
ETH Library

DOL-BIP-Critical: a tool
chain for rigorous design and
implementation of mixed-criticality
multi-core systems

Journal Article

Author(s):
Giannopoulou, Georgia; Poplavko, Peter; Socci, Dario; Huang, Pengcheng; Stoimenov, Nikolay; Bourgos, Paraskevas; Thiele,
Lothar; Bozga, Marius; Bensalem, Saddek; Girbal, Sylvain; Faugere, Madeleine; Soulat, Romain; Dupont de Dinechin, Benoît

Publication date:
2018-06

Permanent link:
https://doi.org/10.3929/ethz-b-000268885

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Design Automation for Embedded Systems 22(1), https://doi.org/10.1007/s10617-018-9206-3

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000268885
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1007/s10617-018-9206-3
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Des Autom Embed Syst (2018) 22:141–181
https://doi.org/10.1007/s10617-018-9206-3

DOL-BIP-Critical: a tool chain for rigorous design and
implementation of mixed-criticality multi-core systems

Georgia Giannopoulou1 · Peter Poplavko5 · Dario Socci5 · Pengcheng Huang1 ·
Nikolay Stoimenov1 · Paraskevas Bourgos6 · Lothar Thiele1 · Marius Bozga2 ·
Saddek Bensalem2 · Sylvain Girbal3 · Madeleine Faugere3 · Romain Soulat3 ·
Benoît Dupont de Dinechin4

Received: 27 November 2015 / Accepted: 5 April 2018 / Published online: 2 June 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Mixed-criticality systems are promoted in industry due to their potential to reduce
size, weight, power, and cost. Nonetheless, deploying mixed-criticality applications on com-
mercial multi-core platforms remains a highly challenging problem. To name a few reasons:

Peter Poplavko, Dario Socci and Paraskevas Bourgos—Ex-employees of VERIMAG (“The presented
research was performed while working at VERIMAG”).

B Georgia Giannopoulou
georgia.gn@gmail.com

Peter Poplavko
petro.poplavko@siemens.com

Dario Socci
Dario_Socci@mentor.com

Pengcheng Huang
pengcheng.huang@tik.ee.ethz.ch

Nikolay Stoimenov
nikolay.stoimenov@tik.ee.ethz.ch

Paraskevas Bourgos
bourgos@wings-ict-solutions.eu

Lothar Thiele
thiele@ethz.ch

Marius Bozga
marius.bozga@univ-grenoble-alpes.fr

Saddek Bensalem
saddek.bensalem@univ-grenoble-alpes.fr

Sylvain Girbal
sylvain.girbal@thalesgroup.com

Madeleine Faugere
madeleine.faugere@thalesgroup.com

Romain Soulat
romain.soulat@thalesgroup.com

Benoît Dupont de Dinechin
benoit.dinechin@kalray.eu

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10617-018-9206-3&domain=pdf
http://orcid.org/0000-0001-8739-3051

142 G. Giannopoulou et al.

(i) Industrial mixed-criticality applications are usually complex reactive applications, which
cannot be specified by traditional, e.g., dataflow-based, models of computation. Appropriate
mixed-criticality models of computation built upon Vestal’s assumptions are missing; (ii)
Scheduling such applications on multicores with shared resources, such as memory buses,
requires that any timing interference among applications of different criticality is bounded in
order to guarantee—the necessary for certification—temporal isolation and to enable incre-
mental design; (iii) The implementation of isolation-preserving mixed-criticality schedulers
is itself subject to certification. Hence, it needs to be not only efficient, but also provably cor-
rect. This paper proposes, for the first time, a complete design flow covering all aspects from
specification, using a novel mixed-criticality aware model of computation (DOL-Critical), to
correct-by-construction implementation, using the principle ‘what you verify iswhat you gen-
erate’ which is based on a novel variant of task automata. We demonstrate the applicability of
our design flowwith an industrial avionic test case on the state-of-the-art KalrayMPPA®-256.

Keywords Real-time systems ·Mixed-criticality systems ·Multi-core scheduling ·Rigorous
design · Software synthesis · Avionics

1 Introduction

With the proliferation ofmulti- andmany-core platforms in the electronicsmarket, the embed-
ded system industry is experiencing an unprecedented trend towards integrating multiple
applications into a common platform. The migration from single-core to multi-core designs
affects even safety-critical domains, such as avionics and automotive. In such domains, appli-
cations are characterized by discrete safety criticality levels, as defined e.g., by the DO-178C
avionics standard [16]. Integration of applications with different safety criticality has led to
the design of so-called mixed-criticality systems, which has been a prominent research topic
in recent years [11]. Nonetheless, a complete and sound methodology for successfully inte-
grating mixed-criticality applications on (shared-memory) multicores remains by and large
an open problem. Some of the challenges are listed below.

1.1 Motivation

1.1.1 Specification

Firstly, the specification of mixed-criticality (MC) applications does not usually fit into tra-
ditional streaming models of computation, such as Kahn process networks [35], for which
established multi-core scheduling methods exist [57]. MC applications are often reactive
control applications, where task activation depends on a combination of data availability
(similar to streaming applications), complex (non-periodic) arrival patterns, and dynamic

1 Computer Engineering and Communication Networks Laboratory, ETH Zurich, 8092 Zurich,
Switzerland

2 CNRS, VERIMAG, Univ. Grenoble-Alpes, 38000 Grenoble, France

3 THALES Research and Technology, 91767 Palaiseau Cedex, France

4 Kalray S.A., 38330 Montbonnot Saint Martin, France

5 Mentor, A Siemens Business, F-38334 Inovallee, Montbonnot, France

6 WINGS ICT Solutions PC, 189 Syggrou Avenue, 17121 Athens, Greece

123

A mixed-criticality design flow for multicores 143

decisions by schedulers which can skip tasks or activate them in degraded mode. As a result,
the MC scheduling models widely used in the literature, like Vestal’s [64], miss any link to
application-level specifications, which calls for new models of computation for the precise
representation of real-world MC applications.

1.1.2 Temporal isolation

Secondly, mixed-criticality design needs to ensure temporal isolation for certification pur-
poses. Namely, applications of different safety criticality levels should not interfere (delay
each other), or their interference must be bounded according to safety standards. To achieve
isolation on a single core, system designers usually rely on time partitioning mechanisms at
platform level, such as the ones specified by the ARINC-653 standard [6]. In contrast to parti-
tioning, in research literature it is commonly assumed that the isolation property is ensured in
a non-symmetric way, for efficiency. That is, the interference from lower to higher criticality
tasks is eliminated or bounded, but the interference from higher to lower tasks is tolerated.
The established MC scheduling model of Vestal [64] represents tasks with multiple worst-
case execution time (WCET) bounds at different safety criticality levels. The bounds become
more conservative and more probable as the criticality level increases. Most scheduling poli-
cies based on this model execute all tasks initially according to their least conservativeWCET
bounds, and can change the schedule dynamically at runtime if high criticality tasks require
more resources (execution time).After the schedule switch, lower criticality tasksmay receive
less or no service. Inhibiting those tasks prevents unwanted interference to high criticality
tasks and improves resource efficiency. This way, non-symmetric isolation is ensured on
single cores. However, on multicores one has to consider possible interferences among tasks
with different criticality on additional (non-computational) shared platform resources, e.g.,
shared caches or memory buses. Preserving isolation in the presence of shared resources is
not trivial [39]. It requires new industrial specifications, like [6], and an extension of Vestal’s
original MCmodel to account for the accessing behavior to shared resources. Existing multi-
core scheduling solutions often neglect this source of interference or assume that it has a
bounded effect on the individual tasks’ execution times [8,15,37,40,44,46,53]. On the con-
trary, we identify a state-of-the-art approach that preserves temporal isolation [24], and we
offer a new rigorous and flexible implementation methodology for it.

1.1.3 Incremental design

Thirdly, due to the high cost of certification, industry poses the requirement for incremental
design of MC systems [7]. A MC scheduling policy should support adding new applica-
tions to a system without any impact on the schedule or the real-time properties of higher
criticality applications that already existed in the system design. This removes the need
for re-certification every time a new application is integrated, thus reducing the overall
cost. Industrial standards, such as [6], specify mechanisms for incremental design that are
restricted to single cores and symmetric isolation. New incremental design methodologies
have to take into consideration non-symmetric isolation and interference of shared resources
on multicores. This requirement has received, nonetheless, minimal attention in literature.
The implementation methodology proposed in this paper targets at incremental design.

1.1.4 Implementation

Fourthly, the implementation of both MC applications and their supporting mechanisms,
such as schedulers and mechanisms for temporal isolation, is itself subject to certification.

123

144 G. Giannopoulou et al.

Given that such mechanisms can include inter-core synchronisation, distributed monitor-
ing of task execution times, dynamic schedule reconfigurations, resource servers, a manual
implementation can be challenging and error-prone. Additionally, the runtime overhead of
the supporting mechanisms is non-negligible and must be considered at design time for a
safe deployment [54]. These challenges call for rigorous approaches for the implementation
and validation of MC schedulers and the correct-by-construction MC software synthesis.
Implementation paradigms for timing-critical multi-core applications, such as [27], show
promising results. However, even though they are rigorous, they are not flexible, i.e., they
are restricted to a particular model of computation and hardware architecture.

1.2 Contributions

In this paper we present a complete design flow for mixed-criticality multi-core systems,
which addresses all aforementioned challenges. The main contributions can be summarized
as follows:

– We apply Vestal’s model for MC task sets [64] so as to account, besides WCET, also
for shared-resource accesses at different criticality levels, for degraded mode of low-
criticality tasks, and for incremental design.

– We extend Vestal’s model further to a complete model of computation, with inter-task
dependencies and communication requirements. This model is expressed in an architec-
ture description language (ADL), DOL-Critical, which enables the specification of MC
applications and schedules complying with the above extensions. This way we demon-
strate the new elements that can be potentially included in popular ADLs, such as AADL,
to account for mixed-criticality and multi-core designs.

– We present an optimization tool for isolation-preserving multi-core scheduling of MC
applications which are specified inDOL-Critical. The optimization tool is integratedwith
response time analysis that considers task interference on shared resources, and it aims
at incremental design. Thus, we propose a method that can handle our Vestal’s model
extensions in practice.

– For rigorous system design, we extend the timed-automata language BIP [1] to support
asynchronous transitions, thus obtaining an enhanced variant of task automata [4,21]. As
a result,we extend the scope of automata as design languages fromsynchronous to general
real-time systems. Traditionally used only for verifying these systems, the automata can
now be used to directly express multi-core applications and custom scheduling policies,
which leads to the concept ‘what you verify is what you generate’ (WYVIWYG). We
demonstrate this concept by compiling the DOL-Critical applications and schedules into
BIP automata and then performing functional validation and code generation.

– We implement a generator from BIP to hardware-dependent software (HdS). The syn-
thesized code preserves the automata semantics up to a bounded clock drift caused by
runtime overhead, e.g., thread synchronization. Although in a custom implementation
the overhead may potentially be smaller, an automata-based implementation makes the
overhead amenable for systematic formal analysis due to the formal automata semantics.

– We integrate all tools, from application specification in DOL-Critical to systemmodeling
in BIP to code generation, into a single tool-chain.

– We show how to integrate runtime overheads characterized after the deployment of the
MC application on the target platform back into the optimization tool, reusing its facility
to model the shared resources. For this, we introduce a feedback loop in our flow.

– We demonstrate the applicability and utility of our design flow with an avionic test case
targeting the Kalray MPPA®-256 platform.

123

A mixed-criticality design flow for multicores 145

Fig. 1 DOL-BIP-Critical design flow

To the best of our knowledge, this is the first seamlessly integrated tool-chain for the
specification, scheduling optimization, timing analysis, and correct-by-construction imple-
mentation of MC applications on commercial-off-the-shelf multi-core platforms. Note that
the model of computation and the respective ADL, the enhanced task automata, the compila-
tion of MC system specifications from ADL into automata for subsequent code generation,
and the formal runtime overhead model that is integrated into schedule optimization are
presented for the first time in this paper.

1.3 Flow overview

The combined DOL-BIP-Critical design flow, which follows the established Y-chart
approach [36], is illustrated in Fig. 1. The document shapes represent data (specifications of
application, architecture, mapping in DOL-Critical, BIP models, executable code) and the
rectangular shapes represent tools, respectively. The highlighted parts of the flow are user-
defined. Namely, the MC application and the target architecture are specified by the system
designer. All other steps of the design flow are executed automatically, except for the back
annotation of the application specification, which is performed by the system designer after
the execution of the MC application on the architecture. The front- and the back-end of the
tool-chain are publicly available under [17,49], respectively.

123

146 G. Giannopoulou et al.

1.4 Outline

In the remainder of the paper, Sect. 2 discusses relatedwork. Section 3 presents the extensions
to Vestal’s MC model for resource-sharing multicores and defines the requirements for MC
schedulability. Section 4 describes a scheduling policy that explicitly considers the effects
of resource sharing and ensures temporal isolation, along with an approach for optimizing
MC scheduling w.r.t. incremental design. Section 5 starts the description of the tool-chain
of Fig. 1 by presenting the DOL-Critical language for specifying applications, architectures
and schedules. Section 6 presents the enhanced task automata language BIP. Sections 7 and
8 discuss the compilation of an MC application and its optimized schedule into BIP and the
deployment of the BIP system representation on the target platform, along with the feedback
loop from execution to timing analysis (scheduling optimization). Section 9 demonstrates
the developed design flow with an avionic test case and Sect. 10 concludes the article.

2 Related work

2.1 Mixed-criticality scheduling models

Scheduling of mixed-criticality (MC) systems has received increasing attention since the
original work [64], which introduced the currently dominating model. This model represents
MC tasks as periodic (sporadic) real-time tasks with multiple worst-case execution times
(WCET), defined at different safety criticality levels. Vestal’s model has been applied and
extended in several works, [8,19,20,33,41,46] to name a few. For an up-to-date compilation
and review of the model extensions and relevant scheduling policies, the interested readers
are referred to [11]. In this work, we apply Vestal’s model extensions to (i) capture shared-
resource accesses, besidesWCET, at different criticality levels, (ii) define the degraded mode
of lower criticality tasks, and (iii) ensure incremental design.

2.2 Temporal isolation

Although several policies have been suggested for single-core MC systems, fewer solu-
tions exist currently for multicores. One of the main challenges in multicores is satisfying
the requirement for temporal isolation (or freedom from interference), which is dictated by
industrial certification standards [16,34]. Since multicores typically feature different types of
shared hardware resources, MC scheduling has to explicitly eliminate or bound potential tim-
ing interferences on all shared resources. For this purpose, several works advocate the static
scheduling or per-core budget assignment on memory buses [22,59,70], the implementation
of novel criticality-aware memory controllers [26,28,45], the privatization of memory banks
by cores running single-criticality applications [51,67,69], or the use of virtualization and
monitoring mechanisms for isolation among flows of different criticality on a network-on-
chip [62]. Suchmethods allow bounding the effect of resource sharing on the response time of
high-criticality applications.However,most of them lackflexibility (e.g., static time-triggered
bus scheduling) and/or need special hardware support which limits their applicability to
commercial-off-the-shelf platforms.

System-level solutions that target at global temporal isolation via scheduling have been
also proposed recently. Anderson et al. proposed scheduling MC systems by employing
different strategies (partitioned EDF, global EDF, cyclic executive) for different criticality
levels and utilizing a bandwidth reservation server for isolation [5,44]. This work considers

123

A mixed-criticality design flow for multicores 147

mainly the CPU cores as shared resources, but no other platform resources where mixed-
criticality applications can interfere. To overcome this limitation, the authors of [12,24]
propose scheduling MC applications such that only tasks of the same criticality can be exe-
cuted, and hence interfere on shared platform resources, at any time. Huang et al. formalise
this notion under the term Isolation Scheduling and provide optimality results in [32]. In this
paper, we employ policies for Isolation Scheduling of MC systems in order to facilitate their
deployment on commercial-off-the-shelf platforms without dedicated hardware support. Par-
ticularly, we adopt the flexible time-triggered scheduling policy of [24] because (i) it complies
with the MCmodel of Sect. 3, (ii) its dynamic runtime behavior allows efficient resource uti-
lization (Sect. 4), (iii) it enables incremental design, and (iv) timing analysis methods which
explicitly consider the effects of timing interference on shared resources are available [25].

2.3 Implementation of mixed-criticality systems

The current industrial practice for implementing MC systems on single-core platforms
enforces temporal isolation by means of operating system and hardware-level partition-
ing mechanisms, e.g., as specified in the ARINC-653 standard [6]. No existing standards,
however, define how isolation is preserved on resource-sharing multicores. Hence to the best
of our knowledge, commercial multicores are not used currently for MC deployments in
large-scale industrial applications. This highlights the vast need for tools and methodologies
for the implementation of multi-core MC systems.

In research, implementation aspects of MC scheduling have started being addressed
recently. Herman et al. [29] consider the implementation and runtime overhead of multi-
core MC scheduling, where the scheduling method of [5,44] is implemented in the real-time
operating system LITMUS [13]. This policy does not preserve isolation in the presence of
shared platform resources. Huang et al. [30] develop a framework, where several single-
core MC policies are implemented on top of a standard Linux kernel, and their runtime
overheads are evaluated on an Intel Core i7 platform. Sigrist et al. [54] compare alternative
implementations of common multi-core MCmechanisms on top of Linux, and evaluate their
overheads on an 4-core Intel Core i5 and a 60-core Xeon Phi. Among others, they consider
the overheads of the flexible time-triggered scheduling policy of [24], which is considered
in our paper, and show that the implementation overheads can have a tremendous effect on
schedulability, hence cannot be neglected. This shows clearly the challenge of implementing
multi-core MC systems; rigorous methods are necessary for their scheduling, software syn-
thesis, and timing analysis. This paper achieves a major step in this direction by presenting
the first complete design flow for the implementation of isolation-preserving MC systems on
commercial multi-core platforms, with explicit consideration of runtime overheads.

2.4 Rigorous design methods

Rigorous design of timing-critical systems should employ models which possess formal
operational semantics and capture the notion of physical time [65]. A relevant class of such
models are timed automata, i.e., finite automata with continuous-time clock variables [3].
A literature overview [65] on applying timed automata in real-time systems reveals a large
number of tools and a solidmathematical basis. An important extension of the timed automata
are timed automata with tasks, also known as task automata [21]. These models can express
and measure the time segments of their execution during which tasks are running. Timed and
particularly task automata have many applications in timing analysis and code synthesis, an
important example being the task-automata analysis and implementation tool TIMES [4].

123

148 G. Giannopoulou et al.

Still, timed/task automata alone cannot satisfy all modeling needs, for two reasons. Firstly,
they are often not convenient for programmers. Therefore, compilation from high-level lan-
guages, such asUML, to timed automata becomes a commonpractice, see e.g., [68]. Secondly,
large timed automata suffer from analysis scalability issues. Therefore, for timing-critical
system design it may be favorable to employ less expressive, yet better scalable models.
Examples are (i) the AADL-based design flow TASTE [48], which employs tools for classi-
cal schedulability analysis, and (ii) the design flow CompSoC [27], which employs formal
throughput analysis of dataflow graphs.

In this work, we introduce DOL-Critical as a high-level description language and a model
of computation for specifying MC applications and multi-core scheduling solutions. The
DOL-Critical specifications are fully automatically compiled to an enhanced variant of the
BIP language for timed automata [1]. Our rationale for compilation to automata is to reuse
their known ability to formally express runtime resource management mechanisms, espe-
cially in mixed-criticality settings [55], and to obtain a rigorous methodology for analyzing
the runtime overheads. We perform code synthesis for both the application and runtime
scheduling directly from the BIP task automata model. To enhance the scalability of timing
analysis, we currently rely on a customized high-level analyzer which verifies the system
both prior to and after (via a feedback loop) the compilation into BIP automata. We expect
that the formal DOL-BIP relation established at compilation can be used to construct, in
future work, a formal proof that the analysis can safely bound the runtime overheads.

DOL-Critical is based upon the distributed operation layer (DOL) [31,60]. A compila-
tion framework from the original DOL to untimed automata in BIP was introduced in [9].
Unlike [9], in our tool-chain, the compilation target automata are timed. Moreover, we
enhance the automata to represent real-time tasks and scheduling policies (including MC)
explicitly, in a way that they form a homogeneous monolithic system with formal timing-
aware semantics that can be validated and synthesized as HdS code for a target platform. We
refer to this facility as what you verify is what you generate (WYVIWYG). This has led to an
essential redefinition of the synergy between DOL and BIP in particular and between ADL
and formal-semantics models in general.

3 System model

This section defines the abstract application and architecture models1 that are considered
in our work as well as the necessary conditions for mixed-criticality schedulability. The
application model is based on established assumptions from literature, which are extended
to support resource sharing, degraded mode, dependencies, and non-blocking communica-
tion, while the architecture model is inspired by commercial many-core architectures. The
schedulability conditions represent state-of-the-art methods of capturing temporal isolation
and incremental design.

3.1 Mixed-criticality application model

We consider mixed-criticality task sets τ = {τ1, . . . , τn} with criticality levels between 1
(the lowest) and L (the highest). The tasks can be periodic or sporadic. A periodic task is
characterized by a 4-tuple τi = {Wi , χi , Ci ,Ci,deg}, where:

1 These models are used in our tool-chain for timing analysis (Sect. 4.2). The concrete class of applications
and targets architectures that can be specified in DOL-Critical is described in Sect. 5.

123

A mixed-criticality design flow for multicores 149

– Wi ∈ N
+ is the task’s period.

– χi ∈ {1, . . . , L} is the task’s criticality level.
– Ci is a size-L vector of execution profiles, where Ci (�) = (emin

i (�), emax
i (�), μmin

i (�),

μmax
i (�)) represents a lower and an upper bound on the execution time (ei) and the

number of shared resource accesses (μi) of τi at level � ≤ χi . Note that execution time
ei denotes the computation or CPU time of τi , without considering the time spent on
accessing shared resources. Such decoupling of the execution and communication time
is feasible on fully timing compositional platforms [66].

– Ci,deg is a special execution profile that can be employed at runtime if a task τ j (χ j > 1)
consumes more resources than C j (�

′) for some �′ in {1, . . . , χ j − 1}. In Vestal’s model,
in this case it is legal to drop all subsequent jobs of tasks τi with χi ≤ �′ in order to
free resources for the more critical task τ j . In this work, for compliance with industrial
standards, we do not drop tasks, but instead execute them in degraded mode, which is
characterized by profile Ci,deg . This corresponds to the minimum required functionality
of τi so that no catastrophic effect occurs in the system. If execution of τi can be aborted
without catastrophic effects, then Ci,deg = (0, 0, 0, 0).

A sporadic task is characterized by a 5-tuple τi = {ai , Ii , χi , Ci ,Ci,deg}, with the new
parameters (ai ∈ N

+, Ii ∈ N
+) denoting the maximum allowed number of task activations,

ai , within any time interval Ii .2 For scheduling purposes, a sporadic task is over-approximated
by a periodic “server” task that has a sufficiently high execution frequency and tighter deadline
to meet the deadlines of the sporadic task that it represents, see e.g., [50].

Periodic and sporadic tasks generate an infinite amount of jobs respecting the correspond-
ing period or task activation per interval parameters. For simplicity, we assume that the first
job of all periodic tasks is activated at time 0 and that the relative deadline Di of τi is equal
to its period, i.e., Di = Wi . Furthermore, the worst-case parameters of Ci (�) are monotoni-
cally increasing for increasing � and the best-case parameters are monotonically decreasing,
respectively. Namely, the min/max range of execution times and shared resource accesses
in Ci (�) is included in the corresponding range of Ci (� + 1), for � ∈ {1, . . . , χi − 1}. Note
that the best-case parameters are only required for a tighter response time analysis. If not
available, they are assumed equal to 0.

Example 1 For illustration purposes, Table 1 presents the system model for our case study, a
flight management system (FMS), which is discussed in more detail in Sect. 9.1 and is used
as a running example throughout the paper. The FMS is a dual-criticality system, i.e., L = 2.
The second column contains the criticality level χi ∈ {1, 2} of each FMS task τi . The period
Wi of the sporadic task ‘GPSConfig’ is in fact its interval Ii , and ai = 1. As the table shows,
for high-criticality tasks (χi = 2), the level-1 worst-case execution time (WCET), emax

i (1),
is lower than the respective level-2 WCET, emax

i (1). Therefore, in the ‘emergency’ situation
where the level-1 WCETs turn out to be insufficient, the high-criticality tasks are eligible
to continue their execution up to their level-2 WCET. For low-criticality tasks (χi = 1),
e.g., ‘Filter’, the situation is reverse. In the case of ‘emergency’ (after high-criticality tasks
overrun their level-1WCET), the low-criticality tasksmay receive a smaller execution budget
than their ‘normal’ level-1 WCET, in order to free up resources for high-criticality tasks. In
Table 1, for convenience, we specify this budget as ‘level-2 WCET’, emax

i (2). In fact, this
budget corresponds to the degraded execution profile Ci,deg of low-criticality tasks, i.e.,
emax
i (2) = emax

i,deg , if χi = 1. The resource access counts, μmax
i , which are the same at all

levels, in this example, are shown in the last column. The term ‘RTE’ describes a shared

2 Conventional sporadic tasks assume ai = 1.

123

150 G. Giannopoulou et al.

Table 1 System model example: FMS application

Task τi Criticality level
χi

Type Period
Wi (ms)

Level-1 WCET Level-2 WCET RTE access count

emax
i (1) (ms) emax

i (2) (ms) μmax
i (1), μmax

i (2)

Filter 1 Periodic 50 32 2 3

SensorInput 2 Periodic 100 1 26 3

GPSConfig 2 Sporadic 100 1 21 4

HighFreqBCP 2 Periodic 100 1 11 3

LowFreqBCP 2 Periodic 100 1 11 3

MagnDeclin 2 Periodic 100 1 11 3

Performance 2 Periodic 100 1 11 3

Z1 2 Periodic 100 1 26 3

Z2 2 Periodic 100 1 26 3

Cycle_Begin 2 Periodic 100 0 0 10

Frame_Begin 2 Periodic 50 0 0 4

Subframe_Bar 1 Periodic 50 0 0 2

resource and will be clarified later, in Sect. 8.3. All best-case parameters, emin
i and μmin

i ,
∀τi ∈ τ , are considered zero and hence, omitted in the table.

The bounds for the execution times and accesses can be obtained by different tools.
For instance, at the lowest level of assurance (� = 1), the system designer may extract
them by profiling and measurement, as in [47]. At higher levels, certification authorities
may use static analysis tools, such as the abstract interpretation suite aIT [2], with more
and more conservative assumptions as the required confidence increases. The execution
profile Ci (�) for each task τi is derived only for � ≤ χi . For � > χi , there is no valid
execution profile since certification at level � ignores all tasks with a lower criticality level. At
runtime, if a task with criticality level greater than χi requires more resources than initially
expected, then τi may run in degraded mode with execution profile Ci,deg . Note that we
forbid the case where a task τi consumes more resources than its own criticality level profile
Ci (χi).

Dependencies can be defined between tasks with equal periods. We represent these by a
directed acyclic graph Dep(V, E), where each node τi ∈ V represents a task, and an edge
e ∈ E from τi to τk implies that within a period the job of τi must precede that of τk . The
dependencies between the FMS tasks of Example 1 will be defined later on.

OurDOL-Critical model of computation (MoC) extends the above systemmodel by defin-
ing an inter-task communicationmethod realized bymeans of shared objects, which are called
data channels. The channels are written and read by tasks in a non-blocking fashion. The non-
blocking communication is selected to avoid (potentially unbounded) blocking delays, and
hence to facilitate scheduling, timing analysis and certification of mixed-criticality systems.
Instead of blocking, we use dependencies to ensure functionally deterministic communi-
cation. Two tasks (of equal or different criticality levels) that communicate should have a
dependency between them, going in the same or in the opposite direction as the flow of data.
Recall that, in our model, a dependency implies equal periods. Therefore, to let two different-
period tasks communicate, we transform them into equal-period taskswith a common-divisor
period and internal skipping of excess activations. TheDOL-CriticalMoC is further discussed
in Sect. 5.1.

123

A mixed-criticality design flow for multicores 151

TheMCmodel described above extends Vestal’s model [64] by: (i) Introducing the shared
resource access bounds,which are required for timing analysis on shared-resourcemulticores;
(ii) Defining the degraded mode for lower criticality tasks. Guaranteeing a minimal func-
tionality for such tasks (instead of dropping them as in the original model) has been also
advocated in [10,52,58]; (iii) Introducing a consistent MoC where applications, such as the
flight management system of Example 1, can be programmed.

3.2 Shared-resource multi-core architecture model

We consider a set P of m processing cores, P = {p1, . . . , pm}. Here, the cores are identical
but our approach can be generalized to heterogeneous platforms. The mapping of a task set
τ to the cores in P is defined by function Mτ : τ → P . In our work, Mτ is not given, but
it is calculated by our optimization approach in Sect. 4.2.

Each core in P has access to a private cache memory and to a shared general-purpose
memory. The code and data of the tasks in τ as well as the data channels used for the inter-task
communications are assumed to fit in the shared memory. This abstract model gives a partial
view of commercial many-core platforms, for instance the Kalray MPPA®-256 [14] and the
STHorm/P2012 [42]. These platforms are on-chip networks of shared-memory clusters, with
16 cores per cluster. Currently, ourmodel is restricted to a single cluster, since exploitingmore
on-chip clusters would require network-on-chip management, which is outside the scope of
this paper.

For timing analysis, we need to consider shared resources which are accessed syn-
chronously, namely which cause execution on the cores to stall until any pending access
requests are served. We assume that such resources, for instance a memory bus, can be
accessed by only one core at a time, and that once granted, a resource access is completed
within a fixed time interval, Tacc. Access to the shared resources can be arbitrated according
to any event- or time-triggered scheme, e.g., round-robin or time-division-multiple-access.
To enable safe timing analysis under resource contention, we consider hardware platforms
without timing anomalies, such as the fully timing compositional architecture defined in [66],
where execution and communication times can be decoupled.Note that theMPPA®-256 cores
have been shown to be fully timing compositional [14].

3.3 Mixed-criticality schedulability conditions

Under the above system assumptions, we seek a feasible schedule for the MC task set τ

on the cores P , which enables temporal isolation among criticality levels and incremental
design. Below we define the properties of feasibility, isolation and incremental design. The
feasibility conditions follow from Vestal’s schedulability conditions, by considering shared
resource accesses and degraded mode. The isolation and incremental design conditions are
introduced to capture the certification-induced requirements in safety-critical domains.

Definition 1 (Execution Scenario) At runtime, the tasks follow a level-� scenario in a given
time interval if, within this interval, the resource demand for all executing jobs of tasks τi
with criticality χi ≥ � complies with the execution and access bounds of profiles Ci (�). If
� > 1, there must be at least one job of a task τ j , for which the resource demand violates the
bounds of C j (� − 1). �	
The term resource, in this context, refers to both processing time and shared-resource access.
Initially, during a sufficiently small time interval, the tasks follow a level-1 scenario. When
we extend this interval, the first job of a task τ j , whose resource demand exceeds C j (1),

123

152 G. Giannopoulou et al.

switches the current scenario to level 2. Later, a job of the same or another task τ j ′ , whose
resource demand exceeds C j ′(2), switches to level 3, and so on. The currently assumed
scenario level (as well as the reference interval) is regularly reset back to level 1 at specific
– for the given policy – time instances, when all cores and shared resources should be idle.

Definition 2 (Feasibility) A schedule is feasible if for any level-� scenario (� ∈ {1, . . . , L}),
it guarantees the conditions:

– the jobs of each task τi , satisfying χi ≥ �, receive enough resources between their
activation time and deadline to meet their real-time requirements according to execution
profile Ci (�),

– the jobs of each task τi , satisfying χi < �, receive enough resources between their
activation time and deadline to meet their real-time requirements according to execution
profile Ci,deg . �	

Example 2 For the FMS application of Example 1, if a high-criticality task from the upper
part of Table 1 exceeds its emax

i (1) = 1 ms, then the tasks switch from a level-1 to a level-2
scenario. If only the level-1 scenario was possible (emax

i (1) was never exceeded), all tasks
could easily meet their deadlines while executing on a single core, even if we assume that
RTE accesses add a reasonably small overhead.3 However, due to the large level-2 WCETs,
emax
i (2) ,of high-criticality tasks, multiple cores are required for a feasible schedule even
when the low-criticality tasks run in degraded mode. Note that when running on multiple
cores, the tasks will experience interference upon simultaneous RTE accesses.

Definition 3 (Temporal Isolation) A schedule satisfies non-symmetric temporal isolation if
all tasks of criticality level � suffer no interference from tasks with lower criticality level, for
all � ∈ {1, . . . , L}. Namely, the execution and access activities of a task τi do not delay in
any way any task with criticality level higher than χi . �	
Definition 4 (Incremental Design) A scheduling algorithm enables incremental design if
adding new tasks of lower criticality into the system can be donewithout altering the schedule
for the existing tasks. �	

Note that the property of incremental design is based upon non-symmetric temporal iso-
lation. The two properties imply that if the schedule of a task set τ is certified as feasible,
the certification procedure will not need to be repeated if new, lower-criticality tasks are
added later to the system. This is highly desirable, since repeating the certification process of
already certified tasks if the system is gradually incremented results in excessive costs [7].

4 Mixed-criticality scheduling on resource-sharing multicores

The previous section presented the abstract models of mixed-criticality applications and
multi-core architectures that can be specified in DOL-Critical. Here, we focus on determin-
ing themapping, i.e., the binding of the application tasks to processing cores, and scheduling,
i.e., the execution order of the tasks on the cores. For the problem of mixed-criticality multi-
core scheduling, policies that explicitly address the effects of interference on shared resources
need to be considered. For this, we select the Time-Triggered scheduling policy with Syn-
chronization points (TTS) [24], which is designed for temporal isolation and incremental

3 RTE specifies a shared resource, as described in Sect. 8.3.

123

A mixed-criticality design flow for multicores 153

design. Temporal isolation is achieved by allowing only a statically known subset of tasks
in τ with the same criticality level to be executed across the cores P at any time. This is
necessary for deployments on commercial-off-shelf-platforms which do not provide special
support for criticality isolation on their shared resources. Allowing a static subset of tasks to
be executed in parallel enables, additionally, tight worst-case timing analysis, which is also
crucial for certification.

Section 4.1 presents the main principles of the TTS scheduling policy from [24], assuming
that a TTS schedule for a particular task set and platform is given. We show how to determine
a TTS schedule in Sect. 4.2. The design space explorationmethod of Sect. 4.2 is implemented
in the tool suite for DOL-Critical language [17]. This tool suite is used both to provide the
input and to analyze the output (via a feedback loop) of the automata-based compilation
framework DOL-BIP-Critical.

4.1 TTS scheduling

The non-preemptive TTS scheduling policy combines time- and event-triggered task execu-
tion. The tasks are mapped statically to cores and no migrations are allowed. A TTS schedule
repeats itself over a scheduling cycle equal to the hyper-period H of the tasks in τ (least com-
mon multiple of periods). The scheduling cycle consists of fixed-size frames (set F), and
each frame is divided further into L flexible-length sub-frames. A sub-frame contains only
jobs of the same criticality level, and the sub-frames are ordered within a frame in decreas-
ing order of criticality. Within a sub-frame, tasks are scheduled sequentially on each core
following a predefined order, namely every task is triggered upon completion of the previous
one. The jobs executed in a sub-frame have been generated at or before the respective frame
start and have deadline at or after the frame end. The beginning of frames and sub-frames is
synchronized among all cores in P . The (fixed) frame lengths can differ, but they are upper
bounded by the minimum period in τ . Each sub-frame (except the first of a frame) starts once
all jobs of the previous sub-frame complete execution across all cores. Synchronisation is
achieved dynamically at runtime via a barrier mechanism, for the sake of efficient resource
utilization.

Example 3 An illustration of a TTS schedule is given in Fig. 2 for a dual-criticality set of
seven tasks, with hyper-period H = 200 ms. Figure 2 depicts two consecutive scheduling
cycles. The solid lines define the frames and the dashed lines the sub-frames, i.e., potential
points, where barrier synchronisation is performed at runtime. The TTS scheduling cycle
(H = 200 ms) is divided into four frames of equal lengths (50 ms). Each frame has L = 2
sub-frames: the first for criticality 2 (high) and the second for criticality 1 (low), respectively.
At runtime, the length of each sub-frame varies based on the different execution times and
memory accessing patterns that the concurrently executed tasks exhibit. For example, the first
sub-frame of f1 finishes earlier when τ1, τ2 run according to their level-1, i.e., low-criticality

Fig. 2 TTS schedule example: 2 cycles (dark annotation: crit. level 2, light annotation: crit. level 1)

123

154 G. Giannopoulou et al.

Fig. 3 TTS schedule generated for the FMS application in DOL-BIP-Critical flow

execution profiles (cycle 1) than when at least one task runs according to its level-2, i.e.,
high-criticality profile (cycle 2).

Despite the dynamic runtime behavior, the sub-frame worst-case lengths can be computed
offline for a given TTS schedule by applying timing analysis under shared-resource inter-
ference. Function barriers : F × {1, . . . , L} → R

L defines a vector with the worst-case
length of all sub-frames of a frame when a particular scenario � is followed. We denote the
worst-case length of the kth sub-frame of frame f for the level-� scenario as barriers(f, �)k .
Note that the kth sub-frame of f contains tasks of criticality level �′ = (L − k + 1). Also,
�′ corresponds to the highest level execution profile that the tasks in subframe k exhibit at
runtime: � ≤ �′. For �′ > 1, execution in later sub-frames of f may be degraded.

Example 4 Figure 3 shows the TTS schedule that is generated in our DOL-BIP-Critical flow
for the FMS application from Example 1, when we assume five available cores. In our flow,
we add to the scheduler a model of runtime overhead of the TTS scheduling policy. The
model consists of so-called synchronization tasks, which are exclusively executed on Core 0.
The execution profiles of those tasks are extracted from the implemenentation of the TTS
schedule in BIP automata language. As their names suggest, they represent synchronization
of a TTS cycle, frame and sub-frame barrier. High-criticality tasks are depicted in orange
and are executed in the first sub-frame, k = 1 (�′ = 2), of each frame f ∈ {1, 2}. The
actual length of this sub-frame depends on execution scenario � ∈ {1, 2} and is bounded by
barriers(f, �)1, respectively. The second sub-frame, k = 2 (�′ = 1), contains the lower-
criticality tasks, depicted in green. Its length is bounded by barriers(f, �)2, where � = 1,
since there is no level-2 execution profile defined for low-criticality tasks. Note that tasks
‘HiFrBCP’ and ‘LoFrBCP’ are not executed in parallel due to FMS-specific dependencies
discussed later in Sect. 9.1.

4.1.1 Runtime behavior

Given a feasible TTS schedule and the barriers function, the scheduler manages task execu-
tion on each core within a frame f ∈ F as follows:

123

A mixed-criticality design flow for multicores 155

– For the kth sub-frame, the scheduler triggers sequentially the corresponding jobs follow-
ing the predefined order. Upon completion of all jobs on the core, it signals an event and
waits until the remaining cores reach the barrier (all jobs of the sub-frame are completed).

– Let the elapsed time from the beginning of the frame until the barrier synchronisation of
the kth sub-frame be t . Below, �max defines the maximum-level execution profile in the
frame:

�max = argmin
�∈{1,...,L}

⎧
⎨

⎩
t ≤

k∑

j=1

barriers(f, �) j

⎫
⎬

⎭
, (1)

The scheduler will trigger jobs in the next sub-frame such that tasks with criticality level
lower than �max run in degraded mode.

– The twoprevious steps are repeated for each sub-frame, until the last sub-frame is reached.

Note that the decision on whether a task will run in degraded mode affects only the current
frame. The interval for observing the execution scenario is reset at frame boundaries.

4.1.2 Feasibility

A given TTS schedule is feasible if and only if the following condition holds for all scenarios
� ∈ {1, . . . , L}:

L∑

k=1

barriers(f, �)k ≤ L f , ∀ f ∈ F , (2)

where L f denotes the length of frame f . If the condition holds for all frames f ∈ F , it
follows that all scheduled jobs can meet their deadlines when running according to their
level-� profiles.

4.1.3 Temporal isolation and incremental design

The TTS scheduling policy preserves temporal isolation, since only tasks of the same criti-
cality level can run simultaneously on the platform. The isolation is non-symmetric because
of the criticality-monotonic dynamic scheduling of the sub-frames within each frame: The
jobs of a sub-frame cannot be delayed in any way by lower-criticality jobs, however higher-
criticality jobs can implicitly delay the execution of lower-criticality by shifting the barrier
synchronisation point. The TTS policy enables incremental design, since adding new tasks
in sub-frames has no impact on previous sub-frames. In addition, the cross-core utilisation of
frames is bounded at design time and the remaining slack intervals, where all cores are idle,
can be even filled by new frames of other applications. Note that for incremental design, an
attractive optimisation goal for a scheduler is to ‘pack’ the sub-frames as evenly across the
core as possible, in order to minimize function barriers and maximize the slack intervals.

Example 5 In the schedule of Fig. 3, the feasibility requirement translates into non-negative
slack intervals at the end of each frame. Temporal isolation is apparent from the fact that only
tasks of the same criticality level are executed in parallel. Finally, the incremental design
could be illustrated if we e.g., replicated task ‘Filter’ on other cores, which would have no
impact on the already scheduled high-criticality tasks.

123

156 G. Giannopoulou et al.

4.2 Mapping and scheduling optimization

In DOL-Critical, for a given application and target architecture, we seek an optimal TTS
schedule. We define a schedule as optimal if (i) it is feasible, and (ii) the worst-case total sub-
frame lengths are minimal. The latter condition implies maximal aggregate slack intervals,
which can be used for incremental design.

The problem of optimal task mapping on multiple cores is known to be NP-hard in most
cases, resembling the combinatorial bin-packing problem [43]. To tackle this challenge, we
propose and implement in our tool-chain the Mixed-Criticality Mapping and Scheduling
Optimization (MCMSO) tool. MCMSO takes as input a mixed-criticality task set τ and a
set of cores P , and returns the mapping function Mτ of tasks to cores and a feasible TTS
schedule if at least one such schedule exists.

MCMSOperforms design space explorationwith twomain objectives. The primary objec-
tive is to find feasible solutions. The second objective is to improve the quality of a feasible
solution by maximizing the total size of slack intervals available for incremental design.
To perform the exploration, MCMSO implements a heuristic approach based on simulated
annealing [38]. In summary, the MCMSO approach is described by the following steps:

1. Dimension the TTS scheduling cycle and frame lengths based on the periods of tasks in
τ .

2. Generate a random schedule of the jobs of τ within hyper-period H on the cores of P
and the frames F of the TTS cycle, such that all dependencies are respected.

3. Apply a simulated annealing approach to generate and explore neighboring mappings
(assignments of tasks to cores) and schedules (assignment of jobs to sub-frames), until
an optimized solution is found or a given computational budget is exhausted.

To express the optimality criteria, we define the cost function of the optimization problem
as:

Cost (S) =
{
c1 = max f ∈F

{
max�∈{1,...,L} late(f, �)

}
if c1 > 0

c2 = ‖barriers‖3 if c1 ≤ 0
(3)

where late(f, �) expresses the difference between the worst-case completion time of the last
sub-frame of f and the length of f :

late(f, �) =
L∑

k=1

barriers(f, �)k − L f . (4)

Component c1 of the cost function provides a measure of “infeasibility”. If late(f, �) > 0,
the tasks in f cannot complete execution by the end of the frame for their �-level execution
profiles. Therefore, with this cost function, we initially guide the design space exploration to
find a feasible solution (by penalising infeasible solutions). When such a solution is found,
cost c1 becomes negative or 0. Thereafter, c2, i.e., the 3-norm of all sub-frame lengths,
∀ f ∈ F,∀� ∈ {1, . . . , L}, is used to minimize the worst-case lengths of all sub-frames. The
3-norm of a vector x with n elements (here, positive real numbers) is defined as ||x ||3 :=
(∑n

i=1 |xi |3
)1/3

. We selected this value to map the flattened vector with the barriers values,
for all sub-frames of the frames f ∈ F and for all � ∈ {1, . . . , L}, over other norms, such as
the average or the Euclidean norm, because empirically it provides a good trade-off between
reducing the worst-case sub-frame lengths (to ensure schedulability) and enabling progress
in the optimization.

The simulated annealing approach for optimizing a TTS schedule is detailed and evaluated
extensively in [24].

123

A mixed-criticality design flow for multicores 157

4.2.1 Timing analysis

MCMSO is tightly coupled with a timing analyzer in our design flow (Fig. 1). During design
space exploration, for every visited TTS schedule this tool performsworst-case response time
analysis for all tasks in each sub-frame and each execution scenario, in order to compute the
worst-case sub-frame lengths, i.e., the function barriers. Real-time analysis of concurrently
executing tasks under resource contention is a highly complex problem. We have addressed
this by applying the theory of timed automata [3] and real-time calculus [61] in [23], and by
an analytic arbitration-dependent approach in [24]. The latter approach is implemented in
DOL-Critical. For brevity, we omit the timing analysis here and refer the interested readers
to the aforementioned publications.

5 Description language DOL-Critical

In our design flow, the DOL-Critical language is used for specifying a mixed-criticality
application (Sect. 3.1) and a target architecture (Sect. 3.2). The same language, specifically
the integrated MCMSO tool and the timing analyzer (Sect. 4.2), are used for design space
exploration and determination of a TTS schedule with maximal aggregate slack time. This
section provides details about the user-defined specifications ofmixed-criticality applications
and multi-core architectures, as well as the auto-generated specification of the mapping and
scheduling solution in DOL-Critical.

5.1 Specification of a mixed-criticality application

To specify an application that complies with the MC model of computation of Sect. 3.1,
in DOL-Critical, we distinguish between two layers: a functional layer which consists of
tasks and data channels, and a control layer which consists of task controllers and task
dependencies. The specification of each task contains source code and its execution profiles,
while the task controllers (one per task) specify the tasks’ activation patterns and deadlines.
For the specification, DOL-Critical uses two distinct languages: C/C++ to program the task
functionality and complex activation patterns, and XML for the task properties, connections
through data channels and dependencies. The choice of these languages is based on practical
reasons. C/C++ allows to reuse existing legacy code. XML is easy to handle due to the large
number of available tools. Alternative choices are ADA, Simulink, and SDL for functional
code [48], and UML or AADL for task control and data interfaces.

5.1.1 Inter-task communication

The DOL-Critical model of computation supports two concrete types of the defined in
Sect. 3.1 data channels: blackboards (buffers) and mailboxes (queues). Note that unlike
most dataflow languages, we use non-blocking communication and do not force the tasks to
write/read a fixed number of tokens at each execution. For this reason, every data channel is
equipped with a validity bit, which indicates that the channel is not empty.

For simplicity, we present blackboard as a protected shared variable4 that can be written
via a ‘write’ port of a single task and read via a ‘read’ port by one or more tasks. The reading

4 In reality, the blackboard is defined and implemented as a more complex object [17], for which the given
simplified definition provides a reasonable abstraction.

123

158 G. Giannopoulou et al.

01 <process name="square" cr i t ica l i ty="2">
02 <superblock>
03 <info level="1" minAccess="5" maxAccess="10"
04 minExecution="7" maxExecution="18" />
05 <info level="2" minAccess="5" maxAccess="20"
06 minExecution="5" maxExecution="25" />
07 </ superblock>
08 <port type="in_data" name="pIN" />
09 <port type="out_data" name="pOUT" />
10 <port type="in_event" name="p2">
11 <event name=" star t " />
12 </ port>
13 <source location="square . c" />
14 </process>
15
16 <controller name="Ctrl_square" deadline="0.2">
17 <activation type="periodic">
18 <parameter name="period" value="0.2" />
19 </ activation>
20 <port type="out_event" name="p1">
21 <event name=" star t " />
22 </ port>
23 </ controller>
24
25 <data_channel name="dataIN" type="mailbox" size="8" length="2">
26 <port name="pdOUT" type="out_data" />
27 </data_channel>
28 <connection name="dataInToSquare">
29 <port name="pdOUT" />
30 <port name="pIN" />
31 </connection>

Listing 1 XML source code for process square and
data channel dataIN

01 struct Square_state {
02 int index ;
03 int length ;
04 };
05 struct DOLCData {
06 bool valid ;
07 float value ;
08 };
09
10 void Square_init (Square_state ∗ST) {
11 ST−>index =0;
12 ST−>length = 200;
13 }
14
15 void Square_fire(Square_state ∗ST, int mode) {
16 DOLCData x,y;
17
18 if (mode == DEGRADED) {
19 return ;
20 }
21
22 if (ST−>index < ST−>length) {
23 DOLC_read ("pIN" , &x, sizeof (float)) ;
24 if (x. valid) {
25 y. value = x. value ∗ x. value ;
26 y. valid = true ;
27 DOLC_write ("pOUT" , &y, sizeof (float)) ;
28 }
29 }
30 ST−>index = ST−>index + 1;
31 }

Listing 2 C source code for process
square (square.c)

Fig. 4 Square application example

operation does not change the state of the blackboard, which preserves the last written value.
If no valuewas previously written, the reading operation returns with validity bit set to ‘false’.

Amailbox connects one writing task with one reading task. It is a bounded queue allowing
to store several data elements of the same type. The queue length is determined at design
time according to the needs of the given application. It is typically desirable that a writing
attempt to a full mailbox never occurs in the nominal mode of execution. If this situation still
occurs, the writing operation will not block the writer task, but instead it will return an error
code. Similarly, reading from an empty mailbox does not cause blocking, but returns with
validity bit set to ‘false’.

Example 6 A partial example of a DOL-Critical application specification can be found in
Listing 1 (XML) and Listing 2 (C). Note that in the context of DOL-Critical, we use the terms
task and process interchangeably. The application (Fig. 4) features one periodic, implicit-
deadline task, square. Task square reads floating-point values from a mailbox, dataIN,
computes the square of them, and writes the result to mailbox dataOUT, as indicated by the
source code in square.c. It is characterized by safety criticality level 2 (high in a dual-
criticality system) and its execution time (CPU cycles) and number of resource accesses
are given for both execution levels. Note that the parameter ranges for level 1 are included
into the respective parameter ranges of level 2. The controller Ctrl_square, is responsible

123

A mixed-criticality design flow for multicores 159

to activate square periodically every 0.2 s. Communication between the controller and the
task is achieved via an event channel. Specifically, Ctrl_square sends a control event start
to square to activate it. The mailbox dataIN, from which square reads, corresponds to a
queue with a capacity of 8 elements, each with a size of 2 bytes.

5.1.2 Task functionality

The C/C++ code that defines the functionality of the tasks is written in a DOL-Critical
specific dialect. The data channels, control events (for communication between controllers
and tasks), and ports of data channels and tasks, which are defined in XML, are re-used
in the C/C++ code in a way that establishes a unique connection between the XML and
the C/C++ specification (see e.g., port “pIN” in Listings 1, 2). Each task has a state data
structure, an initialisation subroutine, and a subroutine defining one execution of a job. In the
DOL-Critical application programming interface (API), these are denoted <Task>_state,
<Task>_init(), and <Task>_fire(), respectively. Furthermore, theAPI supports twomain
functions for the communication between tasks: DOLC_read() and DOLC_write() (see Fig. 4
for an example). These functions enable reading/writing from/to a data channel and have
different semantics depending on the type of the target data channel. The complete semantics
of the DOL-Critical programming interface are omitted here for brevity. However, a detailed
presentation of the API as well as XML templates for the specification of mixed-criticality
applications in DOL-Critical can be downloaded from [17].

5.2 Specification of a target architecture and a TTS schedule

For the specification of a resource-sharingmulticore that complieswith themodel of Sect. 3.2,
the computation and communication components, alongwith their attributes and connections,
are described in XML format. Specifically, one can model processing cores with attributes
such as their frequency, and shared resources with their arbitration policy and maximum
access latency. The abstraction level defines the accuracy of the timing analysis, which is
performed during design space exploration by the MCMSO tool (Sect. 4.2).

After the scheduling optimization, the MCMSO tool exports the optimized TTS schedule
(see Fig. 2 for reference) in XML format. This specification includes (i) the mapping of
tasks to cores, (ii) the dimensioning of the TTS scheduling cycle (period, number of frames,
frame lengths), (iii) the values barriers(f, �)k for all sub-frames k of frame f ∈ F and for
different execution scenarios � ∈ {1 . . . L}, (iv) the execution order of the assigned tasks on
each core and each TTS frame.

CustomizedXMLschemata are used for describing the format of architecture andmapping
specifications. These specifications are used as inputs for timing analysis during design
space exploration as well as software synthesis after they are compiled into the concurrency
language BIP, which is presented in the following section.

6 Concurrency language for mixed-criticality systems—BIP

The cornerstone of our rigorous systemdesign approach is theWYVIWYGprinciple, realized
via an automata-based language. We refer to it as ‘concurrency language’, as it defines the
concurrency and timing semantics of all system software components. After compilation
from system specification into a concurrency language, one obtains an executable model that

123

160 G. Giannopoulou et al.

Fig. 5 BIP model example: four single-port components and four dual-port connectors

can be simulated for functional validation. This model is also used as the input for system
analysis and code generation. In our design flow, the concurrency language is BIP.

Under ‘BIP’ we refer to the so-called ‘RT-BIP’ dialect [1], which is designed to express
networks of connected timed automata components (Sect. 6.1). In the presentwork,we extend
BIP from timed to task automata, by allowing self-timed automata transitions. This extension
allows expressing control decisions based on runtime monitoring of task response times in
timed automata. This feature is important for runtime resource management mechanisms,
such as those employed for mixed criticality. For example, recall that the TTS scheduling
policy makes online decisions based on the exhibited sub-frame lengths at runtime. A partic-
ular feature of BIP is the ability to specify a network of components, so that multiple tasks
can be executed in different components concurrently. This makes it particularly suitable for
multi-core platforms. Our extensions to the original RT-BIP dialect are presented in Sect. 6.2.

6.1 Introduction to BIP

To familiarise the readers with BIP notation, Fig. 5 shows a BIP example, representing
two tasks, A and B. These blocks can be scheduled on one of the two available threads
running on two different cores. The model consists of four components, namely, ‘PeriodicA’,
‘DelayableB’, ‘Thread1’ and ‘Thread2’. All the components are defined by an automaton
and a set of ports (shown in white rectangles), used for connecting to other components via
connectors (shown as green lines that join the bullets).

ABIP component hasmultiple locations, denoted in Fig. 5 as ‘S0’, ‘S1’. The execution run
of a component consists of going from location to location by taking a transition, denoted by
an arc. For example ‘(Skip)’ is a transition from location ‘S1’ to location ‘S0’ in component
‘DelayableB’. Each component has an initial transition, which brings it to initial location at
system start. Initial transition is shown as an arc without origin pointing to the initial location,
such as location ‘S0’ in ‘DelayableB’. A transition may have an enabling condition and may
trigger some action. In our figures, we show the conditions in blue color and square brackets,

123

A mixed-criticality design flow for multicores 161

e.g., component ‘DelayableB’ has condition ‘[D OUT �= 0]’ for transition ‘StartB’. The actions
are shown in red color.

The transition labels such as ‘StartB’ signify a port of the component, in which case the
transition participates in interactions through this port, which means that it is synchronized
with transitions in other components whose ports are connected, e.g., ‘StartB’ may interact
with ‘Start’ in ‘Thread1’ or ‘Thread2’. Note that a port may participate in one interaction
at a time. In our example, each port is linked to two connectors, so if both of them have an
enabled interaction, a non-deterministic choice has to be made between them. There are also
internal transitions, not associated to ports, executed by a component independently. We put
their labels in parentheses, e.g., ‘(Skip)’ and ‘(Poll)’.

In BIP, every component is seen as an object in an object-oriented programming sense.
Every component encapsulates some data and some subroutines to manipulate the data. The
actions of transitions can call subroutines written in an imperative language (C/C++). In the
figures, the actions are depicted as blocks of pseudo-code in red color, e.g., in component
‘DelayableB’, transition ‘(Poll)’ executes action ‘D OUT := DATA_IO(B)’, where a subroutine
is called and its return value is assigned to variable ‘D OUT’. The actions have access only to
the local variables of their component. Nevertheless, some variables are classified as ‘OUT’
and ‘IN’ communication variables, bound to ports, e.g., variables D IN, OUT are bound to port
‘Start’. The components send data from ‘OUT’ to ‘IN’ variables at interactions via ports. For
example, port ‘Start(D IN)’ receives the new value of D IN from the D OUT of either ‘StartA’ or
‘StartB’, depending on the component with which it interacts. Note that the data exchange
between ports precedes the transitions, e.g., port ‘StartA(D OUT)’ sends the value of D OUT

before it is modified by the respective transition.
As for the data variables, in this work we consider four main types: integer, Boolean,

reference, and queue. A reference is a pointer to a user-type object that is allocated at com-
ponent initialisation. Our models for critical systems do not dynamically allocate data after
system initialisation. A queue is a circular buffer of statically-known size. Unless explicitly
done otherwise in the initial transition or in natural-language annotations, in the presented
figures we assume that the initial transition implicitly sets the data variables to zero in the
case of integers, ‘False’ for Booleans etc. Besides data variables, the components can have
compile-time parameters, such as period TA and minimal execution interval TB in Fig. 5.

The condition to execute a transition in fact consists of two parts: a data condition and a
timing constraint, indicated by the keyword ‘when’. The timing constraint defines an interval
of time when a transition may be enabled. By default it is ‘always’, i.e., the whole time axis.

To define the timing constraints a component uses private clock variables. The clocks
are real-valued variables that are initialized to zero and whose values are continuously and
synchronously increasing with the passage of physical time. In our models, we use letters
x, y and t for the clocks, e.g., the model in Fig. 5 uses two clocks. The usage of clocks is
restricted to two possible scenarios. Firstly, a clock can be reset to zero inside a transition
action (e.g., ‘reset x’ in ‘PeriodicA’). Secondly, it can be used in the timing constraint of a
transition, see, (e.g., ‘when x = TA’ in ‘PeriodicA’).

In our models we assume that all transitions are marked as ‘urgent’ in BIP. The presence
of ‘urgency’ attribute means that the transition should start as soon as (and no later than)
the given transition and all those that participate in the same interaction (if any) get enabled.
For example, consider timing constraint ‘when [y ≥ TB]’ in Fig. 5. Due to this constraint,
if component ‘DelayableB’ is in location ‘S0’, then it should execute transition ‘(Poll)’
immediately when it sees that clock y has reached a value at least equal to TB . Note that
the ‘urgency’ property is usually not directly available in timed automata languages, but it
is very useful for modeling compute-intensive real-time systems, where typically the system

123

162 G. Giannopoulou et al.

must make progress immediately when several conditions become true. For example, in the
TTS scheduling policy the barrier synchronization should occur immediately when all tasks
scheduled in a given sub-frame finish their execution.

6.2 BIP extension for modeling the tasks

By default, BIP assumed that all data-processing actions cost zero time (at least, concep-
tually). However, real-time tasks may occupy the processing cores at significant utilisation
levels, and to properly model them one should allow executing their data-processing oper-
ations in non-zero time. Therefore, in the extended version of BIP, we distinguish between
the ‘starting’ and the ‘finishing’ times of a transition, and we refer to the time duration in
between as transition response time. Further, we introduce the ‘self-timed’ attribute for the
transitions and we assume that all transitions are conceptually instantaneous (i.e., have zero
response time) unless they have this attribute. A transitionmarked as self-timed has a response
time equal to the time required to finish the corresponding action on a finite-speed physical
resource. This can take any time duration, not known at the moment when the transition
starts.

We use internal self-timed transitions to represent task processing steps and self-timed
interactions via ports to represent inter-task communication. In our figures, we denote self-
timed transitions by thick arrows, e.g., ‘(Task)’ transitions in Fig. 5. Note that by putting a
self-timed transition in between two instantaneous transitions, one can measure its response
time by resetting a clock before and checking the clock value after the self-timed transition.
This is a necessary feature to program scheduling policies, especially mixed-criticality ones,
such as TTS.

Though the self-timed transitions represent a new concept added into BIP language to
model tasks, at the semantics level the behavior can be expanded into an equivalent model in
the default BIP language, i.e., timed automata with instantaneous transitions. Nevertheless,
at the implementation level, the BIP framework needed certain extensions to handle these
transitions correctly. Figure 6 shows a self-timed transition τ of a task automaton in the
extended BIP and its expansion into timed automata of the ‘default’ BIP. In the expanded
model, transition τ is represented by two instantaneous transitions, onemodeling the start and
other one the finish. In between these transitions, there is a location ‘busyτ ’, which models
the state where the system is busy waiting until the platform executes transition τ . Note
that the data variables are explicitly set into ‘unknown’ state, because during the execution
they can potentially take arbitrary values. Note also that if the transition interacts with other
components via a port, then in the expanded automaton the port is associated to the start
transition, which indicates that the interacting components synchronize with each other at
the start of their transitions.

An additional clock xτ measures the elapsed time since the start and the execution of
transition τ . The execution finishes when the response time of transition τ , denoted ϕ(τ), has
been reached. Model-wise, it is important to observe that the ‘Finishτ ’ transition and time
ϕ(τ) are controlled not by the system itself, but rather by the environment. Indeed, the software
cannot directly influence the time it takes to execute a given, arbitrarily complex piece of the
task’s code.This is determinedby the target platform,which actually acts here as environment.
For simulation or modeling purposes, one can make an abstraction of the the environment by
letting ϕ(τ) take non-deterministic values. However, when implementing the BIP program
on a real platform, the BIP systemmay not ‘decide’ by itself, non-deterministically, how long
delay ϕ(τ) should be. Instead it should let the environment ‘decide’ this. Therefore, it should
start the execution of the transition on the platform and wait until the platform eventually

123

A mixed-criticality design flow for multicores 163

Fig. 6 Modeling tasks in BIP

Fig. 7 Overall BIP software model obtained by compilation from DOL-Critical

signals its completion. This observation makes the difference between executing the BIP
model on the left and on the right of Fig. 6.

7 Compilation of DOL-Critical specification into BIP models

In this section,we showhow to translate theDOL-Critical application (Sect. 5.1) and schedule
(Sect. 5.2) specifications into components of the BIP language, and how to connect themwith
each other. The resulting BIPmodel is used for functional validation (by simulation) and code
synthesis.

Figure 7 gives a sneak-preview of the final model structure after compilation. The sched-
uler components are shown on the top and the application components on the bottom. The
components are joined by BIP connectors, through which they can perform interactions
with each other. The application components include the components dedicated to DOL-
Critical tasks, denoted τ1, τ2, …, their controllers, and data channels, denoted ‘BlacBrd’
and ‘MailBx’, for blackboard and mailbox, respectively. The scheduler components include
one component for TTS Cycle, a set of components for TTS Frames, and Periodic Servers,
which present each sporadic task to the scheduler by its periodic over-approximation. The
scheduler components are connected to the tasks to coordinate their execution according to
the schedule.

Example 7 To illustrate the complexity of the BIP model (number of components), we refer
to the FMS application of Example 1. The compilation of the application from the DOL-
Critical specification (seeTable 1) results in 41BIP automata components and130 connectors,
including specifically 8 components for tasks, 19 components to implement task controllers,
and 14 components to implement data channels. In addition, the compilation of the respective

123

164 G. Giannopoulou et al.

TTS schedule specification (see Fig. 3) results in 20 BIP automata components and 92
connectors. Plugging the two sub-systems together results in a total of 61 components and
222 connectors.

In the followingwe describe the general procedure of compilation. First, Sect. 7.1 presents
the commonly required properties of all BIP components. In Sect. 7.2 we present the schedul-
ing components and in Sect. 7.3 the application components, respectively.

7.1 Required properties of the compiled models

Provided that the DOL-Critical application and scheduling are correctly specified, the
generated BIP models should by construction be: (i) free from local deadlock and (ii) action-
deterministic.

Local deadlock is a situation where for a component (in the given global state of the
system) no transitions are possible any more. Our BIP components are constructed in such
a way that a local deadlock indicates that either the hardware resources cannot handle the
activated real-time tasks on time or that the activation does not conform to specification. For
example, in Fig. 5, component ‘PeriodicA’ is ready to execute an interaction at port ‘StartA’
only when x = TA. If at this time instant both ‘Thread’ components are busy executing
the previously started ‘(Task)’ transitions, then component ‘PeriodicA’ will deadlock, as the
clock x will continue increasingwith time, never returning to the level TA. To avoid a deadlock
in ‘PeriodicA’, at least one of the ‘Thread’ components should be ready for interaction at
periodic instances in time: TA, 2TA, 3TA, Certain components obtained by compilation
from DOL-Critical have upper-bounded timing constraints, to encode a violation of the
required timing properties by a local deadlock. Namely, the task controller components go
into deadlock state if the tasks miss their deadlines or violate the required sporadic activation
constraints. Most of such components are equipped with additional transitions that raise a
runtime error in case of a local deadlock (not shown in the figures for ease of presentation).
Note that absence of local deadlocks implies the absence of global system deadlocks.

Action determinism of a BIP model means that the model should never have to make a
non-deterministic choice between two mutually-exclusive transitions (actions). The actions
that can be taken at each given moment of time fully depend on the current state of the model.
If a port is linked to two or more connectors, like in Fig. 5, then our model will enable only
one of them at a time. The same holds for two outgoing transitions from the same location.

In the next two sections we present the BIP components generated at compilation and
discuss how they satisfy these two properties.

7.2 Compiling the scheduling policy into BIP

First we show how the TTS scheduling policy (see Sect. 4.1) is implemented in BIP. For this,
we use the example in Fig. 8. The figure shows a partial TTS schedule for an application with
tasks denoted ‘A’, ‘B’, ‘C’, etc. Note that currently our compiler supports only two levels
of criticality, though the models can be extended to more levels in a straightforward way. In
dual-criticality systems, as in Fig. 8, every frame consists of two sub-frames.

Recall that ‘barriers(f, �)k ’ denotes the maximal permitted length of the kth sub-frame
of frame f for the level-� execution scenario. In our models, we use notation ‘ f [k]’ to
denote the kth sub-frame and ‘L〈 f 〉’ (i.e., L1, L2, . . .) to denote the frame duration L f . We
use ‘Bar〈 f 〉’ to denote barriers(f, 1)1. Depending on whether the actual runtime length of
the first sub-frame respects this barrier or not, the tasks in the second sub-frame will run in

123

A mixed-criticality design flow for multicores 165

Fig. 8 TTS scheduling frames in BIP

normal or degraded mode (see Eq. 1). This is the main mixed-criticality runtime mechanism
we aim to reflect in the generated BIP components.

To the right of the Gantt chart in Fig. 8, we show a (slightly simplified) general structure
of the ‘Frame〈 f 〉’ component, taking ‘Frame1’ as example. This component controls the
mode ‘MOUT’ of execution of the two sub-frames contained in the frame. Initially the mode
is set to ‘normal’. When frame f is about to start, interaction ‘BeginF〈 f 〉’ (‘begin frame f ’)
gets enabled. At this point we reset clock t so that it measures the elapsed time in frame f .
Then, we signal the begin of sub-frame f [1] via interaction ‘BeginSF〈 f 〉[1]’. At the moment
when the sub-frame finishes, the interaction ‘EndSF〈 f 〉[1]’ gets enabled, and we check the
elapsed time t . We keep the normal mode if t does not exceed barrier ‘Bar〈 f 〉’, otherwise
the mode is set to degraded. After executing the second sub-frame, the frame finishes, which
is signalled via ‘EndF〈 f 〉’.

Examining this component, we conclude that it is characterized by action determinism,
as the transition branching has mutually exclusive timing constraints. Also, it is free from
local deadlock provided that the schedule is correct and the tasks scheduled in the frame
finish their execution by time ‘L〈 f 〉’. Otherwise the component will be blocked forever at
the origin of transition ‘EndF〈 f 〉’.

The two components given at the bottom of Fig. 8 are Containers, which are in charge of
triggering jobs’ execution according to the given TTS schedule. The container components
are specific per sub-frame f [k] and core. They trigger jobs according to the corresponding
sequential schedule. In the figure, the left component implements the sequential schedule
assigned to Frame 1, Sub-frame [1] on Core 1, which executes first a job of task ‘C’ and
then of task ‘D’. Therefore, in this component we see a chain of transitions that start and
finish these jobs. By convention, we use the notation ‘Start_〈task_name〉’ for the job start
interaction, and a similar notation for the job finish interaction. For synchronization with
the frame component, the sequence of calls to the jobs is enwrapped in ‘BeginSF/EndSF’
interactions. At ‘BeginSF’, the frame component transmits the value of variable ‘mode’,
which is passed through to the task components via the ‘Start’ interactions.

In Fig. 9 we show how frames and containers are connected to each other. There is a
‘Cycle’ component, which just executes a cyclic ‘Begin/End’ sequence. The ‘begin’ of a
cycle triggers the execution of all frames in the cycle in the order of their index f , whereby
we join the ‘end’ of frame f to the ‘begin’ of frame f +1. In the given example we assumed
two frames per cycle. For every sub-frame the ‘begin’ and ‘end’ connectors join together

123

166 G. Giannopoulou et al.

Fig. 9 Composing cycle, frames and containers

all the containers for the specific sub-frame on Core 1, Core 2, …. Therefore, the employed
‘barrier’ mechanism to synchronize the cores at frame and sub-frame boundaries is a multi-
party BIP interaction.

7.3 Compiling the application into BIP

In [56] we give a detailed report on howwe compile applications based on the FPPNmodel of
computation (fixed-priority process network [50]) intoBIP. FPPNdiffers from the application
model ofDOL-Critical by employing a differentmechanism for synchronisation among tasks.
Also, it does not provide any support for mixed criticality. Nevertheless, we developed the
compilation frameworks of DOL-Critical and FPPN together and ensured that several BIP
models can be reused in both models of computation. Therefore, for some models we omit
the details for brevity and address the readers to [56].

7.3.1 Compiling the tasks

The BIP model of a DOL-Critical task is automatically extracted from its source code.
For example, the code of the square task in Fig. 4 (Example 6) is compiled into the BIP
automaton shown in Fig. 10a. The local state variables of aDOL-Critical task become internal
data variables of the BIP component. The initial transition implements the ‘〈task〉_init()’
subroutine. The rest of the task component implements the source code of the task’s job, i.e.,
the ‘〈task〉_fire()’ subroutine (DOL-Critical API). We enwrap the job execution between
task start and task finish interactions (‘Start/Finish_〈task〉’). They are used both to enable
the job executions upon their activation by the corresponding DOL-Critical controller and to
delay them until the scheduled time by TTS containers (e.g., Fig. 8).

When translating the ‘〈task〉_fire()’ subroutine to a BIP model, the source code is parsed,
searching for primitives that are relevant for the interactions between the task and the
other components of the system. The relevant primitives are calls to ‘DOLC_read()’ and
‘DOLC_write()’ for reading/writing from/to the data channels. We see that the behavior of
the resulting automaton is consistent with the behavior of the original source code, whereby
the interaction primitives are replaced by patterns with interactions via BIP ports. As shown
in Fig. 10a, the pattern for ‘DOLC_read()’ and ‘DOLC_write()’ consists of three transitions:
(i) request (‘Req’), (ii) data-copying, and (iii) acknowledgement (‘Ack’).

123

A mixed-criticality design flow for multicores 167

(a) (c)

(b)

Fig. 10 Compiling tasks and data channels to BIP. a ‘Square’ task example compiled to BIP. b Blackboard.
c Mailbox

Let us consider readingdata for example. First,wehave an interaction ‘Read_〈port〉_Req’,
which is an interaction requesting access to the channel via the DOL-Critical port ‘port’.
In the corresponding interaction, the task receives from the data channel a reference ‘R IN’ to
the memory area from where it can read and a validity flag ‘V IN’. The next transition copies
the data from the provided reference to the local variable to effectuate the data reading, and
the third transition acknowledges the success of the read operation. Writing is performed in
a similar way.

When compiled from a reasonable task source code (which, for safety-critical systems,
should be confirmed byWCET analysis and software verification tools), the task components
cannot introduce local deadlock or non-determistic behavior. By construction, the transitions
have no explicit timing constraints and branches havemutually-exclusive data conditions. The
transition actions are compiled from pieces of source code that should eventually terminate.
All local-state variables should be always initialized to the same value and when a job
execution starts from the same local state and reads the samedata from the input data channels,
it should produce the same data at the output channels.

7.3.2 Compiling the data channels

According to the task-to-channel connection topology specified in the XML files, BIP
connectors are inserted between ‘Read/Write_〈port〉_Req/Ack’ at the task and the ‘Read-
/Write_Req/Ack’ ports at the data channel components.

123

168 G. Giannopoulou et al.

Recall the DOL-Critical data channels introduced in Sect. 5.1. A basic notion of the
supported data channels is the validity flag. The meaning of this flag is availability of data,
given the non-blocking nature of read and write operations in DOL-Critical. A blackboard
channel represents a shared variable and a mailbox is a queue buffer.

Figure 10b shows the model for a blackboard. At the initial transition, we (implicitly)
allocate a user-type variable of given byte size. Read (Write) operations are separated into
request and acknowledge transitions, coherently to the task model of Fig. 10a. During the
request the blackboard communicates to the task the memory address, from (to) which it
should read (write). In case of a read, the validity flag is communicated as well.

The BIPmodel of a mailbox is shown in Fig. 10c. It is similar to blackboard, but instead of
allocating a scalar user-type variable, the component initially creates a queue, i.e., a circular
buffer, of user-type elements with a given capacity (‘length’). Read (write) operations on a
mailbox give the address of the tail (head) of the queue.

The branching between ‘Read_Req’ and ‘Write_Req’ shows a possibility of non-
determinism in the case that the reader and writer tasks try to access the channel at the
same time. However, in DOL-Critical we ensure functional determinism by setting depen-
dencies between tasks that share a channel. This obliges the MCMSO optimizer to schedule
their jobs in a sequential order in a sub-frame or in separate sub-frames, which excludes the
possibility of non-deterministic interleaving of read and write interactions.

7.3.3 Compiling the controllers

In DOL-Critical, exactly one task controller is instantiated per task, see Fig. 4. The two types
of DOL-Critical task controllers—periodic and sporadic—are compiled into two correspond-
ing types of BIP components. The details of these BIP models can be found in [56]. These
components are responsible to activate the task components according to their periodic or
sporadic patterns, and to check their deadlines.

Note that the sporadic controllers in BIP are parametrized by a C subroutine of DOL-
Critical, called activation protocol, where the user should implement the polling of system
I/O peripherals to evaluate the conditions to activate the task. Next to the response time of task
data processing (see Fig. 6), non-deterministic activation is another environment-dependent
non-deterministic part of overall model behavior. Except for these two circumstances, the
compiled BIP model is action-deterministic. We take this observation into account when
discussing the system analysis in Sect. 8.3.

7.3.4 Connecting application and scheduler

Figure 11 illustrates the BIP connections between the TTS scheduler and application compo-
nents for the case of periodic tasks. In general, a task can be scheduled in multiple containers.

Fig. 11 Connection between a
periodic task and its containers

123

A mixed-criticality design flow for multicores 169

In the running example, we assume that task ‘C’ is scheduled in two containers, as in the
model of Fig. 8.

According to Fig. 11, in the case of a periodic task, the containers are linked to the
‘Start_〈task〉’and ‘Finish_〈task〉’ connectors of the task directly, together with the periodic
controller. For a sporadic task, such a connection can lead to local deadlock, as sporadic
tasks are not regularly activated, whereas the TTS scheduler schedules them regularly. For
this reason we insert a ‘periodic server’ component in between the scheduler and the sporadic
task, which acts as a ‘bridge’ between them. For details on the periodic server, see [56].

Note that linking the task-component ports ‘Start’ and ‘Finish’ to multiple connectors
indicates a possibility for action non-determinism. However, this is impossible by construc-
tion, because the containers connected to a task are active in different frames, and hence
never at the same time.

8 Deployment on target architecture

In this section, we show how to use the BIP system model for automated code generation on
a target platform, specifically the Kalray MPPA®-256. We also describe the feedback loop
from the execution to DOL-Critical, which enables refined timing analysis and consideration
of the runtime overheads for the optimized TTS schedule.

8.1 From BIP to executable code

Figure 12 illustrates the deployment of the BIP system, using the same notations as in the
running example of Fig. 7.We implemented our framework in a single shared-memory cluster
of the KalrayMPPA®-256 many-core platform. A cluster consists of 16 processing cores and
2MB of shared memory, and it can be programmed using the POSIX threads library, with
at maximum one thread per core. Core 0 runs the default thread and Cores 1–15 can execute
up to 15 additional threads created at runtime.

The BIP software model is translated into C++ and linked with the multi-threaded BIP
runtime environment (RTE), which supports parallel execution of BIP components using
POSIX threads, and whose original version was described in [63]. At the heart of this library
lies a low-level scheduler that coordinates the interactions between the components, to which
we refer as the BIP RTE engine. Our centralized RTE engine architecture simplifies themain-
tenance of the common notion of global physical time. In this work, substantial extensions
to the BIP RTE were necessary for the support of real-time tasks, such as the support for
self-timed transitions, the mapping of multiple BIP components to the same thread, as well
as a restricted migration of components among different threads for enhanced parallelism.

As shown in Fig. 12, on top of the threads that run the tasks, the BIP RTE uses the
default thread on Core 0 for the execution of the RTE engine. Our compiler also maps all the

Fig. 12 BIP software model and
its deployment on a multi-core
system

123

170 G. Giannopoulou et al.

‘middleware’ components to this thread, i.e., all BIP components except the ones for the tasks.
These are the task controllers, the scheduler components, and the data channels. The reason
for separating the engine and the middleware from the tasks is the need to execute urgent
instantaneous interactions for system control (e.g., task activation, checking the deadline
miss, starting a task) as timely as possible. The tasks execute the self-timed transitions for
internal computations, and these transitions may take a significant time, up to the worst-case
response time of the tasks. The urgent instantaneous interactions cannot wait until self-timed
transitions finish, therefore the components that run these interactions are separated into an
independent thread. At the same time, multiple tasks can be mapped to the same thread,
according to the task-to-core mapping determined by the MCMSO tool. By construction,
the tasks mapped to the same core will never try to concurrently obtain permission from the
engine to execute on the core, as sequential execution of such tasks is orchestrated by the TTS
scheduler components, whereas their timeliness should be ensured by the offline optimizer
tool, namely the MCMSO.

An exception from the general rule of static mapping of components to threads is the
support of a restricted component migration. Currently, this facility can be applied to the
data-channel components, but not yet to tasks. We exploited migration to obtain improved
system parallelism by letting the data-channel Read/Write interactions be executed entirely
inside the threads of the tasks that perform reading and writing instead of executing them in
the engine thread. This permits the tasks to read and write data in parallel, not interfering
with each other and the engine.

8.2 BIP RTE engine and interaction scheduling

The role of the BIP RTE engine is to trigger BIP interactions while ensuring their ordering
and timing in accordance with the formal semantics of BIP. The components, which can be
mapped on different cores (threads), have to notify the engine about the instantaneous inter-
actions that they can potentially execute and wait until they are triggered by the engine [63].
Semantically, the instantaneous interactions should take zero time to execute, but in reality
they require some non-zero time. Moreover, often multiple interactions must be triggered at
the same time instance, e.g., the ‘activate’ interactions for all periodic tasks always occur
simultaneously at time zero and at the hyperperiod boundary. Since the interactions are trig-
gered sequentially, there is always a certain ‘response-time’ interval between the time when
the interactions should appear semantically and when they are triggered on the physical plat-
form. The interaction response time thus includes the execution time of the given interaction
and all semantically-simultaneous interactions triggered before it. Formally, the interaction
response time represents the difference between the logical and physical values of the clock
variables in the BIP model. Therefore it is referred to as ‘clock drift’ [1]. It corresponds to
system timing inaccuracy and therefore should be bounded.

Note that the BIP engine is a simple pragmatic best-effort scheduler, which primarily seeks
to ensure semantically correct ordering and close-to-correct timing, i.e., with as small clock
drift as possible. The responsibility to ensure overall system-level timeliness is delegated to
the BIP model itself. In the proposed design approach, it is the scheduler components which
are responsible for this, and in our framework those are TTS scheduling components. The
BIP engine does not distinguish the scheduler components from the rest. It just responds to
the interaction notifications from all components according to their timing constraints.

In our BIP system models, we use instantaneous interactions for simple actions related
to basic scheduling steps, e.g., activation, start and finish of a task, beginning and end of a
scheduling cycle or (sub-)frame, etc. For each instantaneous interaction, the engine deter-

123

A mixed-criticality design flow for multicores 171

mines the exact time instance when it should execute and tries to schedule it as accurately as
possible. However, as explained earlier, the non-zero response times of such interactions, i.e.,
the clock drifts, lead to interaction-schedule inaccuracies that should be provably bounded
by some margins. In terms of real-time system design, the clock drift is perceived as runtime
overhead, which can be accounted for in the system schedulability analysis, by adding the
estimated margins to the task execution profiles. This estimation is done via a feedback loop
in our design flow, described in Sect. 8.3. The fact that in our case the executable scheduler
model is formal also makes it simpler to express the problem of quantifying the runtime
overhead margins in mathematical form.

In contrast to the instantaneous transitions, the self-timed transitions are intended not
for carefully-timed ‘control’ steps, but for ‘data processing’ operations inside the tasks.
Since their exact timing is unimportant, these transitions bypass the engine and get executed
by different threads independently. The self-timed transitions are executed in a ‘run-until-
completion’, as soon as possible manner. Unlike instantaneous actions, the execution time of
those actions is considered to be system workload and not runtime overhead. Note that since
in our task models all internal transitions and data-channel interactions are self-timed, there
is no need to involve the RTE engine in scheduling any other interactions for a task between
its ‘Start’ and ‘Finish’.

The implementation of the RTE engine is based on the standard POSIX (pthread) library
supported by theMPPA®-256 platform. Themaster scheduler in the thread of Core 0 consults
the list of ready components and the slave executors in the threads of ‘Core 1, 2, etc.’ keep
the lists of automata transitions that were designated for execution. The list of the master is
extended by the slaves and the lists of the slaves are extended by the master. The lists are
protected bymutex locks, and an empty list may result in a conditional wait. Adding elements
to lists causes a notification by sending a signal to wake up possibly waiting threads. The
BIP engine algorithm is described in [63].

8.3 Feedback loop to DOL-Critical

To account for runtime overheads during schedulability analysis, we establish a feedback
loop from the deployment to the timing analyzer of the MCMSO tool in DOL-Critical. As
mentioned previously, the overheads correspond to BIP interactions from the task and sched-
uler components. In fact, the RTE engine represents a single point of interference among the
concurrently executed BIP components, including the task components running on different
cores. Namely, tasks contend for access to the RTE at runtime, with their interactions being
served in a first-come first-serve, synchronous fashion. This type of interference is captured
by our model of shared resources in Sect. 3.2. Therefore, we can model the BIP interactions
as accesses to a shared resource, the RTE engine, in a similar way as we model interfer-
ing accesses to a shared-memory bus. For this purpose, we include the minimum/maximum
issued interactions from the BIP model to the RTE engine in the tasks’ execution profiles,
and bound the engine access time Tacc by applying extensive measurements or static WCET
analysis on the source code of the engine. It is worthmentioning that there exists a connection
between the two types of shared resources, i.e., thememory bus and the RTE engine, although
in the present work we focus on the latter. That is, at runtime each synchronization with the
RTE engine triggers a burst of accesses to the sharedmemory, as inter-thread synchronization
is in general accompanied by cache flushing on the MPPA®.

Furthermore, there are RTE engine accesses that cannot be attributed to a particular task,
a significant number of which originate from the runtime resource management mecha-
nisms. For instance, take the barrier-synchronisation interaction at the end of each TTS

123

172 G. Giannopoulou et al.

sub-frame or the interactions at the beginning of each scheduling cycle. Such overheads can
bemodeled as engine accesses issued from additional synchronization tasks. These overheads
become known only when the complete system executable is generated and linked with the
RTE engine. We evaluate and annotate these overheads at the feedback loop of our design
flow. Afterwards, the flow is re-iterated, first by evaluating whether the previously obtained
scheduling solution is still feasible. To this end, the timing analyzer of the MCMSO tool
repeats the analysis for the implemented TTS schedule, by considering the additional timing
interference on the shared RTE engine. If the timing analysis shows that the TTS schedule
is infeasible, then new optimization, compilation, and code generation rounds are required.

The DOL-Critical application back-annotation with task execution profiles, including the
number of RTE engine accesses, and synchronization tasks is currently performed manually
in order to capture accurately all identified and measured runtime overheads. To bound the
RTE engine access counts, we exploit the property of action-determinism of our BIP model,
which implies that different engine access sequences may result either from different task
execution times or from different sporadic-task activations. Therefore we (i) identify all
alternative scenarios in terms of execution times and sporadic protocol and (ii) simulate
them, while counting the engine accesses. For this, we exploit the observations that these
scenarios are orthogonal, that the runtime variability is covered by the level-� execution
scenarios of the TTS sub-frames, and that the sporadic task activation can be characterized
by maximal activation counts in different TTS frames. In future work, we intend to formalize
and automate this analytical reasoning and to establish a formal refinement relation between
high-level customized timing analysis in DOL-Critical and detailed BIP implementation
models, to ensure provably safe estimation of the worst-case runtime overheads. We also
intend to study further the connection between interference on multiple shared resources,
e.g., the RTE engine and the shared-memory bus.

9 Case-study

To demonstrate the applicability of the complete DOL-BIP-Critical design flow, we employ
an industrial representative implementation of a flightmanagement system (FMS) [18],which
was already introduced in Example 1—Table 1 and Example 4—Fig. 3. We model the appli-
cation (Sect. 9.1) and then, step-by-step,we showhowour flowfinds an optimal TTS schedule
on a cluster of the MPPA®-256 platform (Sect. 9.2), how it synthesizes code, executes it,
and integrates the runtime overheads (including TTS synchronization overhead) into the final
schedule optimization process (Sect. 9.3).

9.1 Flight management system specification

The FMS is a safety-critical embedded avionics system, responsible for aircraft localiza-
tion, flightplan computation for the auto-pilot, detection of the nearest airport, etc. In this
experiment we look into a sub-system of the FMS. Figure 13 shows the corresponding DOL-
Critical application, which is responsible for calculating the best computed position (BCP)
and predicting the performance (e.g., fuel usage) of the airplane, based on periodically col-
lected sensor data and sporadic configuration commands from the pilot, e.g., for configuring
the Global Positioning System (GPS). Specifically, after being pre-processed by task ‘Sen-
sorInput’, the sensor data are processed by task ‘HighFreqBCP’. Then, they arrive at task
‘LowFreqBCP’, which post-processes the data at low frequency, and makes them available

123

A mixed-criticality design flow for multicores 173

Fig. 13 Flight management system (FMS) test case

to other sub-systems of the FMS. ‘LowFreqBCP’ also provides the results to a feedback loop
that takes into account the magnetic declination for computing the airplane position.

All depicted tasks are periodic except for the sporadic task ‘GPSConfig’, which can
execute at most once in any 100-ms interval. All periodic tasks of the FMS are specified
with period 100 ms. However, some of them contain in their C code a wrapper to skip the
processing at all but every nth job, to represent tasks with original period n · 100 ms. This is
done for three reasons: (i) to reduce the effective hyperperiodH, (ii) to ensure deterministic
communication, and (iii) to complywith theDOL-Critical specification requirement for equal
period among tasks with dependencies. Note that keeping the original H (in the FMS case,
equal to 40 s) would result in generating hundreds of TTS frame and container components
in BIP, which would lead to infeasible memory requirements for the implementation on a
single MPPA®-256 cluster.

The given task structure originally allowed only a limited two-task parallelism, which
consisted in the task-dependency branching from ‘LowFreqBCP’ to ‘MagnDeclin’ and ‘Per-
formance’. To introduce pipelining parallelism, we inserted two new tasks, denoted as Z1

and Z2. These tasks copy input data to the output, thus ensuring double-buffering, which is
required for pipelining. Because each inserted Zk task leads to an additional data-propagation
delay of one period, this delay is subtracted from the deadlines of the tasks that follow in
the task chain, which, therefore, should be sufficiently large. The wrappers inside these tasks
should skip one initial task-code execution to ‘compensate’ a delay in each Zk task that
precedes in the task chain.

All tasks of the FMS sub-system are used to calculate critical information, i.e., the current
position of the airplane. Therefore, they are certified at safety level DAL-B according to
the DO-178C standard [16]. We map this safety level to criticality level 2 (‘high’) in our
system model. The execution profiles of the tasks are shown in Table 1 in Sect. 3.1. The
tasks are protected from exceptional execution times overruns (due to potential faults and
fault correction) by defining a significantly more pessimistic execution profile at level 2
than at level 1. Not having WCET tools for the MPPA®-256 platform at our disposal, we
derived level-1 worst-case execution times based on extensive measurements. For the level-2
estimates, we augmented the level-1 bounds by a margin of 10 up to 25 ms, which also
makes them at least 10× larger. We introduced a possibility to simulate fault injection, by
programming an optional prolongation of the task execution by up to the level-2 execution
time through an additional dummy loop in the C code.

Table 1 includes also the bounds on RTE engine accesses for each task. We do not dis-
tinguish between level-1 and level-2 in this case, as they turned out to be the same. Recall
fromSect. 8.3 thatRTEaccesses correspond toBIP interactions, and their bounds are obtained
by manual analysis of the interactions from the respective task automata in the BIP model.

123

174 G. Giannopoulou et al.

Before the optimized scheduling solution is generated, one can analyze only the components
for application tasks and their controllers. For the periodic tasks, we observe that their exe-
cution causes always exactly three interactions: Start, Finish and deadline check (the latter
is done in fact in the controller). Sporadic tasks cause one extra interaction, which is related
to the activation protocol. Note that when counting BIP interactions, we neglect self-timed
interactions, as they do not lead to RTE engine accesses.

Table 1 includes also three synchronization tasks, whose parameters become available only
at the second iteration of the designflow, after the scheduler components get synthesized.Note
that the synchronization tasks account not only for the TTS components themselves, such as
cycle, frames, and containers, but also for other components that cause BIP interactions at the
boundaries of the cycle, frame, and sub-frame, respectively. For example, at the beginning of
each cycle all eight periodic tasks get activated by task controllers, which explains the high
access count of the synchronization task ‘Cycle_Begin’.

Through extensive measurements on the MPPA®-256 platform (again, due to non-
availability of suitable WCET tools), we derived a (pessimistic) upper bound on the BIP
RTE-engine delay per interaction, which amounts to Tacc = 0.42 ms. We believe that this
bound captures the cost not only of accessing the RTE engine, but also of the subsequent
accesses to the shared cluster memory, as the measurements included also the impact of data
cache flushing at the inter-core synchronization points, where the tasks start and finish their
execution. However, for the design of a real-world safety-critical system, such an assumption
would need to be further investigated and proven, e.g., through static analysis.

Finally, since the considered sub-system of FMS includes only tasks of criticality level
DAL-B (level 2), to obtain a dual-critical applicationwe added an artificial periodic task called
‘Filter’, with period 50 ms. This task models some digital signal processing functionality,
considered as a less critical DAL-C (level 1) task. Since ‘Filter’ is low-criticality, we model
two execution modes: normal and degraded. Specifically, ‘Filter’ executes a loop resembling
a digital filter, the number of loop iterations being significantly lower in degraded mode, to
represent the possibility of providing a reduced level of quality with a smaller number of
digital filter coefficients.

9.2 Scheduling and mapping optimization

For the FMS sub-system, the maximal degree of parallelism is four (three pipeline stages and
one branching). Therefore, we choose to allocate a subset of five MPPA®-256 cores: four for
task execution and one for the BIPRTE engine. For themapping and scheduling optimization,
we provide the DOL-Critical specifications of the FMS sub-system and the 5-core subset of
the MPPA®-256 cluster to the MCMSO optimizer, which performs design space exploration
to optimize the mapping of tasks to cores and the scheduling of the tasks on each core based
on the TTS scheduling policy (Sect. 4.1). The optimization goal (Sect. 4.2) is to maximize the
slack interval at the end of the frames, while respecting the task dependencies and accounting
for the interference of concurrent task accesses to the RTE engine as a shared resource. In this
case, the TTS scheduling cycle has a period of 100 ms (equal to the hyper-period of the tasks)
and it is divided into two frames, each with a fixed length of 50 ms. MCMSO produced the
mapping and scheduling solution which is illustrated in Fig. 3 after 342 ms of exploration. It
converged to this solution after having checked 20,548 alternatives. Note that the workload
distribution among the cores is fairly balanced, which is due to the cost function that is used
to guide the optimization procedure (Eq. 3, Sect. 4.2).

The worst-case sub-frame lengths for the level-1 and level-2 execution scenarios, as com-
puted by the timing analyzer of the MCMSO tool, are presented in Table 2 (Column ‘1st

123

A mixed-criticality design flow for multicores 175

Table 2 Estimated function barriers before versus after feedback look versus empirical results

1st iteration 2nd iteration Empirical

Frame f1, sub-frame 1 (DAL-B) barriers(f1, 1)1 7.46 13.34 8

barriers(f1, 2)1 29.78 35.66 27

Frame f1, sub-frame 2 (DAL-C) barriers(f1, 1)2 33.26 34.1 34

barriers(f1, 2)2 3.26 4.1 4

Frame f2, sub-frame 1 (DAL-B) barriers(f2, 1)1 6.04 7.72 6

barriers(f2, 2)1 31.04 32.72 28

Frame f2, sub-frame 2 (DAL-C) barriers(f2, 1)2 33.26 34.1 34

barriers(f2, 2)2 3.26 4.1 4

Iteration’). The analyzer implements the approach of [24] for taking into account the inter-
ference on the shared resource. Based on the obtained sub-frame lengths and the condition of
Eq. 2, it follows that the TTS schedule of Fig. 3 is feasible. Namely, the last sub-frames finish
before the end of the containing frames under all execution scenarios, which implies that all
tasks receive enough resources to finish before their deadlines according to the respective
execution profiles.

9.3 FMS deployment and feedback loop

The optimized TTS schedule for the FMS sub-system, along with the application specifi-
cation, are compiled into BIP automata, as described in Sect. 7. Functional correctness is
validated through simulation, and code is automatically synthesized for the deployment on
theMPPA®-256 platform (subset of 5 cores within a cluster). Figure 14 presents Gantt charts
of the FMS execution traces on the MPPA®-256 for three alternative scenarios. Each chart
depicts six consecutive TTS scheduling cycles.

‘Level-1’ and ‘Level-2’ scenarios represent corner-cases for timing analysis, where all
tasks execute without skipping (which happens on the hyper-period boundaries) and accord-
ing to their maximal profile at the given level. In this case, the actual sub-frame lengths can
potentially approach the worst-case barriers values at the given level. The ‘ordinary’ sce-
nario represents a possible execution of the system, where periodic tasks skip some periods
due to pipelining and original periods, and the sporadic task is activated by some arbitrar-
ily chosen (encoded in DOL-Critical) protocol. In this scenario, we simulated some fault
injections in tasks ‘Z1’, ‘Z2’, ‘HighFreqBCP’, and ‘SensorIn’ in the fifth scheduling cycle
(between 400 and 500 ms). Note that the tasks take considerably longer to execute in this
cycle, with their execution time being close to their level-2 profile in Table 1. This triggers a
level-2 execution scenario, which results in providing degraded service to the lower-criticality
‘Filter’ task in both frames of this cycle. In degraded mode, ‘Filter’ runs for approximately
2 ms instead of the usual 32 ms.

The empirical worst-case sub-frame lengths of the TTS schedule, as measured over long
execution intervals, are depicted in the last column of Table 2. Note that they actually surpass
the respective analytically-derived bounds obtained at the first iteration. This is because sev-
eral BIP interactions, resp. accesses to the BIP RTE engine, which take place at the beginning
of each TTS frame, upon barrier synchronisation, and at hyper-period boundaries, have not
been considered in timing analysis. To capture these overheads, we model the additional
synchronization tasks ‘Frame_Begin’, ‘Subframe_Bar’, and ‘Cycle_Begin’ with the worst-

123

176 G. Giannopoulou et al.

Fig. 14 FMS test case: ‘Level-1’,‘Level-2’, and ‘Ordinary’ traces on MPPA®-256

123

A mixed-criticality design flow for multicores 177

Fig. 15 Worst-case finish time (ms) of last sub-frame in each TTS frame as computed at ‘Iteration 1’, ‘Iteration
2’, and empirically

case RTE access bounds of Table 1. After back-annotating the DOL-Critical application
and schedule specifications, the timing analyzer re-evaluates function barriers, as depicted
in column ‘2nd Iteration’ of Table 2. As expected, the new analytic worst-case sub-frame
lengths bound safely the empirical values. Also, according to these bounds, the TTS schedule
remains feasible also after accounting for the runtime overheads, therefore the design process
has terminated successfully.

Figure 15 illustrates the worst-case finish time of the last sub-frame in each TTS frame for
level-1 and level-2 execution scenarios, as derived by the MCMSO analyzer before and after
the feedback loop, as well as the empirical worst-case bound. The last bar is fixed to 50 ms to
indicate the end of the respective frame. Note that the empirical worst-case scenario is always
bounded by the analytic results of the secondMCMSO iteration, unlike the respective results
of the first iteration. This clearly confirms the necessity for the feedback loop in our design
flow. The analytic worst-case finish times increase up to 20.3% (frame 1, level-2) after the
feedback, indicating the non-negligible cost of runtime overheads and the absolute need to
consider its effect on schedulability.

In summary, the deployment of the FMS sub-system on the MPPA®-256 validates the
applicability of our design flow for the implementation of mixed-criticality systems on com-
mercial multi-core architectures. Temporal isolation is preserved, since tasks of different
criticality never overlap and lower-criticality tasks do not interfere with the execution of
higher-criticality tasks. Incremental design is enabled, since there is a bounded slack interval
at the end of each frame (see the difference between analytic bounds and frame length in
Fig. 15 and idle intervals in the Gantt charts). This slack can be used to host new lower-
criticality tasks if they are added later to the system. Task dependencies are respected, while
task execution and communication are performed deterministically, as dictated by the BIP
models. Additionally, the MCMSO was able to find a feasible (optimized for incremen-
tal design) TTS schedule and bound safely the tasks’ worst-case response times even in the
presence of non-negligible runtime overheads. Based on this first evidence, we are convinced
that the DOL-BIP-Critical design flow can be a viable solution for the rigorous design of
mixed-criticality systems, with potential to be applied to complex industrial-scale settings.

123

178 G. Giannopoulou et al.

10 Conclusion

In this paper,wepresented a complete designflow for the efficient and correct-by-construction
deployment of mixed-criticality applications on multicores. The design flow enables the
specification of complex reactive mixed-criticality applications and determines a mapping
and schedule of the application on multicores, such that temporal isolation among different
criticality levels is preserved even in the presence of shared resources, and incremental
design is enabled. The run-time mechanisms that ensure these mixed-criticality properties
are naturally represented in timed-automatamodels and all software components are compiled
from a high-level description language into a network of task automata in BIP language. Code
is generated automatically for execution on the target platform. Prototypes of all developed
tools are available online and their use has been demonstrated through an industrial-scale
avionics application, which is deployed on the cutting-edge Kalray MPPA®-256 platform.
As future work, we aim to evaluate our design flow with additional realistic applications,
and to improve the design of the BIP RTE in order to reduce its runtime overhead and
improve its applicability to high-integrity systems.Moreover, we intend to investigate further
the feedback loop of the design flow, by proving formal refinement relations between the
automata-based implementation and high-level models, in order to safely account for the
runtime overhead in schedulability analysis already at system level.

Acknowledgements The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement number 288175 (CERTAINTY
project).

References

1. Abdellatif T, Combaz J, Sifakis J (2010) Model-based implementation of real-time applications. In:
EMSOFT ’10

2. AbsInt (2015) aiT worst-case execution time analyzers. https://www.absint.com/ait/
3. Alur R, Dill DL (1990) Automata for modeling real-time systems. In: Paterson M (ed) Proceedings of

the 17th international colloquium on automata, languages and programming (ICALP), LNCS, vol 443,
Springer, pp 322–335

4. Amnell T, Fersman E, Mokrushin L, Pettersson P, Yi W (2002) TIMES—a tool for modelling and imple-
mentation of embedded systems. In: Proceedings of tools and algorithms for the construction and analysis
of systems, Springer, pp 460–464

5. Anderson J, Baruah S, Brandenburg B (2009) Multicore operating-system support for mixed criticality.
In: Workshop on mixed criticality: roadmap to evolving UAV certification

6. ARINC. ARINC 653-1 Avionics application software standard interface. Technical report
7. Barhorst J, Belote T, Binns P, Hoffman J, Paunicka J, Sarathy P, Stanfill J, Stuart D, Urzi R (2009)

White paper: a research agenda for mixed-criticality systems, CPS Week 2009. http://www.cse.wustl.
edu/~cdgill/CPSWEEK09_MCAR

8. Baruah S, Chattopadhyay B, Li H, Shin I (2014) Mixed-criticality scheduling on multiprocessors. Real
Time Syst 50:142–177

9. Bourgos P, Basu A, Bozga M, Bensalem S, Sifakis J, Huang K (2011) Rigorous system level modeling
and analysis of mixed HW/SW systems. In: Proceedings of international conference on formal methods
and models for codesign, MEMOCODE 2011, pp 11–20

10. Burns A, Baruah S (2013) Towards a more practical model for mixed criticality systems. Workshop on
mixed criticality, pp 1–6

11. Burns A, Davis R (2015) Mixed criticality systems: a review. https://www-users.cs.york.ac.uk/burns/
review.pdf

12. Burns A, Fleming T, Baruah S (2015) Cyclic executives, multi-core platforms and mixed criticality
applications. In: Euromicro conference on real-time systems (ECRTS), pp 3–12

123

https://www.absint.com/ait/
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR
http://www.cse.wustl.edu/~cdgill/CPSWEEK09_MCAR
https://www-users.cs.york.ac.uk/burns/review.pdf
https://www-users.cs.york.ac.uk/burns/review.pdf

A mixed-criticality design flow for multicores 179

13. Calandrino J, Leontyev H, Block A, Devi U, Anderson J (2006) LITMUS RT: a testbed for empirically
comparing real-time multiprocessor schedulers. In: RTSS, pp 111–126

14. de Dinechin B D, van Amstel D, Poulhiès M, Lager G (2014) Time-critical computing on a single-chip
massively parallel processor. In: DATE’14, EDAA

15. de Niz D, Phan LTX (2014) Partitioned scheduling of multi-modal mixed-criticality real-time systems on
multiprocessor platforms. In: RTAS, pp 111–122

16. DO-178C. RTCA/DO-178C, Software considerations in airborne systems and equipment certification
(2012)

17. DOL-Critical (2014) Distributed operation layer for mixed-criticality applications. http://www.tik.ee.
ethz.ch/~certainty/dolc.html

18. Durrieu G, FaugèreM, Girbal S, G. Pérez D, Pagetti C, PuffitschW (2014) Predictable flight management
system implementation on a multicore processor. In: ERTSS’14

19. Easwaran A (2013) Demand-based scheduling of mixed-criticality sporadic tasks on one processor. In:
RTSS’13

20. Ekberg P, Yi W (2012) Bounding and shaping the demand of mixed-criticality sporadic tasks. In:
ECRTS’12

21. Fersman E, Krcál P, Pettersson P, Yi W (2007) Task automata: schedulability, decidability and undecid-
ability. Inf Comput 205(8):1149–1172

22. Flodin J, Lampka K, Yi W (2014) Dynamic budgeting for settling DRAM contention of co-running hard
and soft real-time tasks. In: 2014 9th IEEE international symposium on Industrial embedded systems
(SIES), pp 151–159

23. Giannopoulou G, Lampka K, Stoimenov N, Thiele L (2012) Timed model checking with abstractions:
towards worst-case response time analysis in resource-sharing manycore systems. In: EMSOFT’12

24. Giannopoulou G, Stoimenov N, Huang P, Thiele L (2013) Scheduling of mixed-criticality applications
on resource-sharing multicore systems. In: EMSOFT’13

25. Giannopoulou G, Stoimenov N, Huang P, Thiele L, de Dinechin B (2015) Mixed-criticality scheduling
on cluster-based manycores with shared communication and storage resources. Real Time Syst 51:1–51

26. Goossens S, Akesson B, Goossens K (2013) Conservative open-page policy for mixed time-criticality
memory controllers. In: DATE’13

27. Hansson A, Goossens K, Bekooij M, Huisken J (2009) CompSoC: a template for composable and pre-
dictable multi-processor system on chips. ACM Trans Des Autom Electron Syst (TODAES) 14(1):2

28. Hassan M, Patel H, Pellizzoni R (2015) A framework for scheduling DRAMmemory accesses for multi-
core mixed-time critical systems. In: RTAS, pp 307–316

29. Herman J, Kenna C, Mollison M, Anderson J, Johnson D (2012) RTOS support for multicore mixed-
criticality systems. In: RTAS, pp 197–208

30. Huang H-M, Gill C, Lu C (2014) Implementation and evaluation of mixed-criticality scheduling
approaches for sporadic tasks. ACM Trans Embed Comput Syst 13(4s):126:1–126:25

31. Huang K, Haid W, Bacivarov I, Keller M, Thiele L (2012) Embedding formal performance analysis
into the design cycle of MPSoCs for real-time streaming applications. ACM Trans Embed Comput Syst
(TECS) 11(1):8

32. Huang P, Giannopoulou G, Ahmed R, Bartolini DB, Thiele L (2015) An isolation scheduling model for
multicores. In: RTSS, San Antonio, TX, USA

33. Huang P, GiannopoulouG, StoimenovN, Thiele L (2014) Service adaptions for mixed-criticality systems.
In: ASP-DAC’14

34. ISO 26262 (2011) Road vehicles—functional safety. https://www.iso.org/standard/43464.html
35. Kahn G (1974) The semantics of a simple language for parallel programming. In: Proceedings of IFIP

congress on information processing, vol 74, pp 471–475
36. Kienhuis B, Deprettere E, Vissers K, van der Wolf P (1997) An approach for quantitative analysis of

application-specific dataflow architectures. In: Internatioanl coference on application-specific systems,
architectures and processors (ASAP), pp 338–349

37. Kim N, Ward BC, Chisholm M, Fu CY et al (2016) Attacking the one-out-of-m multicore problem by
combining hardware management with mixed-criticality provisioning. In: RTAS

38. Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680
39. Kotaba O, Nowotsch J, Paulitsch M, Petters SM, Theiling H (2014) Multicore in real-time systems–

temporal isolation challenges due to shared resources. In: Workshop on industry-driven approaches for
cost-effective certification of safety-critical, mixed-criticality systems

40. Lee J, Phan K-M, Gu X, Lee J, Easwaran A, Shin I, Lee I (2014) MC-fluid: fluid model-based mixed-
criticality scheduling on multiprocessors. In: RTSS, pp 41–52

41. Li H, Baruah S (2010) Load-based schedulability analysis of certifiable mixed-criticality systems. In:
International conference on embedded software, EMSOFT’10

123

http://www.tik.ee.ethz.ch/~certainty/dolc.html
http://www.tik.ee.ethz.ch/~certainty/dolc.html
https://www.iso.org/standard/43464.html

180 G. Giannopoulou et al.

42. Melpignano D, Benini L, Flamand E, Jego B, Lepley T, Haugou G, Clermidy F, Dutoit D (2012) Platform
2012, a many-core computing accelerator for embedded SoCs: performance evaluation of visual analytics
applications. In: DAC’12

43. Michael RG, David SJ (1979) Computers and intractability: a guide to the theory of NP-completeness.
WH Freeman & Co., San Francisco

44. Mollison MS, Erickson JP, Anderson JH, Baruah SK, Scoredos JA (2010) Mixed-criticality real-time
scheduling for multicore systems. In: International conference on computer and information technology,
CIT’10, IEEE, pp 1864–1871

45. Paolieri M, Quiñones E, Cazorla FJ, Bernat G, Valero M (2009) Hardware support for WCET analysis
of hard real-time multicore systems. In: ISCA, pp 57–68

46. Pathan R (2012) Schedulability analysis of mixed-criticality systems on multiprocessors. In: ECRTS’12
47. Pellizzoni R, Bui BD, Caccamo M, Sha L (2008) Coscheduling of CPU and I/O transactions in COTS-

based embedded systems. In: RTSS’08
48. Perrotin M, Conquet E, Dissaux P, Tsiodras T, Hugues J (2010) The TASTE Toolset: turning human

designed heterogeneous systems into computer built homogeneous software. In: Proceedings of embedded
real-time software and systems conference

49. Poplavko P, Bourgos P, Socci D, Bensalem S, BozgaM (2015)Multicore code generation for time-critical
applications (Tool). http://www-verimag.imag.fr/Multicore-Time-Critical-Code,470.html

50. Poplavko P, Socci D, Bourgos P, Bensalem S, Bozga M (2015) Models for deterministic execution of
real-time multiprocessor applications. In: DATE

51. Reineke J, Liu I, Patel HD, Kim S, Lee EA (2011) PRET DRAM controller: bank privatization for
predictability and temporal isolation. In: Proceedings of the seventh IEEE/ACM/IFIP international con-
ference on Hardware/software codesign and system synthesis, pp 99–108

52. Santy F, George L, Thierry P, Goossens J (2012) Relaxing mixed-criticality scheduling strictness for task
sets scheduled with FP. In: ECRTS, IEEE, pp 155–165

53. Sha L, Caccamo M, Mancuso R, Kim J-E, Yoon M-K, Pellizzoni R, Yun H et al (2014) Single core
equivalent virtual machines for hard real-time computing on multicore processors. Technical report,
University of Illinois at Urbana-Champaign

54. Sigrist L, Giannopoulou G, Huang P, Gomez A, Thiele L (2015) Mixed-criticality runtime mechanisms
and evaluation on multicores. In: RTAS’15

55. Socci D, Poplavko P, Bensalem S, Bozga M (2013) Modeling mixed-critical systems in real-time BIP. In:
ReTiMiCs’2013

56. Socci D, Poplavko P, Bourgos P, Bensalem S, Bozga M (2015) A timed-automata based middleware for
time-critical multicore applications. In: Extended version of SEUS’15 workshop paper. Report TR-2015-
12, Verimag

57. Sriram S, Bhattacharyya S (2009) Embedded multiprocessors: scheduling and synchronization. Signal
processing and communications, 2nd edn. Taylor & Francis, Abington

58. Su H, Zhu D (2013) An elastic mixed-criticality task model and its scheduling algorithm. In: DATE, pp
147–152

59. Tamas-Selicean D, Pop P (2011) Design optimization of mixed-criticality real-time applications on cost-
constrained partitioned architectures. In: RTSS’11

60. Thiele L, Bacivarov I, Haid W, Huang K (2007) Mapping applications to tiled multiprocessor embedded
systems. In: ACSD’07

61. Thiele L, Chakraborty S, Naedele M (2000) Real-time calculus for scheduling hard real-time systems.
In: ISCAS

62. Tobuschat S, Axer P, Ernst R, Diemer J (2013) IDAMC: a NoC for mixed criticality systems. In: RTCSA,
pp 149–156

63. Triki A, Combaz J, Bensalem S, Sifakis J (2013) Model-based implementation of parallel real-time
systems. In: FASE’13, Springer

64. Vestal S (2007) Preemptive scheduling of multi-criticality systems with varying degrees of execution time
assurance. In: RTSS’07

65. Waez MTB, Dingel J, Rudie K (2013) A survey of timed automata for the development of real-time
systems. Comput Sci Rev 9:1–26

66. Wilhelm R, Grund D, Reineke J, Schlickling M, Pister M, Ferdinand C (2009) Memory hierarchies,
pipelines, and buses for future architectures in time-critical embedded systems. IEEE Trans Comput Aid
Des Integr Circuits Syst 28(7):966–978

67. Wu ZP, Krish Y, Pellizzoni R (2013) Worst case analysis of DRAM latency in multi-requestor systems.
In: RTSS, pp 372–383

68. Yan G, Zhu X, Yan R, Li G (2014) Formal throughput and response time analysis of MARTE models. In:
Proceedings of formal methods and software engineering, pp 430–445

123

http://www-verimag.imag.fr/Multicore-Time-Critical-Code,470.html

A mixed-criticality design flow for multicores 181

69. Yun H, Mancuso R, Wu Z-P, Pellizzoni R (2014) PALLOC: DRAM bank-aware memory allocator for
performance isolation on multicore platforms. In: 2014 IEEE 20th, real-time and embedded technology
and applications symposium (RTAS), pp 155–166

70. Yun H, Yao G, Pellizzoni R, Caccamo M, Sha L (2012) Memory access control in multiprocessor for
real-time systems with mixed criticality. In: ECRTS’12

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

