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Abstract For a complex variety ̂X with an action of a reductive group ̂G and a
geometric quotient π : ̂X → X by a closed normal subgroup H ⊂ ̂G, we show that
open sets of X admitting good quotients by G = ̂G/H correspond bijectively to open
sets in ̂X with good ̂G-quotients. We use this to compute GIT-chambers and their
associated quotients for the diagonal action of PGL2 on (P1)n in certain subcones of
the PGL2-effective cone via a torus action on affine space. This allows us to represent
these quotients as toric varieties with fans determined by convex geometry.

Keywords Geometric invariant theory · Good quotients · Toric varieties · Variation
of GIT

Mathematics Subject Classification 14L24 · 14L30

1 Introduction

Let G be a reductive group acting on a variety X , then an important question in
Geometric Invariant theory is to classify the open G-invariant subsets U of X having
a good quotient under the action of G. Define
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U(X,G) =
{

U ⊂ X nonempty, open G-invariant such that a good
quotient U → U//G exists (in schemes over C)

}

, (1)

Upr
(X,G) =

{

U ⊂ X nonempty, open G-invariant such that a good
quotient U → U//G exists with U//G a projective variety

}

, (2)

Upr,g
(X,G) =

{

U ⊂ X nonempty, open G-invariant such that an affine, geometric
quotient U → U//G exists and such that U//G is a projective variety

}

.

(3)

In this note we describe a geometric situation, in which these collections of open sets
for two pairs (X,G), (̂X , ̂G) can be identified.

Definition 1 Let G, H be reductive, linear algebraic groups and let G act on a variety
X . A good (resp. geometric) H -lift of (X,G) is the data of

– a reductive algebraic group ̂G containing H as a closed normal subgroup together
with an identification ̂G/H = G,

– a variety ̂X with an action of ̂G,
– a morphism π : ̂X → X , which is

• ̂G-equivariant with respect to the action of ̂G on X induced by the action of G
and the morphism ̂G → ̂G/H = G,

• a good (resp. geometric) quotient for the induced action of H on ̂X .

Then we prove the following

Theorem 1 Let π : ̂X → X be a good H-lift of (X,G) for X a variety with an
action of the reductive group G. Then the map U �→ π−1(U ) induces an injection
U(X,G) → U(̂X ,̂G). Moreover, for U ∈ U(X,G) the map π induces a natural isomor-

phism π−1(U )//̂G ∼= U//G. Thus we also get an injection Upr
(X,G) → Upr

(̂X ,̂G)
.

If π is a geometric H-lift, the correspondence above is a bijection and it induces a
bijection Upr,g

(X,G) → Upr,g
(̂X ,̂G)

.

It has already been observed by various authors (see Białynicki-Birula 2002, Theorem
6.1.5 for an overview) that for a geometric H -lift π : ̂X → X a G-invariant open
subset U ⊂ X has a good/geometric quotient by G iff π−1(U ) has a good/geometric
quotient by ̂G. Below we give a self-contained argument that also includes the case
of good H -lifts.

The structure of the paper is as follows: as a motivation for the definition of Upr
(X,G),

we show in Sect. 2 how its elements relate to G-linearized line bundles on X for
X a smooth variety. This makes a connection to the classical approach of Mumford
et al. (1994), obtaining (semi)stable sets from linearized line bundles. We give two
special situations where we can identify the elements of Upr,g

(X,G) with chambers of the

G-effective cone in NSG(X):

– for X a projective homogeneous variety, G reductive,
– for X = A

n and G = T a torus acting linearly.

In Sect. 3 we give the proof of Theorem 1 and describe situations where H -lifts appear
naturally. Moreover we show that H -lifts where the action of H on ̂X is free give an
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identification PicG(X) ∼= PiĉG(̂X) compatible with forming semistable sets. Finally
in Sect. 5we give explicit examples, showing firstly how to compute parts of theVGIT-
decomposition of the G-effective cone for the componentwise action of G = PGL2
on (P1)n using toric quotients. We also show how the classical Gelfand–MacPherson
correspondence fits into our framework.

Conventions

In the paper we are going to work over the complex numbers. For us, a good quotient
of the action of an algebraic group G on a scheme X is a morphism p : X → Y to a
scheme Y satisfying

1. p is surjective, affine and H -invariant,
2. p∗(OG

X ) = OY , where OG
X is the sheaf of G-invariant functions on X ,

3. for Z1, Z2 ⊂ X closed, disjoint G-invariant subsets, their images p(Z1), p(Z2)

are also closed and disjoint.

On the other hand, for p to be a geometric quotient we require the properties above,
except that it is affine, but additionally we want the fibres of geometric points under
p to be orbits of G. This is the definition of Mumford et al. (1994).

2 Motivation: projective quotients from linearized line-bundles

Let X be a smooth, irreducible variety with an action of a connected reductive group
G. We want to study good quotients of open sets U ⊂ X by G which are projective
varieties.

Lemma 1 Let X be a smooth, irreducible variety with an action of a connected reduc-
tive group G. Then the open sets U in Upr

(X,G) are all of the form U = Xss(L) for a
G-linearized line bundle L on X.

Proof By Białynicki-Birula (2002, Theorem 6.1.5), all open G-invariant sets U ⊂ X
with a good quotient U//G that is a quasi-projective variety are saturated subsets of
some Xss(L) for L a G-linearized line bundle. Let π : Xss(L) → Xss(L)//G be the
corresponding good quotient. Then we haveU//G ⊂ Xss(L)//G contained as an open
subset. If U//G is in addition projective, this inclusion is an isomorphisms. But as U
is a saturated open subset, we have U = π−1(π(U )) = π−1(U//G) = Xss(L) as
claimed. �	
Remark 1 We can generalize the setting above to X being a normal variety if we work
withG-linearizedWeil divisors instead of line bundles, as described in Hausen (2004).
However, as our applicationsworkwith smooth X , we stay in themore classical setting
of line bundles.

An advantage of the condition “U//G is projective” in comparision with “U is
maximal with respect to saturated inclusion in U(X,G)” is that this can be verified
intrinsically only from the action of G onU (without reference to the ambient variety
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X ). Thus the definition of Upr is compatible with the restriction to open G-invariant
subsets in the following sense.

Corollary 1 Let X be a variety with an action of a reductive group G. Let U0 ⊂ X
be an open G-invariant subset. Then we have Upr

(U0,G) = Upr
(X,G) ∩ {U : U ⊂ U0}

(similarly for Upr,g).

In the following two sections, we are going to present situations where the depen-
dence of Xss(L) of L has been studied before and where the classes of G-linearized
line bundles are partitioned into cones on which Xss(L) is constant.

2.1 Actions of reductive groups on smooth projective varieties

Let X be an irreducible, smooth projective variety acted upon by a connected, reductive
linear algebraic group G. In this situation, Dolgachev and Hu defined in (1998) the
G-ample cone CG(X) ⊂ NSG(X)R inside the Neron-Severi group of G-linearized
line bundles. It is spanned by the homology classes ofG-linearized ample line bundles
L such that Xss(L) �= ∅. In Dolgachev and Hu (1998, Theorem 3.3.2), they show that
if this cone has nonempty interior, it contains open chambers such that two elements
L , L ′ ∈ CG(X) are in the same chamber σ iff we have

Xss(L) = Xs(L) = Xs(L ′) = Xss(L ′) =: Xss(σ ).

Furthermore, as X is projective, for any L in a chamber as above, we have that
Xss(L)//G is projective. This shows that the set of chambers of CG(X) injects into
Upr,g

(X,G) by sending a chamber σ to Xss(σ ). Note however, that this inclusion can be

strict: in Białynicki-Birula and Święcicka (1989) the authors give an example of a
smooth projective variety X with an action of a torus T together with an open set
U ⊂ X , which has a projective geometric quotientU//T but is not of the form Xs(L)

for L ample and G-linearized. For a treatment of the behaviour of Xss(L) when L is
outside the ample cone see Berchtold and Hausen (2006).

However, for certain special varieties X the correspondence between chambers of
CG(X) and elements of Upr,g

(X,G) is bijective.

Proposition 1 Let X be an irreducible, smooth projective variety acted upon by a
connected, reductive linear algebraic group G. Assume that every effective divisor is
semiample (i.e. some positive power is base-point free) and that CG(X) has nonempty
interior with all walls having positive codimension. Then the chambers of CG(X) are
in bijection with Upr,g

(X,G) via σ �→ Xss(σ ).

Proof Let U ∈ Upr,g
(X,G) then we need to show that U is of the form U = Xs(L ′) =

Xss(L ′) for some ample G-linearized line bundle L ′. By Lemma 1 a priori we only
know that U = Xss(L) for some G-linearized (not necessarily ample) L . As U →
U//G is a geometric quotient, all orbits in U are fibres of this map and hence closed,
so U = Xs(L) = Xss(L). As U is nonempty, the bundle L must have at least one
section, so its associated divisor is effective and thus semiample by assumption.
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We want to show that for m sufficiently large and a suitable L0 in the interior of
CG(X) the line bundle L ′ = L⊗m ⊗ L0 satisfies U ⊂ Xs(L ′) = Xss(L ′). Then as in
the proof of Lemma 1 we see that this inclusion is already the identity. But as such
L ′ are ample and G-effective, this finishes the proof. In the following, we can use the
Hilbert-Mumford criterion to determine the (semi)stable points of L ′.

For this recall from Dolgachev and Hu (1998, Section 1.1) the construction of the
function M•(x) : PicG(X)R → R for x ∈ X . To define it let λ : C

∗ → G be a
1-parameter subgroup of G then, as X is proper, the map C

∗ → X, t �→ λ(t).x has
a limit z over t = 0. The point z is fixed by λ and for L ∈ PicG(X), C

∗ acts on the
fibre Lz of L over z with weight r =: μ(x, λ). Let T be a maximal torus in G and
let ‖ ‖ be a Weyl-invariant norm on the group of 1-parameter subgroups of T tensor
R. Then for any 1-parameter subgroup λ of G define ‖λ‖ to be the norm of a suitable
conjugate of λ contained in T . We set

ML(x) = sup
λ 1-PSG of G

μL(x, λ)

‖λ‖ .

By Dolgachev and Hu (1998, Lemma 3.2.5) the function M•(x) factors through
NSG(X)R and satisfies

ML1+L2(x) ≤ ML1(x) + ML2(x), MmL(x) = mML(x)

for L1, L2 ∈ PicG(X), m > 0. For L ′ ample G-linearized, x is semistable (properly
stable) with respect to L ′ iff ML ′

(x) ≤ 0 (ML ′
(x) < 0).

For our given L , we first show that ML(x) < 0 for all x ∈ Xs(L). Observe that as
L is semiample, by (Ressayre 2010, Corollary 1) there exists a 1-parameter subgroup
λ of G with ML(x) = μL(x, λ)/‖λ‖. Thus it suffices to show μL(x, λ) < 0 for all 1-
parameter subgroups λ. As x is stable, there exists an invariant section s of some tensor
power of L with x ∈ Xs and Gx ⊂ Xs closed. We claim that then z = limt→0 λ(t)x
is not contained in Xs . Indeed assume otherwise, then z ∈ Gx ∩ Xs = Gx , so z = gx
for some g ∈ G. However then the stabilizer Ggx contains all of λ(C∗), so it is not
finite. But then also the stabilizer of x is not finite and we obtain a contradiction, as
our assumptions imply that all stable points are properly stable.1 We conclude that
s(z) = 0 and by Ressayre (2010, Proposition 1) this implies μ(x, λ) < 0.

Let L0 ∈ CG(X) such that for all 0 < r � 1 we have that L + r L0 is contained in
a chamber of CG(X). As there are only finitely many walls (Dolgachev and Hu 1998,
Theorem 3.3.3), which are all of positive codimension, such L0 exist. For m � 0 an
integer, we have that L ′ = L⊗m ⊗ L0 is ample and for a fixed x ∈ Xs(L) we know

ML ′
(x) ≤ mML(x) + ML0(x).

1 In Dolgachev and Hu (1998) finiteness of stabilizers was part of the definition of a stable point.
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As ML(x) < 0 we can choose m sufficiently big such that ML ′
(x) < 0 and hence

x ∈ Xs(L ′). The subsets

Ym = Xs(L)\Xs(L⊗m ⊗ L0)

form a descending chain of closed subsets of Xs(L) and for all x ∈ Xs(L) there
exists m with x /∈ Ym . By Noetherian induction we can thus choose m0 such that
U = Xs(L) ⊂ Xs(L⊗m ⊗ L0) for all m ≥ m0. But by the choice of L0 we have that
L ′ = L⊗m ⊗ L0 is contained in a chamber of CG(X) for m sufficiently large. �	
The condition that every effective divisor D is semiample is for instance satisfied for
homogeneous projective varieties X = G/P . Indeed, in this case

G �→ Pic(X), g �→ O(g.D),

where g.D is the translate of D by g, is a family of line bundles over G. By Popov
(1974, Proposition 7), Pic(X) is discrete and hence the map above is constant and
equal to O(D). But as the G-translates of X\D cover X , this shows that O(D) is
base-point free.

Note that spaces of the form G/P are examples of Mori dream spaces, since in
particular they are spherical varieties. Mori dream spaces have been introduced in Hu
and Keel (2000) and their Geometric Invariant theory admits a description via their
Cox ring (see Arzhantsev and Hausen 2009).

2.2 Toric quotients of affine space

In this section, we explain how for linear actions (C∗)n � C
r we can compute open

sets in U(Cr ,(C∗)n) via elementary and algorithmically accessible operations involving
fans and polyhedra. We closely follow Cox et al. (2011, Section 14) in notation and
presentation.

Let an algebraic torusG = (C∗)n act faithfully, linearly on the affine space X = C
r .

By a suitable change of coordinates, we may assume that G acts by diagonal matrices.
For t = (t1, . . . , tn) ∈ G and β = (β1, . . . , βn) ∈ Z

n write

tβ = tβ
1

1 tβ
2

2 · · · tβn

n .

Then after coordinate change, the action of t ∈ G on x ∈ C
r is given by

t.x = diag(tβ1 , . . . , tβr )x

for integer vectors β1, . . . , βr ∈ Z
n . Note that via the identification of Z

n with the
character group ̂G of G, the βi are simply the restrictions of the characters t �→ ti of
(C∗)r along the map (C∗)n → (C∗)r ⊂ GL(Cr ) specifying the action. Let

γ : Z
r ∼= (̂C∗)r → ̂G ∼= Z

n

123



Beitr Algebra Geom (2018) 59:343–360 349

be this restrictionmap (such that γ (ei ) = βi ). The assumption that the action is faithful
implies that γ is surjective (Cox et al. 2011, Lemma 14.2.1). Let δ : M → Z

r be the
kernel of γ . Setting N = Hom(M, Z), the map δ is given by

δ(m) = (〈m, ν1〉, . . . , 〈m, νr 〉)

for some ν1, . . . , νr ∈ N . Below we will see that the vectors β1, . . . , βr control the
linearizations and GIT-chambers for quotients ofC

r byG and these quotients are toric
varieties of fans in NR = N⊗ZRwith rays spanned by some of the vectors ν1, . . . , νr .

For this note that, as all line bundles on C
r are trivial, the G-linearized line bundles

L = C
r × C → C

r are specified by characters χ ∈ ̂G via

t.(x, y) = (t.x, χ(t)y), with t ∈ G, x ∈ C
r , y ∈ C.

Denote by (Cr )ssχ , (Cr )sχ the (semi)stable points with respect to these linearizations
and by C

r//χG the categorical quotient of (Cr )ssχ by G. Let ̂GR = ̂G ⊗Z R and let
Cβ ⊂ ̂GR be the cone spanned by β1 ⊗ 1, . . . , βr ⊗ 1. Note that as γ was surjective,
we have dim Cβ = dim ̂GR. Then we have the following results:

1. The set (Cr )ssχ of semistable points is nonempty iff χ ⊗ 1 ∈ Cβ (Cox et al. 2011,
Proposition 14.3.5).

2. The set (Cr )sχ of stable points is nonempty iff χ ⊗ 1 is in the interior of Cβ (Cox
et al. 2011, Proposition 14.3.5).

3. The quotient C
r//χG is projective for some χ ⊗ 1 ∈ Cβ iff all βi are nonzero and

Cβ is strongly convex (i.e.Cβ ∩(−Cβ) = {0}). In this case all nonempty quotients
C
r//χG are projective (Cox et al. 2011, Proposition 14.3.10).

4. We have (Cr )sχ = (Cr )ssχ iff χ ⊗1 does not lie on a coneCβ ′ generated by a subset
β ′ of the βi with dim Cβ ′ < dim Cβ (Cox et al. 2011, Theorem 14.3.14).

In fact the behaviour of (Cr )ssχ as χ ⊗ 1 varies in Cβ is completely determined by
the so-called secondary fan ΣGKZ (see Cox et al. 2011, Theorem 14.4.7). This is a
rational fan in ̂GR with support Cβ such that (Cr )ssχ is constant for χ ⊗ 1 moving in
the relative interior of any of the cones σ ∈ ΣGKZ.

Let χ ∈ ̂G∩Cβ be given by χ = ∑r
i=1 aiβi , i.e. χ = γ (a). Define the polyhedron

Pa = {m ∈ MR : 〈m, νi 〉 ≥ −ai , 1 ≤ i ≤ r} ⊂ MR = M ⊗Z R.

Let Σχ be the normal fan of Pa (see (Cox et al. 2011, Proposition 14.2.10), then it
is independent of the choice of a ∈ γ −1(χ) and we have that the quotient C

r//χG is
isomorphic to the toric variety associated to Σχ (Cox et al. 2011, Theorem 14.2.13).

Moreover, we have an explicit description of the set (Cr )ssχ of semistable points.
Set

I∅,χ = {i ∈ {1, . . . , r} : Pa ∩ {m : 〈m, νi 〉 = −ai } = ∅}.
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Define the ideal

B(Σχ, I∅,χ ) =
⎛

⎝

∏

i /∈I∅,χ :νi /∈σ

xi : σ ∈ Σχ

⎞

⎠ ·
⎛

⎝

∏

i∈I∅,χ

xi

⎞

⎠

in C[x1, . . . , xr ]. Then (Cr )ssχ = C
r\V (B(Σχ, I∅,χ )) (Cox et al. 2011, Corollary

14.2.22).
In fact, the fanΣχ and the set I∅,χ of indices is also constant on the relative interior

of the cones of ΣGKZ and these cones are uniquely indexed by this data and written
as ΓΣ,I∅ .

Proposition 2 The map ΣGKZ → U(Cr ,G) associating to a cone ΓΣ,I∅ the set (Cr )ssχ
for any χ ⊗ 1 in the relative interior of ΓΣ,I∅ is well-defined and injective.

If all vectors βi are nonzero and the cone Cβ is strongly convex, the map above is
a bijection from ΣGKZ to Upr

(Cr ,G)
sending chambers to elements of Upr,g

(Cr ,G)
.

Conversely, every U ∈ U(Cr ,G) is a saturated open set of some (Cr )ssχ .

Proof We have already remarked that in the relative interior of σ , the set (Cr )ssχ is
constant, so we show injectivity. Assume that ΓΣ,I∅ and ΓΣ ′,I ′∅ map to the same set
U of semistable points. Then the vanishing ideal I of C

r\U is the radical of the
ideals B(Σ, I∅), B(Σ ′, I ′

∅) as defined above. But as these two are ideals generated by
square-free monomials, they are already radical [see for instance (Herzog and Hibi
2011, Corollary 1.2.5), so B(Σ, I∅) = B(Σ ′, I ′

∅). By Cox et al. (2011, Corollary
14.4.15) this implies ΓΣ,I∅ = ΓΣ ′,I ′∅ .

The additional conditions on theβi guarantee that all quotients (Cr )ssχ //G forχ⊗1 ∈
Cβ are projective. Assume conversely that we haveU ∈ Upr,g

(Cr ,(C∗)n), then by Lemma 1
it is of the form U = Xss(L) for L a G-linearized line bundle corresponding to the
character χ of G. As this set is nonempty, we have χ ⊗ 1 ∈ Cβ and as the fan ΣGKZ
has support Cβ , it is contained in the relative interior of one of its cones.

The last statement above is again Lemma 1. �	
Remark 2 Let us remark here that the above discussion could be carried out more
generally for torus actions on factorial affine varieties, see (Berchtold and Hausen
2006, Section 2). In this case, the GIT fan also has a simple description and explicit
computation, see Keicher (2012).

3 Properties of H-lifts

We are now ready to prove Theorem 1. For this, we need the following technical result,
which we prove here in lack of a good reference.

Lemma 2 Let π : Z → X be a surjective morphism of schemes with X reduced.
Then π is an epimorphism, i.e. two maps ϕ1, ϕ2 : X → Y to some scheme Y agree iff
ϕ1 ◦ π = ϕ2 ◦ π . In particular, good quotients of reduced schemes are epimorphisms.

Proof For morphisms ϕ1, ϕ2 as above we have a fibred diagram
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W Y

X Y × Y

δY
(ϕ1,ϕ2)

where δY is the diagonal map of Y , which is a locally closed embedding. In particular
W → X is also a locally closed embedding. Assume that ϕ1 ◦ π = ϕ2 ◦ π , then by
definition the map π factors throughW → X . In particular,W → X is surjective and
hence a closed embedding. But as X is reduced, this means that it is an isomorphism.
Then the diagram above shows that ϕ1 = ϕ2. In particular, if π is a good quotient and
Z is reduced, so is X and thus the assumptions above are satisfied.

Proof of Theorem 1 We first note that as π is surjective, the G-invariant subsets U of
X inject via π−1 into the ̂G-invariant subsets ̂U of ̂X . If π is a geometric quotient this
is a bijection with inverse map given by ̂U �→ π(̂U ). This is well-defined because π

sends open H -invariant sets to open sets and it is an inverse to π−1 as the fibres of π

are orbits.
Before we continue, recall the following fact, which is Lemma 5.1 in Ramanathan

(1996). Let a reductive algebraic groupG ′ act on schemes Y, Z . If Y → Z is an affine,
G ′-equivariant morphism and Z → Z//G ′ is a good quotient, then Y also has a good
quotient Y → Y//G ′ and the induced morphism Y//G ′ → Z//G ′ is affine.

First assume that U ∈ U(X,G), so we have a good quotient U → U//G = U//̂G.
The map π |π−1(U ) is ̂G-equivariant and affine. Then by the result above, π−1(U ) has
a good quotient π−1(U )//̂G, which maps to U//G via a map ψ . We want to show ψ

is an isomorphism, so we construct an inverse ϕ. The H -invariant map π−1(U ) →
π−1(U )//̂G factors uniquely through amapϕ′ : U → π−1(U )//̂G asπ is a categorical
H -quotient and ϕ′ is G-invariant. But asU → U//G is a quotient for the G-action on
U , the map ϕ′ factors uniquely through some map ϕ : U//G → π−1(U )//̂G. We can
write the following commutative diagram

π−1(U ) U π−1(U ) U

π−1(U )//̂G U//G π−1(U )//̂G U//G

π

ϕ′

ϕ ψ ϕ

Via diagram chase and using that good quotients of reduced schemes are epimorphisms
(Lemma 2), we conclude that ϕ ◦ ψ and ψ ◦ ϕ are both the identity on their domains.

IfU → U//G and π are geometric quotients, then the preimage of some geometric
point p ∈ U//G inU is a G-orbit and thus its preimage in π−1(U ) is a ̂G-orbit, hence
π−1(U ) → U//G is a geometric quotient.

Now assume that π−1(U ) has a good quotient map π−1(U ) → π−1(U )//̂G. For
the trivial H -action on the latter space, this is a H -equivariant affine map and clearly
the identity on π−1(U )//̂G is a good quotient for the trivial H -action. Thus by the
result from Ramanathan (1996), the H -action on π−1(U ) has a good quotient (which
is isomorphic to U , as π is a good H -quotient) and the map ψ : U → π−1(U )//̂G is
affine. To show that it is a good quotient, we consider the diagram
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π−1(U ) U

π−1(U )//̂G

π

ψ

and use that π is an epimorphism to show that ψ is surjective, G-invariant and sends
disjoint closed G-invariant sets to disjoint closed sets. Given a G-invariant local func-
tion f on U , the function f ◦ π is ̂G-invariant, so it factors uniquely through some
function g on π−1(U )//̂G. Again using that π is an epimorphism, we see f = g ◦ ψ ,
so indeed f factors through π−1(U )//̂G. Thus ψ is a good G-quotient.

If π−1(U ) → π−1(U )//̂G is a geometric quotient, its geometric fibres are orbits
of ̂G, so the fibres in U are G-orbits and thus ψ is a geometric quotient. �	
Insteadof looking at the correspondence of open sets admitting a goodquotient induced
by H -lifts, we can also directly consider the behaviour of equivariant Picard groups
and the corresponding (semi)stable sets. Here we have the following result.

Proposition 3 Let π : ̂X → X be a good H-lift of (X,G) for X a variety with an
action of the reductive group G. Then pullback by π induces an map π∗ : PicG(X) →
PiĉG(̂X) and we have

̂Xss(π∗L) = π−1(Xss(L))

for L ∈ PicG(X). If π is a geometric H-lift and H acts freely on ̂X, the map π∗ is an
isomorphism.

Proof Via the map ̂G → G = ̂G/H we have a natural map PicG(X) → PiĉG(X) by
extending aG-action on a line bundle L to a ̂G-action. For the ̂G-equivariantmorphism
π we then have a natural pullback map PiĉG(X) → PiĉG(̂X) and the map π∗ above
is the composition of these two homomorphisms.

Fix L (the total space of) a G-linearized line bundle on X and let p : L → X be
the corresponding G-equivariant morphism. Then we have a cartesian diagram

π∗(L) L

̂X X

p̂ p

π

where all maps are ̂G-equivariant. Now G-invariant global sections of L are G-
equivariant sections of p and those correspond bijectively to ̂G-equivariant sections of
p̂, i.e. global sections of π∗(L). Here we use that π is a categorical H -quotient. Thus
π∗ induces a natural isomorphism Γ (L)G ∼= Γ (π∗(L))

̂G . Of course this argument
also works after replacing L by L⊗k for k ≥ 1.

Now let x ∈ Xss(L), then there exists a G-invariant section s of some L⊗k with
x ∈ Xs = {x ′ : s(x ′) �= 0} and Xs is affine. But then π∗s is a ̂G-invariant section of
π∗L⊗k and ̂Xπ∗s = π−1(Xs) is affine as π is an affine morphism. Hence all elements
of π−1(x) are π∗(L)-semistable.
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Conversely for x̂ ∈ ̂Xss(π∗L) there exists a ̂G-invariant section ŝ of some π∗L⊗k

with x̂ ∈ ̂Xŝ and ̂Xŝ affine. By the argument above, ŝ = π∗s for some G-invariant
section s of L⊗k and we only need to show Xs affine. But clearly ̂Xŝ → Xs is a
categorical quotient of the affine variety ̂Xŝ by H and thus Xs is affine by (Mumford
et al. 1994, Theorem 1.1). Hence π(̂x) is L-semistable.

If the action of H is free on ̂X , by Mumford et al. (1994, Proposition 0.9) the map
π is a fppf-locally trivial H -torsor. The fact that π∗ is an isomorphism PicG(X) →
PiĉG(̂X) then follows from descent along torsors. A concise way to put the proof,
using the language of stacks, is the following: the fact that π is a H -torsor implies
that there is a canonical isomorphism X ∼= [̂X/H ]. Taking the quotient stack under
the actions of G = ̂G/H on both sides we have

[X/G] ∼= [[̂X/H ]/(̂G/H)] ∼= [̂X/̂G],

where in the last isomorphism we use Romagny (2005, Remark 2.4). Taking Picard
groups on both sides we see

PicG(X) = Pic([X/G]) ∼= Pic([̂X/̂G]) = Pic
̂G(̂X)

and this isomorphism is exactly given by pullback via π . �	

In the example presented in Sect. 5, all H -lifts that are used will come from a free
H -action on ̂X , so we have isomorphisms of Picard groups as above.

4 Applications

In this section we will see several situations, where H -lifts naturally appear and thus
allow us to conclude results about the chamber-decompositions of G-effective cones.

4.1 Partial quotients

One possibility to construct H -lifts is basically a reformulation of the definition.

Proposition 4 Let ̂X be a variety acted upon by a reductive group ̂G and assume a
closed, normal subgroup H ⊂ ̂G acts on ̂X with a good (resp. geometric) quotient
π : ̂X → X, where X is a variety. Then X carries an induced action of ̂G/H making
(̂X , ̂G) a good (resp. geometric) H-lift of (X, ̂G/H).

Combined with Corollary 1, this tells us the following: assume we are given a ̂G-
action on ̂X and a closed normal subgroup H of ̂G acting on the open, ̂G-invariant set
U0 ⊂ ̂X with geometric quotientU0//H . Then the open setsU ∈ Upr,g

(̂X ,̂G)
contained in

U0 are in bijection with Upr,g
(U0//H,̂G/H)

, which is a problem on a smaller-dimensional
variety.
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4.2 Morphisms to homogeneous spaces

Proposition 5 Let a reductive group G act on an irreducible variety X and assume
we are given a G-equivariant morphism ϕ : X → Z to a homogeneous G-space Z
(i.e. the action of G on Z is transitive). Let z0 ∈ Z be a closed point and let H = Gz0
be its stabilizer in G, which we assume to be reductive. Consider the variety

̂X = {(g, x) : ϕ(gx) = z0} ⊂ G × X

with the action of G × H given by

(g′, h).(g, x) = (hg(g′)−1, g′x).

Then the projection

πX : ̂X → X, (g, x) �→ x

makes (̂X ,G × H) a geometric H-lift for (X,G). On the other hand, for Y =
π−1(z0) ⊂ X with the induced action of H = Gz0 , the map

πY : ̂X → Y, (g, x) �→ gx

makes (̂X ,G × H) a geometric G-lift of (Y, H).

Proof By definition of Y and ̂X , we have cartesian diagrams

̂X Y {z0}

G × X X Z

πY

σ ϕ

(4)

where σ is the action map of G on X . As we are in characteristic zero and as G × X
and X are irreducible, the fibres of the generic point ηZ of Z under ϕ and ϕ ◦ σ

are geometrically reduced. Hence by Grothendieck (1966, Theorem 9.7.7), the set of
closed points in Z whose fibre under ϕ and ϕ ◦σ is geometrically reduced is open and
nonempty. But because the G-action on Z is transitive, all these fibres are isomorphic
to Y and ̂X , respectively. Thus these are varieties over C.

From the formula for the action of G× H on ̂X , it is clear that the maps πX , πY are
G×H -equivariant for the induced actions ofG = G×H/H on X and H = G×H/G
on Y .

For the map πX , observe that we can obtain it using a different cartesian diagram,
namely

̂X G

X Z

πX ψ

ϕ
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where ψ(g) = g−1z0. Clearly ψ is a fpqc-locally trivial H -torsor representing Z
as the quotient G/H . But then its base change πX via ϕ is still a fpqc-locally trivial
H -torsor and thus a geometric quotient.

On the other hand, for πY we see from the diagram (4) that it is a base change of
the map σ , which clearly is a (trivial) G-torsor (using the automorphism (g, x) �→
(g, g−1x) of G × X ). Thus it is a (trivial) G-torsor itself and hence a geometric
quotient. �	
Using Theorem 1 we see that given a G-action on a variety X and a subset Y of
X obtained as the fibre of an equivariant map to a G-homogeneous space, we have
a bijection between U(X,G) and U(Y,GY ), where GY is the subgroup of G leaving Y
stable.

Note that in Białynicki-Birula (2002, Definition 15.1) a subvariety Y ⊂ X such
that for all y ∈ Y we have H = {g ∈ G : gy ∈ Y } is called a strong H -section of
X . If X is normal, (Białynicki-Birula 2002, Lemma 15.2) says that for such a Y the
morphism G ×H Y → X given by [(g, y)] �→ gy is a G-isomorphism. Using this
isomorphism, we have aG-equivariant projection X ∼= G×H Y → G/H with fibre Y
over [e] ∈ G/H , placing us in the situation of Proposition 5. Again it has been noted
before that Y has a good/geometric H -quotient iff X has a good/geometric G-quotient
(Białynicki-Birula 2002, Corollary 15.3).

5 Examples

5.1 Diagonal action of PGL2 on (P1)n

To illustrate how the techniques above can be used in practice, consider the diagonal
action of G = PGL2 on X = (P1)n . We demonstrate how some of the chambers of
the G-effective cone can be related to chambers of the cone Cβ for a linear action of
(C∗)n−1 on C

2n−4. Here we can compute the chamber decomposition as well as the
resulting quotient varieties using the toric methods we recalled in Sect. 2.2.

The action of G on X has been intensely studied in the past (Kirwan et al. 1987;
Kapranov 1993; Mumford et al. 1994; Polito 1995; Hassett 2003). The line bundle
O(a1, . . . , an) on X carries a (unique) G-linearization iff the sum of the ai is even, so

PicG(X) ∼=
{

(a1, . . . , an) ∈ Z
n :

n
∑

i=1

ai ≡ 0 mod 2

}

⊂ Z
n

and the effective cone is given by

(R≥0)
n ⊂ R

n = PicG(X)R.

We can analyze (semi)stability with respect to a given polarization using the Hilbert-
Mumford numerical criterion. For a = (a1, . . . , an) ∈ (Z>0)

n with |a| = ∑n
i=1 ai

even, a point p = (p1, . . . , pn) ∈ X is semistable with respect to O(a1, . . . , an) iff
for all p ∈ P

1 we have
∑

i :pi=p ai ≤ |a|/2. The point p is stable iff all inequalities
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above are strict. From this we see that the G-effective ample cone is given by

CG(X) =
⎧

⎨

⎩

(a1, . . . , an) ∈ R
n : 0 < ai ≤

∑

j �=i

a j

⎫

⎬

⎭

⊂ R
n .

The criterion above also gives an explicit identification of the VGIT-chamber structure
of CG(X). For S ⊂ {1, . . . , n} consider the half-space

HS =
⎧

⎨

⎩

(a1, . . . , an) ∈ R
n :

∑

i∈S
ai ≥

∑

i∈{1,...,n}\S
ai

⎫

⎬

⎭

⊂ R
n .

Then the hyperplanes corresponding to the half-spaces above divide CG(X) into con-
nected components, which are exactly the chambers of the VGIT-decomposition as in
Sect. 2.1.

Though it is easy to determine the various chambers, it is more difficult to compute
the quotients associated to them. In Kirwan et al. (1987), some of the quotients are
computed for n = 5, 6, 7, 8. Using the techniques from the previous sections, we are
able to compute these quotients for chambers contained in certain subcones ofCG(X).

For the notation below, recall from Sect. 2.2 that given an action of a torus T onC
k ,

the set of linearizations of the action is given by the character group ̂T . Inside ̂T ⊗ R

we have a fan ΣGKZ such that the set of χ -semistable points in C
k is constant as the

linearization χ varies in the relative interior of the cones of ΣGKZ, which are denoted
by ΓΣ,I∅ .

Theorem 2 Let S ⊂ {1, . . . , n} with |S| = 2, then the chambers σ of CG(X) con-
tained in HS are in bijective correspondence to the chambers ΓΣ,I∅ ∈ ΣGKZ for the
action of T = (C∗)n−1 on C

2n−4 given by

(t1, . . . , tn−2, s).(x1, y1, x2, y2, . . . , xn−2, yn−2)

= (t1x1, st1y1, t2x2, st2y2, . . . , tn−2xn−2, stn−2yn−2). (5)

Under this correspondence, the quotient variety associated to σ is the toric variety
associated to the fan Σ .

Proof Assume for simplicity of notation S = {1, 2} below. As X is smooth and as
every effective divisor is semiample on X , by Proposition 1 the chambers of CG(X)

are in bijection with the open sets in Upr,g
(X,G) by sending σ to Xss

σ . Now for any a ∈
CG(X) ∩ int(HS) and p ∈ X semistable with respect to a we know p1 �= p2 by
the Hilbert–Mumford criterion. Thus under the correspondence above, the chambers
contained in HS correspond to the subset

Upr,g
((P1)n\Δ12,G)

⊂ Upr,g
(X,G),

where Δ12 = {(p1, . . . , pn) : p1 = p2}. So the projection ϕ : (P1)n\Δ12 → P
1 ×

P
1\Δ = Z to the first two factors is a G-equivariant morphism to the homogeneous
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G-space Z . For z0 = ([0 : 1], [1 : 0]) ∈ Z , the stabilizer Gz0 is exactly the diagonal
torus

H = C
∗ =

{[(

1 0
0 a

)]

: a ∈ C
∗
}

⊂ PGL2.

By Proposition 5 we obtain a variety ̂X with an action of G × H which is a geometric
H -lift for (X,G) and a geometric G-lift for (ϕ−1(z0), H) = ((P1)n−2, C

∗). Here the
action of C

∗ on (P1)n−2 is given by

a.([x1, y1], . . . , [xn−2, yn−2]) = ([x1, ay1], . . . , [xn−2, ayn−2]).

By Theorem 1 the geometric H and G-lifts above give a natural bijection

Upr,g
((P1)n\Δ12,G)

= Upr,g
((P1)n−2,C∗).

We now approach the pair ((P1)n−2, C
∗) from a different angle. Of course the space

(P1)n−2 is a geometric quotient of (C2\{0})n−2 by (C∗)n−2 via the action

(t1, . . . , tn−2).(x1, y1, . . . , xn−2, yn−2)

= (t1x1, t1y1, t2x2, t2y2, . . . , tn−2xn−2, tn−2yn−2).

The action of C
∗ on (P1)n−2 lifts to a linear action on the prequotient C

2n−4, which
commutes with the action of (C∗)n−2 above and together they determine the action
of (C∗)n−1 given in (5). By Proposition 2 the chambers of the secondary fan ΣGKZ
for this toric action correspond to elements of Upr,g

(C2n−4,(C∗)n−1)
by sending a chamber

ΓΣ,I∅ to (C2n−4)ssχ = (C2n−4)sχ for any χ contained in this chamber.
However, for the action above no point (x1, y1, . . . , xn, yn) with xi = yi = 0 for

some i can be stable (with respect to any character) as it has nonfinite stabilizer. Thus
we have

Upr,g
(C2n−4,(C∗)n−1)

= Upr,g
((C2\{0})n−2,(C∗)n−1)

.

Using Proposition 4 the space ((C2\{0})n−2, (C∗)n−1) is a (C∗)n−2-lift of ((P1)n−2,

C
∗) as above, so we can identify

Upr,g
((P1)n−2,C∗) = Upr,g

((C2\{0})n−2,(C∗)n−1)
.

Combining the correspondences above (see also the diagram in Remark 3) we have
proved the claim. �	
Remark 3 In the situation of Theorem 2 we can not only relate chambers of the G-
effective cones for ((P1)n,PGL2) and (C2n−4, (C∗)n−1) abstractly but we can actually
find a linear map between the equivariant Picard groups inducing this correspondence.
Recall from Proposition 3 that for π : ̂X → X a geometric H -lift with respect to a
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free H -action, the pullback by π induces an isomorphism π∗ : PicG(X) → PiĉG(̂X)

with π−1(Xss(L)) = ̂Xss(π∗L) for L ∈ PicG(X). We illustrate again the course of
the proof of Theorem 2.

Both arrows at the bottom are (compositions of) geometric H -lifts for free H -actions,
so they induce isomorphisms of equivariant Picard groups compatible with forming
semistable sets.We have to see how the two inclusions at the top behave in this respect.

The inclusion (C2\{0})n−2 ⊂ C
2n−4 has complement of codimension 2, so it

induces isomorphisms of (equivariant) Picard groups and (invariant) sections of line
bundles. Also the complement of the inclusion above consists of points with nonfinite
stabilizers. So for every linearization on C

2n−4 such that stable and semistable points
agree, these sets are anyway contained in (C2\{0})n−2. Thus on the interior of the
chambers in Pic(C∗)n−1

(C2n−4)Q the isomorphism above respects the formation of
(semi)stable points. Note that this is not true for all linearizations: for the trivial
linearization all of C

2n−4 is semistable, but on (C2\{0})n−2 the trivial linearization
has no semistable points (as this variety is not affine).

For the other inclusion i : (P1)n\Δ12 ↪→ (P1)n we have

PicG((P1)n\Δ12)Q = PicG((P1)n)Q/QO(1, 1, 0, . . . , 0)

and i∗ is the corresponding quotient map. For any G-linearized line bundle L ′ on
(P1)n\Δ12, which is the restriction of a bundle L on (P1)n , any invariant section s′
of (L ′)⊗k extends to a section s of (L ⊗ O(m,m, 0, . . . , 0))⊗k vanishing on Δ12 for
m � 0 (take m greater than the order of the rational section s of L⊗k along Δ12).
Conversely, for L = O(a1, a2, . . . , an) on (P1)n with a1 + a2 > a3 + · · · + an we
consider again the Hilbert–Mumford criterion from above. For S ⊂ {1, . . . , n} and
ΣS(a) = Σs∈Sas − Σs /∈Sas we have

– ΣS(a) > 0 for 1, 2 ∈ S,
– ΣS(a) < 0 for 1, 2 /∈ S,
– ΣS(a) = ΣS(a + (m,m, 0, . . . , 0)) for 1 ∈ S, 2 /∈ S or 1 /∈ S, 2 ∈ S.

So we see that twisting L byO(m,m, 0, . . . , 0) does not change the set of semistable
points. In fact this shows that all cones of the VGIT-fan in PicG((P1)n)R with relative
interior strictly inside the interior of the half-space H{1,2} = {a : Σ{1,2} ≥ 0} have the
cone generated byO(1, 1, 0, . . . , 0) in their closure and thus as a face. Moreover, the
set of semistable points of L is contained in (P1)n\Δ12. All this shows that for any
L ∈ PicG((P1)n) and L ′ = i∗L its restriction to (P1)n\Δ12, we have

((P1)n\Δ12)
ss
L ′ = ((P1)n)ssL⊗O(m,m,0,...,0)
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for m � 0. To conclude, inside PicG((P1)n)R we have the subfan of the VGIT-
fan contained in H{1,2}. Via the map i∗ it maps to its quotient fan by the ray
Cone(O(1, 1, 0, . . . , 0)). Moreover, on the relative interior of the cones in the quotient
fan, the set of semistable points is constant and equal to the semistable points on the
cone in the preimage containing O(1, 1, 0, . . . , 0).

Remark 4 The linear action of T = (C∗)n−1 on C
2n−4 that arises above has been

studied in the Master thesis of the author. It arises as the canonical representation
of the toric variety Bln−2P

n−3 as a torus quotient of affine space with respect to a
symmetric linearization (i.e. the character (1, . . . , 1) of T ). In the thesis a family of
chambers of the secondary fan together with their quotients is explicitly identified.
The quotients occurring in this family are iterated projective P

1-bundles over some
BlkPn′−3 (k ≤ n′ − 2).

5.2 The Gelfand–MacPherson correspondence

The classical Gelfand–MacPherson correspondence (see Gelfand and MacPherson
1982; Kapranov 1993) is a relation between orbit spaces for the natural actions

PGLk � (Pk−1)n and (C∗)n � G(k, n),

where 2 ≤ k ≤ n and G(k, n) is the Grassmannian of k-planes in C
n .

To see how this fits into our framework let Mat(k, n) be the space of k×n-matrices
over C. It carries an action of GLk × (C∗)n−1, where GLk acts by multiplication from
the left and (C∗)n−1 acts by scaling of the columns 2, 3, . . . , n of the matrices. We
denote byΔ ⊂ GLk the diagonal one-parameter subgroup. Let Mat′(k, n) be the set of
matrices such that no column is equal to zero and let Mat0(k, n) be the set of matrices
of rank k.

Then we have the following diagram

where the vertical arrows are geometric quotients and in fact geometric H -lifts for
H = Δ × (C∗)n−1,GLk . Moreover, these groups H clearly act freely on Mat′(k, n),
Mat0(k, n), respectively. Applying Proposition 3 this means we have isomorphisms

PicPGLk ((Pk−1)n) ∼= PicGLk×(C∗)n−1
(Mat′(k, n)),

Pic(C∗)n−1
(G(k, n)) ∼= PicGLk×(C∗)n−1

(Mat0(k, n)),

compatible with the formation of semistable sets.
Finally, since Mat′(k, n),Mat0(k, n) both have complement of codimension at

least 2 in Mat(k, n), both groups on the right are canonically isomorphic to
PicGLk×(C∗)n−1

(Mat0(k, n)).
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Again we see that if for some GLk × (C∗)n−1-linearized line bundle L the stable
and semistable points of Mat(k, n) coincide, all such points must have finite stabilizer.
But this easily implies Mat(k, n)ss,L ⊂ Mat′(k, n) ∩ Mat0(k, n). Thus in particular
using Theorem 1 we have

(Pk−1)n//LPGLk ∼= G(k, n)//L(C∗)n−1.
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