the model precision
increases the more data are considered. Currently, there is no study that prefers either
strategy.

1.3 Objectives and research approach

The focus of the current research project lies on statistical models predicting the crest
displacement of concrete dams. Mainly, the following goals are aimed at:

• evaluate state-of-the-art models by use of prototype data of different Swiss dams
and dam types

• improve robustness
• develop new models considering the effect of temperature on the displacement
• define data part that shall be used for model calibration

These research objectives are tackled as described in the following. Firstly, established
procedures for dam behaviour analysis and models from literature will be studied and
evaluated by the use of prototype data of different Swiss dams and dam types. Secondly,
new approaches shall be developed and tested with the same data sets. The main goal
is to improve the robustness of the models. This can be achieved using physically-based
model equations for the effects of the water level and temperature. The goal is to use
flexible models that can be applied to several dams. Thus, simplified beam models shall
be used instead of finite element models. Since these models can be used to evaluate the
displacement on several levels, multi-objective calibration shall be investigated.

For the use of physically-based models, the temperature field in the dam has to be known.
Based on this, the mean temperature and the linear temperature difference between the
upstream and the downstream side of the dam, which are physically causing the deforma-
tion, can be estimated. Since the thermometers are usually embedded inside the concrete
body, inverse heat conduction analysis is necessary. Due to the fact that inverse heat con-
duction is an ill-conditioned problem, stabilisation procedures are applied. Established
procedures from the literature shall be evaluated and a new approach shall be developed
if necessary.
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Finally, it is investigated which part of the data shall be used for the model calibration.
The findings of this project shall be used to extend the software DamBASE (Gerber et al.,
2015).

1.4 Thesis outline

In Chapter 2, the physical fundamentals are introduced, and the literature review is presen-
ted. In Chapter 3, the heat transfer analysis is introduced. The calibration of the thermal
conductivity is presented and applied for several case studies. In addition, the need of
inverse heat conduction analysis and stabilisation procedures are discussed.

In a next step, presented in Chapter 4, existing modelling approaches are evaluated. The
focus lies on models that allow for displacement monitoring of concrete dams. At the
beginning, different procedures to perform the behaviour analysis are compared. Then,
the approaches to consider the effects of the water level, temperature and time are evalu-
ated separately. Finally, approaches to consider multicollinearity and autocorrelation are
analysed.

Based on the experience of the existing approaches, new approaches are presented in
Chapter 5. First of all, beam models to create hybrid models for gravity- and arch dams are
introduced. These are a cantilever model with an elastic abutment to model the behaviour
of gravity dams and an arch-cantilever model for arch dams. Then, the multi-objective
calibration of the beam model for gravity dams with the Markov Chain Monte Carlo
method is presented. In a next step, the advantage of using Generalized Additive Models
(GAM) is presented. Finally, the difference between prediction and inference, where all
data are used for calibration, is discussed.

In Chapter 7, a work flow for dam behaviour analysis is summarised in a flow chart. Based
on this flow chart, two case studies are presented. In Chapter 8. the main findings of this
work are summarised in the conclusions. The thesis closes with an outlook on further
research.
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2 Literature review and fundamentals

2.1 Dams

2.1.1 Dam types

Different types of dams can be distinguished (Fig. 2.1). There are two main categories, (i)
concrete dams and (ii) embankment dams. Concrete dams are typically grouped in four
main categories, arch dams, gravity dams, arch-gravity dams and buttress dams. Further,
gravity dams can be sub-classified in gravity dams and hollow gravity dams. Embankment
dams are grouped in homogenous embankment dams, central core dams and upstream
faced dams.

a)

f)

b) c) d)

g) h)

e)

Fig. 2.1 Side view of different dam types: a) arch dam; b) gravity dam; c) hollow gravity dam; d)
arch-gravity dam; e) buttress dam f) homogenous embankment dam; g) central core
embankment dam; h) embankment dam with upstream facing.

Arch dams carry the load by the arch effect in horizontal direction and by the cantilever
effect in vertical direction. Thus, the valley must be narrow enough and the rock of good
quality. Gravity dams carry the load in vertical direction into the foundation. They can
be thought as rigid concrete bodies that counter the water load by their weight. To reduce
the weight and therefore the concrete mass, hollow gravity dams are built. To increase the
resistance against tilting, the inclination of the upstream surface can be adapted, which
leads to a vertical component of the water pressure. In addition, there are buttress dams
which lead to an even lower concrete volume but additional work in concrete formwork
construction. Since there are only two buttress dams in Switzerland, they are not treated
in this thesis. There is also a combination of arch- and gravity dams, the so-called arch-
gravity dams.

Homogenous embankment dams are usually limited to a height of around 30 m. Due
to impermeability they should consist of compacted material with a Darcyan velocity
kF < 10�7 m/s. Central core dams are the most used embankment dams. The shoulders
guarantee the stability and the core guarantees the impermeability. Since the core zone
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is small compared to the shoulders, very compact material with kF < 10�9 m/s must be
used. Besides the natural cores, artificial cores such as asphaltic concrete cores or sheet
piles in the case of smaller dams can be used. An upstream facing can consist of cementi-
tious or asphaltic concrete. In recent years, concrete faced rock-fill dams (CFRD) became
very popular. Since concrete is a brittle material, the requirements to limit settling are
high. The choice for a certain dam type depends on several aspects. These are mainly
the topography, the rock quality, the available material and further the design of the spill-
way and the seismicity (Boes, 2015b). More information about the different dam types
and their advantages and disadvantages can be found in Boes (2015b) and Schleiss and
Pougatsch (2011).

2.1.2 Influences quantities on dams

2.1.2.1 Loads for structural safety assessment

Considering structural safety, permanent, varying and exceptional loads should be distin-
guished. The different loads are shown in Table 2.1. Schleiss and Pougatsch (2011) give
more details about these loads and their estimation.

Table 2.1 Loads on dams (adapted from Schleiss and Pougatsch, 2011).

permanent loads varying loads exceptional loads

self-weight water pressure floods

earth pressure sediment pressure earth quakes

anchors uplift force avalanches

temperature mudflows

seepage flow force (plane crash)

pore pressure

snow load

ice load

traffic load

2.1.2.2 Influence quantities on dam behaviour

With respect to the monitoring of dam behaviour, not all loads listed in Table 2.1 are of
importance. Constant loads do not lead to a variation of the monitored variables and ex-
ceptional loads rarely occur. The behaviour of dams is expressed by recordable variables
such as deformations and drainage flows (Schleiss and Pougatsch, 2011). These variables
are mainly influenced by the water pressure which is given by the water level elevation,
the temperature distribution inside the structure, precipitation and snow melt. In addition,
the displacement can be influenced by creep, concrete ageing, deformation of the valley
or an alkali aggregate reaction. In the following, these influences are described briefly.
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Water level

The water body causes hydrostatic pressure that acts on the surface of the structure. In ad-
dition, the reservoir filling has an effect on the valley widening and valley bottom rotation
and therefore also on the dam displacement (Herzog, 1988a).

Temperature

The displacement due to temperature is caused by the temperature field inside the concrete
dam body. This in term depends on the air- and water temperature and the solar radiation.
The heat exchange between the air temperature and the concrete surface is influenced by
convection that is a function of wind speed and topography (Çengel and Ghajar, 2015).
Due to the thermal diffusivity, the temperature change in the middle of the dam is delayed
with respect to the change of the boundary temperatures. The theory of heat transport and
the different processes at the boundary are described in Section 2.3.

Precipitation and snow melt

Precipitation (rain and snow) influences the drainage flow measured at the dam toe. Since
the infiltration and the seepage flow is a slow process, these effects are not instantaneous
(Simon et al., 2013). In the case of snow fall, the snow melt is actually the representative
variable since it causes the infiltrating water.

Hydration heat

The setting of placed concrete causes hydration heat caused by chemical processes. In
thick mass concrete structures, the heat flow is restrained and the temperature rises. The
heat flow induces temperature gradients which in turn lead to tensile stresses. As a con-
sequence, cracks can occur (Schackow et al., 2016).

Bofang (2014) describes the temperature variation inside concrete in time (Fig. 2.2). After
the concrete was placed at temperature Tp, the concrete temperature rises until it reaches
its peak value Tp +Tr. After a first cooling, the temperature rises again due to the cov-
ering by new placed concrete. After some time, the steads temperature Tf which is only
influenced by the air temperature and the water temperature is reached. This can take a
very long time and depends on the thickness of the structure. In the example of Amberg
(2003), it takes nine years until the steady temperature is reached. According to Bofang
(2014), it even can take decades.
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Fig. 2.2 Temperature variation of mass concrete with time. In addition, the development of the
Young’s modulus E is given (Bofang, 2014).

Creep

The mechanical definition of creep is an increasing contracting deformation under con-
stant load. In the case of concrete, the mechanism is explained by chemical unbounded
pore water that is squeezed out. There are several factors that influence the speed and
amount of concrete creeping: Properties of the concrete mixture, conditions when con-
creting, age of the concrete by first loading, temperature, humidity and stress level (Serra
et al., 2012).

Concrete ageing

The properties of concrete change with the age of the structure. If no AAR is present,
compressive strength, tensile strength and the Young’s modulus Ec rise with the age. In
Table 2.2, the Young’s modulus for three dams in Austria is given for tests 90 d or 180 d
after concreting and for core sample tests years later (Pichler, 2009). All of the dams have
experienced a rise of the Young’s modulus with time.

Table 2.2 Young’s modulus of concrete Ec [N/mm2] for tests after construction (at 90 d or 180 d
after placement) and of core samples (12 a or 32 a later) (Pichler, 2009).

test after construction core samples

Weisssee 18.3 (90 d) 28.8 (32 a)

Tauernmoos 20.0 (90 d) 26.9 (12 a)

Schlegeis 23.2 (180 d) 28.2 (12 a)

The concrete can also be affected by a deterioration. This can happen if the water to
cement ratio was high during concreting. This leads to a high porosity in the concrete
and therefore this concrete is susceptible to freezing and thawing (Bossoney and Balissat,
2005).
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Valley deformation

Valley closing or opening may occur due to geological processes or tunnelling and can
lead to irreversible displacements. By tunnelling, water can be drained and the ground
water table is lowered what may lead to settlements (Bremen, 2005). Fig. 2.3 shows that
the valley location in respect of the subsidence cavity controls whether the valley opens
or closes. Gravity dams and embankment dams are less sensitive to valley deformations
than arch dams (Kobelt et al., 2004).

opening closing

drainage induced
subsidence cavity

Fig. 2.3 Valley closing due to tunnelling (adapted from Bremen, 2005).

A famous case where a dam was influenced by tunnelling is the Zeuzier arch dam in
Switzerland. By constructing a test tunnel that was 1500 m away and 500 m below the
dam, high drainage flows up to 1000 l/s occurred. This led to massive settling of the
rock mass and therefore valley deformations. The progress of the drainage flow and the
dam displacement at crest level is shown in Fig. 2.4. Within one year, the crest deformed
around 70 mm.

[mm]Q [l/s] 700 - 1000 l/s

water enters in
test tunnel irreversible

crest displacement

Fig. 2.4 Drainage flow in test tunnel and irreversible crest displacement of Zeuzier arch dam
(adapted from Bremen, 2005).
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Alkali aggregate reaction

Alkali aggregate reaction (AAR) is a chemical reaction between the components of the
aggregates and the pore solutions in concrete. Three reaction types can be distinguished
(HolcimSchweizAG, 2008). The alkali silica reaction (ASR), the slow rate alkali-silicate
reaction (ASSR) and the alkali-carbonate reaction (ACR) (Amberg, 2011). Three condi-
tions must be fulfilled so that an AAR can occur: (i) a content of reactive aggregates that
is greater than the threshold value, (ii) enough available alkali, and (iii) sufficient mois-
ture (Léger et al., 1996). AAR leads to concrete swelling which causes volume expansion
or stress changes in the case of restrained structures. In addition, the Young’s modulus
and the tensile strength of concrete can decrease (Saouma et al., 2007), possibly leading
to cracks in the dam (Amberg, 2011). The maximal expansion that can be achieved by
an AAR lies in the order of 0.2÷ 0.5. This can be compared to a thermal expansion of
200÷500 °C (Saouma, 2014).

2.1.3 Effects on dam behaviour

2.1.3.1 Separation into reversible and irreversible effects

The influence quantities described in Section 2.1.2.2 have an effect on the structure that
can be expressed in the form of deformation (displacement or rotation) or drainage flow
at different locations. The effects are a superposition of different influences (Bianchi and
Bremen, 2000). The influences can have a reversible (elastic) or an irreversible (plastic)
effect to the structure (Swiss Committee on Dams, 2003). Therefore, it is common to
separate between reversible and irreversible effects. Generally, they can be grouped as
shown in Table 2.3. In addition, they can also be grouped in instantaneous and deferred
effects (Swiss Committee on Dams, 2003). In the following, the effects of the different
influences are discussed separately for concrete dams and embankment dams.

Table 2.3 Reversible or irreversible effects on the structure.

reversible effects irreversible effects

water level hydration heat

temperature creep

precipitation concrete ageing

snow melt valley deformation

alkali aggregate reaction (AAR)

2.1.3.2 Concrete dams

Displacement

If the material behaviour is linear elastic, the mechanical pressure that acts on the dam
leads to an instantaneous elastic displacement of the structure. In addition to this elastic
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behaviour, a delayed viscous response may occur. Lombardi et al. (2008) describe this
phenomenon for a large arch dam with a height of H = 220 m. They assumed that the
observed viscous behaviour comes from the concrete properties that are not linear elastic
for large stresses and the drainage of the rock foundation.

The influence of the concrete temperature on the displacement is different for arch- and
gravity dams. The main difference comes from the different structural behaviour and the
difference in the thermal inertia. The core temperature changes faster in a thin arch dam
than in a thick gravity dam. The contribution due to temperature to the total displacement
is different for small and large dams. For small arch dams, temperature is the controlling
influence for displacement (Perner and Obernhuber, 2009) whereas for large arch dams it
is the water level.

Tatin (2014) modelled the displacement of a gravity dam and an arch dam with finite
elements. Fig. 2.5 shows the result of his simulations. For the gravity dam, the temperat-
ure difference between the upstream and the downstream side (gradient) is the important
quantity. The mean temperature has only a minor influence. For the arch dam, it is vice
versa. The mechanical decomposition into the mean temperature Tm and the temperature
difference Td is explained in Section 2.2.2.3.
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Fig. 2.5 a) Modelled temperature displacement for a gravity dam and b) for an arch dam for a
period of one year. The parts of the mean temperature (green) and temperature difference
(blue) are separately displayed (adapted from Tatin, 2014).

Tatin et al. (2013a) identified the main factors of temperature displacement in a case study
of a gravity dam. They were interested in the deviation of a complex FE-model to mon-
itoring data. Fig. 2.6 shows the results of this analysis. Going from number 1 to 10,
different thermal phenomenons were added to the model. The larger the increase of the
standard deviation of the residuals from one step to the next, the more important was the
influence of an added thermal phenomenon. It can be concluded that the water temper-
ature and the solar radiation have a significant effect on the displacement. In contrast,
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the convection and the radiative exchanges are negligible. In addition, Tatin et al. (2015)
showed that accounting for the water temperature could lower the standard deviation of
the residuals for seven out of eight dams.

1 - infinite diffusivity
2 - finite diffusivity
3 - water temperature
4 - convection and radiation (no wind)
5 - convection and radiation (random wind)
6 - solar radiation (south)
7 - solar radiation (east)
8 - solar radiation (north)
9 - variation of the retention level
10 - real monitoring data
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Fig. 2.6 Different thermal phenomenon (1-10) were added in sequence to a finite element model.
Then, the difference to a statistical model (standard deviation) was regarded. The larger
the increase of the standard deviation of the residuals from one step to the next, the more
important was the effect (adapted from Tatin et al., 2013a).

Irreversible displacements can be caused by valley creep, concrete ageing, valley deform-
ation or an AAR. As described in Section 2.1.2, valley deformations can lead to displace-
ments in both directions, AAR leads to a volume expansion, creep to a compression and
concrete ageing to a stiffer structure. The common characteristic of these influences is
that all are functions of time. Since they can occur simultaneously, the separation is diffi-
cult (Bossoney and Balissat, 2005). An AAR can be hidden due to creep, shrinkage and
thermal cooling in the early years (Amberg, 2009). Fig. 2.7 shows that the evolution of
an AAR can be hidden due to creep for several years.
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Fig. 2.7 AAR expansion can be hidden by creeping (Saouma, 2014).

Drainage flow

The water level is the main influence on drainage flow that is measured at the dam toe.
Since the seepage flow is a very slow process, the effect is deferred. Simon et al. (2013)
observed in a case study that the measured uplift force was not the same in summer and in
winter since it is affected by the crack opening in the foundation that is influenced by the
dam displacement which in turn depends on the temperature variation and the reservoir
operation. The cracks can also influence the amount of drainage flow.

2.1.3.3 Embankment dams

Displacement

The water level has both a direct and an indirect effect on the displacement of an embank-
ment dam. The mechanical pressure to the dam body acts directly on the displacement.
In addition, the water level affects the seepage line and therefore the effective stress of the
soil inside an embankment dam. This stress change leads to displacements (Lang et al.,
2011). Loading and unloading leads to permanent displacement in early years.

Drainage flow

As in the case of concrete dams, the water level is the main influence on the amount of
drainage flow. In addition, depending on the measurement location and due to infiltration
in the dam body, precipitation can become a major influence as well.

2.1.4 Surveillance

In Switzerland, dam surveillance is based on three pillars (Bundesamt für Energie, 2015):

• structural safety
• monitoring and maintenance
• emergency concept
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The structural safety must be checked periodically according to the recent state of the art.
For instance, since 2004 all Swiss dams have to be assessed by applying the new earth
quake code. Due to a proper monitoring and maintenance, the risk of a serious accident
can be minimised but it will not vanish. Therefore, the operators must have an emergency
concept for each dam. This concept includes flood wave propagation calculations for dam
break scenarios (Bundesamt für Energie, 2015).

The monitoring can be divided into three groups (Fig. 2.8). The visual control gives a
general statement about the condition, e.g. concrete cracking or movements of blocks,
of the structure. This is done by the dam wardens. The functional control involves the
control of regulated spillways and bottom outlets, the check of measurement equipment,
the check of communication lines to the operational office and the sirens. The influence
quantities and the effects are measured to evaluate whether the behaviour of the structure
is normal or abnormal (BWG, 2002). The link between the influence quantities and the
effects is done by dam behaviour analysis models (see Section 2.5). If an abnormal beha-
viour is detected, its origin should be identified. This can be a time-consuming process.
Sometimes additional measurement equipment has to be installed (Bossoney and Balissat,
2005).

Fig. 2.8 Monitoring of dams according to Swiss guidelines for dam safety (adapted from BWG,
2002).

2.1.4.1 Measurements

The aim of an appropriate monitoring system is to measure the influence quantities and
the effects on dams. The measurement equipment should be robust, simple to use and
insensitive to temperature and moisture changes (Schleiss and Pougatsch, 2011). In the
following, the established equipment to measure the effects and the causing influences are
presented.
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Displacement

Displacements can be measured by direct and inverted pendulums, inclinometers, extens-
ometers, geodesy instruments etc. (Schleiss and Pougatsch, 2011). The most common
equipment to measure horizontal displacements in concrete dams is a pendulum. its ad-
vantage is that the relative displacement between different levels can be measured directly
with a high precision. The pendulum wire is installed in a vertical shaft. Direct pendulums
(2) (Fig. 2.9a and 2.10) are fixed on the top (3) and a pendulum weight in a stabilising
vessel is at the bottom (9). The displacement can be measured on different levels manu-
ally by a coordiscope and electronically by a telelot (7) (Huggenberger AG, 2016). With
the latter, a permanent monitoring is possible whereas the manual readings are performed
by the dam wardens. In the case of an inverted pendulum (4) (Fig. 2.9b and 2.10), the
wire is fixed at a reference point at the bottom (5) and a float rot and a float vessel at the
top (8). Usually, several pendulums are installed at one site (Fig. 2.10). The accuracy is
given to ±0.2 mm (Schleiss and Pougatsch, 2011). In Fig. 2.11, photos of a pendulum
are shown.
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a) b)

2

4

Fig. 2.9 Schematic display of pendulums; a) (2) direct pendulum fixed on the top (3), with
(7) coordiscope and (9) stabilising vessel; b) (4) inverted pendulum fixed at a reference
point at the bottom (5,6) and a (8) float vessel at the top. The measurements are taken
with a (7) coordiscope (adapted from Schleiss and Pougatsch, 2011).
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72 3

4 5

Fig. 2.10 Layout of five direct pendulums (2) fixed at the top (3) and five inverted pendulums (4)
fixed at the bottom (5). The readings are taken by a coordiscope (7) (adapted from
Schleiss and Pougatsch, 2011).

d) e)

b)a) c)

Fig. 2.11 Equipment to measure displacements by pendulum: a) fixed pendulum at the top;
b) direct pendulum with electronic reading at the top; c) inverted pendulum; d) vertical
shaft with pendulum wire; e) device for manual pendulum reading (photos: M.
Bühlmann).

Drainage flow

The discharge of the drainage water can be measured with a measuring weir (e.g. Thompson
weir) or by measuring the amount of drainage water over a certain time (BWG, 2002).
Measurement weirs where the water level of the backwater is measured and converted to
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a discharge are commonly used. The water level elevation is measured manually or with
an ultrasonic sound that allows continuous and remote monitoring.

a) b) c)

Fig. 2.12 Measurement of drainage flow: a) collection of drainage flow in channel; b) measuring
weir; c) ultrasonic sound to measure backwater level (photos: M. Bühlmann).

Water level

The most reliable way to measure the water level is a precision balance (Fig. 2.13). The
accuracy is about ±10 cm. It is essential to calibrate the precision balance by other meas-
urement equipment (Schleiss and Pougatsch, 2011). The readings can be taken manually
from the display or are recorded by an electronic monitoring system. Alternatively, pneu-
matic level measurements by the bubbling-through method can be done where the counter
pressure created by an air compressor is measured.

Fig. 2.13 Schematic display of precision balance to measure the water level (Strom-online, 2018).

Temperature

The temperature can be measured with an electrical resistance thermometer. They can be
used to measure the temperature in concrete, water and air. In the case of air temperature
measurements, a weather and radiation protection is available. The accuracy is given to
±0.2 °C (Huggenberger AG, 2016). In Fig. 2.14, the temperature sensors to measure the
concrete, water and air temperature, respectively, are shown.
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a)

b) c)

Fig. 2.14 Temperature sensor for a) concrete, b) water and c) air (adapted from
Huggenberger AG, 2016).

a) b)

Fig. 2.15 Measurement of temperature; a) measuring device to connect to the b) plug that is
connected to the sensors (photos: M. Bühlmann).

Temperature measurements can be influenced by the position of the thermometers. Obernhuber
and Perner (2005) give an example of two distances, i.e. (i) 40 cm and (ii) 80 cm away
from the boundary. The surface amplitude of daily temperature variation decreases to
10% at 40 cm and to 1% at 80 cm inside the concrete. Based on this fact, they suggest
placing the thermometer at least 80 cm away from the concrete surface if the measure-
ments are taken at an arbitrary time during the day. If the daily temperature variations are
of interest, the thermometers should not be more than 40 cm inside the concrete. Amberg
(2009) also gives some advices about the positioning of thermometers in concrete dams:

• The temperature distribution is more or less uniform in horizontal direction in the
case of a constant dam concrete thickness on the levels. Hence, the placement in
the central section is sufficient. In addition, the central section corresponds to the
mean orientation of the solar radiation in arch dams.

• In the vertical direction, the varying thickness and the moving water level have
influence on the thermal distribution in the concrete. Therefore, the thermometers
should be placed on at least three to five levels.
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• Since the temperature gradient is higher near the boundaries, the distance between
the thermometers should be small at the boundaries and larger in the middle of the
dam. The optimal placement along a section can be obtained by a thermal analysis.

Inadequate positioning of the thermometers leads to deviations in the estimated temper-
ature field and thus also in the displacement that is calculated based on this (Amberg,
2009).

Precipitation and snow

The precipitation can be measured by a weather station close to the dam site. The snowfall
can be measured as new snow or as total compressed amount. The melt is difficult to
measure on site. Therefore, the difference in water content and snow height between two
days can be estimated leading to the mass balance (Simon et al., 2013).

2.1.4.2 Plausibility check of measurements

The recorded measurement data should be checked for plausibility (BWG, 2002) to identify
errors in the readings, inaccuracies in the measurement equipment or outliers. Lombardi
(1992) presented methods for the plausibility check of measurement data. One proposed
method is based on the history of a time series. The measurement data, e.g. the tem-
perature, is plotted for every year on the same axis (Fig. 2.16a). In addition, based on
the past measurement data, a confidence band is created. The new data are added to this
plot and it is checked if they lie within the created confidence band. Another method is
based on the empirical correlation between two measurements. For instance, the pendu-
lum displacement is plotted versus inclinometer readings measured at the same location
(Fig. 2.16b).



20 Literature review and fundamentals

a)

b)

Jul   Aug   Sept  Oct    Nov   Dec  Jan    Feb   Mrz   Apr  May  June

outside confidence bandconfidence band

−5
   

   
   

0 
   

   
   

5 
   

   
 1

0 
   

   
 1

5
T 

[°
C]

−1
00

   
   

   
   

   
   

 0
   

   
   

   
   

  1
00

   
   

   
   

   
  2

00
   

   
   

   
   

30
0

−4                  −3                  −2                −1                   0                    1

not plausbile
plausbile

δ [mm]

δ 
[m

ra
d]

Fig. 2.16 Plausibility test for measurement data: a) test based on time series history; b) test based
on correlation between two measurements (adapted from Lombardi, 1992).

2.1.5 Abnormal behaviour

One goal of the monitoring is to evaluate whether the behaviour of the structure is normal
or abnormal. Normal behaviour is present if the behaviour is similar to the past behaviour
under the same loading conditions (Mata, 2011). In addition, irreversible displacement
such as deformation due to valley deformation or a AAR should be detected since it may
deteriorate the dam.
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2.2 Statics

2.2.1 Introduction

The fundamentals of statics are the definition of stress, equilibrium, the kinematic re-
lationships and the constitutive laws. Their combination leads to the known equations
used in statics. A solid description of these fundamentals is given in Marti (2013). Here,
a selection of statics methods that can be used to calculate the deformation of dams is
briefly described. The focus lies on analytical models based on the linear elastic beam
theory since they are applied later herein. After the introduction of dam specific meth-
ods, framed structures are discussed. The work theorem that can be used to calculate the
deformation of beams and the force method to calculate statically indeterminate systems
are introduced. In addition, grillages are introduced. They connect different beams by
compatibility conditions.

2.2.2 Deformation calculation of dams

2.2.2.1 Analytical models for arch dams

Until the 1920s, arch dams had been calculated using the ring tube formula. Since then
it became common to use beam models with arches and cantilevers (Herzog, 1988b). In
the so-called arch-cantilever models, the arch dam is modelled as a grillage that consists
of arches and cantilevers (Fig. 2.17). The arches can be modelled as circles, parabolas
or ellipses. The loads that act on the structure are carried by both the arches and the
cantilevers (or consoles). The load distribution is estimated with the compatibility condi-
tion (equal displacements) that needs to be satisfied on all the nodes. Furthermore, linear
elastic material behaviour is assumed.

The cantilevers distribute the loads to the different arches that are exposed to different
water pressure. In Fig. 2.18, the load distribution between the arches and a cantilever is
shown exemplarily. It can be recognised that the loading of the top arch is larger than
solely from the water pressure. This is due to the load distribution by the cantilevers.
There are several publications (e.g. USBR (1938) or Bosshard (1949)) about the arch-
cantilever model. The general idea of these models is the same but different equations
and solution procedures are used.
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Fig. 2.17 Modelling an arch dam by arches and cantilevers (consoles) (adapted from Schleiss and
Pougatsch, 2011).
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Fig. 2.18 Load distribution between arches and cantilevers. The load of the water level is given
by the triangle, the load of the cantilevers is shaded and the difference between these is
acting on the arches. The arch on the top receives more load due to the cantilever that is
supported elastically by the arches (Schleiss and Pougatsch, 2011).

2.2.2.2 Analytical models for gravity dams

Based on an elastic slab equation, an analytical solution for the displacement at crest level
(subscript cr) dcr due to a full reservoir can be derived (deep beam model) (Schleiss and
Pougatsch, 2011):

dcr =
gw h2

2Ec

✓
1+(1+ tan2(f))2

tan3(f)
+

nc

tan(f)

◆
(2.1)

gw is the unit weight of water, h the water level about the abutment, Ec the Young’s
modulus of concrete, nc the Poisson’s ratio of concrete and f the opening angle of the
triangle at crest level. Eq. (2.1) assumes a rigid support at the toe. According to Rescher
(1965), the rigid support can be moved to 0.3÷0.4h below the toe to consider an elastic
foundation.

Unfortunately, the equation presented above can only be used to calculate the displace-
ment of a full reservoir. For monitoring purposes, the displacement due to a varying water
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level is of interest. Rescher (1965) states that the displacement of a gravity dam can be
calculated approximately by a cantilever beam. An elastic foundation can also be con-
sidered by a stiff support below the bottom of the dam. Léger and Seydou (2009) use a
beam model for the monitoring of gravity dams. They use springs to consider an elastic
foundation.

2.2.2.3 Thermal deformation

Changes in the temperature field lead to deformations in the dam body. It can be shown
that a mean (subscript m) temperature Tm and a linear temperature difference (subscript d)
Td between the upstream and downstream sides cause the deformation (Obernhuber and
Perner, 2005). In the following, it is shown how Tm and Td are estimated and how they
can be used to calculate the displacement.

Temperature decomposition

Consider a 1D bar of length L (Fig. 2.19). A given thermal field T (x) can be decomposed
in a uniform temperature Tm, a linear temperature difference Td , and a nonlinear part Tn(x)
(Amberg, 2009).

a) b) c) d)
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Fig. 2.19 Decomposition of temperature field T (x) in a uniform temperature Tm, a linear
temperature difference Td , and a nonlinear part Tn(x) (adapted from Amberg, 2009).

Tm can be derived by the equilibrium condition ÂN = 0. Integrating the normal forces,
which are caused by expansions leads to

Tm =
1
L

Lˆ

0

T (x)dx. (2.2)

The temperature difference Td can be derived by equilibrium of the bending moments
ÂM = 0:

Td =
12
L2

Lˆ

0

T (x)
✓

x� L
2

◆
dx. (2.3)
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One dimensional analysis

For a 1D-section with homogenous and isotropic material, with a linear temperature dif-
ference Td and a mean temperature Tm, the deformation due to temperature can expressed
by the strain e , which is affected by the mean temperature, and the curvature c resulting
from the linear temperature difference (Dallmann, 2009):

e(x) = aT Tm(x) (2.4)

c(x) = aT
Td(x)

L
(2.5)

The thermal expansion coefficient aT is a material constant. For concrete and steel, it is
in the range of 10�5 1/K. In statically indeterminate systems, temperature changes lead
to restraints (Marti, 2013). The displacement is calculated by integrating the strain or the
bending over the whole section.

Three-dimensional analysis

In the case of 3D bodies, the deformation due to temperature can be calculated by the
thermo-elastic reciprocal theorem (Timoshenko and Goodier, 1970):

d = aT

ˆ
V

Q(x,y,z)T (x,y,z)dV (2.6)

The temperature field T (x,y,z) is multiplied with the first invariant of the stress tensor
Q(x,y,z) = sxx +syy +szz and integrated over the whole body (Obernhuber and Perner,
2005). The stress tensor is the result of the unit load acting on the location and in the
direction of the displacement that needs to be calculated.

Obernhuber and Perner (2005) used the thermo-elastic reciprocal theorem (Eq. (2.6)) to
show that Tm and Td are the important quantities to calculate the displacements due to
temperature variation in dams and the nonlinear part Tn(x) can be neglected. By assuming
constant temperature in lateral direction, the displacement at an arbitrary point can be
calculated with the thermo-elastic reciprocal theorem:

d (x,y,z) =
Ĥ

0

Laˆ

0

✓
Qm Tm +

L
3

Qd Td

◆
dx dz (2.7)

where Qm and Qd are the respective influence functions for a unit load applied at the point
and in the direction of the displacement of interest. The integration is performed across
the whole dam height H and arch length La.
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2.2.2.4 Considering the elasticity of the foundation

The elastic deformation of a rock foundation can be calculated by the Vogt’s method
which is well described in USBR (1938). The method is based on the Boussinesq formula
and isotropic linear elastic material behaviour. Since this is a crude assumption, this
approach can only be seen as a rough approximation of the real problem.

The loaded portion of the foundation surface is approximated by a rectangle with width
b and height a (Fig. 2.20b). For an element with unit width and of thickness ta at the
abutment, the spring constants to consider an elastic foundation can be calculated with
Eq. (2.8) - (2.10) (USBR, 1938).

ta

Fig. 2.20 a) Situation of dam with topography; b) loaded foundation area (solid) and
corresponding equivalent rectangular area (dashed) (USBR, 1938).

kN =
fk,N

Er
(2.8)

kV =
fk,V

Er
(2.9)

kM =
fk,M

Er t2
a

(2.10)

Er is the Young’s modulus of the elastic rock (subscript r) foundation. The factors fk,N ,
fk,V and fk,M are given in the tables in Appendix A.1.1 or can be calculated by Eq. (2.11)
- (2.16) where X = b/a and nc is the Poisson’s ratio of rock.
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2.2.2.5 Numerical models

The use of numerical methods, such as finite elements (FE), is the standard in dam en-
gineering today. A good overview on state of the art methods used in dam engineering is
given in ICOLD (2013). Commonly FE-models are used to evaluate the structural safety
of dams. In a FE-model, the structure is discretised by a finite number of elements in
which the displacement is described by governing equations. The single elements are
joined to the global model under preserving the kinematic compatibility and the equilib-
rium conditions. The relation between the force and the displacement is given by chosen
constitutive laws (Werkle, 2008). This can be the elastic models based on Hook’s law or
even nonlinear models that allow for plastic strains. Further information about FE-models
can be found in Bathe (1996) and Werkle (2008).

2.2.3 Framed structures

Framed structures consist of bar elements that are connected by nodes and that end on
supports. The cross-section of the structure is assumed to be small compared to its span.
They can be grouped to straight bar elements, beams and columns, and curved bar ele-
ments known as arches. Combining bar elements leads to trusses which can be distin-
guished between plane structures (2D) and spatial structures (3D) (Marti, 2013).

The stress resultants can be determined by the equilibrium and the compatibility condi-
tions. For statically determinate systems, only the equilibrium condition is needed, for
statically indeterminate systems both. There are the force method, the slope deflection
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method or integral solutions to solve statically indeterminate systems. In the following,
the first method is described shortly. More details about these methods can be found
in Marti (2013). Usually linear-elastic material behaviour and plain remaining cross-
sections are assumed and the calculation of the internal forces is done by first order,
which means that they are calculated for the non-deformed system.

2.2.3.1 Work theorem

To calculate a deformation di j at a certain position of a beam due to a load Xj, the work
theorem (Eq. (2.17)) can be applied. In doing so, a virtual load Xi = 1 in the direction of
the displacement of interest is applied. The displacement is calculated by integrating the
stress resultants due to Xj multiplied with the stress resultants due to Xi .

di j =

ˆ 
Ni

✓
Nj

E A
+aT Tm

◆
+

Vy,iVy, j

GAv,y
+

Vz,iVz, j

GAv,z
(2.17)

+
Ti Tj

GIx
+My,i

✓
My, j

E Iy
+aT

Td,z

hb

◆
+Mz,i

✓
Mz, j

E Iz
+aT

Td,y

Bb

◆�
dx

+Â RN,i RN, j

kN
+Â RV,i RV, j

kV
+Â RM,i RM, j

kM

Here, N, Vy, Vz, T , My and Mz are the stress resultants due to Xj and Xi , respectively,
A = Bb hb is the cross-sectional area, Av = av A the shear area with the area shear factor
av (av=5/6 for rectangular cross-sections) , G = E/(2(1+n)) is the shear modulus, Ix the
torsional moment of inertia, Iy the moment of inertia around the y-axis and Iz the moment
of inertia around the z-axis (Fig. 2.21). RN , RV and RM are the supporting forces and
kN , kV and kM the corresponding spring constants. They lead to a displacement at the
supporting. Tm and Td are the mean temperature and the linear temperature difference,
respectively.
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Fig. 2.21 Application of the work theorem to a cantilever beam with axis in x-direction. The load
F is applied and the displacement di(x) is calculated. a) geometry of cantilever beam;
b) stress resultants due to the load Xj = F and the virtual load Xi.

2.2.3.2 Force method

The force method can be applied to estimate the resultants of statically indeterminate
systems and based on them also the corresponding displacements. Basically, the principle
of the force method to is to define a statically determinate system by releasing constraints
and replacing them with redundant variables Xi=1. The number of redundant variables
corresponds to the degree of static indeterminacy. On the statically determinate system,
the displacement due to the load X0 and the redundant variables Xi is calculated by using
the work theorem (Eq. (2.17)). Since the deformations di at the supporting are known, the
following linear equation system of compatibilities can be solved to obtain the redundant
variables Xi:

di = di0 +Di jXi = 0 (2.18)

di0 are the displacements at the location of the removed support i (in direction of support
force) due to the load X0, Di j is the displacement matrix due to the redundant variables Xi

in direction of themselves. The matrix Di j can be used for several different load cases X0.
If all the resulting forces and the redundant variables are known, the support forces and
the resultants can be calculated. If the displacement shall be calculated, the work theorem
can be used by introducing a load Xj = 1.

The procedure of the force method consists of the following steps (Marti, 2013):

1. Determination of the degree of static indeterminacy r
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2. Selection of a stable, statically determinate basic system

and introducing r redundant variables Xi = 1

3. Determine the support forces and the stress resultants on the basic

system for all Xi and the on the static system acting load X0

4. Determine the deformations (incompatibilities) di j (e.g. deformation

in direction of X1 due to X2) and the deformations di0 due to the load

X0 in direction of Xi.

5. Calculate redundant variables Xi with Eq. (2.18)

6. Calculate support forces and stress resultants of the statically

indeterminate system by the superposition of the supporting forces

and the stress resultants of all Xi and X0

7. Calculate the displacement by using the work theorem and introducing

a virtual force Xj = 1

2.2.3.3 Grillages

A grillage is a static system that consists of different beams that are firmly interconnected.
The static system can be a grillage as such or used as an approximation for plates or shells.
In contrary to the last two, grillages can carry only normal forces, shear forces and bend-
ing moments but no membrane forces. The idea of a grillage is that the load is distributed
to the different beams so that the compatibility of the displacement at the intersection
points Pi, j is satisfied. In the following, the application of a grillage is demonstrated by
an example.

Consider the grillage with the two beams Bx,1 and Bx,2 in x-direction and By,1 in y-direction
(Fig. 2.22a). A load Fz on the intersection point P1,1 acts on the grillage. This load
is carried by all of the three beams. Since the static system is statically indeterminate,
the load distribution must be found by the compatibility condition. In this example, the
compatibility condition of the displacement in z-direction is formulated. Thus, the unit
loads F1,1 and F2,1 are introduced on the corresponding nodes (Fig. 2.22b). Then the
displacement due to these unit loads at every intersection point is calculated for every
beam, with results summarised in Table 2.4.
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Fig. 2.22 Application of the work theorem to a cantilever beam with axis in x-direction. The load
F is applied and the displacement di(x) is calculated. a) Geometry of cantilever beam;
b) stress resultants due to the load Xj = F and the virtual load Xi.

Table 2.4 Displacements dFi, j for the unit loads Fi, j and the load Fz loaded to beam Bx,1.

dF1,1 dF2,1

Bx,1 1/(6EI)L3 F1,1 0

F1,1 Bx,2 0 0

By,1 4/(9EI)L3 F1,1 7/(18EI)L3 F1,1

Bx,1 0 0

F2,1 Bx,2 0 1/(6EI)L3 F2,1

By,1 7/(18EI)L3 F2,1 4/(9EI)L3 F2,1

Bx,1 1/(6EI)L3 Fz 0

Fz Bx,2 0 0

By,1 0 0

The displacements listed in Table 2.4 are used to formulate the compatibility condition.
In direction and at the location of each load Fi, j that was introduced, a compatibility
condition can be formulated:

11
18

L3

EI
F1,1 +

7
18

L3

EI
F2,1 =

1
6

L3

EI
Fz (2.19)

11
18

L3

EI
F1,1 +

7
18

L3

EI
F2,1 = 0

Eq. (2.19) can be written in the general matrix notation

DG Fi, j = dF , (2.20)
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where DG is the matrix of compatibility conditions of the grillage, Fi, j is the vector of loads
to satisfy the compatibility conditions and dF the vector of displacements of the load F .
To calculate the load distribution Fi, j = D�1

G dF the matrix DG needs to be inverted. As
soon as the loads Fi, j are known, the displacement and the stress resultants of the grillage
can be calculated for the single beams. The matrix DG remains constant for the same
static system. As a consequence, different load cases can be studied by changing only the
displacement vector due to the load dF .
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2.3 Heat transfer

The knowledge of the mean temperature Tm and the linear temperature difference Td is
of major importance to calculate the temperature deformation of concrete dams (see Sec-
tion 2.2.2.3). Since the temperature is measured only at certain locations in the dam, the
temperature field and therefore also Tm and Td are not known a priori. Therefore, they
have to be estimated based on the available measurements. In Switzerland, most dams are
equipped with concrete temperature sensors whereas in some other countries they are not
measured (Tatin et al., 2015). In the case of no inner temperature measurements, the air
temperature is used as a boundary condition. In addition, the water temperature and the
boundary processes of convection and solar radiation can be taken into account. Unfortu-
nately, there is considerable uncertainty in the calculation of convection and radiation. If
some temperature measurements inside the concrete body are available, these processes
at the boundary do not need to be taken into account (Amberg, 2009). Due to the fact
that the installed concrete thermometers are not located at the boundary but at a certain
distance inside the dam, a zone where no information is available exists. To estimate the
surface temperature from inner measurements, inverse heat conduction analysis can be
carried out. The goal of this chapter is to present the basics of heat transport analysis and
having a closer look on methods that are applied to estimate the mean and the temperature
difference.

2.3.1 Introduction to heat transport mechanisms

The first law of thermodynamics states that energy can neither be created nor destroyed
(also known as the conservation of energy principle). Energy can be transferred by the
two mechanisms heat transfer and work (Çengel and Ghajar, 2015). From the second
law of thermodynamics it follows that the heat must flow from higher to lower temper-
ature levels, and that it stops when the two levels are equal (Poulikakos, 2011; Çengel
and Ghajar, 2015). Heat can be transferred in three different ways: conduction, convec-
tion and radiation. Heat conduction (diffusion) is the energy transfer from more to less
energetic particles. In solids, it is caused by the vibrations of the molecules and the en-
ergy transport of free electrons. The rate is dependent on the material, the geometry and
the temperature profile inside the body. Heat convection is the energy transfer between a
solid surface and adjacent liquid or gas that is in motion. A faster motion leads to greater
convective heat transfer. Radiation is the energy that is emitted in the form of electro-
magnetic waves. It is a result of the change in the electromagnetic configuration of the
atoms or molecules. In contrast to conduction and convection, radiation does not need an
intervening medium. This means that two bodies in a vacuum will reach a temperature
equilibrium in time (Çengel and Ghajar, 2015).
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Related to dams the three heat transfer processes described above are shown in Fig. 2.23.
Heat conduction leads to temperature changes inside the dam body, convention can lead
to a gain or loss of heat at the surface, the dam can lose heat by radiation and the solar
radiation leads to heating.

In the following sections, the three transport processes are described more in detail. At
first, the general heat conduction equation is derived and some simplifications of it are
shown. Then the frequency domain solution procedures for the direct and the inverse heat
conduction analysis are presented. Furthermore, the equations for convection and solar
radiation are briefly discussed.

heat conduction

Fig. 2.23 Processes of heat transfer at a dam (adapted from Mirzabozorg et al., 2014).

2.3.2 Conduction

2.3.2.1 Fourier’s Law

The French mathematician Jean Baptiste Fourier stated in 1822 that a heat flux q̇ through
a plane with normal direction n is proportional to the temperature gradient —T :1

q̇ =�l—T (2.21)

The proportionality constant l is called thermal conductivity. The negative sign of Eq. (2.21)
leads to positive heat flux in positive x-, y- and z-direction. Based on Eq. (2.21), it follows
that for double temperature gradients —T the heat flux is also doubled.

1— =
⇣

∂
∂x ,

∂
∂y ,

∂
∂ z

⌘T
Nabla operator
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2.3.2.2 Heat conduction equation

The content of this section is based on Çengel and Ghajar (2015) and Poulikakos (2011).
The heat conduction equation can be derived by the conservation of energy principle.
Regarding the energy balance over a small time step dt in a control volume dxdydz
(Fig. 2.24) the energy balance Eq. (2.22) can be stated. The sum of all the heat fluxes
Q̇i and the source term Q̇s equals the energy change in the control volume.

y

z

x
x, z
x+dx

y y+dy

dz

z+dz

Qy Qy+dy

Qz

Qz+dzQx

Qx+dx

dx
qs

Fig. 2.24 Heat flux in control volume (adapted from Poulikakos, 2011).

∂E
∂ t

= Q̇x + Q̇y + Q̇z � Q̇x+dx � Q̇y+dy � Q̇z+dz + Q̇s (2.22)

Applying Taylor series expansions to Eq. (2.22), the terms Q̇x+dx, Q̇y+dy and Q̇z+dz can
be expressed as:

Q̇x+dx = Q̇x +
∂ Q̇x

∂x
dx+(

1
2!

∂ 2Q̇x

∂x2 dx2 + ...) (2.23)

Q̇y+dy = Q̇y +
∂ Q̇y

∂y
dy+O (2.24)

Q̇z+dz = Q̇z +
∂ Q̇z

∂ z
dz+O (2.25)

Neglecting terms with orders > 2 O and inserting Eq. (2.23) - (2.25) into Eq. (2.22) and
setting the source term Q̇s to q̇s dxdydz leads to

∂E
∂ t

=
∂ Q̇x

∂x
dx+

∂ Q̇y

∂y
dy+

∂ Q̇z

∂ z
dz+ q̇s dxdydz (2.26)

Furthermore, the heat fluxes of Eq. (2.21) can be written as
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Q̇x = �l dydz
∂T
∂x

(2.27)

Q̇y = �l dxdz
∂T
∂y

(2.28)

Q̇z = �l dxdy
∂T
∂ z

(2.29)

The energy E can be expressed as function of temperature:

E = r dxdydzcT, (2.30)

where r is the density of the medium and c its specific heat capacity.

By setting Eq. (2.27) to (2.29) and the derivative of Eq. (2.30) with respect to time t into
Eq. (2.26), the general form of the heat conduction equation is obtained:

r c
∂T
∂ t

= —• (l—T )+ q̇s (2.31)

The source term q̇s in Eq. (2.31) is expressed as volume source term. For many practical
applications, the temperature dependency of the thermal conductivity l can be neglected
and Eq. (2.31) simplifies to the general heat conduction equation with constant thermal
conductivity:

∂T
∂ t

= aDT +
1
l

q̇s, (2.32)

where a = l/(r c) is the thermal diffusivity and D the Laplace operator 2. If no internal
heat is generated, Eq. (2.32) reduces to the transient heat conduction equation with no
sources and constant thermal conductivity (Eq. (2.33)). This equation can be used to
calculate the temperature field in a three-dimensional body that is free of heat sources.

∂T
∂ t

= aDT (2.33)

For (1D) problems, Eq. (2.33) simplifies to the one-dimensional transient heat conduction
equation (1D transient HCE):

∂T
∂ t

= a
∂ 2T
∂x2 (2.34)

2D = ∂ 2

∂x2 +
∂ 2

∂y2 +
∂ 2

∂ z2 Laplace operator
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Considering a steady-state solution, Eq. (2.33) reduces to the Laplace equation

DT = 0. (2.35)

2.3.3 Solution procedures for the 1D transient HCE

The 1D transient heat conduction equation (Eq. (2.34)) can be solved analytically or nu-
merically. Analytical solutions are limited to simple geometries and boundary conditions
whereas numerical solutions can be obtained for more complex situations (Çengel and
Ghajar, 2015). Analytical solutions can be found by the method of separation of vari-
ables for instance. Another possibility to solve the 1D transient HCE is to use Fourier- or
Laplace transformation to transform the equation into the frequency domain. In doing so,
the partial differential equation (PDE) is transformed to an ordinary differential equation
(ODE) that is based on the principle of superposition of different frequencies (Baehr and
Stephan, 2008). The resulting ODE can be solved using standard procedures. Since the
solution is based on the principle of superposition, the original PDE must be linear, which
means that it has a constant thermal diffusivity. Here, the frequency domain solution by
the Fourier transform will be described and applied. An extensive collection of analytical
solutions can be found in Carslaw and Jaeger (1986).

There are different ways for the numerical implementation, such as the finite difference
method, the finite element method or the control volume method. Finite differences re-
place the derivatives of the PDE by discretised versions using a discretisation in space
and time (Çengel and Ghajar, 2015). The variables are considered to exist only at the grid
points (Tannehill et al., 1997). The method of finite elements approximates the solution
of the PDE using shape (polynomial) functions. The space is divided into elements and
the shape function approximates the solution inside the element and the equations are bal-
anced at the nodes (Bathe, 1996). The control volume method results in the same set of
algebraical equations regarding the 1D transient HCE (Çengel and Ghajar, 2015).

In the following, the frequency domain solution by Fourier transformation is explained in
detail. Additionally, numerical implementation of the finite difference solution is shown
in Appendix A.2.1.1.

2.3.3.1 Frequency domain solution by Fourier transformation

The one-dimensional transient heat conduction equation (Eq. (2.34)) can be solved by a
transformation into the frequency domain. The Fourier transform of Eq. (2.34) is

iw T̂ (x,w) = a
∂ 2T̂ (x,w)

∂x2 (2.36)
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where i is the imaginary unit, w = 2p/Th is the angular frequency with period Th of the
harmonic and T̂ (x,w) is the temperature transformed into the frequency domain. This
transformation can be done by a fast Fourier transformation (FFT). On the contrary to
Eq. (2.34), this is an ordinary differential equation with the general solution

T̂ (x,w) = A(w) exp(�k x)+B(w) exp(k x), (2.37)

where A(w) and B(w) are complex constants that can be determined with the boundary
conditions. The complex auxiliary quantity k is defined by

k =
r

iw
a

= (1+ i)
r

w
2a

. (2.38)

Consider a 1D slab with length L and T̂ (x = 0,w) = T̂b,l(w) as left boundary condition
and T̂ (x = L,w) = T̂b,r(w) as right boundary condition (Fig. 2.25a). By using Eq. (2.37),
the two constants A(w) and B(w) can be determined to
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Fig. 2.25 a) 1D slab, b) semi-infinite space.

Inserting Eq. (2.39) into Eq. (2.37) leads to the solution of the temperature field T̂ (x,w)

in an one-dimensional slab with boundary temperatures T̂b,l(w) and T̂b,r(w)

T̂ (x,w) =
1

sinh(k L)
�
sinh(k (L� x) T̂b,l(w)+ sinh(k x) T̂b,r(w)

�
(2.40)
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In a semi-infinite space (Fig. 2.25b) the constants can be determined with the boundary
conditions T̂ (x = 0,w) = T̂b(w) and T̂ (x = •,w) = 0 which leads to the solution of the
temperature field in a semi-infinite slab

T̂ (x,w) = T̂b(w) exp(�k x) (2.41)

For the semi-infinite slab, it can be shown that the measurable penetration of low frequen-
cies is higher as for fast ones (see Appendix A.2.2.2).

Properties of complex numbers

The form of Eq. (2.41) can be modified as follows:

T̂ (x,w) = T̂b(w) exp(�k x) = T̂b(w) exp
✓
�(1+ i)

r
w
2a

x
◆

(2.42)
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◆

According to the exponential form for complex numbers z = r exp(if), where r is the
absolute value of the complex number z and f is the argument (angle) (Fig. 2.26a), one
obtains

r = exp
✓
�
r

w
2a

x
◆

(2.43)

f =

r
w
2a

x (2.44)
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Fig. 2.26 Properties of complex numbers, a) absolute value r and argument f ; b) harmonic with
amplitude r, phase shift f and period Th .

The absolute value r represents the amplitude of the harmonic with frequency w and the
argument f the phase shift. Thus, the properties of the harmonics can easily be obtained
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from the complex temperatures. Furthermore, it can be shown that the propagation velo-
city of the signals is frequency-dependent (see Appendix A.2.2.1).

Mean temperature and temperature difference in the frequency domain

In the frequency domain, the mean temperature Tm and the temperature difference Td read:

T̂m(w) =
1
L

ˆ L

0
T̂ (x,w)dx (2.45)

T̂d(w) =
12
L2

ˆ L

0
T̂ (x,w)(x�L/2)dx (2.46)

By substitution of Eq. (2.40) in Eq. (2.45) and integration along the slab, Tm can be dir-
ectly calculated from the two boundary temperatures T̂b,l and bTb,r

T̂m(w) =
2

k L
tanh

✓
k L
2

◆✓
T̂b,l + T̂b,r

2

◆
= Gm(w)

✓
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2

◆
(2.47)

with
Gm(w) =

2
k L

tanh
✓

k L
2

◆
(2.48)

The same can be done by substitution of Eq. (2.40) in Eq. (2.46)
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From Eq. (2.47) it follows that the mean temperature depends on the average of the two
boundary values and from Eq. (2.49) that the temperature difference depends on the dif-
ference of the boundary values (Weber et al., 2010). The transfer functions Gm(w) and
Gd(w) contain the information of the thickness L, the frequency w and the thermal dif-
fusivity a and do not depend on the boundary temperatures. They can be seen as a kind
of transfer function from the boundary temperatures to the mean temperature and the
temperature difference.
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2.3.4 Inverse heat conduction analysis

By estimating the surface temperatures with inverse heat conduction analysis, the problem
of uncertainties related to convection and solar radiation can be overcome. To obtain
accurate results, temperature information should be available not too far from the surface
(Amberg, 2009).

In Section 2.3.3, two procedures to determine the temperature field inside a solid body
with given boundary temperatures were presented. However, the temperature field in
the boundary regions cannot be determined with these procedures, but with inverse heat
conduction analysis. Since the solution of an inverse heat conduction problem in not
unique and not stable under small changes, it is a mathematically ill-conditioned problem
(Özisik and Orlande, 2000). In this section, the stability of the inverse heat conduction
analysis is briefly discussed first. Then, a solution procedure in the frequency domain is
presented.

2.3.4.1 Stability of inverse HC

Due to the diffusivity of the heat flow, the amplitudes of the temperature signals are
damped exponentially inside the solid body. Higher frequencies are damped within a
shorter distance from the surface than lower frequencies, which can be verified with
Eq. (2.41). At a certain depth, only low frequencies can be recorded with thermomet-
ers since the amplitudes of the high frequencies are smaller than the measurement noise
(Obernhuber and Perner, 2005). Suppose a semi-infinite concrete body with a thermo-
meter placed 1.5 m away from the boundary. On the boundary, a temperature with a
frequency that has a daily period and an amplitude of 10 °C is applied. The total daily
temperature variation is damped to 0.02 °C at the measurement location (by assuming
a mean value of a = 0.15 m2/d for the thermal diffusivity). Compared to measurement
errors of ± 0.2 °C, this can be neglected. If these measurements were used for an inverse
analysis, physically meaningless results would be expected. Doing an inverse calculation,
this would mean that measurement noise would be amplified by a factor of 1000 to ±
200 °C on the boundary. A general problem of inverse heat conduction analysis is that
the noise is magnified at the surface (Raynaud and Beck, 1988). Therefore, methods to
stabilise the influence of the measurement noise are necessary. Extensive research in this
field was carried out in the 1980’s (e.g. Raynaud and Bransier (1986); Raynaud and Beck
(1988)).

2.3.4.2 Frequency domain solution for 1D transient HCE

Obernhuber and Perner (2005) and Weber et al. (2010) describe a solution for the inverse
heat conduction problem in the frequency domain and applied it with success to concrete
dams. The present section follows these two publications. The properties of the inverse
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heat conduction problem can nicely be shown on a simple example of a semi-infinite
space (Fig. 2.27b) and then adapted to the case of a 1D slab with two thermometers next
to each surface (Fig. 2.27a).
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Fig. 2.27 a) One dimensional slab with two thermometers at locations x1 and x2 b) semi-infinite
slab with thermometer at location x1 .

Semi-infinite space

Considering the situation depicted in Fig. 2.27b, Eq. (2.41) results in

T̂ (x1,w) = T̂b(w) exp(�k x1) = T̂b(w)G(w), (2.51)

where G = exp(�k x1) is the transfer function. Inverse heat conduction analysis means
that Eq. (2.51) needs to be rearranged and the inverse G�1 estimated:

T̂b(w) = T̂ (x1,w) exp(k x1) = T̂ (x1,w) exp

 r
iw
a

x1

!
(2.52)

From Eq. (2.52) it follows that the solution is unbounded for high frequencies w . This is
not only a theoretical but also a numerical problem. Thus, Obernhuber and Perner (2005)
and Weber et al. (2010) make use of a low pass filter that damps high frequencies. They
use a Gaussian distribution as mollifier function mg (Eq. (2.53)) that can be implemented
as a convolution integral in the time domain. The regularisation parameter g defines the
width of the pulse and therefore the smoothing.

mg(t) =
1

g
p

2p
exp
✓
� t2

2g2

◆
(2.53)

In the frequency domain, a convolution integral corresponds to a multiplication of the
Fourier transformed mollifier function m̂g (Eq. (2.55)) with the temperature measure-
ments:
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T̂b,g(w) = T̂b(w) m̂g(w) (2.54)

m̂g(w) = exp
✓
�w2g2

2

◆
(2.55)

In Fig. 2.28, the mollifier function in the time and in the frequency domain is presented
for different values of g .
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Fig. 2.28 Mollifier function for different regularisation parameters g for a) time domain and
b) frequency domain (adapted from Weber et al., 2010).

In the time domain (Fig. 2.28a), the regularisation parameter g defines the pulse width
and therefore the smoothing. Low values lead to a narrow Gaussian distribution and con-
sequently to less smoothing then high values. The same can be observed in the frequency
domain (Fig. 2.28b). Since the mollifier function is multiplied with the corresponding
frequencies, all high frequencies are wiped out.

Combining Eq. (2.52) and (2.55) leads to Eq. (2.56) that can be used to calculate the
surface temperature from smoothed measurement values of an inner thermometer.

T̂b,g(w) = T̂ (x1,w)G�1m̂g(w) (2.56)

1D slab with two thermometers next to each surface

The same analysis as for the semi-infinite space can be carried out for the slab with two
thermometers next to each boundary (Fig. 2.27a). This results in a matrix for the inverse
transfer function G�1:
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G�1 =
1

sinh(k l)

"
sinh(k (l +d1)) �sinh(k d1)

�sinh(k d2) sinh(k (l +d2))

#
(2.57)

The two boundary temperatures T̂b,l,g(w) and T̂b,r,g(w) smoothed with the mollifier m̂g(w)

read:

 
T̂b,l,g(w)

T̂b,r,g(w)

!
= m̂g(w)G�1

 
T̂x1(w)

T̂x2(w)

!
(2.58)

The choice of the regularisation parameter depends on the frequency of measurement data
recording and the thermometer location. Therefore, no general suggestion can be given
and each case must be assumed individually. Weber et al. (2010) state that g = 0.1 works
well for d = 0.20 m and 0.35 m, while g = 1.5 works well for d = 1.50 m.

2.3.5 Convection

The principle of convection along a solid body is shown in Fig. 2.29. The surface tem-
perature of the solid body is Tb and the temperature of the fluid away from the surface is
Tf l,•. At the surface, the fluid temperature is equal to the temperature of the solid body
(Çengel and Ghajar, 2015). Between the boundary temperature and the fluid temperature,
a nonlinear temperature profile that depends on the flow profile appears. The flow field
of the fluid has a laminar boundary layer, which has parallel stream lines (Poulikakos,
2011). The convection consists of two processes. First, the heat is transferred by conduc-
tion through the laminar boundary layer and then the motion of the fluid replaces the hot
fluid near the surface by cold one (Poulikakos, 2011; Çengel and Ghajar, 2015).

Tb

Tfl,∞

air temperature
profile

velocity profile
of air

hot block

air flow

qc･

Fig. 2.29 Heat transfer by convection (adapted from Çengel and Ghajar, 2015).

Two different types of convection are distinguished. When the fluid motion is caused
by fans, pumps or wind, it is called forced convection. Natural convection is caused by
density currents in the fluid and occurs on vertical oriented surfaces. The rate of the
convective heat transfer q̇c is observed to be proportional to the temperature difference
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between Tb and Tf l,• and can be expressed by Newton’s law of cooling (Çengel and
Ghajar, 2015).

q̇c = ac(Tb �Tf l,•) (2.59)

The convection heat transfer coefficient ac is an empirical parameter and not a thermody-
namic property (Moran and Shapiro, 2010). It depends on the fluid motion, the properties
of the fluid, the surface geometry (dimension, orientation and roughness) and the phase
transition (Poulikakos, 2011).

2.3.6 Radiation

The energy emitted by electromagnetic waves between a body with boundary temperature
Tb and a surrounding air temperature Tair can be estimated by:

q̇emit =�es(T 4
air �T 4

b ) (2.60)

where s = 5.670 ·10�8 W/m2K is the Stefan-Boltzmann constant and e the emissivity of
the surface (e = 1 corresponds to a black body) (Léger et al., 1993; Çengel and Ghajar,
2015). In Eq. (2.60), the unit of the temperatures is Kelvin.

2.3.7 Solar radiation

The energy of the sun comes in the form of electromagnetic waves. The energy that
reaches the atmosphere is called solar irradiance and has a power of 1373 W/m2. In
the atmosphere, a part of the radiation is scattered. Hence, beam radiation and diffusive
radiation can be distinguished (Çengel and Ghajar, 2015). In addition, the beam radiation
can further be classified into sky diffusive radiation and ground diffusive radiation (Léger
et al., 1993). The proportion depends on the weather, e.g. on a clear day only 10% are
diffusive radiation and on a cloudy day up to 100% (Çengel and Ghajar, 2015). One part
of the solar radiation It that arrives at the earth’s surface is absorbed by objects and the
other part is reflected. The solar absorptivity aa defines the amount of absorbed energy
q̇s as:

q̇s =�aaIt (2.61)

2.3.8 Heat transfer analysis of concrete dams

In dam engineering, heat transfer analysis is applied for three different purposes: (i) for
the design of the structure, (ii) the analysis of hydration heat and (iii) the structural monit-
oring. For the structural design, temperature is expressed as a load case. Historic readings
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of the air temperature can be used as boundary condition. If no readings are available, a
sinusoidal function can be used instead (Léger et al., 1993). Today, finite element models
that are used for the analysis of the structural safety are also used for the heat conduction
analysis. Before construction, an analysis of hydration heat has to be carried out (see
Section 2.1.2.2). Based on this analysis, the progress of concreting and a possible cooling
is designed. In these calculations, the hydration heat is considered as source term. In the
case of dam engineering, the thermal field inside the concrete body is of interest. Due to
the fact that the thermometers are usually grouped on different levels, one-dimensional
heat conduction analysis is performed in many cases. In the following, some approaches
that are used in the scope of dam behaviour analysis are briefly discussed.

2.3.8.1 Conduction

Léger and Leclerc (2007) present a frequency domain solution for the one-dimensional
direct- and indirect heat conduction analysis in a concrete dam cross-section. They sug-
gest stabilising the inverse heat conduction analysis by cutting the frequencies that have
eigenvalues > 8 in the thermal impedance matrix. The performance of this approach is
shown in a case study of the Schlegeis arch dam data. Their approach is implemented in
the software TADAM that is freely available (Leclerc and Léger, 2004).

A similar approach, also in the frequency domain, was proposed by Obernhuber and
Perner (2005) and Weber et al. (2010). Instead stabilising by removing large eigenvalues,
a mollifier function is used. This approach is explained in Section 2.3.4.2.

Léger and Seydou (2009) compare a one-dimensional heat conduction analysis performed
with the software TADAM (Leclerc and Léger, 2004) with the results of a 2D FE-solution
for a gravity dam. The results are in very good agreement with the measurement data.
Nevertheless, Léger and Seydou (2009) state to take caution since the presence of galleries
can disturb the 1D results and a 2D calculation might be necessary.

Amberg (2009) used an explicit finite difference scheme that is not stabilised to extra-
polate the surface temperatures from inner readings. Therefore, he proposes to do this
analysis only for thermometers that are installed close to the boundary.

Bofang (2014) gives a good overview of heat conduction analysis for hydration heat due
to mass concrete.

2.3.8.2 Convection

For dams, the conductivity between the air temperature and the concrete surface mainly
depends on the wind velocity. For the upstream surface that is below the water level, the
surface temperature can be assumed to be the water temperature (Amberg, 2003). He also
mentions that convection is of secondary importance for thick dams. This statement is
supported by the analysis of Tatin et al. (2013a). The convection heat transfer coefficient
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a is in the order of 15÷45 W/(m2 K) (Stucky and Derron, 1957). Instead of considering a
convective boundary condition, they proposed to add an additional fictitious concrete part
of 0.04÷0.17 m to the dam body to consider convection.

2.3.8.3 Radiation

Since the difference of the absolute temperature (in Kelvin) between the boundary and the
air temperature is small, radiation is not significant in the case of concrete dams (Léger
et al., 1993).

2.3.8.4 Solar radiation

According to Amberg (2003) and Tatin et al. (2013a), the solar radiation has a significant
influence on the concrete temperature of dams. The solar radiation that reaches the dam
surface depends on the site latitude, the orientation of the surface, the slope of the surface,
the cloud cover and the topography that may cause mountain effect (Léger et al., 1993).
In the case of arch dams, the geometry is variable and thus also the solar radiation over the
surface. As the temperature, the solar radiation follows a seasonal variation (Léger et al.,
1993). Since the solar radiation depends not only on the geometry but also on the weather
conditions (cloud cover), it is measured at certain weather stations. Unfortunately, the
solar radiation is measured for horizontal surfaces and thus transformation equations must
be used (Léger et al., 1993). Due to all these different influences, the implementation of
solar radiation is complex. A well described implementation for arch dams can be found
in Santillán et al. (2014).

For preliminary analysis, according to the curves published in Copen et al. (1977) can
be used to estimate the mean annual increase in surface temperature (compared to the air
temperature) due to solar radiation. The values are provided as a function of the latitude,
the angle of the surface and the orientation.
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2.4 Statistics

The goal of this section is to explain the basics of statistics that are used in the field of
dam behaviour analysis. These are mainly multiple linear regression models with related
analysis tools. Regression analysis is a statistical technique to investigate and model the
relationship between variables. There are applications in almost every discipline in sci-
ence and engineering and it might be the most used statistical tool (Montgomery et al.,
2012). The statistics are explained from an engineering point of view based on an ex-
ample. If the reader is interested in the theory, the derivations and the proofs, the standard
works of Montgomery et al. (2012) or James et al. (2013) are suggested.

The chapter follows more or less the workflow for the regression model building process
(Fig. 2.30). At the beginning, the basics of linear regression models are introduced and
based on this, multiple linear regression models are discussed. Moreover, measures for
the goodness of fit and tools for the model adequacy checking to assess the models are
introduced. Afterwards, the model validation, which is the application of the model to
new data, is explained. Furthermore, there are two chapters where autocorrelation and
multicollinearity are discussed. At the end of this section, some special statistical methods
that go beyond the scope of linear models such as artificial neural networks are introduced.

theory

data

model
specification

parameter
estimation

model
assessment

model
validation

model
use

adjust model

Fig. 2.30 Workflow for model building process (adapted from Montgomery et al., 2012).

The content of this section is mainly based on the works Montgomery et al. (2012), James
et al. (2013) and Dettling (2015).

2.4.1 Linear regression analysis

2.4.1.1 Illustrative example

In this section, the basics of linear regression analysis are introduced and illustrated by
a case study of drainage flow monitoring of an arch dam in Switzerland. At this dam,
the total drainage flow at the bottom Qtot is measured monthly. Additionally, the water
level is recorded. A description of the dam and the data is given in Appendix A.5.5.
The amount of drainage flow is monitored because it is an indicator for dam safety. An
increasing amount of drainage flow could indicate a damage of the grout curtain, while a
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decreasing amount indicates a blockage of the drainage system (BWG, 2002). To quantify
if the amount of the drainage flow is on a normal level, it must be somehow related to the
environmental conditions. It seems to be obvious that the water level might play a major
role and that there might be some further effects such as the season, snow melt, rain fall
and possible irreversible changes depending on the age of the structure. Unfortunately,
it is not clear which of these variables have a significant influence on Qtot . The data
from 2000 - 2009 is used for the calibration of the model coefficients and the data from
2010 - 2013 for model validation.

In Fig. 2.31, the scatter diagram of the drainage flow Qtot versus the third power of the
normalised water level h3 is shown. The scatter shows a linear relationship between the
variables. Therefore, the drainage flow could be modelled as a linear function of the
scaled water level h3, which would be a simple linear regression (SLR) model. SLR are
explained in Section 2.4.1.2. As described above, other variables might also play a role.
Including more than two variables leads to a multiple linear regression (MLR) model.
They are presented in Section. 2.4.1.3.
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Fig. 2.31 Scatter plot of the drainage flow Qtot versus the scaled water level h3.

2.4.1.2 Simple linear regression

The relationship between an independent variable x and dependent variable y can be ap-
proximated with the following linear relationship:

y = b0 +b1 x+ e (2.62)

The intercept b0 and the slope b1 are the model parameters and the error term e represents
the difference between the observations of y and the linear approximation y = b0 +b1 x.
The error term can be considered as a statistical error that accounts for the stochastic
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variation of the process and error of the model. If the independent variable is assumed to
be constant, the error depends only on the properties of y. The error term e can be assumed
to be normally distributed with mean 0 and a variance s2 that determines the variability
or noise in the response variable y (Montgomery et al., 2012). The values of the model
parameters b0 and b1 are not known in real applications but they can be estimated from an
observed data set with n observations by regression analysis. The so called fitted model is

ŷ = b̂0 + b̂1 x (2.63)

The hat (ˆ) symbol denotes that coefficients b̂i are estimates of the true coefficients bi and
ŷ stands for the estimates of y. The differences e = y� ŷ between the observed values and
its estimates are called residuals. In statistics, the following nomenclature is commonly
used:

• x = regressor or predictor variable
• y = response variable
• b̂i = regression coefficients

Estimation of the regression coefficients

The regression coefficients b0 and b1 are commonly estimated by the least square ap-
proach. In this approach, the sum of the squared residuals is minimised. The so called
residual sum of squares SSres can be written in function of the intercept b0 and the slope
b1:

SSres(b0,b1) =
n

Â
i=1

e2
i =

n

Â
i=1

(yi �b0 �b1 xi)
2 (2.64)

To obtain the least squares estimate of the model parameters bi, SSres must be minimised.
This is done by differentiating Eq. (2.64) with respect to b0 and b1. This leads to the least
squares estimators for the simple linear regression model

b̂0 = ȳ� b̂1 x̄ (2.65)

b̂1 =
Ân

i=1 yi (xi � x̄)2

Ân
i=1(xi � x̄)2 , (2.66)

where x̄ and ȳ are the mean values of all xi and yi, respectively. There also exist other
estimators than the least squares, as the maximum likelihood estimation for example. A
description about this estimator can be found in Montgomery et al. (2012).

The variance s2 can be estimated from the residual sum of squares SSres. Since two
parameters are estimated, SSres has n�2 degrees of freedom.
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MSres = ŝ2 =
SSres

n�2
(2.67)

The estimated variance ŝ2 is also called the residual mean square MSres. Due to the
fact that MSres depends on the residuals of the model, its usefulness is reduced if the
model assumptions are violated, e.g. normal distribution of errors or non-correlated errors
(Montgomery et al., 2012). The assumptions are listed in the following and the detection
of potential violations is treated in Section 2.4.1.6.

Assumptions for least squares

There are several assumptions behind the least squares approach. The theoretical back-
ground can be found in James et al. (2013) or Montgomery et al. (2012). These assump-
tions are (Dettling, 2015):

• the expected value of the error is 0 (E(ei) = 0 )
• the variance of the error is s2 (Var(ei) = s2)
• the errors are not correlated (Cov(ei,e j) = 0 for i 6= j)
• the errors are (at least) normally distributed (ei ⇠ N(0,s2))

A single value for E(ei) is not 0 by definition but for a large number of data E(ei) should
converge to 0. After developing a model, these assumptions must be checked. This is
mainly done by the analysis of the residuals (see Section 2.4.1.6).

Properties of least squares

The least square estimators b̂0 and b̂1 are unbiased estimators of the model parameters
b0 and b1. This means that for a specific data set the estimates can be over- or underes-
timated, but in average for a large number of data sets, b̂i would be equal to bi. There-
fore, an unbiased estimator does not systematically over- or underestimate the true model
parameters. Under assumption of E(ei) = 0, Var(ei) = s2 this can be proofed by the
Gauss-Markov theorem (see Montgomery et al., 2012). Based on this theorem it can also
be stated that a least square estimator has minimal variance. Therefore, it can be said that
the least squares estimators are the estimators that lead to minimal variance. Furthermore,
based on Eq. (2.65) and (2.66) it follows that the resulting model always goes through the
centroid point (x̄, ȳ) of the regression line.

Extrapolation

Regression analysis is only an approximation of the real behaviour that can be expressed
by physical laws. Fig. 2.32 shows an example of a true relationship and a linear approxim-
ation, where data between x1 and x2 was available only for fitting. The linear relationship
seems to approximate the true relation well within this range. Generally, linear regression
models are valid within the range of the observed regressor values (Montgomery et al.,
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2012). Caution must be paid to extrapolations. In the example of Fig. 2.32, extrapolation
leads to a considerable overestimation of the true relationship between x2 and x3.

x1 x2 x3
x

y

Fig. 2.32 Comparison of a true functional relationship (black) and a linear approximation (red)
(adapted from Montgomery et al., 2012).

Drainage flow SLR example

For the drainage flow example, the estimation of the regression coefficients leads to the
following SLR model:

Q̂tot = 0.165+1.22h3 (2.68)

The error was estimated to ŝ = 0.093 which corresponds to an error variance of ŝ2 =

0.0087. In Fig. 2.33, the fitted model given by Eq. (2.68) is shown by a straight line. In
addition, the error variance is shown by a normal distribution. The 95% interval (corres-
ponding to 2ŝ ) is marked with dashed lines. In addition, the time series of the measured
values Qtot and the fitted values Q̂tot are shown in Fig. 2.34. Generally, a good agreement
is recognisable.
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Fig. 2.33 Linear relationship between the predictor variable h3 and the response variable Qtot .
The error variance is shown by a normal distribution and the corresponding 95%
interval by dashed lines.
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Fig. 2.34 Time series for the measurement values and the fitted values for the SLR example.

2.4.1.3 Multiple linear regression

Regression models with more than one regressor variable are called multiple linear re-
gression (MLR) models. Linear stands for the response, which is a linear function of the
regressor variables x j. As a consequence, MLR models can be solved with the methods
of linear algebra. An MLR model with k regressor variables reads:

y = b0 +b1 x1 +b2 x2 + . . .+bk xk + e (2.69)

and in matrix notation,

y = Xb + e (2.70)
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Estimation of regression coefficients

As for the simple linear regression models, the coefficients are usually determined by the
method of least squares. The residual sum of squares in matrix notation can be written as

SSres(b ) =
n

Â
i=1

e2
i = e 0e = (y�Xb )0(y�Xb ) (2.71)

Differentiating Eq. (2.71) with respect to all bi leads to the least squares estimator in
matrix notation

b̂ = (X0X)�1 X0 y (2.72)

The residual sum of squares SSres has n� p degrees of freedom, where p is the number
of parameters bi that are included in the model. The intercept b0 counts for p as far as
included in the model. The total variance ŝ2 and the residual mean square MSres can be
obtained by

MSres = ŝ2 =
SSres

n� p
. (2.73)

Based on the total variance ŝ2, the standard errors of the individual regression coefficients
can be estimated:

se(bi) =
p

ŝ2Cii (2.74)

where Cii are the diagonal element of the matrix (X0X)�1 corresponding to bi.

Drainage flow example

Now, the dam operator wants to improve his simple linear regression model for the drain-
age flow monitoring. In doing so, he adds information by adding polynomial coefficients
for the water level h, inserting a sinusoidal function for seasonal effects with the period of
one year (this is represented by the seasonal function S = j 2p/365.25 where j represents
the number of the day in the year) and adding the time of measurement t:

Qtot = b0 +b1 h+b2 h2 +b3 h3 +b4 sin(S)+b5 cos(S)+b6 t + e (2.75)

Since more than one regressor variable is present, this is an MLR model. The least squares
estimation leads to
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Q̂tot = 0.078�1.46h+3.72h2 �1.14h3 +0.036 sin(S)�0.033 cos(S)+0.012 t (2.76)

In Fig. 2.35, the time series of the measured values Qtot and the fitted values Q̂tot are
shown for the MLR model. Compared to the SLR model (Fig. 2.34), the agreement of the
MLR model with the measured values is better for low drainage flows. The error of the
MLR model is estimated to ŝ = 0.078 and the corresponding MSRes to 0.0061, which is
lower than for the SLR example.
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Fig. 2.35 Time series for the measurement values and the fitted values for the MLR example.

2.4.1.4 Assessment of model accuracy

After setting up and fitting a model, it is of interest how good the model fits the data.
Typically, two related quantities are used to measure the goodness of fit. One is the
residual standard error (RSE) that makes a statement in the unit of the predictor variable
and the other is the dimensionless coefficient of determination R2. In addition, the test
error and the cross-validation test error can also be used to make a statement about the
goodness of fit.

Residual standard error

The residual standard error is an estimate of the standard deviation of the model error e:

RSE =
p

MSres =

s
SSres

n� p
(2.77)

Since the RSE has the unit of the response variable y, it is not always clear what val-
ues are good and not. It depends on the problem at hand. Therefore, the coefficient of
determination can be a good alternative (James et al., 2013).
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Coefficient of determination

A quite common approach to measure the goodness of fit is the coefficient of determina-
tion R2 (Eq. (2.78)). It is a measure which portion of the total variance can be explained
by the model and which remains stochastic (James et al., 2013). The value of the R2 lies
by definition between 0 and 1. A value of 1 stands for a perfect fit whereas 0 indicates
that the model is not able to describe the total variance of the predictor variable at all.

R2 = 1� SSres

SSt
(2.78)

The total sum of squares SSt is defined by

SSt =
n

Â
i=1

(yi � ȳ)2 (2.79)

Applying Eq. (2.78) to the simple linear regression model of the drainage flow example
leads to a R2 value of 0.939. Fig. (2.36) visualises the idea behind the coefficient of
determination R2 of this example. It measures the proportion between the variance of the
residuals and the total variance of the response variable.

●

●

●

●●●

●

●
●

●

●

●
●

●
●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●●
●

●
●

●

●●

●
●

●
●

●
●●●

●

●
●
●

● ●
●

● ●● ●

●

●
●

●

●

●

●

●●● ●

●

●
● ● ● ●
●

●● ● ● ●

●
●

●
●

●

●

●

●

●●

●

●

●

●
●
●

●
●

●

●
●

●

● ●
●

●
●●●●
●

●
●

●
●

●
●
●

●
●

●

●●

●
●●
●
●
●

●

●
●

● ●

●●

●

●
●●

●
●●

●

●
●

●●

●

●

●
●

●

●

●
●

●●●●
●●

●
●

●●●

●

●

●
●

●
●

●

●

●
●

●

●

●●

●

●
●
●
●
●

●

●

●

●

●
●

●
●

●
●

●

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

x = h 3 [−]

y 
= 
Q

to
t [
m

3 /d
]

total
varianceR2 = 0.939

residual
variance

Fig. 2.36 Visualisation of the idea behind the coefficient of determination R2 for the simple linear
regression model of the drainage flow example (adapted from Dettling, 2015).

For multiple linear regression models, also Eq. (2.78) can be applied to calculate the
coefficient of determination R2. Due to the fact that adding predictors to an MLR model
leads to a lower residual sum of squares by definition, the R2 value will always be higher
when adding predictors (Dettling, 2015). This can be overcome by the use of the adjusted
coefficient of determination R2

adj that considers the degrees of freedom:
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R2
adj = 1� n�1

n� p
SSres

SSt
(2.80)

For the MLR drainage flow example, the coefficient of determination is estimated to
R2 = 0.962 and the adjusted coefficient of determination to R2

adj = 0.961. Since n = 199
observations are used, the difference is small. Compared to the SLR model, the amount
that is expressed by the model rises by about 2%.

Test error

If the model is used for prediction, its prediction performance is of main interest. The
most effective method to quantify the prediction performance is to keep one part of the
data with np values as test data (not used for fitting of the model) and use it only to calcu-
late the test error (Montgomery et al., 2012). The test error is calculated by the difference
between the predictions of the response variable and the corresponding measurement val-
ues. It can be expressed as the mean squared residuals of the prediction MSres,p or the
root mean squared prediction error RMSPE that has the unit of the response variable:

MSres,p =
Ânp

i=1(yi � ŷi)2

np
(2.81)

RMSPE =
p

MSres,p (2.82)

Since the test data set was not used to fit the model, the test error MSres,p is expected to
be larger than the error of the fitted model MSres. By checking the test error, the danger
of overfitting can be controlled. Overfitting means that the model follows the errors too
closely and for a new sample, other coefficient estimates result (James et al., 2013). The
disadvantage is that a part of the data is not used for the fitting. In addition, since more
data could have been used, the test error rate is overestimated with this approach (James
et al., 2013). The cross-validation approach addresses this issue.

The test error for the drainage flow example was calculated by a data split of 2/3 for
fitting and 1/3 to calculate the test error. For the SLR, the RMSPE is 0.113 m3/d and for
the MLR model it is 0.087 m3/d. For the calibration, they were estimated to 0.093 m3/d
for the SLR and 0.078 m3/d for the MLR. As expected, they are lower as the estimated
test error.

Prediction coefficient of determination

Since the test error depends on the unit of the response variable y, it cannot be used as
a measure to compare different data sets. To overcome this problem, the dimensionless
prediction coefficient of determination R2

pred can be calculated (Montgomery et al., 2012):
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R2
pred = 1� Ânp

i=1(yi � ŷi)2

SSt
(2.83)

As for the test error, R2
pred of the drainage flow example was calculated by a data split of

2/3 for fitting and 1/3 for prediction. For the SLR, the R2
pred is 0.899 and for the MLR

model 0.942. This is lower than the R2 of the calibration.

Cross-validation

The idea behind the cross-validation approach is that all of the data can be used to estimate
the test error. By this approach, the data are divided in k folds (groups) of approximately
the same size (Fig. 2.37). Then each fold is used to calculate the test error whereas the
others are used to fit the model. This procedure leads to k estimates of the test error. The
average of these test errors leads to the cross-validation test error:

RMSPECV =
1
k

k

Â
i=1

RMSPEi (2.84)

By this procedure, each data point can be used to estimate the test error rate. James et al.
(2013) suggest using k = 5 or k = 10 folds, since it was shown empirically that there is
not a too high bias and variance for these values. In the past, R2

adj was preferred since the
cross-validation approach is computationally intensive. For the 5-fold cross-validation for
instance, five MLR models must be fitted and predicted. Due to the gain of computational
power in recent years, this approach has become attractive (James et al., 2013). Besides
the test error, also the prediction coefficient of determination R2

pred,CV can be determined
by cross-validation.

test
1 2 3 4 5

fit

testfit fit

testfit fit

test fit

RMSPE3 RMSPECV
fit

testfit

dataset

RMSPE4
RMSPE5

RMSPE2

RMSPE1 }
Fig. 2.37 Schematic example of a 5-fold cross-validation. The data set is split into folds of

approximately the same size. Each fold is once used to calculate the test error RMSPEi
whereas the rest of the data is used for fitting. The mean value of all test errors is the
cross-validation prediction error RMSPECV (adapted from James et al., 2013).
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Performing 5-fold cross-validation for the drainage flow example leads to RMSPECV =

0.099 m3/d for the SLR model and RMSPECV = 0.082 m3/d for the MLR model. As the
test error, the RMSPECV are higher than the calibration error.

2.4.1.5 Hypothesis tests

There are different hypothesis tests that are usually done in MLR; two of the most popular
are presented here. Considering Eq. (2.75) of the MLR drainage flow example, the ques-
tion arises if it makes sense to add the time t and the sinusoidal function sin(S)+cos(S) to
the model. This question can be answered by hypothesis tests. The presence of the time t
can be tested by a hypothesis test on individual coefficients. Unfortunately, this test does
only work if the coefficients are removed individually step by step. A check for adding
or removing a subset of two or more regressor variables can be done by a partial F-test.
Detailed information about test statistics can be found in Stahel (2008) and Montgomery
et al. (2012).

Hypothesis tests on individual coefficients

In this test, the goal is to find out if an arbitrary value of a coefficient bi is reasonable.
The most popular procedure is to check if it could be 0, i.e. having no influence on the
response y (Dettling, 2015), and therefore can be deleted from the model (Montgomery
et al., 2012). This can be tested with the null hypothesis H0 : bi = 0. If this hypothesis
can be rejected, it can be inferred that a relation between the predictor variable xi and the
response y exists. To perform this test, the t-test statistics is calculated by dividing the
value of the coefficient by its standard error:

t =
bi

se(bi)
(2.85)

The t-value is an indicator for the number of standard deviations where bi is not zero
(James et al., 2013). On the basis of the t-value, the p-value is calculated by using in-
tegral tables of distribution functions or statistical software. A small p-value indicates
that a relation between the predictor variable and the response variable due to chance is
unlikely. Typically, the significance level a for the p-values is chosen to 0.05 or 0.01
(James et al., 2013). The choice of the significance level has an influence on the type I
error (H0 true, but rejected) and type II error (H0 false, but retained). The type I error
increases when doing several tests. If for example 10 predictors are in a model and they
are tested with a significance level of a = 0.05, the chance of at least one false rejection is
0.40. On the other hand, if the significance level is chosen too low, the chance of a type II
error increases. This means that the test fails in rejecting the null hypothesis although the
predictor variable is related to the response. It even can be that all individual hypothesis
tests fail in rejecting the null hypothesis, even though some predictor variables have a
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known significant effect. This may happen due to the collinearity between the predictor
variables. Their values are distributed to several coefficients with less influence each (Det-
tling, 2015). The detection and treatment of such collinearities, called multicollinearity,
is discussed in Section 2.4.2.

As an example, consider a normally distributed coefficient bi with mean value of 0.5 and
standard error of 0.1 (Fig. 2.38a). This results in a p-value of 0 and a relation between
the predictor and the response can be inferred. In contrary, consider a coefficient bi with
mean value of 0.5 and standard error of 0.4 (Fig. 2.38b). A relation between the predictor
and the response due to chance is likely since the p-value is 0.18.

a)

−0.5 0 0.5 1 1.5−0.5 0 0.5 1 1.5

b)
se(βi) = 0.1

βi = 0.5
se(βi) = 0.4

βi = 0.5

0
0.

5
1

0
0.

5
1

Fig. 2.38 Example cases with a) bi = 0.5 and se(bi) = 0.1 ; b) bi = 0.5 and se(bi) = 0.4.

Considering the MLR drainage flow example, the coefficient estimates, their standard er-
rors, the resulting t-values and the corresponding p-values are given in Table 2.5. The
p-values indicate high significance except for the intercept and the water level h3. Nev-
ertheless, the water level h3 is still significant with p = 0.02 but one might think about a
reduced model with h+ h2 to represent the influence of the water level. The intercept is
not significant, but should generally be included according to Montgomery et al. (2012).

Table 2.5 Coefficient estimates (b̂ ), standard errors se(b̂ ), t-values and p-values of the MLR
model for drainage flow example.

type b̂ se(b̂ ) t p

Intercept -0.0798 0.0755 1.1 0.29

b1 h -1.46 0.451 -3.2 1.4 ·10�3

b2 h2 3.72 0.867 4.3 2.3 ·10�5

b3 h3 -1.14 0.486 -2.3 0.02

b4 sin(S) 0.0360 0.0105 3.4 0.0038

b5 cos(S) -0.0331 0.00802 -4.1 7.0 ·10�4

b6 t 0.0116 0.00195 5.9 1.4 ·10�8

Caution is advised if the excluding of predictors is decided on the basis of p-values. The
estimated coefficient values b̂ and their standard error se(b̂ ) depend on the other predictor
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variables that were included for model fitting. Therefore, it is tested if a certain predictor
x j has a significant effect to the response y in presence off all other predictor variables.
To check if adding a subset of predictors has a significant effect on the response, a partial
F-test can be done.

Hypothesis tests on subset of coefficients, the partial F-test

A partial F-test allows to compare two different MLR models with different size. The
larger model must contain all predictors that are contained in the small model. It is tested
if at least one of the removed variables has a significant effect on the response. The test
is based on the residual sum of squares SSres. Thus, the question whether the additional
subset of predictors will lower the SSres enough will be answered with this test. The test
statistic F can be calculated as:

F =
n� p

q
SSres,small �SSres,large

SSres,large
(2.86)

where q is the number of additional coefficients. The test statistic can be compared to the
values of the F-distribution of a chosen significance level a . These values can be found
in statistical tables or calculated by statistical tools such as R (R Core Team, 2013).

Now, the described procedure is applied to check if adding a sinusoidal function is worth
in case of the MLR drainage flow example. The results of the analysis are summarised
in Table 2.6. The residual sum of squares can be reduced by 0.36 by the model including
a sinusoidal function. Eq. (2.86) gives an F-value of 16.04 what leads to a p-value of
3.6 ·10�6. Thus, adding the sinusoidal function significantly improves the model.

Table 2.6 Results of F-test for a small and a large model with a sinusoidal function for the
drainage flow example.

model SSres F p

b0 +b1 h+b2 h2 +b3 h3 +b4 t 1.254
16.04 3.6 ·10�7

b0 +b1 h+b2 h2 +b3 h3 +b4 sin(S)+b5 cos(S)+b6 t 1.074

2.4.1.6 Model adequacy checking

The validity of the assumptions for the least squares approach must be checked (see Sec-
tion 2.4.1.2,), because serious violations lead to unstable models. This means that a differ-
ent sample of the same data could lead to a totally different model and therefore to other
conclusions. Usually the checking is done visually by a plot of the residuals (Dettling,
2015).

The Tukey-Anscombe plot allows to check if (i) the expected value of the residuals is
zero (E(ei) = 0), (ii) the variance is constant and (iii) if there are nonlinear effects that
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are not considered in the model. A scale-location-plot is similar to the Tukey-Anscombe-
plot, but it is a bit simpler to detect non-constant variance (Dettling, 2015). In addition,
a plot of the partial residuals can be used to check if the linear assumption is satisfied by
all regressors in the model. This may help to detect if a variable transformation might
be useful. Furthermore, with a normal probability plot (also called quantile-quantile plot
or Q-Q-plot), the assumption of the normal (Gaussian) distribution of the residuals can
be checked. Finally, the presence of potential leverage points that heavily influence the
result of the analysis, can be detected by a plot of the Cook’s distance. In addition, the
assumption that the residuals are not correlated by themselves (Cov(ei,e j) = 0 for i 6= j)
should also be checked. A method how this can be done and also two methods that can
be applied if a correlation was detected are explained in Section 2.4.3.

The plots listed above are explained in Appendix A.3.1 or in Montgomery et al. (2012)
and Dettling (2015). Some of the plots are based on scaled residuals since they allow
for better detecting outliers and extreme values. Thus, they will be introduced before the
description of the different diagnosis tools.

2.4.1.7 Variable selection

Too many predictor variables can cause different problems in MLR-models. Irrelevant
variables can lead to unnecessary complexity what reduces the interpretability (James
et al., 2013) and they can add noise to the estimated coefficients of the other predictors
(Dettling, 2015). If some of the predictor variables are correlated, instabilities in predic-
tion can occur (this is addressed in Section 2.4.2).

Therefore, the question which variables shall be included and in which form arises when
setting up MLR models. For the drainage flow case study presented here, the water level
in arbitrary form, the season, the time or even more information could be used to set
up a model. In models where the displacement is used as response variable, the choice
between different thermometer readings can be necessary. In this section, an approach
how a subset of regressor variables can be selected is presented.

There are different established procedures that help to decide which variables shall be
taken into the model. One of these, the best subset selection, is presented here. The idea
behind it is very simple. All possible combinations of variables are determined and the
corresponding model is fitted. The best model is chosen by the assessment of the model
accuracy. Due to the fact that this procedure is computational intensive, stepwise selec-
tion procedures such as the forward selection, the backward selection and some mixed
algorithms were developed. Usually, these algorithms do not find the best of all models
since the influence of some variables can be less important by adding other variables.
Montgomery et al. (2012) suggest performing best subset selection whenever it is feas-
ible. For a data set with p predictors, 2p models must be considered. For p = 10, there
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are 1024 models, for p = 20 there are 1.05 ·106 models and for p = 30 there are 1.07 ·109

models.

Best subset selection

The implementation of the best subset algorithm is straightforward. It can be performed
in three main steps:

1. Define null model M0, which contains no predictors and predicts

the sample mean.

2. (a) For k = 1,2,3, . . . ,(p�1): Fit

�p�1
k

�
models that contain k predictors.

(b) Pick the best of these models and call it Mk. The best can be

chosen by a goodness of fit criteria such as R2
, RSE or RMSECV.

3. Select the best models among M0, . . . ,Mk, using goodness of fit criteria

that account for the number of predictors (R2
adj) or do not suffer from

overfitting (RMSECV). Alternatively, cross validation can be

performed.

In Fig. 2.39 the results of the best subset selection analysis for the drainage flow example
are shown. The variables h, h2, h3, h4, sin(S), cos(S), sin(2S), cos(2S) and t were given
to the selection algorithm. This resulted in 512 different MLR models. To compare the
models, the cross-validation RMSPE was calculated. All RMSPECV are displayed against
the model order p in Fig. 2.39. For model orders up to 6, the cross-validation test error
decreases and for higher orders it increases again due to overfitting. The best model has
the order p = 6 and reads:

Q̂tot = �0.027�0.46h+1.70 h2 (2.87)

+0.023 sin(S)�0.034 cos(S)+0.029 cos(2S)+0.012 t

This model is similar to the MLR model presented before. The influence of the water
level is represented by a polynomial of second-order instead of third order. According
to Table 2.5, the p-value for h3 was not highly significant. Thus, the model of the best
subset selection seems to be plausible. In addition, a second order sinusoidal function was
added.

A closer look to the best models for each order (red dots in Fig. 2.39) indicates that the
difference between the 4th and the 6th order is small. Applying the so called one-standard-
error rule considers this.
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Fig. 2.39 Best subset selection for drainage flow example. The estimated RMSPECV are shown
for all possible regressor combinations separately for the number of coefficients in the
model p.

One-standard-error rule

The idea of the one-standard-error rule is, if there are some models that are more or less
equally good, the smallest shall be chosen (James et al., 2013). As a measure of equal
goodness, the standard error of the goodness of fit criteria of the best model, e.g. the
standard error of RMSPECV , is taken. This standard error is added to the criteria and is
seen as a cut-off value. The smallest model with a RMSPECV below the cut-off value is
chosen.

2.4.1.8 Model validation

Before a developed model is used for prediction, its performance should be validated.
This shall not be confused with the model adequacy checking where basic assumption
for the least squares approach and potential leverage points are checked. A model can be
validated by looking at the regression coefficients and assess the prediction performance
by using new data.

The signs and the values of the regression coefficients bi shall be checked for plausibility.
This can be done by the knowledge of analytical solutions or physical behaviour. Coef-
ficients with a wrong sign or too large values are an indicator for an inappropriate model
or poor coefficient estimates. Furthermore, the stability of the estimated coefficients shall
be checked. One option is to use a new data sample and compare these coefficients to
the fitted ones, another is to split the existing sample in different parts and compare them
(Montgomery et al., 2012).

The prediction performance can be analysed with fresh data that have not yet been used
for model calibration and variable selection. Even if a test data set was used to create the
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model, this should not be used to validate the model; this would lead to a bias. If two
or more models have been developed, they can be compared and the final model decision
can be made on the basis of an unbiased test error.

2.4.2 Multicollinearity

2.4.2.1 Introduction

Multicollinearity occurs if two or more of the predictor variables are correlated to each
other (James et al., 2013). In the context of dam behaviour analysis, this is mainly related
to temperature measurements at different positions in the dam body. The temperature
measurements are different due to the varying boundary conditions (e.g upstream and
downstream side) and the diffusive nature of the heat transport. However, from a global
point of view, all the temperature readings are driven by the air temperature at the site.
Thus, correlations likely occur. In Fig. 2.40, temperature data of a gravity dam (gravity
dam G1, see Appendix A.5.7 for details) are shown as an example. In Fig. 2.40a, the
correlation plot of the temperatures T262,6 and T283,4, both near the downstream surface,
are shown. There is a high correlation, except for the spring time marked by red dots.
In Fig. 2.40b, the correlation plot of the temperatures T262,6 on the downstream side and
T262,2 on the upstream side, is shown. A hysteresis is recognisable and the correlation is
weaker.

Multicollinearity can cause stability problems when estimating the regression coefficients
(James et al., 2013). This can be illustrated by Fig. 2.40c and d, where the SSRes is
shown as a function of the regression coefficients corresponding to the temperatures of
the correlation plots. In Fig. 2.40c, it can be identified that for the temperatures T262,6

and T283,4 different pairs of regression coefficient estimates lead to the same SSRes of 76
mm2, which is close to the optimum value. This means that a slight modification of the
data set may lead to different coefficient estimates. In Fig. 2.40d, it can be recognised
that there is still a linear dependency, but it is weaker due to the weaker correlation of the
temperatures.

In the case of dams, other sources of multicollinearity can occur. If the progress of the
water level is similar to the temperature measurements multicollinearity may occur, e.g.
in the case of a seasonally operated reservoir. According to Amberg (2009), this can
be avoided by a calibration period that is long enough. In addition, multicollinearity
can occur between different polynomial terms of the water level approach and between
different shape functions considering irreversible effects. Fortunately, this does not cause
any problems since they are treated as one piece by definition (Montgomery et al., 2012).
In the following, it is shown how multicollinearity can be detected and treated.
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Fig. 2.40 Data of gravity dam G1: a) correlation plot of the temperatures T262,6 and T283,4;
b) correlation plot of the temperatures T262,6 and T262,2; c) and d) SSRes in function of
the regression coefficients of the temperatures T283,4, T262,6 and T262,2.

2.4.2.2 Detection

Multicollinearity can be detected by the variance inflation factor V IF . It can be calculated
by

V IF = diag
�
(X0X)�1� S j j, (2.88)

with S j j as the corrected sum of squares for regressor x j (Montgomery et al., 2012):

S j j =
n

Â
i=1

(xi j � x̄ j)
2 (2.89)

Alternatively, the V IF of the jth regression coefficient can be written as
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V IFj =
1

1�R2
j
, (2.90)

where R2
j is the coefficient of determination from a regression of the regressor x j as target

variable to the other regressors (Montgomery et al., 2012; James et al., 2013). V IF values
larger than 5 ÷ 10 are said to cause serious multicollinearity (Montgomery et al., 2012;
James et al., 2013).

2.4.2.3 Treatment

There are different approaches to deal with multicollinearity. There are established stat-
istical procedures such as ridge regression (RR), lasso regression (LR) or principal com-
ponent regression (PCR). Nevertheless, the simplest approach is to eliminate some of the
correlated temperatures from the model since they contain the same information as others.
This is often applied in the practice of dam behaviour analysis (Amberg, 2009) (see Weber
(2002), for example). In the following, RR and PCR are briefly discussed. More details
can be found in James et al. (2013) and Montgomery et al. (2012). RR is a modified least
squares approach with a tuning parameter l . The ridge estimator is

b̂ R = (X0X+l I)�1 X0 y, (2.91)

with I as the identity matrix. For l = 0, the estimator is the same as for the common least
squares approach. For l > 0, the regression coefficients are shrunken towards 0. This
leads to a decreasing variance but an increasing bias. In Fig. 2.41 the distribution of an
estimated coefficient b̂ with variance V is shown exemplarily. Since the MLR approach
was used, the estimate is unbiased (E(b̂ ) = b ). When applying RR, the variance reduces
but a bias is introduced (E(b̂ ) 6= b ).

ββ̂E(β) = βˆ E(β) β̂

ˆE(β) = β (unbiased)
se(β) large

ˆE(β) ≠ β (biased)
se(β) large

a) b)

Fig. 2.41 a) Resulting distribution of an MLR-estimated coefficient b̂ ; b) distribution of the
RR-estimated coefficient, a bias is introduced and E(b̂ ) 6= b (adapted from
Montgomery et al., 2012).

The choice of the tuning parameter l is difficult. James et al. (2013) use the cross-
validation procedure to determine the best choice. Due to the shrinkage of the coefficients,
RR can also be seen as a variable selection procedure. Not important variables result in
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very small coefficients close to 0 (James et al., 2013). In the field of dam behaviour
analysis, RR was applied by Weber (2002).

The PCR is based on dimension reduction. The principal components of the data are es-
timated and used as predictor variables of an MLR model. The idea behind this approach
is that usually a small number of principal components explain most of the variability of
the response variable (James et al., 2013). As usual for MLR models, adding more prin-
cipal components to the model, leads to a reduction of the SSRes by definition. Thus, the
number of required principal components is usually estimated by cross-validation (James
et al., 2013). When performing PCR, it is recommended to standardise the variables
(Montgomery et al., 2012; James et al., 2013). There are two popular scalings, unit nor-
mal scaling and unit length scaling. Both of them are described in Montgomery et al.
(2012).

2.4.3 Autocorrelation

2.4.3.1 Introduction

One of the general assumptions for a least square estimate is that the residuals are uncor-
related. When using time-series data in regression models, this assumption will likely be
violated and the errors can be autocorrelated. Autocorrelation means that the errors are
correlated by themselves at different times (Montgomery et al., 2012). An intuitive visu-
alisation can be done by temporally lagged scatterplots of the residuals. In doing so, the
residuals of the current time step et are plotted against the corresponding residuals some
time-lags back et�lag. In Fig. 2.42, a lagged scatterplot for 1 time-lag for the residuals of
the simple linear regression model of the drainage flow example is shown. It is visible
that there is a weak positive correlation (cor = 0.59, R2 = 0.34) between the residuals of
one time lag.
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Fig. 2.42 Lagged scatterplot of the residuals of the SLR drainage flow example for 1 time-lag.
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Autocorrelation can have two different origins. The first is the absence of one or more
important predictor variables in the model (Montgomery et al., 2012). This leads to sys-
tematic deviations and wrong estimates of the other regression coefficients. The second
concerns data that are recorded in sequence. For example, consider a data set that was
doubled. The content of the information will be the same but instead of n observations,
there are 2n observations available. The estimates of the regression coefficients will be
exactly the same for both data sets when doing MLR analysis but the standard errors
se(b ) will be different since they depend on the number of observations n that are used
to fit the model (James et al., 2013). The standard errors will become smaller as more
times the data set is doubled. Unfortunately, many test procedures (see Section 2.4.1.5)
are based on the p-values, which depend on the ratio between the coefficient estimate and
the standard error.

Now, consider the measurements of time series that are recorded at relatively short inter-
vals compared to their variation. This means that almost the same quantities are measured
multiple times. As in the example described above, this will result in smaller standard er-
rors and smaller p-values of the regression coefficients compared to data with a larger
measurement interval. If conclusions are made based on the result of hypothesis tests,
wrong conclusions may be drawn. Thus, it is important to check for autocorrelation of
the residuals and to eliminate this phenomenon if the standard errors of the coefficients
and the p-values are of interest.

2.4.3.2 Detection

Autocorrelation can be detected visually by plotting the autocorrelation function (ACF)
and the partial autocorrelation function (PACF) or by a Durbin-Watson test. The visual
detection is straightforward. It is explained in Appendix A.3.2.

2.4.3.3 Treatment

There are statistical methods as the Cochrane-Orcutt method or the Prais-Winsten al-
gorithm. They are well described in general in Montgomery et al. (2012), and specifically
with regard to dam behaviour analysis in Weber (2002). These procedures can lead to
meaningless results if strong autocorrelation is detected.

Furthermore, a crude but effective approach to reduce autocorrelation is thinning out the
data set (see Bühlmann et al. (2015)). This reduces the correlation of the residuals. If the
chosen sampling rate is long enough, the residuals will be uncorrelated. Unfortunately,
because the data is thinned out, some information is lost.

A more sophisticated approach to estimate correct standard errors of the regression coef-
ficients is the block bootstrap (BBS) method (Gonçalves and White, 2005). In the BBS
method, the data are divided into blocks of size l (Gonçalves and White, 2005). Then,
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new data sets are created by sampling with replacement (Fig. 2.43). As a consequence, a
block can be used more than once, and therefore some of the original data might not be
present in the new dataset. This procedure is usually repeated 200 to 1’000 times (Mont-
gomery et al., 2012). Ordinary least square regression (OLS) is performed to all of these
datasets. Every regression will lead to slightly different regression coefficients. On the
basis of these different coefficients a mean value bi and a standard error se(bi) can be
calculated. Since the sampled data sets depend on the block length, it should be selected
with care and a sensitivity analysis is recommended.

B1 B2 B3 B4 B5

B41

2

3

B3 B5 B4 B3

βi  se(βi)

dataset

OLS1

B1 B4 B5 B2 B1 OLS2

B2 B3 B1 B2 B5 OLS3}. .
 .

. .
 .

make blocks

sampling with replacement

Fig. 2.43 Principle of the block bootstrap (BBS) approach.

2.4.4 Generalized Additive Models

MLR models are limited to linear relationships. Generalized Additive Models (GAM) are
an extension of MLR models that allow for nonlinear relationships between the predictor
variables and the response. The response y is formulated as a sum of (smooth) nonlinear
functions f j (James et al., 2013):

y = b0 +
p

Â
j=1

f j(x j)+ e (2.92)

The model is called additive since the functions f j are added and independent from each
other. They can be determined by smoothing splines. The degree of smoothing can be
determined by the generalised cross-validation criterion described in Wood (2004). This
approach is implemented in the R-package “mgcv” that allows for convenient application
(Wood, 2006).

The advantages and disadvantages of GAM are (James et al., 2013):

+ GAM allow for nonlinear functions to represent the effects of the predictor variables
+ potentially more accurate predictions than a linear relationship
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+ since the model is additive, the individual effect of each predictor variable can still
be analysed individually when keeping the others fixed

- the model is restricted to be additive which means interactions cannot be considered
- in terms of dam behaviour analysis, the description of the relationship is statistical

but not physical

2.4.5 Markov Chain Monte Carlo method

2.4.5.1 Introduction

Bayesian inference allows for the use of prior knowledge of the parameters when fitting to
the observed data. One of the standard procedures to observe the most probable paramet-
ers is the use of the Markov Chain Monte Carlo (MCMC) method that samples from the
posterior distribution. Here, the basic idea about Bayesian inference and the MCMC al-
gorithm used in this work is described. Further, the applied diagnosis is shortly described.
More information about the theory can be found in Robert and Casella (2010) or Brooks
et al. (2011).

2.4.5.2 Bayesian inference

Consider a deterministic model, for example a cantilever beam made of concrete with
material properties Ec and nc and an elastic supporting with a spring constant kM. From
material tests and engineering knowledge, the mean value and the standard deviation of
the material properties and the spring constant are known. With this knowledge, the
deformation can be calculated. However, if there is further knowledge, e.g. measurements
of the displacement for certain loading conditions, the material properties and the spring
constant can be adjusted. The simplest way would be to adjust material constants by
a least squares procedure rather than using the prior knowledge. However, if there are
some collinearities, this may lead to physically meaningless results. This problem can be
overcome by the use of the Bayesian inference.

Bayes’ rule (Eq. (2.93)) says that the prior distribution p(q |y) of the parameters q (the
material properties and the spring constant in the example mentioned above) given the
measured data y is proportional to the likelihood L (y|q) of observing the data y given the
parameters q multiplied by the prior distribution of the parameters p(q) (van Ravenzwaaij
et al., 2016).

p(q |y) µ L (y|q)p(q) (2.93)

Eq. (2.93) can be examined for arbitrary parameter sets q . Ideally, every possible com-
bination of parameters would be used but this would be computationally very extensive.
A common way to approximate the posterior distribution is to draw samples from it by
the MCMC method (van Ravenzwaaij et al., 2016).
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2.4.5.3 Markov Chain Monte Carlo algorithm

Markov Chains define the path of the walk through the parameter space from which the
samples are drawn. By definition, they follow an autoregressive process of first-order
(AR(1)). There are different algorithms how the path of the Markov Chains can be de-
scribed, the simplest one is a common random walk (Hastie et al., 2009). In this thesis,
the algorithm of Braak (2006) with parallel Markov Chains is used. This algorithm con-
siders the genetic algorithm differential evolution algorithm of Storn and Price (1997)
(DE-algorithm, see below) for the update. The advantages of this algorithm are the simple
implementation and the convergence and therefore the good efficiency even if collinear
parameters are present (Braak, 2006). The pseudo-code of the DE-MCMC algorithm is
given below (for details see Braak (2006)):

Define prior distributions p of q including a lower and upper limit

Choose a number of parallel chains P

Draw P random samples from the prior distributions p as initial values

Calculate likelihood L (y|q) for the initial values

# loop with N steps

for ( i in 1:N ){

for ( j in 1:P ){

Randomly select two chains c1 and c2 unequal to j

Apply DE-algorithm of Storn and Price (1997):

q j = q j�1 + gde (qc1 �qc2)+ e (see Fig. 2.44)

Mirror points outside parameter interval at the limits

Calculate L (y|q j)p(q)

Selection process based on the Metropolis-Hastings update

r =
p(q j|y)

p(q j�1|y)
if ( log(r) > Tmh log(unif(0,1)){ q j = q j } # keep

else { q j = q j�1 } # reject

}

}

}
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The parameter gde scales the step size to get accurate acceptance rates. According to
Braak (2006), it can be chosen to gde = 2.38/

p
2 p, where p is the number of parameters

in the model. The so-called temperature Tmh has an influence on the convergence as well.
It can be set as a variable or fixed, here a fixed value is used.

θ1

θ2

θ1,ll θ1,ul

θ2,ll

θ2,ul

θj-1
θc1

θc2
θj

a)

θ1

θ2

θ1,ll θ1,ul

θ2,ll

θ2,ul

θj-1
θc1

θc2 θj

b)

Fig. 2.44 DE-algorithm of Storn and Price (1997); a) step to next parameters q j (tuple of q2 and
q2) is defined by the difference between the parameters of the two randomly chosen
chains qc1 and qc2; b) if the resulting parameters lie outside the range [qll , qul], the
vector is mirrored at the limit (adapted from Braak, 2006).

2.4.5.4 Diagnosis

The resulting samples shall be checked for convergence. Further, the autocorrelation and
the acceptance rates should be checked.

Convergence

The Markov chains start from the random sampled initial values. Until a stationary er-
godic distribution is reached, several sampling steps are needed. This period is called
burn-in and must be removed before the distribution is analysed (Robert and Casella,
2010). The length of the burn-in period can be determined by the potential scale reduc-
tion factor PSRF of Brooks and Gelman (1998) that should be less than 1.1.

Autocorrelation

The Markov chain samples of the posterior distribution are autocorrelated by definition.
To obtain independent samples, the resulting Markov chains have to be thinned out. The
lag that has to be applied can be determined by the use of an ACF-plot.

Acceptance rate

The acceptance rate defines how much of the sampled parameter sets q are accepted by
the Metropolis-Hastings algorithm. According to Gelman et al. (1996), an acceptance
rate of around 0.25 shall be targeted for multi-dimensional parameter spaces. A high
acceptance rate is an indicator for poor convergence and there might be some regions that
are not explored by the chains. On the contrary, a low acceptance rate indicates that the
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chains move fast through the parameter space and therefore the borders of the parameter
space are reached frequently (Robert and Casella, 2010).

2.4.6 Inference versus prediction
The statistical models can be used for two purposes: (i) inference and (ii) prediction.
In the case of inference, the relation between the predictor variables and the response
variable is of special interest. The important questions are (James et al., 2013):

• Which of the predictor variables are significantly related to the response?
• How is the relationship between these significant predictors and the response? How

is the response affected by a change of the predictor variable?
• Is a linear relationship adequate?

When doing pure prediction, the interpretation of the relations is not of interest. The
goal is to have a function that approximates the data as well as possible. Generally, more
flexible approaches such as boosting, support vector machines or artificial neural networks
give very good predictions but they are hardly interpretable. On the contrary, less flexible
approaches such as the linear regression, are better interpretable but they usually lead to
a larger prediction error (James et al., 2013). The flexibility and the interpretability for
different approaches are shown in Fig. 2.45.

Fig. 2.45 Flexibility and interpretability of different statistical approaches. Generally, the more
flexible, the harder interpretable are the approaches (James et al., 2013).

On the one hand, there are fields where only inference or prediction is of interest. On
the other hand, there are fields where both are needed. James et al. (2013) give the nice
example of a real estate model, where house prices are estimated in function of zoning,
air quality, distance from the river, etc. The question how much extra a house with river
view is worth can be seen as an inference problem. Nevertheless, the same model can be
used to predict the price of a certain house for sales purposes.
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2.5 Dam behaviour analysis

2.5.1 Introduction

The monitoring of dams is essential to recognise an abnormal behaviour at an early stage.
This gives enough time for the development, design and implementation of rehabilitation
works. A common way to analyse the behaviour of dams is to set up a model that links the
influence quantities and their effects. In dam behaviour analysis (DBA) the effects that are
used for monitoring purposes are called behaviour indicator (Swiss Committee on Dams,
2003). Fig. 2.46 gives an overview of commonly used models for dam behaviour ana-
lysis. Generally, there are two different modelling approaches: (i) deterministic models
link the influence quantities and the behaviour indicator based on physical laws and (ii)
statistical models relate them by statistical procedures. In addition, there are also hy-
brid and mixed models, which are a combination of deterministic and statistical models
(Swiss Committee on Dams, 2003). The different models with their advantages and dis-
advantages are presented in Section. 2.5.2. For each model that is set up, a behaviour
indicator must be chosen. To this end, variables that represent the global behaviour of the
structure, such as the displacement at crest level or the drainage flow at the bottom, are
taken. The commonly used behaviour indicators are presented in Section 2.5.3. The set-
up of the model depends on the chosen form. Deterministic models are based on structural
analysis whereas for statistical models a model equation is needed. The model equation
provides the shape of the relation between the influence quantities and the behaviour in-
dicator. There exist a large number of different shape functions for model equations,
which are described in Section 2.5.4. For statistical models, a wide range of solution
procedures is available. Commonly multiple linear regression models (MLR) are used.
In recent years also more sophisticated machine learning based methods such as artificial
neural networks (ANN) or classification based methods became popular (Mata, 2011).
The solution procedures are briefly described in Section 2.5.4.5. In Section 2.5.5, two
procedures to perform the behaviour analysis are presented. These are (i) the observation-
prediction comparison and (ii) the adjusted behaviour indicator.

2.5.2 Model types

2.5.2.1 Deterministic models

Deterministic models link the influences and the behaviour by physical laws. Usually they
are set up as 2D or 3D FE-models (Swiss Committee on Dams, 2003; Léger and Seydou,
2009). The geometry of the structure is usually known. However, for the constitutive
laws and the belonging material parameters assumptions have to be made. In the case
where no information about the behaviour is known, the assumptions can be made based
on punctual measurements such as drill-hole logs, tests with core samples or plate tests in
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galleries (SwissCommitteeonDams, 2003). If information about the behaviour is present,
material parameters, such as the Young’s modulus of concrete Ec, can be calibrated. How-
ever, this does not mean that this coefficient is optimised in a statistical procedure like in
a hybrid model. The quality of deterministic models depends on the discretisation, the
ability of the constitutive laws to reproduce the structural behaviour and the knowledge
about material parameters and model simplifications (Swiss Committee on Dams, 2003).
If the relationship between the influence quantities and the behaviour cannot be described
physically, as for the case of drainage flow and uplift pressure as behaviour indicators, a
deterministic model cannot be taken into account and a statistical model must be set up
(Salazar et al., 2015).

model type

deterministic statistical hybrid mixed

• 2D/3D FE-model
• beam model
• deep beam model

• water level and temp-
  erature deterministic
• other effects statistical

shape functions
to consider the effect
of the different
influence quantities

• water level
  deterministic
• other effects statistical

model set-up

structure model model equation

behaviour indicator (displacement, drainage water, uplift pressure, pore pressure)

solution procedures
multiple linear regression (MLR)
• conventional
• consider multicollinearity (ridge regr., principal component regr.)
• consider autocorrelation (Cochrane-Orcutt, Prais-Winsten)

artifical neural networks (ANN)
• back propagation algorithm

classification based methods
• boosting
• random forests
• support vector machines (SVR)

nonparametric approaches
• multivariate adaptive regression splines (MARS)
• K-nearest neighbours

autoregressive models
• nonlinear autoregressive model with exogenous input (NARX)

model equation plus structure model

influence quantities (water level, season, temperature, age of structure, precipitation)

• FE-models

Fig. 2.46 Overview of models for dam behaviour analysis.
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On the one hand, deterministic models are a powerful tool to assess the effects of first
impounding and to detect long-term non-reversible displacements. They have quasi no
limits in the extrapolation of load cases not yet experienced (Bianchi and Bremen, 2000).
On the other hand, the set-up of FE-models is time-consuming and it has to be done
individually for each structure.

2.5.2.2 Statistical models

Statistical models relate the influence quantities and the behaviour by statistical proced-
ures. To set up a statistical model, a model equation that defines the shape of the relation
between the influences and the behaviour indicator has to be chosen. The model equation
is a sum of shape functions that consider the effects of different influences. These shape
functions are multiplied by the calibration parameters. In regression analysis, the latter
are called regression coefficients (Montgomery et al., 2012). The efficiency and adequacy
of the shape function can be tested by different statistical procedures (see Section 2.4). In
contrast to deterministic models, statistical models are straightforward to set up and easy
to implement. Thus, different models can be compared with an acceptable effort, and they
are used widely in dam behaviour analysis (Mata et al., 2013). Statistical models can be
used to evaluate if the current behaviour of the structure corresponds to its behaviour in
the past (Bianchi and Bremen, 2000). Therefore, statistical models are not suitable during
the first life phase of a dam where hydration heat still causes permanent displacements
and no knowledge about the behaviour in the past is available. Furthermore, statistical
models do not provide reliable results for conditions that were not experienced in the past
(Léger and Seydou, 2009).

2.5.2.3 Hybrid models

Hybrid models, also called adjusted deterministic models, are statistically optimised de-
terministic models. Instead of statistical shape functions, the results of a deterministic
model are taken as shape functions (Swiss Committee on Dams, 2003). Thus, the hybrid
model can be seen as a deterministic model with adjustment of the global stiffness and the
thermal expansion coefficient (SwissCommitteeonDams, 2003; Amberg, 2009). Delayed
effects and non-reversible effects can be added statistically.

2.5.2.4 Mixed models

The influence of the water level can be modelled quite simple in deterministic models.
However, the modelling of the temperature effect needs more effort. Thus, the so called
mixed models, where the influence of the water level is deterministically modelled and
the temperature statistically, can be set up. As in hybrid models, delayed effects and
non-reversible effects can be added statistically (Swiss Committee on Dams, 2003).
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2.5.3 Behaviour indicators

Behaviour indicators are measurable variables that represent the global behaviour of the
structure. These are (i) the displacement at different levels, particularly the crest level,
since every abnormal behaviour in the structure itself or in the foundation has an effect on
the displacement, or (ii) the drainage flow at the bottom of the structure (Amberg, 2009).
Variables such as the stresses, joint openings, the uplift pressure and the pore pressure are
especially influenced by local effects. Thus, they are not representative for the analysis of
the global behaviour (Amberg, 2009). Although the uplift pressure and the pore pressure
are influenced by local effects, sometimes they are used as behaviour indicator in dam
behaviour analysis. This is because they have a direct influence on the stability of the
structure.

2.5.4 Statistical models

2.5.4.1 Introduction

In Section 2.1.2 the different influence quantities acting on dams have been presented.
In this section, it is shown how the effect of these influences are considered in statistical
model equations. The approaches are presented separately for the different behaviour
indicators in historical order.

There is a common naming convention for model equations in the field of dam behaviour
analysis: The first letters of the influences considered in the model are combined to an
acronym. H stands for the influence of the hydrostatic load, S for the seasonal influence, T
stands either for the temperature or time influence (age of the structure) and R for rainfall
and snow melt.

For the displacement of concrete dams, it is assumed that the water level, the temperature
and the age of the structure have a significant influence. In the case of drainage flow,
the water level, the age and the precipitation are significant (Swiss Committee on Dams,
2003).

2.5.4.2 Displacement of concrete dams

In the following, a selection of important dam behaviour analysis models for monitoring
the displacement of concrete dams is presented. The established models are presented as
originally published. Furthermore, these models are evaluated in Section 4. More models
are explained in Appendix A.4.

The first two publications where dam behaviour models based on MLR analysis are men-
tioned are those of Willm and Beaujoint (1967) and Widmann (1967). The model of
Willm and Beaujoint (1967), the so called HST-model (hydrostatic, seasonal, time) is the
most common statistical model and therefore the basic form of statistical models (Tatin
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et al., 2015). In this model, the displacement of the structure is related to the hydrostatic
load h, some seasonal effects S and irreversible time-dependent effects. The hydrostatic
influence is modelled as a fourth-order polynomial function of the water level h. The
seasonal effects, which represent the temperature effect in particular, are described by a
sinusoidal function of second order. In the model of Willm and Beaujoint (1967), the ir-
reversible effects are considered with a logarithmic function and an exponential function
of the time t.

P(h,S, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.94)

+b5 sin(S)+b6 cos(S)+b7 sin(2S)+b8 cos(2S)

+b9 log(t)+b10 exp(t)

The seasonal function S reads

S =
j 2p

365.25
, (2.95)

where j is the number of the day in the year starting on the 1st of January. The total number
of the days is either set to 365.25 (Swiss Committee on Dams, 2003) or 365 (Breitenstein
et al. (1985)).

In a case study, where 8 pendulums were analysed, Willm and Beaujoint (1967) compared
the seasonal approach to the use of air temperature measurements. In most of the cases,
the seasonal approach performed nearly as well as the air temperature measurements; in
one case even better. Thus, they suggested to use a seasonal function instead of the air
temperature measurements.

Widmann (1967) used both a seasonal function and air temperature measurements. He
proposed to determine at first an average annual temperature curve:

Tair = t0 + t1 sin(S)+ t2 cos(S)+DTa (2.96)

The coefficients ti represent the first order sinusoidal function of Tair. They are estimated
by regression analysis. The deviation between Tair and sinusoidal function is DTa. They
are used to calculate delayed deviations DTa,i. For this, the mean value over a chosen
period in the past is calculated. Widmann (1967) proposed to use 5, 20 and 50 days. The
effect of the water level is considered as a third-order polynomial function. The water
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level does not only influence the displacement due to hydrostatic pressure on the dam, but
also the change of the water pressure in the rock foundation. Since the latter is influenced
by the seepage flow in the underground that reacts with a delay to changes in the wa-
ter level, Widmann (1967) suggests considering a delayed water level Dh20 which is the
difference between the actual water level and the mean water level during the preceding
20 days. Regarding this phenomenon, it does matter if the water level rises or sinks. To
consider the irreversible displacements, he suggested to use a linear function and a natural
logarithmic function. Because this model contains hydrostatic, seasonal, temperature and
irreversible effects in function of time, it is a so called HSTT-model:

P(h,S,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 Dh20 (2.97)

+b5 sin(S)+b6 cos(S)+b7 sin(2S)+b8 cos(2S)

+b9 DT5 +b10 DT20 +b11 DT50

+b12 t +b13 ln(t)

Schnitter (1969) published the idea of a model in which the water level and the temperat-
ure is considered with a hybrid approach:

P(h,T ) = b0 +b1 dh(h)+b2 dT (T ) (2.98)

The influence functions for the water level dh and for the temperature dT were determined
by the use of an arch-cantilever model. In this model, the regression coefficient b1 mainly
corresponds to a correction of the Young’s-moduli of concrete (subscript c) Ec and rock
Er (subscript r) and b2 mainly to a correction of the thermal expansion coefficient ac.
Schnitter (1969) applied this procedure successfully to several arch dams.

The Swiss Committee on Dams (2003) published a report about the methods of analysis
for the prediction and the verification of dam behaviour. The goal of this report was to
summarise the methods in the field of dam behaviour analysis applied in Switzerland. In
addition, the advantages and disadvantages of the different approaches are discussed.

Because the HST-model performs not well in periods with weather conditions that strongly
differ from the average value of the corresponding season, Penot et al. (2005) improved
the model of Willm and Beaujoint (1967). They introduced the thermal correction func-
tion
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DTR(t +dt) = DTa(t +dt)
✓

1� exp
✓
�dt

tc

◆◆
+DTR(t) exp

✓
�dt

tc

◆
, (2.99)

where DTR(t) and DTR(t + dt) are the thermal correction at the current and the next time
step and DTa(t + dt) is the deviation of the annual average temperature (as in Widmann
(1967)) at the next time step. The constant tc represents the characteristic time of the
thermal inertia of the structure. Penot et al. (2005) suggested to use tc = ln(10)L2/(ap2),
later Tatin et al. (2013b) proposed to adjust tc to optimise the result of the MLR model.
In addition, Penot et al. (2005) provide information on how to calculate a physically-
based estimate for the regression coefficient of DTR for arch dams. Adding the thermal
correction to the HST-model leads to the HSTT-model presented in Eq. (2.100). Instead
of the logarithmic and exponential function for the irreversible effects, Penot et al. (2005)
use a fourth-order polynomial approach plus an exponential decay function.

P(h,S,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.100)

+b5 sin(S)+b6 cos(S)+b7 sin(2S)+b8 cos(2S)+b9 DTR

+b10 t +b11 t2 +b12 t3 +b13 t4 +b14 exp(�t/c1)

A model that considers internal temperature measurements was published by Léger and
Leclerc (2007). They calculate the mean temperature Tm and the temperature difference
Td from a temperature field that was calculated by a thermal analysis (see Section 2.3.8
for a description of their method). This procedure can be done for a number of levels
nl . Léger and Leclerc (2007) proposed the HTT-model given by Eq. (2.101). For the
reference temperature Tre f the temperature at the grouting of the joints or the long-term
average temperature can be taken.

P(h,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.101)

+
i=nl

Â
i=1

�
bm,i(Tm �Tref )+bd,iTd

�

+b5+nl t +b6+nl exp(�t)

A fully statistical approach based on the principal component analysis (PCA) without
need of a thermal analysis was published by Mata et al. (2013). They suggest a procedure
how to select a number of thermometers nT on the basis of the PCA. The measurement
data of the selected thermometers can be used in the raw form (Eq. (2.102)) or in the form
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of the principal components (Eq. (2.103)). For the irreversible displacement, they used a
linear and an exponential decay function.

P(h,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.102)

+
i=5+nT

Â
i=5

biTi

+b5+nT t +b6+nT exp(�t)

P(h,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.103)

+
i=5+nPC

Â
i=5

biT PC,i

+b5+nPC t +b6+nPC exp(�t)

The French HSTT-model (Eq. (2.100)) was improved by Tatin et al. (2015). Due to their
knowledge that the water temperature has a significant influence on the displacement
(Tatin et al., 2013a), they omit the corrective term DTR and propose the following ap-
proach:

dT =
i=nLev

Â
i=1

�
bm,iDTm,i +bd,iDTd,i

�
(2.104)

where DTm is the difference between the average mean temperature Tm and its seasonal
component, and DTd the same for the temperature difference. The temperatures Tm and
Td are computed by a thermal analysis with the upstream temperature Tup and the down-
stream temperature Tdo as boundary conditions. For the downstream temperature, the
measurements of the air temperature are taken whereas for the upstream temperature a
weighted average of the water temperature and the air temperature is taken. Despite the
fact that Tm and Td vary over the height, they are assumed to be constant due the reason
of multicollinearity. The 1D-section used in the heat conduction analysis is not the geo-
metrical length of the dam but a fictitious length of which the thermal inertia can be
calibrated. For the influence of the water level, Tatin et al. (2015) assumed a polynomial
4th order. The irreversible displacement is considered linear since it is assumed that the
creep phenomenon is cushioned:
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P(h,S,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.105)

+b5 sin(S)+b6 cos(S)+b7 sin(2S)+b8 cos(2S)+b9 DTm +b10 DTd

+b10 t

In Tables. 2.7 - 2.9, the different shape functions for model equations are summarised
separately for (i) the influence of the water level, (ii) the seasonal and the temperature in-
fluence and (iii) the irreversible displacement in function of time t. The models explained
in Appendix A.4 are included as well.

Table 2.7 Summary of different approaches to consider the influence of the water level.

type approach used in

st
at

is
tic

al h+h2 +h3 Widmann (1967), Breitenstein et al. (1985)

h+h2 +h3 +h4
Willm and Beaujoint (1967), Penot et al. (2005),
Léger and Leclerc (2007), Mata et al. (2013),
Tatin et al. (2015)

hy
br

id analytical model (beam model) Rocha et al. (1958), Schnitter (1969), Léger and
Seydou (2009)

FE-model Bonaldi et al. (1977), Perner and Obernhuber
(2009)

Table 2.8 Summary of different approaches to consider seasonal and temperature influences.
Models marked with an asterisk (⇤) are evaluated in Section 4.5.2.

type approach used in

b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)⇤ Willm and Beaujoint (1967)

st
at

is
tic

al

b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)+b4 cos(2S)+Âbi DTi

⇤ Widmann (1967), Breitenstein et al. (1985)

b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)+DTR

⇤ Penot et al. (2005)

Âbi Ti
⇤ Swiss Committee on Dams (2003), Mata et al.

(2013)

Âbi Tm,i +Âb j Tm, j Rocha et al. (1958)

Âi=nLev
i=1

�
bm,i(Tm �Tref )+bd,iTd

�⇤ Léger and Leclerc (2007)

Âbi TPC,i
⇤ Mata et al. (2013)

b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)+b5 DTm +b6 DTd

⇤ Tatin et al. (2015)

hy
br

id analytical model (beam model) Schnitter (1969), Léger and Seydou (2009)

FE-model Bonaldi et al. (1977), Perner and Obernhuber
(2009)
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Table 2.9 Summary of different approaches to consider the irreversible displacement as a
function of time t.

type approach used in

b1 log(t)+b2 exp(t) Willm and Beaujoint (1967)

st
at

is
tic

al

b1 t +b2 ln(t) Widmann (1967)

b1 Âdi exp(mi(t � t0)) Bonaldi et al. (1977)

b1 t +b2 (ln(1+ t/c1))
1/c2 +

b3 (1� exp(�t/c3))
Breitenstein et al. (1985)

b1 t +b2 t2 +b3 t3 +b4 t4 +
b5 exp(�t/c1)

Penot et al. (2005)

b1 t +b2 exp(�t) Léger and Leclerc (2007), Mata et al. (2013)

b1 (1� exp(�k t)) Mata et al. (2013)

b1 t Tatin et al. (2015)

2.5.4.3 Drainage flow

For the monitoring of drainage flow, less models have been published than for displace-
ments of concrete dams. One of the first published models is that of Breitenstein et al.
(1985):

P(h) = b0 +b1 h+b2 hd (2.106)

The model depends only on the water level h. Since the exponent d can be calibrated as
well, the model needs to be calibrated in a nonlinear or linear way for different values of
d.

An adaption to the HST-model (Eq. (2.94)) was developed by Simon et al. (2013):

P(h,S,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 (2.107)

+b5 sin(S)+b6 cos(S)+b7 sin(2S)+b8 cos(2S)

+b10 t +b11 t2 +b12 t3 +b13 t4 +b14 exp(�t/c1)

+b13 Rsm +b12 Rd

The snow melt Rsm and the daily rain fall Rd were added to the standard HST-model. The
snow melt was considered by the difference of the water content between two consecutive
days. Since the data had a high variability over time, it was smoothed by a fast Fourier
Transform (FFT), considering only low frequencies.
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2.5.4.4 Scaling the influences

For numerical reasons, the scaling of regressor variables before the analysis is a common
procedure. For example, if an analysis for the years 2000 to 2010 is carried out and the
time would be used without scaling, the evaluation of exp(�t) will converge to 0 for the
entire time span. Therefore, a scaling is needed. In the case of the water level, there are
different approaches in literature. The French school of EDF (Penot et al., 2005; Tatin
et al., 2015) uses the approach h = (zFSL � z)/(zFSL � ze), where zFSL is the full supply
level (FSL) of the reservoir, z is the current reservoir level and ze is the empty reservoir
level. This leads to an interval of h = [0,1], with h = 0 for a full and h = 1 for an empty
reservoir. Weber (2002) uses Chebyshev polynomials based on a centred and scaled water
level h. The advantage of these polynomials is that they are orthogonal, and therefore low
V IF-values are expected. There are other scalings for the water level, but most of them
scale between 0 and 1. For the time t, it is common to scale the total number of days
of one year to 1 and to set t = 0 at the starting point of the regression analysis. The
temperature measurement values are usually not scaled. In some cases, the temperature
that was measured when the joints were grouted or the long-term average temperature is
subtracted from the measured values (Léger and Leclerc, 2007).

2.5.4.5 Solution procedures

There is a wide range of solution procedures to analyse dam behaviour based on meas-
urements with statistical models. Commonly, multiple linear regression (MLR) models
are used for dam behaviour analysis (see Section 2.5.4). Some of the key publications are
those of the Widmann (1967), Willm and Beaujoint (1967), Swiss Committee on Dams
(2003), Penot et al. (2005), Léger and Leclerc (2007), Mata et al. (2013) and Tatin et al.
(2015). On the one hand, MLR models are straightforward in application, easy to interpret
and many statistical tests are available. On the other hand, the shape functions have to be
defined which may not a priori represent the correct behaviour. Furthermore, nonlinear
relationships between the different variables cannot be reproduced (Salazar et al., 2015).

There are extensions of the standard MLR algorithm as the Cochrane-Orcutt and the Prais-
Winsten algorithm to consider autocorrelation or ridge regression and principal compon-
ent regression to consider multicollinearity, for example. They are well described in
Weber (2002). In addition, there are different procedures to select the best fitting vari-
ables. Weber (2002) suggests performing forward selection and backward selection on
the basis of the t-values. Saouma et al. (2001) perform best subset selection, where all
possible combinations of regressors are determined and the corresponding models are
compared.

The second most widely used approach are artificial neural networks (ANNs). They con-
sist of single neurons that are operators with a nonlinear transfer function between the
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input and the output (Fig. 2.47a) (Mata, 2011). The connection of the neurons arranged
in different layers leads to an ANN. There is an input layer, a number of hidden layers
and a output layer (Fig. 2.47b). The functionality of ANN is inspired by the human brain
(Liu et al., 2008). The output of each neuron is generated by a linear combination of the
weights wi j multiplied with the input variable and the application of the transfer function.
The training of the network is done by finding the optimal weights wi j. The most common
algorithm to find the weights is the so called back-propagation algorithm (Mata, 2011).
Overfitting is avoided by splitting the learning into a training, a cross-validation and a test
set (Mata, 2011). ANNs allow for complex interaction between the different parameters
(Simon et al., 2013). However, the result depends on the chosen network architecture
and the initialisation weights. Furthermore, the optimisation can result in a local min-
imum (Salazar et al., 2015). Thus, different runs with random initialisation and different
network architectures are performed (Mata, 2011). Some of the key publication in the
field of dam behaviour analysis are from Liu et al. (2008), Mata (2011) and Simon et al.
(2013).

a)

b)

Fig. 2.47 Structure of artificial neural network; a) single neuron with nonlinear transfer function;
b) network consisting of different interconnected neurons (Mata, 2011).
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Less frequently used are classification based methods like boosting, random forests and
support vector machines. Boosting and random forests are based on the classification of
the data in trees. The trees are segmenting the data in different branches (James et al.,
2013). To prevent overfitting, the calibration is done by a cross-validation approach.
Salazar et al. (2015) apply both methods in the scope of dam behaviour analysis. Support
vector machines are based on a nonlinear transformation of the variables to a high dimen-
sional space. In this space, MLR is performed (Salazar et al., 2015). An application of
support vector machines can be found in Su et al. (2016) or Salazar et al. (2015). Fur-
thermore, there are nonparametric approaches as multivariate adaptive regression splines
(MARS). They are based on data depending on piecewise linear functions. Besides the
estimation of the shape function, variable selection is performed (Salazar et al., 2015).
An application can be found in Salazar et al. (2015). Another nonparametric approach is
the K-nearest neighbours approach which was used by Saouma et al. (2001). Palumbo
et al. (2001) and Piroddi and Spinelli (2003) use a nonlinear autoregressive model with
exogenous input (NARX) in combination with an identification algorithm. In this autore-
gressive approach, delayed measurement values of a pendulum and also the water level
and the temperature are taken into account. A combination of NARX and support vector
machines is used by Ranković et al. (2014). Salazar et al. (2015) explain and empirically
compare the concept of the MLR with a seasonal approach, ANN, random forests, boost-
ing and MARS by means of a case study of an arch dam. They used the displacement in
radial and tangential direction as well as the drainage flow as behaviour indicators.

2.5.5 Behaviour analysis concepts

There are different ways to carry out behaviour analysis. The simplest approach is a
graphical method based on envelope curves that does not need a model describing the be-
haviour indicator. More advanced methods are based on dam behaviour analysis models.
These are the observation-prediction comparison and the adjusted behaviour indicator.

2.5.5.1 Graphical method based on envelope curve

Many of the Swiss dam operators use an envelope curve approach complementary to
the more advanced models. In this approach, the measured radial displacement is plot-
ted versus the measured tangential displacement for instance. In addition, the measured
displacement can be plotted versus the water level. Due to the influence of the concrete
temperature a hysteresis results. Biedermann (1997) compared the observation-prediction
comparison with the graphical method for the Zeuzier arch dam. For the graphical method
the abnormal behaviour appears two months later (6.12.1978) than it would have been ob-
served by the observation-prediction comparison (6.10.1978) (Fig. 2.48).
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Fig. 2.48 Detection of abnormal behaviour at Zeuzier arch dam by envelope approach and
observation-prediction comparison (Biedermann, 1997).

2.5.5.2 Observation-prediction comparison

A common way to analyse the behaviour of dams is the observation-prediction compar-
ison (OPC) of measurements M of a behaviour indicator to their corresponding predicted
values P (Swiss Committee on Dams, 2003). The workflow is divided in three parts: (i)
observation, (ii) modelling and (iii) behaviour analysis. A schematic display of the work-
flow is given in Fig. 2.49. The observation is done as described in Section 2.1.4.1. Then a
model equation is chosen and calibrated and validated with one part of the available data.
This step also includes statistical model adequacy checking and optimising the chosen
model equation. If a satisfying model is reached, the modelled displacements for the dif-
ferent effects (water level, temperature, irreversible) are calculated. This is also done for
data used for prediction.

To analyse the behaviour with the OPC, the difference D between the observation M and
the prediction P is estimated and analysed. Here, prediction is meant in terms of statistics
where predicted values were not used for calibration and not in terms of prediction to fu-
ture displacements. The difference D is the sum of measurement errors, modelling errors
and the actual deviation from the expected behaviour. These three components are not
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treated separately (Swiss Committee on Dams, 2003). To analyse the behaviour, a predic-
tion band is commonly used (Weber, 2002; Swiss Committee on Dams, 2003; De Sortis
and Paoliani, 2007). Points that are outside this prediction band indicate a possible abnor-
mal behaviour. On the one hand, the band width should be small to recognise a possible
abnormal behaviour as early as possible. On the other hand, it should not be too small
to avoid that it is exceeded too frequently (Weber, 2002). Commonly a 95% prediction
interval is used.

measured behaviour indicator M
and environmental conditions  (h, Ti , ...)

observation modelling

M
P 

Twater

h

Tair

Tc2
Tc1

Tc3
Tc5

M

Tc4

2. model calibration by MLR (including validation) 

1. choose model equation 

3. modelled displacements including prediction

δh
δT 
δt 

behaviour analysis

OPC

ABI

D = M − P = M − δh − δT − δt 

Madj  = M − Prev = M − δh − δT 

calibration prediction

Fig. 2.49 Workflow of DBA summarised in three steps: observation, modelling and behaviour
analysis (OPC and ABI).

2.5.5.3 Adjusted behaviour indicator

A similar way to perform behaviour analysis is the adjusted behaviour indicator approach
(ABI). The observation and the modelling are equal to the OPC but the behaviour analysis
part is different (Fig. 2.49). The concept of the ABI is to highlight irreversible changes
of a behaviour indicator by subtraction of the modelled reversible variables Prev from the
measurements of the behaviour indicator M (Penot et al., 2005; Amberg, 2009):

Madj = M�Prev = b0 + f (t)+ e (2.108)
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The remaining part is the herein called adjusted behaviour indicator Madj. It is the sum of
the intercept b0, the irreversible displacements f (t) and the residuals e. The analysis of
the behaviour can be done by checking for trends and behaviour changes of the structure
in Madj.

2.6 Software tools for dam behaviour analysis

In 2004, the Swiss Federal Office of Energy (SFOE) launched the Software DamReg
(Weber, 2004), in which MLR models can be set up and evaluated. DamReg has re-
cently been re-engineered at the Laboratory of Hydraulics, Hydrology and Glaciology
VAW of ETH in Zurich and is now called DamBASE. In doing so, the R environment
(R Core Team, 2013) has been integrated in the software to facilitate the application and
testing of various procedures for statistical analysis. Besides the option to set up com-
mon HST and HTT models, there is a simple method for the heat conductivity and the
option to define splines defining a hybrid model by the import of results from FE models.
In addition to standard regression procedures, the software provides special case treat-
ment such as dealing with autocorrelation with extended concepts like ridge and principal
component regression to handle multicollinearity.

In this thesis, the calculations have been done by the use of the R environment (R Core
Team, 2013). Some of the developed scripts will be implemented in the software Dam-
BASE.
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3 Heat transfer analysis

3.1 Introduction
In dam behaviour analysis, the information of the thermometers shall be linked to the
measured displacement to estimate the thermal effects. There are approaches where the
temperature readings are directly linked to the displacement by regression analysis. How-
ever, the heat transport in the dam is a diffusive process. This means that the thermal sig-
nals from external influence quantities such as solar radiation arrive delayed and damped
inside the dam. As a consequence, the measured temperatures only give local information
(Tatin et al., 2015). Therefore, the thermometer locations influence the result of a statist-
ical analysis when using the measurements without any pre-processing. However, there
are statistical approaches that use the mean temperature Tm and the temperature difference
Td as a basis for the regression model. These quantities physically cause the displacement
of the structure (for details see Section 2.2.2.3). In addition, these quantities can be used
to calculate the displacement by a mechanical model. In concrete dams, heat transport can
often be simplified as a one-dimensional problem between the upstream and the down-
stream surfaces (Obernhuber and Perner, 2005). Hence, the thermometers in concrete
dams are usually grouped on different levels. Different levels are needed to (i) consider
the effect of the water level on the temperature field of the dam (Tatin et al., 2015) and
(ii) to consider the different thermal inertia of dam sections varying with dam height.

In this chapter, procedures to calculate the mean temperature Tm and the temperature
difference Td are presented and analysed. At the beginning, it is shown how the thermal
diffusivity can be calibrated if more than two sensors are available at one level. In a next
step, inverse heat conduction analysis is discussed. This is needed, since the thermometers
are commonly embedded in the concrete body 0.25 - 2 m away from the boundaries.
As a consequence, regions where no temperature information can be obtained by the
direct heat conduction analysis (DHCA) exist. By the use of inverse heat conduction
analysis (IHCA), the temperature between the boundary and the first thermometer can be
estimated. Unfortunately, due to measurement errors, IHCA can be affected by stability
problems (Raynaud and Beck, 1988). Besides the evaluation of a stabilising procedure
from literature, a new approach is presented.

In this thesis, two solution procedures, (i) finite differences and (ii) the frequency domain
solution are used to perform heat conduction analysis. Both of them have their advantages
and disadvantages. For direct heat conduction analysis, equal results were obtained when
comparing the two procedures. On the one hand, the calculation of the finite difference
approach with a Crank-Nicolson scheme (see Appendix A.2.1.1 for details) was slightly
faster than the frequency domain solution where a fast Fourier transformation (FFT) has
to be performed for several temperatures. On the other hand, the frequency domain solu-
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tion is more intuitive when applying stabilisation criteria for IHCA. Since the different
frequencies of the thermal signals have different amplitude decays and propagation ve-
locities, a frequency-dependent filter criterion can be formulated. In the finite difference
approach, the calculation is stabilised by the discretisation, more precisely by the choice
of the spatial discretisation and the time step. No general valid discretisation could be
found, however. Thus, data of the boundary temperatures had to be used to prevent from
artificial amplifications. Therefore, the frequency domain approach is presented here. For
the sake of consistency, the frequency domain approach is used for both the direct and the
inverse heat conduction analysis.

3.2 Calibration of thermal diffusivity

3.2.1 Introduction

In most cases, more than two thermometers are placed on one level between the up-
stream and the downstream face of a concrete dam. This allows to use the two outermost
thermometers close to the surfaces as boundary condition and the inner thermometers to
calibrate the thermal diffusivity. The thermal diffusivity determines how fast the temper-
ature propagates inside the concrete body. In the next sections, it is described how this
calibration can be done. In addition, the results of the calibration for different reference
dams are shown.

3.2.2 Methodology

3.2.2.1 Optimisation procedure

Consider a one-dimensional slab with length L and two thermometers T1 and Tn at the
left and the right boundary (Fig 3.1). The one-dimensional heat conduction equation in
the frequency domain (Eq. 2.40) with T1 (x = 0) and Tn (x = L) as boundary temperatures
can be used to calculate the temperature at any location in the interval [0, L]. As a con-
sequence, the temperature Ti in the inner part can be calculated and compared to available
measurements. Thus, the thermal diffusivity a of the concrete slab can be optimised in
the way that the sum of the squared errors between the measurements and the calculation
is minimised. The same weights were given to all temperature sensors Ti. In most cases,
this is suitable since the distribution of the measurement locations is more or less equal
along the slab. If there is a non-symmetrical distribution, the individual RMSE can be
weighted by the distance in x-direction of the sensors.
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x
0 Lxi

TiT1 Tn

Fig. 3.1 One-dimensional slab with thermometers T1 and Tn at the boundaries.

If only two thermometer readings are available on a level, the thermal diffusivity cannot
be calibrated. If there is another level with more than two thermometers, the calibrated
thermal diffusivity of this level can be used as an approximation. If this is not the case,
the thermal diffusivity a can be optimised in an iterative, or even more sophisticated, in a
nonlinear optimisation procedure by means of the dam behaviour analysis model.

3.2.2.2 Initial phase

Besides seasonal information, temperature measurements can contain small trends. These
may be induced by global warming (Santillán et al., 2015) or naturally colder and warmer
periods. For gravity dam G2 (see Appendix A.5.2), a linear trend of 0.02 °C/a has been
observed between 2000 - 2016 and for another dam not further used in this thesis, a linear
increase of 0.12 °C/a has been measured during the last decade.

To show the effect of a trend in the temperature data, a 25 m thick concrete slab with a
thermal diffusivity of a = 0.15 m2/d is considered. On both surfaces a linear temperature
drift Tb,drift = 0.1 °C/a over a time period of 20 years is applied (Fig. 3.2a). When using
the heat conduction equation in the frequency domain (Eq. (2.40)), the signal has to be
transformed by a Fourier transform. In Fig. 3.2a, the sum of the five lowest frequencies
Tb,FFT,1�5 is shown. In addition, the individual of the five lowest frequencies are shown
in Fig. 3.2b. Applying Eq. (2.40) to calculate the temperature T12.5 in the middle of the
slab leads to a damping and phase shift Df of these signals (Fig. 3.2c). The sum of the
damped and the phase shifted signals is shown in Fig. 3.2a (red). The linear trend in
the mean temperature can be reproduced well even only the five lowest frequencies are
shown. If the sum over all frequencies is taken, a smooth straight line results. In Fig. 3.2d,
the boundary temperature Tb,dirft and the temperature in the middle T12.5 are shown. It can
be recognised that the gradient of the drift in the middle of the slab is the same as on
the boundary with a delay. Unfortunately, a deviation occurs during the first years. This
deviation comes from the phase shift of the low frequencies. Consequently, this leads to a
reduction of the data that can be used for further analysis. As a countermeasure, an initial
phase can be inserted before the data. The length of this initial phase depends mainly on
the thickness of the slab and the gradient of the drift function. In addition, the thermal
diffusivity a has an influence as well. In this thesis, the length of the initial phase was
determined so that the temperature in the middle of the slab does no longer significantly
change when adding additional years before the data.
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Fig. 3.2 Example of a 25 m thick concrete slab; a) linear temperature drift (solid black line),
linear temperature drift approximated by the five lowest frequencies (dashed black line)
and the same five frequencies that were used to calculate the temperature in the middle
T12.5 of a 25 m thick concrete slab (dashed red line); b) five lowest frequencies at the
boundary; c) damped and phase shifted frequencies in the middle of the slab; d) linear
temperature drift at the boundary Tb,dirft (solid black line) and estimated temperature in
the middle of the slab T12.5 (solid red line).

Since no temperature measurements are available for the initial phase, artificial temperat-
ure data are created by a regression model that is fitted to the measurement data. A first
order seasonal function and a linear trend are used as regressor variables:

T = b0 +b1 sin(S)+b2 cos(S)+b3 t. (3.1)

The predicted temperatures are inserted before the measured data. Due to the fact that the
initial phase is principally necessary in thick slabs, where only the low frequencies can
be measured in the middle, this approach proofed to work well. In Fig. 3.3, the results of
a heat conduction analysis of gravity dam G2 are shown for the level of 250 m a.s.l. T1



3.2 Calibration of thermal diffusivity 95

and T5 are the measured temperatures close to the boundaries (Fig. 3.3a). The length of
the initial phase was determined to four years. The resulting temperature in the middle of
the slab T17.4,ini is shown in Fig. 3.3b. In addition, the resulting temperature T17.4 for the
calculation without the use of an initial phase is shown. By comparing the two results,
the need of an initial phase becomes obvious. The duration was estimated to 4 years by
rising its duration and comparing the results.

An initial phase is also necessary for the finite difference approach. Its length can be de-
termined by adding initial years before the data and check whether there are any changes
in the calculated temperature in the middle of the slab.
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Fig. 3.3 Heat conduction applied for gravity dam G2 at level 250 m a.s.l.; a) temperature
measurements T1 and T5 located close to the upstream and downstream boundaries are
used as input data; b) the temperature T17.4,ini in the middle was calculated with the use
of an initial phase of 4 years (solid red line). The need of an initial phase is obvious
when comparing with the calculation of T17.4, where no initial phase was used (dashed
red line).

3.2.3 Results

For all concrete dams used for the model evaluation later in this thesis (see Appendix A.5),
the thermal diffusivity was calibrated for different levels. Table 3.1 shows the resulting
thermal diffusivity a and the RMSE of the calibration as a measure of accuracy. In ad-
dition, the number of inner temperature sensors and the duration of the estimated initial
phase tI is given.
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Table 3.1 Calibrated thermal diffusivity a for different concrete dams. In addition, the RMSE of
the calibration, the number of thermometers available for the calibration ni, the slab
length L and the estimated duration of the initial phase tI are given.

dam level [m a.s.l.] a [m2/d] RMSE [°C] ni [-] L [m] tI [a]

283 0.156 0.30 1 12.29 1

G1 262 0.161 0.30 3 27.74 2

241 0.243 0.80 6 44.99 10

G2

272 0.174 0.19 2 19.20 1

250 0.196 0.33 3 35.80 4

223 0.270 0.16 4 56.50 12

A1

293 0.109 0.84 2 3.80 2

284 0.126 0.73 3 5.20 3

272 0.102 0.74 3 6.60 3

260 0.109 0.59 3 7.40 3

A2

299 0.278 1.48 3 9.80 2

281 0.135 1.36 3 14.29 4

251 0.100 0.96 4 17.63 4

203 0.122 0.35 4 21.19 4

158 0.168 0.51 4 28.80 4

297 0.129 0.75 1 5.63 1

A3 276 0.121 0.49 1 8.75 1

255 0.076 0.38 1 10.88 1

AG1

292 0.138 0.22 1 11.50 1

273 0.157 0.26 1 19.95 1

284 0.123 0.62 2 63.00 4

292 0.126 0.52 1 6.40 2

HG1 280 0.185 0.38 2 16.30 2

263 0.216 0.52 3 30.60 4

3.2.4 Discussion

When doing heat conduction analysis, an initial phase is needed. Otherwise, some of the
data may not be used for further analysis since the temperature evolution in the middle of
the dam needs some time. Because the duration of the initial phase depends on several
parameters, a general definition is not possible. Nevertheless, its duration can easily be
determined by checking whether the calculated mean temperature does no longer change
when inserting years of artificial temperature data before the measurement data.

The calibration of the thermal diffusivity works fine for most of the herein considered
cases. Tatin (2014) provides a list with maximum and minimum values of the thermal
diffusivity for mass concrete based on eleven literature sources. The values vary between



3.3 Inverse heat conduction analysis 97

0.036 and 0.181 m2/d. There are five estimated values herein that are higher than this
range. A closer look at the data and the geometry of the structure helps to explain these
deviations. The temperature sensors of the topmost level of arch dam A2 are situated
2.5 m below the crest level. Since the distance to the crest level is smaller than the slab
length, the one-dimensional assumption is violated. The heat flow from the crest level
results in a higher temperature diffusivity. The hollow gravity dam HG1 is affected by
a similar process. The temperature sensors at levels 280 and 263 m a.s.l. are influenced
by the temperature in the hollow section which also results in slightly higher temperature
diffusivities. The two bottom levels of the gravity dams G1 and G2 are influenced by
another phenomenon. The measured temperatures in the core vary little during a year (0.3
- 0.8 °C). A comparison of the yearly peak values of the sensors with different distance
to the boundary shows that there is no phase shift and the amplitude differs not much.
This stands in contrast to the theory of heat conduction. The remarkable high values in
the core of the dams can be explained by the perturbation of the galleries (Léger and
Seydou, 2009). Nevertheless, experience has shown that such results still can be used to
estimate the mean temperature Tm and the temperature difference Td . The high thermal
diffusivity compensates the additional temperature gain. Furthermore, considerations of
the mechanical behaviour show that the temperatures at the bottom of the dam have less
influence on the displacement than those on the upper levels.

3.3 Inverse heat conduction analysis

3.3.1 Introduction

Concrete temperature sensors are usually located 0.20 - 2.50 m away from the boundaries.
As a consequence, a region where no temperature information can be calculated by DHCA
exists. By the use of IHCA, the temperature in the outer region can be estimated. Since
IHCA is a mathematical ill-conditioned problem, stabilisation procedures are necessary
(for details see Section 2.3.4.1). First, it is discussed how large the influence of the inverse
region on the quantities of interest Tm and Td is. Second, two stabilisation procedures are
discussed. One approach is taken from literature (Obernhuber and Perner, 2005; Weber
et al., 2010) and the other one is a new development.

3.3.2 The need for inverse heat conduction analysis

For IHCA, two regions inside the concrete slab are distinguished. The direct region
between the thermometers where DHCA can be applied and the region between the
boundary and the first thermometer where IHCA has to be applied (see Fig. 2.27). The
question now is how big the influence of the outer or inverse region on the quantities of
interest Tm and Td is. Intuitively, for small distances di from the boundary to the first ther-
mometer, the influence might be small and vice versa. In addition, in long concrete slabs,
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the influence might be less than in short ones. This intuitive statement can be checked
by applying Eq. (2.45) and (2.46). The mean temperature of the total region T̂m,tot in the
interval [0, L] can be calculated by

T̂m,tot =
1
L

ˆ L

0
T̂ (x,w)dx =

cosh(k L)�1
k L sinh(k L)

�
T̂b,l(w)+ T̂b,r(w)

�
. (3.2)

The mean temperature T̂m,dir of the direct region in the interval [x1, x2] is

T̂m,dir =
1
L

ˆ x2

x1

T̂ (x,w)dx (3.3)

=
cosh(k (L� x1))� cosh(k (L� x2))

k L sinh(k L)
T̂b,l(w)+

cosh(k x2)� cosh(k x1)

k L sinh(k L)
T̂b,r(w).

for d1 = d2 = d, which is often satisfied or almost satisfied, it simplifies to

T̂m,dir =
cosh(k (L�d))� cosh(k d))

k L sinh(k L)
�
T̂b,l(w)+ T̂b,r(w)

�
(3.4)

Now, the ratio rT m between the mean temperature in the total region T̂m,tot and the mean
temperature in the direct region T̂m,dir can be defined as follows:

rT m =
T̂m,tot

T̂m,dir
=

cosh(k L)�1
cosh(k (L�d))� cosh(k d))

(3.5)

By introducing the dimensionless temperature sensor position d⇤ = d/L and the dimen-
sionless slab length L⇤ =

p
w/aL, Eq. (3.5) becomes

rT m =
T̂m,tot

T̂m,dir
=

cosh(
p

iL⇤)�1
cosh(

p
iL⇤(1�d⇤))� cosh(

p
iL⇤ d⇤))

(3.6)

The same analysis can be done for the temperature difference T̂d . The temperature differ-
ence of the total region can be found by

T̂d,tot =
12
L2

ˆ L

0
T̂ (x,w)(x� L

2
)dx =

12
(k L)2

0

BB@
k L

2 tanh
✓

k L
2

◆ �1

1

CCA
�
T̂b,l(w)� T̂b,r(w)

�

(3.7)
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The temperature difference of the direct region can be found by

T̂d,dir(w) =
12
L2

ˆ x2

x1

T̂ (x,w)(x� L
2
)dx (3.8)

=
12

(k L)2 sinh(k L)
�
A(x1,x2) T̂b,l(w)+B(x1,x2) T̂b,r(w)

�
(3.9)

A(x1,x2) = k
✓

x1 �
L
2

◆
cosh(k(L� x1)� k

✓
x2 �

L
2

◆
cosh(k(L� x2) (3.10)

+sinh(k(L� x1))� sinh(k(L� x2))

B(x1,x2) = k
✓

x2 �
L
2

◆
cosh(k x2)� k

✓
x1 �

L
2

◆
cosh(k x1) (3.11)

+sinh(k x1)� sinh(k x2)

If again the simplification d1 = d2 = d is used, the ratio rT d results:

rT d =
T̂d,tot

T̂d,dir
=

sinh(k L)
✓

k L
2 tanh(kL/2)

�1
◆

k
✓

L
2
�d
◆
(cosh(k (L�d))+ cosh(k d))+ sinh(k d)� sinh(k (L�d))

(3.12)

In dimensionless form Eq. (3.12) can be transformed to

rT d =

sinh(
p

iL⇤)
p

iL⇤
✓

1
2
�d⇤

◆
✓ p

iL⇤

2 tanh(
p

iL⇤/2)
�1
◆

�
cosh(

p
iL⇤(1�d⇤))+ cosh(

p
iL⇤ d⇤)

�
+

sinh(
p

iL⇤ d⇤)� sinh(
p

iL⇤(1�d⇤))
p

iL⇤
✓

1
2
�d⇤

◆
.

(3.13)

The moduli of the ratios rT m and rT d represent the ratio between the amplitudes of the
total and the direct region. In Fig. 3.4a and b the moduli of the two dimensionless equa-
tions Eq. (3.6) and (3.13), are plotted for varying dimensionless parameters L⇤ and d⇤. In
addition, L⇤ and d⇤ of the investigated concrete slabs of Table 3.1 are shown by red dots.
For the frequency w , the measurement sampling rate was used. It can be seen that consid-
ering the inverse region leads to up to 3 times higher amplitudes for T̂m and up to 10 times
higher amplitudes for T̂d . The argument of rT m and rT d leads to the phase shift due to the
inverse region. In Fig. 3.4c and d, the arguments of Eq. (3.6) and (3.13) are shown. For
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the investigated data, the phase shift is between 0 and 0.25, which corresponds to about
two weeks.
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Fig. 3.4 Influence of the inverse region on the mean temperature T̂m and the temperature
difference T̂d : ratio between the amplitude of the total region and the direct region for
a) T̂m and b) T̂d ; phase shift due to considering the inverse region for c) T̂m and d) T̂d . L⇤

and d⇤ of the investigated concrete slabs of Table 3.1 are shown by the red dots. For the
frequency w , the measurement sampling rate was used.

As a result, the consideration of the inverse region seems to be important. Besides an
amplification of the mean temperature T̂m and the temperature difference T̂d , a phase shift
is considered. A phase shift of two weeks represents about the shift of one measurement
time lag. In most of the case studies, significant differences result. Generally, a smaller
dimensionless temperature sensor location leads to less difference. Moreover, the higher
the frequency is, the larger are the amplification and the phase shift. This means that the
signal of the yearly variation is less affected by changes than the monthly or bi-weekly
fluctuations.
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3.3.3 Methodology to evaluate stabilising procedures

As mentioned in Section 3.3.1, stabilising procedures are necessary when performing
IHCA. To evaluate stabilising procedures for IHCA, measurement data at different loc-
ations near the boundary should be available. Inner temperature measurements can be
used as input data to calculate the temperature in the outer regions. The calculated outer
temperatures can be compared to the corresponding measurements. As a consequence,
dams with at least two thermometers within the first 3 m can be used for the evaluation.
Since the air temperature is not equal to the boundary temperature because of convection
and radiation, only concrete temperature measurements and water temperature measure-
ments were considered. The water temperature is assumed to be equal to the boundary
temperature (Amberg, 2003). The arch dams A1 and A2 have such a thermometer lay-
out (Fig. 3.5a and b). In addition, arch dam A3 was used because of the available water
temperature measurements (Fig. 3.5c).
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Fig. 3.5 Thermometer positioning of a) arch dam A1 at 293 m a.s.l.; b) arch dam A2 at 281
m a.s.l.; c) arch dam A3 at 255 m a.s.l.

3.3.4 Stabilisation procedure with mollifier function

For the data sets described above, the stabilising procedure by a mollifier function pro-
posed by Obernhuber and Perner (2005) or Weber et al. (2010) was applied. To determine
the regularisation parameter g , the data of the outer measurements was used. In doing so,
the RMSEcal between the measured and the calculated outer temperatures was minimised.
The calibrated g and the corresponding RMSEcal are given in Table 3.2. In addition, the
RMSET m and RMSET d that represent the difference between the quantities calculated by
the IHCA using outer and inner thermometers are provided for arch dam A1 and A2.
This was not done for arch dam A3 since the boundary temperature on the air side is not
known.
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Table 3.2 Calibrated regularisation parameter g for different inverse heat conduction analyses. In
addition, the difference RMSET m and RMSET d to Tm and Td calculated by the outer
measurements is given.

dam level [m a.s.l.] data g [-] RMSEcal [°C] RMSET m [°C] RMSET d [°C]

A1
293 weekly 0.029 1.2 0.8 1.2

293 monthly 0.017 1.5 1.0 1.6

A2 281 monthly 0.033 1.6 0.5 1.0

A3 255 monthly 0.17 1.4 - -

The larger the distance over which IHCA was applied, the larger are the observed reg-
ularisation parameters. The case study of A1 nicely shows that g does not only depend
on the distance but also on the measurement time step. Therefore, its value is difficult
to determine if no outer measurements are available. Unfortunately, this is usually the
case. The RMSEcal between the calibrated and measured temperatures is between 1.2 and
1.6 °C for the investigated data sets. In addition, the RMSET m and the RMSET d are in the
same order. RMSET d is generally larger than RMSET m .

3.3.5 New stabilisation procedure

Since the choice of the stabilising parameter g is difficult if no outer measurement data
are available, a new procedure was developed. The idea behind this approach is that
measurement deviations (noise, errors) recorded by the thermometers are not amplified
when calculating the quantities of interest Tm and Td .

3.3.5.1 Derivation

In Section 3.3.2, the ratio rT m that expresses the ratio between the mean temperature of
the total and the direct region was introduced. The ratio can be defined individually for
the left boundary temperature T̂b,l(w) and the right boundary temperature T̂b,r(w):

rT m,l =
T̂m,tot(T̂b,l)

T̂m,dir(T̂b,l)
=

cosh(k L)�1
cosh(k (L� x1))� cosh(k (L� x2))

, (3.14)

rT m,r =
T̂m,tot(T̂b,r)

T̂m,dir(T̂b,r)
=

cosh(k L)�1
cosh(k x1)� cosh(k x2)

. (3.15)

The mean temperature of the direct region can alternatively be expressed in function of
the measured inner temperatures T̂x1 and T̂x2 and their distance l between them:

T̂m(T̂x1, T̂x2) =

tanh
✓

k l
2

◆

k L
(T̂x1 + T̂x2). (3.16)
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Thus, the mean temperature of the total region T̂m,tot can directly be estimated by rT m,i T̂m(T̂xi),
applying the superposition principle:

T̂m,tot(T̂x1) =

tanh
✓

k l
2

◆

k L
(cosh(k L)�1)

cosh(k (L� x1))� cosh(k (L� x2))
T̂x1, (3.17)

T̂m,tot(T̂x2) =

tanh
✓

k l
2

◆

k L
(cosh(k L)�1)

cosh(k x1)� cosh(k x2)
T̂x2, (3.18)

T̂m,tot = T̂m,tot(T̂x1)+ T̂m,tot(T̂x2). (3.19)

With Eq. (3.17) - (3.19) the mean temperature can directly be estimated from two inner
thermometer readings T̂x1 and T̂x2. The inverse heat conduction is considered implicitly.

The same derivation as for the mean temperature can be done for the temperature differ-
ence. It results in the following equations that can be used to calculate the temperature
difference T̂d from two inner thermometers T̂x1 and T̂x2 and their distance l:

T̂d,tot(T̂x1) =

12
✓

k
✓

x1 �
L
2

◆
cosh(k l)� k

✓
x2 �

L
2

◆
+ sinh(k l)

◆

(k L)2 sinh(k l)
T̂x1, (3.20)

T̂d,tot(T̂x2) =

12
✓
�k
✓

x1 �
L
2

◆
+ k

✓
x2 �

L
2

◆
cosh(k l)� sinh(k l)

◆

(k L)2 sinh(k l)
T̂x2, (3.21)

T̂d,tot = T̂d,tot(T̂x1)+ T̂d,tot(T̂x2). (3.22)

3.3.5.2 Limitation of the measurement noise amplification

The equations (3.17) - (3.18) and (3.20) - (3.21) can be seen as transfer functions multi-
plied with the measurements of the inner temperature sensors T̂xi. Potential measurement
deviations which are disturbing the result are multiplied with these transfer functions.
Thus, the amplification of the measurement deviations can be avoided if the modulus
of these transfer functions is limited to a certain threshold value Modth. Obviously, a
threshold value of 1 means no amplification of the measurement deviations. However,
for certain thermometer configurations, the value of the transfer function exceeds 1 even
for low frequencies w . In Fig. 3.6, the transfer functions of T̂x1 for the three examples
of the arch dams A1, A2 and A3 are shown for T̂m and T̂d separately. Due to the large
distance from the boundary, the modulus of the transfer functions of arch dam A3 is much
higher than for the arch dams A1 and A2. Moreover, the amplification of T̂d is higher than
for T̂m. Good experience was gained with a threshold value equal to the modulus of the
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transfer function at the measurement sampling rate, larger or equal to 1. This leads to no
information loss for all frequencies that are lower than the measurement sampling rate.
For the examples, this is shown by the thin red lines in Fig. 3.6. In addition, the estim-
ated threshold values are given in Table 3.3. For the arch dams A1 and A2, the threshold
modulus of the mean temperature can be set to 1. For the temperature difference, it is
slightly higher than 1 for arch dam A2 and around 3 for arch dam A1. This means that
a measurement deviation of 0.2 °C is amplified to 0.6 °C. For arch dam A3, where the
thermometer is 3 m away from the boundary, the threshold modulus is 7.85. This means
that a measurement deviation of 0.2 °C is amplified to almost 1.6 °C when calculating the
temperature difference. For T̂x2, other values that are not discussed here are obtained.
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Fig. 3.6 Transfer functions for direct calculation of T̂m and T̂d with implicit inverse heat
conduction analysis for the examples of the arch dams A1, A2 and A3. The black lines
show the modulus Mod of a) T̂m and b) T̂d . The proposed threshold values Modth are
shown by the thin red lines.

Table 3.3 Estimated threshold values Modth for different dams and data.

dam level [m a.s.l.] data Modth,T m [-] Modth,T d [-]

A1
293 weekly 1 3.31

293 monthly 1 2.58

A2 281 monthly 1 1.22

A3 255 monthly 1.43 7.85

3.3.5.3 Theoretical example with measurement deviation

To show the functionality of the developed stabilisation procedure, a theoretical example
is considered (Fig. 3.7). A 10 m thick concrete slab with two temperature sensors, each
located 2.5 m away from the boundary, is considered. A constant temperature with a
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single measurement deviation of 0.2 °C and a varying measurement time step tm (28, 14,
7 and 1 day) is assumed for T1. In addition, the temperature T2 is set constant.
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Fig. 3.7 Theoretical example with measurement noise; a) cross section of the concrete slab;
b) single measurement error with measurement time step tm.

For this set up, the mean temperature Tm and the temperature difference Td were calculated
by the use of Eq. (3.19) and (3.22). In a first step, the threshold value of the amplification
Modth was set to 1 and in all other steps it was not limited. The results are shown in
Fig. (3.8). The smaller the measurement time step, the more the artificial measurement
deviation is amplified (dashed lines). Moreover, the amplification is higher for the cal-
culation of the temperature difference (red) than for the mean temperature (black). The
application of the proposed stabilisation procedure (solid lines) limits the amplification
to the order of magnitude of the considered measurement deviation 0.2 °C. Moreover, if
Modth is limited to 2 for example, the deviation in the quantities of interest is limited to
0.4 °C. In the case of the mean temperature, the stabilisation only had to be applied for
the measurement time step of 1 d. On the contrary, for the temperature difference the
stabilisation was necessary for all measurement time steps.
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Fig. 3.8 Results of theoretical example for a) tm = 28 d; b) tm = 14 d; c) tm = 7 d; d) tm = 1 d.

3.3.5.4 Comparison to mollifier approach

In Table 3.4, the results of the same analysis as with the mollifier approach in Section 3.3.4
are presented. The RMSET m and RMSET d of the original data of Tm and Td are given. A
comparison to the mollifier approach shows that the difference between the two stabilisa-
tion procedures is small for Tm and larger for Td . To highlight this fact, the RMSET m,g and
RMSET d,g between the new approach and the mollifier approach are given in Table 3.4.
For the arch dams A1 and A2, the RMSE between these approaches is very small for
Tm. It has the order of the measurement precision. On the other hand, the difference
is larger for the temperature difference Td . This is due to the fact that the outer region
where inverse heat conduction is performed has the largest influence on Td . Compared to
a yearly variation of 10 - 15 °C this difference is acceptable. Nevertheless, for arch dam
A3 the difference is larger. In Fig. 3.9, the mean temperature and the temperature differ-
ence of the mollifier approach (subscript g) and the new approach with implicit inverse
heat conduction (subscript impl), respectively, are shown. Due to the high regularisation
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parameter, the result of the mollifier approach is very smooth compared to the result of
the new approach. For the mollifier approach, the regularisation parameter is the same for
both thermometers T1 and T2 whereas in the new approach the limitation of the amplific-
ation is estimated individually for both thermometers. In the case of arch dam A3, where
T1 is 3 m away from the boundary and T2 only 1 m, this plays a major role. By the use
of the superposition principle and two different regularisation parameters g , this problem
could possibly be overcome.

Table 3.4 Comparison of new stabilisation approach to mollifier approach and the use of the
outer thermometer data.

dam level [m a.s.l.] data RMSET m [°C] RMSET d [°C] RMSET m,g [°C] RMSET d,g [°C]

A1
293 weekly 0.9 1.6 0.2 1.0

293 monthly 0.8 1.5 0.2 1.0

A2 281 monthly 0.6 1.1 0.1 0.3

A3 255 monthly 1.2 3.3
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Fig. 3.9 Comparison of Tm and Td of stabilising approaches for arch dam A3.

3.3.6 Discussion of inverse hat conduction analysis
The analysis in this section has shown that the consideration of the inverse region is es-
sential for most of the examples investigated in this thesis. The consideration leads to an
amplification and a phase shift. Whereas the amplification can be compensated by the
regression coefficients in a regression analysis, the phase shift cannot. This can lead to
periodical errors in the dam behaviour analysis model. Thus, the application of IHCA is
recommended.

The proposed new stabilising procedure for the direct estimation of the quantities of in-
terest Tm and Td , based on the limitation of the amplification for high frequencies, per-
forms well. For the arch dams A1 and A2, the results are comparable to the mollifier
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approach. In the case of arch dam A3, the performance is even better since the filtering is
done individually for the thermometers T1 and T2. Nevertheless, this individual filtering
could also be applied to the mollifier approach. The main advantage of this new approach
is that no regularisation parameter and corresponding calibration is necessary. Therefore,
the application is straightforward.

Another approach could be to use measurements of the water and the air temperature
instead of performing IHCA. The water temperature is seldom recorded; only two of
the dams described in Appendix A.5 are equipped with such sensors. In contrast, air
temperature measurements are usually available, at least from a weather station in the
region of the dam. Nevertheless, the air temperature cannot directly be used as boundary
condition because of the influences of convection and solar radiation at the surface (Léger
et al., 1993). The modelling of these processes is difficult and cumbersome, therefore
IHCA is the preferred approach.

3.4 Proposed workflow

The workflow of a heat conduction analysis can be summarised by the following steps:

1. Plausibility check of measurement data (see Section 2.1.4.2)

2. Calibration of thermal diffusivity a, adjustment of the initial phase

duration so that the temperature in the middle no longer changes

3. Direct estimation of Tm and Td with Eq. (3.19) and (3.22), limitation

of the amplification with the use of the measurement sampling rate

3.5 Discussion and Conclusion

One-dimensional heat conduction analysis works fine for most of the analysed concrete
slabs. Nevertheless, deviations are observed for sections close to the crest level, in hollow
gravity dams and in thick sections of gravity dams where the yearly temperature variation
is very low. Furthermore, galleries disturb the one-dimensional approach. Despite these
2D- or 3D-effects, the results of the 1D analysis are a useful approximation.

If more than two sensors are available at a given level, the inner readings can be used
to calibrate the thermal diffusivity. Since the temperature evolution in the middle of the
slab needs time, especially if a temperature drift is present, an initial phase is beneficial.
Otherwise some of the data cannot be used for the further analysis.

The frequency domain solution was identified as an intuitive tool to perform direct and
inverse heat conduction analysis. It could be shown that inverse heat conduction analysis
is necessary for most of the investigated slabs. The consideration of the inverse part leads
to an amplification and a phase shift in the mean temperature Tm and the temperature
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difference Td . While the amplification can be compensated by the regression coefficients,
the phase shift cannot. Due to amplification of the measurement noise in inverse heat con-
duction analysis, a stabilisation procedure is necessary. The mollifier approach, described
in Obernhuber and Perner (2005) or Weber et al. (2010), leads to good results if the cal-
ibration of the regularisation parameter g is possible. Unfortunately, if a calibration is not
possible, the application of this approach is difficult. This is the usual case since water
temperature measurements are rarely recorded. Therefore, a new approach, based on the
frequency amplification is proposed. The idea behind this approach is that the quantities
of interest Tm and Td can be directly estimated from the outermost inner temperature read-
ings T1 and T2. The limitation of the amplification of the high frequencies leads to stable
results. In addition, a statement about how large the amplification of the measurement
deviation is can be made. It can be shown that the new approach performs as well as the
mollifier approach. The advantage of the new approach is that the stabilising parameter is
given by the thermometer layout and the measurement sampling rate.
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4 Evaluation of existing modelling approaches

4.1 Introduction

The goal of this chapter is to evaluate models and procedures from the literature that are
used for dam behaviour analysis. All models and procedures applied in the scope of this
thesis are described in Chapter 2. First, two common procedures for dam behaviour ana-
lysis are compared: (i) the observation-prediction comparison (OPC) and (ii) the adjusted
behaviour indicator. Secondly, models for monitoring the displacement of concrete dams
are evaluated. The approaches to represent the effects o the (i) water level, (ii) temper-
ature and (iii) time are evaluated separately. In addition, the topic of multicollinearity is
discussed. This is an important issue when modelling the displacement of concrete dams.
Further, the influence of autocorrelation on the results is discussed.

4.2 Reference dams

This section gives a brief overview of the measurement data used for the model evaluation.
To achieve a high evidence, data of eight different prototype dams from Switzerland and
of one Austrian dam are used. Furthermore, different dam types were considered: gravity
(G), arch (A), arch-gravity (AG) and hollow gravity (HG) dams.

The operators agreed to the publication of the data in anonymised graphical form. Hence,
the dams are named by identifiers containing the abbreviation of the dam type. In addition,
the water level is transferred to a full supply level of 300 m a.s.l. for every dam, and
the year of construction end is provided in decades only. Non-essential data, e.g. the
crest length for gravity dams, are not provided due to distinctiveness. Table 4.1 gives an
overview of the dams used for the study. In addition, the period of data acquisition and
the corresponding measurement sampling rate is given. The description of the dams and
the available data sets is provided in Appendix A.5.

Table 4.1 Overview of reference dams.

id type H [m] Lcr [m] constr. end data meas. sampl. rate

G1 gravity 68 1960’s 1999 - 2012 monthly / bi-weekly

G2 gravity 104 1950’s 2000 - 2016 monthly

A1 arch 61 75 1980’s 1986 - 2014 monthly / bi-weekly

A2 arch 180 554 1970’s 1976 - 2015 monthly

A3 arch 111 320 1960’s 1994 - 2014 19 meas. / a

A4 arch 131 725 1970’s 1992 - 1998 daily

AG1 arch-gravity 130 363 1950’s 1999 - 2014 bi-weekly

HG1 hollow gravity 92 1950’s 1999 - 2014 monthly
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4.3 Behaviour analysis procedure

4.3.1 Introduction
The way of carrying out dam behaviour analysis was found to play a major role to obtain
robust results. There are two commonly used quantitative procedures, (i) the observation-
prediction comparison and (ii) the analysis of the adjusted behaviour indicator (see Sec-
tion 2.5.5). The aim of this section is to analyse and compare both procedures concerning
the robustness of the results. The robustness refers to similar results regarding the beha-
viour evaluation for different calibration periods.

4.3.2 Methodology
The results of the before-mentioned procedures are presented for the case study of grav-
ity dam G2. The pendulum displacement at crest level in block no. 5 (Fig. 4.1) is used
as behaviour indicator. First, the behaviour of the original data is analysed for different
models and calibration periods. Then, simulated behaviour changes in the form of shifts
and drifts are added to the measured pendulum displacement. It is checked if the pro-
cedures are able to detect the simulated behaviour changes and thus are suitable for dam
behaviour analysis.

FSL 300 m a.s.l.

MOL 229 m.a.s.l.

1:0.711:0.025

302 m a.s.l.

250 m a.s.l.

289 m a.s.l.

277 m a.s.l.

182 m a.s.l.

223 m a.s.l.

pendulum

inverted rock pendulum

inverted pendulum

296 m a.s.l. T1- T2

272 m a.s.l. T1- T4

250 m a.s.l. T1- T5

223 m a.s.l. T1- T3

H = 78 m

concrete temperature sensors
pendulum readings

Fig. 4.1 Cross section through block no. 5 of gravity dam G2.

Three different statistical models to represent the effects of the water level, temperature
and time are used: A HST, a HTT and a hybrid model (compare Section 2.5.4). The
HST model is set up with a third-order polynomial function to represent the effect of the
scaled water level h, a second order sinusoidal function for the seasonal effects and a
linear function to approximate the irreversible displacement in function of the time t:
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P(h,S, t) = b0 +b1 h+b2 h2 +b3 h3 (4.1)

+b4 sin(S)+b5 cos(S)+b5 sin(2S)+b6 cos(2S)+b7 t

For the HTT model, a third-degree polynomial function for the effect of the water level
and a linear function for the time-dependent irreversible effects are used. The used tem-
perature approach is based on a thermal analysis and decomposition into the mean tem-
perature Tm and the linear temperature difference Td of the four levels with temperature
sensors (Fig. 4.1). A preliminary analysis has shown that the use of Td,250, Tm,296 and
Tm,272 leads to the most accurate model (Eq. (4.2)). This was evaluated by minimising the
RMSPE in a 10-fold cross-validation procedure for the whole data available. In addition,
the constraint V IF  10 was defined to avoid multicollinearity.

P(h,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4Td,250 +b5Tm,296 +b6T m,272 +b7 t (4.2)

The hybrid model is based on a cantilever beam model with an elastic abutment. Material
properties of concrete (Ec and nc) and geometrical properties such as the beam thickness
t(z), the upstream surface inclination yus f (z), the abutment level and the crest level have
to be allocated. Furthermore, the spring constants can be estimated by the Vogt’s method
described in Section 2.2.2.4. The model can be used to calculate the deformation dh due
to the water level h and dT due to the temperatures Tm and Td . More details about this
model are presented in Section 5.2. The model output is used as input data for the hybrid
regression model:

P(dh,dT , t) = b0 +bh dh +bT dT +bt t (4.3)

The whole available data set from 2000 - 2016 was used for this analysis. For the cal-
ibration of the models, four different periods were compared (2000 - 2005, 2000 - 2010,
2005 - 2010 and 2000 - 2016). The first three have in common that they are all used for
prediction from 2010 - 2016. For the last one, all data are used for calibration.

Artificial behaviour changes (Fig. 4.2) are added after 2010 in the prediction period of
the data sets 1 - 3 and inside the calibration period of data set 4, respectively. As a
consequence, the model calibration for data set 1 - 3 has to be done once whereas it has to
be done three times for data set 4. The first added behaviour change is a shift of 1.2 mm
on the 1.1.2011. The size of the shift was chosen to be about 2 ·RSE of the models. Such a
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shift may occur due to a mechanical damage of the measurement equipment. The second
one is a drift of 0.2 mm/a starting on the 1.1.2010. After the prediction period of six years,
the total deviation is 1.2 mm. Such a drift is similar to a pattern of AAR or deformation
due to rock mass movement.

−1
1

shift

−1
1

drift

00 02 04 06 08 10 12 14 16
year [a]

δ B
C [

m
m

]

Fig. 4.2 Artificial behaviour changes added to the behaviour indicator of the data sets.

4.3.3 Observation-prediction comparison

The models described in Section 4.3.2 were fitted for four calibration periods and three
data sets (original, shift and drift). This leads to 12 fits for each model. In Table 4.2,
the estimated regression coefficients are shown for the hybrid model. After calibration,
the rest of the data was used for prediction. The differences D between the observed
pendulum displacement and the prediction of the hybrid model are shown in Fig. 4.3. The
differences of the HST and the HTT models are shown in Appendix A.6.1.

On the basis of these differences, the behaviour analysis is carried out. Regarding the
hybrid model with the original data (Fig. 4.3a), the interpretation of the differences leads
to other conclusions for different calibration periods. Using the data from 2000 - 2005
for calibration, only few data points of the differences lie outside the prediction band and
no abnormal behaviour is recognisable. Using the data from 2000 - 2010 for calibration,
several points lie outside the prediction band and a small drift in negative direction is
recognisable. However, if only the data from 2005 - 2010 is used, many points lie outside
the prediction band and a clear drift in negative direction is visible. In addition, if all
available data are used for calibration, only three points are outside the prediction band.

The interpretation of the modified data also leads to different conclusions for the con-
sidered calibration periods. In Fig. 4.3b, the differences D of the data with the added
artificial shift are shown for the different calibration periods. For the calibration periods
of 2000 - 2005 and 2000 - 2010, the added shift is recognisable. On the other hand, for
the calibration data from 2005 - 2010, only few points lie outside the prediction band and
a normal behaviour can be interpreted. Furthermore, in the case of all data is used for
calibration the added artificial drift is hardly detectable (Fig. 4.3c)). The results of the
HST and the HTT models are similar (see Appendix A.6.1).
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Table 4.2 Regression coefficients of the hybrid model for different data sets and calibration
periods. The standard errors of the coefficients are given in brackets behind their mean
values.

calibration bh [-] bT [-] bt [-]

2000 - 2005 1.06 (±0.02) 1.07 (±0.04) 0.09 (±0.05)

normal
2000 - 2010 1.07 (±0.02) 1.05 (±0.03) 0.07 (±0.02)

2005 - 2010 1.09 (±0.02) 1.06 (±0.03) 0.20 (±0.05)

2000 - 2016 1.04 (±0.01) 1.03 (±0.02) 0.03 (±0.01)

shift 2000 - 2016 1.04 (±0.01) 1.03 (±0.02) 0.11 (±0.01)

drift 2000 - 2016 1.04 (±0.01) 1.02 (±0.02) 0.10 (±0.01)
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Fig. 4.3 Observed differences D of the hybrid model for different calibration periods indicated by
the grey background. The differences that are larger than the estimated prediction band
a95 are shown by red dots. a) original data; b) original data with added shift of 1.2 mm
on the 1.1.2011 to the pendulum displacement; c) original data with added drift of
0.2 mm/a after 1.1.2010.
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4.3.4 Analysis of adjusted behaviour indicator

The analysis of the adjusted behaviour indicator is an alternative to the observation-
prediction comparison. The adjusted behaviour indicator Madj of a fitted model can be
written as

Madj = M�Âbihi �Âb jTj = b0 +bt t + e, (4.4)

according to Section 2.5.5. In Eq. (4.4), Madj are the measurements of a behaviour indic-
ator M subtracted by the modelled influence of the water level Âbihi and the influence
of the temperature Âb jTj. Madj consists of a constant, the irreversible displacement and
the model errors. As a consequence, an abnormal behaviour or a behaviour change can
be recognised in Madj. Nevertheless, the trend is hidden by the model errors. This means,
the smaller the model errors are, the better a behaviour change is recognisable. Although
the irreversible effects are not needed for the calculation of Madj, they should be included
in the regression model that is used to estimate the coefficients of the water level and the
temperature. Otherwise, a potential abnormal behaviour may be caught by the reversible
effects in the regression analysis and wrong coefficient estimates result (Amberg, 2009).

In Fig. 4.4, the adjusted behaviour indicators of the hybrid model are shown. For the cal-
culation, the same fits as for the observation prediction comparison can be used. Instead
of the differences D, the adjusted behaviour indicators were calculated. For the reason
of comparison, the mean value of the 2000 - 2010 period was subtracted from each time
series. Fig. 4.4a shows Madj of the original data. Comparing the four graphs of the dif-
ferent calibration periods, the curve progression is nearly similar, even for the calibration
periods 2000 - 2005 and 2005 - 2010 which do not overlap. In addition, Madj is ran-
domly distributed and all the four curves do not visually show a significant change in the
behaviour.

Considering the adjusted behaviour indicators of the data with the added shift (Fig. 4.4b),
it can be recognised that the curve progression is similar. Moreover, the artificially added
shift is clearly visible, after 2011 the mean value of Madj is shifted and only few values are
smaller than 0. The drift that was added to the data (Fig. 4.4c) also can be recognised by
looking at the adjusted behaviour indicators. The results of the HST and the HTT model
are shown in Appendix A.6.2. The HTT model also clearly shows the added behaviour
changes. For the HST model it is more difficult to detect the behaviour changes.
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Fig. 4.4 Observed adjusted behaviour indicators Madj of the hybrid model for different calibration
periods indicated by the grey background. a) original data; b) original data with added
shift of 1.2 mm (~2 ·RSE) on the 1.1.2011 to the pendulum displacement; c) original
data with added drift of 0.2 mm/a after 1.1.2010.
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4.3.5 Discussion

Regarding the example of the observation-prediction comparison, it is obvious that the
results are not robust and the choice of the calibration period plays an important role.
In addition, the artificial behaviour changes that were added to the data could not be
identified in the estimated differences. This makes the analysis very difficult or even
unreliable because it is not possible to state whether the behaviour is normal or not. The
results are similar for all models of this study. This indicates that not the models but
the methodology itself seems to have a conceptual weakness. Having a closer look on
the regression coefficients of the hybrid model in Table 4.2, gives an indication about
the origin of the difference between the different calibration periods. As expected for
a hybrid model with physically-based shape functions, the coefficients bh and bT have
values close to 1. For all calibration periods and data sets, the coefficients bh and bT are
more or less equal. Their mean values vary within two standard errors. On the contrary,
the coefficients for the irreversible displacement in the function of time bt vary between
0.03 and 0.20. In reality, the irreversible displacement is an arbitrary function of the time
t and not linear as assumed in the model. Regarding the calibration period from 2005 -
2010, the trend was estimated to be 0.20 mm/a whereas it is estimated to be 0.03 mm/a
when using all data available. If the difference of 0.17 mm/a is predicted from 2010 -
2016, a difference of 1.02 mm results in 2016. This can be verified in Fig. 4.3a. As
a consequence, the observation prediction comparison seems to fail if a non-constant
irreversible displacement is present.

The behaviour analysis based on the adjusted behaviour indicator was successful. The
progress of Madj is the same for different calibration periods. Artificial behaviour changes
are detected for all models of the study. Even the data set from 2000 - 2016, where the
behaviour changes were inside the calibration data, can be used to identify the behaviour
changes. Because there is no longer a prediction band available when using adjusted
behaviour indicators, the conclusions have to be drawn based on a visual analysis of Madj.
Nevertheless, a quantitative tool to identify the behaviour changes would be useful. In the
next section, a method based on MLR is presented. Furthermore, the results show that
all models can be used to identify the behaviour change, although the HST model shows
it less clearly. This issue is studied further in Section 4.5.2 where different temperature
models are compared on a larger data basis.

Several of the dams analysed in this thesis show a non-constant irreversible displace-
ment. Therefore, the use of the adjusted behaviour indicator instead of the observation-
prediction comparison is highly recommended. In this thesis, all further analyses are
based on the adjusted behaviour indicator.
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4.4 Quantitative evaluation of adjusted behaviour indicators

4.4.1 Introduction

When using the adjusted behaviour indicator approach for the behaviour analysis, there is
no prediction band that helps to detect a behaviour change. The evaluation may be done
by a visual judgement as in the previous section. A running mean approach may also help
to support the decision. However, this can be quite tricky, especially if there are small
changes that are not obvious at first sight. Thus, three quantitative methods are proposed
herein: (i) A potential abnormal behaviour, e.g. a drift or a change in the rate of the ir-
reversible displacement, can be detected by MLR. The adjusted behaviour indicator can
be used as response variable and the time as predictor variable. To detect the behaviour
changes, classifier variables can be used. This approach is explained in Section 4.4.2.
By the use of a hypothesis test, it can be tested how big and how significant a behaviour
change at a certain date is. (ii) In Section 4.4.3, an extension of this algorithm is intro-
duced. Instead of manually choosing the date where the hypothesis test is applied, the date
of the most significant behaviour change is estimated automatically. (iii) Sometimes it is
necessary to compare different models. In doing so, not only the goodness of fit but also
the robustness of resulting models is of special interest. Thus, a coefficient of robustness
based on the adjusted behaviour indicator was developed, as presented in Section 4.4.4.

4.4.2 Detect abnormal behaviour by MLR

A change in the behaviour can be found by application of MLR to the adjusted behaviour
indicator. The base model includes the adjusted behaviour indicator Madj as response
variable and a constant b0 plus a function of time that represents irreversible effects, as
predictor variable. The function of time can be linear or exponential, for example. To test
for the behaviour change, a kind of classifier variable dBC is introduced. The classifier
variable contains the shape of the assumed behaviour change which is searched for. In
Fig. 4.5, such shape functions for a shift, a drift and a change in the seasonal behaviour
are shown. Obviously, any shape function can be used. An example of the model equation
of such an MLR analysis is given by Eq. (4.5). As mentioned before, the function of time
t and the shape of the behaviour change dBC can be chosen arbitrarily.

Madj = b0 +bt t +bBC dBC (4.5)
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Fig. 4.5 Shape functions that can be used to search behaviour changes by MLR analysis.

After the MLR is carried out, the resulting regression coefficient bBC is further analysed.
Its value multiplied with the shape function leads to the estimate of the behaviour change.
If the value of dBC was chosen to be dimensionless, the regression coefficient expresses
the estimate of the behaviour change. Besides the value of the behaviour change, the
statistical significance can be evaluated. This can be done by a hypothesis test (see Sec-
tion 2.4.1.5). For a proper analysis, the autocorrelation of the residuals of the MLR model
used to detect the behaviour change should be checked (see Section 2.4.3 for details).

4.4.3 Algorithm for automatic detection of behaviour changes

The detection of abnormal behaviour by an MLR analysis as described in the previous
section is a valuable tool to support the analysis of the adjusted behaviour indicator. Un-
fortunately, the date of the behaviour change occurrence needs to be provided for this ana-
lysis. If the behaviour change is not identifiable by visual detection, a behaviour change
will be difficult to find. Thus, an algorithm to automatically find a change in the beha-
viour was developed. Below, the pseudo-code of this algorithm is shown. For the loop
for the search of behaviour changes, a maximum number of behaviour changes nBC,max

that can be found and a cut-off p-value pcut that is used for the hypothesis test needs to
be provided. In addition, the type of the behaviour change which is searched for has to be
provided. This can be a shift, a drift or a change in the seasonal pattern. The algorithm
is very simple: at each date i of n measurement dates, a hypothesis test is performed to
check for the behaviour change. The smallest and therefore most significant p-value is
taken for the location of the behaviour change if p < pcut . This procedure is repeated until
nBC > nBC,max or p > pcut . In Section 6.4, the algorithm is applied to the case study of
gravity dam G1.
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define base model (e.g. Madj = b0 +b1 t)

choose type of behaviour change to search for

nBC = 0

while (nBC > nBC,max){

for(i in 2:(n-1){

create dBC,i variable

add dBC,i to base model

calculate p-value (significance of dBC,i in the model) and store it

}

search min p-value (date and type of behaviour change)

if ( p > pcut ){ stop

} else{

add dBC,i variable to base model

nBC = nBC +1

}

}

}

4.4.4 Coefficient of robustness

The robustness in the sense of calibration data dependency will be of special interest, if
different models have to be compared. In doing so, models that lead to similar coefficient
estimates for different calibration periods and consequently to a similar prediction are said
to be robust (Montgomery et al., 2012). Since it is proposed to do the behaviour analysis
on the basis of adjusted behaviour indicator Madj, a measure to compare Madj for different
calibration periods will be necessary.

For a number nc of calibration periods, the adjusted behaviour indicator Madj,i shall be
compared to a reference value Madj,ref . The reference value Madj,ref represents the whole
data set used for the analysis. The following proposed approach is similar to the coeffi-
cient of determination R2. The variance of the difference Madj,diff = Madj,i �Madj,ref can
be related to the variance of Madj,ref :

rc,i = 1� Â
�
Madj,diff �Madj,diff

�2

Â
�
Madj,ref �Madj,ref

�2 (4.6)
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It is suggested to choose the calibration periods similar to a cross-validation procedure
but with k = 3 folds. A higher fold number leads to more robustness. The experience has
shown that k = 3 works quite well. For a 15 years time series for example, a calibration
set of 10 years is considered each. The robustness coefficient rc is estimated as the mean
value of all rc,i :

rc =
1
k Ârc,i (4.7)

A value of rc = 1 implies a perfect agreement of the Madj and a low rc indicates a large
fluctuation of the results; rc = 0.95 for example, indicates that the variance of the differ-
ence between the Madj is 5 % of the variance of Madj,ref .

4.5 Displacement of concrete dams

In this section, the statistical models for the displacement of concrete dams that are de-
scribed in Section 2.5.4.2 are evaluated. Since the different approaches for the influences
of the water level, the temperature and the irreversible effects can be arbitrarily combined,
they are evaluated separately in the Sections 4.5.1 - 4.5.3.

4.5.1 Approach to consider the effects of the water level

4.5.1.1 Introduction

A polynomial approach is most commonly used to approximate the effects caused by the
water level. Alternatively, a hybrid or mixed approach can be used. Since they depend on
the individual model that is used to calculate the displacement, they are not evaluated here.
Besides the order of the polynomial function, the origins of the scaling can be chosen and
a Chebyshev transformation may be applied. In this section, the influence of these options
to the results is discussed on the basis of a case study. In addition, suggestions on the order
of the polynomial are given.

4.5.1.2 Methodology

Data

As in Section 4.3, the results are presented for the case study of gravity dam G2. Typically,
the reservoir is operated with a level above 252 m a.s.l. In 2004, it was lowered to the
bottom of block no. 5 (Fig. A.21). Thus, four calibration periods (2000 - 2004 (1), 2000 -
2010 (2), 2005 - 2010 (3) and 2000 - 2016 (4)) were used for this investigation. Only the
calibration periods (2) and (4) contain data of the reservoir lowering. This should allow
for the evaluation of the extrapolation capability of the polynomial approach.
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Comparison of water level approaches

Usually, polynomials of 3rd or 4th order are used as shape functions. To check, how
the order of the polynomial influences the results and how it can be chosen correctly,
polynomials up to the 7th order are analysed. Besides the order, different scalings are
applied (for details see Section 2.5.4.4). The common approach is to scale the water level
to 1 for a full reservoir and to 0 for an empty reservoir. Another approach is proposed by
Weber (2002). He uses Chebyshev polynomials with a scaling between -1 for the lowest
water level in the calibration period and 1 to the highest water level in the calibration
period.

Temperature models

The temperature models as presented in Section 4.3 were used: A seasonal approach
(HST, Eq. (4.1)), a direct temperature approach (HTT, Eq. (4.2)) and a physically-based
model (mixed model). The mixed model consists of the physically-based temperature
approach combined with the statistical approach for the effects of the water level and the
irreversible displacement, that are considered by a linear function of the time t:

P(h,dT , t) = b0 +Âbi hi +bi+1 dT +bi+2 t (4.8)

Evaluation procedures

The resulting influence functions for the effect of the water level are evaluated visually by
plots. This is more concrete than the comparison of regression coefficients and goodness
of fit criteria. The shape of the influence functions is compared between the different
calibration periods and temperature models. In addition, polynomials of different order
are compared. Especially the behaviour with regard to water levels not considered in the
calibration period is of interest.

The determination of the polynomial order can be done by different quantitative analyses.
Measures to assess the model such as the RSE, the RMSPE, the R2

ad j or a hypothesis test
can be used (see Sections 2.4.1.4 and 2.4.1.5).

The drawback of the RSE is that it decreases by definition when adding variables. This can
lead to overfitting. Thus, the splitting into a calibration and a test data set and calculation
of the RMSPE seems more appropriate. Since this procedure is based on prediction, the
test data set should not be longer than two or three years. Otherwise, the bias due to
the prediction of the irreversible displacements as a function of time becomes too large
(for details see Section 4.3). In addition, the water level in the test data set should not
contain any extrapolations. Therefore, the cross-validation procedure cannot be used since
it is based on predictions using the whole data set. Another method that prevents from



4.5 Displacement of concrete dams 125

overfitting is calculating the R2
ad j that gives a penalty to models with many coefficients.

Finally, there is the hypothesis test of single coefficients where the significance of a single
variable of the model can be determined. In this case, the p-value of the highest order
polynomial term in the model is determined. This approach works well, as long as there
is no autocorrelation in the model residuals. For this analysis, the data from 2000 - 2010
were used for calibration and the data from 2010 - 2012 as test data set to calculate the
RMSPE.

4.5.1.3 Results

Shape of the influence function

The two different scalings of the water level lead to exactly the same results concerning
the shape of the influence functions, the coefficient estimates for the temperature and time
approach and the goodness of fit criteria. The only differences are the regression coeffi-
cient estimates of the water level approach and the corresponding V IF values. Whereas
the model with common polynomials and a scaling between 0 and 1 leads to V IF values
up to 18’000, the model with Chebyshev polynomials has a maximum V IF value of 3.5.
For the temperature approaches, the same V IF values resulted for both scalings.

The resulting influence functions for 3rd order polynomials and a scaling from 0 to 1 are
shown in Fig. 4.6. For easier comparison, the functions are horizontally shifted so that
the displacement at crest level is equal for all of them. In Fig. 4.6a - c, the functions are
shown separately for the different temperature models. For the two data sets where no
data with water level measurements below 252 m a.s.l. was in the calibration data set,
extrapolations result. In most cases of extrapolation, physically meaningless results with
a rising displacement for lowering the reservoir resulted. On the one hand, the calibration
range, the influence functions look similar for the different calibration periods. On the
other hand, a comparison of the different temperature models, as shown in Fig. 4.6d for
calibration data (4), shows a difference. The shape of the functions is similar but the
“stiffness” of the structure is estimated differently. Whereas the mixed temperature model
leads to around 15 mm displacement for a complete reservoir filling, the HTT does only
lead to 13.5 mm and the HST to 12.5 mm. This is a difference of 17%. In Fig. 4.7, the
time series of the separated effects is shown for the different temperature models. The
difference between the different temperature models can be recognised by the maximum
and minimum displacement. In the next section, the performance of these temperature
models is further investigated.
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Fig. 4.6 Influence functions for the crest displacement in function of the water level: a) HST
model; b) HTT model; c) mixed model; d) comparison of different temperature models
for the calibration period (4). The calibrated part (thick black lines) is visually
distinguished to extrapolation (thin red lines).
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Fig. 4.7 Time series of separated effects for HST, HTT and mixed model based on calibration
data 2000 - 2016.
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Polynomial order

The resulting influence functions for different polynomial orders oh are shown in Fig. 4.8a
for the calibration period (1) and in Fig. 4.8b for the calibration period (2). Regarding the
calibrated parts of the model, the influence functions, (black lines in Fig. 4.8a), do not
differ much for orders greater than two. However, it is obvious that, the extrapolations
(red lines in Fig. 4.8a) lead to physically meaningless results. From the qualitative point
of view, a third order approach seems to work well. In Table 4.3, the RSE, the RMSPE,
R2

ad j, and the p-values of the highest order polynomial term in the model are shown.

The RSE does not significantly decrease for orders greater than two. A similar pattern
can be regarded for the RMSPE, where for orders greater than four the values slightly
increases due to overfitting. In addition, the R2

ad j and the p-values again lead to the
conclusion that a third order polynomial fits best.
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Fig. 4.8 Influence functions for water level for models with different polynomial orders:
a) calibration period (1); b) calibration period (2). Calibration (thick black lines) is
visually distinguished to extrapolation (thin red lines).
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Table 4.3 Results of analysis for different polynomial orders oh for calibration period (2): R2
ad j

and p-values (*** p<0.001; ** p<0.01; * p<0.05; . p<0.1) of the polynomial term with
the highest order hn. The RMSPE was estimated with a 3-year test data set after the
calibration period.

oh [-] RSE [mm] RMSPE [mm] R2
ad j [-] p(hoh ) [-]

1 2.28 1.84 0.656 ***

2 0.78 0.68 0.966 ***

3 0.59 0.61 0.977 ***

4 0.59 0.61 0.977

5 0.58 0.62 0.978 *

6 0.58 0.62 0.978

7 0.58 0.62 0.978

4.5.1.4 Discussion

On the one hand, the polynomial approach is straightforward to implement and gives
good results concerning the goodness of fit. On the other hand, it is a black box approach
and physically non-meaningful results may occur. Furthermore, the polynomial approach
must not be used for extrapolations. There are different ways of determining the order of
the polynomial. The most efficient way is a visual analysis in combination with analysing
the RSE. Although the RSE does not prevent from overfitting, it allows for determining
the polynomial order. In doing so, the order is chosen so that a higher order does only
slightly improve the RSE. This can be compared to the one-standard-error rule explained
in Section 2.4.1.7. The use of p-values is not recommended since then autocorrelation has
to be analysed properly. This can be complicated and time-consuming (see Section 2.4.3).

For the gravity dam G2, a 3rd order polynomial leads to the best results. This also applies
to gravity dam G1 and hollow gravity dam HG1. Furthermore, this corresponds to the
analytical solution (Amberg, 2009).

4.5.2 Approaches for considering temperature effects

There are several models that can be used to represent the thermal effects of concrete dams
(see Section 2.5.4.2). The aim of the investigation presented in this section is to evaluate
and compare these models. Not only the goodness of fit and the prediction accuracy but
also the ability to detect a change in the behaviour and the robustness of the models is
evaluated.
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4.5.2.1 Methodology

Data

Data of seven Swiss dams are used to have a good basis for the evaluation procedure. The
selection criterion is a data set of around 15 years duration including temperature read-
ings. A period of 10 years is used to calibrate the models, the rest is used for prediction.
Furthermore, different dam types, three arch, two gravity, one arch-gravity and one hol-
low gravity dam are considered (Table 4.4). A description of the structures and the data
sets can be found in Appendix A.5. For gravity dam G1, only a data set of 14 years is
available. Nevertheless, this dam is used for the analysis with a 9-year calibration period
and a 5-year prediction period. For some of the dams, more than 15 years data were avail-
able. To have comparable data sets, the data sets are cut to equal length (15 years). For
arch dam A2, the data before the tunnelling works in the underground are taken.

Table 4.4 Dams used for the evaluation of temperature models and the chosen periods of the data
sets.

dam data

1 G1 1999 - 2013

2 G2 2000 - 2015

3 A1 2000 - 2015

4 A2 1990 - 2005

5 A3 1999 - 2014

6 AG1 1999 - 2014

7 HG1 1999 - 2014

Temperature models

The most common and recent temperature models listed in Table 4.5 are evaluated. Only
statistical models are considered since they can be applied in a straightforward way to
several dams. A short description about the models can be found in Section 2.5.4.2.
For the HSTT models, daily air temperature measurements of weather stations as close
as possible to the dam site were used. These data are available from the data base of the
Federal Office of Meteorology and Climatology MeteoSwiss (MeteoSwiss, 2017). For the
HTTTm,Td model, the mean core concrete temperature was used as reference temperature
Tre f .
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Table 4.5 Overview of evaluated temperature models.

approach used in

HST b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S) Willm and Beaujoint (1967)

HSTTVerbund
b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)+b4 cos(2S)+Âbi DTi

Widmann (1967), Breitenstein
et al. (1985)

HSTTed f
b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)+DTR

Penot et al. (2005)

HTTdir Âbi Ti
Swiss Committee on Dams
(2003), Mata et al. (2013)

HTTTm,Td Âi=nLev
i=1

�
bm,i(Tm �Tref )+bd,iTd

�
Léger and Leclerc (2007)

HTTPC Âbi TPC,i Mata et al. (2013)

HSTTDTm,DTd
b1 sin(S)+b2 cos(S)+b3 sin(2S)+
b4 cos(2S)+Âi=nLev

i=1
�
bm,iDTm,i +bd,iDTd,i

� Tatin et al. (2015)

The effects of the water level are represented by a polynomial approach up to fourth order.
The most suitable order is determined separately for each dam. Nevertheless, the order
was determined once for each dam and kept constant for the rest of the analysis. The
irreversible effects are approximated by a linear function of time t for all dams.

Variable selection

For some of the temperature models, a subset of temperatures representing the thermal
behaviour of the structure has to be chosen. In the case of the HT Tdir model, for example,
many of the temperature measurements Ti are correlated. If two correlated temperature
readings are taken into account in the model, multicollinearity occurs and unstable pre-
dictions may result. Here the approach of eliminating correlated variables is pursued. In
doing so, best subset selection with the constraint V IF < 10 was performed (for details
see Section 2.4.2).

Evaluation procedure

The model accuracy (goodness of fit) is evaluated by the RSE and the R2. Whereas the
RSE is a measure in the unit of the behaviour indicator, the R2 is dimensionless and there-
fore suitable for comparing different dams. Besides the goodness of fit, the prediction
accuracy and the robustness of the models are analysed. The prediction accuracy gives an
indication about the quality of the prediction, while the robustness indicates how much
the model output varies for a different calibration period. For instance, there can be accur-
ate models that have a lot of variation when changing the calibration period. In contrast,
there are models that are less precise but more robust. The prediction accuracy is evalu-
ated based on RMSPECV and R2

CV estimated by cross-validation. To avoid a too large bias
due to prediction of irreversible displacement, 10 folds were chosen. Furthermore, the
data points where extrapolations of the water level occur, were not considered since they
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can distort the results (see Section 4.5.1). The robustness of the model is evaluated by the
robustness coefficients rc (see Section 4.4.4) with k = 3 folds.

The most important question that should be answered by this study is whether the models
allow for detecting a change in the structural behaviour or not. To examine this, behaviour
changes in the form of drifts, shifts and changes in the seasonal pattern are added to the
behaviour indicator in the five-year prediction period of the data. The magnitude of the
behaviour changes was chosen to 50, 75, 100, 125 and 150 % of the RSE of each model.
By this procedure, the relative size of the behaviour change compared to the RSE can be
identified. The shifts were added at the beginning of the five-year prediction period. In
the case of the drift, the magnitude increases linearly over the five-year prediction period.
The seasonal pattern was added over the whole prediction period with an amplitude cor-
responding to the behaviour change.

To detect the artificial behaviour changes in the adjusted behaviour indicator Madj, an
MLR analysis based on a kind of classifier variable is used. This analysis is further
explained in Section 4.4.2. Unfortunately, each dam is permanently affected to small
behaviour changes and therefore only imperfect data are available. If the MLR analysis
is applied to the original data, small behaviour changes might be found. To obtain un-
biased results when searching for the artificial behaviour changes, these small behaviour
changes had to be filtered out before the analysis. The filtering was performed by es-
timating the small behaviour changes by MLR and subtracting them from the original
data. In Fig. 4.9, the original and modified (filtered) adjusted behaviour indicator Madj

are exemplarily shown for arch dam A1. It can be recognised that the modifications are
small.
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Fig. 4.9 Madj of the different models for arch dam A1. In solid, the time series of the imperfect
original data is shown. The other lines show the modified Madj where the small
behaviour changes were filtered out to obtain perfect data for the analysis. It can be
recognised that the difference to the original data is marginal and the original shape of
the time series is preserved.

4.5.2.2 Results

The results of the goodness of fit indicators RSE and R2 and the prediction accuracy in-
dicator RMSPECV and R2

CV are summarised in Table 4.6. The amount of the variance that
can be described by the model (R2) varies between 0.910 and 0.996. It can be recognised
that the RSE varies between 0.29 mm and 2.16 mm and clearly depends on the structure
and thus is not suitable for comparisons between different structures. Fig. 4.10a and 4.10b
show values of R2 grouped for dams and models. Overall, it can be stated that the dam-
specific data lead to more variability than the choice of the model. A closer look shows
that the HSTTDTm,DTd model belongs to the best performing models for all investigated
dams. The HST model belongs to the poorest performing models. Nevertheless, it has
still a good correlation. The performance of the HTTdir, the HTTTm,Td and the HTTPC

models is varying for the different dams. Generally, the chosen models perform better
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for arch dams than for the gravity dams. However, the model of the arch gravity-dam
performs worst.

To evaluate the prediction accuracy, the RMSPECV and R2
CV were estimated. The cross-

validation prediction errors are generally larger than the calibration errors. Nevertheless,
the pattern can be compared to the R2. Again, the HSTTDTm,DTd performs best and the
HST model worst (Fig. 4.10c and d). The model robustness (Fig. 4.10e and f) also mainly
depends on the data and not on the model. In contrast to the goodness of fit and the predic-
tion accuracy, the HSTTDTm,DTd model has no good performance concerning robustness.
For some dams, it even was the least robust model.

The results of the hypothesis tests that were performed to find the artificial behaviour
changes are shown in Table 4.7 in the form of p-values of different magnitude. In the case
of a shift in the data, the results show that for all dams and models, shifts with a magnitude
of 0.75·RSE can be found and stated as significant by the proposed MLR procedure. For
some dams, magnitudes of 0.5·RSE can already be stated as significant. For the drifts,
a similar pattern can be recognised. Drifts with 1·RSE/5 a = 0.2·RSE/a can be found by
the procedure. The added seasonal pattern is detected for amplitudes > 1.25·RSE in most
cases.

In Fig. 4.11, the adjusted behaviour indicators of the HST model of HG1 are shown for
the added shifts, drifts and seasonal patterns. In Fig. 4.12, the same is provided for the
HSTTDTm,DTd model of HG1. The HST model has an RSE of 0.82 mm. The RSE of the
HSTTDTm,DTd is 0.38 mm, i.e. about half of the size of the RSE of the HST model. As a
consequence, the added abnormal behaviour is half of the size for the HSTTDTm,DTd model.
However, for both models, the shift, the drift and the seasonal pattern can be recognised
by the MLR model. Visually, the abnormal behaviour of the HST model seems to be
better recognisable.
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Fig. 4.10 Comparison of different temperature models for different dams: R2 for a) different
dams and b) for different models; R2

CV for c) different dams and d) for different models;
rc for e) different dams and f) for different models.
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Table 4.6 Goodness of fit (RSE and R2), prediction accuracy (RMSPECV and R2
CV ) and

robustness coefficient rc for different dams and temperature models.

dam model RSE [mm] R2 [-] RMSPECV [mm] R2
CV [-] rc [-]

HST 0.80 0.910 0.86 0.805 0.974

G1

HSTTVerbund 0.68 0.935 0.76 0.851 0.977
HSTTed f 0.67 0.937 0.75 0.855 0.979
HTTdir 0.49 0.966 0.53 0.927 0.955
HTTTm,Td 0.48 0.967 0.49 0.942 0.975
HTTPC 0.47 0.969 0.49 0.936 0.977
HSTTDTm,DTd 0.45 0.972 0.47 0.947 0.950

G2

HST 0.52 0.983 0.55 0.971 0.938
HSTTVerbund 0.48 0.986 0.51 0.976 0.938
HSTTed f 0.47 0.986 0.51 0.976 0.942
HTTdir 0.57 0.980 0.57 0.967 0.948
HTTTm,Td 0.51 0.984 0.56 0.967 0.909
HTTPC 0.49 0.985 0.51 0.975 0.962
HSTTDTm,DTd 0.44 0.988 0.44 0.979 0.955

A1

HST 0.69 0.970 0.75 0.957 0.977
HSTTVerbund 0.50 0.985 0.54 0.979 0.986
HSTTed f 0.49 0.985 0.52 0.980 0.985
HTTdir 0.38 0.991 0.38 0.988 0.986
HTTTm,Td 0.58 0.979 0.58 0.972 0.990
HTTPC 0.29 0.995 0.29 0.994 0.979
HSTTDTm,DTd 0.41 0.990 0.42 0.987 0.951

A2

HST 2.16 0.992 2.40 0.984 0.983
HSTTVerbund 1.44 0.996 1.64 0.991 0.971
HSTTed f 1.36 0.997 1.54 0.992 0.971
HTTdir 1.71 0.995 1.71 0.987 0.983
HTTTm,Td 1.68 0.995 1.88 0.989 0.979
HTTPC 1.59 0.996 1.64 0.989 0.987
HSTTDTm,DTd 1.60 0.996 1.76 0.990 0.977

A3

HST 1.76 0.965 1.92 0.945 0.954
HSTTVerbund 1.76 0.967 1.93 0.944 0.953
HSTTed f 1.77 0.966 1.93 0.944 0.952
HTTdir 1.11 0.987 1.19 0.979 0.990
HTTTm,Td 1.21 0.984 1.26 0.973 0.979
HTTPC 1.08 0.987 1.12 0.980 0.993
HSTTDTm,DTd 0.84 0.993 0.89 0.987 0.977

AG1

HST 1.52 0.933 1.65 0.896 0.926
HSTTVerbund 1.45 0.940 1.58 0.905 0.914
HSTTed f 1.44 0.941 1.58 0.905 0.915
HTTdir 1.47 0.938 1.56 0.909 0.879
HTTTm,Td 1.51 0.935 1.55 0.903 0.910
HTTPC 1.53 0.933 1.62 0.905 0.931
HSTTDTm,DTd 1.30 0.952 1.41 0.921 0.854

HG1

HST 0.82 0.933 0.86 0.890 0.994
HSTTVerbund 0.70 0.952 0.73 0.919 0.994
HSTTed f 0.71 0.95 0.74 0.917 0.994
HTTdir 0.51 0.973 0.53 0.957 0.997
HTTTm,Td 0.43 0.982 0.44 0.969 1.000
HTTPC 0.45 0.979 0.46 0.966 0.999
HSTTDTm,DTd 0.38 0.986 0.42 0.973 0.997
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Table 4.7 Results of hypothesis test using MLR to find behaviour change for different
magnitudes of abnormal behaviour (*** p<0.001; ** p<0.01; * p<0.05; . p<0.1).

shift drift season
dam model 0.50 0.75 1.00 1.25 1.50 0.50 0.75 1.00 1.25 1.50 0.50 0.75 1.00 1.25 1.50

HST * *** *** *** *** * ** ** *** * ** ***

G1

HSTTVerbund * *** *** *** *** * ** *** *** * ** ***
HSTTed f * *** *** *** *** * ** *** *** * ** ***
HTTdir * ** *** *** *** * ** *** *** * ** ***
HTTTm,Td * ** *** *** *** *. * ** *** . * **
HTTPC * ** *** *** *** * ** *** *** * ** ***
HSTTDTm,DTd * ** *** *** *** . ** ** *** . * **

G2

HST . * *** *** *** . * ** *** *** * **
HSTTVerbund . * *** *** *** . * ** *** *** . * **
HSTTed f . * *** *** *** . * ** *** *** * **
HTTdir . ** *** *** *** . * ** *** *** . * **
HTTTm,Td . ** *** *** *** . * ** *** *** . * **
HTTPC . ** *** *** *** . * ** *** *** . * **
HSTTDTm,DTd . * *** *** *** . * ** *** *** * **
HST . ** *** *** *** . * ** *** . * **
HSTTVerbund . ** *** *** *** . * ** *** . * **
HSTTed f . ** *** *** *** . * ** *** . * **

A1 HTTdir . ** *** *** *** . * ** *** . * **
HTTTm,Td * ** *** *** *** . * ** *** * ** **
HTTPC . ** *** *** *** . * ** *** . * **
HSTTDTm,DTd . ** *** *** *** . * ** *** . * **
HST . ** *** *** *** * ** *** *** . * **
HSTTVerbund . ** *** *** *** * ** *** *** . * **
HSTTed f . ** *** *** *** * ** ** *** . * **

A2 HTTdir . * *** *** *** . * ** *** . * **
HTTTm,Td * ** *** *** . * ** *** . *
HTTPC * ** *** *** . * ** *** * **
HSTTDTm,DTd * ** *** *** . * ** *** . *
HST . ** *** *** *** . * ** *** . * **
HSTTVerbund . ** *** *** *** . * ** *** . * **
HSTTed f . ** *** *** *** . * ** *** . * **

A3 HTTdir * ** *** *** . * ** ** . *
HTTTm,Td . ** *** *** *** . * ** *** * *
HTTPC . * *** *** *** . * ** *** * **
HSTTDTm,DTd * ** *** *** . * ** ** . *
HST ** *** *** *** *** . ** *** *** *** . ** *** ***
HSTTVerbund ** *** *** *** *** . ** *** *** *** . ** *** ***
HSTTed f ** *** *** *** *** . ** *** *** *** . ** *** ***

AG1 HTTdir * *** *** *** *** . * ** *** *** . * *** ***
HTTTm,Td * *** *** *** *** . * ** *** *** . ** ** ***
HTTPC * *** *** *** *** . * ** *** *** . * *** ***
HSTTDTm,DTd * *** *** *** *** . * ** *** *** . * *** ***
HST . ** *** *** *** . * ** *** . * **
HSTTVerbund . ** *** *** *** . * ** *** * **
HSTTed f . ** *** *** *** . * ** *** . * **

HG1 HTTdir . * ** *** *** * ** *** * *
HTTTm,Td . * *** *** *** . * ** *** * *
HTTPC . ** *** *** *** . * ** *** . * **
HSTTDTm,DTd . * *** *** *** . * ** *** * **
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Fig. 4.11 Adjusted behaviour indicator Madj of the HST model of HG1 for different magnitudes
of added artificial abnormal behaviour: a) shift; b) drift; c) seasonal pattern. The
original data already contain a strong drift (for data description see Appendix A.5.8).
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Fig. 4.12 Adjusted behaviour indicator Madj of the HSTTDTm,DTd model of HG1 for different
magnitudes of added artificial abnormal behaviour: a) shift; b) drift; c) seasonal pattern.
The original data already contain a strong drift (for data description see
Appendix A.5.8).
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4.5.2.3 Thermometer failure

Another aspect that has to be considered when using temperature models is whether a
model can still be used after a thermometer has failed. For instance, the HSTT model with
delayed air temperature reading becomes unusable if the air temperature measurement
fails. According to experience, the data of MeteoSwiss is very accurate and a malfunction-
ing of the infrastructure can be quickly eliminated. On the other hand, the thermometers
that are installed in concrete dams (most of them were placed during concreting) cannot
be replaced easily. Considering the HTTPC model, all of the thermometers are used in the
model. On the contrary, in the HTTdir model only a selected number of thermometers are
used. Therefore, it is less likely that exactly the thermometer that is used in the model
fails. For the approaches based on the mean temperature and the temperature difference,
all thermometers are used. The thermometers closest to the boundary are more important
than the inner ones that are only used for the calibration of the thermal diffusivity. If one
of the outermost thermometers fails, inverse thermal analysis may be an option. However,
this depends on the location of the thermometers; if the thermometer is too far from the
boundary, the high frequencies will be wiped out (see Section 3). In general, the issue of
thermometer failure can be tackled by setting up a new model or estimating the values of
the failed thermometer by a thermal analysis or simply by a statistical correlation.

4.5.2.4 Discussion

All models were successfully applied to find the artificial behaviour changes added to
the data. The behaviour changes were detected by the use of MLR analysis (see Sec-
tion 4.4.2). It is shown that the magnitude of a behaviour change that can be found by the
MLR procedure is related to the RSE of the model. Generally, shifts with a magnitude
of 0.75 RSE are identifiable. For example, in a model with an RSE of 1 mm, a shift of
around 0.75 mm is identifiable and in a model with an RSE of 2 mm a shift of around 1.5
mm is identifiable. As a consequence, a model with a lower RSE, can identify smaller
behaviour changes and may be preferred.

The performance of the models mainly depends on the data and not on the model itself.
There was no outstanding model that can be suggested for general use. One of the good
performing models was the HTTTm,Td . Unfortunately, for some dams the robustness was
weak. For some dams, even the simple HST model performed well. The extension by
delayed air temperature measurement differences (HSTTVerbund and HSTTedf ) improves
the model in some cases. Overall, it is worth to compare different models for a dam to
guarantee model quality. Models with a low RSE shall be chosen since they allow for
an earlier detection of a potential behaviour change. In addition, the robustness of the
models has to be checked as well.



140 Evaluation of existing modelling approaches

4.5.3 Approach to consider irreversible effects

4.5.3.1 Introduction

The observation-prediction comparison procedure has to be used with caution, because
irreversible displacements can hardly be predicted (see Section 4.3). Alternatively, the
adjusted behaviour indicator Mad j = b0+Pir+e can be analysed. Nevertheless, a function
of time f (t) to model the irreversible displacements Pir should be included in the model.
This helps to avoid that the irreversible effects are partly assigned to the coefficients of
the reversible effects.

Different shape function that can be used to consider the irreversible displacement can
be found in the literature (see Section 2.5.4.2). Some of them contain several variables
with a similar shape what may lead to multicollinearity. Because the time is the same
for all variables considering irreversible displacement in function of time by definition,
multicollinearity does not lead to stability problems as far as there is no extrapolation (for
details see Section 2.4.2.1). The choice of the shape function can be checked visually
by looking at partial residuals or by a partial F-test statistic that checks whether adding
terms leads to a significant reduction of the sum of squared residuals SSRes. Alternatively,
a spline approach, as described in Fanelli et al. (2000), could be used. When using this
flexible approach, overfitting must be prevented. To find the optimal degree of freedom
of the spline, a cross-validation procedure can be used (James et al., 2013).

4.5.3.2 Methodology

Considered models

A selection of shape functions to represent the irreversible effects from the literature (see
Section 2.5.4.2) is taken for the analysis (Table 4.8 ). Besides these approaches, one
model with no irreversible effects is considered. Some of the approaches need a nonlinear
optimisation of the coefficients of the exponential function arguments. These coefficients
were determined by nonlinear lest squares analysis in advance.

Table 4.8 Overview of shape functions to represent the irreversible effects for the case study.

shape functions used in

1 no irreversible effects considered

2 b1 t Tatin et al. (2015)

3 b1 (1� exp(�k t)) Mata et al. (2013)

4 b1 t +b2 exp(�t) Léger and Leclerc (2007),
Mata et al. (2013)

5 b1 t +b2 t2 +b3 t3 +b4 t4 +b5 exp(�t/c1) Penot et al. (2005)

6 spline s(t) Fanelli et al. (2000)
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Selection of case study

The arch dam A2 was chosen for this analysis because it shows a nonlinear trend in the
behaviour. The HT TPC temperature model is chosen because it turned out to be the most
robust in the temperature model evaluation (see Section 4.5.2). For the effects of the water
level, a third order polynomial approach is used.

Evaluation procedure

As in the temperature model evaluation, the RSE and the R2 are calculated as a meas-
ure for the goodness of fit. Furthermore, the prediction accuracy is evaluated by the
cross-validation based RMSPECV and R2

CV . Furthermore, the robustness coefficient rc is
calculated.

4.5.3.3 Results

The results of the different approaches to represent the irreversible effects are summar-
ised in Table 4.9. The non-linear approaches no. 3 - 6 lead to lower RSE than the linear
approach no. 2 and the model without a function of time no. 1. The approach no. 5 is
affected by overfitting. This can be seen in the very large RMSPECV value. The adjusted
behaviour indicator and the corresponding irreversible parts are shown in Fig. 4.13. The
adjusted behaviour indicators are very similar for all reviewed approaches. Only the one
without considering irreversible effects shows a slightly larger variation. This is due to
the coefficient estimates that are different since no approach to represent irreversible ef-
fects was considered for calibration. This fact also can be confirmed by the robustness
coefficient rc that is lower than for all other models.

Table 4.9 Goodness of fit (RSE and R2) and prediction accuracy (RMSPECV and R2
CV ) for

different shape functions representing the irreversible effects. Additionally, the
robustness coefficient rc is shown.

approach RSE [mm] R2 [-] RMSPECV [mm] R2
CV [-] rc [-]

1 1.94 0.993 1.98 0.988 0.941

2 1.84 0.994 1.97 0.987 0.965

3 1.56 0.996 1.6 0.990 0.980

4 1.57 0.996 1.63 0.990 0.977

5 1.55 0.996 284’000 - 0.981

6 1.61 0.995 - - 0.979
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Fig. 4.13 Adjusted behaviour indicator of HTTPC model of arch dam A2 for different approaches
to consider the irreversible effects. The amount of the irreversible displacement Pir is
shown by the red line.

4.5.3.4 Discussion

When using the adjusted behaviour indicator approach, the main purpose of the approach
to consider the irreversible effects is to avoid that they are partly assigned to reversible
effects. Therefore, the chosen approach should be able to represent the trend of the ir-
reversible displacement. In many cases, a linear function is a reasonable approach. For
more complex cases, as for the arch dam A2, a nonlinear approach with an exponential
function might fit better. In this case, a spline approach is an adequate tool. The engineer
does not have to choose a certain shape but only evaluate the output of the analysis. The
shape is estimated by the fitting procedure.

Unfortunately, there is no advantage of a smaller RSE achieved by the approach to rep-
resent the irreversible effects. This is because in behaviour analysis based on the adjusted
behaviour indicator the residuals and the irreversible displacement are considered in one
single term.
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When using an approach with several terms, a correlation of them is likely and therefore
multicollinearity may occur. Since no extrapolation is considered and the time t is the
same in all functions, this multicollinearity can be tolerated. Nevertheless, strong overfit-
ting as shown in the example of approach no. 5, should be avoided. This can be checked
by a cross-validation procedure.

4.6 Drainage flow

Statistical models can also be applied to monitor drainage flow but it is less common than
for monitoring of the displacements of concrete dams. A short overview of the models
for this monitoring purpose is given in Section 2.5.4.3. One goal of this thesis is to eval-
uate the influence of the environmental conditions on drainage flow and the performance
of the models. Thus, the drainage flow measurements of an embankment dam, a gravity
dam and an arch dam were analysed with statistical models. The influences of the water
level, a potential delay of the effect of the water level, and the precipitation were con-
sidered. Since no information about snow melt was available, a seasonal approach was
used instead.

The results show that the water level has a major effect on the measured drainage flow.
The delayed water level, the seasonal effects and the precipitation have only a minor
contribution (Hauser, 2017). As for concrete dams, the effects of the water level can be
described by a polynomial approach. However, the correlations were not as good as for
concrete dam displacements (R2 = 0.50 to 0.95).

Because the drainage flow mainly depends on the effect of the water level, its interpret-
ation with MLR models is less common (Amberg, 2009). In the example shown in Sec-
tion 2.4, also an SLR model with a polynomial approach leads to reasonable results. Such
a model can easily be interpreted by a simple correlation plot. Thus, these models are not
further evaluated in this thesis.

4.7 Multicollinearity

4.7.1 Introduction

There are different approaches how multicollinearity can be treated (see Section 2.4.2).
The most common approach used in engineering practice is to remove correlated regressor
variables (Amberg, 2009). This approach was applied for the evaluation of the temperat-
ure models in Section 4.5.2. In addition, ridge regression (RR) and principal component
regression (PCR) are evaluated in this section.
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4.7.2 Ridge regression

4.7.2.1 Methodology

Multicollinearity is mainly caused by correlated temperature readings. Thus, temperature
models that are likely affected by this phenomenon are taken for the evaluation. These
are the HTTdir and the HTTTm,Td models. Since RR shrinks the coefficients, all variables
are taken into account in the model. The effects of the water level were considered by a
polynomial function up to fourth order. The same orders as in Section 4.5.2 are used. The
calculations are performed with the “glmnet” package of Friedman et al. (2010) which is
available in the R environment (RCoreTeam, 2013). The shrinkage coefficient l is estim-
ated by cross-validation with k = 10. In doing so, extrapolations of the water level have
to be removed, since they heavily disturb the analysis. If the extrapolations of the water
level are not removed, very large l values will result. This is because of multicollinear-
ity between the different polynomial terms of the water level approach. As explained in
Section 2.4.2, this multicollinearity can be tolerated.

As in Section 4.5.2, the RSE and the R2 are used as a measure for the goodness of fit.
The prediction accuracy is evaluated by the RMSPECV and the R2

CV . In addition, the
robustness coefficient rc is estimated. To evaluate if the RR models are able to detect
behaviour changes, the same analysis as in Section 4.5.2 is performed. Furthermore, the
same dams, data sets and calibration periods are used. This allows for comparison of the
results.

4.7.2.2 Results

The hypothesis tests that were performed to find the artificial behaviour changes lead
to the same results as in Section 4.4. The results of the coded p-values for the different
magnitudes are shown in Appendix A.6.3. The magnitudes of the RSE at which the added
behaviour changes are found are similar as in Section 4.5.2. As a consequence, the RSE
of the MLR models and the RR models are comparable.

The results of the goodness of fit indicators RSE and R2 and the prediction accuracy
indicators RMSPECV and R2

CV are summarised in Table 4.10. In addition, the estimated
robustness coefficient rc and the shrinkage coefficients l are provided. In Fig. 4.14, the
R2 and rc values are shown separately for the different dams and models. In Fig. 4.14a,
the R2 of the RR models (black) and of the MLR models (red) are shown separately for
the different dams. The R2 values, and therefore also the RSE values, of the RR model are
at least as good as for MLR models. However, the robustness coefficient of RR models
is generally lower (Fig. 4.14b). For the HTTTm,Td model of arch dam A2, it is lower than
0.4.
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Table 4.10 Results of ridge regression analysis: Goodness of fit (RSE and R2), prediction
accuracy (RMSPECV ) and robustness coefficient rc for different dams and temperature
models. Additionally, the estimated shrinkage coefficients l are given.

dam model RSE [mm] R2 [-] RMSPECV [mm] R2
CV [-] rc [-] l [-]

G1
HTTdir 0.45 0.974 0.48 0.941 0.926 0.0125

HTTTm,Td 0.45 0.972 0.46 0.950 0.918 0.00575

G2
HTTdir 0.39 0.992 0.47 0.973 0.854 0.0025

HTTTm,Td 0.48 0.986 0.62 0.955 0.844 0.001

A1
HTTdir 0.26 0.996 0.3 0.993 0.947 0.00775

HTTTm,Td 0.50 0.985 0.52 0.980 0.963 0.00275

A2
HTTdir 1.80 0.995 2.40 0.980 0.775 0.075

HTTTm,Td 1.74 0.995 2.25 0.983 0.365 0.001

A3
HTTdir 1.04 0.989 1.11 0.981 0.986 0.0425

HTTTm,Td 1.00 0.989 1.06 0.982 0.987 0.015

AG1
HTTdir 1.48 0.939 1.76 0.881 0.811 0.0035

HTTTm,Td 1.47 0.939 1.60 0.897 0.843 0.001

HG1
HTTdir 0.40 0.986 0.48 0.966 0.984 0.002

HTTTm,Td 0.40 0.985 0.44 0.972 0.995 0.00125
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Fig. 4.14 Comparison of temperature models for different dams: a) coefficient of determination
R2; b) robustness coefficient rc.

4.7.3 Principal component regression

4.7.3.1 Methodology

The same models as in the previous section are used for the evaluation of the principal
component regression (see Section 4.7.2). After scaling the individual regressors by unit
normal scaling, the principal components of all regressors are calculated. Then principal
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component regression (PCR) is carried out by the “pls” package of Mevik and Wehrens
(2007) which is available in the R environment (R Core Team, 2013). To determine the
number of principal components nPC that are taken into account in the model, a 10-fold
cross-validation is performed. Data points with extrapolations of the water level are not
considered since they may disturb the result. Then, the goodness of fit and prediction
accuracy are estimated. In addition, the same analysis as in Section 4.5.2 is performed
to check the capability of detecting behaviour changes. For the sake of comparison, the
same calibration periods as for the temperature model evaluations are used.

4.7.3.2 Results

The results of the goodness of fit indicators RSE and R2, the prediction accuracy indicator
RMSPECV and the robustness coefficient rc are summarised in Table 4.11. Furthermore,
the number of principal components nPC is given. In Fig. 4.15, the R2 and the rc of the
different models are compared. Because the current approach is similar to the HTTPC

model (see Section 4.5.2), which is a modification of the HTTdir model, the results of
the HTTPC are shown as well. The R2 of the PCR models are in a similar order as for
the MLR models. However, the robustness of PCR models is smaller for most of the
dams. For arch dam A2 it is only about 0.4. However, the HTTPC model, which uses
principal components of the temperatures but not of the other influences, is more robust
than the PCR HTTdir model. The results of the hypothesis tests that were performed to
find the artificial behaviour changes are provided in Appendix A.4. As for RR models,
the magnitudes at which the added behaviour changes were found are similar to the MLR
models.
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Table 4.11 Results of principal component analysis: Goodness of fit (RSE and R2), prediction
accuracy (RMSPECV ) and robustness coefficient rc for different dams and temperature
models. Additionally, the number of principal components nPC is given.

dam model RSE [mm] R2 [-] RMSPECV [mm] rc [-] nPC [-]

G1
HTTdir 0.48 0.967 0.49 0.916 9

HTTTm,Td 0.54 0.960 0.48 0.799 5

G2
HTTdir 0.41 0.990 0.49 0.865 14

HTTTm,Td 0.54 0.982 0.63 0.888 9

A1
HTTdir 0.26 0.996 0.31 0.889 13

HTTTm,Td 0.52 0.984 0.51 0.962 6

A2
HTTdir 1.62 0.995 2.39 0.401 25

HTTTm,Td 1.58 0.996 2.02 0.351 15

A3
HTTdir 1.07 0.988 1.12 0.986 4

HTTTm,Td 1.01 0.989 1.08 0.981 8

AG1
HTTdir 1.51 0.936 1.81 0.732 14

HTTTm,Td 1.51 0.935 1.64 0.862 8

HG1
HTTdir 0.38 0.986 0.48 0.982 17

HTTTm,Td 0.39 0.985 0.44 0.995 11
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Fig. 4.15 Model comparison of principal component analysis for different dams: a) coefficient of
determination R2; b) robustness coefficient rc (different axis scaling).

4.7.4 Discussion

Two methods for the treatment of multicollinearity have been evaluated: (i) ridge regres-
sion (RR) and (ii) principal component regression (PCR). The results of the two methods
are very similar. The goodness of fit is at least as good as for MLR models. In some
cases, it is even better. On the other hand, the robustness of the models is not as good
as for MLR models for many dams. In both approaches, all temperature measurements
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are included in the model. As a consequence, if one thermometer fails, the model will
no longer be usable. Therefore, it is recommended to use the MLR models by excluding
correlated variables, as it was performed in Section 4.5.2.

Furthermore, it is shown that the RSE magnitudes at which the added behaviour changes
were found, are similar to those found by MLR analysis. Thus, the RSE can be used
as a measure for comparison. Concerning RR, the order of magnitude of the shrinkage
parameter l is the same as in Weber (2002).

4.8 Autocorrelation

4.8.1 Introduction

Autocorrelation in the residuals of a regression model leads to correct coefficient estimates
but the estimation of the standard errors is wrong. Unfortunately, many statistical test pro-
cedures are based on them (see Section 2.4.3). There are different methods to detect and
treat autocorrelation. Visual detection based on the ACF- and the PACF-plot is explained
in Appendix ??. Here, two methods for the treatment of autocorrelation are evaluated.
They lead to a correct estimation of the standard errors se(b ) of the coefficients. These
are the (i) thinning out of the data set and (ii) block bootstrap method. There are also
the approaches of Cochrane-Orcutt and Prais-Winsten used by Weber (2002). However,
experience has shown that these approaches may fail if a high autocorrelation is present
(Schiefer, 2015). Therefore, they are not discussed herein. The content of this section
mainly refers to Bühlmann et al. (2015).

4.8.2 Methodology

The analysis is carried out with the data set of arch dam A4, where daily readings for
seven years are available. The data set and the dam are described in Appendix A.5.6. Due
to the daily recording of the measurement data, the residuals are highly autocorrelated.

The HTTT m,T d model given by Eq. (4.9) below is used in combination with a fourth order
Chebyshev polynomial to represent the effects of the water level. This avoids the presence
of multicollinearity. In addition, a time-delayed reversible deformation hv (viscous elastic
deformation of the structure) that is influenced by the water level is taken into account
(Perner and Obernhuber, 2009). Including the delayed part leads to a more accurate model
with less autocorrelation of the residuals. The temperatures were pre-processed to mean
temperatures Tm and linear temperature differences Td by thermal analysis. Due to the
multicollinearity, the first principal components of Tm and Td are entered in the model.
The irreversible displacements are considered by a linear function.
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P(h,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 h4 +b5 hv +b6 Tm,I +b7 Td,I +b8 t (4.9)

First of all, the original data set with daily measurements is used. In a second step, the data
set with daily measurement data is thinned out considering intervals of 7, 14 and 28 days
in order to reduce autocorrelation. For the data sets with 28 day intervals, two different
start dates are chosen (1.1.1992 and 14.1.1992). The new data sets can be seen as data
sets with larger measurement intervals. For all these models, the coefficient estimates
and the corresponding standard errors are calculated. In terms of a hypothesis test, the
standard errors are used to calculate the p-values. In addition, goodness of fit indicators
are estimated.

Finally, the block bootstrap (BBS) method is applied. Blocks with a size of 40 d, which
corresponds to the period where correlation of the daily measurement data was detected,
are sampled 1000 times. This leads to 1000 slightly different data sets based on the same
data. For each data set, an MLR is performed. Out of these 1000 regression coefficients
bi, the mean value and the corresponding p-values are calculated.

4.8.3 Results

The autocorrelation of the model residuals based on the different data sets of the original
and the thinned-out data is shown by the ACF- and PACF-plots in Fig. (4.16). The spike
of lag 1 in the PACF-plot can be seen as a rough estimate of the coefficient r1 of a first
order autoregressive model AR(1) et = r1 et�1 + e (Dettling, 2014). For daily data, r1

is close to 1, which corresponds to high autocorrelation. For the weekly and bi-weekly
time-lags, the autocorrelation is still present. For the time series with 28 d intervals, the
autocorrelation is no longer present.

The values of the regression coefficients bi and the corresponding p-values are displayed
in Table 4.12. The regression coefficients bi do not differ much for the different time-
intervals and the BBS method but the p-values do. For the 1 d, 7 d and 14 d data, the
hypothesis test of the individual coefficients leads to significance for all tested variables.
However, for the two 28 d data sets and the BBS method, the fourth order term of the
water level and the linear irreversible displacement are not significant. The BBS method
is able to estimate correct standard errors of the coefficients even though all data are used
for calibration. This leads to more accurate models than by removing data since more data
is used to estimate the coefficients. This can be seen by comparing the model accuracy
parameters in Table 4.13. Furthermore, the two different data sets with time-lags of 28 d
lead to different results.
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Fig. 4.16 ACF- (left) and PACF-plots (right) for residuals based on different data sets: a) original
data with daily measurements; thinned out data with b) 7 d time-lag c) 14 d time-lag
and d) 28 d time-lag.
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Table 4.12 Values of regression coefficients and p-values (*** p<0.001; ** p<0.01; * p<0.05; .
p<0.1) resulting from the different models.

1 d 7 d 14 d 28 d (I) 28 d (II) BBS

b0
value 61.43 61.40 61.31 60.20 60.25 61.30

p *** *** *** *** *** ***

bh
value 24.08 23.72 23.30 22.81 21.36 23.94

p *** *** *** *** *** ***

bh2
value 7.21 7.08 6.87 6.60 5.81 7.08

p *** *** *** *** *** ***

bh3
value 1.37 1.30 1.28 1.29 0.96 1.42

p *** ** *** *** ** ***

bh4
value 0.46 0.49 0.48 0.52 0.37 0.44

p *** *** * . .

bh,n
value 0.29 0.29 0.32 0.32 0.33 0.30

p *** *** *** *** *** ***

bT m,I
value -3.92 -3.95 -3.94 -4.06 -3.87 -3.89

p *** *** *** *** *** ***

bT d,I
value -0.48 -0.50 -0.46 -0.43 -0.51 -0.45

p *** *** *** *** *** ***

t
value 0.32 0.32 0.37 0.29 0.46 0.35

p *** ** * .

Table 4.13 Model accuracy indicators of the different models.

1 d 7 d 14 d 28 d (I) 28 d (II) BBS

R2
ad j [-] 0.991 0.991 0.991 0.991 0.988 0.991

RSE [mm] 1.50 1.46 1.61 1.56 1.94 1.52

R2
pred [-] 0.982 0.982 0.979 0.984 0.971 0.981

RMSPE [mm] 1.75 1.90 2.13 1.73 2.95 1.86

4.8.4 Discussion
The example based on daily measurement data presented above nicely shows the effect of
autocorrelated residuals on the standard errors of the coefficients. Both methods, thinning
out the data and BBS, enabled to calculate correct coefficient estimates and therefore
can be used to perform proper hypothesis tests. Since the BBS model is based on more
data, it is more accurate and more robust for prediction. The difficulty lies in the choice
of the block length. For this case study, the block length was selected as long as the
period where correlation of the daily measurement data has been detected. It is not clear
if the boot strap approach worked well for the present case by coincidence. Therefore, a
sensitivity analysis is recommended.
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If the variable selection is done based on the p-values, autocorrelation must be treated
if present. Instead of variable selection by p-values, the cross-validation test error can
be used as a decision basis. Autocorrelation has not to be treated when using the cross-
validation approach even when autocorrelated residuals are present because the coeffi-
cients are always correct. Variable selection by p-values is one possible application of
hypothesis tests. Another application for hypothesis tests is to search for abnormal beha-
viour changes based on MLR models (see Section 4.5). Thus, autocorrelation should be
check when applying such MLR models to search for behaviour changes.

For all investigated dams, except arch dam A4, the measurement data are recorded bi-
weekly or monthly. This leads to models without or with only low autocorrelation. Thus,
large measurement intervals are an advantage with respect to autocorrelation.

4.9 Summary

Two concepts which can be used to analyse the behaviour of dams were evaluated. The
application of the observation-prediction comparison can lead to misinterpretation of the
behaviour. The results are not robust and heavily depend on the calibration period. How-
ever, the concept of the adjusted behaviour indicator leads to robust results that do not
depend on the chosen calibration period. Thus, the latter concept is recommended for
application.

Unfortunately, no prediction band is available when using the adjusted behaviour indic-
ator approach. To support the detection of behaviour changes, an algorithm based on
MLR was developed. The algorithm can be seen as a useful tool for engineering prac-
tice. Nevertheless, engineering judgement is most important, i.e. it is not recommended
to use such an algorithm for an automatic alert system. To evaluate the robustness of the
resulting adjusted behaviour indicator, the robustness coefficient rc was introduced. It
expresses the variability of Madj for different calibration periods.

Furthermore, the approaches to consider the effects of the water level, the temperature
and the irreversible displacements of concrete dams were evaluated separately. The poly-
nomial approach to consider the effects of the water level works well as long as there is
no extrapolation. In considered cases with extrapolation, physically meaningless results
were obtained. Thus, extrapolation is not recommended. The polynomial order can be
determined by the RSE of the model. It can be increased until the RSE does no longer
decrease significantly. Usually, a polynomial of third or fourth order leads to satisfying
results. Polynomials that are scaled between the bottom and the top level and Chebyshev
polynomials result in exactly the same shape functions. The advantage of Chebyshev
polynomials is that they help to identify multicollinearity between the effects of the water
level and the temperature.
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The evaluation of the temperature models has shown that their performance mainly de-
pends on the data, and the dam, respectively, and less on the model. All of the models
were able to detect behaviour changes that were artificially added to the original data. The
magnitude of abnormal behaviour changes that can be detected depends on the RSE of the
model. Thus, the RSE can be used as a measure to compare different models. As soon
as several temperature measurements are taken into account in a model, multicollinearity
occurs. Two procedures to consider multicollinearity, i.e. ridge regression and principal
component regression, were evaluated. However, the goodness of fit and the prediction
performance could not be improved when applying them. These models are less robust
than the MLR models. Thus, the application of these procedures is not recommended but
the model building with the constraint V IF < 10 is suggested instead.

When using the adjusted behaviour indicator as a basis for the behaviour analysis, the
irreversible effects contained in the model have the function to reduce the error in the
reversible effects. When estimating the coefficients, a linear or an exponential function
usually lead to satisfying results.

Because the displacement of the dam and environmental conditions are recorded at certain
intervals, autocorrelated errors are expected in the analysis. The degree of the autocor-
relation depends on the chosen measurement interval. Nevertheless, as long as only the
coefficient estimates but not the prediction interval or the p-values are of interest, present
autocorrelation does not distort the results and a treatment is not necessary. If the variable
selection is done with the cross-validation approach and the adjusted behaviour indicator
is used instead of the observation-prediction comparison, autocorrelation does not have
to be treated. As soon as a hypothesis test based on the p-values is performed, however,
autocorrelation should be checked and treated if present. The block bootstrap method is
the suggested tool to apply. The application of the Prais-Winsten algorithm does not lead
to meaningful results for a high degree of autocorrelation and is therefore not recommen-
ded.

The application of statistical models to drainage flow as behaviour indicator has shown
that the relation is mainly described by the water level. This can be considered by an SLR
model with a polynomial approach for the water level.
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5 New approaches for dam behaviour analysis

5.1 Introduction

In this chapter, approaches that are new in the application of dam behaviour analysis are
presented. They are applied to the same case studies as used for the model evaluation in
Chapter 4. This allows for comparison with the established procedures. At first, a beam
model that can be used to calculate the deformation of gravity dams is introduced. In
the scope of the application of the hybrid model, the gain of a multi-objective calibration
where the displacement on several levels is fitted simultaneously is shown. In addition,
an arch-cantilever beam model for arch dams is presented. This model can be applied
to create hybrid shape functions for the effects of the water level and the temperature.
Moreover, the potential of general additive models is shown by two case studies. Instead
of a linear relation they allow for nonlinear approaches in the form of smoothed spline
functions. Thus, no assumption about the shape of the relation has to be provided in
advance.

5.2 Beam model for gravity dams

5.2.1 Introduction

The purpose of this model is to have a simple structural model that can be used to create
physically-based shape functions for statistical dam behaviour analysis models. This ap-
proximation leads to mixed or hybrid models for gravity and also hollow gravity dams.
Due to the fact that there is no analytical solution of the elastic slab equation for the situ-
ation with a water level not equal to the crest level, a beam model is considered. In this
model, the gravity dam is modelled as a cantilever beam with elastic foundation, similar
to Rescher (1965) or Léger and Seydou (2009). This approach only approximates the
deformation of a gravity dam but it is very simple to implement. The displacements in
lake-valley direction are used as behaviour indicator. In addition, this model can be used
to calculate rotations that can be used for comparison with inclinometer measurements.

After the description of the model and its implementation, the influence of the discretisa-
tion and the individual influence of the model constants is discussed. Then, the model is
applied to create hybrid models for the gravity dams G1 and G2 and the hollow gravity
dam HG1. The results are compared to the models evaluated in Chapter 4. Furthermore,
multi-objective calibration where the displacement is matched on several measurement
levels simultaneously by using the same material properties is performed.
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5.2.2 Model description

A typical vertical section of a gravity dam and the acting loads that are considered in the
model is given in Fig. 5.1a. The loads are the water pressure pw(z) resulting from the
water level h, the mean temperature Tm(z) and the temperature difference Td(z). These
temperatures have to be estimated in a thermal pre-processing as presented in Chapter 3.
The geometrical information that needs to be provided are the abutment level za, the crest
level zcr, the varying thickness tc(z) and the y-coordinate of the upstream surface yusf (z).
By the definition of tc(z) and yusf (z), the y-coordinate of the downstream surface ydsf (z) is
implicitly defined. In addition, the Young’s modulus Ec, the Poisson’s ratio nc, the spring
constants kV and kM and the thermal expansion coefficient aT must be provided. The
spring constants kV and kM depend on the material properties of the rock foundation and
can be estimated by the Vogt’s method (see Section 2.2.2.4).

y

z
x

tc(z)

Ec νc

y

z
x

kV

tc(z)

kM

Ec νc

a) b) c)

αT αT
za

zcr FzF
yusf(z)

αusf(z) αdsf(z)
pw(z)

Tm(z)
Td(z)

h
δB,i(z)

Fig. 5.1 a) Vertical section of a gravity dam with acting loads; b) beam model for the calculation
of the displacement due to the water level and the temperature difference Td ; c) tripod
beam model to calculate the displacement due to a change in the mean temperature Tm.

To keep the static system as simple as possible, the beam is modelled with a vertical axis
instead with an inclined axis (Fig. 5.1b). Models with an inclined axis are not straight-
forward to implement because not only a shear force but also a normal force components
have to be included. Thus, it was decided to implement the simpler form and keeping in
mind that it is about 10 - 15 % weaker than a more complex model with an inclined axis.
This can be compensated by using a Young’s modulus Ec that is slightly larger. A vertical
axis is also used in Rescher (1965).

Due to the static determinacy, the deformation can be calculated directly by applying the
work theorem Eq. (2.17). In doing so, a unit load F in the direction and on the level zF of
the deformation of interest is applied (see Fig. 5.1b). From Eq. (2.17) it follows that the
deformation due to a water level h can be calculated by
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dh =

ˆ zF

za

Vy,iVy, j

GAv,y
+

Mx,i Mx, j

E Ix
+

RV,i RV, j

kV
+

RM,i RM, j

kM
dz, (5.1)

where Vy,i and Mx,i are the stress resultants due to the unit load F , Vy, j and Mx, j due to
the water level h. RV,i and RM,i are the reactions due to the unit load, and RV, j and RM, j

due to h. The same static system can be used to calculate the deformation due to a linear
temperature difference Td(z) by the work theorem:

dT d = aT

ˆ zF

za

Mx,i
Td(z)
tc(z)

dz. (5.2)

The displacement dT d depends linearly on the thermal expansion coefficient aT . The
static system in Fig. 5.1b cannot be used to calculate the deformation due to a difference
in the mean temperature Tm. The use of a model with inclined axis and the displacement in
horizontal direction estimated by the horizontal component of the beam extension would
lead to an underestimation of the displacement. Thus, a model similar to the one described
in Kolly and Joos (1995) was used (Fig. 5.1c). In this model, the gravity dam is considered
to consist of two beams, one upstream and one downstream, that build a tripod. Since
this static system is statically determinate, the stiffness and therefore the thickness of the
tripod is not relevant. The displacement of the upstream beam in y-direction dB,us,y is
obtained by

dB,us,y = aT

ˆ zcr

za

Tm(z)
tan(ausf )

dz, (5.3)

and of the downstream beam dB,ds,y by

dB,ds,y = aT

ˆ zcr

za

Tm(z)
tan(adsf )

dz. (5.4)

To get the total displacement at the level zF , the sum of the upstream and the downstream
beam displacement is multiplied by the relative coordinate zF/(zcr � za):

dT m =
aT zF

zcr � za

ˆ zcr

za

Tm(z)
tan(ausf )+ tan(adsf )

dz. (5.5)
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5.2.3 Implementation

For a convenient use, the beam model was implemented in the form of an R pack-
age. R is a functional programming language that allows object-oriented programming
(R Core Team, 2013). The model is set up by specification of the gravity dam and the
loads. In addition, different methods to calculate the deformation were implemented.
The R package “RUnit” was used as test framework (König et al., 2015). Different test
cases were created to guarantee that a modification of the code does not lead to unwanted
changes and errors. The calculation of stress resultants and displacements was compared
to the results of the commercial statics tool STATIK-6 (Cubus AG, 2014b).

The calculation of the deformation is based on influence functions. This means that the
deformation for a certain level zF is calculated by Eq. (5.1) and (5.2) for a unit shear
force Vy, j = 1, a unit bending moment Mx, j = 1 and unit reaction forces RV, j = 1 and
RM, j = 1. Furthermore, the material properties can be set to 1 for the integration. As a
consequence, the integration has to be performed only once for different load cases and
different material properties. Due to the superposition law, the deformations of the indi-
vidual components (bending, shear, elastic foundation) can be added after the integration.
This makes the calculation of the deformation very efficient. This is of advantage when
performing nonlinear optimisations, as treated in Section 5.3. The numerical integra-
tion of Eq. (5.1) and (5.2) is done with a midpoint Riemann sum with constant element
length dz. Since the temperature information is not measured continuously over the height
but only at certain levels, it must be interpolated. This is done by a linear interpolation
between the different levels and a constant extrapolation as described in Schnitter (1969)
or Bremen and Bianchi (2000) (see Fig. 5.12b).

The workflow is straightforward and is summarised as follows:

1. Provide geometry data and material parameters

2. Create influence functions for certain locations and deformation

directions (integration)

3. Interpolate and extrapolate temperature measurements

4. Multiply influence functions with measured loads (h, Tm, Td) and

material properties

5. Sum up individual deformations to the total deformation for each date

5.2.4 Influence of spatial discretisation

For the integration of Eq. (5.1) to (5.5), a spatial discretisation with element lengths dz
has to be chosen. To get an idea of the required element length, the relative error to a
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reference solution is studied for the case study of gravity dam G2. The displacement
at crest level is analysed for different element lengths. The loads were assumed to a
full reservoir level and a constant mean temperature Tm = 1 °C as well as a constant
temperature difference Td = 1 °C over the height. The reference solution was estimated
with an element length of dz = 0.001 m. The element length was varied between 0.01 m
and 5 m. The estimated relative errors are very small (Fig. 5.2). For an element length of
5 m, an error of 0.005 mm was observed for the effect of the water level and 0.0025 mm
for a change of 1 °C in the difference temperature. Thus, a yearly temperature variation
of 20 °C corresponds to 0.5 mm. This is in the order of the measurement tolerance. To be
on the safe side, an element length of dz = 2 m was considered for the applications.
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Fig. 5.2 Relative error ed for a varying element length dz for the displacement at crest level of
gravity dam G2.

5.2.5 Comparison to commercial deep beam calculation software

The results of the beam model as mentioned above, were compared to the solution of the
commercial software CEDRUS-6 that has a deep beam module (Cubus AG, 2014a). As
for the study of the influence of the discretisation, case study G2 is used. Here, the max-
imum element length is chosen to 1 m and the boundary condition at the foundation is
set rigid. the element length of 1 m ws resulting from a sensitivity analysis. Because the
foundation does not affect the thermal deformation in a statically determinate system, this
assumption is justified. The comparison is done for the load cases of the water level of
262 and 301 m a.s.l. and the thermal loads Tm and Td at 223, 250, 272 and 296 m a.s.l. The
displacement was calculated at the crest level (301 m a.s.l.) and the medium level (262
m a.s.l.). The resulting displacements are shown in Table 5.1. The difference between
the displacements calculated by the beam model (dbeam) and the deep beam model (dCED)
are small for the load case of the water level. The beam model is around 3 to 13% softer.
This can be compensated by the Young’s modulus. For the load case of the temperature
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difference Td , the agreement is good but the beam model leads to slightly smaller displace-
ments. The maximal difference is 0.05 mm/°C. For the mean temperature Tm, except for
the bottom level, the agreement is acceptable at most of the levels. At the bottom level,
the variation of the mean temperature is small and thus the total errors of the calculate
total displacement are not large.

Table 5.1 Comparison of the calculated displacements of the beam model (dbeam) and the
commercial deep beam software CEDRUS-6 (dCED). The displacements are calculated
at the medium level (262 m a.s.l.) and the crest level (301 m a.s.l.). The load of the
water level was considered on these two levels. The thermal loads are chosen to be
1 °C.

zF h Tm Td

level 262 301 223 250 272 296 223 250 272 296

dbeam [mm]
301 0.45 8.93 -0.10 -0.18 -0.15 -0.06 -0.15 -0.35 -0.35 -0.20

262 0.32 3.23 -0.05 -0.09 -0.07 -0.03 -0.08 -0.08 0 0

dCED [mm]
301 0.40 8.62 -0.01 -0.12 -0.15 -0.07 -0.20 -0.40 -0.40 -0.22

262 0.29 2.93 -0.02 -0.12 -0.02 0.00 -0.09 -0.11 -0.01 0.00

5.2.6 Influence of individual parameters

The individual influence of the material and spring constants on the displacement d at
crest level is shown in Fig. 5.3. Again, the example of gravity dam G2 is used. While one
parameter is varied, the others are kept constant. The constants are Ec = 30 GPa, nc = 0.2,
log10(kV ) = 10.5, log10(kM) = 13.25 and aT = 10�5 1/K. In Fig. 5.3a - d, the influence
of a varying water level h on the displacement is visualised. The shape of the influence
functions due to the variation of Ec, kV and kM is similar. Whereas a varying Young’s
modulus of concrete Ec leads to changes in the upper part of the dam, changes in the spring
constant lead to slight variations in the lower part. Due to the similar shape, collinearity is
expected when fitting these parameters individually. The Poisson’s ratio of concrete does
not significantly influence the results. In Fig. 5.3e - f, the influence functions of Tm and Td

for a temperature variation of 1°C is shown for different thermal expansion coefficients
aT . On the other hand, due to the surface inclination of the dam, the influence of mean
temperature is higher at the bottom. On the other hand, the influence on the temperature
difference is dominated by two concurrent influences. One is the inverse value of the
thickness 1/tc(z), which rapidly changes near the top level and the other the bending
moment Mx,i(z) which rises linearly from the top to the bottom.
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Fig. 5.3 Influence functions with varying parameters for the displacement at crest level of gravity
dam G2; a) varying Young’s modulus Ec and b) Poisson’s ratio nc of concrete; c) spring
constants of shear force kV and d) of bending moment kM; influence of thermal
expansion coefficient of concrete aT on e) the mean temperature Tm and f) the
temperature difference Td .
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5.2.7 Input data for hybrid MLR model

5.2.7.1 Introduction

The output of the beam model described in Section 5.2.2 is used as input data for a hybrid
DBA model. The model was applied to the two gravity dams G1 and G2 and the hollow
gravity dam HG1.

5.2.7.2 Material properties

The output was generated for two different parameter sets: (i) with parameter values from
material tests or values from literature and (ii) with material parameters that were es-
timated by a nonlinear calibration. In the nonlinear calibration, the material parameters
are adjusted individually so that the calculated displacements agree with the measured
displacement as well as possible. Different methods have been applied to perform non-
linear calibration but not all of them converged. The best convergence was reached with
the Markov Chain Monte Carlo method that is based on Bayesian inference where prior
knowledge about the material properties can be brought into the model. The material para-
meters are obtained by walking through the parameter space by using the DE-MCMC al-
gorithm described in Section 2.4.5.3. Its implementation is presented in Section 5.3. The
goal of using two parameter sets is to evaluate how the choice of the material parameter
influences the goodness of fit of the hybrid models.

In Tables 5.2, the material parameters for the three analysed dams are shown. The Young’s
modulus of rock Er is a more intuitive number than a spring constant. Thus, the spring
constants are transformed into a corresponding Young’s modulus using the Poisson’s ratio
of rock and the equations of Vogt (see Section 2.2.2.4).

Table 5.2 Material parameters used as input data for the beam model. Two parameter sets were
used for each dam: (i) uncalibrated set and (ii) set with MCMC calibrated parameters.

dam calibration Ec [GPa] nc [-] Er,kV [GPa] Er,kM [GPa] nr [-] aT [1/K]

G1
no 30 0.2 50 50 0.2 10�5

yes 31.2 0.2 46.8 34 0.2 0.95 ·10�5

G2
no 26 0.2 50 50 0.21 0.9 ·10�5

yes 25.46 0.2 22.82 13.08 0.21 1.26 ·10�5

HG1
no 30 0.2 30 30 0.2 10�5

yes 32.1 0.2 50.8 37.6 0.2 0.55 ·10�5

5.2.7.3 Methodology

To compare the results of the new hybrid model to the approaches from the literature, the
same data as in Section 4.5.2 were used. In addition, the goodness of fit is also evaluated
by the RSE and the R2, the prediction accuracy by the RMSPECV and the R2

CV and the
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robustness by rc. The hybrid model (Eq. (5.6)) was completed by a linear function con-
sidering the irreversible effects. The capability to find abnormal behaviour was evaluated
by the same procedure as in Section 4.5.2.

P(dh,dT , t) = b0 +b1 dh +b2 dT +b3 t (5.6)

5.2.7.4 Results

The results of the hybrid models are given in Table 5.3. There is no noticeable differ-
ence in the goodness of fit, the prediction accuracy and the robustness when comparing
the models with uncalibrated and calibrated material parameters. However, the resulting
regression coefficients b1 and b2 are different. For the models with calibrated material
parameters, they are almost 1, as expected in a physically-based model. On the other
hand, the prediction accuracy of the models based on uncalibrated material parameters is
as good as for the models with calibrated parameters. On the other hand, for inference
it might be useful to use calibrated parameters since the regression coefficients gain a
physical meaning.

The model is very robust. For all dams, rc was estimated to 0.995 or more. Compared to
the models from the literature evaluated in Chapter 4, this is better. The robustness can
also be seen in the V IF values that are estimated between 1.13 and 1.67, which is very
low. The comparison of the RSE shows that for gravity dam G1 the beam model is as
good as the best performing statistical model. On the other hand, for gravity dam G2 the
beam model is the worst performing model regarding goodness of fit. Nevertheless, the
RSE is only 0.2 mm higher than for the best statistical model. For the HG1, the RSE of
the beam model is an average value compared to the statistical models of HG1.

Table 5.3 Evaluation of hybrid model for gravity dams: goodness of fit (RSE and R2), prediction
accuracy (RMSPECV and R2

CV ) and robustness coefficient rc for different dams and
temperature models. Additionally, the maximal V IFmax is provided for each model

dam calibration RSE [mm] R2 [-] RMSPECV [mm] R2
CV [-] rc [-] V IFmax[-]

G1
no 0.46 0.969 0.45 0.953 0.995 1.14

yes 0.46 0.969 0.45 0.954 0.995 1.14

G2
no 0.66 0.971 0.68 0.958 0.995 1.67

yes 0.62 0.975 0.62 0.965 0.997 1.66

HG1
no 0.53 0.972 0.53 0.958 0.999 1.13

yes 0.52 0.972 0.53 0.958 0.999 1.13
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5.2.7.5 Linear assumption

The validity of the linear assumption of an MLR model can be checked by a partial re-
siduals plot of a corresponding hybrid model. In Fig. 5.4, the partial residuals plot of the
hybrid model of gravity dam G1 is shown. The linear assumption is satisfied very well.
This can be verified by the smoothed relationship (solid green line, LOESS a = 0.3) that
well expresses the linear one (dashed red line).
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Fig. 5.4 Partial residuals plot for hybrid model of gravity dam G1; a) effect of the water level;
b) temperature effects.

5.2.7.6 Discussion

The hybrid model for gravity dams works quite well for the investigated case studies.
Furthermore, it was successfully applied to a hollow gravity dam. Although it is not
the most accurate model, it is very robust. Due to the thermal pre-processing and mul-
tiplication by influence functions based on the geometry of the dam, there is no multi-
collinearity between the different thermometer measurements. Moreover, there is also no
multicollinearity between the effect of the water level and the effect of temperature. If the
model parameters are calibrated in advance, the regression coefficients can be used for a
physically-based inference. The physical transformation leads to variables that satisfy the
linear assumption of an MLR model very well.

5.3 Multi-objective calibration

5.3.1 Introduction

Dam behaviour models are commonly set up and calibrated to fit the displacement at one
level. If several levels are analysed, different sets of parameters will be estimated. How-
ever, the beam model for gravity dams described in the previous section can be used to
calculate the displacement at several levels. This allows for a multi-objective calibration
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of the material parameters where the measured displacement is simultaneously matched
with the model output at several levels. Unfortunately, common MLR analysis is not
suitable for such a calibration. Thus, different optimisation algorithms that can be used
for multi-objective calibration were applied and evaluated. These are different algorithms
provided by the R function “optim”, such as the L-BFGS-B method of Byrd et al. (1995)
that allows for box constraints and the Markov Chain Monte Carlo method (MCMC). The
best results were obtained with the MCMC method. The other algorithms suffered from
finding local minima or even did not converge. Thus, the implementation of the MCMC
framework based on Bayesian inference is described in this section. The advantage of
a Bayesian approach is that prior knowledge about the parameters can be brought into
the model. Since the model parameters are physically-based, engineering knowledge or
results from material tests can be used.

5.3.2 Implementation

In the following, the implementation of the DE-MCMC algorithm of Braak (2006) (see
Section 2.4.5) is implemented for the gravity dam beam model is described. It is shown
how the spring constants are determined, how the prior information is chosen, how the
likelihood function is considered, how the sampling is done and how the most probable
parameter values are obtained.

5.3.2.1 Spring constants

Instead of the spring constants, the Young’s modulus of rock Er is sampled. In a second
step, the corresponding spring constants are determined by the equations of Vogt (see
Section 2.2.2.4). This is more intuitive from an engineering point of view. Two different
moduli Er,i for the spring constant due to a shear force kV and due to a bending moment
kM are considered. The use of a single Young’s modulus was too restrictive, leading to
larger model errors.

5.3.2.2 Prior information

The prior information about the physical parameters q = (Ec,Er,kV ,Er,kM,aT ) can be
provided in the form of an arbitrary distribution. In most cases, this is either a normal
distribution with a mean value and a standard error or a uniform distribution with a lower
and an upper limit. The parameter values are provided by engineering knowledge or by
laboratory tests if available. The more precise the available information, the narrower the
prior distribution can be chosen.

5.3.2.3 Likelihood function

In the MCMC algorithm, the likelihood function L (y = M|q) of observing the data M
having the parameters q has to be defined. This was done based on the residuals e =
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M � P which are the difference between the measurements and the model output. In
a typical DBA model, the irreversible effects should be included in the calibration in
addition to the effect of the water level and the temperature that can be represented by
the beam model. Excluding the irreversible effects may leads to wrong estimation of the
reversible effects (Amberg, 2009). The sampling of the parameters of irreversible effects
in the MCMC procedure is an option. Because this may minimise a potential abnormal
behaviour, the parameter estimates might be misleading. Thus, the following two-step
procedure is proposed:

1. Evaluation of the model at a number of chosen levels nlev with the sampled paramet-
ers q and calculation of the adjusted behaviour indicators at those levels Madj,lev =

Mlev �dh,lev �dT,lev.
2. Use of a spline approach to separate the irreversible effects dt,lev and the residuals

e that can be used as basis for the likelihood function at each level.

The residuals correspond to the noise of the model that has to be minimised. The separ-
ation of the irreversible effects and the residuals was done by using a GAM model (see
Section 5.5 for details). In Fig. 5.5a and b, histograms of the residuals resulting from the
two different parameter sets q1 and q2 are shown exemplarily. It can be recognised that
the parameter set q2 leads to smaller residuals. Applying a kernel density estimation leads
to the probability density functions (PDF) shown in Fig. 5.5c and d. The likelihood e = 0
can be obtained from the PDF. For the two parameter sets, this is shown by the vertical
red line in Fig. 5.5c and d. L (y = M|q1) is around 0.2, while L (y = M|q2) is around
0.6.
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Fig. 5.5 Histogram of residuals from the two different parameter sets a) q1 and b) q2; c)
and d) corresponding probability density functions.

The goal of the multi-objective calibration is to reduce the residuals on all levels sim-
ultaneously. Thus, the sum of the likelihood e = 0 of all levels is maximised. By this
procedure, the different levels are implicitly treated with the same weights.

5.3.2.4 Sampling procedure

The sampling of the parameters is performed by the DE-MCMC algorithm of Braak
(2006) described in Section 2.4.5. By using 16 parallel chains the calibration usually
converges within 500 to 2000 evaluations. For a gravity dam with calibration on five
levels, the calculation of one step with 16 chain needs around one second; a calculation
with 4000 steps therefore requires around one hour.

5.3.2.5 Most probable parameter values

From the Sampling procedure, the distributions of the individual parameters result. The
most probable parameter values can be determined by the joint probability distribution
obtained by a multidimensional kernel density estimation. This was performed by the
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“ks” package of Duong (2007) which is available in R. To reach a faster convergence, an
adaptive refinement of the parameter space was used.

5.3.3 Application to case studies

5.3.3.1 Introduction

The multi-objective calibration with the MCMC method is applied to the case studies of
the gravity dams G1 and G2 and the hollow gravity dam HG1. The goodness of fit and
the robustness of the results is estimated for the same calibrations periods as used in the
evaluation of the statistical models and the hybrid model. This allows for a comparison of
the results. Furthermore, the results of the MCMC models are used as a basis for a hybrid
model.

5.3.3.2 Methodology

The parameters q are chosen to be the Young’s moduli of concrete and rock that are used
to determine the two spring constants and the thermal expansion coefficient. Due to the
fact that the Poisson’s ratios have a minor effect to the results (see Section 5.2.6), they
are assumed to be constant, with n = 0.2. The MCMC simulations are performed with
16 parallel chains and 10’000 iteration steps each. A temperature of TMH = 0.02 is used,
which leads to reasonable acceptance rates.

For gravity dam G2, the operator provided data of material tests of the concrete. For
gravity dam G1 and HG1, no such information was available. Thus, the Young’s moduli
of concrete and rock were both set to E = 30 GPa. The thermal expansion coefficient aT

was set to 10�5 1/K. In Table 5.4, the prior information used for this analysis is summar-
ised. For the cases were no material tests are available, wider standard deviations of the
parameters are assumed. Since there is more uncertainty in the Young’s modulus of rock
Er, a wider distribution is assumed.

Table 5.4 Prior information of material parameters used for multi-objective calibration (mean
values with standard deviations in brackets).

dam Ec [GPa] Er,kV [GPa] Er,kM [GPa] aT ·105 [1/K]

G1 30 (±10) 30 (±30) 30 (±30) 1 (±0.5)

G2 26 (±5) 30 (±30) 30 (±30) 0.9 (±0.5)

G3 30 (±10) 30 (±30) 30 (±30) 1 (±0.5)

The calibration data are the same as in Section 4.5.2 which allows for comparison of the
results. After calibration, the adjusted behaviour indicator Madj is estimated. However,
due to the fact that Madj also contains the irreversible component, they cannot be directly
compared to the results of the MLR analysis, where a linear function of the time was
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considered for calibration. Nevertheless, the linear function reduces the RSE. Thus, an
MLR model Madj = b0 +b1 t is used to calculate residuals that can be used for compar-
ison. Based on these residuals, the RSE and the R2 are estimated. The robustness of
the method shall be estimated with respect to the estimated material parameters. Thus,
different parameter sets with k = 3 are estimated by MCMC to calculate the robustness
coefficient rc.

To show how appropriate the global material properties are for fitting the measurement
data on the different levels, the output was used to create locally calibrated hybrid MLR
models Madj = b0 +bhdh +bT dT +btt for each level. The coefficient estimates indicate
how good the model fits on the individual levels. For coefficient estimates close to 1,
it can be assumed that the material properties fit well. In addition, the goodness of fit
comparison with the multi-objective calibrated MCMC model indicates whether further
calibration might be useful.

5.3.3.3 Results

The resulting parameters of the nonlinear calibration using MCMC are summarised in
Table 5.5. In addition, the goodness of fit for the displacement at crest level was de-
termined. Compared to the hybrid model, the multi-objective calibrated MCMC model is
almost as good. The robustness is slightly worse for G1 and G2 and about the same for
HG1, compared to Table 5.3. Generally, the results are in good agreement when using
different calibration periods.

In Fig. 5.6, the prior and the posterior distributions and the correlation between the differ-
ent parameters are shown for gravity dam G2. Since the prior distribution of the Young’s
moduli of the rock was chosen very broad, it is almost not recognisable. Nevertheless, all
the parameters converged. Er,kM was estimated to be significantly lower than for Er,kV . As
expected from the analysis in Section 5.2.6, a negative correlation between Ec and Er,kM

is explored.

To evaluate the model performance, the output of the multi-objective calibrated beam
model was used to create hybrid models for the different levels. In Table 5.6, the good-
ness of fit of the multi-objective calibrated MCMC-model and the locally calibrated hy-
brid models are shown. The MCMC-calibration leads to a generally high goodness of fit
(R2 > 0.90) for all levels except the two lowermost levels of gravity dam G1 and hollow
gravity dam HG1. The hybrid models show a slightly better goodness of fit. The main
improvement of using hybrid models is on the lower levels where the RSE are already
small. This is highlighted by the coefficient estimates bh and bT that are close to 1.
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Table 5.5 Posterior information about material parameters resulting from nonlinear calibration
using MCMC. Additionally, the goodness of fit parameters were estimated based on
residuals by using an MLR model Madj = b0 +b1 t.

dam Ec [GPa] Er,kV [GPa] Er,kM [GPa] aT ·105 [1/K] RSE [mm] R2 [-] rc [-]

G1 31.21 46.81 34.00 0.948 0.49 0.964 0.939

G2 24.26 22.82 13.08 1.26 0.68 0.970 0.969

HG1 32.13 50.78 37.65 0.55 0.58 0.965 0.995
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Fig. 5.6 Result of the MCMC analysis of gravity dam G2. The dashed blue lines correspond to
the prior distribution and the solid red lines to the posterior distribution of the parameters
q . The blue points show the correlation between the individual parameters. In addition,
the correlation coefficient is given on the top right part.
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Table 5.6 Goodness of fit of the multi-objective calibrated MCMC model and the locally
calibrated hybrid MLR models. In addition, the estimated regression coefficients bh
and bT of the hybrid models are given.

dam level multi-objective calibrated MCMC locally calibrated hybrid MLR

RSE [mm] R2 [-] bh [-] bT [-] RSE [-] R2 [-]

G1

301 0.49 0.964 1.11 0.94 0.46 0.969

288 0.34 0.946 1.01 1.06 0.34 0.948

270 0.21 0.916 0.95 1.10 0.21 0.921

249 0.15 0.775 0.80 1.13 0.13 0.835

238 0.12 0.33 0.86 0.79 0.07 0.759

G2

289 0.68 0.970 1.08 1.03 0.62 0.975

277 0.48 0.976 1.04 1.05 0.47 0.978

250 0.30 0.968 0.97 1.31 0.25 0.978

223 0.16 0.935 0.97 0 0.16 0.935

HG1

302 0.58 0.965 0.92 1.06 0.512 0.972

289 0.36 0.966 0.90 1.00 0.32 0.972

279 0.37 0.574 0.66 0.50 0.18 0.905

223 0.16 -0.114 0.48 0.43 0.07 0.782

5.3.4 Discussion

The multi-objective calibration was successfully applied to two gravity- and one hollow
gravity dams. The convergence of the MCMC-algorithm was good and, leading to robust
results. This was shown by the use of different calibration periods (k = 3 folds) resulting
in robustness coefficients of rc � 0.94. The goodness of fit has been elevated for several
levels. Only for the levels close to the bottom deviations occur, because the beam model
is limited to 1D-processes. Since the measured displacements are generally small at these
levels, a proper behaviour analysis is however possible. The use of the output data for
hybrid models only slightly improves the goodness of fit. Moreover, the excellence of
having a model that can describe the displacement with only four parameters is lost when
creating hybrid models. Nevertheless, the coefficient magnitudes of hybrid models can be
a good control instrument to check the performance of the multi-objective calibration. If
they are close to 1, the physical assumption is verified.

5.4 Arch-cantilever-model for arch dams

5.4.1 Introduction

Similar to the beam model for gravity dams, a structural model can be used to create
physical influence functions for arch dams. For the latter, FE-models are popular but
also elaborate to set up. Alternatively, a simplified beam model in the form of an arch
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cantilever model can be used. The goal of this work was to develop a general applicable
model that can be used for different structures. FE-models have to be set up individually
for each structure. Thus, an arch cantilever model was developed and implemented. After
the description of the model, the discretisation and the shape of the influence functions is
discussed. Afterwards, the model is applied in a case study to the arch dams A1 and A2.

5.4.2 Model description

5.4.2.1 Definition of geometry

The geometry of the arch dam is described by the shape of n arches on different levels
and m cantilevers that are defined by the shape of the arches and additional parameters. A
three-dimensional coordinate system with the y-axis in the direction of the arch dam axis
is introduced (Fig. 5.7).

crest level
arch 1

arch ...
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arch ...

arch n

abutment level

b)a)

x

y
z

y

z
x

S

xcxl xr

β(xc)

S

tc,i(x) y(x), y’(x)
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tcr

Pi1

P...

Pij
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tc,j(z)

kN, kM kN, kM

kV, kM

Fig. 5.7 a) Geometry of an arch; b) geometry of a cantilever at section S�S.

The axis of the arches is defined by a function y(x) (Fig. 5.7a). This function must be
continuous but it can consist of three-centre curves that do not need to have the same
derivative y0(x) at the intersection point. Therefore, the derivative function of the axis
y0(x) must be provided as well. In addition, the thickness of the arches can be defined by
an arbitrary function tc,i(x). The arch height ha, j is assumed to be constant over the length
of each arch. The numbering of the arches was selected from the top arch 1 to the bottom
arch n (Fig. 5.8).

The shape of the cantilevers is given by a cross section S-S through the arches (Fig. 5.7a).
The direction of the cross section at the cantilever location xc is assumed to be orthogonal
to the slope b (xc) of the top arch at location xc. The cross section defines a polygonal
line from the intersection point Pi1 of arch 1 to the intersection point Pin of arch n. This
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polygonal line is completed with a line segment connecting arch 1 and the crest level and
another one connecting arch n and the abutment level. The inclinations of the boundary
segments are assumed to be the same as for their neighbouring segments. The thickness of
the cantilever beams tc,i(z) is linearly interpolated between the thickness of the arches at
the intersection points. Additionally, the thickness at the crest level tcr and at the abutment
level ta must be provided. The width Bc,i of the cantilevers is supposed to be constant.

The arches and the cantilevers form a grillage, also called arch-cantilever-model, which
can be used as an approximate static model for an arch dam. In Fig. 5.8 it is visualised
how the geometry of an arch dam can be discretised into a grillage model with n arches
and m cantilevers.

b)a)

c)

1 ... ...i m

1

...

j

...

n

ha,j

Bc,i

Fig. 5.8 Discretisation of an arch dam in n arches and m cantilevers; a) frontal view; b) cross
section; c) plan view.

5.4.2.2 Supports

The supports of the model are assumed to be elastic in some directions. For the arches,
elastic supports for the resulting normal force and the bending moment around the z-axis
are considered. Since they are of minor importance, the other supports are modelled as
being fixed. An estimate for the elastic constants can be obtained by the equations of Vogt
(see Section 2.2.2.4). For the cantilevers, the elastic deformation due to a shear force in
y-direction and a bending moment around the local x-axis is considered.

5.4.2.3 Statics

The linear elastic calculation of a grillage is done by distributing the load (e.g. water
load) to the arches and cantilevers so that the compatibility condition at the intersection
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points is satisfied. There are six compatibility conditions in total, three displacements
(dx, dy, dz) and three rotations (rx, ry, rz). From an application point of view, only some
of them are satisfied (Schleiss and Pougatsch, 2011). The higher the number of satisfied
compatibility conditions, the higher the accuracy and the calculation time. For a grillage
with nc = 20 intersection points (as in Fig. 5.8), the number of displacements that need
to be calculated is (20 ·1)2 = 400 for one compatibility condition and (20 ·6)2 = 140400
for all six conditions. Consequently, the number of integrations increases with n2

c . In
the following, the calculation method of the deformation of the arches and the cantilevers
is presented. Additionally, it is shown how the load distribution on the grillage can be
calculated by the compatibility condition.

Arches

For a three-dimensional arch, there are six support loads at each arch abutment (Fig. 5.9a).
Therefore, the degree of statically indeterminacy is r = 6. Thus, the force method is ap-
plied (see Section 2.2.3.2) to calculate the displacement of the arches. To have a statically
determinate system, the six supporting loads at the right abutment are removed and re-
placed by the redundant variables X1 to X6 (Fig. 5.9b).
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Fig. 5.9 Static system of arches; a) statically indeterminate system with 12 support forces;
b) statically determinate system with six support forces and six redundant variables
X1 to X6 for the application of the force method.

The considered loads are shown in Fig. 5.10. The water pressure pw is supposed to be
orthogonal to the arch axis. The thermal loads due to the mean temperature Tm and the
temperature difference Td are assumed to be constant along the arch axis. In addition to
these loads, point loads F in all six directions can be considered.
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x

y
z

F
pw Tm Td

Fig. 5.10 Loads acting on arch: water pressure pw, mean temperature Tm, temperature difference
Td and point load F .

To calculate the deformation due to a load F at a certain location, the force method can
be applied. In doing so, the support forces and the stress resultants due to the redundant
variables and the load F have to be calculated with the statically determinate system.
For calculation, the functions of the stress resultants due to all six redundant variables
and the loads described above are presented in Appendix A.1.2. With the use of these
stress resultants, the displacement matrix Di j of the redundant variables and the vector of
deformations di0 due to the considered load can be calculated. This is done by the use of
the work theorem (Eq. (2.17)). Then, Eq.(2.18) can be applied to calculate the redundant
variables. The deformation is calculated by applying the work theorem again and using a
virtual force Xj = 1 at the position and in the direction of the deformation of interest.

Cantilevers

Because the cantilevers are statically determinate, the stress resultants can be derived by
the equilibrium condition. This has to be done for point loads in all six directions (see
Fig. 5.11). The functions for other load cases do not need to be known because the load
is given to the arches in the arch-cantilever-model. With the obtained stress resultants and
the use of the work theorem (Eq. (2.17)), the displacement can be calculated.

y’
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x’

F

RF,y’

RM,z

RM,x’

RM,y’

RF,x’

RF,z

Fig. 5.11 Static system of cantilevers.
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Grillage

The arches and cantilevers that are described above can be used to describe a grillage as
a simplified static system of an arch dam. The procedure is described in Section 2.2.3.3.
The unit loads are introduced at the intersection points Pi j. Then the deformations of the
arches and the cantilevers due to the unit loads are calculated and stored in the grillage
matrix DG. With the use of the inverse D�1

G , the load distribution for different load cases
can be estimated using the inversion of Eq. (2.20).

5.4.3 Implementation

As for the beam model for gravity dams, the arch-cantilever model was also implemented
in the form of an R package (R Core Team, 2013). The model is set up by specification
of the arches, the cantilevers, the arch dam and the different types of forces. To minimise
the errors in the code, the results were compared to the commercial frame statics software
STATIK-6 (Cubus AG, 2014b). A good agreement is obtained except for the calculation
of the rotations, where STATIK-6 uses a simplified approach.

The calculation of the deformation consists of two steps. First, influence functions for the
different load cases are generated. In the second step, the influence functions are used to
calculate the deformation by the principle of superposition which is a common procedure
in linear elastic statics.

The influence functions can be created for the deformation at a certain location in a certain
direction. In dam behaviour analysis, this is commonly the displacement in radial direc-
tion at crest level which is measured by a pendulum. Here, the load (water pressure and
temperature) is given to the arches. Therefore, an influence function for every load case
and every arch has to be determined. In other words, the influence functions contain the
information of how much the deformation changes when the arch is loaded by 1 N/m2 of
water pressure or 1 °C change of the mean temperature Tm or the temperature difference
Td .

In the second step, the measurement values and the influence functions are used to calcu-
late the deformation. Since the thermal information is not available on every arch level, it
must be interpolated. This is done by the method presented in Schnitter (1969) or Bremen
and Bianchi (2000) (Fig. 5.12).
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a) b) c)

y

z
x

arch levels

temp. sensors

ha,j

Fig. 5.12 Interpolation of the temperature at different arch levels a) cross-section with arch levels
that are different from temperature sensor levels b) linear interpolation of temperature
information between the different sensor levels c) constant temperature for the different
arches (adapted from Bremen and Bianchi (2000)).

The numerical integration is done with a Riemann middle sum. The arch-cantilever-
model is discretised by choosing a number of arches and cantilevers. The arches and
the cantilevers are divided in elements dli, j of same size between different intersection
points (Fig. 5.13). Thus, the element length may vary over the arches and the cantilevers.
The influence of the discretisation is discussed in Section 5.4.5. Ideally, the width of the
cantilevers is about the height of the arches.

x

y

z
Pi1

Pi2
Pi3

dl1,2
dl1,2

dl1,2 dl2,3
dl2,3

dl2,3

Fig. 5.13 Discretisation in elements dli, j. Since the element boundaries are set to the intersection
nodes Pi, j, the elements can have different sizes over the arches or cantilevers.

The workflow can be summarised by the following steps:

1. Choose a number of arches

2. Determine number of cantilevers that Bc ⇠ (1÷2)ha, j

3. Define geometrical functions for arches (y(x), y0(x) and tc(x))

4. Set up arch-cantilever model

5. Create influences functions for certain locations and directions (integr.)

6. Interpolate and extrapolate temperature measurements

7. Multiply influence functions with measured loads and material properties
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8. Sum up the individual deformations to the total deformation

5.4.4 Influence functions of arch dams A1 and A2

In Fig. 5.14, influence functions for the radial deformation at the crest level in the cent-
ral sections of the arch dams A1 and A2 are shown. The influence of the two different
geometries is visible when comparing the two dams. The arch dam A1 (Lcr/H = 1.2)
reacts stiffer to a change in the water level nearby the crest level than arch dam A2
(Lcr/H = 3.1). For the mean temperature Tm with regard to arch dam A1, especially
the temperature in the upper part of the dam influences the displacement. For the arch
dam A2 a linear increase of the influence from the bottom to the top level is observed. In
addition, the influence of the temperature difference Td is more than one order of mag-
nitude smaller than the one of Tm for both dams. This displacement depends mainly on
the stiffness of the elastic abutment. For a fixed abutment, no deformation but only re-
sidual stresses occur. Furthermore, the direction of the deformation due to Td depends on
the dam geometry. For arch dam A1, a positive temperature difference leads to a positive
displacement whereas for arch dam A2 a negative displacement results.
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Fig. 5.14 Influence functions for the deformation in radial direction at crest level in the central
section: a) dh; b) dT m and c) dT d for arch dam A1; d) dh; e) dT m and f) dT d for arch dam
A2.

As for the gravity dams, the influence of varying material properties is analysed. In
Fig. 5.15, the influence functions for the varying material parameters are presented for
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the displacement at crest level in radial direction for arch dam A1. They are shown sep-
arately for the displacements due to the water level dh (left), the mean temperature d T m

(middle) and the temperature difference d T d (right). A change in the Young’s modulus
of concrete Ec (Fig. 5.15a), leads to variation of dh and dT d . As for the gravity dams, the
Poisson’s ratio of concrete nc does not significantly influence the result (Fig. 5.15b). In
Fig.5.15c - f, the Young’s modulus of rock Er, which defines the spring constants at the
abutments, is varied. A varying spring constant kN of the arches has a large influence on
dh and a moderate influence on the two temperature loads, whereas, the spring constant
kM of the arches only influences dT d . For the case of the arch dam A1 that is located
in a narrow valley, the spring constants of the cantilevers do not influence the displace-
ment at crest level. The thermal expansion coefficient of concrete aT linearly influences
the displacement due to the two temperatures but not due to the water level. Hence, the
temperature displacement is mainly influenced by aT and slightly by the spring constant
due to the normal force at the arch abutments. The effects of the water level are mainly
influenced by the Young’s modulus of concrete and the spring constant due to the normal
force at the arch abutments.
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Fig. 5.15 Influence functions for radial displacement at crest level in central section of arch dam
A1; a) varying Ec; b) nc; c) - f) varying spring constants due to varying Er; g) varying
aT .
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5.4.5 Role of discretisation

The arch-cantilever-model consists of a discrete number of arches and cantilevers. The
number of arches may be limited to a few levels where a mathematical formulation of the
arch axis y(x) is available. Since the geometry of the cantilevers is defined by the arches,
there is no limitation in the number of cantilevers except the computational resources. In
Fig. 5.16, the influence of the discretisation is shown for the two dam sites A1 and A2.
The coarse model of arch dam A1 consists of 5 arches and 5 cantilevers and the fine model
of 8 arches and 9 cantilevers. For arch dam A2 there are 5 arches and 11 cantilevers for the
coarse model and 12 arches and 22 cantilevers for the fine model. For both arch dams, the
finer model is stiffer. Moreover, for arch dam A2 the influence of the mean temperature
on the top arches is slightly larger for the fine model. Moreover, the influence of the
temperature difference may heavily depend on the discretisation. This might be influenced
by the stiffness nearby the abutment that depends on the discretisation. The discretisation
affects the stiffnesses near the boundary. Resulting from a sensitivity analysis regarding
the maximal element length dlmax there are no significant changes in the result for a range
0.5 m  dlmax  5 m. For further analysis, dlmax = 2 m, which is on the safe side, was
chosen.
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Fig. 5.16 Influence functions for the deformation in radial direction at crest level in the main
section for a coarse (dashed line) and a fine (solid line) discretisation: a) dh; b) dT m and
c) dT d for arch dam A1; d) dh; e) dT m and f) dT d for arch dam A2.
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5.4.6 Compatibility conditions

In a next step, the influence of the number of satisfied compatibility conditions is analysed
for arch dam A2. In doing so, (i) all six compatibility conditions (dx, dy, dz, rx, ry, rz),
(ii) only the displacements (dx, dy, dz) and (iii) only the displacement in radial direction
(dy) are considered. The resulting influence functions are shown in Fig. 5.17. For a rising
water level between 175 and 225 m a.s.l. the radial deformation at crest level is negative
for both one and three compatibility conditions whereas it is almost zero when considering
all six compatibility conditions. Regarding the temperature deformation, considering all
compatibility conditions leads to smaller displacements, especially for the temperature
difference Td .
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Fig. 5.17 Influence functions for radial displacement at crest level in main section of arch dam A2
for a different number of considered compatibility conditions; a) dh; b) dT m and c) dT d .

5.4.7 Input data for hybrid MLR model

5.4.7.1 Introduction

For the case studies of the arch dams A1 and A2, the output of the arch-cantilever-model
described in Section 5.4.2 is used as input data for a hybrid DBA model. The results are
compared to the models from the literature. The hybrid models are evaluated by the same
procedure as described in Section 5.2.7.3.

In addition, an arch-cantilever-model was set up for arch dam A3. Unfortunately, there
is no mathematical description of the arch axes available. Thus, the geometry had to be
interpolated from provided drawings. The resulting model did not result in a linear rela-
tionship as for the arch dams A1 and A2 and the approximate description of the geometry
did not lead to useful results. Thus, this model is no longer used here. A possible reason
might be that the available 1:1000 drawings were not precise enough.

5.4.7.2 Material properties

As for the evaluation of the beam models for gravity dams, the output is generated with
two different parameter sets: (i) with parameter obtained by material tests or known values
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from literature and (ii) and with material parameters estimated by single-objective MCMC
calibration where the displacement at crest level in the central section was calibrated. The
material parameters for the analysed arch dams are shown in Table 5.7. Instead of the
spring constant the Young’s modulus of rock Er is provided because it is a more intuitive
number. For its estimation, the Poisson’s ratio of rock and the equations of Vogt (see
Section 2.2.2.4) are used. The spring constants are assumed to be different for the arches
and the cantilevers.

Table 5.7 Material parameters used as input data for the arch-cantilever models. Two parameter
sets are used for each dam: (i) uncalibrated and (ii) nonlinear calibrated with
single-objective MCMC.

dam calib. Ec [GPa] Er,kN,A [GPa] Er,kM,A [GPa] Er,kV,C [GPa] Er,kM,C [GPa] aT [1/K]

A1
no 27 11 11 11 11 10�5

yes 34.18 45.3 20.8 62.8 26.2 1.38·10�5

A2
no 28 15 15 15 15 10�5

yes 30.6 39.2 17.7 12.2 16.8 1.46·10�5

5.4.7.3 Results

The results of the model evaluation are shown in Table 5.8. As for gravity dams, there is
not a large difference in the goodness of fit, the prediction accuracy and the robustness
when comparing the models with uncalibrated and calibrated material parameters. As
expected, the regression coefficients of the calibrated model are close to one.

The robustness coefficient rc is around 0.99 for both models, indicateing very robust mod-
els. Compared to the statistical models evaluated in Chapter 4, this is slightly better. The
maximal V IF values of the models (V IFmax) are very low and indicate no multicollinear-
ity. The goodness of fit of the hybrid model is not as good as for the statistical models
for both arch dams. For arch dam A1 the RSE is 0.19 mm and for arch dam A2 2.23 mm
higher, respectively.

Table 5.8 Evaluation of hybrid model for arch dams A1 and A2: goodness of fit (RSE and R2),
prediction accuracy (RMSPECV and R2

CV ) and robustness coefficient rc. Additionally,
the maximal V IF is provided.

dam calib. RSE [mm] R2 [-] RMSPECV [mm] R2
CV [-] rc [-] V IFmax[-]

A1
no 0.60 0.978 0.59 0.971 0.993 1.09

yes 0.60 0.977 0.59 0.971 0.993 1.09

A2
no 3.67 0.975 3.28 0.975 0.998 1.81

yes 3.76 0.974 3.35 0.974 0.998 1.81
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5.4.7.4 Linear assumption

The assumption of a linear relationship between the residuals and the corresponding dis-
placement is checked by a partial residuals plot of the hybrid models of the arch dams A1
and A2 (Fig. 5.18). Generally, the linear assumption is satisfied well. This can be verified
by the smoothing (solid green line, LOESS with a = 0.3) that well expresses the linear
relationship (dashed red line). Regarding arch dam A2, the linear relationship deviates
for low displacements dh. The origin of this deviation lies in the change of the structural
behaviour for low reservoir levels. The arching effect is no longer active since the joints
between the blocks are open.
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Fig. 5.18 Partial residuals plot for hybrid arch dam models; A1: effect off a) water level and
b) temperature; A2: effect of c) water level and d) temperature.

5.4.7.5 Discussion

As for the hybrid model for gravity dams, the two material parameter sets (calibrated
and uncalibrated) lead to the same goodness of fit and prediction accuracy but different
regression coefficients. The analysis of the influence functions (Section 5.4.4) has shown
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that the influence of the water level is mainly dominated by the Young’s modulus of
concrete Ec and the spring constant in normal direction of the arches. The displacement
due to the temperature distribution in turn is mainly influenced by the thermal expansion
coefficient aT and moderately by the spring constant in normal direction of the arches.
As a consequence, a change in the regression coefficient for the effects of the water level
mainly results in a change of Ec and kN , while a change in the regression coefficient of
the temperature results in a change of aT .

The nonlinear calibration of the arch-cantilever-model with the MCMC method is time-
consuming and convergence cannot always be reached. Fortunately, this can be avoided
without any drawbacks when using the output data of the arch-cantilever model as input
data of a hybrid model.

The goodness of fit of the hybrid models is not as good as for the statistical models from
the literature applied in Section 4.5.2. For arch dam A1, the RSE is about 0.2 mm lower,
which is not much. However, for arch dam A2 the difference in the RSE is around 2.2 mm,
which is twice as large as for the statistical models. The main part of this difference is
due to the polynomial of third order used in the statistical models. If a mixed model
with a polynomial third order for the effects of the water level and the output of the arch-
cantilever model for the temperature effects is used, the RSE will decrease to 2.17 mm.
This is still around 0.5 mm higher than for the statistical models. Nevertheless, the mixed
and the hybrid model are more robust than the statistical models and multicollinearity
does no longer occur. Thus, its application might be reasonable despite of a higher RSE.
In Section 5.5, a mixed GAM model is presented.

5.4.8 Multi-objective calibration

As for the gravity dams, multi-objective calibration with the Markov Chain Monte Carlo
method of the arch-cantilever model is performed. In doing so, different objectives were
combined: (i) the radial displacement on several levels of a single pendulum, (ii) the
radial and tangential displacement on several levels of a single pendulum, (iii) the radial
displacement on several levels of all pendulums and (iv) the radial and tangential displace-
ment on several levels of all pendulums. Especially for the simultaneous calibration of
several pendulums, the convergence was bad. The reason for this can be found in the res-
ults of the single pendulum calibrations where the convergence was generally good. For
different pendulums, different material properties and especially spring constants at the
abutments result. This indicates that the stiffness of the foundation is different on differ-
ent locations and it is not possible to use global values for such complex static systems as
arch dams. Moreover, the calculation time of a multi objective calibration of an arch dam
takes around two days. This seems not acceptable for practical applications. Therefore,
the multi-objective calibration of the arch-cantilever-model is not recommended.
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5.5 Generalized Additive Models

5.5.1 Introduction

When applying MLR for dam behaviour analysis models, the acting influence parameters
are known but the shape of the relationship between these and their effects may not.
Thus, variable selection procedures to determine the order of the polynomial function
to represent the effects of the water level, the order of a seasonal function or the type
of the function to represent irreversible effects are required. This can be overcome by
Generalized Additive Models (GAM) that describe the relation between the predictor
variables and the response by smoothed spline functions (for details see Section 2.4.4).

The potential of GAM models is exemplified by the displacement at crest level in the
central section of arch dam A2. The hybrid model that was used to model the displace-
ment at crest level in radial direction has shown deviations from the linear relationship
for low reservoir levels where the joints between the blocks are open. Furthermore, the
irreversible displacement shows a nonlinear trend. Since the shape of these relations is
not known in advance, GAM models are a suitable approach to tackle this problem.

5.5.2 Methodology

For the purpose of comparison, the same data as for the models evaluated in Chapter 4
were used. Since the effects of the temperature show a linear progress in the MLR models,
they are considered by linear functions. Furthermore, two temperature models were used:
(i) a mixed model with the output of the beam model:

P(h,dT , t) = b0 + s(h)+b1 dT + s(t), (5.7)

and (ii) the HTTDT mDT d model as representative of the statistical models:

P(h,T, t) = b0 + s(h)+b1 sin(S)+b2 cos(S)+b3 sin(2S)+ (5.8)

+b4 DTm,1929 +b5 DTd,1929 +b6 DTd,1911 +b7 DTd,1881

+s(t).

In Eq. (5.8) the subscripts of the temperatures indicate the measurement levels.

5.5.3 Results

The resulting shape functions to represent the effects of the water level h of the two GAM
models and of the hybrid MLR model from Section 5.4.7 are shown in Fig. 5.19. The
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shape functions of the arch-cantilever-model and the GAM models diverge below 210
m a.s.l. This is the level where the joint opening was observed in an FE-analysis by
the operator. Thus, the GAM model seems to be appropriate to find the change in the
structural behaviour due to joint opening and closing.
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Fig. 5.19 Resulting shape functions for the influence of the water level h for the hybrid MLR, the
mixed GAM and the HSTTDT mDT d GAM models of arch dam A2.

In Table 5.9, the goodness of fit estimators, the prediction accuracy and the robustness
coefficients of the two GAM models are given. The goodness of fit measured by the
RSE of the mixed model is about 0.5 mm larger than for the statistical models evaluated
in Chapter 4. Nevertheless, the R2 of 0.992 is quite high, meaning that 99.2% of the
pendulum variance is explained by the model. The RSE of the HTTDT mDT d model is
1.56 mm, which is slightly better than the MLR model (see Table 4.6). However, the
prediction accuracy and the robustness are slightly lower than for the MLR model.

Table 5.9 Evaluation of GAM models for arch dam A2: goodness of fit (RSE and R2), prediction
accuracy (RMSPECV and R2

CV ) and robustness coefficient rc

model RSE [mm] R2 [-] RMSPECV [mm] R2
CV [-] rc [-]

mixed 2.23 0.992 2.47 0.985 0.983

HTTDT mDT d 1.56 0.996 2.00 0.986 0.965

5.5.4 Discussion
The use of GAM allows to consider nonlinear relations, as exemplarily shown for the
effects of the water level of arch dam A2. The goodness of fit and the robustness of the
GAM models can be compared to the MLR models. Unfortunately, the relationship mod-
elled by splines is fully statistical, not physically-based. Besides the use as a model for
prediction, GAM are a nice tool for inference. The application of GAM is fast and leads to
a result that shows the shape of the relationships, what may help to detect nonlinearities.
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5.6 Range of calibration data

5.6.1 Introduction

The state-of-the-art procedure in dam behaviour analysis is the observation-prediction
comparison (e.g. Swiss Committee on Dams, 2003), where one part of the data is used
for calibration and the other for prediction. The evaluation of the behaviour is based on
the prediction errors for a corresponding prediction interval. In Section 4.3 it is shown
that this can result in misleading interpretation. The adjusted behaviour indicator Madj

allows for more meaningful analysis. The robustness of the resulting Madj can be ex-
pressed by the newly introduced robustness coefficient rc that was greater than 0.94 for
the investigated case studies. This means that the Madj do not vary much for different
calibration periods. As a consequence, all data can be used for model calibration; instead
of a predicted behaviour the adjusted behaviour indicator is analysed. This can be seen
as a paradigm shift from a statistical prediction problem to an inference problem where
the separated effects are analysed. In doing so, mainly the irreversible effects that are the
basis for the behaviour evaluation are of interest.

5.6.2 Case study

This new concept is shown for the case study of the radial displacement at crest level
in the main section of arch dam A2. The data between 1986, 10 years after the first
impounding, and 2016 are used for the analysis. Due to the construction works for a
new pumped storage power plant that started in 2009 the operation conditions changed.
The reservoir has been lowered each spring since 2009. The concept is applied to the
same models as evaluated in Section 4.5.2, the hybrid model based on the arch-cantilever
model and the mixed GAM model that is also based on the arch-cantilever-model. To
show the robustness of the results, rc is estimated with k = 3 folds for all of the models. In
addition, the adjusted behaviour indicator Madj is estimated for all three folds, (Fig. 5.20).
A difference between the different folds is hardly recognisable what is approved by the
large robustness coefficients rc.

Regarding the hybrid model, a high deviation can be recognised after 2009 when operation
conditions changed, i.e. the frequent reservoir lowering during the construction phase of
the new power plant. As explained in Section 5.4.7, regarding the effects of the water level
the hybrid model is not valid for low reservoir levels due to the change in the structural
behaviour (joint opening). Nevertheless, the analysis has shown that the resulting Madj

are congruent for both the data after 2009 included and excluded in the calibration data.
This underlines the robustness of this approach.



5.6 Range of calibration data 189

−1
5

15
HST (rc = 0.982)

−1
5

15

HSTTVerbund (rc = 0.983)

−1
5

15

HSTTedf (rc = 0.982)

−1
5

15

HTTdirect (rc = 0.944)

−1
5

15

HTTTm,Td (rc = 0.977)

−1
5

15

HTTPC (rc = 0.989)

−1
5

15

HSTTΔTm,ΔTd (rc = 0.971)

−1
5

15

hybrid (rc = 0.997)

−1
5

15

mixed GAM (rc = 0.980)

86 88 90 92 94 96 98 00 02 04 06 08 10 12 14 16
year

M
ad
j 

[m
m

]

Fig. 5.20 Adjusted behaviour indicator Madj for the displacement in radial direction at crest level
in central section of arch dam A2 for different models. To show the robustness of the
models, Madj were estimated for different calibration periods (k = 3 folds) and for a
reference period with all data from 1986 - 2016. The four different Madj are all shown
in the plot but a difference is almost not recognisable due to the high robustness
(therefore a legend is not provided).

5.6.3 Discussion

The concept of using all data to calibrate the model was applied to arch dam A2. Although
the operation conditions changed in 2009, the model results are very robust. The advant-
age of using all data is that no longer extrapolations, e.g. for lowering the water level or
unusual temperature conditions, are present. In addition, the more data are available for
the coefficient estimation, the more accurate they are. Nevertheless, the robustness of the
model should always be verified by calculating rc.
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5.7 Summary

The physically-based beam models lead to robust hybrid models that do not suffer from
multicollinearity. For arch dams, the output of the arch-cantilever-model can be used to
produce shape functions that can be statistically adjusted. For a good model, a correct
mathematical description of the arch geometry should be available. By the use of partial
residuals plots it can be checked, if the linear relationship between the model output and
the response is violated. The material parameters, which are mainly the Young’s mod-
uli of concrete and rock, the corresponding Poisson’s ratios and the thermal expansion
coefficient of concrete, can be taken from laboratory tests or literature. For the spring
constants at the abutments the method of Vogt, described in USBR (1938), can be used.
The regression coefficient of the effects of the water level represent a correction of the
Young’s modulus of concrete and the spring constant in normal direction at the arch abut-
ments. The coefficient for the temperature displacement represents mainly a correction of
the thermal expansion coefficient of concrete. This is confirmed by Schnitter (1969).

The beam model for gravity dams can also be used to produce shape functions for hybrid
models. In addition, the beam model allows for a multi-objective calibration of the ma-
terial parameters where the measured displacement is simultaneously matched with the
model output on several levels. The calibration can be performed by using the Markov
Chain Monte Carlo (MCMC) algorithm that is based on Bayesian inference. This allows
to consider prior knowledge about the material parameters. MCMC does not only result
in the most probable parameter set but also provides their distribution and correlations.
When performing multi-objective calibration, only one set of physically meaningful para-
meters is calibrated for one block of a gravity dam. Based on three case studies, it can be
said that the correlation is good on several levels. This leads to simple models that allow
for comprehensible inference by engineering judgement. Moreover, due to the simultan-
eous analyses of the displacement at different levels, a potential abnormal behaviour can
be detected and correctly located. This is demonstrated by a case study in Section 6.4.

The analysis has shown that the models are very robust concerning the use of different
calibration periods. Based on the knowledge of the model robustness, a new concept
is introduced: Instead of using a data set for calibration and prediction, the use of all
available data for the model fitting is proposed. This avoids extrapolations and leads to
more precise coefficient estimates. This kind of analysis can be seen as an inference
problem where the different effects are evaluated and separated. The behaviour analysis
is done in a next step based on the adjusted behaviour indicator.

The relation between the influence parameters and the effects may be nonlinear. This
cannot be represented by an MLR model. In such situations, GAM are a valuable tool to
identify and model such relations.
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6 Proposed workflow and applications

6.1 Introduction

Based on the experience and the findings gained in the previous chapters, a workflow
for dam behaviour analysis is proposed. The workflow is summarised as a flow chart
(Fig. 6.1). Based on this flow chart, two case studies are treated. One is the analysis of
arch dam A2 and the other of gravity dam G1.

6.2 Proposed workflow

In Fig. 6.1, the flow chart of the proposed workflow to perform dam behaviour analysis for
the monitoring of the displacements of concrete dams is shown. In the following sections,
more details about the individual steps are given.

6.2.1 Pre-processing

6.2.1.1 Preliminary data analysis

Before a regression model is set up, it is highly recommended to do a visual analysis of
the data. These are (i) time series plots of the behaviour indicators and the environmental
conditions and (ii) correlation plots, e.g. between the measured displacement and the
water level. This gives an idea of the basic behaviour and outliers in the data may be
found. In a next step, outlier analysis based on history and correlation plots can be done
according to Lombardi (1992).

6.2.1.2 Temperature pre-processing

A thermal analysis can be carried out if concrete temperature measurements are available.
For a proper analysis, the thermometers should be located on different levels distributed
over the dam height. Ideally, two thermometers are placed nearby the upstream and down-
stream surfaces at each level and one or more in the centre of the dam. With such a
configuration, the thermal conductivity can be calibrated. If only two measurements are
available, the thermal conductivity can be taken from a neighbouring level or from the
literature. If there is only one thermometer at a level, or the outermost thermometers are
too far from the boundary (> 2.5 - 2.75 m), thermal analysis based on heat conduction is
not possible. The details and the proposed workflow can be found in Chapter 3.
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Fig. 6.1 Flow chart of the workflow for dam behaviour analysis for the monitoring of the
displacements of concrete dams.
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6.2.1.3 Prepare data set for statistical analysis

When heat conduction analysis is possible, the calculated mean temperature and the tem-
perature difference can be added to the data set. Obvious outliers should be removed from
the data. Basically, the readings are considered as individual data points that may have
individual measurement intervals. Thus, missing data and outliers do not have to be re-
placed by interpolated values for model calibration. Interpolation is only recommended,
if a model that is based on delayed effects (e.g. creep in Perner and Obernhuber (2009)),
is used. Furthermore, it may be useful to interpolate missing values for the behaviour
analysis that is performed after calibration. The goal is to have a proper data set without
any outliers and missing values that can be used for calibration.

6.2.2 Compare different models

In Chapter 4, different models have been evaluated. It could be shown that the perform-
ance of the models mainly depends on the structure and the corresponding data set and
less on the individual models. Therefore, it is recommended to compare the results of
different models, especially if no geometry data is available to set up a hybrid or mixed
model or where the physical models have a bad performance.

First of all, the variables for the chosen models have to be selected. This refers mainly
to the temperature approach since for the effect of the water level either the polynomial
approach or the output of a physical model is taken. The selection can be done by a best
subset selection with a cross-validation procedure for example. With the constraint of
V IF < 10, multicollinearity can be avoided. The resulting models should be checked for
adequacy. This means to check the linear assumption by a partial residuals plot, the pres-
ence of multicollinearity (also between the water level and the temperature) and whether
the estimated shape functions make sense.

Then, the different models can be compared with regard to the goodness of fit, the robust-
ness and the resulting adjusted behaviour indicator. Based on this, the appropriate model
for the behaviour analysis can be chosen.

6.2.3 Behaviour analysis

The behaviour analysis is supposed to be done based on the adjusted behaviour indicator.
The MLR procedure proposed in Section 4.4.2 and the corresponding algorithm described
in Section 4.4.3 help to identify changes in the behaviour. The latter can be shifts in the
data, changes in the drift or changes in the seasonal behaviour. Analysing the behaviour
at different locations of the dam may help to locate and identify abnormal behaviour.
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6.3 Case study of arch dam A2

6.3.1 Introduction

The case study of arch dam A2 is complex due to the construction works for the new
pumped storage power plant that started in 2009. This led to different operation con-
ditions, mainly the lowering of the reservoir every spring time, that is noticeable in the
measurement data. The main goal of this behaviour analysis is to verify if the construction
works lead to irreversible displacements.

6.3.2 Pre-processing

6.3.2.1 Preliminary data analysis

In Appendix A.7.1, the displacements in radial and tangential direction are shown for the
pendulum lines PII, PIII and PV. The largest displacements are measured at the top levels
in the central section (PIII) in radial direction. The two topmost levels have nearly the
same displacement. The change in the operation condition in 2009 is clearly visible. In
radial direction of pendulum PII, a trend towards the upstream direction can be identified.
In tangential direction, higher amplitudes are recognised after 2009. In addition, a slight
trend is recognisable in tangential direction of PIII. The data of the water level h and the
temperature T299,5, which is 0.50 m away from the downstream boundary, are shown in
Appendix A.5.4. The water level clearly shows the change in the operation mode after the
start of the construction works.

In Fig. 6.2, the correlation between the measured displacement and the water level h is
shown for the radial directions at crest level of PII and PIII. For both pendulums, the
effects of the temperature show a hysteresis. In addition, a difference between the differ-
ent periods is identifiable. Especially for PII, the trend into negative direction during the
recent years is visible. For PIII, there is no difference between the periods 2000 - 2008
and 2008 - 2016. In addition, the plausibility check according to Lombardi (1992) can
be performed for all temperature measurements. In Fig. 6.3, it is exemplarily shown for
the temperature measurements T1,203. To highlight unusual temperatures for the corres-
ponding season, a second order seasonal function was fitted to the data. In addition, a
95% prediction interval was created. The effect of the reservoir lowering on the concrete
temperature at the upstream surface is clearly visible. For example, the concrete temper-
ature T1,203 is significantly below the 95% prediction interval in February 2012 and 2013.
Furthermore, the analysis of the time series indicated that the thermometers T4,251 and
T4,203 might be damaged. Thus, they will not be used for thermal analysis. Moreover, the
time series of T1,251 ends in December 2013 because the thermometer failed afterwards.
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Fig. 6.2 Correlation between radial displacement at crest level and the water level h for
pendulums a) PII and b) PIII. The measurement period is split in five periods of
equivalent length indicated by different symbols.
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Fig. 6.3 Plausibility check according to Lombardi (1992). The temperature measurements T1,203
are plotted on the same axis for every year. To highlight unusual temperatures for the
corresponding season, a second order seasonal function was fitted to the data (solid black
line). In addition, the 95% prediction interval is shown (dashed black line).

6.3.2.2 Temperature pre-processing

Since temperature data at five levels are available, a thermal analysis is performed. The
data can be used to calibrate the thermal diffusivity a since there are more than two ther-
mometers on each level. The calibration can be done by following the procedure described
in Section 3.2. The resulting diffusivities and the difference between the measured and the
calculated inner temperatures in the form of the RMSE are given in Table 6.1. In addition,
the number of inner thermometers ni to calibrate a, the slab length L and the duration of
the estimated initial phase tI is given. The data before 1986 were not used to calibrate the
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thermal diffusivity since these temperatures might be influenced by hydration heat. The
comparison of the measurements and calculated temperatures used for the calibration of
the thermal diffusivity may help to detect any discrepancies in the data. For instance, if
T4,203, which was identified to be damaged in the preliminary data analysis, was used for
calibration, a difference becomes visible.

Table 6.1 Calibrated thermal diffusivity a for different levels. In addition, the RMSE of the
calibration, the number of thermometers available for the calibration ni, the slab length
L and the estimated duration of the initial phase tI are given.

level [m a.s.l.] a [m2/d] RMSE [°C] ni [-] L [m] tI [a]

299 0.278 1.48 3 9.80 2

281 0.135 1.36 3 14.29 4

251 0.100 0.96 3 17.63 4

203 0.122 0.35 4 21.19 4

158 0.168 0.51 4 28.80 4

Due to the failure of the boundary thermometer T1,251 after 2013, the calculation of the
mean temperature Tm and the temperature difference Td is performed in two steps. Firstly,
the data before 2013 are used to calibrate a and to calculate Tm and Td for this period.
Secondly, the whole data are used to calculate Tm and Td with T2,251 as upstream bound-
ary condition. The temperatures used for the further analysis are composed from the first
(before 2013) and the second (after 2013) calculation. This procedure was chosen, be-
cause the calculation of Tm and Td is more accurate the closer the thermometers lie next
to the boundary. Thus, more accurate results before 2013 were gained by this two-step
procedure. The resulting mean temperatures Tm and temperature differences Td are shown
in Fig. 6.4 for all levels. The amplitude of the resulting mean temperatures decreases with
elevation and vice-versa for the temperature differences. Especially at 251 m a.s.l., the
temperature seems to be influenced by the new operation conditions that are present due
to the construction works.

6.3.2.3 Preparation of data set for statistical analysis

There are a couple of dates for which no pendulum readings are available. These data
points are removed from the data set. Since delayed effects are not considered, this will
not influence the result. All data points are treated as individual samples in the MLR
analysis. The pre-processed mean temperatures and temperature differences are added to
the data set.
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Fig. 6.4 Mean temperatures Tm and temperature differences Td estimated by heat conduction
analysis.

6.3.3 Comparison of different models

In a first step, the performance of different DBA models is analysed. This is done based
on the displacement in radial direction at the crest level of pendulum PIII. The basic
requirement to set up a DBA model for displacement monitoring are measurements of the
water level h and the displacement itself. If no temperature measurements are available,
an HST model can be set up. Since there are air temperature measurements available in
the region of arch dam A2, an HST TVerbund or an HST Tedf model can be set up as well.
Due to the available concrete temperature measurements, HTTdir and HTTPC models are
also possible. Furthermore, the pre-processed mean and difference temperature can be
used to crate HTTT m,T d or HSTTDT m,DT d models. Finally, due to the description of the
geometry provided by the operator, an arch-cantilever model can be set up and used as
hybrid or mixed model. In the following, all these models are set up and compared.

The variables of the individual models are selected by the best subset selection procedure
based on a cross-validation with k = 10 folds. To avoid serious multicollinearity, the tem-
peratures are selected with the constraint V IFmax  10. The resulting models are checked
for adequacy. This is done by checking the linear assumptions by a partial residuals plot
and by checking the V IF values for the presence of multicollinearity. For the detection
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of multicollinearity between the water level and the temperature, Chebyshev polynomi-
als are used to represent the effects of the water level in the statistical models. The data
between 1986 and 2016 are used to calibrate the model. The data of the first 10 years
are not used, since it may be affected by hydration heat. The robustness of the model is
checked by the robustness coefficient rc.

In Table 6.2, the goodness of fit indicators RSE and R2, the maximal V IF values and the
coefficient of robustness rc are summarised. In addition, a plot of the resulting adjus-
ted behaviour indicator Madj is shown in Fig. 6.5. The trend is highlighted by a LOESS
smoother with a span of a = 0.1 (3 years). The progression is similar for all models. The
span of the RSE is about 2.4 to 3.6 mm. All of the models containing a seasonal function
have maximal V IF values of around 10, i.e. collinearity between the seasonal function
and the water level is detected. Furthermore, since the model is not used for prediction
purposes but for inference, this does not play a role. Although the effects of the water
level and the temperature cannot be separated properly due to this multicollinearity, they
correctly describe the total reversible displacement that is used to calculate the adjusted
behaviour indicator. This multicollinearity between the water level and the temperature
is not present in models that do not contain a seasonal function. Unfortunately, the coef-
ficient estimates of the HTTTm,Td and the HSTTDTm,DTd models do not correspond with
the expected physical behaviour. The HTTPC model performs quite well but inference is
not easy since data of all thermometers are contained in the principal components. The
simplest model is the hybrid model that only has a constant, one parameter for the ef-
fects of the water level, one for the effects of the temperature and a linear function to
represent the irreversible displacement. There is nearly no multicollinearity between the
different variables. Since this model is based on physics, inference by engineering know-
ledge is easier. Although the RSE is higher than for the other models, the hybrid model
has the best performance among the evaluated models and thus is taken for the behaviour
analysis.

Table 6.2 Goodness of fit (RSE and R2), maximal V IF and robustness coefficient rc for the
different models.

model RSE [mm] R2 [-] V IFmax [-] rc [-]

HST 3.06 0.984 9.76 0.982

HSTTVerbund 2.59 0.988 10.41 0.982

HSTTed f 2.36 0.990 10.42 0.982

HTTdir 2.84 0.986 3.07 0.988

HTTTm,Td 2.84 0.986 5.74 0.978

HTTPC 2.46 0.990 4.42 0.989

HSTTDTm,DTd 2.45 0.990 9.88 0.968

hybrid 3.55 0.970 1.80 0.997
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Fig. 6.5 Resulting adjusted behaviour indicator Madj (black). For a better recognition of the trend,
a LOESS smoother with a span of a = 0.1 (3 years) is shown (red).

6.3.4 Behaviour analysis

The output of the hybrid model is created for all pendulum measurements shown in Ap-
pendix A.7.1. This output is used to fit a hybrid model for each measured displacement,
resulting in 14 models in tangential and 14 models in radial direction of the dam. In Ap-
pendix A.7.2 the calculated displacements are shown separately for the water level and
the temperature. Since the temperature displacement is almost zero at some locations, it
can be skipped when setting up the hybrid model. The coefficient estimates of the hybrid
models are an indicator for the model accuracy. Moreover, there are models that do not
lead to physically meaningful coefficients, e.g. for the tangential displacement of PIII.
Because the variation of these displacement is small, the behaviour analysis will be done
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based on the raw displacement measurements. In Table 6.3, the estimated coefficients and
the goodness of fit indicators are given.

Table 6.3 Goodness of fit (RSE and R2), coefficient estimates bi and robustness coefficients rc for
the different hybrid models. In addition, the detected drift for the period after 2008 is
given.

model RSE [mm] R2 [-] bh [-] bT [-] rc [-] drift [mm/a]

rad

299 3.25 0.934 1.48 1.24 0.998 -1.17

PII

275 2.55 0.960 1.55 1.68 0.998 -1.00

254 1.82 0.977 1.57 2.22 0.998 -0.77

233 1.63 0.982 1.43 2.81 0.997 -0.51

191 - - - - - -0.69

tan

299 1.48 0.928 0.68 - 0.998 -

275 1.22 0.928 0.66 - 0.999 -

254 0.93 0.916 0.55 - 0.999 -

233 0.95 0.918 0.70 - 0.998 -

191 - - - - - -

PIII

rad

299 3.06 0.978 0.83 1.56 0.997 -0.17

275 3.12 0.978 0.87 1.76 0.995 -0.37

233 2.68 0.981 0.91 2.08 0.997 -0.73

191 1.82 0.979 0.92 2.37 0.996 -0.38

149 1.39 0.901 1.01 - 0.998 -

tan

299 - - - - - -0.36

275 - - - - - -0.27

233 - - - - - -0.28

191 - - - - - -0.13

149 - - - - - -0.10

PV

rad

299 1.02 0.939 0.65 1.51 0.995 -0.50

275 0.90 0.963 0.80 1.87 0.995 -0.30

233 1.18 0.929 0.97 - 0.997 -

191 - - - - - -

tan

299 1.32 0.936 0.75 - 0.999 -

275 1.33 0.921 0.94 - 0.999 -

233 0.85 0.916 0.90 - 0.998 -

191 - - - - - -

Based on these 28 hybrid models, the adjusted behaviour indicators are calculated and
used as a basis for the behaviour analysis. In contrast to the calibration of the models,
where the first 10 years of the measurement data of the dam lifetime were not used, all data
are used when calculating Madj. This leads to a complete picture of the dam for the whole
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lifetime. The MLR procedure described in Section 4.4.2 is used to search for behaviour
changes around 2008, when the construction works started. The estimated drifts are given
in Table 6.3. In Figs. 6.6 - 6.8, the resulting Madj and the behaviour changes found by the
MLR procedure are shown. For a better recognition of the behaviour changes, the scaling
of the y-axis is different for each pendulum. Pendulum PII shows a drift in upstream
radial direction but no drift in tangential direction. Pendulum PIII also shows a slight
drift in radial upstream direction after 2008. Compared to PII, the drift of PIII is smaller.
In addition, there is a slight drift in tangential direction towards the left abutment. Finally,
PV shows a drift in radial upstream direction but not in tangential direction.
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Fig. 6.6 Behaviour analysis for PII: a) radial and b) tangential displacement. The data points
where the water level was below 210 m a.s.l. (and open joints) are marked by blue dots.
The change in the trend starts around 2009.
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Fig. 6.7 Behaviour analysis for PIII: a) radial and b) tangential displacement. The data points
where the water level was below 210 m a.s.l. (and open joints) are marked by blue dots.
The radial and tangential displacement are affected by a very small trend as well. Both
start around 2009.
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Fig. 6.8 Behaviour analysis for PV: a) radial and b) tangential displacement. The data points
where the water level was below 210 m a.s.l. (and open joints) are marked by blue dots.
The radial and tangential displacement are affected by a very small trend as well. Both
start around 2009.

The analysis shows that a trend in upstream direction starts for all pendulums around
2009. In addition, pendulum PIII shows a trend in tangential direction. The arch-cantilever
model could be used to detect and quantify these behaviour changes. Some of the beha-
viour changes were already recognisable in the raw measurement data. But the trend in
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radial direction of PIII was hidden due to the fluctuation of the effects of the water level
and the temperature. In these situations, a DBA model in combination with the analysis
of the adjusted behaviour indicator helps to identify trends. The effects on the stress state
in the dam body and on dam safety must be analysed by deterministic models. With the
help of these, displacement limits for the irreversible displacements can be formulated
and checked by the DBA model in the future.

6.4 Case study of gravity dam G1

6.4.1 Introduction
The case study of gravity dam G1 shows the potential of a multi-objective calibration of
the beam model for gravity dams. Before multi-objective calibration is done, the pre-
processing of the data and the comparison of different models is performed. These steps
are not shown here, since they are similar as presented in the case study of arch dam A2.
As for arch dam A2, all available data are used to calibrate the model.

6.4.2 Calibration
As in Section 5.3.3, the Young’s moduli of concrete and rock are sampled and the Pois-
son’s ratios are assumed to be constant with n = 0.2. From the sampled Young’s modulus
of rock Er, the spring constants kV and kM are estimated with the Vogt’s method. The ra-
tio b/a of an equivalent foundation area was estimated to be 10. To consider independent
spring constants, two Young’s moduli Er are sampled, one for kV and one for kM. 16 par-
allel chains with 10’000 iteration steps are chosen for the MCMC algorithm. In addition,
a temperature of TMH = 0.02 was used, which lead to reasonable acceptance rates. The
likelihood function for the multi-objective calibration for the five levels is

L (y|q) = L (M301|q)L (M288|q)L (M270|q)L (M249|q)L (M238|q), (6.1)

and the prior information is considered by

p(q) = p(Ec)p(Er,kV )p(Er,kM)p(aT ). (6.2)

These equations are optimised by the MCMC algorithm as described in Section 2.4.5.3.

6.4.3 Convergence
The convergence is checked by the PSRF according to Brooks et al. (2011). In Fig. 6.9,
the PSRF is given for the different parameters. Convergence (PSRF < 1.1) is reached very
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fast. Since there are enough iteration steps, the burn-in period was set to iteration steps
1 - 2’500 which means that 7’500 samples are left for further analysis. The acceptance
rates of the individual chains are between 0.27 and 0.29, which is close to the target value
of 0.25 proposed by Gelman et al. (1996).
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Fig. 6.9 PSRF according to Brooks et al. (2011); Young’s moduli of a) concrete Ec b) rock due to
shear force Er,kV ; c) rock due to bending moment Er,kM; d) thermal expansion coefficient
of concrete aT .

6.4.4 Autocorrelation

In Fig. 6.10, the ACF-plots are shown for the individual chains of the different parameters.
The correlation structure of the sampling decreases in the first 40 lags. Thus, the sampled
data set is thinned out and only every 40th sampling parameter set q is taken to have
independent samples. This results in 187 independent parameter sets that can be used to
determine the joint probability distribution.
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Fig. 6.10 ACF functions for the individual chains; Young’s moduli of a) concrete Ec b) rock due
to shear force Er,kV ; c) rock due to bending moment Er,kM; d) thermal expansion
coefficient of concrete aT .

6.4.5 Resulting parameters

In Fig. 6.11, the prior distributions (blue dashed lines) and the posterior distributions (red
solid lines) are given for the different parameters. Altough the prior distributions were
chosen very broad, especially for the Young’s modulus of rock and the thermal expansion
coefficient, the parameters converge well. The distribution of Ec is smaller than those
of Er,i. This means that there is more uncertainty in the elastic abutment than in the
concrete properties. In addition, a slight negative correlation of r = �0.38 between Ec

and Er,kM was detected. Based on the MCMC samples, the joint probability function
can be determined, leading to Ec = 30.2 GPa, Er,kV = 48.8 GPa, Er,kM = 34.0 GPa. and
aT = 0.91 ·10�5 1/K.
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Fig. 6.11 Result of the MCMC calibration. The dashed blue lines correspond to the prior
distribution and the solid red lines to the posterior distribution of the parameters q . The
blue points show the correlation between them. In addition, the correlation coefficient
is given in the upper right part.

6.4.6 Robustness

Since all data are used for the model calibration, the robustness coefficient rc is evalu-
ated with k = 3 folds. Due to the multi-objective calibration, this is done for all levels.
The results of this analysis are shown in Table 6.4. The parameter estimation with the
MCMC algorithm leads to robust results on all levels. Hence, the model is suitable for a
simultaneous behaviour analysis on several levels.

Table 6.4 Robustness coefficient rc of the MCMC algorithm for different levels.

level [m a.s.l.] 301 288 270 249 238

rc 0.947 0.943 0.955 0.992 0.980
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6.4.7 Behaviour analysis

Based on the parameters resulting from Section 6.4.5, the displacement due to the effect
of the water level and the temperature is calculated for each level. Subsequently, the
adjusted behaviour indicator Madj is estimated. They are shown in Fig. 6.12 for all levels.
A shift in the data is clearly visible on the mid-levels. In addition, a drift at crest level
occurs.
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Fig. 6.12 Adjusted behaviour indicators resulting from the output of the multi-objective
calibrated beam model (black). In addition, the results of the MLR algorithm to search
behaviour changes are shown (red). On all levels except the bottom, a shift of around
0.5 mm is detected in summer 2008.

In a next step, the algorithm described in Section 4.4.3 was used to search for behaviour
changes in the form of shifts. In Table 6.5, the results of the MLR analysis are shown.
The algorithm detected a shift of around 0.5 mm at crest level in 2008. This shift was not
obvious and not visually recognisable. The size of the shift corresponds to the estimated
shift of the mid-level, which is also around 0.5 mm. Furthermore, there is no shift on the
bottom level in 2008. This leads to the conclusion that there might have been a damage of
the measurement equipment of the direct pendulum at 238 m a.s.l. in 2008. The operator
confirmed that there were maintenance works in the pendulum shaft at that time.
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Table 6.5 Results from MLR algorithm to search for behaviour changes.

level [m a.s.l.] drift [mm/a] shift [mm] shift date

301 -0.11 0.45 16.4.2008

288 -0.01 0.43 21.8.2008

270 0 0.56 21.8.2008

249 0 0.60 21.8.2008

238 0.01 -0.13 18.4.2005

6.4.8 Summary

This case study exemplarily shows the potential of using a beam model in combination
with multi-objective calibration based on Bayesian inference. Only one set of physically
meaningful parameters is calibrated for one block of a gravity dam. This leads to simple
models that allow for comprehensible inference by engineering judgement. Moreover,
due to the simultaneous analyses of the displacement on different levels, a potentially
abnormal behaviour can be detected and correctly located.
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7 Conclusions and outlook

7.1 Conclusions

In the scope of this thesis, existing models for analysing the behaviour of concrete dams
were systematically evaluated. Based on the gained findings, new approaches and models
were developed. One of the main problems stated by engineers who apply dam behaviour
analysis models is that the models are not robust in terms of using different calibration
periods. This makes the set-up and the interpretation of the models very difficult. The
main reason for a lack of model robustness was assumed to be the approach to represent
temperature effects. Usually, a large set of correlated measurements is available and a
subset has to be chosen.

There are two concepts to assess the behaviour of dams: (i) the observation-prediction
comparison, which is commonly used in Switzerland and (ii) the concept of the adjusted
behaviour indicator. A systematic analysis has shown that the robustness of the results
mainly depends on the choice of the concept but not on the temperature approach.

The behaviour analysis by the observation-prediction comparison is based on prediction.
A model is calibrated within a chosen calibration period and used to predict the displace-
ment based on environmental conditions measured in the prediction period. Then the
predicted displacements are compared to the corresponding measured displacements. In
doing so, not only the effects of the water level and the temperature but also the irrevers-
ible effects must be predicted. However, experience has shown that in most of the cases
the progress of the irreversible effects cannot be described by a simple mathematical func-
tion. As a consequence, predicting irreversible displacements likely leads to deviations
from the observed behaviour and the observation-prediction comparison indicates an ab-
normal behaviour. Moreover, the estimation of the irreversible effects may heavily depend
on the calibration period, which results in different and therefore not robust results.

In the concept of the adjusted behaviour indicator, the only purpose of the function to
represent the irreversible effects in the model is to reduce the error in the coefficients of
the reversible effects. If a trend is present in the measured displacement and no approach
to represent irreversible effect is used in the model, the estimates of the reversible ef-
fects might be disturbed. After the estimation of the coefficients of the water level and
the temperature, the reversible effects are subtracted from the measured displacement.
The resulting adjusted behaviour indicator contains the irreversible displacement overlaid
with the model errors. To quantify the robustness of the adjusted behaviour indicators
estimated for different calibration periods, a robustness coefficient rc is introduced. It ex-
presses the variability between the results for two different calibration periods compared
to the total variability. For most of the models analysed in this thesis, an rc > 0.9 was
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determined. This implies that the analysis based on the adjusted behaviour indicator is
very robust.

Another origin of instabilities is multicollinearity between the different predictor vari-
ables. This can be between different temperature variables themselves or between the
temperature and the water level if the reservoir is operated as seasonal storage. If multi-
collinearity is present, the model does not allow to calculate correct estimates and instabil-
ities occur when predicting situations for environmental conditions not used for calibra-
tion. The presence of multicollinearity can be easily detected by the variance influence
factor V IF . If multicollinearity is present, variables can either be omitted or special stat-
istical methods can be used. Ridge regression and principal component regression were
analysed in this thesis. Both of them did not allow to create more accurate and robust
results. Thus, it is recommended to remove variables until V IF < 10 is reached.

The most effective way to reduce multicollinearity is the use of physically-based hybrid
models that contain only few predictor variables. Two such models were developed and
evaluated in this thesis. The goal was to have simple models that can be applied in a
straightforward way. Thus, beam models that describe the structure of the dam in a sim-
plified way were used. These were (i) a beam model to approximate the deformation of
gravity and hollow gravity dams and (ii) an arch-cantilever model for the approximation
of the deformation of arch dams. In beam models, the deformation due to the influence of
the water level and the temperature are approximated by means of statics. Consequently,
the influence of the individual temperatures and the effect of the water level is defined by
the geometry and no variable selection has to be done. The resulting displacements can
be used as input data for hybrid models. A change in the coefficient of the water level
mainly corresponds to a different Young’s modulus of concrete and a change in the coef-
ficient of the temperature corresponds to a different thermal expansion coefficient. The
beam models were applied to different dams. The results were very robust (rc ⇡ 0.99) and
no multicollinearity was observed for all investigated dams.

Regarding gravity dams, the beam model was used for a multi-objective calibration, where
the measured displacements are simultaneously matched with the model output at several
levels. The calibration was performed by using Bayesian inference where prior inform-
ation about the material parameters can be considered. The Markov Chain Monte Carlo
method (MCMC) was used as optimisation algorithm. Since only one set of physically
meaningful parameters is calibrated for one block of a gravity dam, simple models that
allow for comprehensible inference by engineering judgement result. Moreover, due to
the simultaneous analyses of the displacement on different levels, a potentially abnor-
mal behaviour can be detected and correctly located. The multi-objective calibration was
also applied to the arch-cantilever model. Unfortunately, due to the global assumption of
stiffness and the spring constants, the convergence was not good.
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To create beam models, the temperature values which are physically relevant for the dis-
placements have to be known. These are the mean temperature and the linear temperature
difference between the upstream and the downstream dam faces. They can be obtained
by heat conduction analysis. Unfortunately, the measurement sensors are located inside
the dam a certain distance away from the dam face. It was shown that if this region
where no temperature information is available is not considered in the heat conduction
analysis, a phase shift and an amplitude damping of the mean temperature and the tem-
perature difference occurs. Whereas a change in the amplitude can be compensated by
the regression coefficient, the phase shift cannot. Thus, inverse heat conduction analysis
is required. Since this is a mathematically ill-conditioned problem, a stabilisation pro-
cedure is required. The application of the latter by mollifier functions is successful as
long as temperature measurements near the surface are available to determine the sta-
bilisation parameters. Since this is not the general case, a new stabilisation procedure
was developed. The idea behind the new approach is to limit the amplification of the
recorded measurement noise when estimating the mean temperature and the temperature
difference.

The current procedure of dam behaviour analysis is to split the data set into two parts:
One part is used for model calibration (including validation) and the other for prediction.
The behaviour analysis is usually done based on the prediction part. Because the results
are very robust for the approach of adjusted behaviour indicators, all data can be used
for model calibration. The only exception are the first ten years or so of the lifetime of a
dam, since hydration heat and the change of concrete properties may distort the results.
Using all available data for calibration can be seen as a paradigm shift from a statistical
prediction to an inference problem. Inference means that the different effects on a system
are related to the response of the system and are analysed. In the scope of dam behaviour
analysis, the effects of the water level and the temperature are estimated and the therefrom
derived irreversible effects are analysed. There are several advantages when using all data
for the model calibration:

• There are no longer extrapolations since all data are used for calibration. This refers
to unusual water levels and temperatures in colder or warmer periods.

• Multicollinearity mainly causes problems in prediction. For inference problems, the
different effects cannot be separated properly but the estimation of their sum is still
valid. If there is multicollinearity between the water level and the temperature for
instance, they might not be separated properly but the estimated adjusted behaviour
indicators are still correct.

• More calibration data lead to more accurate coefficient estimates.

Thus, it is recommended to use all available data for the model calibration.
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7.2 Summary of main results

The main results of this thesis can be summarised as follows:

• The robustness of the results depends mainly on the choice of the concept to assess
the dam behaviour.

• The adjusted behaviour indicator (ABI) approach leads to robust results; this has
been proven by a systematic analysis on several models and dams.

• Since the results of the ABI are exceedingly robust, it is recommended to use all
available data for model calibration.

• Using all data for calibration can be seen as a paradigm shift from a statistical
prediction to an inference problem.

• Multicollinearity shall be omitted if a model is used for prediction purposes or if
the separation of the effects is of interest.

• A straightforward way to reduce multicollinearity is to remove variables until V IF <

10 is reached.
• Multicollinearity disappears by the use of physically-based hybrid models.

7.3 Outlook

The results of this thesis show that the application of the concept of adjusted behaviour
indicators leads to robust models. For practical application this concept shall be preferred
to the well established observation-prediction comparison.

The investigations made within this thesis show that physically-based models are robust
and allow for a relatively easy interpretation of the results based on engineering judge-
ment. Thus, future developments should go further into this direction. Here, the behaviour
analysis based on the adjusted behaviour indicator was done statistically. This problem
could also be tackled with shape functions for irreversible behaviour estimated by a struc-
tural model. These may be the consideration of imposed valley deformations in certain
directions, the volume expansion of concrete to represent AAR at certain levels or the
change of the Young’s moduli, and so on.

The beam model for gravity dams leads to good results, especially on the upper part of the
dams. To have a better agreement on the lower part where deep-beam action is expected,
a parametrised deep-beam FE-model could be set up and implemented. This as well could
be used for multi-objective calibration based on Bayesian inference. Further, the use of
the arch-cantilever-model works fine to create shape functions for hybrid models but for
a global optimisation it is too simple. Thus, a 3D-FE-model could be set up and used for
multi-objective calibration for arch dams.
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Nomenclature

Abbreviations
1D one-dimensional

3D three-dimensional

A arch dam

AAR alkali aggregate reaction

ACF autocorrelation function

AG arch-gravity dam

ANN artificial neural network

AR auto regressive model

BBS block bootstrap

DBA dam behaviour analysis

DHCA direct heat conduction analysis

FE finite element

FFT fast Fourier transformation

FSL full supply level

G gravity dam

GAM generalized additive models

HCE heat conduction equation

HG hollow gravity dam

HST hydrostatic seasonal time

HSTT hydrostatic seasonal temperature time

HTT hydrostatic temperature time

IHCA inverse heat conduction analysis

IHCP inverse heat conduction problem

LOESS locally weighted scatterplot smoothing

MCMC Markov chain Monte Carlo

MLR multiple linear regression

ODE ordinary differential equation

OLS ordinary least squares

OPC observation-prediction comparison

PACF partial autocorrelation function

PCR principal component regression
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PDE partial differential equation

PDF probability density function

RR ridge regression

SLR simple linear regression

Greek Symbols
a inclination of the upstream and downstream surfaces of a gravity dam [-]

a significance level in hypothesis tests [-]

aT thermal expansion coefficient [1/K]

b regression coefficient [-]

c curvature [-]

Dhi delayed water level [m]

DTa difference to average annual temperature curve [°C]

DTd difference to average annual temperature difference [°C]

DTm difference to average annual mean temperature [°C]

DTR thermal correction for HSTT-model

D Laplace operator

d deformatin (displacement, rotation) [m]

DG matrix of compatibility conditions of a grillage

di0 deformation at location of removed supports

Di j deformation matrix due to the redundant variables Xi

e error

e normal strain [-]

g regularisatiuon parameter for mollifier function [-]

gw unit weight of water [N/m3]

gde parameters to scale jump with in DE-algorithm [-]

b̂ estimate of regression coefficient [-]

ŝ2 estimated variance

l ridge estimator [-]

l thermal conductivity [W/(m K)]

— nabla operator

n Poisson’s ratio [-]

w angular frequency [1/s] or [1/d] or [1/a]

f angle [-]
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f argument of complex number, phase shift

p distribution

pk partial auto correlation coefficient of lag k

r density [kg/m3]

rk autocorrelation coefficient of lag k

s2 variance

ti constants of annual temperature curve [-]

q parameters used in MCMC analysis

Roman Symbols
x̄ mean value of predictor variable

ȳ mean value of response variable

Q̇ heat flux [W]

q̇ specific heat flux [W/m2]

Q̇s heat source term [W]

q̇s specific heat source term [W/m3]

T̂ temperature in the frequency domain [°C]

ŷ estimated value of predictor variable

Fo Fourier number [-]

A matrix of finite difference scheme

H hat matrix X(X0X)�1X0y

I unity matrix [-]

X model matrix

A area [m2]

A constant [-]

a rectangle height of approximated foundation surface [m]

a thermal diffusivity [m2/s]

Av shear area [m2]

B constant [-]

b rectangle width of approximated foundation surface [m]

Bb beam width [m]

Bc cantilever width [m]

BC behaviour change [-]

C constant [-]
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C diagonal elements of the matrix (X0X)�1

c specific heat capacity [J/(kg K)]

D difference between observation M and the prediction P

d1 distance to boundary of left thermometer [m]

d2 distance to boundary of right thermometer [m]

Di Cook’s distance [-]

di standardised residual [-]

E Young’s modulus [N/m2]

E energy [J]

e residuals

F load [N]

f function

fk,M factor to determine spring constant due to bending moment [-]

fk,N factor to determine spring constant due to normal force [-]

fk,V factor to determine spring constant due to shear force [-]

G shear modulus [Pa]

G transfer function for heat conduction analysis

H dam height [m]

H hydrostatic effects in dam behaviour analysis models

h water level [m] or [-]

H0 null hypothesis

ha arch height [m]

hb beam height [m]

hii diagonal elements of hat matrix H
I moment of inertia [m4]

i imaginary unit [-]

j current location [-]

j number of day in the year starting on the 1st of January

jx number of elements in spatial discretisation [-]

k auxiliary quantity for heat conduction analysis [1/m]

k lag in auto regressive (AR) models [-]

k number of folds used for cross-validation and robustness coefficient [-]

kM spring constant for bending moment [Nm]
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kN spring constant for normal force [N/m]

kV spring constant for shear force [N/m]

L length of 1D-section [m]

l distance between two thermometers [m]

Lcr crest length [m]

M bending moment [Nm]

M model

m number of cantilevers in arch-cantilever model [-]

mg mollifier function for inverse heat conduction analysis [-]

Madj adjusted behaviour indicator

Modth threshold value for frequency amplification [-]

MSres,p mean squared residuals of prediction

MSres mean squared residuals

N normal force [N]

N number of iteration steps in MCMC analysis [-]

n current time step [-]

n number of arches in arch-cantilever model [-]

n number of observations [-]

n order [-]

nt number of time steps [-]

nBC,max maximum number of behaviour changes to search for [-]

nBC number of found behaviour changes [-]

ni number of thermometers used for the calibration of a [-]

nl number of levels [-]

nPC number of thermometers used for thermal model in statistical analysis [-]

np number of observations used for prediction [-]

nT number of thermometers used for thermal model in statistical analysis [-]

oh polynomial order of water level approach [-]

P intersection point

P number of chains in MCMC analysis [-]

P predicted values of dam behaviour analysis model

p p-value used for hypothesis tests [-]

p number of regression coefficients in a model [-]
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pcut cut-off p-value for hypothesis test [-]

Pir irreversible displacements

Prev reversible displacements

pw water pressure [Pa]

PSRF potential scale reduction factor [-]

q number of regression coefficients added to a model [-]

Qtot total drainage flow at the bottom of the dam [m3/s]

R rainfall and snowmelt effects in dam behaviour analysis models

R supporting force [N] or [Nm]

r absolute value of complex number, amplitude of harmonic

R2
pred,CV cross-validation prediction coefficient of determination [-]

R2
pred prediction coefficient of determination [-]

R2 coefficient of determination [-]

ri studentised residual [-]

R2
ad j adjusted coefficient of determination [-]

rc coefficient of robustness [-]

R2
pred prediction coefficient of determination [-]

rT d ratio between the temperature difference in the total region and in the direct
region

rT m ratio between the mean temperature in the total region and in the direct region

RMSE root mean squared error

RMSPE root mean squared prediction error

RMSPECV cross-validation test error

RSE residual standard error

S season

S seasonal effects in dam behaviour analysis models

SSres residual sum of squares

SSt total sum of squares

T temperature [°C]

T temperature effects or irreversible effects in function of time in dam behaviour
analysis models

T torsional moment [Nm]

t t-test statistic [-]

t time [a] or [d] or [s]
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Tb boundary temperature [°C]

Td linear temperature difference in 1D-section [°C]

Th period of a harmonic [s] or [d] or [a]

Tm mean temperature in 1D-section [°C]

Tn nonlinear temperature part in 1D-section [°C]

Tref temperature at the grouting of the joints or the long term average temperature

Tair air temperature [°C]

ta dam thickness at the abutment [m]

tc thickness of concrete dam [m]

tI duration of the initial phase [a]

Tmh temperature used for Metropolis-Hastings algorithm [-]

vts propagation velocity of thermal signal [m/s]

V IF variance inflation factor [-]

V IFmax maximal V IF in a model [-]

X virtual load [-]

x coordinate

x independent variable, predictor variable, regressor

y coordinate

y dependent variable, response variable

z complex number

z coordinate

za abutment level [m a.s.l.]

zcr crest level [m a.s.l.]

dl element length [m]

Subscripts
dsf downstream surface

ref reference

usf upstream surface

a abutment

b boundary

BC behaviour change

bw backward

c concrete
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cal calibration

cr crest, crest level

cr crest

CV cross-validation

d difference (between lake and valley)

d difference

di f f difference

f w forward

j grid point

l left

lev level

ll lower limit

M bending moment [Nm]

m mean

m mean

N normal force [N]

p prediction

r right

r rock

r rock

s source

st stabilised

t time

ul upper limit

V shear force [N]
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A Appendix

A.1 Statics

A.1.1 Curves for Vogt’s formula

Fig. A.1 Factors fk,N to estimate the spring constant of a rock foundation due to a normal load N
(USBR, 1938).



A-2 Appendix

Fig. A.2 Factors fk,V to estimate the spring constant of a rock foundation due to a shear force V
(USBR, 1938).



A.1 Statics A-3

Fig. A.3 Factors fk,M to estimate the spring constant of a rock foundation due to a bending
moment M (USBR, 1938).
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A.1.2 Stress resultants on arch
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Fig. A.4 Functions of stress resultants on arch due to point loads
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A.2 Heat transfer analysis

A.2.1 Finite difference solution for heat conduction analysis

A.2.1.1 Direct heat conduction

The content of the current section is mainly based on Becker and Kaus (2014) and Çengel
and Ghajar (2015), other sources are cited as common.

Introduction

The method of finite differences approximates the derivatives of a PDE by a discretisation
of the governing variables. This approximation can be derived by a Taylor expansion.
Suppose the continuous and differentiable function f (x) in Fig. A.5. The function can
be discretised by dividing into small elements of length Dx. A Taylor series expansion
around point x in forward direction for f (x+Dx) can be written as

f (x+Dx) = f (x)+
∂ f (x)

∂x
Dx+

∂ 2 f (x)
∂x2

Dx2

2!
+ . . .+

∂ n f (x)
∂xn

Dxn

n!
+O(Dxn+1), (A.1)

where O(Dxn+1) means that the full solution also would include terms with order > n+
1 that are neglected here. O is called truncation error; if Dx decreases also the error
decreases. Rearranging Eq.(A.1) leads to the first derivative of the function f (x):

∂ f (x)
∂x

=
f (x+Dx)� f (x)

Dx
� ∂ 2 f (x)

∂x2
Dx
2!

� . . .� ∂ n f (x)
∂xn

Dxn�1

n!
+O(Dxn+1) (A.2)

x x+∆xx−∆x

f(x−∆x)
f(x)

f(x+∆x)

∆x ∆x

tangent line

x

f(x)

∂f(x)/∂x·∆x

Fig. A.5 First derivative of function f (x) at point x (adapted from Çengel and Ghajar, 2015).

If all terms with an order > 1 are neglected, the first derivative can be written as
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∂ f (x)
∂x

=
f (x+Dx)� f (x)

Dx
+O(Dx) (A.3)

Eq.(A.3) is a first order estimation of the first forward derivative and it can also be written
in the following short form

f 0f w =
f j+1 � f j

Dx
+O(Dx) (A.4)

The Taylor series can also be developed backwards for f (x�Dx) as well. This leads to
the first order estimation of the first backward derivative:

f 0bw =
f j � f j�1

Dx
+O(Dx) (A.5)

The second order accurate central ( j is in the centre of j+1 and j�1) second derivative
can be found as follows

f 00c =
f 0j+1/2 � f 0j�1/2

Dx
=

f j+1 � f j

Dx
�

f j � f j�1

Dx
Dx

=
f j+1 �2 f j + f j�1

Dx
+O(Dx2) (A.6)

Explicit scheme for the 1D transient HCE

The 1D transient HCE Eq.(2.34) can be discretised in the same manner as described
above. Since with the time t and the direction x two governing variables are present,
a grid is used for the discretisation (Fig. A.6). The time is divided into nt regular time
steps Dt and the direction in jx elements with length Dx. The current time step is repres-
ented by n and the location by j. The derivative of the temperature respecting to the time
∂T/∂ t can be replaced by the forward finite difference approximation

∂T
∂ t

=
T n+1

j �T n
j

Dt
(A.7)

where T n
j is the temperature at location j at the current time step and T n+1

j at the new time
step. The second derivative of the temperature respecting to the direction ∂ 2T/∂x2 can
be replaced by the central finite difference approximation

∂ 2T
∂x2 =

T n
j+1 �2T n

j +T n
j�1

Dx2 (A.8)

with T n
j�1, T n

j and T n
j+1at the time steps n and the locations j�1, j, j+1. The 1D transient

HCE can now be expressed as



A-8 Appendix

T n+1
j �T n

j

Dt
= a

T n
j+1 �2T n

j +T n
j�1

Dx2 (A.9)

Since all temperatures at the time step n are known and T n+1
j is the only unknown in

Eq.(A.9), it can be explicitly calculated by

T n+1
j = T n

j +Fo
�
T n

j+1 �2T n
j +T n

j�1
�

(A.10)

where Fo is the Fourier number, which is dimensionless:

Fo =
aDt
Dx2 (A.11)

Since T n+1
j can be calculated explicitly from three temperatures of the current time step

n, this scheme is called an explicit finite difference scheme (Fig. A.7a). It is first order
accurate in time and second order accurate in space (Becker and Kaus, 2014).

j-1...21 j j+1 ... jx-1 jx

n-1

...

2

1

n

n+1

...

nt-1

nt

spacetim
e

∆x

∆t

j,n

L
left boundary nodes right boundary nodes

Fig. A.6 Grid for finite difference discretisation of the 1D transient HCE (adapted from Becker
and Kaus, 2014).
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j-1j-2 j j+1 j+2
n-1

n

n+1

n+2

spacetim
e

∆x

∆t

j-1j-2 j j+1 j+2
∆x

j-1j-2 j j+1 j+2
∆x

a) b) c)

Fig. A.7 Finite difference schemes: a) explicit, b) fully implicit c) Crank-Nicolson (adapted from
Becker and Kaus, 2014).

Stability analysis for explicit scheme

The stability of Eq.(A.10) can be shown by the following example. Consider three nodes
with the temperatures T n

j�1 = T n
j+1 = 50°C and T n

j = 80°C on the time step n. At the next
time step, it is expected that temperature T n+1

j is between 50°C and 80°C. With regard
to Eq.(A.10), this is satisfied if Fo  0.5. For Fo > 0.5 , the result becomes physically
impossible and violates the second law of thermodynamics. Thus, the solution of the
explicit finite difference scheme of the heat conduction equation is only conditionally
stable for Fo = aDt/Dx2  0.5. This means that the maximal possible time step is given
by the spatial discretisation or vice versa (Çengel and Ghajar, 2015).

Implicit scheme

The stability problems of the explicit scheme can be overcome by using a conditionally
stable implicit finite difference scheme. In an implicit scheme, the spatial derivative is
partially determined at the next time step. The simplest form is the fully implicit scheme,
where the derivative is evaluated completely at the new time step (Fig. A.7b). By using
a forward approximation for the derivative ∂T/∂ t , the fully implicit finite difference
approximation of the heat 1D transient HCE is

T n+1
j �T n

j

Dt
= a

T n+1
j+1 �2T n+1

j +T n+1
j�1

Dx2 (A.12)

Using the dimensionless Fourier number Fo and rearranging that the unknown parameters
are on the left side and the known ones on the right side leads to

Fo T n+1
j+1 � (1+2Fo)T n+1

j +Fo T n+1
j�1 =�T n

j (A.13)

Eq.(A.13) contains three unknown and only one known temperature, therefore it cannot
be solved explicitly. If Eq.(A.13) is formulated for all locations j = 2 to j = ( jx �1), the
following system of linear equations can be formulated:
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(Fo A�I)�!T n+1 =��!
T n (A.14)

A =

2

666666666664

1 0 0 0 0 0 0
1 �2 1 0 0 0 0
... ... ... ... ... ... ...

0 0 1 �2 1 0 0
... ... ... ... ... ... ...

0 0 0 0 1 �2 1
0 0 0 0 0 0 1

3

777777777775

(A.15)

where I is the unity matrix, A the matrix of the finite difference approximation of the
central spatial derivative,

�!
T n+1 the vector of temperatures at the next time step and

�!
T n

the vector of the temperatures at the current time step. The temperatures at the next time
step are obtained by the calculation of the inverse of the matrix Fo A�I and multiplying
it with the temperatures at the current time step (Eq.(A.16)). This means that the inverse
(Fo A�I)�1 needs to be calculated only one time.

�!
T n+1 =�(Fo A�I)�1�!T n (A.16)

Since the matrix Fo A�I is a tridiagonal band matrix, the fastest way to calculate its in-
verse is the Thomas algorithm that is well described in Conte and de Boor (1980). As the
explicit scheme, the implicit scheme is first order accurate in time and second order accur-
ate in space. However, no stability criteria need to be satisfied since it is unconditionally
stable. This does not mean that this scheme is accurate for large time steps (Becker and
Kaus, 2014). Using a too large discretisation leads to inaccurate solutions for fast chan-
ging temperature phenomenons. Thus, it is recommended to check the convergence of the
solution by a grid refinement.

Crank-Nicolson scheme

If the spatial derivative is taken at the current and the next time step, the so-called Crank-
Nicolson scheme results:

T n+1
j �T n

j

Dt
=

a
2Dx2

⇣
T n

j+1 �2T n
j +T n

j�1 +T n+1
j+1 �2T n+1

j +T n+1
j�1

⌘
(A.17)

Rearranging Eq.(A.17) leads to

✓
Fo

2
A�I

◆
�!
T n+1 =�

✓
Fo

2
A+I

◆
�!
T n (A.18)
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The temperatures at the next time step can be obtained by

�!
T n+1 =�

✓
Fo
2

A�I
◆�1✓Fo

2
A+I

◆
�!
T n (A.19)

The computational cost for the Crank-Nicolson scheme is nearby the same as for the fully
implicit scheme, the inverse of Fo/2A�I needs to be calculated once and multiplied with
Fo/2A�I. The advantage lies in the fact that the Crank-Nicolson scheme is second order
accurate in both time and space.

Convergence check

The solution converges for small time steps Dt ! 0 and element lengths Dx ! 0. The
error contains the round off error and the truncation error (Çengel and Ghajar, 2015).
The discretisation that is needed for an error that is small enough, depends also on the
gradient of the thermal signals that are processed. Therefore, no general statement about
a discretisation can be given.

Boundary conditions

Since Eq.(A.10), Eq.(A.12) and Eq.(A.17) are not applicable on the boundary nodes, an-
other relation is needed to implement the boundary conditions. Usually it is specified
problem-dependent by the energy balance equation. In Çengel and Ghajar (2015) solu-
tions for different boundary conditions are described (heat flux, convection, radiation and
combinations of it). For the case of known boundary temperatures T (t,0) and T (t,L)
(measurements), they can be inserted directly into the finite difference grid.

Initial condition

To solve Eq.(A.10), (A.16) and (A.19), the temperature distribution on the first time step
must be known. A common way is to assume a constant temperature and to cut the initial
part of the calculation since it needs to converge. To achieve a faster convergence, the
initial temperature along the cross section can be given as near as possible to the finial
reference temperature (Léger et al., 1993). For this, the measurement values of inner
thermometers could be used.

A.2.1.2 Inverse heat conduction

Raynaud and Bransier (1986) developed a stabilised finite difference scheme to solve the
inverse heat conduction problem (IHCP). They propose to calculate the interior temper-
ature field between x1 and x2 by a Crank-Nicolson scheme first. In a second stage, the
IHCP is solved by the scheme presented in Fig.(A.8a). The temperature T n+1

j�1 is cal-
culated by the arithmetic mean of two estimators T̃ n+1

j�1 and ˜̃T n+1
j�1 that are based on two

energy balance equations.
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T n+1
j�1 =

T̃ n+1
j + ˜̃T n+1

j

2
(A.20)

T̃ n+1
j�1 =

1+Fo

Fo
T n+2

j +
Fo �1
Fo

T n+1
j +T n+2

j+1 (A.21)

˜̃T n+1
j�1 =

1+Fo

Fo
T n+1

j +
Fo �1
Fo

T n
j +T n

j+1 (A.22)

Because of the use of temperatures that are in the past and in the future of the regarded
time step n+ 1, this scheme is stabilised. A spatial grid refinement (Dx smaller) leads
to the consideration of more temperature information (Fig. A.8b). In view of that fact,
the finer the spatial step, the smoother the estimated boundary temperature and the less
the sensitivity to measurement errors (Raynaud and Beck, 1988). However, a too smooth
boundary temperature cuts some thermal waves one may be interested in. Therefore, a
trade-off, which is case dependent, has to be found. In contrary to direct problems the
explicit finite difference method is more stable, since they better allow for the delay in
temperature changes (Taler and Duda, 2006).

j-1j-2 j j+1 j+2
n-1

n

n+1

n+2

n+3

spacetim
e

∆x

∆t

∆x∆x/2

first estimator Tin+1
~

second estimator Tin+1
~~

a) b)

Fig. A.8 a) Finite difference scheme for inverse heat conduction problem (adapted from Raynaud
and Bransier, 1986) b) the influence of the spatial discretisation to the information flow.

A.2.2 General considerations in the frequency domain

A.2.2.1 Signal propagation velocity

Deriving the phase shift f (Eq. (2.44)) to the direction x leads to a change of the phase
shift in space:

df
dx

=

r
w
2a

(A.23)

Setting the angular velocity w = df/dt into Eq. (A.23) leads to the propagation velocity
vts of the thermal signal:
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vts =
dx
dt

=
p

2aw (A.24)

Eq. (A.24) shows that the propagation velocity of the thermal signal rises with the square
root of the product of aw . Since the thermal diffusivity of concrete does not vary much, it
mainly depends on the angular frequency w . Higher frequencies lead to a faster propaga-
tion velocity vts. Calculated values of vts for a range of frequencies and thermal diffusiv-
ities are given in Table A.1.

Table A.1 Propagation velocity vts of thermal signal in [m/d] for different frequencies w and
thermal diffusivities a

a = 0.10 m2/d a = 0.15 m2/d a = 0.20 m2/d

w = 1 ·2p/a 0.0587 0.0718 0.0830

w = 12 ·2p/a 0.203 0.249 0.287

w = 52 ·2p/a 0.423 0.518 0.598

w = 365 ·2p/a 1.12 1.37 1.59

A.2.2.2 Amplitude decay

Let us consider a semi-infinite space (Fig. A.9). Because of the diffusive nature of heat
conduction, the amplitude of a signal decays with increasing depth x. Higher frequen-
cies are damped within shorter distance x than lower ones (Fig. A.9). The influence of
the thermal diffusivity increases with decreasing frequency. For yearly frequencies, 15 -
20 m away from the boundary, only 1% of the frequency measured at the boundary is
recognisable. For a yearly amplitude of 20°C, this expresses to 0.2°C, what is in the order
of magnitude of the measurement accuracy. Thus, the yearly thermal variation cannot be
measured in dams with a thickness L greater than 20 - 30 m. In addition, daily frequen-
cies are recognisable until 1 m and weekly ones until around 2.7 m inside the concrete.
Table A.2 shows within which distances x the amplitude decays to 10, 5 and 1% of its
original value at the boundary for a = 0.15 m2/d.
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Fig. A.9 Amplitude decay of thermal signals in function of distance to the boundary x for
different frequencies w and thermal diffusivities a

Table A.2 Amplitude decay for thermal signals to values of 10, 5 and 1% of their original values
for different frequencies w and a = 0.15 m2/d.

10% 5% 1%

w = 1 ·2p/a 9.62 12.51 19.23

w = 12 ·2p/a 2.78 3.61 5.55

w = 52 ·2p/a 1.33 1.73 2.67

w = 365 ·2p/a 0.50 0.65 1.01
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A.3 Statistics

A.3.1 Model adequacy checking in MLR

A.3.1.1 Scaling the residuals

The residuals can be standardised by the residual standard error RSE:

di =
ei

RSE
, i = 1,2, . . . ,n (A.25)

This so called standardised residuals d have zero mean and approximately unit variance.
Thus, large standardised residuals (di > 3) indicate potential outliers. There are also the so
called studentised residuals that account for the correct standard deviation of the residuals
by using the properties of the hat matrix H (for details see Montgomery et al., 2012).

ri =
ei

RSE
p

1�hii
i = 1,2, . . . ,n (A.26)

where hii are the diagonal element of the hat matrix H = X(X0X)�1X0y. The studentised
residuals have unite variance Var(ri) = 1. For large datasets, standardised and studentised
residuals are equivalent.

A.3.1.2 Tukey-Anscombe-plot

A plot of the residuals against the fitted values, called Tukey-Anscombe-plot, is useful
to detect if (i) the expected value of the residuals is zero (E(ei) = 0), (ii) the variance
is constant and (iii) if there are nonlinear effects that are not considered in the model.
The residuals can be used in scaled or unscaled form. Fig. A.10 shows typical patterns
for Tukey-Anscombe-plots. In a), the expected value of the residuals E(ei) does not
systematically deviate from 0 and the variance is constant along the fitted values ŷ. In
b) and in c), E(ei) is constant but the variance is not constant. In d), E(ei) 6= 0 due to a
nonlinear pattern (Montgomery et al., 2012).

In the case of deviations, the model must be adjusted since it contains systematic errors
and some general assumptions of the least squares are violated. This can be done by a
transformation of the predictor- or the response variables. In the case on nonlinearities,
adding more predictor variables, e.g. higher order terms might be helpful (Dettling, 2015;
Montgomery et al., 2012).
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Fig. A.10 Patterns for Tukey-Anscombe-plots a) satisfactory; b) funnel, not constant variance; c)
double bow, not constant variance; d) nonlinear (Montgomery et al., 2012).

In Fig. A.11, the Tukey-Anscombe-plots for the standardised residuals of SLR and MLR
drainage flow example are shown. According to Dettling (2015), a deviation of E(ei) = 0
can be checked by adding LOESS a smoother to the plot. To check if a deviation is sys-
tematically or not, Dettling (2015) suggests to a resampling approach. The fitted values
are kept as they are but assigned to new residuals r⇤i . This is done by sampling with re-
placement of the residuals ri. Afterwards a LOESS smoother is applied as well and added
to the plot. By doing this several times, e.g. 100, it gets visible in which range a random
deviation of the smoother can be accepted. This means, if the red line of the smoother of
the original data lies outside of the range of the smoother of the resampling approach, a
systematic deviation seems to be present. Regarding the SLR example (Fig. A.11a), there
is a clear systematic deviation visible. For low- and high drainage flows, the residuals are
too low and for medium drainage flows they are too large. In the MLR model (Fig. A.11b)
seems to be a slight systematic deviation for the largest drainage flows.
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Fig. A.11 Tukey-Anscombe-plots for the drainage flow example a) SLR model; b) MLR model.

A.3.1.3 Partial residuals plot

A partial residuals plot can be used to study if the relationship of individual predictors
variables x j to the response is specified correctly (Montgomery et al., 2012). A direct plot
of x j to the response can be deceiving since in an MLR model all other regressor variables
have an effect to the response as well. Thus, a plot which shows the relation between x j

and y if the other variables are present is needed (Dettling, 2015).

A partial residuals plot is created by plotting the residuals of the regression model of
all variables except x j to the response versus the residuals of a regression model of all
other variables to x j. A linear relationship results if x j enters the model linearly. On
the other hand, if a nonlinear relationship results, a variable transformation might be
needed (Montgomery et al., 2012). Thus, this plot is similar in interpretation as a Tukey-
Anscombe-plot. More details about partial residuals plots can be found in Montgomery
et al. (2012).

A.3.1.4 Scale-location-plot

The scale-location-plot is similar to the Tukey-Anscombe-plot, but it is a bit simpler to
detect non-constant variance (Dettling, 2015). The square root of the absolute values of
the residuals

p
p ri p are plotted versus the fitted values ŷ. Due to the absolute values, a

dependency of the residual magnitude to the fitted values can be detected easier. Con-
sequently, for the case of a constant variance, a horizontal line is expected. To detect
systematic deviations, the same resampling approach as for the Tukey-Anscombe-plot
can be used.

Fig. A.12 shows the scale-location plot for the drainage flow examples. The SLR model
(Fig. A.11a) as also the MLR model (Fig. A.11b) show a more or less constant variance
except for the largest drainage flows.
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Fig. A.12 Scale-location-plots for the drainage flow example a) SLR model; b) MLR model.

A.3.1.5 Normal probability plot

With the normal probability plot (also quantile-quantile plot or Q-Q-plot), the assump-
tion of the normal (Gaussian) distribution of the residuals can be checked. The normal
probability plot is made by plotting the ordered studentised residuals (sample quantiles)
versus the theoretical quantiles of the standard normal distribution. Fig. A.13 shows dif-
ferent patterns for Q-Q-plots. In a), the points lie on a straight line and therefore the
sample quantiles represent the theoretical quantiles of the normal distribution well. In
b), the Q-Q plots indicates a light tailed distribution and in c) a heavy-tailed distribution
is recognisable. The patterns in Fig. A.13d) and Fig. A.13e) represent distributions with
positive and negative skew.
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Fig. A.13 Patterns for Normal-probability-plots (Q-Q-plots) a) ideal; b) light tailed;
c) heavy-tailed; d) positive skew; e) negative skew (Montgomery et al., 2012).

The assumption of a normal distribution is the basis for the hypothesis tests (see sec-
tion 2.4.1.5). In addition, the least squares estimator is insufficient under non-Gaussian
distributions, especially for skewed distributions where systematic errors result. Short-
and heavy tailed distribution cause less problems as long as they are symmetrically dis-
tributed. The problem of heavy tailed distributions is that they often cause outliers that
influence the coefficients too much. In this case, other estimators, such as robust regres-
sion can be considered (Dettling, 2015; Montgomery et al., 2012).

In Fig. A.14a), the Q-Q-plot for the SLR drainage flow example is given. As a help to
define to which extend random deviations can be expected, the same resampling approach
as for the Tukey-Anscombe-plot was applied. The distribution seems to be slightly pos-
itive skewed since more data points than usual are between the 3rd and the 4th sample
quantile. Fig. A.14b) shows the distribution of the studentised residuals (grey bars) and
the sample quantiles for the normal distribution (red line). This plot also visualises the
deviation of the normal distribution and helps to understand the idea behind the Q-Q-plot.
For the MLR example (Fig. A.14c)), the skew is weaker, what can also be verified in
Fig. A.14d).
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Fig. A.14 a) Q-Q-plot and b) density distribution plot for the SLR drainage flow example; c)
Q-Q-plot and d) density distribution plot for the MLR drainage flow example.

A.3.1.6 Cooks’s distance

To show the influence of single data points, three virtual data points (A, B, C) were added
the scatterplot of the SLR example in Fig. A.15. The centroid of the original data (x̄,ȳ)
is marked with a grey dashed line. Point A has an x-value that is sufficiently larger than
all the other points on the x-axis. Such points are called leverage points. Since the point
lies on the straight-line of the fitted equation, it does not influence the result. On the other
hand, point B influences the result since it deviates significantly from the straight-line
relationship of the other points. The fitted model point B included results in the straight-
line relationship that is shown by the green dashed line. Such points are called influential
leverage points. Furthermore, point C also significantly differs from the straight line
relationship but is has not much influence to the results since it is close to the centroid and
has no leverage.
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Fig. A.15 Scatterplot of SLR drainage flow example. Three points (A, B, C) were added to show
the influence of single data points to the regression model.

The influence of a single data point to the regression model depends on the distance to the
centroid x̄, the its residual ei and the number of observations n. The more observations
that are available, the less is the influence of one single point. With the Cook’s distance,
the influence of a single data point to the regression model can be measured. It sets the in-
fluence of leverage in relation to the standardised residuals and the number of coefficients
in the model:

Di =
hii

1�hii

d2
i
p

i = 1,2, . . . ,n (A.27)

Measurement points with Di > 0.5÷1.0 are influential points and should be treated fur-
ther (Dettling, 2015; Montgomery et al., 2012). This means the model might be changed
by a transformation or that there are outliers that need a special treatment as e.g. robust re-
gression (for details see Montgomery et al. (2012)). The points added to the SLR example
have a Cook’s distance of DA = 0, DB = 3.6, DC = 0.06.

A.3.2 Visual detection of autocorrelation

The visual detection is straightforward but needs some experience. The values r of the
ACF for k lags back are defined by

rk =
Cov(et ,et�k)p

Var(et)Var(et�k)
(A.28)

This is a dimensionless measure for the correlation between two lags. The perfect correl-
ation is expressed by 1, 0 indicates that there is no correlation and -1 indicates a perfect
negative correlation. In Fig. A.16a the ACF-plot for the drainage flow MLR example is
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given. In ACF-plots, it is common to plot lag 0, which is always 1 (correlation by itself).
The plot shows an exponentially decaying pattern, which is typically for autoregressive
(AR) models (Dettling, 2014). The values are r1 = 0.42 and r2 = 0.23. The dashed line
shows a 95% confidence band. Values outside this band indicate autocorrelation. With
the ACF-plot, it can be seen that the errors are correlated two lags back in the regarded
example.

It must be kept in mind that the residuals which depend on the residuals 1 lag back also
depend on the residuals two lags back since the residuals one lag back depend on them.
This can be explained by the theoretical autocorrelation function (for details see Cryer
and Chan (2008)). To measure the direct influence on the residuals two lags back, the
partial autocorrelation can be calculated by

pk = Cor(et ,et�k) (A.29)

For the MLR example, the PACF is shown in Fig. A.16b. It is recognisable that the
influence of the correlation goes one lag back. With p1 = 0.42 it follows that the error
of the current time step depends on the last error. This can be expressed with an AR(1)
model that writes as

et = 0.42et�1 +Et , (A.30)

where the residuals at time t contains depends to 42% on the residuals of the last time step
t � 1 and a random ternmEt . The theory behind these models is well described in Cryer
and Chan (2008) and Dettling (2014). Here, the focus lies on detecting such correlations.
This can be done visually by looking at the ACF- and PACF-plot. If the spikes in the plot
are outside the 95% confidence band a correlation is present. It should be remembered
that in a 95% confidence band, 5% of the values are expected to be outside of it. As a
comparison, in Fig. A.17, the ACF- and PACF-plot are shown for uncorrelated data.
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Fig. A.16 a) ACF-plot and b) PACF-plot for MLR example.
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Fig. A.17 a) ACF-plot and b) PACF-plot as it is expected for uncorrelated data.

Further, autocorrelation can also be detected by formal tests. There is the Durbin-Watson
test, which allows to detect first order (AR(1)) autocorrelation. This test is well described
in Montgomery et al. (2012). In addition, there is also the Ljung-Box test, which is
described in Cryer and Chan (2008). This test allows to detect autocorrelation up to a
certain order k.
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A.4 Dam behaviour analysis models

In the following, in addition to Section 2.5.4.2, more dam behaviour analysis models for
monitoring the displacement of concrete dams are given.

One of the first publications in the field of dam behaviour analysis comes from Rocha
et al. (1958). The developed model allows to predict the crest displacement as the sum
of a function of the influence of the hydrostatic pressure dh, the mean temperature Tm and
the temperature difference Td on different levels:

P(h,T ) = dh +Âbi Tm,i +Âb j Td, j (A.31)

To solve Eq. (A.31), a two-step procedure was suggested: In the first step, Eq. (A.31)
was applied to different temperature conditions measured for the same water level. The
influence coefficients b and therefore the influence of the temperature was determined
for one level only. In the second step, Eq. (A.31) was used to determine the function
dh by using different water levels. In the presented case study, 11 equations were used
to determine the effect of the temperature and 4 equations for the effect of the water
level. The idea behind this model was the same as for common regression models, but the
proposed solution procedure was different.

Another hybrid model was developed by Bonaldi et al. (1977). In this model, the dis-
placement is considered to be a sum of the influences of the water level, the temperature
and the time, whereas the first two are considered hybrid and the last statistically. The
deterministic displacement of the water level can be calculated by

dh = dh,0 +
R
Ri
(dh,i �dh,0), (A.32)

where dh,0 is the displacement for a rigid foundation (R = 0), dh,i the displacement for
an elastic foundation with a ratio R = Ec/Er between the elastic modulus for concrete
Ec and for rock Er and Ri is the ratio for an arbitrary chosen stiffness for the calculation
of dh,i. The displacement for another ratio R can be calculated by a linear interpolation
(Swiss Committee on Dams, 2003). In the model equation, the ratio R/Ri is replaced by a
regression coefficient and fitted. If only a rigid foundation is considered, the second term
of Eq. (A.32) can be neglected. The deterministic displacement of the temperature dT

Eq. (A.33) was suggested to be a sum of measured temperatures and the time derivative
of smoothed temperatures, multiplied by influence coefficients. Bonaldi et al. (1977)
suggested to derive the influence functions by the use of a FE-analysis under the use of
an assumed thermal expansion ac,0.



A.4 Dam behaviour analysis models A-25

dT = Â
✓

bi Ti + ci
dTi,s

dt

◆
(A.33)

The irreversible displacement was considered to determine as a sum of exponential func-
tions:

dt = Âdi exp(mi(t � t0)) (A.34)

where di, mi and t0 are adjustable constants. The sum of the described influences leads to
Eq. (A.35). This equation is linear, except for the coefficients, di, mi and t0. Thus, Bonaldi
et al. (1977) advised to use an initial assumption for these constants. As in the model of
Schnitter (1969), b1, b2 and b3 correspond to a correction of physical properties.

P(h,T, t) = b0 +b1 dw,0(h)+b2(dw,i(h)�dw,0(h))+b3 dT +b4 dt (A.35)

Breitenstein et al. (1985) published a slightly modified form of Eq. (2.97) of Widmann
(1967). The main difference is the shape of Eq. (A.36) for the irreversible effects. In
addition, they suggest using periods of different length for thin and thick dams to consider
the delayed effects. The irreversible effects depend on three adjustable constants c1, c2

and c3 that can be optimised outside the common MLR procedure.

P(h,S,T, t) = b0 +b1 h+b2 h2 +b3 h3 +b4 Dht (A.36)

+b5 sin(S)+b6 cos(S)+b7 sin(2S)+b8 cos(2S)

+b9 DTt,i +b10 DTt, j +b11 DTt,k

+b12 t +b13 (ln(1+ t/c1))
1/c2 +b14 (1� exp(�t/c3))

Bossoney (1985) proposed to consider the derivative of the water level h respecting the
time t to consider the delayed influence of the water level.

Fanelli et al. (2000) propose the idea to use cubic spline functions to represent the irre-
versible behaviour. They present the idea but do not apply it on a case study. In addition,
they propose to show the drift in the phase plane, which is an illustrative graphical tool to
analyse drifts.
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For the special case of hollow buttress gravity dams, De Sortis and Paoliani (2007) de-
veloped a hybrid model. Dimensionless influence functions were created by the use of
a FE-model. The influence function of the water level was compared to the analytical
solution of Marcello and Spagnoletti (1960). De Sortis and Paoliani (2007) use the air
temperature and the water temperature as boundary conditions for their thermal analysis.
Hence, no inner temperature measurements are needed when applying this model.

The same approach for Tm and Td was used in Léger and Seydou (2009). Instead of
a statistical model equation, Léger and Seydou (2009) used a hybrid model based on a
deterministic beam model (Fig. A.18) for gravity dams. The structure was divided in 11
beams with different inertia and the model was implemented in the software SAP2000
(Wilson and Habibullah, 2003).

Fig. A.18 Deterministic beam model of gravity dam. The dam was divided in 11 sections of
different thicknesses (Léger and Seydou, 2009).

Perner and Obernhuber (2009) present a hybrid model for arch dams where they use the
approach of Obernhuber and Perner (2005) and Weber et al. (2010) to calculate Tm and Td .
They assume that the displacement is the sum of the reversible instantaneous hydrostatic
deformation dw,i, the deferred hydrostatic deformation dw,d , the reversible temperature
deformation dT and the irreversible displacement due to the time dt :
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P(h,T, t) = b0 +b1 dh,i +b2dh,d +b3 dT +b4 dt (A.37)

For the reversible instantaneous hydrostatic deformation dw,i, the results of a FE-model
were taken and approximated with a polynomial function 7th order. The deferred hydro-
static deformation dw,d was considered by the following convolution integral based on the
creep function f(t) = f•(1� exp(�h t)):

dh,d = h f•

tˆ

0

exp(�h(t � t))dh,i(t)dt, (A.38)

where t is the control variable, h is a constant that is set to 0.01 on the basis of laboratory
tests and f• is the creep number that can be determined by the regression analysis. Due
to the fact that dh,i is part of Eq. (A.38), the whole procedure is iterative. To calculate
the influence of the temperature, a thermal analysis with the approach of Obernhuber and
Perner (2005) and also Weber et al. (2010), which is described in Section 2.3.4.2, needs
to be done first. Then, they calculate the displacement on the basis of the thermo-elastic
reciprocal theorem (see Section 2.2.2.3). With the assumption that Tm and Td do not vary
along the arches, the displacement at crest level due to temperature can be calculated as
follows:

dT =

Ĥ

0

M(z)Tm(z, t)dz+
Ĥ

0

D(z)Td(z, t)dz (A.39)

The over the level z varying influence functions M(z) and D(z) are determined by a FE-
analysis. The irreversible displacement dt is considered by Eq. (A.40). The constant k ,
what is defining the bending of the function, was defined to 1/3448/d�1 in pre-studies.

dt = 1� exp(�k t) (A.40)
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A.5 Reference dams for investigation

A.5.1 Gravity dam G1

The gravity dam G1 was built in the 1960s and features a height of 68 m in the central
block (Fig. A.19). The downstream surface has an average inclination of 1:0.75 and the
north-east oriented upstream surface is vertical. To save concrete, hollows were placed
inside the dam. Since they are small, the dam is treated as a common gravity dam in this
thesis. The reservoir is used as a regulating reservoir for pumped storage operation. Data
of the displacement, the water level and several temperature measurements from 1999
until 2012 were provided by the operator. The readings were taken manually once a month
until 2006, since then they are taken bi-weekly. A pendulum and an inverted pendulum
is used to measure the displacement on five levels. In addition, 18 concrete temperatures
and three water temperatures are measured on three different levels (Fig. A.19).

283 m a.s.l. T1- T4

262 m a.s.l. T1- T6

241 m a.s.l. T1- T8

concrete temperature sensors
water temperature sensors

pendulum readings

pendulum

inverted rock pendulum

FSL 300 m a.s.l.

MOL 275 m a.s.l. 1:0.75

301 m a.s.l.

288 m a.s.l.

270 m a.s.l.

249 m a.s.l.

238 m a.s.l.

H = 68 m

Fig. A.19 Cross section of gravity dam G1 in the main section.
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Fig. A.20 Time series of gravity dam G1 a) displacement d301,l�v in lake-valley direction at crest
level, b) water level hw and c) temperature T283,4 1.19 m away from the downstream
boundary.

In Fig. A.20, the time series of the pendulum displacement at crest level in lake-valley
direction, the water level and one concrete temperature on the downstream side are shown.
The change of the measurement frequency from monthly to bi-weekly in 2006 is clearly
recognisable. The displacement follows a seasonal pattern and does not show a trend
that can be recognised at first sight. Due to the operation conditions, the reservoir level
does not show a seasonal pattern and is almost always on a high level (> 280 m a.s.l.).
In 2005, there was a reservoir lowering. The effect of this is not visible in the measured
displacement. The temperatures show a seasonal pattern. For example, T283,4 is shown in
Fig A.20c. Furthermore, the heat wave of 2003 is clearly observable.

A.5.2 Gravity dam G2

The gravity dam G2 was built in the 1950s. Block no. 5 that was used for the analysis
(Fig. A.21) has a height of 78 m. The upstream surface is south-west oriented and has an
inclination of 1:0.025. The inclination of the downstream surface is varying, in average it
is 1:0.71. Besides a seasonal storage, the reservoir is used for pumped storage operation.

The operator provided manually recorded data with monthly time steps from 2000 - 2015.
In Fig. A.22a) the time series of the pendulum displacement on 289 m a.s.l., which is 13 m
below the crest level, is shown. The seasonal pattern becomes clearly recognisable, for
the water level too (Fig. A.22b). The data show that the water level of the reservoir was
lowered in late 2004. However, this is not visible in the time series of the displacement.
Due to the monthly measurement frequency and the measurement distance of 2 m from
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the surface, the progress of the temperature T272,4 is very smooth since high frequencies
of the temperature variation are filtered out.

FSL 300 m a.s.l.

MOL 229 m.a.s.l.

1:0.711:0.025

302 m a.s.l.

250 m a.s.l.

289 m a.s.l.

277 m a.s.l.

182 m a.s.l.

223 m a.s.l.

pendulum

inverted rock pendulum

inverted pendulum

296 m a.s.l. T1- T2

272 m a.s.l. T1- T4

250 m a.s.l. T1- T5

223 m a.s.l. T1- T3

H = 78 m

concrete temperature sensors
pendulum readings

Fig. A.21 Cross section through block no. 5 of gravity dam G2.
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Fig. A.22 Measurement time series of gravity dam G2: a) displacement d289.l�v in lake-valley
direction at 289 m a.s.l., b) water level, hw c) temperature T272,4 with a distance of 2 m
from the downstream surface.
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A.5.3 Arch dam A1

The 1980’s built arch dam A1 has a height of 61 m and a crest length of 75 m. The
positioning of the measurement equipment is shown in Fig. A.23. In the main section
(pendulum line P1), the displacements are measured by the combination of a direct pen-
dulum and an inverted rock pendulum on three levels in radial and tangential direction.
In addition, a second direct pendulum (P2) is installed close to the orographic right abut-
ment. The temperatures are recorded on four levels in the main section. There are 19
concrete temperature sensors and one water and air temperature sensor each. Time series
from 1986 - 2014 are provided for this investigation. The measurement time steps were
bi-weekly during the first 15 years of operation, then they were changed to monthly re-
cordings. In addition, weekly measurements of the temperatures on 293 m a.s.l., the water
level and the total displacement of pendulum P1 in radial direction were provided.

The reservoir is operated as daily storage with a water level always closed to the full
supply level (Fig. A.24). The minimum operation level was never reached during the
measurement period. Thus, the temperature change has the dominating effect on the
displacement. Moreover, there is a clear trend into the upstream direction when looking
at the raw data of P1 at crest level in radial direction (Fig. A.24a).

MOL 275 m a.s.l.

FSL 300 m a.s.l.

293 m a.s.l. T1- T4

284 m a.s.l. T1- T5

272 m a.s.l. T1- T5

260 m a.s.l. T1- T5

296 m a.s.l.

267 m a.s.l.

303 m a.s.l.

279 m a.s.l.

251 m a.s.l.

226 m a.s.l.

a) b)

concrete temperature sensors
water temperature sensor

pendulum readings

air temperature sensor

pendulum

inverted rock pendulum

P1 P2

Fig. A.23 Measurement set up of arch dam A1 a) cross section of main section b) front view from
upstream side.
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Fig. A.24 Time series of arch dam A1: a) displacement dP1,296.rad in radial direction at crest level
(296 m a.s.l.), b) water level hw and c) temperature T293,4 with a distance of 0.20 m to
the downstream surface.

A.5.4 Arch dam A2

The double curved arch dam A2 has a height of 180 m in the main section and a crest
length of 554 m. A data set from 1976 until today with monthly measurement readings
was provided by the operator. The displacement is measured by three pendulum lines
(PII, PIII and PV) on several levels in radial and tangential direction (Fig. A.25). There
are several temperature sensors on five levels.

Arch dam A2 was built in the 1970s. Since 2009, construction works for a large pumped
storage power plant where the reservoir of arch dam A2 is used as a lower basin are
taking place. For this reason, the reservoir was emptied to a lower level that was usual in
spring time only beforehand (Fig. A.26b). The effect of these reservoir lowerings can be
recognised in the pendulum displacement. In Fig. A.26a, the radial displacement of PIII
at crest level is exemplarily shown.
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Fig. A.25 Measurement set up of arch dam A2: a) cross section of main section, b) front view
from upstream side.
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Fig. A.26 Time series of measurements of arch dam A2: a) displacement dPIII,296.rad in radial
direction at crest level (296 m a.s.l.), b) water level hw and c) temperature T299,5 0.50 m
away from the downstream surface.

A.5.5 Arch dam A3

The arch dam A3 has a height of 111 m in the main section and a crest length of 320 m.
The dam was built in the 1960s. The displacement is monitored by four pendulum lines
with measurements in radial and tangential direction on several levels (Fig. A.27). All of
them were provided by the operator. In Fig. A.28a the time series of pendulum P12 in
radial direction at crest level is exemplary shown. A clear seasonal pattern can be recog-
nised. In addition, the time series of the total drainage flow Qtot measured at the bottom
(Fig. A.28b), the water level (Fig. A.28c) and 12 temperature readings are provided. Nine
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thermometers are placed in the concrete on three levels with three thermometers each. In
addition, two water temperature (226 and 266 m a.s.l.) and one air temperature sensor are
installed. All the measurements are taken 19 times per year with a time step between two
and four weeks usually.

FSL 300 m a.s.l.

MOL 209 m a.s.l.

255 m a.s.l. T1- T3

276 m a.s.l. T1- T3

P4 P9 P12 P16
a) b)

261 m a.s.l.
240 m a.s.l.

219 m a.s.l.
198 m a.s.l.

170 m a.s.l.

282 m a.s.l.

pendulums

251 m a.s.l.

297 m a.s.l. T1- T3

Qtot
concrete temperature sensors

water temperature sensorspendulum readings
air temperature sensor

Fig. A.27 Measurement set up of arch dam A3: a) cross section of main section with pendulum
line P12 and b) front view from upstream side.
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Fig. A.28 Measurement time series of arch dam A3: a) displacement dP12,301.rad in lake-valley
direction at 301 m a.s.l., b) total drainage flow Qtot at the dam toe, c) water level hw
and d) temperature T299,3 with a distance of 0.88 m to the downstream surface.
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A.5.6 Arch dam A4

The 1970’s built arch dam A4 is 131 m high in the main section and it has a crest length of
725 m (Fig. A.29). The data set reaches over seven years from 1992 - 1998. Despite the
short time span, many recordings are available since the measurements are taken daily.
The provided data set comprises of a pendulum line measured displacement at crest level
(Fig. A.30a), the water level (Fig. A.30b) and six time-series of temperature readings on
two levels (Fig. A.30c).
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269 m a.s.l.

195 m a.s.l.
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Fig. A.29 Cross section of arch dam A4.
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Fig. A.30 Time series of arch dam A4: a) displacement dcr,rad in lake-valley direction at crest
level, b) water level hw and c) temperature T269,3 1.5 m away from the downstream
boundary.
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A.5.7 Arch-gravity dam AG1

The as yearly storage reservoir operated arch-gravity dam AG1 was built in the 1950’s.
The height in the main section is 130 m and the crest length measures 363 m. The dis-
placement of the dam is monitored by three pendulums (Fig. A.31) on several levels.
Furthermore, the water level and the concrete temperature on four levels is measured.
The data set from 1999 - 2014 provided by the operator contains bi-weekly measurement
recordings. Whereas the water level and the temperature (Fig. A.32a and b) show a clear
seasonal pattern, the pendulum displacement does not (Fig. A.32c).

FSL 300 m a.s.l.

MOL 209 m a.s.l.
232 m a.s.l.

273 m a.s.l.
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T1- T4

T1- T3
292 m a.s.l.

T1- T3

P9 P1 P6
a) b)

281 m a.s.l.

241 m a.s.l.
221 m a.s.l.
201 m a.s.l.

169 m a.s.l.
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pendulums

concrete temperature sensors
pendulum readings

Fig. A.31 Cross section of arch dam A4.
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Fig. A.32 Measurement time series of arch-gravity dam AG1: a) displacement dP1,302,rad in radial
direction at crest level, b) water level hw and c) temperature T292,3 with a distance of
2.2 m from the downstream boundary.
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A.5.8 Hollow gravity dam HG1

The hollow gravity dam HG1 was built in the 1950s. There are two other reservoirs in
the upper catchment area but a tributary flows into the reservoir. The main use of the
dam is for pumped storage and flow regulation. Measurement data from 1999 - 2014 with
monthly recordings were provided for this analysis. There are 14 temperature sensors, all
of them are located in the upper part of the dam (Fig. A.33). As for gravity dam G2, the
progress of the temperature measurement is distinctively seasonal and quite smooth due
to the monthly measurement frequency and the distance from the boundary. However, the
water level (Fig. A.34b) does not show a clear seasonal pattern. Since the displacement,
measured by two regular and one rock pendulum, shows a clear seasonal pattern, the
temperature seems to play a major effect. Furthermore, there is a clear visible irreversible
trend in the displacement at crest level (Fig. A.34a).

FSL 300 m.a.s.l.

1:0.76

302 m.a.s.l.

289 m.a.s.l.

279 m.a.s.l.

223 m.a.s.l.

182 m.a.s.l.

MOL 243 m.a.s.l.

pendulum

inverted rock pendulum

concrete temperature sensors
pendulum readings

297 m a.s.l. T1- T2
292 m a.s.l. T1- T3

280 m a.s.l. T1- T4

263 m a.s.l. T1- T5

Fig. A.33 Cross section of hollow gravity dam HG1
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Fig. A.34 Measurement time series of hollow gravity dam HG1: a) displacement d302,l�v in
lake-valley direction at crest level, b) water level hw and c) temperature T292,3 that is
1.3 m away from the downstream surface.
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A.6 Behaviour analysis

A.6.1 Observation prediction comparison
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Fig. A.35 Observed differences D of the HST model for gravity dam G2 for different calibration
periods shown by the grey background. The differences that are larger than the
estimated prediction band a95 are shown by red dots: a) original data; b) original data
with added shift of 1.2 mm on the 1.1.2006 to the pendulum displacement; c) original
data with added drift of 0.2 mm/a after 1.1.2006.
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Fig. A.36 Observed differences D of the HTT model for gravity dam G2 for different calibration
periods shown by the grey background. The differences that are larger than the
estimated prediction band a95 are shown by red dots: a) original data; b) original data
with added shift of 1.2 mm on the 1.1.2006 to the pendulum displacement; c) original
data with added drift of 0.2 mm/a after 1.1.2006.
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A.6.2 Adjusted behaviour indicator
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Fig. A.37 Observed adjusted behaviour indicator Mad j of the HST model for gravity dam G2 for
different calibration periods shown by the grey background: a) original data;
b) original data with added shift of 1.2 mm on the 1.1.2011 to the pendulum
displacement and c) original data with added drift of 0.2 mm/a after 1.1.2010.
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Fig. A.38 Observed adjusted behaviour indicator Mad j of the HTT model for gravity dam G2 for
different calibration periods shown by the grey background: a) original data;
b) original data with added shift of 1.2 mm on the 1.1.2011 to the pendulum
displacement and c) original data with added drift of 0.2 mm/a after 1.1.2010.
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A.6.3 Ridge regression

Table A.3 Results of hypothesis test done by MLR to find behaviour change for different
magnitudes of abnormal behaviour
(*** p<0.001; ** p<0.01; * p<0.05; . p<0.1).

dam drift shift season
model 0.50 0.75 1.00 1.25 1.50 0.50 0.75 1.00 1.25 1.50 0.50 0.75 1.00 1.25 1.50

G1 HTTdir * ** *** *** *** * ** *** *** * ** ***
HTTTm,Td * ** *** *** *** * ** *** *** * ** ***

G2 HTTdir * * ** *** *** . * ** *** * **
HTTTm,Td * ** *** *** *** . * ** *** . * **

A1 HTTdir * ** *** *** *** * ** ** *** * ** ***
HTTTm,Td * *** *** *** *** * ** *** *** * *

A2 HTTdir * ** *** *** * ** ** * **
HTTTm,Td * ** *** *** . * ** ** * ** ***

A3 HTTdir . ** *** *** *** . * ** ** * **
HTTTm,Td * ** *** *** *** . * ** *** * **

AG1 HTTdir * *** *** *** *** . * ** *** *** . * *** ***
HTTTm,Td * *** *** *** *** . * *** *** *** . ** *** ***

HG1 HTTdir . ** *** *** *** . * ** *** . * **
HTTTm,Td . ** *** *** *** . * ** *** . * **

A.6.4 Principal component regression

Table A.4 Results of hypothesis test done by PCR to find behaviour change for different
magnitudes of abnormal behaviour
(*** p<0.001; ** p<0.01; * p<0.05; . p<0.1).

dam drift shift season
model 0.50 0.75 1.00 1.25 1.50 0.50 0.75 1.00 1.25 1.50 0.50 0.75 1.00 1.25 1.50

G1 HTTdir * ** *** *** *** . ** ** *** * ** **
HTTTm,Td * ** *** *** *** * ** *** **** * ** ***

G2 HTTdir . * *** *** *** . * ** *** . * **
HTTTm,Td . ** *** *** *** . * ** ** . * **

A1 HTTdir * ** *** *** * * ** * *
HTTTm,Td . ** *** *** *** . * ** *** . * **

A2 HTTdir * ** *** *** * ** ** * *
HTTTm,Td * ** *** *** * ** ** . *

A3 HTTdir . ** *** *** *** * ** ** * *
HTTTm,Td . ** *** *** *** * ** ** * *

AG1 HTTdir * *** *** *** *** . * ** *** *** . * *** ***
HTTTm,Td * *** *** *** *** . * *** *** *** . ** *** ***

HG1 HTTdir . ** *** *** *** . * ** *** . * **
HTTTm,Td . ** *** *** *** . * ** *** . * **
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A.7 Case studies

A.7.1 Arch dam A2, measurement data
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Fig. A.39 Radial displacement of arch dam A2; a) pendulum PII; b) PIII; c) PV.
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Fig. A.40 Tangential displacement of arch dam A2; a) pendulum PII; b) PIII; c) PV.
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A.7.2 Arch dam A2, calculated displacements (output beam model)
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b)

Fig. A.41 Displacements of pendulum PII calculated by beam model: a) radial (blue);
b) tangential (red).
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Fig. A.42 Displacements of pendulum PIII calculated by beam model: a) radial (blue);
b) tangential (red)
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Fig. A.43 Displacements of pendulum PV calculated by beam model: a) radial (blue);
b) tangential (red)
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