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dDepartment of Theoretical Physics, St Petersburg State University,

St. Petersburg, Russia

E-mail: mrg@itp.phys.ethz.ch, grumil@hep.itp.tuwien.ac.at,

dvassil@gmail.com

Abstract: The graviton 1-loop partition function in Euclidean topologically massive grav-

ity (TMG) is calculated using heat kernel techniques. The partition function does not

factorize holomorphically, and at the chiral point it has the structure expected from a log-

arithmic conformal field theory. This gives strong evidence for the proposal that the dual

conformal field theory to TMG at the chiral point is indeed logarithmic. We also generalize

our results to new massive gravity.

Keywords: AdS-CFT Correspondence, Field Theories in Lower Dimensions, Models of

Quantum Gravity, Chern-Simons Theories

ArXiv ePrint: 1007.5189

c© SISSA 2010 doi:10.1007/JHEP11(2010)094

mailto:mrg@itp.phys.ethz.ch
mailto:grumil@hep.itp.tuwien.ac.at
mailto:dvassil@gmail.com
http://arxiv.org/abs/1007.5189
http://dx.doi.org/10.1007/JHEP11(2010)094


J
H
E
P
1
1
(
2
0
1
0
)
0
9
4

Contents

1 Introduction 1

2 Preliminaries 3

3 Gauge fixing and ghost determinant 4

4 Topologically massive gravity 1-loop partition function 6

5 Discussion and comparison with CFT partition functions 9

A Generalization to new massive gravity 12

B A combinatorial counting argument 14

1 Introduction

There are many reasons to believe that quantum gravity will have its simplest realization

in negatively curved AdS spaces. For instance, gravity in positively curved de Sitter space

is most likely metastable at best. Furthermore AdS gravity is often dual to a conformal

field theory (CFT) which defines a well-defined quantum system. In 2007 Witten exploited

the intriguing idea of finding a CFT dual to 3-dimensional Einstein gravity with negative

cosmological constant, and conjectured this dual CFT to be extremal [1]. Subsequently,

Maloney and Witten calculated the gravtion 1-loop partition function of this theory [2], but

their result did not factorize into left- and right-moving contributions, thereby violating

one of the assumptions of the original proposal [1]. It also did not seem to give rise to

a sensible CFT partition function. The original proposal of Witten was furthermore in

conflict with a conformal field theory argument that suggested that extremal CFTs cannot

exist for large central charges [3, 4].

Soon after Witten’s proposal Li, Song and Strominger [5] considered a slightly mod-

ified version of Witten’s setup by replacing Einstein gravity with ‘chiral gravity’ [5], i.e.

topologically massive gravity (TMG) [6, 8] for a specific value of the coupling constant.

The distinguishing feature of this theory is that one of the two central charges vanishes,

while the other is still non-zero. This suggests that the partition function might factorize

into a trivial left- and a non-trivial right-moving contribution [9]. TMG is a 3-dimensional

theory of gravity with many intriguing features. For example, TMG exhibits massive grav-

ity waves [6, 7, 10, 11], black hole solutions [12], solutions that asymptote to AdS as well

as solutions with different asymptotic behavior, like squashed/stretched AdS or spacetimes

with asymptotic Schrödinger scaling. Many interesting results have been obtained at the
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classical level, see e.g. [13] and references therein for a summary of exact solutions, and [15]

for all stationary axi-symmetric solutions.

Again, soon after the proposal of Li, Song and Strominger [5], it was conjectured

that the dual CFT for TMG at the chiral (or critical) point is in fact not chiral, but

logarithmic [16]. This conjecture was originally based upon the discovery of a non-trivial

Jordan cell structure typical for logarithmic CFTs (LCFTs), see e.g. [18–20]. Evidence in

its favor was later provided by checking 2- and 3-point correlators [21, 22].

One way to decide between these different options is to actually calculate the partition

function of TMG from first principles, and to compare it to the CFT partition functions of

the proposed duals. The full partition function Z consists (at least) of two parts, a classical

contribution Zcl and a 1-loop contribution that we denote by ZTMG

Z = Zcl · ZTMG . (1.1)

It was argued that the result (1.1) coincides with the exact result [2, 9]. Assuming this,

the calculation of the full partition function reduces to a 1-loop calculation for which the

tools have already been developed [23, 24].1

In this paper we calculate the 1-loop partition function ZTMG for TMG with AdS

boundary conditions from first principles. Note that the full partition function is a sum

over partition functions Zc,d(τ) that can be obtained from the one we are calculating,

Z0,1(τ) (and which we shall still call ZTMG to keep the notation simple), by modular

transformations [2]. At the critical point we find that

ZTMG =

∞
∏

n=2

1

|1 − qn|2
∞
∏

m=2

∞
∏

m̄=0

1

1 − qmq̄m̄
. (1.2)

In particular, the expression is not chiral. Furthermore, as we shall explain in detail, it

agrees precisely with what one would expect from a logarithmic conformal field theory of

the type proposed in [16]. Our calculation gives therefore strong support to the idea that

the dual of TMG at the critical point is indeed logarithmic.

Finally, we also apply our methods to another 3-dimensional theory, namely new mas-

sive gravity (NMG) [29].

This paper is organized as follows: in section 2 we set the stage for the calculation

of the 1-loop partition function. The gauge fixing procedure and the calculation of the

ghost determinant is explained in section 3. We then apply these results in section 4 to

calculate the 1-loop partition function ZTMG. Finally, we discuss in section 5 our results

and compare them with CFT partition functions. The generalization to NMG is explained

in appendix A, and appendix B provides the details of a combinatorical argument needed

for the interpretation of the dual LCFT.

1For earlier papers and further references see [25–28].
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2 Preliminaries

The action of cosmological topologically massive gravity for Euclidean signature reads

S =
1

κ2

∫

d3x
√

g

[

R +
2

ℓ2
+

i

µ
ελµν Γρ

σλ

(

∂µΓσ
ρν +

2

3
Γσ

κµΓκ
σν

)]

. (2.1)

The gravitational coupling constant is given by κ2 = 16πGN , where GN is Newton’s

constant. We assume for definiteness that the AdS radius ℓ and the Chern-Simons coupling

constant µ are both positive. The critical point arises if these constants are tuned as follows.

Critical point: µℓ = 1 . (2.2)

The second variation of the action (2.1) is given by

δ(2)S = − 1

2κ2

∫

d3x
√

g hµν(DMLh)µν , (2.3)

where hµν is a small fluctuation around an AdS background

DMhµν = hµν +
i

2µ
(D̃h)µν (2.4)

(D̃h)µν = ε ρβ
µ ∇ρhνβ + ε ρβ

ν ∇ρhµβ (2.5)

(Lh)µν = −∇2hµν −∇µ∇νh + ∇ν∇βhβµ + ∇µ∇βhβν − 2

ℓ2
hµν

−gµν(∇ρ∇σhρσ −∇2h) . (2.6)

The fluctuations hµν can be decomposed into transverse traceless hTT
µν , trace h, and gauge

parts ∇(µξν)

hµν(hTT , h, ξ) = hTT
µν +

1

3
gµνh + 2∇(µξν) . (2.7)

By definition hµ TT
µ = ∇µhTT

µν = 0. It is easy to show that trace modes are zero modes of

D̃, gauge modes are zero modes of L, and D̃ maps gauge modes to gauge modes. However,

L does not map trace modes to trace modes.

Our aim is to calculate the 1-loop partition function

ZTMG =

∫

Dhµν × ghost × exp
(

− δ(2)S
)

. (2.8)

Here ‘ghost’ refers to all ghost determinants produced by elimination of the gauge degrees of

freedom. We shall explain below how these contributions are determined. The path integral

is taken over all smooth fluctuations hµν around the AdS background that are compatible

with asymptotic AdS behavior. More precisely, we assume that the background geometry

is thermal Euclidean AdS3, which is the M0,1 geometry in the notation of [2]. In the 1-

loop calculations below this is implicit in the definition of the determinants. Our main

technical tools to determine the 1-loop partition (2.8) are zeta-function regularization and

heat kernel techniques [31].
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3 Gauge fixing and ghost determinant

The action (2.3) is third order in derivatives. Therefore, a suitable gauge-fixing term should

also be third order. Dealing with such gauge-fixing terms is not convenient. Instead, we use

an approach based on an explicit separation of the gauge modes. This method is equivalent

in effect to imposing the strong condition ξµ = 0 on the fluctuations. In the context of

quantum gravity on de Sitter space such a procedure was used, e.g., in [32, 33], where one

can find further references and details.

In terms of the decomposition (2.7) the quadratic action (2.3) takes the form

δ(2)S = − 1

2κ2

∫

d3x
√

g

[

hTTµνDM

(

−∇2 − 2

ℓ2

)

hTT
µν +

2

9
h

(

∇2 − 3

ℓ2

)

h

]

. (3.1)

Due to gauge invariance the action (3.1) does not contain ξ. Thus, the functional integral

over gauge degrees of freedom represented by ξ in the measure can be performed trivially.

It yields the volume of the gauge group, the diffeomorphism group, which is an infinite

constant and has to be eliminated. This works as follows. The path integral measure is

divided by the volume of the gauge group to avoid double counting of gauge-equivalent

configurations. It is convenient to express this division by the gauge group volume in

terms of a (Faddeev-Popov) ghost determinant. The ghost determinant then is given by

the Jacobian factor corresponding to the change of variables hµν → (hTT
µν , h, ξµ),

Dhµν = Zgh DhTT
µν Dξµ Dh . (3.2)

The path integral measures for tensor, vector, and scalar fields are defined by the equations

1 =

∫

Dhµν exp(−〈h, h〉) (3.3)

1 =

∫

Dξµ exp(−〈ξ, ξ〉) (3.4)

1 =

∫

Dσ exp(−〈σ, σ〉) . (3.5)

Here 〈., .〉 are ultralocal invariant scalar products

〈h, h′〉 =

∫

d3x
√

g hµνh′
µν (3.6)

〈ξ, ξ′〉 =

∫

d3x
√

g ξµξ′µ (3.7)

〈σ, σ′〉 =

∫

d3x
√

g σσ′ . (3.8)

The vector field ξµ can be decomposed into a transverse ξT
µ and a scalar part σ

ξµ(ξT , σ) = ξT
µ + ∇µσ . (3.9)

– 4 –
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By definition ∇µξT
µ = 0. The Jacobian factor J1 corresponding to the change of variables

Dξµ → DξT
µDσ can be calculated from the definition (3.4)

1 =

∫

DξT
µDσ J1 exp

(

−
∫

d3x
√

gξν(ξ
T , σ)ξν(ξT , σ)

)

=

∫

DξT
µDσ J1 exp

(

−
∫

d3x
√

g(ξT
ν ξTν − σ∇2σ)

)

= J1[det(−∇2)0]
−1/2 , (3.10)

where the subscript 0 means that the determinant is calculated for scalar fields. We con-

clude that

Dξµ = J1DξT
µDσ J1 = [det(−∇2)0]

1/2 . (3.11)

It is convenient to shift the trace part as h → h− 2∇2σ. This change of variables produces

a unit Jacobian factor. The decomposition of the metric then reads as

hµν(hTT , h, ξT , σ) = hTT
µν +

1

3
gµνh + ∇µξT

ν + ∇νξ
T
µ + 2∇µ∇νσ − 2

3
gµν∇2σ . (3.12)

The decomposition (3.12) is orthogonal with respect to the inner product (3.6). The

Jacobian factor induced by the change of the variables hµν → (hTT , h, ξT , σ) can be

calculated in the same way as above

1 =

∫

J2DhTT
µν DhDξT

µDσ exp
(

− 〈h(hTT , h, ξT , σ), h(hTT , h, ξT , σ)〉
)

, (3.13)

giving

Dhµν = J2DhTT
µν DhDξT

µDσ

J2 = [det(−∇2)0 det(−∇2 + 3/ℓ2)0 det(−∇2 + 2/ℓ2)T1 ]1/2 , (3.14)

where the subscripts 1 and 0 refer to vector and scalar fields, respectively. The ghost

factor (3.2) in the path integral is then determined by the ratio of the Jacobians (3.14)

and (3.11)

Zgh = J2/J1 =
[

det(−∇2 + 2/ℓ2)T1 det(−∇2 + 3/ℓ2)0
]1/2

. (3.15)

To derive (3.15) we factorized a determinant of a product of two scalar operators into a

product of two determinants. In the infinite dimensional case det(AB) need not coincide

with the product det(A) · det(B) if one defines all three determinants independently (e.g.,

through the zeta function). However, one can define determinants of higher order operators

by reducing them to products of lower order operators. This is the usual rule of the game in

quantum gravity (see [33]), which ensures gauge independence among other nice properties.

Besides, even if det(AB) and det(A) · det(B) are both defined independently through

corresponding zeta functions, the difference between the determinant of the product and

the product of determinants (the so-called multiplicative anomaly) typically vanishes in

odd dimensions [34].

– 5 –
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Summarizing our results so far, the partition function reads

ZTMG = Zgh

∫

DhTT
µν Dh exp(−δ(2)S) (3.16)

with the ghost determinant given in (3.15) and the quadratic action given in (3.1).

Let us now comment on the use of more conventional gauge-fixing procedures. Consider

a gauge-fixing delta function δ((Fh)µ), where F is some operator. In the path integral mea-

sure this delta function has to be accompanied by the compensating determinant (det H),

which is defined through a linearized gauge transformation of the gauge-fixing condition,

Hξ = Fh(hTT = 0, h = 0, ξ). Thus, we have

ZTMG =

∫

Dhµν det(H)δ((Fh)µ) exp(−δ(2)S)

=

∫

ZghDhTT
µν DhDξµ det(H)δ((Fh)µ) exp(−δ(2)S)

= Zgh

∫

DhTT
µν Dh exp(−δ(2)S) ,

where we used (3.2) and then integrated over ξ. The result, as expected, coincides

with (3.16), which was obtained by more economic methods.

4 Topologically massive gravity 1-loop partition function

We can now apply the result of the previous section to the case of primary interest, topo-

logically massive gravity. First we deal with the trace part of the metric. With our choice

of the overall sign of the action (3.1) the path integral over h in (3.16) is convergent without

any complex rotations. This integral produces a factor of [det(−∇2 + 3/ℓ2)0]
−1/2.

This leaves us with the contribution from the integration over hTT . The operator acting

on the hTT modes in the action (3.1) can be factorized as DMDLDR, where DL,R = 1/ℓ±
(i/2)D̃. The operator D̃ is a symmetric (formally selfadjoint) and even elliptic operator

when restricted to the TT modes. Let λj denote the eigenvalues of D̃. The spectrum of {λj}
is real. The eigenvalues of DMDLDR are then of the form Λj = (1+(i/2µ)λj)(1/ℓ

2+λ2
j/4),

and hence all Λj have a positive real part. Taking into account an overall minus sign in (3.1)

we conclude that the integral over the trace modes is convergent, while the one over the

TT modes is divergent. To overcome this difficulty, we use the Gibbons-Hawking-Perry

rotation in the TT-sector hTT → ihTT , exactly as is usually done in the trace sector of

Euclidean Einstein gravity in 4 dimensions [35]. Alternatively — and in a sense more

naturally — one can change the overall sign of the classical action and rotate the trace

modes. Such a rotation may modify the partition function by a phase, but since we are

only interested in the absolute value, both recipes are equivalent to each other and lead to
∫

DhTT
µν Dh exp(−δ(2)S) =

[

det(DM (−∇2 − 2/ℓ2))TT
2 det(−∇2 + 3/ℓ2)0

]−1/2
. (4.1)

Including the ghost factor (3.15) we then get for the full 1-loop partition function (3.16)

of TMG

ZTMG =

√

det(−∇2 + 2/ℓ2)T1
det(DM (−∇2 − 2/ℓ2))TT

2

. (4.2)

– 6 –
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Here the superscript ‘T ’ in the numerator denotes restriction to transverse vector modes.

Before we evaluate ZTMG further let us note that for the case of Einstein gravity the

same calculation would have led to

ZEin =

√

det(−∇2 + 2/ℓ2)T1
det(−∇2 − 2/ℓ2)TT

2

(4.3)

since Einstein gravity is obtained from TMG upon taking the (formal) limit µ → ∞, which

amounts to neglecting iDM in (4.2). The result (4.3) agrees with what was derived earlier

in [23, 24]. This is a nice consistency check of our method.

Returning to TMG at generic values of µ, we can now factor the determinant in the

denominator of (4.2), and write the one-loop partition function as

ZTMG = ZEin · [det(iDM )TT
2 ]−1/2 = ZEin · ZM . (4.4)

The fact that the TMG 1-loop partition function contains the Einstein part as a factor

makes also sense physically since TMG has the same fluctuations, ghost- and gauge-fixing

terms as in Einstein gravity. The remaining factor takes into account massive graviton

fluctuations. In order to evaluate this term let us consider its absolute value

|ZM | = |det(iDM )TT
2 |−1/2 = [det(DM D̄M)TT

2 |−1/4 , (4.5)

where bar means complex conjugation. Now we observe that

D̃D̃hµν = −4∇2hT
µν − 2gµν∇ρ∇σhT

ρσ + 3(∇µ∇σhT
νσ + ∇ν∇σhT

µσ) − 12

ℓ2
hT

µν , (4.6)

where hT
µν ≡ hµν − 1

3gµνh is the traceless part of the metric fluctuations. With the help of

the identity (4.6) we obtain

det(DMD̄M )TT
2 = det(µ−2(−∇2 − 2/ℓ2 + δm2)TT

2 ) , (4.7)

where δm2 = µ2 − 1/ℓ2. To evaluate the determinant (4.7) we finally use the heat kernel

methods and the results of [24]. According to [23, 24] the heat kernel of (−∇2)TT
2 reads

K(2)(t) =
∞
∑

n=1

τ2 cos(2nτ1)√
4πt| sin(nτ/2)|2

e−
n
2

τ
2
2

4t e−3t , (4.8)

where, for convenience, we put ℓ = 1. We also use the same notations and conventions as

in [24], in particular

τ = τ1 + iτ2 q = exp (iτ) . (4.9)

The quantities 2πτ1 and 2πτ2 are equivalent to the angular potential θ and inverse tem-

perature β, respectively. The determinant (4.7) is then expressed as an integral of the

heat kernel.

− ln det(−∇2 + m2)TT
2 =

∫ ∞

0

dt

t
K(2)(t)e−m2t , (4.10)

– 7 –
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where the effective mass is, in our case, equal to m2 = −2 + δm2. The integral over t can

now be performed straightforwardly

1

4π1/2

∞
∫

0

dt

t3/2
e−

α
2

4t
−β2t =

1

2α
e−αβ (4.11)

yielding

ln |ZM | =
1

2

∞
∑

n=1

cos(2nτ1)

2n| sin(nτ/2)|2 e−n
√

1+δm2τ2

=

∞
∑

n=1

1

2n
|q|n(|µ|−1) q2n + q̄2n

(1 − qn)(1 − q̄n)
. (4.12)

The dependence of the determinant (4.7) on the overall scale µ−2 is given by the global

scale anomaly. In the ζ-regularization this anomaly is the t0 term in the short-t asymptotics

of the heat kernel, and this term vanishes in our case. Therefore, (4.12) is indeed the final

answer for the absolute value of the contribution to the partition function ZM .

Knowing the absolute value of the partition function ZM we can now make an educated

guess for its phase. We confine ourselves to the critical point (2.2). Rewriting ln |ZM | =
1
2 ln ZM + 1

2 ln Z̄M it is suggestive from the second line of (4.12) that the correct result for

the partition function ZM at the critical point is given by

ln ZM =

∞
∑

n=1

1

n

q2n

(1 − qn)(1 − q̄n)
for µℓ = 1 . (4.13)

Even at the critical point the TMG 1-loop partition function (4.13) depends on both q and

q̄. It is therefore not chiral as opposed to the classical ‘chiral gravity’ partition function [9]

Zcl = q̄−ℓ/8GN for µℓ = 1 . (4.14)

The fact that the massive graviton determinant (4.12) is non-trivial may seem surpris-

ing, since in Euclidean signature there are no classical solutions leading to real metrics that

contain massive graviton excitations [9]. In other words, the zero spectrum of the operator

DMDLDR consists only of those (real) modes that are annihilated by DLDR. Thus, the

Wick rotation from Minkowski to Euclidean signature eliminates many classical solutions

if we insist on real metrics. However, in the quantum case we have to find an eigenspec-

trum of the same operator in the space of real square-integrable fluctuations. The latter

condition yields complex eigenvalues, but the right number of them, i.e., the same number

as in the Minkowski case. In this sense the Wick rotation may be ill-defined classically,

but well-defined for 1-loop calculations.

At the critical point (2.2) there is also another subtlety that should be mentioned. It

concerns the split of the determinant det (DLDLDR) = det(DL) det(DLDR), which, as was

mentioned before, may not hold for operators on infinite dimensional spaces. In particular,

zero modes have to be excluded from the determinants and treated separately, and this may

– 8 –



J
H
E
P
1
1
(
2
0
1
0
)
0
9
4

spoil the factorization. This is precisely what happens in the Minkowski signature TMG

at the critical point, but does not appear for the Euclidean signature, as we have discussed

above. Note, that one does not expect in general a mode-by-mode correspondence between

the Minkowski and Euclidean spectra, though there is a correspondence at the level of

partition functions.2 Another potential source of troubles are the UV divergences in the

determinants. However, in odd dimensions the zeta-regularized determinants are finite,

and, therefore, the multiplicative anomaly vanishes [34].

In any case, we shall now assume that (4.13) is the correct 1-loop partition function at

the chiral point, and study the implications of it. In particular, we want to show that (4.13)

has a very natural interpretation in terms of a dual LCFT as originally proposed in [16].

5 Discussion and comparison with CFT partition functions

In order to explain the relation between the 1-loop partition function and the partition

function of the dual conformal field theory let us first recall how this worked for the case

of Einstein gravity. For Einstein gravity we need to evaluate the determinants that appear

in (4.3). In addition to the formula for the spin two heat kernel (4.8) we also need the

expression for the vector heat kernel [23, 24]

K(1)(t) =
∞
∑

n=1

τ2 cos(nτ1)√
4πt| sin(nτ/2)|2

e−
n
2

τ
2
2

4t e−2t , (5.1)

where we have used the same conventions as above. Altogether this then leads to

ln ZEin =

∞
∑

n=1

cos (2nτ1)e
−nτ2 − cos (nτ1)e

−2nτ2

2n| sin (nτ/2)|2 =

∞
∑

n=1

1

n

( q2n

1 − qn
+

q̄2n

1 − q̄n

)

. (5.2)

Exponentiating the result (5.2) and using the power series expansion of ln(1 − qn) we

then obtain

ZEin =
∞
∏

n=2

1

|1 − qn|2 . (5.3)

From the dual conformal field theory point of view, this is just the partition function of the

Virasoro vacuum representation. Note that (5.3) factorizes holomorphically, although this

is not manifest from the first equation in (5.2). Indeed, it is only the combined contribution

from the tensor and the vector part (the difference of the two terms in the first equation

in (5.2)) that factorizes.

At the critical point µℓ = 1, we can similarly determine the contribution to the partition

function coming from ZM . Using

∞
∑

n=1

1

n

q2n

(1 − qn)(1 − q̄n)
=

∞
∑

m=0

∞
∑

m̄=0

∞
∑

n=1

1

n
q2n+mnq̄nm̄

= −
∞
∑

m=2

∞
∑

m̄=0

log(1 − qmq̄m̄) , (5.4)

2A good example of such kind is field theories at finite temperature.
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where we have used the geometric series expansion in the first line, we obtain

ZTMG =
∞
∏

n=2

1

|1 − qn|2
∞
∏

m=2

∞
∏

m̄=0

1

1 − qmq̄m̄
for µℓ = 1 . (5.5)

Note that this partition function does not factorize holomorphically. Technically this comes

from the fact that now there is only a tensor contribution to the determinant ZM , but no

vector contribution as for Einstein gravity. The absence of an additional vector part coming

from the gauge symmetries is not surprising, but merely a consequence of the fact that we

have only one set of diffeomorphisms that can act on our fluctuations.

The complete 1-loop partition function (5.5) should now be compared to the partition

function of the logarithmic conformal field theory proposed in [16]. The left-moving central

charge of this conformal field theory vanishes, cL = 0, and the right-moving central charge

is non-vanishing, cR = 3ℓ/GN . The left-moving stress energy tensor T (z) has a logarithmic

partner t(z), satisfying

L0 t = 2 t + T , L0T = 2T , L1t = L1T = 0 . (5.6)

Furthermore, the two-point function 〈T (z) t(w)〉 = bL

(z−w)4
is non-zero, which implies that

L2 t = bL Ω , bL = −cR = − 3ℓ

GN
, (5.7)

where Ω is the ground-state vacuum of the LCFT. Here we have used that T = L−2Ω which

also implies that L2T = 0. Moreover, T and t are annihilated by all positive L̄n modes, as

well as by all modes Ln with n ≥ 3. Finally, the consistency of the LCFT, in particular

locality, implies that L0 − L̄0 is diagonalizable, and thus

L̄0 t = T . (5.8)

The structure of the low-lying states can therefore be summarized by the diagram

• •

•

�

@
@

@
@

@@I �
�

�
�

��	

T t(L0 − 2), L̄0

Ω

L
−2 L2

(5.9)

In addition there is the right-moving stress energy tensor T̄ = L̄−2Ω that satisfies the usual

properties of the holomorphic flux component of a CFT stress energy tensor.

In order to determine the contribution of the above states to the partition function

we first consider the subset of those states that are descendants of Ω. As is clear from

the above diagram, they are unaffected by the presence of t, and are hence counted by the

usual Virasoro partition function

ZΩ =

∞
∏

n=2

1

|1 − qn|2 . (5.10)
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The remaining states are therefore descendants of t that are not already descendants of

Ω. It follows from the above relations that the positive modes Ln and L̄n with n > 0

either annihilate t, or map it to Ω. Furthermore, (L0 − 2) and L̄0 map t to a descendant

of Ω, namely T = L−2Ω. Thus we only need to consider the descendants of t by negative

modes. Since t is a logarithmic mode it is neither annihilated by L−1 nor by L̄−1. Thus

the additional contribution is simply

Zt = q2
∞
∏

n=1

1

|1 − qn|2 , (5.11)

where the overall factor of q2 comes from the fact that t has eigenvalue (2, 0) under the

diagonal part of (L0, L̄0).

The total partition function of the Virasoro descendants of the above states is then

Z0
LCFT = ZΩ + Zt =

∞
∏

n=2

1

|1 − qn|2
(

1 +
q2

|1 − q|2
)

. (5.12)

This is now to be compared with the TMG partition function (5.5). To see how the two

results fit together we first observe that the first factor that equals ZΩ agrees in both cases.

It describes the contribution of the usual boundary gravitons corresponding to T and T̄ .

Note that the term proportional to qnl in

1

1 − qn
=

∞
∑

l=0

qnl (5.13)

denotes the contribution of the multi-graviton corresponding to Ll
−n, and similarly for 1

1−q̄n .

The remaining factor in (5.5) should therefore describe the multi-particle excitations

corresponding to t. On the LCFT side we do not reproduce this full factor since the LCFT

partition function (5.12) only takes into account Virasoro descendants of t, but does not

include any multi-particle t-excitations. Indeed, t is not really part of the chiral algebra

(or vertex operator algebra) since it is a non-chiral logarithmic field, and as a consequence

we do not know how to introduce modes for it or calculate the commutation relations, etc.

Thus the LCFT partition function can only be compared to the single-particle t-excitations

of (5.5). In the spirit of (5.13) these are the terms where we only keep the linear term of

each denominator,3 i.e.

∞
∏

m=2

∞
∏

m̄=0

1

1 − qmq̄m̄
= 1 +

∞
∑

m=2

∞
∑

m̄=0

qmq̄m̄ + multiparticle. (5.14)

The single particle term now agrees perfectly with (5.12) since

(

1 +
q2

|1 − q|2
)

= 1 + q2
∞

∑

m=0

∞
∑

m̄=0

qmq̄m . (5.15)

3Alternatively, these terms are just the n = 1 contribution of (4.13).
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h̄ = 0 1 2 3 4 5 6 7 8 9 10 11 12 13

h ≤ 3: 0 0 0 0 0 0 0 0 0 0 0 0 0 0

h = 4: 1 0 1 0 1 0 1 0 1 0 1 0 1 0

h = 5: 0 1 0 1 0 1 0 1 0 1 0 1 0 1

h = 6: 2 0 2 1 2 1 3 1 3 2 3 2 4 2

h = 7: 0 2 1 2 2 3 2 4 3 4 4 5 4 6

h = 8: 3 1 4 3 6 4 8 6 10 8 12 10 15 12

h = 9: 1 3 3 6 5 9 9 12 12 17 16 21 21 26

h = 10: 4 3 8 7 14 13 20 20 29 28 39 38 50 50

h = 11: 2 6 7 13 15 22 26 35 39 51 56 70 77 93

h = 12: 7 5 15 17 29 32 50 53 76 83 109 119 153 163

h = 13: 3 11 15 26 35 52 64 89 106 138 163 203 234 287

h = 14: 10 11 27 35 60 73 111 132 183 216 283 328 417 476

h = 15: 7 17 29 52 73 111 148 203 259 341 418 529 638 783

h = 16: 14 20 48 67 118 154 234 298 416 513 681 824 1052 1252

h = 17: 11 30 53 97 146 225 314 442 582 781 992 1275 1581 1976

Table 1. Coefficients Nh,h̄ for h < 18 and h̄ < 14.

Obviously, the multiparticle terms in (5.14) also have a good LCFT interpretation: they

describe additional (non-chiral) representations one has to add to the theory in order to

make it consistent. (In particular, these will be the states that are produced in OPEs of t

with itself, etc.) This is indeed consistent since we can write

ZTMG =
∞
∏

n=2

1

|1 − qn|2
∞
∏

m=2

∞
∏

m̄=0

1

1 − qmq̄m̄
= Z0

LCFT +
∑

h,h̄

Nh,h̄ qhq̄h̄
∞
∏

n=1

1

|1 − qn|2 , (5.16)

where the last term describes the character of the (h, h̄) representation of the Virasoro

algebra, and Nh,h̄ is the multiplicity with which this representation occurs. We have

checked explicitly that the first few coefficients Nh,h̄ are indeed non-negative integers, see

table 1. This can also be done analytically; a simple combinatorial argument is sketched

in appendix B.

The heat kernel 1-loop calculation in TMG thus leads to a result that is perfectly

consistent with the proposal of [16] that the dual conformal field theory is logarithmic.

This provides strong support in favor of this claim.

A Generalization to new massive gravity

The analysis for TMG can also be easily generalized to the case of NMG, as we shall now

explain. At the critical point — the tuning of parameters in the action where both central

charges vanish — the quadratic action for NMG reads [29]

δ(2)SNMG =
1

m2

∫

d3x
√

g

(

hµνGµν(k) +
1

4
(kµνkµν − k2)

)

, (A.1)
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where Gµν is the linearized Einstein tensor including the cosmological constant, Gµν(k) =

(Lk)µν , see (2.6). The choice of the overall sign in Euclidean space will become clear below.

Let us expand the metric fluctuations hµν and the auxiliary field fluctuations kµν in the

TT , vector, and trace parts

kµν = kTT
µν +

1

3
gµν k̄ + 2∇(µvν) , (A.2)

cf. (2.7) for the corresponding expansion of hµν . Note, that there is no gauge symmetry

corresponding to vµ, and that k = kµ
µ = k̄ + 2∇µvµ. The path integral measures can then

be expanded as in (3.2) with Zgh given by (3.15), i.e.

DhµνDkµν = Z2
ghDhTT

µν DhDξµDkTT
µν Dk̄Dvµ . (A.3)

The first term in the action (A.1) reads similar to (3.1)

∫

d3x
√

ghµνGµν(k) =

∫

d3x
√

g

[

hTTµν

(

−∇2 − 2

ℓ2

)

kTT
µν +

2

9
h

(

∇2 − 3

ℓ2

)

k̄

]

.

The integration over hTT and h produces delta functions for kTT and k̄, together with

corresponding determinants. The integration over the gauge modes ξµ is done trivially.

One then finds

ZNMG(crit) =

∫

DhµνDkµν exp(−δ(2)SNMG) (A.4)

= Z2
gh

[

det

(

−∇2 − 2

ℓ2

)TT

2

det

(

−∇2 +
3

ℓ2

)

0

]−1
∫

Dvµe−S(v) ,

where S(v) is the second term in (A.1) with the substitution kµν → 2∇(µvν). It is convenient

to decompose vµ in transversal and longitudinal parts as

vµ = vT
µ + ∇µu ∇µvT

µ = 0 . (A.5)

The measure transforms as in (3.11),

Dvµ = J1DvT
µDu J1 = [det(−∇2)0]

1/2 , (A.6)

while the action reads

S(v) =
1

2m2

∫

d3x
√

g
(

vTµ(−∇2 + 2/ℓ2)vT
µ − (4/ℓ2)u∇2u

)

. (A.7)

With these preparations we can now perform the remaining integrations. Note that with

our choice of the overall sign in the action (A.1) both integrals, over vT and u, are of

decaying exponents. The integration over u produces a scalar determinant which cancels

the Jacobian factor J1 in (A.6). The integral over vT yields

Z1 = [det(−∇2 + 2/ℓ2)T1 ]−1/2 . (A.8)
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Collecting together everything we then obtain

ZNMG(crit) = Z2
Ein · Z1 = ZEin · [det(−∇2 − 2/ℓ2)TT

2 ]−1/2 . (A.9)

At the critical point the NMG 1-loop partition function is thus reduced to the product

of the Einstein gravity 1-loop partition function times the tensor determinant we have

calculated above, see (4.7)–(4.12) for δm = 0 (again we set ℓ = 1)

ln [det(−∇2 − 2)TT
2 ]−1/2 =

∞
∑

n=1

1

n

q2n + q̄2n

(1 − qn)(1 − q̄n)
. (A.10)

The full NMG partition function at the critical point then reads

ZNMG(crit) =

∞
∏

n=2

1

|1 − qn|2
∞
∏

m=2

∞
∏

m̄=0

1

1 − qmq̄m̄

∞
∏

l=0

∞
∏

l̄=2

1

1 − qlq̄ l̄
. (A.11)

The result (A.11) can now be compared with the partition function of the LCFT dual,4

ZNMG
LCFT =

∞
∏

n=2

1

|1 − qn|2
(

1 +
q2 + q̄2

|1 − q|2
)

(A.12)

in complete analogy to the discussion in section 5. Again all multiplicity coefficients Nh,h̄

in the expression that is analogous to (5.16) turn out to be positive. The corresponding

combinatorial counting argument is essentially the same as the one presented in appendix B

below. This provides a fairly non-trivial check on the validity of the LCFT conjecture for

NMG at the critical point.

B A combinatorial counting argument

In this appendix we show that the coefficients Nh,h̄ defined in (5.16) are indeed non-negative

integers. We begin by considering the function

D =

∞
∏

m=2

∞
∏

m̄=0

1

(1 − qmq̄m̄)
= 1 +

∑

h,h̄

B(h, h̄)qhq̄h̄ , (B.1)

whose Fourier coefficients B(h, h̄) are manifestly non-negative. Indeed, they count pairs of

partitions, where h is partitioned into integers greater or equal to 2, while h̄ is partioned

into positive integers, with the constraint that the number of terms in the partition of h is

bigger or equal than that in the partition of h̄. Next we consider

D̃ = D (1 − q)(1 − q̄) = 1 +
∑

h,h̄

B̃(h, h̄) qhq̄h̄ , (B.2)

whose Fourier coefficients satisfy by construction

B̃(h, h̄) = B(h, h̄) − B(h − 1, h̄) − B(h, h̄ − 1) + B(h − 1, h̄ − 1) . (B.3)

4The conjecture that there is a LCFT dual for NMG at the chiral point also is supported by the

calculation of 2-point correlators on the gravity side [36, 37].
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At least for h ≥ 3, h̄ ≥ 2, it then follows that also the coefficients B̃(h, h̄) are non-ngeative,

since for every pair of partitions counted by B(h−1, h̄) and B(h, h̄−1), there is a partition

counted by B(h, h̄), and the partitions that arise simultaneously from both B(h−1, h̄) and

B(h, h̄−1) are counted by B(h−1, h̄−1). The function that appears in (5.16) differs from

D̃ by some low order terms, so the above argument proves that the coefficients Nh,h̄ are

non-negative for h ≥ 3 and h̄ ≥ 2. Together with the explicit formulas in table 1 this then

proves that all Nh,h̄ are indeed non-negative.
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