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A scale-invariant universe can have a period of accelerated expansion at early times: inflation. We use a
frame-invariant approach to calculate inflationary observables in a scale-invariant theory of gravity
involving two scalar fields: the spectral indices, the tensor-to-scalar ratio, the level of isocurvature modes,
and non-Gaussianity. We show that scale symmetry leads to an exact cancellation of isocurvature modes
and that, in the scale symmetry–broken phase, this theory is well described by a single scalar-field theory.
We find the predictions of this theory strongly compatible with current observations.

DOI: 10.1103/PhysRevD.97.123516

I. INTRODUCTION

The evolution of our Universe is simple to describe yet
difficult to explain. Current observations allow a picture in
which there were two periods of accelerated expansion,
one at very early times (dubbed inflation) and another at
late times (i.e., today), separated by periods of radiation
and matter domination. The hierarchy between the energy
scales of the two regimes of accelerated expansion is
extreme and difficult to understand in terms of our current
knowledge of the interplay between particles, fields, and
gravity. Given this state of affairs, it is essential to find a
consistent and simple explanation.
If one is to embrace inflation as an essential feature of

the early Universe (although one should, of course,
countenance alternatives), it makes sense to explore alter-
native ideas that may explain the hierarchy of scales one
encounters. A tried and tested approach is to invoke new
symmetries that can naturally lead to such a hierarchy. In
this paper, we will explore one such symmetry—scale (or
Weyl) invariance—that has been shown to lead to the type
of behavior we are seeking to understand [1–20].
It has been shown that two scalar fields with a scale-

invariant potential can be nonminimally coupled to gravity in
such away as to lead to a completely scale-invariant theory of
the Universe. While there are no dimensionful coupling
constants, scale symmetry is spontaneously broken and can
generate a Planck mass, an effective cosmological constant,
and particle masses. While in the symmetry-broken phase
dimensionful quantities emerge, the only meaningful, meas-
urable quantities are ratios of dimensionful quantities that

are completely set by the dimensionless parameters of the
underlying theory. A judicious choice of these parameters
allows us to obtain two periods of accelerated expansion that
are consistent with current observations.
In this paper, we will scrutinize the inflationary regime of

the scale-invariant universe. Given that such a universe
involves two scalar fields, one should expect a richer, more
complex, phenomenology than a usual single-field model.
In particular, one should inspect the possible presence of
isocurvature modes [21] as well as non-negligible non-
Gaussianity [22]. The conventional approach for studying
such models is to transform them from the Jordan frame into
the Einstein frame to work out the properties of the scalar-
field evolution. In this paper, we will explore this phenom-
enology, using the frame-invariant approach of Ref. [23]. We
will find that the mechanism of scale-symmetry breaking
greatly simplifies the calculations and that the final answer
can be understood in terms of an effective single-field model.
Our analysis extends previous related work in a number

of ways:
(i) Using the analytic solutions for the scalar-field

evolution found in Ref. [1], we analyze various
primordial observables in detail, finding good agree-
ment with previous results, e.g., from Refs. [1–3,23],
where overlap exists. We prove that, at next-to-
leading order in slow roll, isocurvature modes
decouple completely in our scale-invariant setup,
also away from the attractor solution (thus extending
the related attractor solution result of Ref. [3]).

(ii) We explicitly derive the corresponding effective
single-field theory and show it leads to the same
predictions.

(iii) We extend previous results by computing predic-
tions for the running of the tensorial spectral index
and the non-Gaussian fNL parameter(s).
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(iv) We work out predictions of the model in the recently
developed frame-covariant setup of Ref. [23]. We use
this, e.g., to investigate what the precise nature of the
link between decoupling isocurvature mode(s) and
scale invariance is and show that this is a consequence
of working in a two-field scale-invariant model.

This paper is structured as follows. In Sec. II, we present
the essential characteristics of the scale-invariant Universe
with a particular emphasis on the inflationary regime; we
recapitulate the analytic solutions of the field evolution,
first found in Ref. [1]. In Sec. III, we summarize the frame-
invariant approach of Ref. [23]. In Sec. IV, we explore the
two-field dynamics and the isocurvature sector to assess
how close this theory is to single-field dynamics. In Sec. V,
we calculate the observables—the various spectral indices,
the amplitude of tensor modes, and non-Gaussianity—and
show that we can also derive these results from an effective
single scalar-field theory. In Sec. VI, we discuss our
findings.

II. MODEL

In this paper, we will work with a model with two scalar
fields, ϕA ≡ ðϕ1;ϕ2Þ,1 coupled to gravity. In the Jordan
frame (in which we will present the results of this section),
the action is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2ðϕ⃗ÞR −

1

2

X2
A¼1

∇μϕ
A∇μϕA −Wðϕ⃗Þ

�
;

ð1Þ

where M2 ¼ − 1
6

P
2
A¼1 αAðϕAÞ2 and Wðϕ⃗Þ ¼P2

A;B¼1 λAB
ðϕAÞ2ðϕBÞ2 and Einstein summation convention is not
assumed. This theory has no input mass scales and is
conformally invariant if αA ¼ 1.
The equations of motion are given by

X2
B¼1

�
IAB þ αAϕ

AαBϕ
B

6M2

�
□ϕB ¼ XA; ð2Þ

where

XA ¼ αAϕ
A

6M2

X2
B¼1

ðαB − 1Þð _ϕBÞ2 þ 4αAϕ
A

6M2
W þW;A ð3Þ

and A;X ¼ ∂A=∂ϕX.
This system has a conserved Noether current,∇μKμ ¼ 0,

where Kμ ¼ ∇μK and

K ¼ 1

2

X2
A¼1

ð1 − αAÞðϕAÞ2: ð4Þ

If we take ϕA to be functions of t only and consider a
homogeneous and isotropic metric of the form gαβ ¼
ð−1; a2δijÞ, we have that

K̈ þ 3

�
_a
a

�
_K ¼ 0 ð5Þ

so that

K ¼ c1 þ c2

Z
dt

a3ðtÞ : ð6Þ

We see here one of the fundamental characteristics of
this theory: scale invariance is spontaneously broken as K
settles down to a constant value, corresponding to an
ellipses in the ϕ⃗ plane. The value of K is not set by the
potential but by the initial value of ϕ⃗, which makes this
mechanism significantly different from the more conven-
tional forms of spontaneous symmetry breaking—we have
dubbed this particular mechanism “inertial symmetry
breaking” [24]. Although ϕ⃗ can still vary along the ellipse,
it is confined to that trajectory, which is not invariant under
scale transformations.
At late times, there is a fixed point on the ellipse, when

_ϕA ¼ 0 and

4αAϕ
A

6M2
W þW;A ¼ 0: ð7Þ

An explicit solution is

�
ϕ2

ϕ1

�
2

¼ λ11α2 − λ12α1
λ22α1 − λ21α2

: ð8Þ

We can see that the final, fixed-point, end state is set by the
ratio of the coupling constants; any dimensionful constants,
such as the effective Planck mass, M2, will depend on an
arbitrary (or accidental) scale arising from the spontaneous
breaking of scale symmetry.
A remarkable feature of this model is that the degree of

freedom (d.o.f.) orthogonal to the constraint surface given
by Eq. (4)—the dilaton—completely decouples from the
other d.o.f. [25]. To slightly belabor this point, given that
the dilaton is the Goldstone boson of the broken symmetry,
one might expect it to be derivatively coupled. In fact, it can
be shown that the scale invariance of the theory ensures that
the dilaton—the putative mediator of a fifth force—
decouples from the matter sector, has only a kinetic term,
and is thus unconstrained by laboratory or astrophysical
effects [25]. We will see that this fact will play a role when

1Capital latin letters are therefore field-space indices that run
from 1 to 2 (e.g., A ¼ 1, 2). They are raised and lowered with a
field-space metric, which we will introduce in the following
section.
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we study the evolution of perturbations in the inflationary
regime.
Our focus, in this paper, will not be on the end state but

on a putative period of slow roll on the ellipse, before ϕ⃗
settles down on the final fixed point. The equations of
motion in this slow-roll regime are given by

X2
B¼1

�
IAB þ αAϕ

AαBϕ
B

6M2

�
½−3HϕB� ¼ 4αAϕ

A

6M2
W þW;A: ð9Þ

If we assume that W ≃ λ22ðϕ2Þ4, we have

 
4α1ϕ1

6M2 W þW;1

4α2ϕ2

6M2 W þW;2

!
¼ 4λ22α1ϕ1ϕ

4
2

6M2

�
1

− ϕ1

ϕ2

�
: ð10Þ

In this regime, we can solve the equations of motion
exactly [1]. Defining M2

A ¼ − αA
6
ðϕAÞ2, we have

M2
1 ¼ M2

Ee
−νNJ

M2
2 ¼ M2

E½1þ γð1 − e−νNJÞ�; ð11Þ

where ν ¼ − 4
3
α1, γ ¼ α2ð1−α1Þ

α1ð1−α2Þ, and NJ is the number of

e-foldings until the end of inflation in Jordan frame.2

We have shown that these analytical solutions are an
exquisite approximation to the full equations of motion
in the slow-roll regime. We will work with this solution in
all that follows in this paper (although wewill at some point
compare with numerical solutions).
We can obtain the dynamics of the Einstein-frame scale

factor aE and the corresponding Hubble rate HE through a
conformal transformation of the form

aE ¼ Mðϕ1;ϕ2Þa

HE ¼ H þ
_M
M

: ð12Þ

Thus, we can reconstruct the Einstein-frame quantities. The
final piece in the dictionary is the transformation between
Einstein- and Jordan-frame e-foldings, which is given by

NE ¼ NJ þ ln

�
Mf

Mi

�
;

¼ NJ þ
1

2
ln

�
2α1ð1 − α2Þ

α1 þ α2 − 2α1α2 þ ðα1 − α2Þe−νNJ

�
;

ð13Þ

where Mf and Mi are the final and initial values of M (at
the end and start of inflation), respectively. One can
implicitly solve to findNJðNEÞ and in this way consistently

map the solution (11) into the Einstein frame. Note that
one can always uniquely relate the scalar-field values at any
given time to the corresponding NE and NJ.
Scale-invariant theories are particularly interesting

because they provide a possible explanation for the
hierarchical difference between the Planck scale and the
electroweak scale, the scale invariance requiring vanishing
masses until spontaneously broken. As originally con-
structed [3–5], ϕ2 was taken to model the Higgs with an
hierarchy of vacuum expectation values ϕ2

ϕ1
≪ 1. Thus, ϕ1 is

dominantly responsible for setting the Planck mass, and ϕ2

sets the electroweak scale with the “Higgs” self-coupling
λ22 ¼ Oð1Þ. In this limit, one gets “Higgs inflation” with
jα2j ≫ 1 needed to have an acceptable scale of inflation.3

The other scalar couplings λ11 and λ12 must be hierarchi-
cally small to allow for a small cosmological constant and to
keep the Higgs mass at the electroweak scale. In the absence
of gravity, this ordering of couplings is natural due to the
underlying shift symmetry of the Weyl-invariant scalar
potential. This shift symmetry is broken by the Higgs
coupling to the Ricci scalar, and to determine whether the
hierarchy survives requires a calculation of gravitational
radiative corrections—an issue in need of further elaboration.
It is possible to generalize the scale-invariant model to one

with many scalar fields. The dynamics will be qualitatively
similar: inertial symmetry breaking will occur, but now the
symmetry-broken phase will lie on a (hyper)ellipsoid, and
therewill be richer dynamics to deal with. InAppendixB,we
briefly touch on one such case to discuss a particular aspect
related to the perturbations.

III. FRAME-INVARIANT SLOW-ROLL
PARAMETERS

There is substantial literature on multifield, inflationary
perturbations in the slow-roll regime [21,26–29]. When the
dynamics involves more than one field, the trajectory in field
spacewill play a crucial role in howperturbations evolve and,
in particular, whether the curvature perturbation is preserved
on superhorizon scales or whether it varies, sourcing iso-
curvature perturbations. As shown in Ref. [21], the curvature
of the field trajectories plays a crucial role in the quantifying
how isocurvature perturbations are sourced.
Over the past couple of decades, a more geometric

approach—in which the geometry of field space, through
the field-space metric that enters the definition of the kinetic
term of the scalar-field action, can be used to determine the
evolution of perturbation in the case of multifield inflation—
has emerged. In the case of nonminimal coupling, the favored
approach is to conformally transform to the Einstein frame
and apply the standard slow-roll formalism. A battery of
readily available algorithms, which numerically solve the

2In other words, we have implicitly defined NJ ¼ 0 at the end
of inflation.

3If ϕ2 does not model the Higgs, it is possible for λ22 to be
small, and in this case, α2 need not be large [1].
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transport equations and can be solved in the case of generic
potentials and actions that lead to scalar-field evolution that
is sufficiently close to the slow-roll regime, has been made
available by a number of authors. In this paper,wewill follow
a slightly different approach proposed in Ref. [23] (and
foreshadowed by Ref. [30]) and consider a frame-invariant
formalism for calculating the inflationary observables (we
have checked that we obtain the same results if we use the
standard, Einstein-frame, approach and illustrate that in
subsequent sections).
The fundamental quantities that one needs to consider

are the frame-invariant metric4

GAB ¼ δAB
M2

þ 3

2

M2
;AM

2
;B

M4
ð14Þ

and potential

U ¼ W
M4

: ð15Þ

Note that the frame-invariant metric is simply the field-space
metric one obtains when transforming to the Einstein frame.
One can construct a covariant vector on field space, XA,

given by

XA ¼ ðlnUÞ;A; ð16Þ

which is the frame field of the curvature perturbation or the
tangent to the geodesics in field space traced out by the
scalar-field evolution. We can then construct the corre-
sponding contravariant vector by raising indices with GAB.
Furthermore, we can use GAB to construct the connection
coefficients, ΓA

BC, which will go into the definition of a
bona fide covariant derivative; for example, we have that

∇AXB ¼ XB
;ϕA

þ ΓB
ACXC: ð17Þ

We can then define the frame-invariant potential slow-
roll parameters [23]

ε̄U ¼ 1

2
XAXA ð18Þ

associated to the norm of the flow vector in field space and
its directed derivatives along the flow:

η̄U ¼ −XAðln ε̄UÞ;ϕA

ξ̄U ¼ −XAðln η̄UÞ;ϕA
: ð19Þ

A defining feature of these slow-roll parameters as defined
above is that they reduce to the standard Hubble slow-roll
parameters in the slow-roll approximation.
In this regime, it is also important to define a set of

parameters that are crucial for evaluating the strength of
the isocurvature perturbations. A leading parameter is the
acceleration vector between paths in the geodesic flow

ωA ¼ XB∇B

�
XAffiffiffiffiffiffiffiffi
2ε̄U

p
�

ð20Þ

given here up to second order in the slow-roll parameters
and that should be complemented by two additional
parameters,

η̄ss ¼
ωAωB

ω2
½∇AXB þ XAXB� þ

2

3
ε̄URA

A

η̄σσ ¼ XAXB½∇AXB þ XAXB�; ð21Þ

where we have used the Ricci tensor RAB of our curved field
space. From these parameters (and especially from ωA), we
can reconstruct how curved the trajectories are in field
space and, in particular, what the transfer function that
converts curvature perturbations into isocurvature pertur-
bations is.
To do so, we finally also need to promote the implicit

definition of the number of e-foldings in (11) to a frame-
covariant one. Making use of the frame-covariant time

derivative DtT ≡ dϕC

dt ∇CT (for any tensor T—see Ref. [23]
for details), we can use Eq. (12) to get

H≡Dta=a ¼ HE; ð22Þ

where t is the physical time and HE satisfies (12).
Analogously, we can then define a frame-covariant
e-folding number, dN ¼ −Hdt. Solving this equation,
we have that the frame-covariant e-folding number N is
given by

N ¼ NE: ð23Þ

From Eq. (13), this gives us N as a function of NJ or,
inverting the relation, lets us express NJ as a function of N
and as such yields an explicitly frame-covariant version
of (11).

IV. ISOCURVATURE MODES AND THE
ATTRACTOR

Multifield models generically produce entropy transfer
between modes, leading to isocurvature effects on top of
the standard adiabatic evolution [21]. This is particularly
important on superhorizon scales, in which the comoving
curvature perturbation is conserved during adiabatic
evolution but evolves in the presence of isocurvature

4Here, we have assumed canonical kinetic interactions for the
scalar fields of the form − 1

2
δAB∇μϕ

A∇μϕB. If the kinetic
structure is nontrivial in field space, i.e., we have kinetic
interactions of the form − 1

2
kABðϕ⃗Þ∇μϕ

A∇μϕB, then the frame-

invariant metric becomes GAB ¼ kAB
M2 þ 3

2

M2
;AM

2
;B

M4 .
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perturbations [31]. Before computing observables, it is
therefore important to investigate whether isocurvature
modes are present and impact the evolution of modes.
Isocurvature effects in two-field models of the type

considered here can be parametrized by and encoded via
the transfer functions TRS and TSS , which are defined via�

R

S

�
¼
�
1 TRS

0 TSS

��
R�
S�

�
; ð24Þ

where R and S are the curvature and entropy perturba-
tions and � denotes the horizon exit at N�. In multifield
models with ≥ 3 fields, additional isocurvature modes are
present, and the above transfer functions get comple-
mented by additional ones linking all neighboring modes
(i.e., each SðnÞ and Sðnþ1Þ)—see Ref. [23] for details.
Going back to the two-field context, a derived transfer
angle Θ is defined by

cosΘ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ T2

RS

q : ð25Þ

In integral form, the transfer functions can then be
written as

TRSðN�; NÞ ¼ −
Z

N

N�
dN0AðN0ÞTSSðN�; N0Þ;

TSSðN�; NÞ ¼ exp

�
−
Z

N

N�
dN0BðN0Þ

�
: ð26Þ

Note that the e-folding number used here is the frame-
covariant one and N⋆ is defined to be positive. For two-
field models, A and B satisfy [32]

A ¼ 2ω; B ¼ −2ε̄U − η̄ss þ η̄σσ −
4

3
ω2; ð27Þ

where we have defined ω2 ¼ jωAω
Aj, with indices raised

and lowered with GAB. In evaluating the isocurvature
effects, let us first note that εU and η̄σσ and RA

A are well
defined, finite, and generically nonzero expressions for
our model. We have derived explicit expressions for these
quantities but will not require these here. The important
quantity is ω.
To proceed, we should first note that scale invariance

imposes a set of consistency conditions on the quantities at
play in the expressions of Sec. III. For example, we have
that

lnUðλϕ⃗Þ ¼ lnUðϕ⃗Þ ð28Þ
for arbitrary λ, which in turn leads to the constraint

d lnUðλϕ⃗Þ
dλ

����
λ¼1

¼ ϕAXA ¼ 0: ð29Þ

This immediately allows us to explicitly write out XA as

�
X1

X2

�
¼ X1

ϕ2

�
ϕ2

−ϕ1

�
: ð30Þ

When indices are raised with GAB, we get

�
X1

X2

�
∝
� ðα2 − 1Þϕ2

−ðα1 − 1Þϕ1

�
: ð31Þ

Interestingly, this is the orthogonal, contravariant vector to
∂AK, i.e., to the ellipse from Eq. (4). We can define a unit
vector X̂A ¼ X2=

ffiffiffiffiffiffiffiffi
2ε̄U

p
and rescale ωA such that

ω̂A ≡ ωAffiffiffiffiffiffiffiffi
2ε̄U

p ¼ X̂B∇BX̂
A: ð32Þ

There are a few properties to note about this expression.
First of all, because of the structure in XA arising from scale
invariance, there is no λAB dependence in X̂A. Furthermore,
we generally (and independently of scale invariance) have
that X̂Aω̂

A ¼ 0, which means that ω̂A ∝ ϕA for a scale-
invariant setup like ours. Putting everything together, one
can evaluate the proportionality constant and in fact
explicitly show that

ω̂A ¼ 0; ð33Þ

which means that X̂A is a geodesic flow associated with
the metric GAB. This result can be seen as an extension of
the result of Ref. [3], in which an analogous turn rate was
shown to vanish for a subset of (1) on the attractor
solution. Specifically, there, it was shown that (on the
attractor solution) the turn rate vanishes for a potential
W ¼ λ

4
ðϕ2

2 − α
λ ϕ

2
1Þ2, which [in the context of our (1)] is

equivalent to assuming a specific choice of λ11. We
therefore emphasize that (33) here holds for arbitrary
λij and without assuming any specific solution (attractor
or otherwise)—it follows directly from (1) and (20). The
result (33) can also be neatly interpreted in terms of the
equation of motion for ϕA, which can be written as

DtDtϕ
A þ 3HðDtϕ

AÞ þ fU;ϕA ¼ 0; ð34Þ

where we recall the definition DtT ≡ dϕC

dt ∇CT for any
tensor T. Since X̂A ∝ U;A, the statement that X̂A is a
geodesic flow associated with the metric GAB becomes
equivalent to the observation that the drag-term −3HDtϕ

A

is aligned with the force term fU;A. We reiterate that our
starting expression for ωA (20) was accurate up to second
order in slow roll, so the same is true for the above
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derivation. This is crucial, since both ω̂A ¼ 0 and the
alignment of drag term and force term in the equations of
motion are trivially true at first order in slow-roll param-
eters but highly nontrivial at higher orders.
While we can understand the cancellation of ω̂A ¼ 0 in a

geometric way via the above reasoning, one may wonder
whether this cancellation can also be related to another
underlying feature. In fact, we have checked that one can
add further dimensionless coefficients to the model, e.g.,
via λ1112ϕ3

1ϕ2 and/or λ1222ϕ1ϕ
3
2 terms in the potential, and

the conclusion remains unchanged. This strongly suggests
that dimensionless coefficients (by themselves) never
contribute to ωA, i.e., that ωA ¼ 0 is intimately tied to
the scale-free nature of our model (at least for a two-
dimensional field space—see the discussion below). Note
that this changes as soon as any dimensionful coefficient is
added. We have explicitly checked, that as soon as, e.g., a
constant (and of course dimensionful) Planck mass MPl is
added to the terms multiplying the Ricci scalar or a
quadratic mass term is added (controlled by a new
parameter m2) or a sixth-order interaction such as
ϕ6
i =m

2 is added ωA picks up nonzero contributions.
Crucially, all dimensionless parameters of the model then
also enter the expression and affect ωA’s value, but in order
to have a nonzero ωA in the first place, the presence of at
least one such dimensionful parameter is required.
What does this mean for the total isocurvature contri-

butions for our model? From (26) and (27), we obtain that
TRS ¼ 0 and Θ ¼ 0 as a direct consequence of ω ¼ 0. In
other words, no isocurvature effects affect observables
related to the curvature mode (within the approximations
we have used throughout, i.e., up to second order in slow
roll). Second, note that B is finite and generically nonzero,5

meaning that an initially present isocurvature mode can still
undergo a nontrivial evolution due to TSS. However, this is
of course decoupled from the curvature mode, given that
TRS ¼ 0, and so the isocurvature mode can never be
sourced by the curvature mode.
While the focus of this paper is the scale-invariant

model with two scalar fields, one has to consider the fact
that this is a special case; the constraint is a one-
dimensional curve—the ellipse (4)—on which the infla-
tionary trajectory lies. Fluctuations along the ellipse
correspond to adiabatic perturbations, and fluctuations
orthogonal to the ellipse correspond to isocurvature
fluctuations. That orthogonal d.o.f. corresponds to the
dilaton, which, as we have shown in Ref. [25], completely
decouples. This means that we do not expect that particular
isocurvature mode to be seeded or to interact with the
adiabatic mode. Given that it is the only isocurvature mode
in this theory, we recover what we found.

To confirm our intuition, we can generalize our analysis
to the case of multiscalar fields, in which the situation is
more complex. There, the constraint surface is a hyper-
ellipsoid in which the inflationary trajectory is embedded.
Again, there will be an isocurvature mode associated to
the dilaton, i.e., orthogonal to the surface, but now there
will also be isocurvature modes lying on the constraint
surface. These will not decouple from the adiabatic mode
and can be seeded during inflation. The hallmark for this
is that ωA will not be zero in this case. For an example,
we have considered the case of three scalar fields with a
setup that is essentially equivalent to our model: α1 < α2,
α3 and the potential (which now consists of all quartic
combinations of ϕ2

1, ϕ
2
2, and ϕ2

3) is dominated by λ22ϕ
4
2.

In Appendix B, we discuss this case in more detail,
explicitly showing that ωA and its norm are nonzero,
which means isocurvature perturbations are clearly
present in the case with more than two fields.

V. OBSERVABLES AND SINGLE-FIELD
DYNAMICS

We are now ready to compute the observable predictions
of our model. Let us quickly summarize the dynamical
regime we are exploring. We are assuming that W ≃ λ22ϕ

4
2

during the inflationary regime. In Ref. [1], we showed that
this was a well-defined slow-roll regime that allowed us to
find the analytical solutions of Sec. II. Furthermore, we
have that jα1j ≪ 1, while α2 is unconstrained.
If we now turn to two-point functions of scalar and

tensor perturbations, we are interested in the spectral
index of scalar perturbations nS, its running αS, the
spectral index of tensor perturbations nT , its running
αT , and finally the tensor-to-scalar ratio r. Their frame-
invariant definitions are [23]

nS ¼ 1 − 2ε̄U − η̄U −DNð1þ T2
RSÞ

αS ¼ −2ε̄U η̄U − η̄Uξ̄U þDNDNð1þ T2
RSÞ

nT ¼ −2ε̄U
αT ¼ −2ε̄U η̄U
r ¼ 16ε̄U cos2Θ; ð35Þ

where DN is the frame-covariant derivative with respect
to N, but since we have already seen that the transfer
function TRS vanishes in our setup, all terms involvingDN

drop out trivially, and cos2Θ ¼ 1. Note that we therefore
trivially obtain the consistency relation r ¼ −8nT .
Making use of (11), we accordingly obtain exact

expressions for all these observables. Expanding up to
leading order in α1 for each parameter, we find6

5A calculation analogous to that above shows that η̄ss is a
finite, nondivergent quantity (the vanishing ω2 in the denomi-
nator is compensated for by factors in the numerator).

6Note that in this small α1 expansion we have not expanded the
exponential e−νNJ , since it can be order 1 even if jα1j ≪ 1.
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nS ¼ 1þ 4α1ðe−νNJ þ 1Þ
3ð1 − e−νNJÞ þOðα21Þ;

r ¼ 64α21ðα2 − 1Þe−νNJ

3α2ðe−νNJ − 1Þ2 þOðα31Þ;

αS ¼ −
32α21e

−νNJ

9ðe−νNJ − 1Þ2 þOðα31Þ;

nT ¼ −
8α21ðα2 − 1Þe−νNJ

3α2ðe−νNJ − 1Þ2 þOðα31Þ;

αT ¼ −
32α31ðα2 − 1Þe−νNJð1þ e−νNJÞ

9α2ðe−νNJ − 1Þ3 þOðα31Þ: ð36Þ

We have checked that, with the fiducial parameter values of
Ref. [2], these expressions are accurate at roughly percent
level (when compared with the full expressions). Note that
NJ here (in the spirit of frame covariance) should be seen as
a function of N. This can be obtained by inverting (23),
which at leading order in α1 becomes

N ¼ NJ þ
1

2
ln

�
2α1ðα2 − 1Þ
α2ðe−νNJ − 1Þ

�
þOðα1Þ: ð37Þ

Also, here and in what follows, we are focusing on the
modes relevant for observables today, by picking a fiducial
NJ ∼ 60. Using (37), one can show this corresponds
to N ∼ 58.5.7

These results extend, and are also completely consistent
with, those found inRef. [1], inwhich calculationswere done
using the HðNÞ formalism, in the Einstein frame (see also
Ref. [3]). It is instructive to pursue this further. As we saw in
Sec. IV, isocurvature perturbations are zero up to, at least,
second order, whichmeans that the there are no perturbations
orthogonal to the field trajectory. One might have guessed
that would be the case, given that the field is evolving along
the scale symmetry–broken locus of field space, i.e., the
ellipse of Eq. (4), but this does not immediately follow; the
trajectory along the ellipse has curvature that one might
naively associate with normal forces and thus isocurvature
perturbations.Given that this is not the case (due to theway in
which the ϕA map onto curvature and isocurvature modes)
and ωA ¼ 0, we can simplify the analysis considerably by
reducing the theory to a single-field model.
Substituting the solutions for ϕA (11) into the ellipse

equation (4) and (without loss of generality) setting ME to
unity in what follows, we find that

K ¼ 6 −
3

α1
−

3

α2
: ð38Þ

Solving for the ellipse, we can therefore express the whole
theory in terms of a single d.o.f., which we choose to be
ϕ≡ ϕ2,

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M̂2ðϕÞR −

k̂ðϕÞ
2

∇μϕ∇μϕ − ŴðϕÞ
�
;

ð39Þ

where we see explicitly that the single-field formulation
comes at the expense of introducing a noncanonical kinetic
term. The model functions are given by

M̂2 ¼ α2ϕ
2 þ α1ð2K − ϕ2Þ
6ðα1 − 1Þ ;

k̂ ¼ −
2Kð1 − α1Þ þ ðα2 − 1Þðα2 − α1Þϕ2

ðα1 − 1Þð2K þ ðα2 − 1Þϕ2Þ

Û ¼ Ŵ

M̂4
¼ 36ðα1 − 1Þ2λ22ϕ4

ðα2ϕ2 þ α1ð2K − ϕ2ÞÞ2 : ð40Þ

Recalling the definition of the frame-invariant metric in the
presence of nontrivial kinetic terms for the scalar(s) (14)
and noting that the field-space metric is a simple scalar
function in the case of a one-dimensional field space as we
are considering here, we have

Ĝ ¼ 12ðα1 − 1ÞKð2α1K þ ðα1 − α2Þðα2 − 1Þϕ2Þ
ð2K þ ðα2 − 1Þϕ2Þð2α1K þ ðα2 − α1Þϕ2Þ2 : ð41Þ

Expressed in this way, we have Ĝ ¼ GAB and consequently
GAB ¼ Ĝ−1 and can express the first two slow-roll param-
eters as

ε̂Û ¼ Û2
;ϕ

2GÛ2
; η̂Û ¼ −

ε̂Û;ϕÛ;ϕ

ε̄ÛGÛ
: ð42Þ

Evaluating this and expanding in α1, we obtain precisely
the same expressions for nS and r as in (36). In fact, we
have explicitly checked that the two approaches yield
identical predictions up to eighth order in α1.
We can now focus on the actual values of the observ-

ables. The main observables, i.e., the ones for which we
have the tightest constraints, are nS and r. In Fig. 1 we can
see that, for sufficiently small values of α1, nS ≃ 0.96; i.e.,
it lies comfortably within the observational constraints
from the Planck data [33]. In fact, given that nS is solely
dependent on α1, we can immediately convert current
constraints on nS (e.g., nS ¼ 0.9652� 0.0047) into con-
straints on α1:

jα1j < 0.019: ð43Þ

Note that there is an upper bound on nS for α1 → 0 such
that nS < 1–2=N ≃ 0.97.
In Fig. 2, we can see that we naturally obtain a small

value of r, well within current constraints. A conservative
expression comes from taking α1 → 0:

7Incidentally, this is precisely in the parameter range explored
by Ref. [3], which corresponds to 57≲ N ≲ 59.
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r ≃
12

N2

ðα2 − 1Þ
α2

≃
1

300

ðα2 − 1Þ
α2

: ð44Þ

Current constraints on r < 0.07 lead to a conservative
bound on α2 such that

α2 < −0.048: ð45Þ
Given the constraint on α1 (43), there is interestingly also a
lowest value for r in our model, namely, r > 0.0026.
The other observables are, currently, unconstrained but
could in principle be measured with future cosmic micro-
wave background measurements (in the case of nT and αT)
and high-redshift 21 cm missions that can probe small
wavelengths in the linear regime (in the case of αS). The
numerical predictions our model makes for these param-
eters are αS ∼ −5 × 10−4 � 10%, depending on the precise

value of α1. Note that, at leading order in α1, αS is
independent of α2, just like nS. nT and αT both do have
explicit dependence on α2 and α1. However, within the
allowed range for α1 (43), the value for nT is recovered well
by the limiting expression as α1 → 0, and we then find

nT ∼ −4 × 10−4 ·
ðα2 − 1Þ

α2
: ð46Þ

For αT, considering the limiting expression as α1 → 0 gives
even more accurate results [due to the extra α1 suppression
factor—see Eq. (36)], and we obtain there (36)

αT ∼ −1.4 × 10−5 ·
ðα2 − 1Þ

α2
: ð47Þ

Finally, we can also investigate signatures of the scale-
invariant model beyond the two-point function. While an
exploration of the full bi- and trispectrum is beyond our
scope, the local non-Gaussian parameter fNL provides an
observable of particular interest, since it is strongly sup-
pressed in single-field models [34,35] and can therefore
provide a smoking gun for multifield dynamics, if sizeable
enough to be measured. Focusing on this local limit, one
can then obtain the expression [36,37]

flocalNL ≈
5

6

N;AN;Bð∇A∇BNÞ
ðN;CN;CÞ2 ; ð48Þ

whereN is the frame-covariant number of e-folds, as before.
Note that this expression is essentially a (covariantized)
version of the standard δN expression for fNL [38], which
there corresponds to a quasilocal configuration for the
bispectrum (close, but not identical, to the local one—cf. the
discussion in Ref. [39]). Taking (48) and noting that one can
write N;A ¼ UU;A=ðU;BU;BÞ [23], after some algebra, we
then find that flocalNL can in fact succinctly be expressed as

flocalNL ≈ −
5

6

XAXB∇BXA

ðXCXCÞ ¼ 5

12
η̄U: ð49Þ

Taking the same approach as for the other observables
considered above, we can expand in α1 and find the highly
accurate expression

flocalNL ≈
5α1ðe−νNJ þ 1Þ
9ðe−νNJ − 1Þ þOðα21Þ ≃

5

12
ð1 − nSÞ

≃ few × 10−2; ð50Þ
where agreement between this expression to leading order in
α1 and the full expression (49) holds down to sub-1% level.
Phrasing it in terms of ns reproduces the (single-field)
relation of Ref. [40], which is of course expected, given
the existence of our effective single-field description (39).
The ðnS − 1Þ suppression in (50) then also follows from the
well-knownconsistency relations for the three-point function
[34,35]. Finally, note that we find cs ¼ 1 in the effective
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FIG. 1. Plot of nS vs α1. Note that the spectral index of scalar
perturbations does not depend on α2 at leading order in α1, which
is unlike the result for r above.
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FIG. 2. Contour plot of r vs α2 and α1. Note that, as far as r is
concerned and at least for the values shown here, all parameter
values give observationally consistent predictions.
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single-field picture (39), due to the independence of the
model functions (40) on derivatives of ϕ. This immediately
allows us to conclude that no sizeable equilateral non-
Gaussianity is present in our model either, since for general
single-field models fequilNL ≲ 1=c2s .

VI. DISCUSSION

In this paper, we have calculated the inflationary observ-
ables for inflation in a scale-invariant universe. While
previous calculations had been undertaken in the Einstein
frame under the assumption of single-field evolution, we
chose to consider the fullmultifieldmodel in a scale-invariant
formalism. This allowed us to prove that, up to second order
in slow roll, no isocurvature perturbations were generated in
the inflationary regime.We showed that this was a particular
feature of the two-field model we are considering in this
paper and can be understood quite simply: the isocurvature
mode is orthogonal to the constraint ellipse, and thus we can
identify it with the dilaton. As we have shown before, the
dilaton completely decouples from the other d.o.f. Our result
reinforces the fact that the (effective) single-field approach is
an excellent approximation.
Nevertheless,wepersistedwith the calculation, taking into

account both fields, and found a set of analytic expressions
for the inflationary observables: r, nS, αS, nT , and αT . These
expressions are accurate at the subpercent level; r and nS are
in exact agreement with those found in Ref. [1]. As a final
cross-check, we explicitly reduced the system to the dynam-
ics of a single field by solving for the constraint in Eq. (4).
Again, we recovered the same analytic results as we had
determined in the multifield case, reinforcing the fact that
isocurvature perturbations are completely absent. Finally, we
assessed the level of non-Gaussianity in this model and
found it to be small, of orderflocalNL ∼ 10−2, andwellwithin the
current observationally allowed range.
Our calculations have confirmed that inflation in a scale-

invariant universe is a completely viable model for the
origin of structure, leading to acceptable observables.
Furthermore, it is fundamentally well motivated; in future
attempts at cosmological constraints, one is in a position to
consider priors on the fundamental parameters as opposed
to on the observables (such as r and nS). Our results also
reinforce the point made in Ref. [28]: if we are to accept
inflation as the theory that explains the seeds for structure,
then current data are strongly pushing us to have to accept
nonminimal couplings. This is a striking statement about
the fundamental structure of gravity and further incentive to
consider theories such as the one discussed in this paper.
In this paper, we have not touched on other fundamental

issues in inflation model building that need to be addressed:
how did the inflationary regime begin, and how fine tuned
are the initial conditions? In the scale-invariant model, these
questions are intimately tied to the inertial symmetry
breaking that occurs and leads the fields to lie on the

constraint surface (the “ellipse”). The slow-roll conditions
are naturally enforced on a large region of the ellipse, but
whether, for a general set of initial conditions, the fields
naturally end up in that region remains to be seen.
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APPENDIX A: GEOMETRY OF FIELD SPACE

For ease of notation, we define f ≡M2 ¼ − 1
6

P
A

αAðϕAÞ2. We will need the following:

f ¼ −
1

6

X
A

αAðϕAÞ2

f;B ¼ −
1

3

X
A

αAϕ
AδAB ¼ −

1

3
αBϕ

B

f;B;C ¼ −
1

3
αBδ

B
C: ðA1Þ

It is useful to define

F≡X
D

f;Df;D ¼ 1

9

X
D

α2DðϕDÞ2: ðA2Þ

Inserting the above expressions into the definition of the
field-space metric, we find

GAB ¼ 1

f

�
δAB þ 1

6f
αAαBϕ

AϕB

�
; ðA3Þ

and for the inverse field-space metric, we have

GAB ¼ fδAB −
3f;Af;B

2ð1þ 3F
2fÞ

¼ fδAB −
αAαBϕ

AϕB

6ð1þ 3F
2fÞ

: ðA4Þ

We can now also express the connection Γ as

ΓA
BC¼

2fδBCf;A−ð3Fþ2fÞðδACf;BþδABf;CÞþ6ff;Af;C;B
2fð3Fþ2fÞ

¼ðFþ2
3
fÞðδACαBϕBþδABαCϕ

CÞþ2
3
fαAϕAðαC−1ÞδBC

2fð3Fþ2fÞ :

ðA5Þ
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Finally, we have that

XC ¼ U;C

U
¼ 2

Uf2
X
A;B

λABϕ
AðϕBÞ2δAC þ 2

3

αCϕC

f
: ðA6Þ

APPENDIX B: ISOCURVATURE MODES FOR
A SCALE-INVARIANT THREE-FIELD

THEORY

Here, we briefly discuss a scale-invariant three-field
model analogous to the two-field model presented in the
main body of the paper. This will turn out to be instructive
in understanding the origin of the decoupling of isocurva-
ture from curvature modes in the two-field case. The action
is still

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
M2ðϕ⃗ÞR −

1

2

X2
A¼1

∇μϕ
A∇μϕA −Wðϕ⃗Þ

�
;

ðB1Þ

where we now have M2 ¼ − 1
6

P
3
A¼1 αAðϕAÞ2 and Wðϕ⃗Þ ¼P

3
A;B¼1 λABðϕAÞ2ðϕBÞ2. As before, a crucial quantity now

is the turn rate ωA; whenever ωA ¼ 0, curvature and
isocurvature modes decouple [32]. While we indeed found
ωA ¼ 0 in the two-field case, the three-field case is
significantly different. One first new feature relevant to
the computation of ωA is that, while scale invariance still
enforces XAϕ

A ¼ 0, this no longer in general eliminates all
λAB dependence from X̂A. We therefore here, for simplicity,
choose to set all parameters in the potential except for λ22 to
zero, a choice that will be sufficient to show that generically
ωA ≠ 0 in multifield extensions of the two-field model
considered in the main text. Explicitly calculating ωA for
the three-field model in question, we then obtain

ω1 ¼
α1ð1 − α3Þϕ1

2 þ ð1 − α2Þα3ϕ2
2 þ ð1 − α3Þα3ϕ3

2

ðα1 − α3Þϕ1ϕ2A
;

ω2 ¼
1

A
;

ω3 ¼
ðα1 − 1Þα1ϕ1

2 þ α1ðα2 − 1Þϕ2
2 þ ðα1 − 1Þα3ϕ3

2

ðα1 − α3Þϕ2ϕ3A
;

ðB2Þ

where we have writtenωA ≡ fω1;ω2;ω3g and have defined
the shorthand notation

A2≡−
27ðP3

A¼1αAðαA−1Þϕ2
AÞ3B3

2α21ðα2−1Þ4ðα1−α3Þ4α23ϕ1
4ϕ2

4ϕ3
4ð−6M2Þ4 ;

B≡α31ϕ1
4þα1ðα3−2Þα3ϕ1

2ϕ3
2þα23ϕ3

2ððα2−1Þϕ2
2

þðα3−1Þϕ3
2Þ−α21ϕ1

2ðϕ1
2þϕ2

2−α2ϕ2
2−α3ϕ3

2Þ;
ðB3Þ

using that M2 ¼ − 1
6

P
3
A¼1 αAðϕAÞ2 as before. Given these

expressions, we can then succinctly express the magnitude
of the turn rate ω2 ¼ jωAω

Aj as

ω2 ¼

��������
96α21ðα2 − 1Þ4ðα1 − α3Þ2α23ϕ1

2ϕ2
2ϕ3

2KM6�P
3
A¼1 αAðαA − 1Þϕ2

A

i
3
B2

��������
; ðB4Þ

where K, in analogy to the constant from Eq. (4),
satisfies

K ¼ 1

2

X3
A¼1

ð1 − αAÞðϕAÞ2 ðB5Þ

and describes the hyperellipsoid constraint surface in which
the inflationary trajectory is embedded. Clearly, we there-
fore have a nonzero turn rate and associated mixing
between curvature and isocurvature modes. This shows
that the decoupling of these modes from one another cannot
be a general consequence of scale invariance, irrespective
of field-space dimension. In the three-dimensional case, we
now have an isocurvature mode, orthogonal to the scalar-
field trajectory, which lies on the constraint surface. Further
work needs to be done to assess if this isocurvature mode is
long lived.
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