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Abstract For a fixed cusp form π on GL3(Z) and a varying Dirichlet character χ of
prime conductor q, we prove that the subconvex bound

L
(
π ⊗ χ, 1

2

) � q3/4−δ

holds for any δ < 1/36. This improves upon the earlier bounds δ < 1/1612 and
δ < 1/308 obtained by Munshi using his GL2 variant of the δ-method. The method
developed here is more direct. We first express χ as the degenerate zero-frequency
contribution of a carefully chosen summation formula à la Poisson.After an elementary
“amplification” step exploiting the multiplicativity of χ , we then apply a sequence of
standard manipulations (reciprocity, Voronoi, Cauchy–Schwarz and the Weil bound)
to bound the contributions of the nonzero frequencies and of the dual side of that
formula.
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1 Introduction

We consider the problem of bounding L(π ⊗ χ, 1
2 ), where

• π is a fixed cusp form on GL3(Z), not necessarily self-dual, and
• χ traverses a sequence ofDirichlet charactersχ of (say) prime conductor q tending
off to ∞.

Munshi [21] recently established the first subconvex bound in this setting by showing
that if π satisfies the Ramanujan–Selberg conjecture, then for any fixed δ < 1/1612,
the estimate

|L (
π ⊗ χ, 1

2

) | � Cq3/4−δ (1.1)

holds for some positive quantity C that may depend upon δ and π , but not upon χ .
In the preprint [17], he improves the exponent range to δ < 1/308 and removes the
Ramanujan–Selberg assumption.

A striking feature of hiswork is the introduction of a novel “GL2 δ-symbolmethod,”
whereby one detects an equality of integers n1 = n2 by averaging several instances
of the Petersson trace formula. We summarize this approach in Appendix B, refer-
ring to [21] and [17] for details, to [19] and [18] for other recent applications of the
GL2 δ-symbol method, and to [10, Sect. 5.5] for general discussion of the spectral
decomposition of the δ-symbol.

It is natural to ask about the true strength of the GL2 δ-symbol method. How does
it compare to the classical δ-symbol method of Duke–Friedlander–Iwaniec [6] and
Heath-Brown [8]? For which problems does one fail and the other succeed? For which
problems are the two methods “identical” or “equivalent”? Can the GL2 δ-symbol
method be simplified or removed in certain applications?

In pondering such questions, we were able to better understand the arithmetical
structure and mechanisms underlying Munshi’s argument and construct a more direct
proof of the following quantitative strengthening of Munshi’s bound.

Theorem 1 The subconvex bound (1.1) holds for any δ < δ0 := 1/36.

The proof is surprisingly short compared to earlier proofs of related estimates.
Indeed,we regard the primary novelty of thiswork as not in the numerical improvement
of the exponent δ but rather in the drastic simplification obtained for the proof of any
subconvex bound (1.1).
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Subconvex bounds… 301

Our point of departure is a formula (see Sect. 3.2), derived via Poisson summation,
that expresses χ in terms of additive characters and twisted Kloosterman sums. We
insert this into an approximate functional equation for L(π ⊗ χ, 1/2). After an ele-
mentary “amplification” step exploiting themultiplicativity ofχ , we then conclude via
standard manipulations. We discuss in Appendix B how we arrived at this approach
through a careful study of Munshi’s arguments.

We hope that the technique described here may be applied to many other problems.
For instance, it seems natural to askwhether it allows a simplification or generalization
of the arguments of [19] for bounding symmetric square L-functions.

The works [3,9,12,14,20,22–26] bound twisted L-functions on GL3 in other
aspects. In the preprint [13], Yongxiao Lin has generalized our method to incorporate
the t-aspect. The preprint [1] applies a simpler technique to the corresponding problem
for GL2.

2 Preliminaries

2.1 Asymptotic notation

We work throughout this article with a cusp form π on GL3(Z) and a sequence
of primitive Dirichlet characters χj to prime moduli qj, indexed by j ∈ Z�1, with
qj → ∞. To simplify notation, we drop the subscripts and write simply χ := χj

and q := qj. Our convention is that any object (number, set, function,...) considered
below may depend implicitly upon j unless we designate it as fixed; it must then be
independent of j. Thus π is understood as fixed, while χ is not. All assertions are to be
understood as holding after possibly passing to some subsequence qjk of the original
sequence qj, and in particular, for j sufficiently large.

We define standard asymptotic notation accordingly: A = O(B) or A � B or
B � A means that |A| � c|B| for some fixed c � 0, while A = o(B) means
|A| � c|B| for every fixed c > 0 (for j large enough, by convention). We write A � B
for A � B � A. We write A = O(q−∞) to denote that A = O(q−c) for each fixed
c � 0. Less standardly, we write A ≺ B or B 
 A as shorthand for A � qo(1)B, or
equivalently, |A| � qo(1)|B|. Our goal is then to show that

L
(
π ⊗ χ, 1

2

) ≺ q3/4−δ0 . (2.1)

We say that V ∈ C∞
c (R×+) is inert if it satisfies the support condition

V (x) �= 0 �⇒ x � 1

and the value and derivative bounds

(x∂x )
j V (x) ≺ 1 for each fixed j � 0.
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302 R. Holowinsky, P. D. Nelson

2.2 General notation

We write e(x) := e2π i x , and denote by
∑

n a sum over integers n. Let c ∈ Z�1. We
write

∑
a(c) and

∑
a(c)∗ to denote sums over a ∈ Z/c and a ∈ (Z/c)∗, respectively.

We denote the inverse of x ∈ (Z/c)∗ by x−1 or 1/x . We denote by ec : Z/c → C
× the

additive character given by ec(a) := e2π ia/c, by S(a, b; c) := ∑
x(c)∗ ec(ax + bx−1)

the Kloosterman sum, by Kc(a) := c−1/2S(a, 1; c) the normalized Kloosterman sum,
by Sχ (a, b; q) := ∑

x(q)∗ χ(x)eq(ax + bx−1) the twisted Kloosterman sum, and by

ε(χ) := q−1/2 ∑
a(q)∗ χ(a)eq(a) the normalized Gauss sum (of magnitude one).

We define the Fourier coefficients λ(m, n) of π as in [7], so that L(π ⊗ χ, s) =∑
n∈Z�1

λ(1, n)χ(n)n−s for complex numbers s with large enough real part, and

λ(n,m) = λ(m, n).
For a condition C , we define 1C to be 1 if C holds and 0 otherwise. For instance,

1a=b is 1 if a = b and 0 if a �= b.
We denote by V̂ (ξ) := ∫

x∈R V (x)e(−ξ x) dx the Fourier transform of a Schwartz
function V on R.

For a pair of integers a, b, we denote by (a, b) and [a, b] their the greatest common
divisor and least common multiple, respectively.

2.3 Voronoi summation formula

By [15] (cf. [2, Sect. 4] for the formulation used here), we have for V ∈ C∞
c (R×+),

m, c ∈ Z�1, a ∈ (Z/c)∗, and X > 0 that

∑

n

V
( n

X

)
λ(m, n)ec(an) = c

∑

±,n
d|cm

I±V
(

nd2

c3m/X

)
λ(n, d)

nd
S

(m
a

,±n; mc

d

)
,(2.2)

for integral transforms V �→ I±V ∈ C∞(R×+) of the shape

I±V (x) =
∫

Re(s)=1
x−sG±(s + 1)

(∫

y∈R×+
V (y)y−s dy

y

)
ds

2π i
,

where G± is meromorphic onC and holomorphic in the domain Re(s) > 5/14, where
it satisfies G±(s) � (1 + |s|)O(1) for fixed Re(s). (The indices n and d in (2.2) are
implicitly restricted to be positive integers.) Set θ = 5/14 + ε for some sufficiently
small fixed ε > 0. By shifting the contour to Re(s) = θ − 1 and to Re(s) = A, we
see that if V is inert, then

(x∂x )
jI±V (x) � min(x1−θ , x−A) (2.3)

for all fixed j, A � 0.
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Subconvex bounds… 303

In the special case m = 1, we have S(m/a,±n;mc/d) = (c/d)1/2Kc/d(±n/a),
and so

∑

n

V
( n

X

)
λ(1, n)ec(an) = c3/2

∑

±,n
d|c

I±V
(

nd2

c3/X

)
λ(n, d)

nd3/2
Kc/d

(±n

a

)
.

2.4 Rankin–Selberg bounds

By [16], we have for each fixed ε > 0 and all X � 1 that

∑

n�X

|λ(n, 1)|2 =
∑

n�X

|λ(1, n)|2 �
∑

m,n:m2n�X

|λ(m, n)|2 � X1+ε. (2.4)

Using the Hecke relations as in the proof of [17, Lem 2], we deduce that for all
M, N � 1,

∑

m�M,n�N

|λ(m, n)|2 � (MN )1+ε. (2.5)

(Indeed, we may reduce to considering the dyadic sums over M/2 < m � M, N/2 <

n � N , and then to establishing that
∑

X/8<m2n�X m|λ(m, n)|2 � X1+ε, which is
shown in loc. cit.)

3 Division of the proof

3.1 Approximate functional equation

Recall our main goal (2.1). By [11, Sect. 5.2], we may write

L(π ⊗ χ, 1
2 ) =

∑

n

λ(1, n)χ(n)√
n

V1

(
n

q3/2

)
+ η

∑

n

λ(1, n)χ(n)√
n

V2

(
n

q3/2

)
,

for some η ∈ Cwith |η| = 1 and some smooth functions V1, V2 : R×+ → C satisfying
(x∂x ) j Vi (x) � min(1, x−A) for all fixed j, A ∈ Z�0. By a smooth dyadic partition
of unity and the Rankin–Selberg estimate (2.4), it will suffice to show for each 0 <

N ≺ q3/2 and each inert V ∈ C∞
c (R×+) that the normalized sum

� :=
∑

n

V (n/N )

N
λ(1, n)χ(n)

satisfies the estimate

� ≺ N−1/2q3/4−δ0 . (3.1)
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304 R. Holowinsky, P. D. Nelson

By further application of (2.4), we may and shall assume further that

q3/2−2δ0 � N ≺ q3/2. (3.2)

The proof of (3.1) will involve positive parameters R, S, T satisfying

qε � R, S, T � q1−ε for some fixed ε > 0. (3.3)

Thus every integer in [R, 2R] ∪ [S, 2S] ∪ [T, 2T ] is coprime to q.

3.2 A formula for χ

Fix a smooth function W on R supported in the interval [1, 2] with ∫
W (x) dx = 1.

Then Ŵ (0) = 1. Observe that 1/r ∈ Z/q is defined for all integers r for which
W (r/R) �= 0. Set

H := q/R.

By Poisson summation, we have

√
q

R

∑

r

W
( r

R

)
χ(r)eq

(u
r

)
=

∑

h

Ŵ

(
h

H

)
1√
q

∑

r(q)∗
χ(r)eq

(u
r

)
eq(hr)

︸ ︷︷ ︸
=Sχ (h,u;q)

. (3.4)

For h ≡ 0 (mod q), we have Sχ (h, u; q) = √
qε(χ)χ(u). Setting αr :=

ε(χ)−1R−1W (r/R)χ(r), we deduce by rearranging (3.4) that

χ(u) = q1/2
∑

r

αr eq
(u
r

)
− ε(χ)−1

∑

h �=0

Ŵ

(
h

H

)
Sχ (h, u; q)√

q
. (3.5)

The properties of the sequence α to be used in what follows are that it is supported on
[R, 2R] and satisfies the estimates αr ≺ R−1 and

∑
r |αr | � 1.

3.3 “Amplification”

We choose sequences of complex numbers βs and γt supported on (say) primes in the
intervals [S, 2S] and [T, 2T ], respectively, so that

βs ≺ S−1, γt ≺ T−1,
∑

s

βsχ(s) =
∑

t

γtχ(t) = 1. (3.6)
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Subconvex bounds… 305

Then

� =
∑

n,s,t

V (n/N )

N
λ(1, n)βsγtχ

(
tn

s

)
. (3.7)

The properties of βs and γt just enunciated, rather than an explicit choice, are all
that will be used; one could take, for instance βs := χ(s)|P ∩ [S, 2S]|−11s∈P∩[S,2S],
where P denotes the set of primes, and similarly for γt .

3.4 A formula for �

Substituting (3.5) with u = tn/s into (3.7) gives � = F − ε(χ)−1O, where

F = q1/2
∑

r,s,t

αrβsγt
∑

n

V (n/N )

N
λ(1, n)eq

(
tn

rs

)
,

O =
∑

n

V (n/N )

N
λ(1, n)

∑

s,t

βsγt
∑

h �=0

Ŵ

(
h

H

)
Sχ (h, tn/s; q)√

q
.

3.5 Main estimates

We prove these in the next two sections.

Proposition 1 Assume that

qRS 
 T N . (3.8)

Then

|F |2 ≺ q

N

(
qRS

T N

)3

+ q
(RS)3

N 2

(
1

ST
+ 1 + N/R2S

R1/2S

)
. (3.9)

Remark As explained in the remark of Sect. 4.3, the first term on the RHS of (3.9)
is unnecessary. Including it simplifies slightly our proofs without affecting our final
estimates.

Proposition 2 Assume that

ST � q−εR (3.10)

for some fixed ε > 0. Then

|O|2 ≺ H2 1

ST H
. (3.11)
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3.6 Optimization

Our goal reduces to establishing that F ,O ≺ N−1/2q3/4−δ0 . (By comparison, we
note the trivial bounds F ≺ q1/2 andO ≺ H .) We achieve this by applying the above
estimates with

R := T N

qS
, S := q2/18, T := q5/18.

Then (3.8) is clear, while (3.10) follows from (3.2). The required bound forO follows
readily from (3.11). We now deduce the required bound for F . Note that the first term
on the RHS of (3.9) is acceptable thanks to our choice of R. Note also from (3.2) that
qST � N ≺ q3/2; fromour choice of R, it follows that 1/ST � (1+N/R2S)/R1/2S.
The bound for |F |2 then readily simplifies to |F |2 ≺ q−2δ0 ≺ N−1q3/2−2δ0 . (By
solving a linear programming problem, we see moreover that these choices give the
optimal bound for L(π ⊗ χ, 1/2) derivable from the above propositions.)

4 Estimates for F
We now prove Proposition 1.

4.1 Reciprocity

Our assumption (3.8) implies that for all r, s, t with αrβsγt �= 0, the function
V ′
r,s,t (x) := V (x)e(t N x/qrs) is inert. By the Chinese remainder theorem, we have

eq(tn/rs) = eqrs(tn)ers(−tn/q) for (rs, q) = 1. We may thus rewrite

F =
∑

r,s,t

αrβsγtS(r, s, t),

where

S(r, s, t) := q1/2
∑

n

V ′
r,s,t (n/N )

N
λ(1, n)ers

(
− tn

q

)
.

4.2 Voronoi

We introduce the notation

c := c(rs, t) := rs

(rs, t)
, a := a(rs, t) := −t

(rs, t)
,

so that ers(−tn/q) = ec(an/q) and (a, c) = 1. Applying Voronoi summation (Sect.
2.3), we obtain
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S(r, s, t) = q1/2c3/2

N

∑

±,n
d|c

V ′′±,r,s,t

(
nd2

c3/N

)
λ(n, d)

nd3/2
Kc/d

(±qn

a

)

for some smooth functions V ′′±,r,s,t satisfying (x∂x ) j V ′′±,r,s,t (x) ≺ min(x1−θ , x−A)

for fixed j, A ∈ Z�0.

4.3 Cleaning up

The Weil bound, the Rankin–Selberg bound (2.4) and the condition N ≺ q3/2 give

S(r, s, t) ≺ q1/2c3/2/N ≺ N−1/2q1/2(qc/N )3/2. (4.1)

If (rs, t) �= 1, then (because t is prime) c = rs/t , hence by (4.1),

∑

r,s,t :(rs,t) �=1

αrβsγtS(r, s, t) ≺ N−1/2q1/2
(
qRS

T N

)3/2

.

Since the square of the latter is the first term on the RHS of (3.9), the proof of
Proposition 1 reduces to that of an adequate bound for the sum

F1 :=
∑

r,s,t :(rs,t)=1

αrβsγtS(r, s, t).

If (rs, t) = 1, then c = rs and a = −t , hence

F1 =
∑

±,n,r,d

αr
λ(n, d)√

nd

∑

s,t :
d|rs,(rs,t)=1

βsγt�(n, d, r, s, t) (4.2)

with

�(n, d, r, s, t) := q1/2(rs)3/2

N
√
nd

V ′′±,r,s,t

(
nd2

(rs)3/N

)
Krs/d

(∓qn

t

)
.

Remark With slightly more case-by-case analysis in the arguments to follow, one can
verify that the reduction performed here to the case (rs, t) = 1 is unnecessary, hence
that the bound (3.9) remains valid in the stated generality even after deleting the first
term on its RHS.

4.4 Cauchy–Schwarz

Let ε > 0 be fixed and small. The rapid decay of V ′′±,r,s,t implies that truncating (4.2)
to nd2 � qε(RS)3/N introduces the negligible error O(q−∞). By the Rankin–Selberg
bound (2.5), we have
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308 R. Holowinsky, P. D. Nelson

∑

±,n,r,d:
nd2�qε(RS)3/N

|αr | |λ(n, d)|2
nd

≺ 1.

It follows by Cauchy–Schwarz that

|F1|2 ≺
∑

±,n,r,d

|αr |

∣∣∣
∣∣∣∣∣

∑

s,t :
d|rs,(rs,t)=1

βsγt�(n, d, r, s, t)

∣∣∣
∣∣∣∣∣

2

+ O(q−∞).

4.5 Application of exponential sum bounds

Opening the square, expanding the definition of � and wastefully discarding some
summation conditions, we obtain

|F1|2 ≺ q(RS)3

N 2

∑

±,r,d,s1,s2,t1,t2:
d|(rs1,rs2)

|αrβs1βs2γt1γt2 |
d2

|C| + O(q−∞), (4.3)

where C is defined for (r, s1, s2, t1, t2) in the support of αrβs1βs2γt1γt2 by

C := 1

X

∑

n

U
( n

X

)
Krs1/d

(∓qn

t1

)
Krs2/d

(∓qn

t2

)
(4.4)

with

X := (rs1)3/2(rs2)3/2

d2N
� (RS)3

d2N

and

U (x) := 1

x
V ′′±,r,s1,t1

(
Xxd2

(rs1)3/N

)
V ′′±,r,s2,t2

(
Xxd2

(rs2)3/N

)
.

We have (x∂x ) jU (x) ≺ min(x1−2θ , x−A) for fixed j, A ∈ Z�0. By a smooth dyadic
partition of unity, we may write

U (x) =
∑

Y∈exp(Z)

min(Y 1−2θ ,Y−10)UY

( x

Y

)
, (4.5)

where each functionUY is inert. Substituting (4.5) into (4.4) and applying the incom-
plete exponential sum estimates recorded in Appendix A, we obtain with

� := q
(rs2/d)2t2 − (rs1/d)2t1

(rs1/d, rs2/d)2
= q

s22 t2 − s21 t1
(s1, s2)2
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that

C ≺ 1

X

∑

Y∈exp(Z)

min
(
Y 1−2θ ,Y−10

)(

XY

(
�, rs1

d , rs2
d

)1/2

[ rs1
d , rs2

d

]1/2 + [ rs1
d , rs2

d

]1/2
)

.

Since θ < 1/2, the above sum is dominated by the contribution fromY = 1; estimating
that contribution a bit crudely with respect to d, we obtain

C ≺ d1/2
(�, rs1, rs2)1/2

r1/2[s1, s2]1/2 + r1/2[s1, s2]1/2
d1/2X

. (4.6)

4.6 Diagonal and off-diagonal

To state the estimates to be obtained shortly, we introduce the notation

Er,s1,s2,t1,t2 := 1

RS2T 2

∑

r :
R�s�2R

∑

s1,s2:
S�s1,s2�2S

∑

t1,t2:
T�t1,t2�2T

.

We estimate separately the contribution of each term on the RHS of (4.6) to F1 via
(4.3), splitting off the contribution to the first from terms with � = 0. We obtain in
this way that

|F1|2 ≺ q(RS)3

N 2

∑

i=0,1,2

Bi + O(q−∞),

where

B0 := Er,s1,s2,t1,t21�=0
(s1, s2)1/2

[s1, s2]1/2 ,

B1 := Er,s1,s2,t1,t21��=0
(�, rs1, rs2)1/2

r1/2[s1, s2]1/2 ,

B2 := N

(RS)3
Er,s1,s2,t1,t2r

1/2[s1, s2]1/2.

(In deriving the estimate involvingB2, we used the slightly wasteful bound 1
d2

1
d1/2X

�
N

(RS)3
.) Noting that � = 0 iff s22 t2 = s21 t1, we verify using the divisor bound that

B0 ≺ 1

ST
,

B1 ≺ 1

R1/2S
,
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B2 ≺ N

(RS)3
R1/2S.

These estimates combine to give an adequate estimate for F1.

5 Estimates for O
We now prove Proposition 2.

5.1 Cauchy–Schwarz

Using again the Rankin–Selberg bound (2.4), we obtain

|O|2 ≺
∑

n

|V (n/N )|2
N

∣∣∣
∣∣∣

∑

s,t,h:h �=0

βsγt Ŵ

(
h

H

)
Sχ (h, tn/s; q)√

q

∣∣∣
∣∣∣

2

.

5.2 Elementary exponential sum bounds

Let ε > 0 be fixed but sufficiently small. Since q is prime and R satisfies the lower
bound in (3.3), we know that the integers h and q are coprime whenever 0 �= |h| �
qεH . By the rapid decay of Ŵ , we may truncate the h-sum to |h| � qεH with
negligible errorO(q−∞).We thenopen the square and applyCauchy–Schwarz, leading
us to consider for s1, t1, h1, s2, t2, h2 with

S � si � 2S, T � ti � 2T, 0 �= |hi | � qεH (5.1)

the sums

� :=
∑

n

|V (n/N )|2
N

Sχ (h1, t1n/s1; q)√
q

Sχ (h2, t2n/s2; q)√
q

. (5.2)

We apply Poisson summation. By the lower bound on N in (3.2) and the assumption
δ0 = 1/36 < 1/4, we have N � q1+ε for some fixed ε > 0. Thus only the zero
frequency ξ = 0 after Poisson contributes non-negligibly, and so � ≺ q−1�0 +
O(q−∞) with

�0 :=
∑

n(q)

Sχ (h1, t1n/s1; q)√
q

Sχ (h2, t2n/s2; q)√
q

.

Opening the Kloosterman sums and executing the n-sum gives

�0 =
∑

x,y(q)∗
1t1/s1x=t2/s2 yχ(x/y)eq(h1x − h2y).
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Our assumptions imply that the quantities si , ti , hi are all coprime to q, so after a
change of variables we arrive at

|�0| = |
∑

x(q)∗
eq((s1t2h1 − s2t1h2)x)| � (t1s2h2 − t2s1h1, q).

5.3 Diagonal vs. off-diagonal

We have shown thus far that

|O|2 ≺ H2 1

(ST H)2

∑

s1,t1,h1,s2,t2,h2

q−1(t1s2h2 − t2s1h1, q) + O(q−∞),

where the sum is restricted by the condition (5.1). By our assumption (3.10), the
quantities t1s2h2 and t2s1h1 are congruent modulo q precisely when they are equal.
By the divisor bound, the number of tuples for which t1s2h2 = t2s1h1 is ≺ q2εST H .
Since ε > 0 was arbitrary, we obtain

|O|2 ≺ H2
(

1

ST H
+ 1

q

)
. (5.3)

By another application of our assumption (3.10), the first term in the latter bound
dominates, giving the required bound for O.

The proof of our main result (Theorem 1) is now complete.

Acknowledgements This work was initiated during a visit of PN to RH at The Ohio State University in
June 2017. RH thanks PN for taking the time to schedule that visit to Columbus on his return to ETH
from MSRI. RH also thanks the Department of Mathematics at The Ohio State University for giving him
the opportunity to teach a topics course on R. Munshi’s delta method during the Fall 2016 semester. PN
thanks The Ohio State University, the STEAM Factory, and the Erdős Institute for their hospitality. We
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Appendix A: Correlations of Kloosterman sums

The estimates recorded here are unsurprising, but we were unable to find references
containing all cases that we require (compare with e.g. [4,5,17]).

Lemma 1 Let s be a natural number. Let a, b, c, d ∈ Z/s be congruence classes for
which (d, s) = 1. For each prime p | s, let X0(p) ⊆ Z/p be a subset of cardinality
p − O(1). Let X denote the set of elements x ∈ Z/s for which

• the class of x modulo p belongs to X0(p) for each p | s, and
• (cx + d, s) = 1.
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Define φ : X → Z/s by

φ(x) := x
ax + b

cx + d
.

Then the exponential sum � := s−1 ∑
x∈X es(φ(x))

satisfies

|�| � 2O(ω(s)) (a, b, s)

s1/2(a, s)1/2
,

where ω(s) denotes the number of prime divisors of s, without multiplicity.

Proof We may assume that s = pn for some prime p. For n = 0, there is nothing to
show. For n = 1, we appeal either to the Weil bound, to bounds for Ramanujan sums,
or to the trivial bound according as (a, p) = 1, or (a, p) = p and (a, b, p) = 1, or
(a, b, p) = p. We treat the remaining cases by induction on n � 2.

If (a, b, p) > 1, then the conclusion follows by our inductive hypothesis applied
to s/p, a/p, b/p, c, d. We may thus assume that (a, b, p) = 1.

A short calculation gives the identities of rational functions

φ′(x) = acx2 + 2adx + bd

(cx + d)2
, φ′′(x) = 2a + 2cφ′(x)

cx + d
. (A.1)

Write n = 2α or 2α + 1, and set R := {x ∈ X /pα : φ′(x) ≡ 0 (pα)}. Then by
p-adic stationary phase [11, Sect. 12.3],

� � s−1/2
∑

x∈R
(φ′′(x), p)1/2.

If (a, p) > 1, then (b, p) = 1 and φ′(x) ≡ bd/(cx + d)2 (p), so (φ′(x), p) = 1.
Thus R = ∅ and � = 0. Assume otherwise that (a, p) = 1. For x ∈ R, we have
φ′′(x) ≡ 2a/(cx + d) (pα), so that

x ∈ R �⇒ (φ′′(x), p) = (2a, pα) = (2, pα) � 1. (A.2)

Thus � � s−1/2#R and, by Hensel’s lemma, #R � 1. The proof of the required
bound is then complete. ��

Lemma 2 Let s1, s2 be natural numbers. Let a1, a2, b1, b2 be integers with (b1, s1) =
(b2, s2) = 1. Set �i := ai/bi ∈ Z/si . Set

� := s22b2a1 − s21b1a2
(s1, s2)2

.
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(i) Let ξ be an integer. Set

� := 1

[s1, s2]
∑

x([s1,s2])
Ks1(�1x)Ks2(�2x)e[s1,s2](ξ x)

Then

|�| � 2O(ω([s1,s2])) (�, ξ, s1, s2)

[s1, s2]1/2(ξ, s1, s2)1/2
. (A.3)

In particular,

|�| � 2O(ω([s1,s2])) (�, ξ, s1, s2)1/2

[s1, s2]1/2 . (A.4)

(ii) Let V : R → C be a smooth function satisfying xm∂nx V (x) ≺ 1 for all fixed
m, n ∈ Z�0. Let X > 0.

Assume that s1, s2 = O(qO(1)). Then

∑

n

V (
n

X
)Ks1(�1n)Ks2(�2n) ≺ X

(�, s1, s2)1/2

[s1, s2]1/2 + [s1, s2]1/2. (A.5)

Remark These estimates are not sharp if either (a1, s1) or (a2, s2) is large, but that
case is unimportant for us. In fact, we have recorded (A.3) only for completeness; the
slightly weaker bound (A.4) is the relevant one for our applications. We note finally
that Ks is real-valued.

Proof We begin with (i). Each side of (A.3) factors naturally as a product over primes,
so we may assume that si = pni for some prime p. By the change of variables
x �→ b1b2x , we may reduce further to the case b1 = b2 = 1, so that �i = ai .

In the case that some �i is divisible by p, the quantity Ksi (�i x) is independent of

x , has magnitude at most s−1/2
i , and vanishes if ni > 1. The required estimate then

follows in the stronger form � � (s1s2)−1/2 by opening the other Kloosterman sum
and executing the sum over x . We will thus assume henceforth that �1 and �2 are
coprime to p.

Writewi := si/(s1, s2), so thatw1s2 = s1w2 = [s1, s2] and� = w2
2b2a1−w2

1b1a2.
By opening the Kloosterman sums and summing over x , we obtain

� = 1√
s1s2

∑

x1(s1)∗

∑

x2(s2)∗
w1�2x

−1
2 ≡w2�1x

−1
1 +ξ ([s1,s2])

e[s1,s2](w2x1 − w1x2). (A.6)

Consider first the case s1 = s2 =: s, so that w1 = w2 = 1 and � = �1 − �2
and [s1, s2] = (s1, s2) = s. The subscripted identity in (A.6) then shows that x2 is
determined uniquely by x1 =: x and, after a short calculation, that
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� = 1

s

∑

x(s)∗
es

(
x
ξ x + �x

ξ x + �1

)
.

By the previous lemma, it follows that

� � (�, ξ, s)

s1/2(ξ, s)1/2
,

as required.
Suppose now that s1 �= s2. Without loss of generality, s1 < s2. Then w1 = 1 and

w2 = s2/s1; in particular, w2 is divisible by p. The summation condition in (A.6)
shows that � = 0 unless (ξ, p) = 1, as we henceforth assume. Since (�1�2, p) = 1,
we have (�, p) = 1, so our goal is to show that� � s−1/2

2 .We introduce the variable

y := ξ x1 + w2�1.

Then

x1 = y − w2�1

ξ
, x2 = w1�2

y

y − w2�1

ξ
,

and as y runs over (Z/s1)∗, the pair (x1, x2) traverses the set indicated in (A.6). A
short calculation gives

w2x1 − w1x2 = −�

ξ
+ w2

ξ

(
y + �2�1

y

)
,

hence

� = 1√
s1s2

es2

(
−�

ξ

) ∑

y(s1)∗
es1

(
1

ξ

(
y + �2�1

y

))

︸ ︷︷ ︸√
s1Ks1(�2�1/ξ

2)

.

The required conclusion then follows from the Weil bound.
To prove (ii), we first apply Poisson summation to write the LHS of (A.5) as

X
∑

ξ

V̂

(
ξ

[s1, s2]/X
)

1

[s1, s2]
∑

x([s1,s2])
Ks1(�1x)Ks2(�2x)e[s1,s2](ξ x), (A.7)

where V̂ satisfies estimates analogous to those assumed for V . We then apply (A.4).
The ξ = 0 term in (A.7) then contributes the first term on the RHS of (A.5), while an
adequate estimate for the remaining terms follows from the consequence
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∑

ξ �=0

|V̂ |
(

ξ

[s1, s2]/X
)

(�, ξ, s1, s2)
1/2 ≺ [s1, s2]/X

of the divisor bound. ��

Appendix B: Comparison with Munshi’s approach

We outline Munshi’s approach [17,21] to the sums � arising as in Sect. 3.1 after a
standard application of the approximate functional equation, and compare with our
own treatment. For simplicity we focus on the most difficult range N ≈ q3/2.

B.1. Averaged Petersson formula

Munshi employs the following decomposition of the diagonal symbol:

δ(m, n) = 1

B�

∑

b∈B

∑

ψ(b)

(1 − ψ(−1))
∑

f ∈Sk (b,ψ)

w f
−1λ f (m)λ f (n)

− 2π i−k 1

B�

∑

b∈B

∑

ψ(b)

(1 − ψ(−1))
∑

c≡0(b)

Sψ(m, n, c)

c
Jk−1

(
4π

√
mn

c

)
.

(B.1)

Here B is a suitable set of natural numbers, ψ runs over a suitable collection of odd
Dirichlet characters modulo b ∈ B, and B� denotes the appropriate normalizing factor.

B.2 Munshi’s initial transformations

Set A(n) := λ(1, n). Munshi writes1

∑

n∼N

A(n)χ(n) ≈ 1

S

∑

s∼S

∑

n∼N

A(n)
∑

r∼NS

χ
(r
s

)
δ(r, ns) (B.2)

where s runs over primes of size S. Munshi applies (B.1) to δ(r, n�) with B = {tq :
t ∼ T }, where t runs over primes of size T , and the charactersψ are taken to be trivial
modulo q. The use of (B.1) produces two main contributing terms, FM from the sum
of Fourier coefficients andOM from the sum of Kloosterman sums, given roughly by

FM ≈ 1

T 2S

∑

s

∑

t

∑

ψ(t)

∑

n∼N

∑

r∼NS

A(n)χ
(r
s

) ∑

f ∈Sk (tq,ψ)

ω f
−1λ f (r)λ f (ns)(B.3)

1 For the sake of comparison, we note that Munshi used the notation R, L , P, M corresponding to our
R, S, T, q.
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and

OM ≈ 1

T 2S

∑

s

∑

t

∑

ψ(t)

∑

n∼N

∑

r∼NS

A(n)χ
(r
s

) ∑

c�√
qS/T

1

ctq
Sψ(r, ns; ctq) (B.4)

which Munshi then works to balance with the appropriate choices of S and T . (The
superscripted M has been included to disambiguate from the closely related expres-
sions defined in Sect. 3.4 of this paper.) In (B.4) we sum over moduli c up to the
transition range of the resulting J -Bessel function, which we do not display for nota-
tional simplicity. (For the analogous problem in spectral or t-aspects, the J -Bessel
function plays an important analytic role; cf. forthcoming work of Yongxiao Lin.)

B.3 Outline of Munshi’s method

We now present a brief outline of Munshi’s treatment of FM and OM (see [17] for
details).

B.3.1 Treatment of FM

(1) Dualize the n-sum via the GL3 ×GL2 functional equation.
(2) Dualize the r -sum via the GL2 ×GL1 functional equation.
(3) Sum over f via the Petersson trace formula. The diagonal contribution is negligi-

ble. The off-diagonal contribution is a c-sum over Kloosterman sums of the form
Sψ(t2qn, rs; ctq) with c � √

qT 2.
(4) Factor the Kloosterman sums modulo t and modulo cq. This yields Gauss sums

modulo t ; evaluate them. Sum overψ modulo t . Factor the remainingKloosterman
summodulo c andmoduloq. Themodq contribution gives aRamanujan sumequal
to −1.

(5) The n-sum now oscillates only modulo c. Apply GL3 Voronoi and reciprocity.
(6) Dualize the c-summodulo r via Poisson. Only the zero dual frequency contributes.

It remains to estimate sums of the form

√
q

T 4

∑

t∼T

∑

s∼S

∑

r∼√
qT/S

∑

n∼T 3

A(n)χ
(rs
t

)
S

(
−nq

t
, 1; rs

)
. (B.5)

(7) Pull the n, r sums outside and apply Cauchy-Schwarz.
(8) Conclude via Poisson in n.

Such a treatment produces the following bound

F � N

[
T

q1/4S1/2
+

(
T S

q1/2

)1/4

+ noiseF

]

, (B.6)
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where noiseF comes from all of the other technical aspects resulting from working
outside of the transition ranges and appropriately setting up the remaining object for
each step of the above proof.

B.3.2. Treatment of OM

(1) Factor the Kloosterman sumsmodulo t and cq. Evaluate the sum overψ ; this sim-
plifies the Kloosterman sums modulo t to additive characters. Apply reciprocity.
One now has oscillations only modulo cq.

(2) Apply Poisson to the r sum. Only the zero frequency contributes non-negligibly
to the dual sum. One is now left with estimating sums of the form

1

T S
√
q

∑

t∼T

∑

s∼S

∑

c�√
qS/T

∑

n∼N

A(n)χ

(
tc

s

)
D

(ns
tc

; q
)

, (B.7)

where

D(u; q) :=
∑

b(q)
(b(b−1),q)=1

χ(b − 1)eq((b
−1 − 1)u) (B.8)

(3) Apply Cauchy–Schwarz with the n-sum outside.
(4) Conclude via Poisson in n.

Such a treatment produces the following bound

O � N

[
q1/4

T
+ S

T
+ noiseO

]
(B.9)

where noiseO comes from all of the other technical aspects resulting from working
outside of the transition ranges and appropriately setting up the remaining object for
each step of the above proof.

B.3.3. Optimization

Ignoring the contributions fromnoiseF and noiseO in (B.6) and (B.9), one first restricts
S < q1/4, sets

T

q1/4S1/2
=

(
T S

q1/2

)1/4

to get that S = Tq−1/6, and then sets

T

q1/4S1/2
= q1/4

T
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to get that T = q5/18 and S = q2/18 which would produce a combined bound of

∑

n∼N

A(n)χ(n) � N
[
q−1/36 + noiseF+O

]
. (B.10)

Therefore, the best possible bound that one could hope to achieve is a saving over
the convexity bound of size q−1/36. However, due to all of the technical obstacles
that present themselves in the course of the proof, Munshi’s original approach [21]
produced a saving of q−1/1612, improved in the preprint [17] to q−1/308.

B.4 Discovering the key identity (3.5)

After a topics course taught by the first author in the Fall of 2016 and subsequent
discussions with the second author in June 2017, the key identity in this paper was
discovered hidden within Munshi’s work. Indeed, starting from (B.5) in the treatment
of FM , if one were to now apply Voronoi summation in the n sum followed by an
application of reciprocity for the resulting additive characters, then one would need to
instead analyze sums of the form

1

T 2

∑

t∼T

∑

s∼S

∑

r∼√
qT/S

∑

n∼q3/2

A(n)χ
(rs
t

)
eq

(
−nt

rs

)
. (B.11)

Viewing −t/rs as the u in (3.5), we see that an application of Poisson summation in
r returns us to the dual of our original object of interest (from the h = 0 frequency
of the dual) plus a sum which is the “GL3 dual” of OM (from the dual non-zero h
frequencies) as expressed in (B.7)

1

T S
√
q

∑

t∼T

∑

s∼S

∑

h�√
qS/T

∑

n∼q3/2

A(n)Sχ

(
ht

s
, n, q

)
. (B.12)

By “GL3 dual,” we mean that Voronoi summation in n applied to (B.12) returns one to
objects of the form (B.7). This observation led to the simplification presented in this
paper whereby many of the initial steps of Munshi’s argument, as outlined above, are
eliminated.
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