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Abstract 

This thesis is concerned with earth pressures in landslides (Part A) and applications of fibre-optic 

sensors in geomechanics (Part B). 

Part A: In stable ground the earth pressures acting on a structure are usually calculated by the 

evaluation of a limit state of soil failure caused by displacements of the structure. In landslides, in 

contrast, the soil displaces towards the structure, which implies different loading conditions 

compared to the stable ground. In this thesis the special kinematic conditions of the soil in the 

vicinity of a structure in a landslide are investigated. It is shown that, similar to the classical earth 

pressure theories, also in landslides, and in particular in constrained landslides, after sufficiently 

large movements, a limit state of soil failure is reached which limits the earth pressures. An 

attempt to quantify the limit states using limit analysis is made for the cases of a structure 

constraining the landslide at its lower end and for buildings embedded in the sliding mass. For 

the former problem upper-bound limit analysis solutions are shown and for the special case of 

planar landslide with a weak slip surface parallel to the slope the exact solution is derived. For 

the latter problem the ultimate loads acting on a building in a landslide are limited by a local limit 

state with soil failure in the vicinity of the building which is quantified using upper-bound limit 

analysis and the finite-element method. For both cases limit analysis provides practically 

applicable closed form-solutions for the limiting earth pressures. The presented extensions of the 

solutions to account for important engineering phenomena, such as wall friction, soil dilation, 

presence of ground water, etc., and special geometrical conditions of the structures broadens their 

potential field of application. The solutions are discussed and compared with respect to existing 

solutions in the literature. The developed earth pressure solutions should provide a tool for 

engineers for the assessment of existing and the safe design of new structures in landslides and 

may contribute to future design practice of retaining structures and buildings in landslides. 

Part B: Any object touching the ground applies contact forces to the ground surface. These 

contact forces induce stresses in the subsurface that in turn lead to a deformation of the ground. 

Measuring such ground deformations enables the detection and possibly identification of objects 

on the ground surface, opening up several possible applications, such as perimeter security and 

weigh-in-motion systems. In this part a system using ground-buried distributed fibre-optic strain 

sensors with very high spatial and strain resolution is presented. The fibre-optic sensors are used 

to quantify the strain field induced by an object in contact with the ground surface. The contact 

interactions on the ground surface are calculated from the strain measurements using a 

mechanical soil model and inverse analysis algorithms similar to those used in image deblurring. 

The proposed system is tested in a field experiment with different applied load types and 

magnitudes. In the field experiment highly non-linear mechanical behaviour of the soil at the 

very small strains caused by small surface loads (such as a pedestrian) was observed. This non-

linearity is further investigated in field and laboratory experiments and the results are compared 

to a finite-element model applying different constitutive models. Buried fibre-optic strain sensors 

proved to be a suitable tool for the investigation of the mechanical soil behaviour in geotechnical 

boundary value problems. 
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Kurzfassung 

Die vorliegende Arbeit behandelt in Teil A die Erddrücke welche auf Bauwerke in Rutschungen 

sowie in Teil B Anwendungen von faseroptischen Sensoren in der Geomechanik. 

Teil A: In stabilem Gelände werden die auf eine Struktur wirkenden Erddrücke normalerweise 

durch die Analyse eines Bruchzustandes im Boden, welcher durch die Verschiebung der Struktur 

erzeugt wird, berechnet. Im Gegensatz dazu verschiebt sich in Rutschungen der Boden in 

Richtung der Struktur, was andere Belastungen der Struktur verursacht. In Teil A dieser Arbeit 

werden die besonderen kinematischen Bedingungen in der Umgebung von Strukturen in 

Rutschungen untersucht, was zum Schluss führt, dass auch in Rutschungen, unter der 

Voraussetzung hinreichend grosser Verschiebungen, ein Grenzzustand erreicht wird. Dieser 

Grenzzustand wird, wie in stabilem Gelände, durch einen Bruchzustandes in der Umgebung der 

Struktur definiert welcher die Erddrücke auf die Struktur begrenzen. Die Grenzwertbetrachtung 

der Plastizitätstheorie wird auf das Problem einer Struktur welche die Rutschmasse stabilisiert, 

sowie auf das Problem eines Gebäudes welches in der Rutschmasse, einer sich gegen unten hin 

verlangsamenden Rutschung, eingebettet ist angewandt. Für erstgenanntes Problem, welches im 

deutschen Sprachgebrauch auch unter dem Begriff ‚Kriechdruck‘ bekannt ist, werden obere 

Grenzwerte für den Erddruck auf eine solche stabilisierende Struktur hergeleitet. Diese 

Erddrücke ergeben für einen Spezialfall mit hangparalleler Gleitschicht und kohäsionslosem 

Boden der Rutschmasse die vollständige Lösung, was anhand von Untersuchungen an unteren 

Grenzwerten gezeigt wird. Beim zweitgenannten Problem werden die Erddrücke an einem 

Gebäude mit vereinfachter Geometrie anhand von oberen Grenzwerten hergeleitet und mit den 

Resultaten von Berechnungen anhand der Finite-Elemente-Methode verglichen. Für beide 

Problemstellungen erlaubt die Grenzwertbetrachtung der Plastizitätstheorie die Herleitung von 

praktisch anwendbaren geschlossenen Lösungen für die Erddrücke welche im Grenzzustand 

wirken. Die Lösungen werden erweitert um von den vereinfachenden Annahmen abweichende 

Randbedingungen, wie zum Beispiel Wandreibung, Dilatanz des Bodens im Bruch, die 

Anwesenheit von Hangwasser sowie besondere Geometrie der Struktur oder der Rutschung, zu 

berücksichtigen. Die resultierenden Erddrücke in Rutschungen werden auch anhand von 

Vergleichen mit anderen Lösungsansätzen in der Literatur diskutiert. Die aufgezeigten Lösungen 

stellen ein Werkzeug für den mit der Bemessung von Strukturen in Rutschungen beauftragten 

Ingenieur dar und sie könnten in Zukunft sowohl für die Überprüfung von bestehenden als auch 

für die Dimensionierung von neuen Bauwerken in Rutschungen benützt werden. 

Teil B: Zwischen einem Objekt und der Bodenoberfläche bestehen Kontaktkräfte welche mit 

einem Spannungsfeld im Untergrund im Gleichgewicht sind und Deformationen des Untergrunds 

verursachen. Eine Messung dieser Deformationen erlaubt potentiell die Detektion sowie 

möglicherweise die Identifikation des Objekts an der Bodenoberfläche, was in verschiedenen 

praktischen Anwendungen, wie in Perimetersicherungssystemen oder dynamischen Waagen im 

Strassenverkehr, nutzbar wäre. In Teil B dieser Arbeit wird ein System zur Identifikation von 

Oberflächenlasten mittels vergrabener faseroptischen Dehnungssensoren vorgeschlagen, wobei 

die Lasten mit Hilfe eines mechanischen Modells des Untergrundes und numerischer 
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Inversrechnung, vergleichbar Bildschärfungsalgorithmen in der Photographie, aus den 

Dehnungsmessungen ermittelt werden. In einem Feldversuch konnte eine hohe Genauigkeit bei 

der Identifikation von verschiedenen Typen von Oberflächenlasten erzielt werden. Die 

Auswertung der experimentellen Daten zeigte zusätzlich ein stark nicht-lineares Verhalten des 

Bodens unter den sehr kleinen Dehnungen welche durch kleine Lasten wie Fussgänger erzeugt 

wurden. Dieses nicht-lineare Verhalten wurde mit weiteren Feld- sowie Laborversuchen vertieft 

untersucht und die Resultate der Versuche wurden mit den Ergebnissen eines numerischen 

Bodenmodells unter Anwendung von verschiedenen Stoffmodellen verglichen. Vergrabene 

faseroptische Dehnungssensoren haben sich als nützliches Werkzeug für die Untersuchung des 

mechanischen Bodenverhaltens in einem Geotechnischen Randwertproblem erwiesen. 
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 Introduction 1

The thesis consists of two parts, where part A is concerned with earth pressures in landslides and 

part B with applications of fibre-optic strain sensors in geomechanics. The introduction is split 

into these two parts. 

 Rationale of the thesis 1.1

1.1.1 Part A: Earth pressures in landslides 

Landslides are a common geohazard in mountainous areas, endangering a large number of 

communities and built infrastructure. In Switzerland, for example, more than six percent of the 

area is prone to slope instability (Lateltin et al. 2005). Infrastructure, like roads or railways, in the 

mountains often have to cross permanently moving landslides or areas which are prone to slope 

instability and therefore require retaining structures (e.g., retaining walls). These retaining 

structures are interacting with the landslide and are in fact stabilizing the moving soil mass, 

which controls the loads acting on these structures. 

In slowly permanently moving landslides, in the literature sometimes referred to as ‘creeping’ 

(e.g., Puzrin & Schmid 2011; Oberender and Puzrin 2016), the sliding of the soil mass often takes 

place in narrow zones with reduced strength (Bernander & Olofsson 1981) and the overlaying 

soil is moving downslope almost intact. This almost intact moving soil mass allowed construction 

activities in mountainous communities to spread into such unstable areas. Many buildings are 

embedded within the moving soil mass and at first sight it is not obvious that the movement of 

the landslide alter the loads acting. However, many buildings in landslides, and in particular in 

the compression zone of constrained landslides (a landslide moving towards an obstacle at the 

bottom), exhibit significant damage (e.g., Alexander 1986; Glade et al. 2005; Alonso et al. 2010; 

Mansour et al. 2011; Cascini et al. 2013), potentially caused by landslide induced loads, which 

were underestimated in the design of these buildings. 

For the assessment of existing and the design of new structures it is important to quantitatively 

evaluate the potential loads acting on a retaining structure or a building in a landslide. To capture 

the complex soil structure interaction and the full loading history requires a detailed model of the 

landslide and the structure which is subjected to many uncertainties. In particular the initial 

conditions in the sliding body prior to any construction, which control the velocity of the 

movement and the initial stress field as well as the mostly staged construction are difficult to 

capture accurately in a soil-structure interaction model. To perform such a complex modelling for 

every construction in a landslide seems to be an excessive demand and would require a vast 

amount of high quality data (such as detailed geometry of the landslide, stiffness and strength 

parameters of the soil, displacements of the landslide). 

As a first step towards the solution of this problem the loads acting on structures in landslides 

(that is, the earth pressures) are investigated similarly to the classical earth pressure theories in 
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stable ground at the limit state of soil failure. Earth pressures in landslides have usually been 

calculated using the classical earth pressure theories for stable ground (e.g., Coulomb 1776; 

Rankine 1857; Müller-Breslau 1906; Caquot & Kérisel 1948; Sokolovskii 1960; Chen 1975; 

Lancellotta 2002). These theories do, however, not hold for structures in landslides. 

In contrast to stable ground, where the retaining structure moves either away from the soil (active 

case) or towards the soil (passive case) in the landslide case the soil moves towards the retaining 

structure (Figure 1-1). Based on observations of snow avalanche barriers Haefeli (1944) first 

realised, that this special kinematic condition has to be taken into account for the evaluation of 

the earth pressures in landslides. Haefeli developed a limit equilibrium solution which was also 

used by Brandl and Dalmatiner (1988), can be found in text books (e.g., Brandl 1987, 2001) and 

is widely used in engineering practice. The solutions is, however, based on some oversimplifying 

assumptions which led a several authors to seek for alternatives (for example Puzrin & Sterba 

2006; Muraro et al. 2015). For a closely related problem of a planar snow or soil sheet under 

extension or compression (Ziegler 1963; Kupper 1967; Szcepinski 1972) presented rigorous 

solutions based on limit analysis approaches. The review of the literature has shown that although 

a number of approaches exist, a need for a rigorous solution of the landslide pressure against a 

retaining structure exists. 

The problem of a building embedded in a permanently moving landslide is closely related to the 

landslide pressure problem. The difference in stiffness and weight between the building and the 

landslide disturb the displacement field of the landslide and lead to stress changes within the 

sliding body which eventually may reach a limit state with failure of the soil in the vicinity of the 

building or failure of the building. To the author’s knowledge no rigorous approach exists to 

assess this limit state which would provide the ultimate landslide-induced loads acting on the 

building. 

 

 

Figure 1-1. Kinematics of different limiting earth pressure situations: (a) active, (b) passive and 

(c) the landslide case. 
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1.1.2 Main objectives of part A 

The main objectives of this part A are: 

 The quantification of the earth pressures acting in a constrained landslide and on the 

constraining structure (e.g., a rock outcrop or a retaining wall) using limit analysis of 

plasticity theory. 

 The investigation of the limit states in the vicinity of a building embedded in the 

compression zone of a constrained landslide and quantification of the ultimate loads 

acting. 

In general, the goal of the presented investigation is to provide better understanding of the earth 

pressures in landslides. The developed earth pressure solutions should provide a tool for 

engineers for the assessment of existing and the safe design of new structures in landslides. The 

concepts used to determine the earth pressures in landslides may also be applied to cases with 

other displacement fields (not only structures in the compression zone of constrained landslides) 

in future research and practice. Further, the derived solutions may contribute to codes and 

regulations of retaining structures and buildings in landslides. 
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1.1.3 Part B: Applications of fibre-optic sensors in geomechanics 

Fibre-optic cables are usually used for means of communication. Specialised measurement 

systems, however, allow the measurement of strain and temperature continuously or distributed 

along such cables and the whole length of the fibre can be used as a sensor. The first 

measurement technologies were discovered almost 40 years ago based on Brillouin Optical Time 

Domain Analysis (BOTDA, Horiguchi et al. (1989)). Since then the techniques have been 

improved significantly and distributed strain and temperature measurement systems have become 

commercially available. The most promising technology for geotechnical research on small to 

middle scales is represented by the swept wavelength interferometry (SWI) to measure Rayleigh 

scattering (Froggatt & Moore 1998; Froggatt et al. 2006; Gifford et al. 2007). While other 

technologies enable sensor lengths of tens of kilometres with relatively sparse spatial resolution, 

SWI is restricted to sensor lengths of some tens of meters but with an unprecedented spatial 

resolution of a few millimetres and strain resolution of down to (~1𝜇휀). For dynamic applications 

SWI with high-temporal-frequency measurements (up to 250 Hz) is already commercially 

available for sensor lengths smaller than tens of meters (Luna 2013). 

At the Geomechanics group of the Institute for Geotechnical Engineering at ETH Zurich fibre-

optic sensors (FOSs) have been a research topic for over a decade. Two PhD theses have been 

devoted to the use of FOSs in geotechnical applications (Iten 2011; Hauswirth 2015). In 

particular the emplacement of FOSs directly in the soil for geotechnical monitoring was 

investigated. For this purpose a set of special cables and micro-anchors were developed and 

tested (e.g., Hauswirth et al. 2010). The cables were applied to the monitoring of landslides, 

tunnels and anchors (e.g., Iten & Puzrin 2009a, b, 2010; Iten et al. 2009). Since then, FOSs have 

already been applied successfully in many geotechnical projects in practice for the monitoring of 

foundations, piles, retaining walls, etc. 

In one of the applications of FOSs assessing the ground surface displacements during tunnelling 

(Hauswirth et al. 2014) distinct measureable strains were detected from pedestrians walking over 

the ground-buried FOSs in a Park in London. To avoid measurement errors the ground surface 

above the FOSs was blocked for pedestrians during the measurements. The finding, however, led 

to the idea of using ground-buried FOSs for the detection and identification of objects at the 

ground surface. Part B of this thesis deals with the development of such a system, the 

corresponding inverse analysis and its experimental testing. 

The use of FOSs for intrusion-detection systems is not entirely new. (Taylor & Lee 1993) used 

optical time domain reflectometry and used the frequency shifts induced in the reflected light 

upon stressing the fibre to detect an intruder passing the buried FOSs. This idea was further 

improved with different, more quantitative fibre optic interrogating systems (e.g., Kwon et al. 

2002; Park & Taylor 2003; Juarez et al. 2005; Kirkendall et al. 2007; Juarez & Taylor 2007; 

Nikles 2009; Hong et al. 2010; Owen et al. 2012). In a next step towards not only detecting but 

identifying the intruder the ‘signature’ of specific events was extracted and compared to 

predefined libraries of signals (Madsen et al. 2007, 2008; Wu et al. 2015). 

The system proposed in part B of this thesis is, in contrast to existing intrusion detection systems, 

based on a mechanical inverse analysis of the contact forces induced by an object moving on the 

ground surface. The inverse analysis uses a mechanical model of the ground (elastic half space 
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loaded on its free surface (e.g., Boussinesq 1885)) and algorithms similar to those used in image 

restoration. The concept of such an object identification system was filed in a patent application 

(Puzrin et al. 2013). 

The nonlinear behaviour of the soil at very small strains revealed in the experimental study of the 

proposed object identification system is well-known in the field of geomechanics as small-strain 

nonlinearity (e.g., Burland 1989). This nonlinearity has been extensively investigated on element 

tests, for example in triaxial tests (Jardine et al. 1984), resonant column tests (e.g., Hardin & 

Drnevich 1972; Bellotti et al. 1996) and bender element tests (e.g., Dyvik & Madshus 1986) in 

the laboratory and by means of shear wave velocity measurements in the field (e.g., Stokoe & 

Woods 1972; Woods 1978). The influence of the small-strain nonlinearity on the behaviour of 

geotechnical boundary value problems was shown, for example, by Burland & Hancock (1977) 

and Burland et al. (1979) for the settlements next to deep excavations and tunnels Addenbrooke 

et al. (1997).  

The ground-buried FOSs enable a direct measurement of the nonlinear soil response to increasing 

strains and therefore represent a tool for interesting insights into the soil behaviour at very small 

strains in geotechnical boundary value problems. 

1.1.4 Main objectives of part B 

The main objectives of part B are: 

 Development of a system for surface object identification using ground-buried FOSs, 

including the layout of the FOSs in a shallow trench, the mechanical inverse analysis of 

the surface loads from the measured strains along the FOSs and the experimental proof-

of-concept of the system. 

 Investigation of the small-strain-nonlinearity at very small strains in a Boussinesq 

problem (half space loaded by a surface load) using FOSs. Constitutive modelling of the 

small-strain behaviour and investigation of the effect of the constitutive behaviour on the 

response in the Boussinesq problem. 

The presented developments in Part B should enable the application of FOSs in a system for 

surface object identification using FOSs. Additionally the investigations of the small-strain 

nonlinearity should provide new insights into the behaviour of soils in geotechnical boundary 

value problems which may be beneficial the assessment of deformations in future geotechnical 

projects. 

 Structure of the thesis 1.2

The thesis is structured in two parts: 

 Part A: Earth pressures in landslides 

 Part B: Applications of fibre-optic sensors in geomechanics 

Part A is subdivided into four chapters. In chapter 2 an introduction to limit analysis is provided 

in order to give the necessary basics for the further derivations shown in chapters 3, 4 and 5. The 

most important concepts and assumptions of limit analysis are restated briefly. 
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Chapter 3 deals with the landslide pressure; that is, the earth pressure acting within a constrained 

landslide and on the constraining obstacle. The landslide pressure is investigated using limit 

analysis of plasticity theory. A generally applicable upper-bound solution is presented and 

compared to the lower-bound solution for the special case of a slope parallel slip surface. It is 

shown that for this special case the exact solution can be found. Further, the limit analysis 

solutions are extended to account for more general boundary conditions. The solutions are 

compared to existing approximate solutions from the literature and the applicability is shown and 

discussed in two practical examples. 

In chapter 4 selected applications of the landslide pressure with special boundary conditions not 

considered in chapter 3 are presented. The solution is extended to arbitrary inclination and 

strength of the weak slip surface and the potential not fully mobilised slip surface in the vicinity 

of a retaining structure is discussed. Finally, a structure not fully embedded in the sliding layer of 

a landslide is investigated and the landslide pressures are quantified and discussed. 

In chapter 5 the ultimate loads acting on buildings in landslides are investigated by means of limit 

analysis and the finite element method (FEM). A generally applicable approach for the 

assessment of the landslide induced loads, based on the investigation of a local limit state in the 

vicinity of the building, is presented. This approach is applied to buildings embedded in the 

sliding soil mass of a constrained landslide. Based on the FEM analyses it is shown that first a 

local limit state forms in the vicinity of the building followed by a global limit state which 

resembles the limit state presented in chapter 2. The influence of geometry, weight, and strength 

of the soil and the building are shown and potential implications on the assessment of existing 

and the design of new buildings are discussed. 

Part B is subdivided into two chapters. Chapter 6 shows an application of ground-buried fibre-

optic sensors (FOSs) for object identification. A system for the detection and identification of 

objects at the ground surface is proposed. The system uses FOSs buried in a shallow trench in the 

ground. Any object moving at the surface induces contact forces which deform the ground. These 

deformations are measured with FOSs using swept wavelength interferometry (SWI) to measure 

the Rayleigh scattering (Froggatt et al. 2006; Gifford et al. 2007). A framework for such a system 

is established, based on inversely calculating the contact forces acting on the surface from the 

FOS measurements. The approach for the inverse analysis, which is based on a mechanical model 

and inverse analysis algorithms similar to those used in image deblurring are presented. An 

experimental study is described where different static load patterns are identified and the results 

of the experiment are discussed. 

The experiments shown in chapter 6 revealed strongly nonlinear soil behaviour at the very small 

strains caused by small surface loads (<1 kN). In chapter 7 the experimental investigation of this 

nonlinearity is presented. An approach to model the experiment using nonlinear hyper-elastic 

constitutive models implemented into the finite element computing environment ABAQUS 

(Simulia, Dassault Systèmes, Providence, RI). As independent experimental data on the soil 

behavior triaxial tests with local strain measurements to capture the small strain nonlinearity are 

presented. The model results are compared to the experiment and discussed. Particular emphasis 

is put on the volumetric behavior of the soil at very small strains. 

In chapter 8 the main findings are summarised and ideas for potential future research is 

highlighted. 
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PART A: EARTH PRESSURES IN LANDSLIDES 

 Introduction to limit analysis 2

When a mechanical system is loaded it first exhibits elastic deformations. These deformations are 

reversible, meaning that in a closed loading unloading cycle the deformation returns to its initial 

state. If the loads are increased further some irreversible deformations may occur but further 

loading is still possible. After a certain load is reached the deformations increase without any 

additional loading (meaning that no elastic deformation occurs anymore). At this point the 

collapse state of the system is reached. The collapse is often studied using the simplifying 

concept of perfect plasticity. 

Historically, in geotechnics the limit equilibrium method was applied to investigate the collapse 

state of stability problems (such as earth pressures, slope stability, bearing capacity, etc.). In this 

method potential slip lines are presumed and the overall equilibrium of force resultants acting on 

the slip lines is solved. Additionally the failure criterion in terms of forces is satisfied on the slip 

lines. In cases which are not statically determinate (that is, all the resultant forces can be 

calculated from the equilibrium conditions) additional assumptions on the stress distributions 

along the slip lines have to be made. The limit equilibrium method does not fulfil equilibrium of 

stresses everywhere nor does it satisfy the failure criterion in the body considered. It therefore 

represents an approximate method to determine the collapse state of a mechanical system, which, 

however, is simple to apply to numerous problems in geotechnics and is widely applied for 

practical problems. 

A valid solution of a continuum mechanics system has to fulfil the stress equilibrium equations, 

the compatibility equations on the strain and displacements as well as the constitutive law which 

connects stresses and strains. Finding such solutions analytically is, however, a difficult task for 

general problems, which nowadays is often done using numerical methods (e.g., finite-element 

method, finite difference method, etc.). For problems concerned only with collapse load of a 

mechanical system (assuming perfect plasticity, which reduces the complexity of the constitutive 

law significantly) limit analysis provides a powerful tool which enables rigorous statements and 

is relatively simple to apply also for very complex boundary conditions. In limit analysis the 

exact solution of the collapse state is bracketed by lower-bounds, which satisfy only the stress 

equilibrium and the constitutive law (at failure), and upper-bounds, which satisfy only the 

compatibility and the constitutive law (at failure). If the lower- and upper-bounds are equal the 

exact solution of the collapse state is found. 

Subsequently the most important concepts and assumptions of limit analysis are restated briefly. 

This chapter is not meant to discuss completely all the aspects of limit analysis and for more 

details it is referred to (e.g., Hill 1950; Drucker et al. 1952; Chen 1975). 
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 Concepts and assumptions 2.1

2.1.1 Perfect plasticity 

The mechanical behaviour of soil is very complex. Before failure occurs it usually shows changes 

in stiffness of orders of magnitude which additionally depend on the confining stress. The failure 

stress of soil is generally also stress dependent and the evolution of post-failure strains can be 

accompanied by a decrease of the resistance, usually called strain-softening behaviour. Capturing 

all these phenomena of soil behaviour is already difficult on the level of element tests (e.g., 

triaxial tests, oedometer tests, etc.) but even more on the level of geotechnical boundary value 

problems and the necessary soil parameters are usually not available in practice. 

In many engineering problems the collapse state of a system is of interest and the design ensures 

a reasonable safety margin against this state. It is therefore convenient to use the concept of 

perfect plasticity. With this concept at the failure state which is defined by the failure criterion 

𝑓(𝜎𝑖𝑗) = 0 (2-1) 

the strain rate is purely plastic 

휀�̇�𝑗 = 휀�̇�𝑗
𝑝

 (2-2) 

and the elastic strain rates vanish (휀�̇�𝑗
𝑒 = 0). When the collapse (that is, the limit load) of the 

whole system is reached no additional loading is possible and all stresses remain constant. 

Therefore the system deforms under constant surface tractions and body forces acting on the 

system. 

2.1.2 Failure criterion 

The failure criterion 𝑓(𝜎𝑖𝑗) = 0 defines the stress state at which plastic flow can occur. Within 

the failure criterion (that is, at stress states for which 𝑓 < 0) elastic strain rates occur. Stress 

states for which 𝑓 > 0 are not possible (Figure 2-1 (a)). Further, it is assumed that the failure 

criterion is convex. This property of the failure surface is important for the derivation of the limit 

theorems shown later. 

The shear resistance of soils usually depends on the compressive stress. Although many different 

formulations of failure criterions exist the Mohr-Coulomb criterion (Figure 2-1 (b)) initially 

proposed by Coulomb (1776) and extended for general stress states by Mohr (1906) provides a 

good fit for soils (e.g., Bishop 1966) and follows a clear concept. The shear resistance is divided 

into a stress dependent frictional part, and a constant cohesive part. In terms of the shear 

resistance on a failure plane the criterion reads 

𝑓 = 𝜎𝑛 tan 𝜑′ + 𝑐′ − 𝜏𝑟 = 0 (2-3) 

where 𝜏𝑟 is the shear resistance, 𝜎𝑛 is the normal stress acting on the failure plane, 𝜑′ is the angle 

of internal friction of the soil and 𝑐′ is the cohesion of the soil. For the special case of 𝜑′ = 0 the 

criterion matches the Tresca failure criterion which is used for simplified undrained analyses.  
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The generalisation of the criterion to principal stresses is expressed as 

𝑓 = (𝜎1 + 𝜎3) sin 𝜑′ + 2𝑐′ cos 𝜑′ − (𝜎1 − 𝜎3) = 0 (2-4) 

Where 𝜎1 and 𝜎3 are the largest and the smallest principal stresses, respectively, the criterion is 

independent on the intermediate principal stress 𝜎2. The criterion represents, based on all the 

combinations of principal stresses, six planes in the principal stress space which form together a 

pyramid with irregular hexagonal base. 

2.1.3 Associated flow rule 

As at perfectly plastic failure the plastic strains develop without any stress change it is, unlike in 

elasticity, not possible to define a unique relation between strain and stress. With the concept of 

the flow rule the vector of the plastic strain rate is defined by a potential surface 𝑝 except for its 

magnitude which depends on a positive multiplier 𝜆 > 0. 

휀�̇�𝑗
𝑝

= 𝜆
𝜕𝑝

𝜕𝜎𝑖𝑗
 (2-5) 

In limit analysis the concept of associated plastic flow is used where the potential surface is equal 

to the failure surface. Therefore, the plastic strain rates are defined by the plastic multiplier and 

the derivative of the failure surface (Figure 2-1 (a)). 

휀�̇�𝑗
𝑝

= 𝜆
𝜕𝑓

𝜕𝜎𝑖𝑗
 (2-6) 

The plastic flow of soils is in general not associated. The associativity is, however, an important 

assumption for the derivation of the limit analysis theorems. 

 

 

 

Figure 2-1. (a) Generic failure surface and associated flow (modified from Chen (1975)); (b) Mohr-Coulomb 

failure surface in the principal stress space. 
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2.1.4 Virtual work and the principle of maximum dissipation 

Assuming small changes in geometry at the instant of the collapse allows applying the virtual 

work equation. The virtual work equation evaluates the work rates of the equilibrium set and a 

compatibility set. The equilibrium set comprises the tractions 𝑇𝑖 on the surface of the body 𝐴, the 

body forces 𝐹𝑖 acting within the volume of the body 𝑉, and the stress 𝜎𝑖𝑗 within the body. The 

compatibility set comprises the virtual (therefore denoted with an asterisk) displacement rates �̇�𝑖
∗ 

and the virtual strain 휀�̇�𝑗
∗ . 

∫ 𝑇𝑖
𝐴

�̇�𝑖
∗𝑑𝐴 + ∫ 𝐹𝑖

𝑉

�̇�𝑖
∗𝑑𝑉 = ∫ 𝜎𝑖𝑗

𝑉

휀�̇�𝑗
∗ 𝑑𝑉 (2-7) 

The strain rate on the right hand side of equation (2-7) is composed of elastic and plastic strain 

rates. 

휀�̇�𝑗 = 휀�̇�𝑗
𝑒 + 휀�̇�𝑗

𝑝
 (2-8) 

At the collapse state the elastic strain rates vanish and the right hand side of equation (2-7) 

corresponds to the plastic dissipation in the body. As no energy can be produced in the system the 

dissipation is always positive. 

�̇�𝑖 = ∫ 𝜎𝑖𝑗휀�̇�𝑗
𝑝

𝑑𝑉
𝑉

= ∫ 𝜎𝑖𝑗𝜆
𝜕𝑓

𝜕𝜎𝑖𝑗
𝑑𝑉

𝑉

≥ 0 (2-9) 

Note that for purely frictional material (using the Mohr-Coulomb failure surface (2-4) with 

𝑐′ = 0 and associated flow) the resultant stress vector on a failure plane and the corresponding 

plastic strain increment vector are orthogonal. Therefore in this special case the dissipation is 

zero. 

Considering a stress point within the failure surface 𝜎𝑖𝑗
𝑒  (i.e., 𝑓(𝜎𝑖𝑗) ≤ 0) and a stress point in the 

collapse state on the failure surface 𝜎𝑖𝑗
𝑐  it follows from the convexity of the failure surface and the 

associativity of the flow rule that 

(𝜎𝑖𝑗
𝑐 − 𝜎𝑖𝑗

𝑒 )휀�̇�𝑗
𝑝

≥ 0 (2-10) 

This is resulting from the fact that the maximum angle between the vectors (𝜎𝑖𝑗
𝑐 − 𝜎𝑖𝑗

𝑒 ) and 휀�̇�𝑗
𝑝

 

cannot be larger than 𝜋/2, which is the case for example on a ‘flat’ section of the failure surface. 

The equation can be rewritten as 

𝜎𝑖𝑗
𝑐 휀�̇�𝑗

𝑝
≥ 𝜎𝑖𝑗

𝑒 휀�̇�𝑗
𝑝

 (2-11) 

which is known as the principle of maximum plastic dissipation, stating that, of all possible stress 

states the actual collapse state requires the most plastic work. 
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 Lower-bound theorem 2.2

Theorem: If a statically admissible stress field 𝜎𝑖𝑗
𝑒  (that is, a stress field fulfilling equilibrium in 

the body and on its boundaries which is everywhere below the failure surface 𝑓(𝜎𝑖𝑗
𝑒 ) < 0) can be 

found, collapse will not occur under the given loads (surface tractions 𝑇𝑖 and body forces 𝐹𝑖). In 

other words, the loads corresponding to a statically admissible stress field represent a lower-

bound for the loads required for the collapse. 

Proof: The proof of the theorem is restated following Chen (1975) by assuming it false and 

showing that this leads to a contradiction. A collapse state with the loading conditions 𝑇𝑖
𝑐, 𝐹𝑖

𝑐 and 

the corresponding actual collapse stress state 𝜎𝑖𝑗
𝑐  is considered. Assume a statically admissible 

stress field 𝜎𝑖𝑗
𝑒  which also leads to collapse. From the virtual work equation (2-7): 

∫ 𝑇𝑖
𝑐

𝐴

�̇�𝑖
𝑐𝑑𝐴 + ∫ 𝐹𝑖

𝑐

𝑉

�̇�𝑖
𝑐𝑑𝑉 = ∫ 𝜎𝑖𝑗

𝑐

𝑉

휀�̇�𝑗
𝑐 𝑑𝑉 

∫ 𝑇𝑖
𝑐

𝐴

�̇�𝑖
𝑐𝑑𝐴 + ∫ 𝐹𝑖

𝑐

𝑉

�̇�𝑖
𝑐𝑑𝑉 = ∫ 𝜎𝑖𝑗

𝑒

𝑉

휀�̇�𝑗
𝑐 𝑑𝑉 

(2-12) 

From the equality of the left hand sides of the two states it follows that 

∫ (𝜎𝑖𝑗
𝑐 − 𝜎𝑖𝑗

𝑒 )
𝑉

휀�̇�𝑗
𝑐 𝑑𝑉 = 0 (2-13) 

However, following equation (2-10) 

(𝜎𝑖𝑗
𝑐 − 𝜎𝑖𝑗

𝑒 )휀�̇�𝑗
𝑐 > 0 (2-14) 

has to hold and therefore equation (2-13) cannot be true (note that the integral of positive terms 

has to be positive). This proves the validity of the lower-bound theorem. If the stress state may 

also lie on the failure surface, 𝑓(𝜎𝑖𝑗
𝑒 ) = 0, the body may also be at the actual collapse state. 

 Upper-bound theorem 2.3

Theorem: If a kinematically admissible (virtual) collapse state 휀�̇�𝑗
𝑝∗

, �̇�𝑖
𝑝∗

 (that is, a mechanism 

which satisfies the displacement conditions on the boundaries and the strain rate compatibility 

conditions within the body) can be found, collapse is in progress or has already taken place. In 

other words, the loads 𝑇𝑖, 𝐹𝑖 determined by equating the rate of external work with the internal 

dissipation 

�̇�𝑒 = �̇�𝑖 = ∫ 𝑇𝑖
𝐴

�̇�𝑖
𝑝∗

𝑑𝐴 + ∫ 𝐹𝑖
𝑉

�̇�𝑖
𝑝∗

𝑑𝑉 = ∫ 𝜎𝑖𝑗
∗ 휀�̇�𝑗

𝑝∗
𝑑𝑉

𝑉

 (2-15) 

will be equal or higher than the actual collapse load. 
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Proof: The proof of the theorem is restated following Chen (1975) by assuming it false and 

showing that this leads to a contradiction. It is assumed that the body does not collapse under the 

loads determined from equation (2-15) and, according to the lower-bound theorem; a 

corresponding statically admissible stress field 𝜎𝑖𝑗
𝑒  exists. From the virtual work equation 

∫ 𝑇𝑖
𝐴

�̇�𝑖
𝑝∗

𝑑𝐴 + ∫ 𝐹𝑖
𝑉

�̇�𝑖
𝑝∗

𝑑𝑉 = ∫ 𝜎𝑖𝑗
𝑒

𝑉

휀�̇�𝑗
𝑝∗

𝑑𝑉 (2-16) 

and equation (2-15) it follows that: 

∫ (𝜎𝑖𝑗
∗ − 𝜎𝑖𝑗

𝑒 )
𝑉

휀�̇�𝑗
𝑝∗

𝑑𝑉 = 0 (2-17) 

However, following equation (2-10) 

(𝜎𝑖𝑗
∗ − 𝜎𝑖𝑗

𝑒 )휀�̇�𝑗
𝑝∗

> 0 (2-18) 

has to hold and therefore equation (2-17) cannot be true (note that the integral of positive terms is 

positive). This proves the validity of the upper-bound theorem. 

Note that every solution determined from a kinematically admissible collapse state corresponds 

to a limit equilibrium solution. 

Further theorems of limit analysis can be derived, which are not restated here and can be found in 

(e.g., Drucker et al. 1952; Chen 1975). 
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 Notation 2.4

𝐹𝑖 Body forces 

𝐹𝑖
𝑐 Body forces at the collapse state 

𝐴 Surface area of the body 

𝑇𝑖 Surface tractions 

𝑇𝑖
𝑐 Surface tractions at the collapse state 

𝑉 Volume of the body 

𝑐′ Cohesion 

𝑓 Failure surface 

𝑝 Plastic potential 

�̇�𝑖 Displacement rates 

�̇�𝑖
∗ Virtual displacement rates 

휀�̇�𝑗 Strain increments 

휀�̇�𝑗
𝑝

 Plastic strain increments 

휀�̇�𝑗
𝑐  (Plastic) strain increments at the collapse state 

휀�̇�𝑗
𝑒  Elastic strain increments 

휀�̇�𝑗
∗  Virtual strain increments 

휀�̇�𝑗
𝑝∗

 Virtual plastic strain increments 

𝜆 Plastic multiplier (positive) 

𝜎𝑖𝑗 Stresses 

𝜎𝑖𝑗
𝑐  Stresses at the collapse state 

𝜏𝑟 Shear resistance 

𝜑′ Angle of internal friction 
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 Lateral earth pressures in constrained landslides 3
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 Abstract 3.1

The problem of the limiting landslide pressure on an obstacle was first formulated in 1944 by 

Robert Haefeli of ETH Zurich, who recognised that kinematics of the problem does not allow for 

classical active and passive earth pressure theories to be applied. He derived an approximate 

solution using a limit equilibrium approach with a number of rather arbitrary assumptions and 

simplifications. Since then, the Haefeli solution has been widely applied for the design and 

analysis of landslide retaining structures. The chapter revisits this old landslide pressure problem 

by means of a rigorous upper and lower-bound limit analysis and derives the exact landslide 

pressure solution for a planar landslide with a weak slip surface parallel to the slope. Being 

applicable to a wide range of natural and man-made obstacles and, unlike the classical theories, 

not affected by the wall friction and soil dilation, the upper-bound solution is rather robust. The 

landslide pressures from this solution increase with the strength of the sliding layer and are 

significantly higher than the active but much lower than the passive earth pressures. Of even 

higher practical importance, however, is that due to their oversimplifying assumptions, the 

widely used approximate solutions appear to get close to the exact solution only over a very 

narrow range of slope and friction angles. It appears that for mildly inclined weak slip surfaces 

and high strengths of the sliding layer, analysis and design of retaining structures based on well-

known approximate solutions can become dramatically unsafe. 
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 Introduction 3.2

Landslides are a common geohazard in mountainous and alpine regions and have been studied 

since early times of geotechnical engineering (e.g., Terzaghi 1936; Skempton 1964; Bjerrum 

1967). The sliding of the soil mass often takes place along a narrow slip surface with reduced 

strength in which most of the shear strains are localized (e.g., Bernander and Olofsson 1981). In 

such cases, the driving component (parallel to the slip surface) of the gravity force acting in the 

sliding layer is approximately in equilibrium with the shear resistance of the slip surface. The 

velocity of the sliding soil mass is controlled by fluctuation of the pore water pressures, rate 

dependent behaviour, strain hardening or softening in the sliding layer and the slip surface, etc. 

(e.g., Oberender and Puzrin 2016). The velocities may be very small and the process of sliding 

can extend over decades. Some landslides have been constrained by an obstacle, either natural 

(a rock outcrop) or artificial (a retaining structure, designed as a mitigation measure). Puzrin and 

Sterba (2006) and Puzrin and Schmid (2011; 2012) showed that in such constrained landslides 

the pressure acting in the sliding layer increases towards the obstacle and may reach values 

producing failure in the sliding layer, causing significant acceleration of the sliding body. 

This chapter investigates the limiting landslide pressures acting in the sliding layer and on the 

constraining obstacle. While the limiting pressure on the retaining structure provides crucial input 

for the design of retaining structures, the limiting pressure in the sliding layer is in particular 

important to know when the sliding layer serves as a foundation for buildings and infrastructure, 

as often is the case with slowly moving landslides in mountainous communities (e.g., Puzrin and 

Schmid 2011; 2012). The failure at the bottom of the sliding layer affects kinematics of the 

landslide displacements both, at the location of the failure mechanism (change in the sliding 

direction) and upslope from it (landslide acceleration), which can be critical for the building and 

infrastructure performance. 

Earth pressures on retaining structures are traditionally estimated as a limiting case where the 

surrounding soil reaches shear failure (e.g., Coulomb 1776; Rankine 1857). Depending on the 

relative displacement between the structure and the soil, the failure takes place either in active or 

passive mode. Several authors refined the earth pressure theory using limit equilibrium and limit 

analysis, (e.g., Müller-Breslau 1906; Caquot and Kérisel 1948; Sokolovskii 1960, Chen 1975; 

Lancellotta 2002, etc.). These earth pressure theories are widely used in engineering practice for 

the design of retaining structures. While for the classical kinematic conditions (wall moving away 

 

Figure 3-1. Kinematics of different limiting earth pressure situations: (a) active, (b) passive and (c) the 

landslide case. 



3.2 Introduction 

 

 
20 

or towards the soil, Figure 3-1 (a) and (b)) the calculation of the limiting earth pressures follows 

well-established techniques, for the special kinematic condition of a slope moving towards a 

fixed retaining structure or rock outcrop, derivation of the earth pressures remains a subject of ad-

hoc procedures often using rather arbitrary assumptions. 

Indeed, if the retaining wall were moving downslope faster than the sliding layer, the active 

failure could take place in the soil behind the wall. In contrast, when the sliding layer moves 

faster than the retaining structure, this relative movement seems to resemble the classical passive 

failure case. In reality, however, because the retaining structure or rock outcrop are hardly 

moving at all, neither of the above two cases applies and kinematic considerations (Figure 3-1 

(c)) imply a special case for the earth pressure in constrained planar landslides, denoted in this 

chapter the ‘landslide pressure’. 

Based on his observations of snow avalanche barriers, Haefeli (1944) realised that the sliding 

mass at the limit state flows over the barrier. He proposed a solution to calculate the landslide 

pressure acting on a retaining structure based on limit equilibrium and some ad-hoc assumptions 

(in particular, with respect to the shape of the failure wedge and inclination 𝜗 of the force acting 

on this wedge in Figure 3-2 (a)). The value of inclination 𝜗 has to be postulated within a range 

between zero and the angle of internal friction 𝜑′, which results in a broad range of the landslide 

pressure coefficients (Figure 3-2 (b)). It is, therefore, hardly surprising that when Brandl & 

Dalmatiner (1988) compared the Haefeli solution to field observations, they fell within this range 

(Figure 3-2 (b)). Considered being ‘confirmed’ by Haefeli’s solution, this measured range has 

since been broadly used in engineering practice. 

 

Figure 3-2. Haefeli limit equilibrium solution (a) assumed mechanism, (b) ratio of 𝑚 = 𝐾𝑙ℎ 𝐾𝑎ℎ⁄  vs. slope 

angle for the special case of slope angle equal to the angle of internal friction 𝛼 = 𝜑′ (𝐾𝑙ℎ: landslide pressure 

coefficient; 𝐾𝑎ℎ: active earth pressure coefficient for a smooth wall). 
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In spite of the long history and rather broad application of the Haefeli solution, its arbitrary 

assumptions remain a subject of concern and have caused a number of authors to seek alternative 

approaches. For example, for the long-term stability analysis of constrained landslides Puzrin and 

Sterba (2006) calculated the landslide pressure using the passive case of Rankine’s earth pressure 

theory for planar inclined ground (Rankine 1857, Chu 1991). More recently, Muraro et al. (2015) 

also concluded, based on numerical calculations (FEM) of the landslide pressure using one 

specific geometry and a limited parametric study on the effects of the soil-wall friction and soil 

dilatancy, that their results correspond to Rankine’s passive earth pressure. For the slightly 

different problem of glacier flow Nye (1951) developed stress field solutions for extension and 

compression of the moving ice body. Ziegler (1963) and Kupper (1967) presented a rigorous 

analysis of the problem of a snow sheet in an avalanche or a landslide under extension or 

compression using the Tresca and the Mohr-Coulomb failure criterion, respectively. They found 

that the stress state in the moving body is limited by an active and passive state and presented 

analytical expressions for the limit states. Szczepinski (1972) extended their solution to non-

dilative flow and also presents an analytical solution for a landslide body in compression. 

The literature dealing with limiting pressures on slope stabilizing piles has mainly focussed on 

the flow of cohesive soil through the piles (e.g., Ito and Matsui 1975; De Beer 1977; Viggiani 

1981; Randolph and Houlsby 1984; Poulos 1995; Kourkoulis et al. 2011 (FEM)) and did not 

address the case with a continuous wall. Besides these theoretical studies, field measurements of 

earth pressures in landslides have been provided by Fukuoka (1995). 

The review of the literature addressing the landslide pressure acting on retaining structures has 

shown that although a number of different approaches exist, including rigorous solutions for a 

particular case, which are not well known in the field of geotechnical engineering, engineers face 

large uncertainties when applying these approaches to real life landslide problems. The goal of 

the present work is to provide a more general rigorous solution of the landslide pressure problem 

based on its consistent formulation within the framework of the upper-bound limit analysis. This 

solution will then be benchmarked against the existing exact solution for the particular case of a 

planar slope and its applicability will be extended to account for important engineering 

phenomena (such as wall friction, wall inclination, soil dilation, presence of the ground water, 

etc.). After comparing this solution to the approximate solutions used in the engineering practice, 

two practical examples will be presented. 
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 Problem formulation 3.3

Consider a landslide (Figure 3-3) consisting of a soil layer with the surface inclination 휃 and the 

total unit weight 𝛾 sliding on a thin layer of weaker soil inclined by angle 𝛼 with reduced 

mechanical strength properties (either the same material with residual strength, or a different 

material, e.g., a thin layer of clay). In this chapter this weak layer is denoted ‘slip surface’. Both, 

the sliding layer and the slip surface materials are perfectly plastic following the Mohr-Coulomb 

failure criterion. The sliding layer is characterized by the cohesion 𝑐′ and the friction angle 𝜑′ 

whereas the slip surface is assumed to be cohesionless with the friction angle of 𝜑2
′ . Below the 

slip surface, the material is assumed to have a significantly higher strength. If the soil resistance 

on the slip surface is in equilibrium with the gravitational load of the sliding layer; that is, the 

friction angle of the slip surface  𝜑2
′  is equal to its inclination 𝛼, the sliding layer can move 

downhill at a constant velocity. The landslide is constrained by an obstacle at the bottom, which 

may be natural (rock outcrop) or man-made (stabilisation structure, buildings, etc.), has the 

vertical height 𝐻, is inclined to the vertical by angle 𝛽 and has the friction angle 𝛿 at the interface 

with the soil. If the resistance along the slip surface drops below the driving force, the pressure 

on the obstacle at the bottom will increase. This can be caused, for example, by fluctuations of 

the pore water pressures or due to a rate dependent material behaviour on the slip surface 

(particular mechanisms bringing the slope to the failure state are outside the scope of this chapter, 

therefore, no ground water table is introduced in the problem formulation, the influence of water 

is discussed later in the chapter). The constraining obstacle can be compliant or rigid, but cannot 

move upslope at failure. It is also assumed that the landslide is sufficiently long for the difference 

between the driving and resisting forces to bring the sliding layer close to the obstacle to failure. 

In the considered problem two different limiting landslide pressures are of practical interest: (i) 

the landslide pressure in the sliding layer (for the slope stability assessment) and (ii) the landslide 

pressure acting on the retaining structure (for the design criteria). The case of a structure 

embedded within the sliding layer with no connection to the stable ground beneath the slip 

surface (e.g., by means of piles or anchors) is outside the scope of the presented work. 

  

 

Figure 3-3. Problem formulation, retaining structure in landslide 
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 Limit analysis solutions 3.4

3.4.1 Assumptions 

Based on the following assumptions, upper and lower-bound limit analysis solutions are derived 

in this section, providing, in particular cases, the exact solution for the limiting landslide 

pressures: 

i. The landslide body is at the state of equilibrium and is moving downslope at a constant 

velocity (the gravitational shear stress is in equilibrium with the shear resistance: 

𝜑2
′ = 𝛼). 

ii. The shear resistance 𝜑2
′  is mobilised along the entire length of the slip surface, all the 

way down to the obstacle. This condition is satisfied by all compliant retaining 

structures and by those rigid structures, which were installed after the initial landslide 

movement took place.  

iii. The soil fails as a perfectly plastic Mohr-Coulomb material with the associated flow 

rule. Extension of the solutions to a non-associated flow rule will be made later in the 

chapter. 

3.4.2 Upper-bound solution 

In order to derive an upper-bound estimate for the landside pressure, a kinematically admissible 

failure mechanism has to be postulated, where the velocity field satisfies the velocity boundary 

conditions as well as the strain and strain rate compatibility conditions. For this failure 

mechanism to be activated, the rate of external work has to be equal (or exceed) the rate of 

internal dissipation. According to the upper-bound theorem of limit analysis (e.g., Chen 1975), 

the minimum lateral earth pressure capable of activating such a mechanism will always be larger 

than the true failure stress in the sliding body. 

The kinematically admissible translational mechanism proposed here consists of three rigid 

blocks, bounded by slip discontinuities with the lengths 𝑙1and 𝑙2 inclined to the slip surface by 

angles 𝜔1 and 𝜔2, respectively (Figure 3-4 (a)). According to the associated flow rule, the 

velocity vector 𝑣1 of Block 1 is inclined to the thin sliding surface by the friction angle 𝜑2
′ . 

Therefore, in order to satisfy the equilibrium condition 𝜑2
′ = 𝛼, Block 1 has to move 

horizontally. Block 2 is pushed upwards with velocity 𝑣2, while Block 3 similarly to Block 1 

moves horizontally with the velocity 𝑣3. 
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Figure 3-4. (a) Upper-bound mechanism; (b) hodograph 

The relations between the velocities of Blocks 1, 2 and 3 are shown in the hodograph in Figure 3-

4 (b). For the formulation of the work equation of particular interest are the vertical components 

𝑣2𝑣 of the velocity of Block 2, as well as the relative velocities 𝑣12 and 𝑣23 and their components 

𝑣12𝑐′ and 𝑣23𝑐′ parallel to the corresponding slip discontinuities: 

𝑣12 =
(𝑣1 − 𝑣3) sin(𝜑′ + 𝜔2 − 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣23 =
(𝑣1 − 𝑣3) sin(𝜑′ + 𝜔1 + 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣12𝑐′ =
(𝑣1 − 𝑣3) sin(𝜑′ + 𝜔2 − 𝛼) cos 𝜑′

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣23𝑐′ =
(𝑣1 − 𝑣3) sin(𝜑′ + 𝜔1 + 𝛼) cos 𝜑′

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣2𝑣 =
(𝑣1 − 𝑣3) sin(𝜑′ + 𝜔1 + 𝛼) sin(𝜑′ + 𝜔2 − 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

(3-1) 

The rate of external work is a sum of the work done by the three external forces - the force in the 

sliding layer 𝐸𝑙ℎ, the reaction of the retaining structure 𝐸𝑙ℎ𝑤 and the gravity force 𝐺 - on the 

corresponding velocities of Blocks 1, 3 and 2, respectively (Figure 3-4 (a)). Note that when 

𝜑2
′ = 𝛼, Blocks 1 and 3 move horizontally and the vertical components of the forces acting on 

these blocks do not contribute to the rate of external work �̇�𝑒, while Block 2 is the only one 

where the gravity contributes to the external work: 

�̇�𝑒 = 𝑣1𝐸𝑙ℎ − 𝑣3𝐸𝑙ℎ𝑤 − 𝑣2𝑣𝐺2 (3-2) 
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with the weight of Block 2 given by: 

𝐺2 =
𝐻2𝛾

2
⋅

cos2(𝛼 − 𝛽)

cos2 𝛽
⋅

sin(𝜔2 − 𝛼 + 휃) sin(𝜔1 + 𝜔2)

sin2 𝜔2 sin(𝜔1 + 𝛼 − 휃)
 (3-3) 

The rate of internal dissipation along the slip discontinuity �̇�𝑖 is calculated as 

�̇�𝑖 = 𝑣12𝑐′𝑐′𝑙1 + 𝑣23𝑐′𝑐′𝑙2 (3-4) 

where 

𝑙1 =
𝐻 cos(𝛼 − 𝛽) sin(𝜔2 + 휃 − 𝛼)

cos 𝛽 sin 𝜔2 sin(𝜔1 − 휃 + 𝛼)
 

𝑙2 =
𝐻 cos(𝛼 − 𝛽)

cos 𝛽 sin 𝜔2
 

(3-5) 

By equating the rate of external work (3-2) and the rate of internal dissipation (3-4), the limiting 

force in the sliding layer 𝐸𝑙ℎ and the corresponding force acting on the retaining structure 𝐸𝑙ℎ𝑤 

can be related depending on the two variable angles of the slip lines 𝜔1 and 𝜔2: 

𝐸𝑙ℎ − 𝑋 ⋅ 𝐸𝑙ℎ𝑤 = (1 − 𝑋) ⋅ 𝑓(𝐻, 𝛾, 𝛼, 𝛽, 휃, 𝜑′, 𝑐′, 𝜔1, 𝜔2) (3-6) 

where 𝑋 = 𝑣3 𝑣1⁄  and 

𝑓 =
𝐻2𝛾

2
⋅

cos2(𝛼 − 𝛽)

cos2 𝛽
⋅

sin(𝜔2 − 𝛼 + 휃) sin(𝜔1 + 𝜔2)

sin2 𝜔2 sin(𝜔1 − 휃 + 𝛼)
 

⋅
sin(𝜑′ + 𝜔1 + 𝛼) 𝑠𝑖𝑛(𝜑′ + 𝜔2 − 𝛼)

𝑠𝑖𝑛(2𝜑′ + 𝜔1 + 𝜔2)
+

𝐻𝑐′ cos(𝛼 − 𝛽) cos(𝜑′)

cos 𝛽 sin(2𝜑′ + 𝜔1 + 𝜔2)
 

⋅ (
sin(𝜑′ + 𝜔1 + 𝛼)

sin 𝜔2
+

sin(𝜑′ + 𝜔2 − 𝛼) sin(𝜔2 + 휃 − 𝛼)

sin 𝜔2 sin(𝜔1 − 휃 + 𝛼)
) 

(3-7) 

The presented velocity field is only valid for 0 ≤ 𝑋 < 1 (𝑋 = 𝑣3 𝑣1⁄ ≥ 1 is anyway not relevant 

for constrained landslides). In order to quantify both forces 𝐸𝑙ℎ and 𝐸𝑙ℎ𝑤, equation (3-6) alone is 

not sufficient and additional considerations are required. One such consideration is that for 

0 < 𝑋 < 1, that is, in the case of a compliant retaining structure with 𝑣3 > 0, the shear resistance 

𝜑2
′  will be mobilised along the entire length of the slip surface, all the way down to the structure. 

Michalowski (1989) and later Drescher and Detournay (1993) demonstrated that if a translational 

kinematic mechanism forms a statically determinate problem, the limit equilibrium method 

applied to this mechanism should provide the same upper-bound solution as the work equation. 

When the shear resistance 𝜑2
′  is mobilised along the entire length of the slip surface (that is, also 

below Block 3 in Figure 3-4), the kinematic mechanism becomes statically determinate and the 

same upper-bound landslide pressure can also be found by formulating limit equilibrium of 

Blocks 1, 2 and 3 (Figure 3-5). It follows that because out of all the external forces acting on the 
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three blocks (𝐺1, 𝐺2, 𝐺3, 𝑅1, 𝑅3, 𝐸𝑙 , 𝐸𝑙𝑤) only the latter two have horizontal components, these 

two components have to be equal, 𝐸𝑙ℎ = 𝐸𝑙ℎ𝑤, to satisfy the equilibrium conditions. When 

substituted into equation (3-6), this relationship gives 

𝐸𝑙ℎ = 𝐸𝑙ℎ𝑤 = 𝑓(𝐻, 𝛾, 𝛼, 𝛽, 휃, 𝜑′, 𝑐′, 𝜔1, 𝜔2) (3-8) 

that is, the upper-bounds of the horizontal components of both landslide forces are equal and 

independent of X for any 0 < 𝑋 < 1. Note that the horizontal component of the landslide 

pressure acting on the wall is independent from the wall-soil interface friction angle 𝛿, unlike in 

the classical active and passive case. This results from the fact that the only external horizontal 

forces in the system are 𝐸𝑙ℎ and 𝐸𝑙ℎ𝑤. 

From the above considerations it follows that the special case of 𝑋 = 0, which corresponds to a 

rigid obstacle with 𝑣3 = 0, can also be described by equation (3-8), if this obstacle was installed 

after the landslide had moved sufficiently far to mobilize the shear resistance 𝜑2
′  along the entire 

length of the slip surface. If, however, the rigid obstacle existed before the landslide moved, the 

slip surface resistance in its vicinity will not be mobilized and equation (3-8) can only be used for 

calculating the landslide force in the sliding layer 𝐸𝑙ℎ, while the force on the obstacle 𝐸𝑙ℎ𝑤 > 𝐸𝑙ℎ 

remains undetermined. The effect of the not fully mobilized resistance 𝜑2
′  can be evaluated 

approximately by changing the angle of the force 𝑅3 in Figure 3-5. This evaluation is however 

not within the scope of the present chapter and discussed later in chapter 4.3. While for natural 

rock outcrops 𝐸𝑙ℎ𝑤 is of limited practical significance, for man-made structures it represents an 

 

Figure 3-5. Limit Equilibrium and corresponding force polygons. 
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important design factor. However, the fact that they will have to withstand higher pressures than 

the failure pressure in the sliding layer becomes a strong argument against the use of pre-installed 

rigid structures as a protection measure against future landslides. 

Finally, since in equation (3-2) the term 𝑣1𝐸𝑙ℎ is positive, the minimum work principle requires 

𝐸𝑙ℎ to be minimized with respect to the angles 𝜔1 and 𝜔2 of the slip discontinuities and 𝐸𝑙ℎ 

obtained from the work equation represents an upper-bound for the landslide force which is 

required to fail the landslide body in the vicinity of the obstacle. The question remains how good 

this upper-bound is; that is, how close it is to the exact solution. 

3.4.3 Lower-bound solution 

A lower-bound solution requires a statically admissible stress field; that is, a stress field which is 

in equilibrium internally, satisfies external stress boundary conditions and does not violate the 

failure criterion (e.g., Chen 1975). A statically admissible stress field in the present problem with 

arbitrary slope angle 휃, slip surface angle 𝛼, inclination of the retaining structure 𝛽 with 

frictional-cohesive material is difficult to find. Hence, only the specific case with 𝛼 = 휃 = 𝜑′2, 

𝛽 = 0, 𝑐´ = 0 is considered below, which corresponds to the particular case investigated by 

Muraro et al. (2015). 

The boundary between the sliding layer and the slip surface is introduced as a static discontinuity 

(that is, the normal 𝜎𝑛 and shear stresses 𝜏𝑛𝑡 are continuous but the tangential stress 𝜎𝑡 may be 

discontinuous). The plane strain equilibrium conditions (bearing in mind 𝜏𝑛𝑡 = 𝜏𝑡𝑛) lead to: 

𝜕𝜎𝑡

𝜕𝑡
+

𝜕𝜏𝑛𝑡

𝜕𝑛
− 𝛾 sin 𝛼 = 0 

𝜕𝜎𝑛

𝜕𝑛
+

𝜕𝜏𝑛𝑡

𝜕𝑡
− 𝛾 cos 𝛼 = 0 

(3-9) 

Assuming constant stresses in the sliding layer in the direction of the slip surface 𝜕𝜏𝑛𝑡/𝜕𝑡 =

𝜕𝜎𝑡/𝜕𝑡 = 0, integrating the equilibrium equations in the normal direction and transforming the 

normal coordinate 𝑛 = 𝑧 cos 𝛼 into the depth of the sliding layer 𝑧 yields 

𝜎𝑛 = 𝛾𝑧 cos2 𝛼 

𝜏𝑛𝑡 = 𝛾𝑧 sin 𝛼 cos 𝛼 
(3-10) 

which satisfy the boundary condition 𝜏𝑛𝑡 = 𝜎𝑛 tan 𝛼 on the slip surface (defined by 𝜑2
′ = 𝛼). 

The slip surface acts as a stress discontinuity and the stress state below the slip surface has to 

pass the stress point (𝜎𝑛, 𝜏𝑛𝑡) in Figure 3-6 (b) and must not violate the failure condition. 

Combined with the failure criterion for the soil in the sliding layer (Figure 3-6 (a)), equation (3-

10) allows definition of the stress field from the Mohr circle shown in Figure 3-6 (b). The large 

circle represents the stress state in the sliding layer and the small circle represents the stress state 

in the slip surface. Substituting the stress state defined by equations (3-10) into the equation of 

the Mohr circle gives 
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(𝜎𝑚 − 𝜎𝑛)2 + 𝜏𝑛𝑡
2 = 𝑟2 = 𝜎𝑚

2 sin2 𝜑′ (3-11) 

which can be resolved with respect to the mean stress 𝜎𝑚: 

𝜎𝑚 = 𝜎𝑛

1 ± √1 − cos2 𝜑′ (1 + tan2 𝛼)

cos2 𝜑′
. (3-12) 

The horizontal normal stress 𝜎𝑥 and the corresponding shear stress 𝜏𝑥𝑧 acting on a vertical plane 

are also related via the Mohr circle equation:  

(𝜎𝑥 − 𝜎𝑚)2 + 𝜏𝑥𝑧
2 = 𝑟2 = 𝜎𝑚

2 sin2 𝜑′ (3-13) 

Because on the slip surface 𝜑2
′ = 𝛼 and 𝜏𝑛𝑡 = 𝜎𝑛 tan 𝛼, the pole P of the Mohr circle in Figure 

3-6 (b) is located on the straight line with inclination 𝛼 passing through the origin, so that: 

𝜏𝑥𝑧 = 𝜎𝑥 tan 𝛼 (3-14) 

that is, the force 𝐸𝑙𝑤 acting on the vertical wall has the same inclination as the slope. 

Solving equation (3-13) and (3-14) results in the horizontal normal stress acting on a vertical 

plane 

𝜎𝑥 = 𝜎𝑚

1 ± √1 − cos2 𝜑′ (1 + tan2 𝛼)

1 + tan2 𝛼
 (3-15) 

where only the case with higher horizontal stress is of interest. The total force on the wall is 

found by substituting the mean stress from equation (3-12) into (3-15) and integrating this stress 

over the thickness of the sliding layer. A lower-bound for the landslide pressure coefficient 𝐾𝑙ℎ𝑤 

is then given by 

 

Figure 3-6. (a) Statically admissible stress field for slope parallel slip surface and vertical wall (b) Mohr 

circle of the stress state on the slip surface (small) and in the sliding layer (large circle). 
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𝐾𝑙ℎ𝑤 =
𝜎𝑥

𝛾𝑧
=

2𝐸𝑙ℎ𝑤

𝛾𝐻2
=

cos4 𝛼

cos2𝜑′
⋅ (1 + √1 − cos2𝜑′(1 + tan2𝛼))

2
 (3-16) 

Algebraically, this solution corresponds exactly to another lower-bound solution, which Rankine 

(1857) proposed for a rather different problem of the classical passive earth pressure in inclined 

planar ground (Figure 3-1 (b)). This is due to the fact that in both problems the same assumption 

(3-10) has been adopted for the planes parallel to the slope surface, although the implications of 

this assumption are very different for the two problems. Indeed, whereas in the Rankine passive 

pressure formulation (with homogeneous soil of strength 𝜑′) this assumption does not produce 

the true stress field, in the landslide pressure problem, the same assumption (3-10) allows for the 

true failure state to be achieved at the slope parallel slip surface with a lower strength 𝜑2
′ = 𝛼. It 

is, therefore, hardly surprising that for the problem it was originally supposed to solve (that is, the 

wall moving towards the soil), this Rankine lower-bound appeared to be only useful for special 

cases (e.g., 𝛼 = 0, 𝛿 = 0), providing in general values which are significantly below the exact 

solution. In particular for steep slopes, where the true passive earth pressures should increase 

with increasing slope inclination, the values given by this lower-bound solution decrease. A 

comparison of the Rankine passive pressure with other solutions for passive earth pressure is 

shown in Appendix 3-4. In contrast, as is shown in the following section, for the problem of 

landslide pressures this not optimal lower-bound from a different problem appears to provide the 

exact solution. 

 The exact solution 3.5

For the special case of 𝛼 = 휃 and 𝑐′ = 0, 𝛽 = 0, it can be shown that the above presented upper 

and lower-bound solutions become identical, providing the exact solution for the problem of the 

landslide pressure, as had been demonstrated by Kupper (1967) and Szczepinski (1972). Indeed, 

for this case the upper-bound solution (3-8) simplifies to: 

𝐸𝑙ℎ𝑤 =
𝐻2𝛾 cos2 𝛼

2
⋅

sin(𝜔1 + 𝜔2)

sin 𝜔2 sin 𝜔1
⋅

sin(𝜑′ + 𝜔1 + 𝛼) sin(𝜑′ + 𝜔2 − 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 (3-17) 

In order to find the lowest upper-bound, in general critical inclinations of the slip discontinuities 

𝜔1 and 𝜔2 in Figure 3-4 have to be found. Let us consider a case where these two inclinations 

are not independent and related via the same relationship 

𝜔1 + 𝜔2 =
𝜋

2
− 𝜑′ (3-18) 

as the inclinations of the failure planes in the lower-bound solution (see Mohr’s circle in Figure 

3-6 (b)).  
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This relation further simplifies the upper-bound solution to: 

𝐸𝑙ℎ𝑤 =
𝐻2𝛾 cos2 𝛼

2
⋅

sin(𝜔1 + 𝜑′ + 𝛼) cos(𝜔1 + 𝛼)

sin 𝜔1 cos(𝜔1 + 𝜑′)
 (3-19) 

Solving equation 𝑑𝐸𝑙ℎ𝑤(𝜔1)/𝑑𝜔1 = 0 with respect to 𝜔1 gives the critical inclination 

𝜔1 =
1

2
[arc cos(𝑡) − 𝜑′ − 𝛼] 

𝑡 =  −
sin 𝛼

sin 𝜑′
 

(3-20) 

providing the lowest upper-bound for the landslide force under assumption (3-18): 

𝐸𝑙ℎ𝑤 =
𝐻2𝛾 cos2 𝛼

2
⋅

sin(arccos(𝑡) + 𝛼) + sin(𝜑′)

sin(arccos(𝑡) − 𝛼) − sin(𝜑′)
 

=
𝐻2𝛾 cos4 𝛼

2cos2𝜑′
⋅ (1 + √1 − cos2𝜑′(1 + tan2𝛼))

2
 

(3-21) 

which is identical to the lower-bound solution (3-16), therefore, representing the rigorous exact 

solution of the landslide pressure problem for the particular case of 𝛼 = 휃 and a vertical retaining 

structure in cohesionless soil. This result is consistent with the findings of Muraro et al. (2015), 

who, based on the results of the finite element analysis of a particular case of the wall and slope 

geometry (using linear elastic - perfectly plastic constitutive model), found that the numerically 

calculated earth pressures were close to those obtained using Rankine’s solution for passive 

pressure. 

Assuming linear pressure distribution in the sliding layer, the exact landslide pressure 

coefficients 𝐾𝑙ℎ𝑤 for five different friction angles are plotted in Figure 3-7 as a function of the 

slope angle 𝛼, together with active and passive earth pressure coefficients for inclined planar 

ground and frictionless vertical wall (𝛿 = 𝛽 = 0), derived from Coulomb (1776) and Müller-

Breslau (1906) solutions. 

Although it is of little practical significance to calculate landslide pressures for very mild slope 

angles (only very few terrestrial landslides have slope angles below 15°), it is interesting to 

compare their theoretical pressure coefficients to the classical earth pressure theory. It appears 

that for the mildest (horizontal) slope, the landslide pressure coefficient is identical to that for the 

passive earth pressure, while for another extreme case, of the steepest (unstable) slope with 

𝛼 = 𝜑′, the landslide pressure is equal to the active earth pressure, given by 𝐾𝑎ℎ(𝜑′ = 𝛼) =

cos2 𝛼. However, as is seen in Figure 3-7, in between these two extreme cases there is a 

significant difference between the landslide pressure and both, the active and passive pressures. 

While passive pressure coefficients are overly conservative, using active pressure values as an 

estimate of the landslide pressure is in particular unsafe, since they predict decrease in the earth 
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pressure coefficients with increasing strength of the sliding layer 𝜑′, whereas the true landslide 

pressures are seen to increase with strength. 

It follows that the minimized upper-bound from equation (3-8) degenerates, in a particular case, 

to the known exact solution, providing some confidence for the application of this upper-bound 

to more general cases. It appears, however, that the application of the limit analysis solutions can 

also be extended to account for more realistic soil and wall conditions. 

 Extension of the solution to more general cases 3.6

In fact, the exact solution (3-21) derived for the special case of the vertical wall, with the 

limitations imposed on the flow rule and the wall-soil friction, can be extended to more general 

cases in cohesionless soil 𝑐′ = 0 and 𝛼 = 휃. Note that each extension is only valid for the whole 

range of corresponding parameters when it is considered individually. 

3.6.1 Extension to arbitrary wall friction 

Note, that while in the upper-bound solution (3-8) the horizontal component of the landslide 

force 𝐸𝑙ℎ𝑤 does not depend on the wall friction 𝛿, in the lower-bound solution the stress state at 

the vertical wall (3-14) results in the resultant force 𝐸𝑙𝑤 parallel to the slope. This implies that the 

wall-soil interface friction angle should be higher than the slope inclination (𝛿 ≥ 𝛼), limiting the 

applicability range of the exact solution (3-21). 

 

Figure 3-7. Earth pressure coefficients on retaining structures: solid lines correspond to the exact solution 

for the landslide pressure, plotted together with the active and the passive earth pressure coefficients for 
planar inclined ground and a smooth vertical wall, according to (Coulomb 1776) and (Müller-Breslau 1906) 
(dashed and dash- dotted lines, respectively. 
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3.6.2 Extension to arbitrary wall inclination 

The upper-bound solution for arbitrary wall inclination 𝛽 is given by equation (3-8). If it was 

possible to find a lower-bound solution, identical to equation (3-8), it would provide the exact 

solution for arbitrary wall inclination. From a stress field in Figure 3-8 it follows that the only 

horizontal components of stresses act on the wall with inclination 𝛽 (left) and the vertical cut 

(right). Hence, the horizontal force components 𝐸𝑙ℎ and 𝐸𝑙ℎ𝑤 have to be equal and the 

corresponding landslide pressure coefficients 𝐾𝑙ℎ(𝛽 = 0) and 𝐾𝑙ℎ𝑤(𝛽) are related via the squared 

ratio between the heights 𝐻 and 𝐻𝑧:  

𝐾𝑙ℎ𝑤(𝛽) =
𝐻𝑧

2

𝐻2
⋅ 𝐾𝑙ℎ𝑤(𝛽 = 0) (3-22) 

where:  

𝐻𝑧 = 𝐻 ⋅
cos(𝛼 − 𝛽)

cos 𝛼 cos 𝛽
 (3-23) 

It follows that the lower-bound landslide pressure coefficient 𝐾𝑙ℎ𝑤(𝛽) can be expressed using the 

lower-bound solution (3-16) for 𝐾𝑙ℎ(𝛽 = 0) in the case of the vertical wall. 

𝐾𝑙ℎ𝑤(𝛽) =
cos2(𝛼 − 𝛽)

cos2 𝛼 cos2 𝛽
⋅ 𝐾𝑙ℎ𝑤(𝛽 = 0) 

=
cos2(𝛼 − 𝛽)

cos2 𝛽
⋅

cos2 𝛼

cos2𝜑′
⋅ (1 + √1 − cos2𝜑′(1 + tan2𝛼))

2
 

(3-24) 

On the other hand, in the upper-bound solution (3-8) for 𝑐′ = 0, the wall inclination 𝛽 is only 

present inside the proportionality coefficient for the landslide force. Therefore, the optimal 

inclination of the slip lines 𝜔𝑖 is not affected by the wall inclination resulting in the same 

optimisation as in equations (3-17) - (3-21). The resulting upper-bound appears to be identical to 

the lower-bound given by equation (3-24), providing the exact solution for the case of 𝛽 ≠ 0. 

If a large inclination of the wall β is accompanied by a low wall-soil friction it is possible that the 

landslide pressure is different from the presented exact solution. In such a case it might be 

‘easier’ for the landslide body to fail directly on the soil-wall-interface. A limiting condition is 

shown after which the exact solution will not be valid anymore. The expression is derived by 

 

Figure 3-8. Extension of the lower-bound solution to arbitrary wall inclination β. 
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comparison of the landslide force of the exact solution (3-21) with a modified landslide force 

formulated using a mechanism involving the wall-soil interface as second slip discontinuity. 

𝐸𝑙ℎ = 𝑚𝑖𝑛{𝐸𝑙ℎ2, 𝐸𝑙ℎ1} 

𝐸𝑙ℎ2 =
𝐻2𝛾

2
⋅

cos(𝛼 − 𝛽) cos(𝛽 − 𝛿)

cos2 𝛽
 

 ⋅
sin(2 arc tan(𝛤) − 𝛼 + 𝛽) − sin(𝜑′ + 𝛽)

sin(𝜑′ + 𝛼 + 𝛿 − 𝛽) + sin(2 arc tan(𝛤) − 𝛿 + 𝛽)
 

𝐸𝑙ℎ1 =
𝐻2𝛾

2
⋅

cos2(𝛼 − 𝛽)

cos2 𝛽
⋅

cos2 𝛼

cos2𝜑′
⋅ (1 + √1 − cos2𝜑′(1 + tan2𝛼))

2
 

(3-25) 

With 

𝛤 =
−sin(𝜑′ + 𝛼) sin(𝛼 + 𝛿 − 2𝛽)

sin(𝛼 − 𝛿) − sin(𝜑′ + 𝛼) cos(𝛼 + 𝛿 − 2𝛽) − sin(𝜑′ + 𝛿)
 

+ (
sin2(𝜑′ + 𝛼) + 2 sin(𝜑′ + 𝛼) cos(𝛼 + 𝛿 − 2𝛽) sin(𝜑′ + 𝛿)

sin(𝛼 − 𝛿) − sin(𝜑′ + 𝛼) cos(𝛼 + 𝛿 − 2𝛽) − sin(𝜑′ + 𝛿)
 

+
(sin2(𝜑′ + 𝛿) − sin2(𝜑′ − 𝛿))

sin(𝛼 − 𝛿) − sin(𝜑′ + 𝛼) cos(𝛼 + 𝛿 − 2𝛽) − sin(𝜑′ + 𝛿)
)

(1/2) 

 

(3-26) 

For cases where the exact solution is not valid anymore, the modified landslide force 𝐸𝑙ℎ2 can be 

used as an upper-bound for the force acting on the retaining structure. 

3.6.3 Extension to arbitrary soil dilation 

In order to fulfil the conditions of limit theorems, the associated flow rule has been assumed, 

which for real soils is not a good approximation of the constitutive behaviour at failure, in 

particular, on the slip surface where a significant amount of shearing leads to the critical state 

condition. It is, however, very likely that the present problem is not affected by soil dilation 

significantly and that the proposed exact solution is also valid for a non-associated flow rule. One 

way to support this statement is to follow the general argument of Drescher and Detournay 

(1993) by using the fact that the same force values can also be calculated, without accounting for 

the flow rule, from the limit equilibrium analysis of the statically determinate, translational 

kinematic mechanism in Figure 3-5. Another argument is that the finite element parametric study 

by Muraro et al. (2015) has also shown practically no influence of dilation on the landslide 

pressures. Finally, in Appendix 3-1 it is demonstrated that for the assumption of linear slip 

discontinuities and the corresponding linear stress field, the non-associated solution is equivalent 

to the exact solution with the associated flow rule. 

3.6.4 Cases with variable thickness of the sliding layer and cohesive soils 

For 휃 > 𝛼 and 𝑐′ > 0 the presented upper-bound solution does not necessarily represent the exact 

solution. However, since the general upper-bound solution (3-8) overestimates the landslide 

pressures, it can still be used for the design of retaining structures. While this is a safe solution 

for the retaining structure, it is an unsafe solution if used as the limiting stabilisation force in a 
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slope stability calculation. For a fixed friction angle of 𝜑′=30°, Figure 3-9 shows the landslide 

earth pressure coefficient 𝐾𝑙ℎ𝑤 for sliding layers with (a) variable thickness (also see Table 3-2 in 

Appendix 3-3) and (b) cohesion. Compared to the special case of 𝛼 = 휃, the landslide pressure 

increases significantly with increasing slope surface angles 휃. Soil cohesion in the sliding layer is 

also seen to increase the landslide pressure coefficient. 

3.6.5 Accounting for ground water 

Planar landslides normally exhibit a slope parallel ground water flow (Figure 3-10 (a), case i). 

However, in the vicinity of the obstacle the flow may deviate from the slope parallel case, for 

example due to the drainage of the water at a retaining wall (Figure 3-10 (a), case ii). Since the 

permeability of the soil is often anisotropic and may be spatially variable, estimating the exact 

transient flow field in the vicinity of the obstacle may prove difficult. The real phreatic surface 

and the corresponding water pressures will often lie between the dry case (Figure 3-10 (a), case 

iii), and the case with slope parallel flow (Figure 3-10 (a), case i). Therefore, also the landslide 

pressures will lie between the dry and the slope parallel flow cases and provide practically 

applicable bounds for the design of retaining structures and the assessment of constrained 

landslides. For the dry case, the pressures are provided by the exact solution (3-21). For the slope 

parallel case, derivation of the upper and the lower-bound solutions is presented in Appendix 3-2. 

Note, that for the slope parallel case the presence of the ground water reduces the effective 

stresses and therefore the strength of the slip surface 𝜑2
′  has to be larger than its inclination to 

fulfil the condition of constant velocity of the sliding layer: 

tan 𝜑2
′ = tan 𝛼 ⋅

𝛾𝐻

𝛾𝐻 − 𝛾𝑤𝐻𝑤
 (3-27) 

 

Figure 3-9. (a) Influence of variable thickness of the sliding layer 휃 ≥ 𝛼 shown for the case of 𝜑′=30° in the 

upper-bound solution; (b) influence of the cohesion 𝑐′ for the case of 𝜑′=30° in the upper-bound solution. 
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In other words the landslide is only activated when the phreatic surface reaches the height 𝐻𝑤. 

The results of the upper and lower-bound limit analysis solutions from Appendix 3-2 are shown  

in Figure 3-10 (b) for the total normalised landslide force 𝐾𝑙ℎ,𝑡𝑜𝑡 = 2𝐸𝑙ℎ,𝑡𝑜𝑡/(𝐻2𝛾)  depending 

on the ratio 𝐻𝑤 𝐻⁄  for six different slope angles 𝛼. The two solutions are not anymore identical 

for the whole range of parameters and, therefore, they do not represent the exact solution. 

However, it can be concluded that the presence of water will always weaken the sliding body and 

the force needed to fail the soil in the vicinity of a constraining obstacle will always be smaller 

than the one of a landslide in dry condition. Therefore, the use of the presented exact solution for 

dry condition (3-21) represents a safe estimate for the design of a retaining structure. However, if 

used as the limiting stabilisation force in a slope stability calculation this solution is not safe, and 

a more complex lower-bound solution for the slope parallel flow should be used as a safe 

estimate. 

 Comparison with existing solutions 3.7

The problem of lateral landslide pressures was first studied by Haefeli (1944). He identified the 

special kinematical situation to which the classical active and passive pressure solutions are not 

applicable and tried to derive a solution for the landslide pressures using limit equilibrium. This 

solution is widely applied in the practice of geotechnical engineering in order to assess the 

landslide pressure acting on retaining structures. Brandl and Dalmatiner (1988) used Haefeli’s 

solution for the special case of a slope angle equal to the angle of internal friction 𝛼 = 𝜑′ and 

compared it to field observations. They found out that the landslide pressure depends on the 

stiffness of the retaining structure and compares well to the solution of Haefeli. Their findings are 

published in textbooks (Brandl 1987; Brandl 2001) and are frequently used in engineering 

practice. In this section these solutions and their assumptions are compared to the presented exact 

solution. 

 

Figure 3-10. (a) Schematic sketch of possible groundwater flow in a landslide: (i) slope parallel flow; (ii) 

drained flow; (iii) no groundwater in the sliding layer. (b) Normalised total horizontal landslide force acting 
on a vertical wall with slope parallel groundwater flow for 𝜑′ = 30° and 𝛾 = 20 kN/m

3
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Figure 3-11. Haefeli limit equilibrium solution (a) blocks with edge forces; (b) comparison to the exact 

solution. 

Haefeli (1944) assumed the failure mechanism shown in Figure 3-2 (a). A sliding layer on a rock 

surface was considered. Although the soil mass has to slide towards the retaining structure, no 

localised weak slip surface was introduced (it is not clear why the slide would occur if the 

strength of soil is higher than the slope angle). The solution is based on the formulation of limit 

equilibrium for Block 2 and Block 3 in Figure 3-11 (a), introducing some arbitrary assumptions: 

 The slip surface between Blocks 2 and 3 is fixed as horizontal, which does not allow the 

solution to be optimised. 

 On the vertical boundary of Block 2, inclination 𝜗 of the force 𝐷 is a free parameter, while 

the proper application of limit equilibrium would require failure on this slip surface, that is, 

𝜗 =  𝜑′. 

Equilibrium on Blocks 2 and 3 gives the following expression for the Haefeli landslide force 

acting on the retaining structure: 

𝐸𝑔 =
𝛾𝐻2

2
⋅

tan 휃

tan2 𝜒 cos 𝛿
⋅ (

1

cot 𝜑′ − tan 𝛿
+

1 +
tan 𝜒
tan 휃

tan 𝛿 + cot(𝜒 − 𝜑′)
) (3-28) 

The subscript 𝑔 is chosen according to the original publication by Haefeli (1944), it refers to the 

word ‘gleit’, german for ‘slide’. The force depends on the angle 𝜒 and has to be maximised with 

respect to 𝜒, which is constrained by the rock surface angle 𝜒 ≥ 𝛼. In the case of a slope parallel 

rock surface 휃 = 𝛼 with an inclination close to the angle of internal friction 𝜑′, the angle 𝜒 is 

usually taken equal 𝛼.  

In Figure 3-11 (b) Haefeli’s solution is shown for the case of slope parallel rock surface for three 

different wall-soil frictions 𝛿. For comparison, the horizontal component of the landslide force 

𝐸𝑔ℎ is normalised assuming a linear pressure distribution at the wall. In contrast to the exact 
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solution (3-21) from limit analysis, where the earth pressure drops significantly with increasing 

slope angle 𝛼, Haefeli’s solution is close to the active earth pressure at low slope angles and 

grows with increasing slope. Another difference is the significant influence of the wall friction 𝛿: 

while the exact solution is, at least within certain bounds (e.g., 𝛿 ≥ 𝛼 for 𝛽 = 0), independent of 

𝛿, the Haefeli solution at steep slope angles may vary by as much as 50%. Comparison with the 

exact solution shows that for realistic slope and friction angles in the sliding layer, of around 

𝛼 = 20° and 𝜑′ = 30°, respectively, Haefeli’s solution underestimates landslide pressures 

significantly and has to be treated with care.  

It is also seen in Figure 3-11 (b) that as the slope angles get closer to the friction angle, Haefeli’s 

solution approaches the exact one, but for the special case of a slope angle 𝛼 equal to the angle of 

internal friction 𝜑′, the landslide pressures of Haefeli’s solution can become significantly higher 

than those of the exact limit analysis solution. Although this case is rather hypothetical, because 

it implies that every single soil element in the sliding layer has reached the failure state (rarely 

the case in planar slides), for some reason Brandl and Dalmatiner (1988) have chosen this special 

case of Haefeli’s solution to compare to their field observations. This comparison is shown in 

Figure 3-2 (b), where the horizontal landslide pressure coefficient 𝐾𝑙ℎ𝑤 is normalised by the 

horizontal active earth pressure for a smooth wall 𝐾𝑎ℎ(𝛿 = 0) = cos2 𝛼. While the comparison 

looks rather favourable for Haefeli’s solution (subject of the correct guess of the inclination 𝜗), 

the same cannot, unfortunately, be said about the exact solution 𝑚 = 𝐾𝑙ℎ𝑤 𝐾𝑎ℎ⁄ = 1, which 

unlike Brandl’s observations and Haefeli’s solution does not exhibit in this special case any 

increase with increasing slope (and friction) angle.  

How is it possible that an approximate solution fits the field observations better than the exact 

solution derived within the framework of limit analysis? The most likely explanation of this 

paradox is the inaccuracy of the extreme 𝜑′ = 𝛼 assumption. In fact, by relaxing the 𝛼 = 𝜑′ 

constraint, a good fit of the exact solution to Brandl’s estimate for flexible structures (Figure 3-2 

(b)) can be achieved by the slight increase of 5-10% in friction angle of the sliding layer 𝜑′ over 

the slope angle 𝛼. This implies that the sliding most likely took place on a weak slope parallel 

slip surface, which seems to be more realistic than Brandl’s assumption of the global failure in 

the sliding layer. A more detailed analysis requires the exact knowledge of boundary conditions 

of every measured landslide, which at this stage is outside the scope of the presented work. 

 Examples 3.8

This section demonstrates the application of the derived solutions to two practical examples 

Figure 3-12: (a) Case 1 of a constrained creeping landslide with a slope parallel weak layer and 

(b) Case 2 of a retaining wall with a mildly inclined weak layer. 

3.8.1 Constrained creeping landslide with a slope parallel weak layer 

First a constrained creeping landslide with a slope parallel weak layer is investigated (Figure 3-12 

(a)). The thickness of the sliding layer is 20 m, which corresponds to a vertical height 

𝐻𝑧 = 21.3 m. At the bottom of the slope the landslide meets a rock outcrop. Due to this constraint 

the pressure in the sliding layer increases towards the toe and might at some point in time reach 

failure. Such a situation is common in mountainous areas and there are also cases where 

buildings are constructed on the landslide (e.g., Puzrin and Schmid 2012). For this particular case 
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the landslide pressure coefficient can be calculated using the exact solution (3-16) as 𝐾𝑙ℎ = 2.0, 

while the landslide pressure acting on the rock outcrop 𝐾𝑙ℎ𝑤 is higher and cannot be determined 

from the presented solutions. Note that the limiting landslide force acting in the sliding layer is 

independent from the inclination of the rock outcrop 𝛽 and can be calculated using the vertical 

height of the sliding layer 𝐻𝑧 = 21.3m: 

𝐸𝑙ℎ =
𝛾𝐻𝑧

2𝐾𝑙ℎ

2
= 9073 𝑘𝑁/𝑚 (3-29) 

The critical mechanism for this geometry is shown in Figure 3-12 (a). Its length measured in 

horizontal direction results to 77.6 m, which is significantly higher than the thickness of the 

sliding layer and can involve a significant amount of structures within the landslide compression 

zone, which could be more damaged by differential displacements than those located further 

uphill on the practically uniformly sliding layer. 

 

Figure 3-12. (a) Case 1: constrained creeping landslide; (b) Case 2: retaining wall for highway. (slope 

a: 휃 = 7°, slope b: 휃 = 20°) 

3.8.2 Retaining wall with a mildly inclined weak layer 

The second case is more exotic but certainly possible. It is chosen to show the influence of a 

mildly inclined weak layer, first in the case 2a with constant thickness of the sliding layer (Figure 

3-12 (b), slope a) and then in the case 2b with variable thickness of the sliding layer (Figure 3-12 

(b), slope b). A planned highway requires a retaining wall at the foot of a slope where a weak 

bentonite layer with an inclination of 𝛼 = 7° is located at the depth of 𝐻 = 10m, measured at the 

wall. The landslide can take place if the friction angle in the weak layer drops to the angle of the 

layer inclination 𝜑′2 = 𝛼 = 7°, which is close to the residual friction angle of a pure bentonite 

(e.g., Lupini et al. 1981; Maio and Fenellif 2015). The parameters of the sliding layer are taken 

the same as in case 1 above. 

In the case 2a of constant thickness of the sliding layer 휃 = 𝛼 = 7° (slope a), the exact solution 

can be used to calculate the landslide pressure and the corresponding force acting on the retaining 

wall. Due to the milder inclination of the weak layer, the landslide pressure coefficient 𝐾𝑙ℎ𝑤 = 2.9 

increases by 45% compared to case 1 and the resulting landslide force acting on the retaining 

wall becomes: 

𝐸𝑙ℎ𝑤 =
𝛾𝐻2𝐾𝑙ℎ𝑤

2
= 2867 𝑘𝑁/𝑚 

(3-30) 
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Higher strength of the sliding layer allows for steeper slope inclinations than those of the weak 

layer. To illustrate the effect of the variable thickness on the landslide pressure, case 2b with a 

slope inclination of 휃 = 20° (Figure 3-12 (b), slope b) has been investigated. The fact that 휃 ≠ 𝛼 

excludes the application of the exact solution and a possibly more conservative upper-bound 

solution (3-8) has to be used (Table 3-2 in Appendix 3-3). In this case due to the mild inclination 

of the slip surface the lowest landslide pressure coefficient calculated from the general upper-

bound solution (3-8) is 𝐾𝑙ℎ𝑤 = 5.4, which is significantly higher than the one in the case 2a with 

the slope parallel slip surface. The resulting total horizontal landslide force acting on the 

retaining wall is: 

𝐸𝑙ℎ𝑤 =
𝛾𝐻2𝐾𝑙ℎ𝑤

2
= 5394 𝑘𝑁/𝑚. (3-31) 

While this upper-bound result is conservative for the design of the retaining wall, it provides an 

insight into how enormous the landslide forces can become for variable thickness of the sliding 

layer with low inclination of the slip surface and emphasises a need for more detailed analysis. 

3.8.3 Comparison 

Comparison of the two case studies shows that there is a significant influence of the geometry on 

the landslide pressure coefficient. A low inclination of the weak slip surface increases the 

landslide pressure coefficient significantly, in particular with variable thickness of the sliding 

layer (see Table 3-1, also showing Haefeli’s solution and the active and passive coefficients 

according to Müller-Breslau 1906). This comparison reveals that in both cases Haefeli’s solution 

underestimates the earth pressures significantly. While for case 1 and case 2a the classical 

passive earth pressure is too high compared to the exact limit analysis solution it is quite close to 

the upper-bound solution for case 2b, at least when a frictionless wall is assumed. 

 

Table 3-1. Comparison of the horizontal earth pressure coefficients for the two case studies for different 

soil-wall frictions (note that the sign of the soil-wall friction angles 𝛿 corresponding to the kinematic 

conditions chosen, that is, negative for the passive case). 

Soil-wall 

friction  

angle 𝛿 

Exact solution Upper-bound 

휃 = 20° 

Haefeli 

휃 = 20° 

Active 

휃 = 20° 

Passive Case 1: Case 2: 

𝛼 = 휃
= 20° 

Slope a: 

𝛼 = 7°, 

휃 = 7° 

Slope b: 

𝛼 = 7°, 

휃 = 20° 

𝛿=0° 
2.0 2.9 5.4 

0.63 0.44 5.74 

𝛿=2/3𝜑′=20° 0.97 0.39 21.96 
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 Conclusions 3.9

The problem of the limiting landslide pressure on an obstacle was first formulated by Haefeli 

(1944), who recognised that the kinematics of the problem does not allow for classical active and 

passive earth pressure theories to be applied. He derived an approximate solution using a limiting 

equilibrium approach with a number of rather arbitrary assumptions and simplifications. Since 

then, the Haefeli solution has been widely applied for design and analysis of landslide retaining 

structures. 

This chapter revisits the old landslide pressure problem by means of a rigorous upper-bound limit 

analysis, which has been shown for a special case of a planar landslide to produce the known 

exact landslide pressure solution. The proposed approach also allows extending the limit analysis 

solutions to account for arbitrary wall friction and inclination, as well as the soil dilatancy and 

ground water effects, significantly broadening its field of application. Algebraically, this solution 

corresponds exactly to another lower-bound solution, which William Rankine proposed in 1857 

for a rather different problem of the classical passive earth pressure in inclined planar ground 

assumed to be homogeneous (that is, without a weaker slip surface). Ironically, while for the 

problem it was originally supposed to solve (that is, the wall moving towards the soil) this 

Rankine lower-bound did appear to be useful only for special cases (e.g., 𝛼 = 0), providing in 

general values significantly below the exact solution, for the problem of landslide pressures this 

suboptimal lower-bound from a different problem appears to provide the exact solution! This 

finding explains the ‘paradox’, why some numerical finite element solutions of this problem 

(e.g., Muraro et al. 2015) happen to be close to the Rankine solution. 

If the full shear resistance is mobilised along the entire length of the slip surface, all the way 

down to the obstacle, the exact solution allows for derivation of both the landslide pressure acting 

on the obstacle and the (identical to it) landslide failure pressure in the sliding layer. This 

condition is satisfied by all compliant retaining structures and by those rigid structures, which 

were installed after the initial landslide movement took place. If, however, the rigid obstacle 

existed before the landslide moves, the exact solution provides only the landslide failure pressure 

in the sliding layer, with the (higher) landslide force on the obstacle remaining undetermined. 

While for natural rock outcrops the latter force is of limited practical significance, for man-made 

rigid structures it represents an important design factor. However, the fact that they will have to 

withstand higher pressures than the failure pressure in the sliding layer becomes a strong 

argument against the use of such pre-installed rigid structures as a protection measure against 

future landslides. 

The landslide pressures from the exact limit analysis solution increase with the strength of the 

sliding layer and appear to be significantly higher than the classical active but much lower than 

the classical passive earth pressures. Of even higher practical importance is that due to their 

oversimplifying assumptions, the well-established approximate limit equilibrium solutions (e.g., 

Haefeli 1944; Brandl and Dalmatiner 1988) seem to get close to the exact limit analysis solution 

only over a very narrow range of slope and friction angles of the sliding layer. It follows that for 

mildly inclined weak slip surfaces and high strengths of the sliding layer, analysis and design of 

retaining structures based on these approximate solutions can become dramatically unsafe. 
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 Appendix 3-1: Influence of the flow rule 3.10

In case of non-associated flow the failure load will always be equal or lower than the one derived 

using associated flow (e.g., Chen 1975). To derive a solution using the non-associated flow rule 

the work dissipated along the slip discontinuities has to be calculated. In contrast to the 

associated flow this dissipation is non-zero even for purely frictional material. For this reason, in 

such a case both, a kinematically admissible velocity field and a corresponding statically 

admissible stress field have to be postulated (e.g., Drescher and Detournay 1993; Smith 2012). In 

the special case of slope parallel slip surface, the stress field from the lower-bound solution 

Figure 3-6 and the mechanism shown in Figure 3-13 are used to derive the limiting landslide 

pressure for the case of a non-associated flow in the sliding layer and a non-dilative flow on the 

slip surface. Consequently, Block 1 in Figure 3-13 (a) moves parallel to the slip surface and the 

hodograph changes (Figure 3-13 (b)), note that also the vertical component of the landslide force 

contributes to the rate of external work. 

 

Figure 3-13. (a) Upper-bound mechanism for non-associated flow in the sliding layer and non-dilatant flow 

on the slip surface (b) the corresponding hodograph 

From the hodograph in Figure 3-13 (b), using the constraint on the angles of the slip 

discontinuities 𝜔1 + 𝜔2 =
𝜋

2
− 𝜑′ the velocities are related by: 

𝑣2 =
𝑣1 sin(𝜔1 + 𝜓)

cos(2𝜓 − 𝜑)
 

𝑣12 =
𝑣1 cos(𝜔1 + 𝜑′ − 𝜓)

cos(2𝜓 − 𝜑)
 

𝑣2𝑣 =
𝑣1 sin(𝜔1 + 𝜓) cos(𝜔1 + 𝛼 + 𝜑′ − 𝜓)

cos(2𝜓 − 𝜑)
 

(3-32) 

and the lengths of the slip discontinuities are: 



3.10 Appendix 3-1: Influence of the flow rule 

 

 
42 

𝑙1 =
𝐻 cos 𝛼

sin 𝜔1
 

𝑙2 =
𝐻 cos 𝛼

cos(𝜔1 + 𝜑′)
 

𝑙𝑑 =
𝐻 cos(𝜔1 + 𝛼)

sin 𝜔1
 

(3-33) 

The rate of external work is calculated as: 

�̇�𝑒 =
𝑣1𝐸𝑙ℎ

cos 𝛼
+ 𝑣1 sin 𝛼 𝐺1 − 𝑣2𝑣𝐺2 (3-34) 

where 

𝐺1 = 𝐻𝛾 ⋅ (cos 𝛼 𝑙𝑖𝑛𝑓 +
𝐻 cos 𝛼 cos(𝜔1 + 𝛼)

2 sin 𝜔1
) 

𝐺2 =
𝐻2𝛾

2
⋅

cos2 𝛼 cos 𝜑′

cos(𝜔1 + 𝜑′) sin 𝜔2
 

(3-35) 

The rate of internal dissipation is calculated from the scalar product of the relative velocities and 

the resulting failure stress on the slip discontinuities in the sliding layer and the slip surface, 

respectively: 

�̇�𝑖 = (tan 𝜑′ cos 𝜓 − sin 𝜓) ⋅ (∫ 𝜎𝑓𝑣12𝑑𝑙
𝑙1

0

+ ∫ 𝜎𝑓𝑣2𝑑𝑙
𝑙2

0

) 

+𝜎𝑛,𝑠𝑠 tan 𝛼 𝑣1(𝑙𝑖𝑛𝑓 + 𝑙𝑑) 

(3-36) 

Since the normal stress acting on the slip discontinuities in the sliding layer 𝜎𝑓 is distributed 

linearly, the rate of internal dissipation simplifies to: 

�̇�𝑖 = 𝜎𝑓,𝑏(tan 𝜑′ cos 𝜓 − sin 𝜓) ⋅
(𝑣12𝑙1 + 𝑣2𝑙2)

2
+ 𝜎𝑛,𝑠𝑠 tan 𝛼 𝑣1(𝑙𝑖𝑛𝑓 + 𝑙𝑑) (3-37) 

Where 𝜎𝑓,𝑏 denotes the normal stress in the slip discontinuities at the bottom of the sliding layer 

and 𝜎𝑛,𝑠𝑠 is the normal stress acting on the slip surface. 

𝜎𝑓,𝑏 = 𝜎𝑚,𝑏 cos2 𝜑′ = 𝐻𝛾 cos2 𝛼 cos2 𝜑′ ⋅
1 + √1 − cos2 𝜑′ (1 + tan2 𝛼)

cos2 𝜑′
 

𝜎𝑛,𝑠𝑠 = 𝐻𝛾 cos2 𝛼 

(3-38) 

Equating the rates of external work and internal dissipation �̇�𝑒 = �̇�𝑖 and solving for the landslide 

force leads to the horizontal component of the landslide force: 
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𝐸𝑙ℎ =
cos 𝛼

𝑣1
⋅ [𝜎𝑓,𝑏(tan 𝜑′ cos 𝜓 − sin 𝜓) ⋅

(𝑣12𝑙1 + 𝑣2𝑙2)

2
 

+𝜎𝑛,𝑠𝑠 tan 𝛼 𝑣1(𝑙𝑖𝑛𝑓 + 𝑙𝑑) − 𝑣1 sin 𝛼 𝐺1 + 𝑣2𝑣𝐺2] 

(3-39) 

Since the dissipation rate along the infinite length of the landslide 𝑙𝑖𝑛𝑓 and the corresponding rate 

of external work of this part are equal, the landslide pressure is independent of this unknown 

landslide length. Inserting the stresses, velocities, weights and geometric parameters (equations 

(3-32)-(3-35)) and rearranging (3-39) leads to the same expression for the landslide force as the 

exact solution (3-21) derived assuming associated flow. 

 Appendix 3-2: Influence of groundwater 3.11

Consider a slope parallel (휃 = 𝛼) cohesionless (𝑐′ = 0) landslide with slope parallel groundwater 

flow and the total saturated soil unit weight equal to the total moist soil unit weight. It is assumed 

that the landslide is only activated when the phreatic level of the groundwater reaches a certain 

height 𝐻𝑤. In this case the strength of the slip surface is higher than the slope inclination and has 

to fulfil condition (3-27). 

The formulation of an upper-bound limit analysis solution follows the same procedure as without 

water, except that the work done against the pore water pressures caused by expansion of a body 

(due to dilatancy) as well as the work done by external water pressures has to be taken into 

account, e.g., Michalowski (1995). The assumed mechanism corresponds to the one without 

water and consists of two slip discontinuities, Figure 3-15 (a). For the sake of simplicity, block 3 

is assumed to remain rigid and at rest in front of the obstacle. The velocities 𝑣2𝑣, 𝑣12𝑢, 𝑣23𝑢 are 

derived from the hodograph, Figure 3-15 (b), and the water forces 𝑈12, 𝑈23 are calculated by 

integration of the water pressure along the slip discontinuities, Figure 3-15 (a).  

 

Figure 3-14. (a) Upper-bound mechanism with water; (b) corresponding hodograph 
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𝑣2𝑣 =
𝑣1 sin(𝜑′ + 𝜔1 + 𝜑2

′ ) sin(𝜑′ + 𝜔2 − 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣12𝑢 =
𝑣1 sin(𝜑′ + 𝜔2 − 𝜑2

′ ) sin 𝜑′

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣23𝑢 =
𝑣1 sin(𝜑′ + 𝜔1 + 𝜑2

′ ) sin 𝜑′

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑈12 =
𝐻𝑤

2𝛾𝑤

2

cos3 𝛼

sin 𝜔1
 

𝑈23 =
𝐻𝑤

2𝛾𝑤

2

cos3 𝛼

sin 𝜔2
 

(3-40) 

The weight of block 2, 𝐺2, is not affected by the water and remains as in equation (3-3). Note, 

that due to 𝜑2
′ ≥ 𝛼, block 1 does not move horizontally. However, because the work done by the 

infinite part of block 1 equals exactly the work done by the pore pressure on the slip surface, only 

the work done against the weight of the triangular block 𝐺𝑑 between the first slip discontinuity 

and the vertical dashed line in Figure 3-14 (a) as well as the corresponding pore pressure 𝑈d on 

the slip surface enters the equation for the landslide force. 

𝑈d =
𝐻𝛾𝑤𝐻𝑤 cos2 𝛼 cos(𝛼 + 𝜔1)

sin 𝜔1
 

𝐺d =
𝛾𝐻2

2

cos 𝛼 cos(𝛼 + 𝜔1)

sin 𝜔1
 

(3-41) 

The resulting total horizontal force required to fail the soil in the vicinity of the constraining 

obstacle is calculated from the work equation to: 

𝐸𝑙ℎ =
𝑣2𝑣𝐺2 + 𝑣1 sin(𝜑2

′ − 𝛼)𝐺d − 𝑣12𝑢𝑈12 − 𝑣23𝑢𝑈23 − 𝑣1𝑈d sin 𝜑2
′

𝑣1 cos 𝜑2
′ cos 𝛼 (3-42) 

Similar to the dry solution, it depends on the two unknown angles of the slip discontinuities 𝜔1 

and 𝜔2. The best upper-bound solution is again found by minimizing the total landslide force 𝐸𝑙ℎ. 

Since the equations are rather cumbersome, this minimisation is done numerically and the results 

for some special cases are shown in Figure 3-10 (b). 

A lower-bound limit analysis solution can be found by dividing the stress field in the landslide 

body into two regions. The upper region 1 is dry and the lower region 2 is wet, see Figure 3-

15 (a). In the dry part the solution (3-16) is still valid. In the wet part a stress field solution is 

derived below. 
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Figure 3-15. (a) Statically admissible stress field for slope parallel slip surface and vertical wall with water. 

(b) Mohr circle of the stress state in the wet layer (solid line: effective stress state; dashed line: total stress 
state). 

The equilibrium conditions for the effective stresses depend on the water pressure 𝑢 and lead to: 

𝜕𝜎𝑡
′

𝜕𝑡
+

𝜕𝜏𝑛𝑡

𝜕𝑛
− 𝛾 sin 𝛼 +

𝜕𝑢

𝜕𝑡
= 0 

𝜕𝜎𝑛
′

𝜕𝑛
+

𝜕𝜏𝑛𝑡

𝜕𝑡
− 𝛾 cos 𝛼 +

𝜕𝑢

𝜕𝑛
= 0 

(3-43) 

Where the water pressure is given by 

𝑢 = 𝛾𝑤 cos 𝛼 (𝑛 − (𝐻 − 𝐻𝑤) cos 𝛼) (3-44) 

Assuming constant stresses in the sliding layer in the direction of the slip surface 𝜕𝜏𝑛𝑡/𝜕𝑡 =

𝜕𝜎′𝑡/𝜕𝑡 = 0, integrating the equilibrium equations in the normal direction and transforming the 

normal coordinate 𝑛 = 𝑧 cos 𝛼 into the depth of the sliding layer 𝑧 yields 

𝜎𝑛
′ = cos2 𝛼 ((𝛾 − 𝛾𝑤)𝑧 + (𝐻 − 𝐻𝑤)𝛾𝑤) (3-45) 

Since for the total stresses the equilibrium conditions (3-9) are still valid, also their expression (3-

10) does not change. 

𝜎𝑛 = 𝛾𝑧 cos2 𝛼 

𝜏𝑛𝑡 = 𝛾𝑧 sin 𝛼 cos 𝛼 
(3-46) 

On the slip surface (𝑧 = 𝐻), the ratio 𝜏𝑛𝑡 𝜎𝑛
′⁄ = tan 𝛼

𝛾𝐻

𝛾𝐻−𝛾𝑤𝐻𝑤
 fulfils condition (3-27). 

Substitution of equations (3-45) and (3-46) into the Mohr circle of the effective stress state gives  

(𝜎𝑚
′ − 𝜎𝑛

′ )2 + 𝜏𝑛𝑡
2 = 𝑟2 = 𝜎𝑚

′ 2
sin2 𝜑′ (3-47) 
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which can be resolved with respect to the mean effective stress: 

𝜎𝑚
′ =

𝜎𝑛
′ ± √𝜎𝑛

′ 2
− cos2 𝜑′ (𝜎𝑛

′ 2
+ 𝜏𝑛𝑡

2)

cos2 𝜑′
. 

(3-48) 

The total horizontal normal stress 𝜎𝑥 and the corresponding shear stress 𝜏𝑥𝑧 acting on a vertical 

plane are also related via the Mohr circle equation:  

(𝜎𝑥 − 𝜎𝑚)2 + 𝜏𝑥𝑧
2 = 𝑟2 = 𝜎𝑚

′ 2
sin2 𝜑′ (3-49) 

Because the total stresses are still related by (3-14), the pole P of the Mohr circle describing the 

total stress state in Figure 3-16 (b) is located on the straight line with inclination 𝛼 passing 

through the origin. Solving equation (3-49), using equation (3-14), results in the total horizontal 

normal stress acting on a vertical plane 

𝜎𝑥 =
𝜎𝑚 ± √𝜎𝑚

2 − (1 + tan2 𝛼)(𝜎𝑚
2 − 𝜎𝑚

′ 2
sin2 𝜑′)

1 + tan2 𝛼
 

(3-50) 

Where the total mean stress is 𝜎𝑚 = 𝜎′𝑚 + 𝑢. The effective stress acting on a vertical plane is 

calculated from the total stress using 𝜎′𝑥 = 𝜎𝑥 − 𝑢. The total landslide force acting on a vertical 

plane is determined by integrating (3-50) over the thickness of the sliding layer. The resulting 

normalised total landslide forces are shown in Figure 3-10 (b) depending on the ratio 𝐻𝑤 𝐻⁄  for 

six slope inclinations 𝛼. 
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 Appendix 3-3: Variable thickness of the sliding layer 3.12

Table 3-2. Landslide pressure coefficients 𝐾𝑙ℎ for vertical walls (𝛽 = 0) in cohesionless soil (𝑐′=0), varying 

slope angle 휃, slip surface inclination 𝛼 and angle of internal friction in the sliding layer 𝜑′ (in general upper-

bound solution, values corresponding to the exact solution 𝛼 = 휃 marked in bold). 

𝜑′=20° 
 

      

α, ° 

θ, ° 

5.0 8.0 11.0 14.0 17.0 20.0 

5.0 1.98 2.27 2.56 2.85 3.15 3.47 

8.0   1.88 2.17 2.45 2.73 3.01 

11.0     1.75 2.03 2.29 2.55 

14.0       1.57 1.84 2.10 

17.0         1.33 1.63 

20.0           0.88 

       𝜑′=25° 
 

      

α, °  

θ, ° 

5.0 9.0 13.0 17.0 21.0 25.0 

5.0 2.40 2.93 3.47 4.06 4.71 5.42 

9.0   2.26 2.77 3.28 3.83 4.43 

13.0     2.05 2.53 3.00 3.50 

17.0       1.77 2.21 2.66 

21.0         1.43 1.87 

25.0           0.82 

       𝜑′=30° 
 

      

α, ° 

θ, ° 

5.0 10.0 15.0 20.0 25.0 30.0 

5.0 2.93 3.84 4.85 6.01 7.39 9.05 

10.0   2.73 3.59 4.52 5.58 6.82 

15.0     2.42 3.19 4.02 4.95 

20.0       2.00 2.69 3.39 

25.0         1.51 2.10 

30.0           0.75 

       𝜑′=35° 
 

      

α, ° 

θ, ° 

5.0 11.0 17.0 23.0 29.0 35.0 

5.0 3.61 5.16 7.02 9.38 12.45 16.54 

11.0   3.33 4.75 6.44 8.53 11.22 

17.0     2.86 4.12 5.55 7.32 

23.0       2.27 3.31 4.46 

29.0         1.59 2.41 

35.0           0.67 

       𝜑′=40° 
 

      

α, ° 

θ, ° 

5.0 12.0 19.0 26.0 33.0 40.0 

5.0 4.51 7.13 10.65 15.67 23.08 34.49 

12.0   4.10 6.48 9.60 13.95 20.26 

19.0     3.43 5.44 8.00 11.49 

26.0       2.58 4.15 6.08 

33.0         1.67 2.79 

40.0           0.59 
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 Appendix 3-4: Comparison of different solutions for passive earth 3.13

pressures 

In Figure 3-16 the landslide pressure solution for the special case of slope parallel slip surface 

and cohesionless soil, which coincides with the Rankine (1857) passive earth pressure solution, is 

compared to other solutions for the passive earth pressure. Additional to Rankine’s lower-bound 

the stress field solution of Lancellotta (2002), extended for sloping ground, and two upper-bound 

solutions of limit analysis (the wedge solution of Coulomb (1776) and the solution derived from 

a log-sandwich mechanism by Chen (1975)) are shown. The exact solution is bracketed by the 

lower-bound using the modified Lancellotta and the upper-bound using the log-sandwich 

mechanism and increases with increasing slope inclination. It is shown that Rankine’s solution is 

a very low lower-bound solution for passive earth pressure, which is a result of the assumption 

that the stress field does not change in slope parallel direction and requires the (mobilised) soil-

wall friction to be equal to the slope inclination. On the other hand this assumption is the reason 

why it provides the exact solution to the landslide pressure problem. 

 

Figure 3-16. Comparison of two upper and two lower-bound solutions for passive earth pressure acting on 

a vertical wall with 𝜑′ = 30° and soil-wall friction 𝛿 = 20°. 
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 Notation 3.15

𝑐′ cohesion of the sliding layer 

𝐷 force acting on the mechanism in Haefeli’s solution 
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�̇�𝑖 rate of internal dissipation 

𝐸𝑙 limiting landslide force in the sliding layer 

𝐸𝑙ℎ limiting landslide force in the sliding layer 

𝐸𝑙𝑤 limiting landslide force acting on the retaining structure 

𝐸𝑙ℎ𝑤 horizontal landslide force acting on the retaining structure 

𝐸𝑔 landslide force in Haefeli’s solution (Figure 3-2) 

𝐸𝑔ℎ horizontal landslide force in Haefeli’s solution 

𝐺 weight of block 1 in the Haefeli’s solution 

𝐺𝑖 weight of the blocks in the upper-bound solution 

𝐻 vertical height of the retaining structure above the slip surface 

𝐻𝑧 vertical height of the sliding layer 

𝐻𝑤 vertical height of the water table in the sliding layer 

𝐾𝑙 landslide pressure coefficient 

𝐾𝑙ℎ horizontal landslide pressure coefficient 

𝑙𝑖 length of the slip discontinuity 

𝑚 ratio of the landslide pressure and the active earth pressure coefficients 𝑚 = 𝐾𝑙ℎ 𝐾𝑎ℎ⁄  

𝑅𝑖 resulting frictional resistance force 

𝑆𝑖 cohesive resistant force 

𝑉 weight of block 2 in Haefeli’s solution 

𝑣𝑖 virtual velocity 

�̇�𝑒 rate of external work 

𝑋 ratio 𝑣3 𝑣1⁄  

𝛼 inclination of slip surface 

𝛽 inclination of the retaining structure 

𝛾 unit weight of soil 

𝛾𝑤 unit weight of water 

𝛿 soil-wall interface friction angle (≠ 𝛿𝑚𝑜𝑏) 

𝜓 dilation angle in the sliding layer 

휃 inclination of slope surface 

𝜗 inclination of the force 𝐷 in Haefeli’s solution 

𝜑′ angle of internal friction in the sliding layer 

𝜑2
′  angle of internal friction in the slip surface 

𝜎𝑖 total normal stress 

𝜎𝑖
′ effective normal stress 

𝜏𝑖𝑗 shear stress 

𝜒 inclination of the slip discontinuity in Haefeli’s solution 

𝜔𝑖 angle of the slip discontinuity, in the upper-bound solution the following constraints 

have to be fulfilled: 𝜋 − 𝜔2 − 2𝜑 > 𝜔1 > 𝑚𝑎𝑥{0, 휃 − 𝛼} and 

0 < 𝜔2 < 𝑚𝑎𝑥 {
𝜋

2
− 𝛽 + 𝛼,

𝜋

2
− 𝜑′ + 𝛼}, 

the lower-bound solution constrains the two angles by 𝜔1 + 𝜔2 = 𝜋/2 − 𝜑′. 
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 Selected applications of the landslide pressure 4

 Abstract 4.1

In chapter 3 the limiting earth pressure acting on a retaining structure in a landslide was derived 

using upper- and lower-bound limit analysis (Friedli et al. 2017). The formulation of these limit 

states required simplifying assumptions on the geometry and the strength of the slip surface, the 

mobilisation of the friction along the slip surface as well as the embedment of the retaining 

structure. These assumptions seem, from a practical point of view, a bit restrictive. In this chapter 

an attempt is made to extend the application of the landslide pressure to some selected boundary 

conditions deviating from the considered ones in chapter 3. First, the restriction of the equality of 

inclination and strength of the slip surface is released and the corresponding landslide force is 

evaluated using upper-bound limit analysis and discussed with respect to the special case shown 

in chapter 3. It is shown that a difference between inclination and strength of the slip surface has 

an effect on the landslide pressure and that the pressure, in contrast to the solution in chapter 3, 

depends on the wall-friction. Next, the influence of a not fully mobilised friction along the slip 

surface in the vicinity of the retaining structure is investigated and discussed. It is shown that if 

the slip surface is not fully mobilised the pressures acting on the retaining structure can be 

significantly higher compared to the fully mobilised case. Finally, the case of a structure which 

does not reach down to the slip surface but is horizontally pinned is studied using upper-bound 

limit analysis. It is shown that depending on the embedment of the structure either a classical 

passive earth pressure mechanism or the landslide pressure mechanism shown in chapter 3 will 

form. The switchover condition between the two mechanisms is shown and discussed. 
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 Arbitrary inclination and strength of the slip surface 4.2

4.2.1 Introduction 

The landslide pressure solution, presented in chapter 3, (Friedli et al. 2017), is derived for the 

special case of a landslide which is exactly at the edge of stability (that is, the friction angle of the 

slip surface 𝜑2
′  is assumed to be equal to the inclination of the slip surface 𝛼). This 

simplification, which is representative for many landslides, allows the derivation of the exact 

solution of limit analysis for the landslide pressure in cohesionless material with slope parallel 

slip surface and upper-bound solutions for more general cases. Further, it could be shown that in 

this special case the landslide pressure acting on a retaining structure is independent of the wall-

friction. In reality, however, cases exist where a retaining structure is placed in a steep or a flat 

section of a landslide, where the simplifying condition of 𝜑2
′ = 𝛼 does not hold anymore. In this 

section the influence of arbitrary inclination and strength of the slip surface is investigated using 

upper-bound limit analysis. 

4.2.2 Problem formulation 

Consider a landslide consisting of a cohesionless sliding layer with the total unit weight 𝛾 and the 

angle of internal friction 𝜑′ moving on a weak slip surface with angle of internal friction 𝜑2
′ . The 

slope surface has an arbitrary geometry and so does the weak slip surface (Figure 4-1). If the 

landslide is permanently moving the overall safety factor has to be close to 1 (that is, the driving 

gravity forces are close to the resistance along the weak slip surface). For a potential structure at 

location 1 in Figure 4-1 the assumption of constant friction along the weak slip surface leads to 

conditions with higher inclination of the slip surface, 𝛼1 compared to 𝜑2
′ . In contrast, for a 

potential structure at location 2 the inclination of the slip surface 𝛼2 is lower than 𝜑2
′ . 

It is assumed that the landslide is sufficiently long above the potential structure for the difference 

between the driving and the resisting forces to bring the sliding layer to failure in the vicinity of 

the structure. The water table is assumed to be below the slip surface, therefore only dry 

conditions are considered. In this section only vertical structures are investigated. 

 

Figure 4-1. Problem formulation: schematic landslide with arbitrary geometry and strength of the slip 

surface with potential structures at different locations along the slope. 
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4.2.3 Upper-bound solution for the landslide force 

Similar to the landslide pressure solution (Friedli et al. 2017) a kinematically admissible 

translational mechanism is proposed where the velocity field satisfies the velocity boundary 

conditions as well as the strain rate compatibility conditions. According to the upper-bound 

theorem (e.g., Chen 1975) the landslide force required to fail such a mechanism will always be 

larger than the true failure force in the sliding layer. The mechanism consists of three rigid blocks 

(Figure 4-2 (a)) which are bounded by slip discontinuities with the angles 𝜔1 and 𝜔2. In contrast 

to the mechanism in shown in chapter 3 (Friedli et al. 2017), in case of 𝜑2
′ ≠ 𝛼 the weight of 

block 1 contributes to the external work. As only the landslide force required to fail the sliding 

layer is of interest the length of block 1 is limited to an infinitely small value 𝑑𝑙 → 0. Therefore 

the weight of block 1 vanishes and only the landslide force 𝐸𝑙 contributes to the external work. 

Note that with the simplification, 𝜑2
′ = 𝛼, in chapter 3 (Friedli et al. 2017) the weight of block 1 

also does not contribute to the external work due to the velocity being horizontal which is caused 

by the associated flow on the slip surface. According to the associated flow rule the velocity 

vector of block 1 is inclined to the slip surface by the friction angle 𝜑2
′ , block 2 moves upwards 

with the velocity 𝑣2 according to the hodograph in Figure 4-2 (b) and block 3 including the 

retaining structure is assumed to be at rest, 𝑣3 = 0. 

The relations between the velocities of blocks 1 and 2 are shown in the hodograph in Figure 4-2 

(b). For the formulation of the work equation the component of the velocity of block 1 in the 

direction of the landslide force (which is inclined by 𝜉 to the inclination of the slip surface),  

𝑣1𝜉, and the vertical component of the velocity of block 2, 𝑣2𝑣, are of interest. 

  

 

Figure 4-2. (a) Upper-bound mechanism and (b) corresponding hodograph. 
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The relations of the velocities of blocks 1 and 2 read 

𝑣2 = 𝑣1

sin(𝜑′ + 𝜑2
′ + 𝜔1)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣2𝑣 = 𝑣1

sin(𝜑′ + 𝜑2
′ + 𝜔1) sin(𝜑′ + 𝜔2 − 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

𝑣1𝜉 = 𝑣1 cos(𝜑2
′ + 𝜉) 

(4-1) 

As the soil friction has to be mobilised along the slip discontinuities the inclination of the 

landslide force has to fulfil the following condition. 

𝜉 = 𝜔1 + 𝜑′ −
𝜋

2
 (4-2) 

As cohesionless material is considered the dissipation is zero and the work equation reads: 

�̇�𝑒 = �̇�𝑖 = 𝑣1𝜉𝐸𝑙 − 𝑣2𝑣𝐺2 = 0 (4-3) 

with the weight of block 2 

𝐺2 =
𝐻2𝛾

2
⋅

cos2 𝛼 sin(𝜔2 − 𝛼 + 휃) sin(𝜔1 + 𝜔2)

sin2𝜔2 sin(𝜔1 + 𝛼 − 휃)
  (4-4) 

Solving the work equation for the landslide force leads to: 

𝐸𝑙 =
𝐻2𝛾

2
⋅

sin(𝜑′ + 𝜑2
′ + 𝜔1) sin(𝜑′ + 𝜔2 − 𝛼)

sin(2𝜑′ + 𝜔1 + 𝜔2) sin(𝜑′ + 𝜔1 + 𝜑2
′ )

 

⋅
cos2 𝛼 sin(𝜔2 − 𝛼 + 휃) sin(𝜔1 + 𝜔2)

sin2𝜔2 sin(𝜔1 + 𝛼 − 휃)
  

(4-5) 

which depends on the two a priori not known angles of the velocity discontinuities 𝜔1 and 𝜔2. 

The lowest upper-bound solution is found by optimising (4-5) with respect to these angles. The 

optimisation is done numerically and the results are shown and discussed later in the results 

section. 

 

Figure 4-3. Limit equilibrium on the landslide pressure mechanism. 
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4.2.4 Force acting on the wall 

From the upper-bound considerations only the landslide force acting in the sliding layer above 

the mechanism is evaluated. As block 3 is assumed to be at rest the force acting on the retaining 

structure cannot be defined from the work equation. As for translational mechanisms which are 

statically determinate (that is, all the forces acting can be calculated from the equilibrium 

conditions and the failure criterion) the limit equilibrium method provides a solution which is 

equivalent to an upper-bound limit analysis solution (e.g., Michalowski 1989; Drescher and 

Detournay 1993), the evaluation of this force is done using limit equilibrium under the 

assumption that the friction on the slip surface is mobilised all the way down to the retaining 

structure. As shown in chapter 3 (Friedli et al. 2017) this is the case for compliant structures. The 

limit equilibrium on blocks 1, 2 and 3 and the corresponding force polygons are shown in Figure 

4-3. The landslide force acting on the wall reads 

𝐸𝑙𝑤 =
𝐺3 tan(𝜑2

′ − 𝛼) + 𝑅23[cos(𝜑′ + 𝜔2 − 𝛼) tan(𝜑2
′ − 𝛼) − sin(𝜑′ + 𝜔2 − 𝛼)]

sin 𝛿 tan(𝜑2
′ − 𝛼) − cos 𝛿

  (4-6) 

with 

𝑅23 =
𝐸𝑙 sin(𝜔1 + 𝜑′ + 𝛼)

sin (𝜔2 + 𝜑′ − α)
  

𝐺3 =
𝐻2𝛾

2
⋅

cos 𝛼 cos(𝜔2 + 𝛼)

sin 𝜔2
 

(4-7) 

Note that the landslide force acting on the wall depends on the wall friction angle 𝛿, unlike in the 

special case discussed in chapter 3, (Friedli et al. 2017). 

 

Figure 4-4. Landslide pressure coefficient depending on the friction angle on the slip surface, 𝜑2
′ , for four 

different angles of internal friction in the sliding layer, 𝜑′, at a slope inclination of 𝛼 = 휃 = 20° and wall 

friction of 𝛿 = 20°. 
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4.2.5 Results 

The results of the landslide pressure calculations are presented in a normalised form, which 

corresponds to the assumption of a linear stress distribution at the wall. The horizontal landslide 

pressure coefficient acting on the wall is defined as: 

𝐾𝑙ℎ𝑤 =
2𝐸𝑙𝑤 cos 𝛿

𝛾𝐻2
  (4-8) 

The minimisation of the landslide force (4-5) with respect to the angles 𝜔1 and 𝜔2 is done 

numerically with a constrained nonlinear optimisation. 

In Figure 4-4 the horizontal landslide pressure coefficient 𝐾𝑙ℎ𝑤 is shown depending on the 

friction angle of the slip surface, 𝜑2
′ , for a case with slope parallel slip surface, 𝛼 = 휃 = 20° and 

wall-friction angle 𝛿 = 20° and four different angles of internal friction of the sliding layer, 𝜑′. 

The landslide pressure acting on the retaining structure increases significantly with a reduction of 

𝜑2
′  . For the investigated angles of internal friction in the sliding layer the influence of 𝜑2

′  is 

comparable (that is, the slope of the curves is similar). 

As already shown in equation (4-6) the force acting on the retaining structure depends on the 

(mobilised) wall-friction 𝛿. This influence is shown in Figure 4-5 (a) for a case with 𝜑′ = 30° 

and a slope parallel slip surface with inclination 𝛼 = 휃 = 20°. The influence of the wall-friction 

on the landslide pressure depends on the difference between the inclination of the slip surface, 𝛼, 

and the friction angle on the slip surface, 𝜑2
′ . While in cases where 𝜑2

′ < 𝛼 higher wall-friction 

leads to lower pressures, in cases where 𝜑2
′ > 𝛼 the wall-friction has the opposite effect. Note 

that with 𝜑2
′ = 𝛼, as shown in chapter 3, the landslide pressure acting on the retaining structure is 

independent from the wall-friction. 

 

Figure 4-5. (a) Landslide pressure coefficient depending on the friction angle on the slip surface, 𝜑2
′ , for four 

different 𝛿 with 𝛼 = 휃 = 20° and 𝜑′ = 30°; (b) Landslide pressure coefficient depending on the slope 

inclination, 𝛼 = 휃, for six different friction angles on the slip surface, 𝜑2
′ , with 𝜑′ = 30° and 𝛿 = 20°, for 

comparison the special case of 𝜑2
′ = 𝛼 is also shown (dashed line). 
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The influence of the slope inclination on the landslide pressure at different friction angles of the 

slip surface is illustrated in Figure 4-5 (b) for a case with 𝜑′ = 30° and 𝛿 = 20°. In contrast to 

the solution with 𝜑2
′ = 𝛼 (dashed line in Figure 4-5 (b)) the pressure generally increases with 

increasing slope inclination. However, at low slope inclinations the pressure first increases only 

slowly with increasing slope but as it approaches the angle of internal friction in the sliding layer 

the pressures increase strongly, for cases with lower friction on the slip surface 𝜑2
′ . In such cases, 

where 𝛼 is close to 𝜑′, the optimised angle 𝜔2 tends towards zero (can be shown by inserting 

𝛼 = 𝜑′ in equations (3-18) and (3-20)) and block 3 becomes very large which increases 

resistance force on the slip surface (𝑅3 in Figure 4-3). Due to the small 𝜑2
′  with respect to 𝛼 this 

force has a downhill component and leads to additional loads on the retaining structure. Except 

for these extreme cases the landslide pressure deviates only little from the solution with 𝜑2
′ = 𝛼 

for the investigated friction angles on the slip surface 𝜑2
′ . 

4.2.6 Discussion 

In cases where 𝜑2
′ < 𝛼 and in particular when 𝛼 is close to 𝜑′ the landslide pressure acting on a 

retaining structure can be significantly higher compared to the solution of the special case shown 

in chapter 3. The presented solution is an upper-bound for the force acting on the structure. It is 

therefore possible that the high values for 𝛼 → 𝜑′ are overly conservative for the design of the 

structure. In contrast to the solution shown in chapter 3, where 𝜑2
′ = 𝛼, with 𝜑2

′ ≠ 𝛼 the 

landslide pressure acting on the retaining structure depends on the wall-friction 𝛿. However, the 

influence of the wall-friction on the landslide pressure is limited and depends on the value of 𝜑2
′  

with respect to 𝛼. As the case of 𝜑2
′ < 𝛼 is usually closer to the top end of a landslide it is 

possible that the difference between the driving gravity forces of the sliding layer and the 

resistance on the slip surface are not sufficient to bring the whole sliding layer to failure. In this 

case the load acting on the retaining structure is limited by this difference and will therefore be 

lower than the presented values resulting from upper-bound limit state considerations. 

The case with 𝜑2
′ > 𝛼 is not possible in a landslide with slope parallel slip surface. In this case 

the force in the sliding layer decreases in downslope of the point where 𝜑2
′ = 𝛼. Therefore, if the 

force is sufficiently high, the sliding layer will fail at this point and not in the vicinity of the 

structure. In this case the landslide pressure at the point where 𝜑2
′ = 𝛼 can be used as a safe 

estimate for the load acting on the structure. A further reduction of the force in the sliding layer 

towards the structure is possible due to the higher 𝜑2
′  compared to 𝛼. If, however, the thickness 

of the sliding layer reduces from the point where 𝜑2
′ = 𝛼 towards the structure, the overall 

resistance of the sliding layer reduces and it is still possible to reach the limit state in the vicinity 

of the structure or somewhere in between. 

The calculation of the landslide pressure acting on the wall in case of 𝜑2
′ > 𝛼 requires therefore 

accurate knowledge of the geometry of the landslide and its strength parameters to determine the 

point where the sliding layer will reach the limit state first. Furthermore, as the sliding layer will 

most probably not reach a failure state anymore in the vicinity of the structure, the pressures 

cannot be derived from the evaluation of a limit state of soil failure and the complete elastic-

plastic loading history has to be accounted for. As the derived values are upper-bound solutions 

they still represent a safe estimate for the design of the retaining structure but they might be 

overly conservative. 



 Chapter 4: Selected application of the landslide pressure 

 

 
59 

 Not fully mobilised slip surface close to the structure 4.3

4.3.1 Introduction 

For the investigation of the landslide pressure in chapter 3 (Friedli et al. 2017) a three block 

translational mechanism was assumed. As at the limit state of perfectly plastic soil failure the 

force acting on the retaining structure does not change anymore, the velocity of the structure and 

the adjacent block 3 vanish. Therefore the force acting on the retaining structure does not 

contribute to the work equation and cannot be calculated. It was shown that the force acting on 

the retaining structure 𝐸𝑙𝑤 can be determined using the assumption of a fully mobilised friction 

on the slip surface under block 3 and the limit equilibrium method. This assumption is fulfilled 

for compliant structures which allow sufficient mobilisation movement before the sliding layer 

reaches failure. However, in general cases this does not have to hold. In this section an attempt is 

made to quantify the effects of a not fully mobilised slip surface under block 3. 

4.3.2 Problem formulation 

The problem formulation follows in general chapter 3 and is restated here briefly. The sliding 

layer with surface inclination 휃 and the total unit weight 𝛾 moves downslope on a weak slip 

surface inclined by the angle 𝛼. The friction angle on the slip surface equals its inclination, 

𝜑2
′ = 𝛼. The landslide is constrained by a retaining structure with the height 𝐻, the inclination 𝛽 

to the vertical and a wall-soil interface friction angle 𝛿. Underneath block 3 only a part of the 

friction is mobilised 𝜑2,𝑚𝑜𝑏
′ < 𝜑2

′ . If the retaining structure moved upslope (for example by very 

large pre-stressing forces from anchors) the mobilised friction under block 3 may even change its 

sign. This possibility is also investigated. 

 

 

Figure 4-6. Problem formulation: landslide with retaining structure and not fully mobilised slip surface close 

to the structure underneath block 3. 
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4.3.3 Limit equilibrium solution 

The landslide force acting in the sliding layer, 𝐸𝑙, is not altered by the not fully mobilised slip 

surface under block 3. Therefore the landslide force acting on the structure with a not fully 

mobilised slip surface under block 3 can be calculated from limit equilibrium on block 3 with the 

force polygon shown in Figure 4-7 to: 

𝐸𝑙𝑤 =
𝑅23(cos(𝜑′ + 𝜔2 − 𝛼) tan(𝛼 − 𝜑2,𝑚𝑜𝑏

′ ) + sin(𝜑′ + 𝜔2 − 𝛼)) + 𝐺3 tan(𝛼 − 𝜑2,𝑚𝑜𝑏
′ )

sin(𝛿 + 𝛽) tan(𝛼 − 𝜑2,𝑚𝑜𝑏
′ ) + cos(𝛿 + 𝛽)

 

+
𝑆𝑐′2(cos(𝜔2 − 𝛼) − sin(𝜔2 − 𝛼) tan(𝛼 − 𝜑2,𝑚𝑜𝑏

′ ))

sin(𝛿 + 𝛽) tan(𝛼 − 𝜑2,𝑚𝑜𝑏
′ ) + cos(𝛿 + 𝛽)

  

(4-9) 

With 

𝑅23 =
𝐸𝑙ℎ − 𝑆𝑐′2 cos(𝜔2 − 𝛼)

sin(𝜑′ + 𝜔2 − 𝛼)
  

𝑆𝑐′2 = 𝑙2𝑐′ =
𝐻 cos(𝛼 − 𝛽)

cos 𝛽 sin 𝜔2
𝑐′ 

𝐺3 =
𝐻2𝛾

2
⋅

cos(𝛼 − 𝛽 − 𝜔2)

cos 𝛽
 

(4-10) 

𝐸𝑙ℎ is the horizontal component of the landslide force acting in the sliding layer which is 

independent from the mobilised friction under block 3. Under the assumption of 𝜑2
′ = 𝛼 along 

the slip surface of the landslide, this force is calculated following equations (3-7) and (3-8) in 

chapter 3 which simplifies to the exact solution shown in equation (3-21) in case of a slope 

parallel slip surface, cohesionless sliding layer and vertical wall. In this case the optimised angle 

𝜔2 according to equations (3-18) and (3-20) can be used. For cases with 𝜑2
′ ≠ 𝛼 and 

cohesionless sliding layer the horizontal component of the force 𝐸𝑙 in equation (4-5) can be used 

and 𝜔2 has to be optimised numerically. Note that similar to cases with 𝜑2
′ ≠ 𝛼, discussed 

previously in section 4.2, the landslide force acting on the retaining structure depends on the wall 

friction angle 𝛿 if the slip surface is not fully mobilised under block 3. 

 

Figure 4-7. Limit equilibrium on block 3 and corresponding force polygon. 
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4.3.4 Results 

Only the special case with 𝜑2
′ = 𝛼 on the slip surface underneath block 1 and not fully mobilised 

slip surface, 𝜑2,𝑚𝑜𝑏
′  underneath block 3 with cohesionless sliding layer and a vertical, frictionless 

wall is evaluated numerically. The results are presented in normalised form according to equation 

(4-8). The horizontal landslide pressure coefficient increases significantly with a reduction of the 

mobilised friction angle on the slip surface from the special case investigated in chapter 3 (dots in 

Figure 4-8). 

 

Figure 4-8. Horizontal landslide pressure coefficient depending on the mobilised friction angle on the slip 

surface underneath block 3 for the case of 𝛼 = 휃 with 𝜑′ = 30° and 𝛿 = 0°. 

4.3.5 Discussion 

The results of the limit equilibrium calculations show that the pressures acting on the structure 

can be significantly higher if the slip surface is not fully mobilised in the vicinity of the retaining 

structure. For a retaining structure which is installed in an already active permanently moving 

landslide it is, however, hardly possible that the slip surface underneath block 3 is not fully 

mobilised. This is only possible if a very stiff structure was installed before the landslide had 

moved and the movement started either due to increase of porewater pressure or softening of the 

slip surface material. However, as already stated in chapter 3, regarding the earth pressures a 

structure has to withstand, this is an argument for compliant retaining structures in landslides 

(that is, structure which displace slightly during loading). On the other hand to keep the landslide 

displacements small it would be favourable to install very stiff structures. 
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 Fixed structure not fully embedded in the sliding layer 4.4

4.4.1 Introduction 

The landslide pressure solution was derived for structures founded below the weak slip surface of 

a landslide. In this case the structure stabilises a wedge of the landslide adjacent to the structure 

above which the mechanism forms and the whole sliding layer fails. If, however, the structure 

does not reach all the way down to the slip surface but is horizontally pinned (for example a 

bridge foundation where the bridge girder forms the stabilisation or a structure which is anchored 

below the slip surface into stable ground) it is possible that not the whole sliding layer fails. In 

this case a part of the sliding layer will keep moving underneath the retaining structure. This 

problem was already discussed by Haefeli (1944) who suggested that for structures not reaching 

down to the slip surface a passive earth pressure mechanism is formed. Haefeli argued with a 

Coulomb wedge forming adjacent to the structure but did not compare the passive earth pressure 

to the landslide pressure and did not investigate how deep a structure has to be embedded in order 

to fail the whole sliding layer. Consequently, in this section the landslide pressure solution is 

compared to a good passive earth pressure upper-bound solution. 

4.1.1 Problem formulation 

Consider a landslide consisting of a sliding layer with slope inclination 휃, angle of internal 

friction 𝜑′ and soil unit weight 𝛾 sliding on a weak slip surface with inclination 𝛼 and resistance 

𝜑2
′ = 𝛼. The landslide with vertical height 𝐻 moves towards a retaining structure with vertical 

height 𝐻𝑤𝑎𝑙𝑙 (Figure 4-9). It is assumed that the retaining structure is infinitely thin and only the 

part of the sliding layer upslope of the retaining structure is considered, the possible active failure 

state downslope of the structure is not within the scope of this section. 

In case of a sufficiently deep retaining wall the whole sliding layer fails, evoking the landslide 

pressure mechanism (Figure 4-9 (a)) discussed in chapter 3. In this case the force acting on the 

retaining structure 𝐸𝑙 is calculated from equations (3-7) and (3-8) and in the special case with a 

slope parallel slip surface, cohesionless soil and a vertical structure, the exact solution (3-19) can 

be used. 

 

Figure 4-9. (a) Structure with large embedment evoking failure of the whole sliding layer; (b) structure with 

small embedment evoking a passive failure mechanism adjacent to the structure. 
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If the embedment depth of the retaining wall is sufficiently small a local mechanism above the 

retaining structure might be more favourable compared to the landslide pressure mechanism 

(Figure 4-9 (b)). The sliding layer under the structure is not influenced by such a mechanism and 

keeps moving. It can be shown that the external work done on the passive earth pressure 

mechanism, in contrast to the landslide pressure mechanism, is only depending on the relative 

velocity of the sliding layer with respect to the structure. This was already observed by Haefeli 

(1944) with limit equilibrium considerations. Therefore the limiting earth pressure acting on such 

a structure corresponds to the classical passive earth pressure. Subsequently the passive earth 

pressure is calculated according to the log-sandwich mechanism presented in (Chen 1975), which 

is known to provide good upper-bound values. This mechanism consists of two triangular blocks 

bracketing a log-spiral shearing zone and depends on two free parameters 𝜌 and 𝜓 which are to 

be optimised numerically. Note that the wall-friction 𝛿, unlike in the landslide pressure case, 

affects the limit load significantly. The wall-friction can be introduced as an associated frictional 

failure or as non-associated frictional failure. In the latter case, which is used in the following 

calculations, the wall-friction produces a dissipation term which depends on the passive force. If, 

however, the structure can move vertically the wall-friction will not be mobilised and 𝛿 has to be 

set to zero. The expression for the passive earth pressure coefficient for cohesionless soil 

according to Chen (1975) is restated here for completeness. 

𝐾𝑝 =
sec 𝛿

cos 𝛽 + tan 𝛿 sin 𝛽 −
tan 𝛿 sin(𝛽 + 𝜌)

cos 𝜌

 

⋅ {
tan 𝜌 cos(𝜌 + 𝜑′) sin(𝛽 + 𝜌)

cos 𝛽 𝜑′
+

cos2(𝜌 + 𝜑′)

cos 𝜌 cos 𝛽 cos2 𝜑′ (1 + 9 tan2 𝜑′)
 

⋅ [sin(𝛽 + 𝜌)[3 tan 𝜑′ + (3 tan 𝜑′ cos 𝜓 + sin 𝜓) exp(−3𝜓 tan 𝜑′)] 

+ cos(𝛽 + 𝜌) [1 + (−3 tan 𝜑′ sin 𝜓 − cos(𝜓)) exp(−3𝜓 tan 𝜑′)]] 

+
cos2(𝜌 + 𝜑′) cos(𝛽 + 𝜌 + 𝜓 − 휃) sin(𝛽 + 𝜌 + 𝜓) exp(−3𝜓 tan 𝜑′)

cos 𝜑′ cos 𝛽 sin(𝛽 + 𝜌 + 𝜓 + 𝜑′ − 휃) cos 𝜌
} 

(4-11) 

Note that the slope inclination 휃 and the wall inclination 𝛽 are used corresponding to the problem 

formulation in chapter 3.3. 

The comparison of the external work required for the passive failure adjacent to the structure or 

failure of the whole sliding layer allows for the determination of the governing mechanism. This 

comparison can be equivalently done on the level of the force acting in the landslide body at the 

limit state and the mechanism with the lower force will be more favourable. 
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4.4.2 Results 

The results are presented in normalised form according to equation (4-8). As it is assumed that 

the whole landslide force at the limit state is carried by the structure the normalisation is done 

using the height of the structure 𝐻𝑤𝑎𝑙𝑙 instead of 𝐻. Only the case with slope parallel slip surface, 

vertical structure and cohesionless sliding layer is considered. 

In Figure (4-10) the normalised horizontal force acting on the structure is shown for a particular 

case depending on the embedment ratio of the structure 𝐻𝑤𝑎𝑙𝑙/𝐻. At low embedment ratios the 

passive earth pressure mechanism is governing and the resulting normalised force acting on the 

structure is equal to the passive earth pressure coefficient. For this reason the normalised force 

remains constant with increasing embedment ratio, at the same time the required force in the 

sliding layer increases with 𝐻𝑤𝑎𝑙𝑙
2   up to the point where the landslide force to fail the whole 

sliding layer is equal or smaller (the forces are equal at the kink in Figure 4-10 (a)). Increasing 

the embedment ratio after this point does not affect the total force; therefore the decreasing 

normalised force is an effect of the increasing height of the structure and follows a parabola. 

The evaluation of the normalised force for seven different slope inclinations in Figure 4-10 (a) 

shows that, in contrast to the landslide pressure, the passive pressure increases with increasing 

slope. This leads to a shift of the point where the switch between the two mechanisms takes place 

from high to low embedment ratios with increasing slope inclination. The embedment ratio at this 

switch is hereafter denoted ‘critical embedment ratio’ and is shown in Figure 4-10 (b) depending 

on the slope inclination for different angles of internal friction in the sliding layer. 

 

Figure 4-10. (a) Normalised horizontal force acting on the wall depending on the embedment ratio of the 

wall 𝐻𝑤𝑎𝑙𝑙/𝐻 for the case of 𝜑′ = 30° and 𝛿 = 20° at seven slope inclinations; (b) Critical embedment ratio 

above which the whole sliding layer fails (that is, the landslide pressure mechanism becomes governing) for 
different 𝜑′ with corresponding 𝛿 = 2/3𝜑′. 
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4.4.3 Discussion 

The results of the above considerations show that in landslides with low slope inclination 

structures reaching almost down to the slip surface are required to reach the limit state where the 

whole sliding layer fails. With increasing slope inclination this critical embedment ratio reduces 

and for extreme cases where the slope inclination is close to the angle of internal friction in the 

sliding layer already quite shallow structures provide sufficiently high passive resistance to fail 

the whole sliding layer. 

Provided that the landslide is sufficiently long, structures which are smaller than the critical 

height will not induce the highest possible stabilisation force. In such cases the sliding layer fails 

adjacent to the structure but keeps moving below the structure. The stabilisation using such 

structures does therefore not represent an optimum solution. On the other hand the stabilisation 

force does not increase anymore with deeper retaining structures. Note that a potential width of 

the retaining structure will increase the passive resistance due to friction at its base, in particular 

if a significant vertical force is acting (for example resulting from inclined anchors). This would 

lead to smaller critical heights of the retaining structure required to evoke the global failure of the 

whole sliding layer. 

 Conclusions 4.5

Three selected applications of the landslide pressure solution to broader geometrical and strength 

boundary conditions were presented. The restrictive assumption of equal inclination and friction 

of the weak slip surface does not have to hold for any structure in a landslide. The upper-bound 

considerations allowed the derivation of the landslide force acting on a retaining structure also in 

this more general case. It was shown that for a wide range of arbitrary inclinations of the slip 

surface the resulting landslide force does not deviate strongly compared to the solution from 

chapter 3. For very steep slopes and low friction of the slip surface, however, the force which the 

structure has to withstand may increase significantly. Further, it is interesting to note that if the 

inclination and the friction of the slip surface are not equal the landslide force on the retaining 

structure depends on the wall-friction. 

Rigid structures which were installed prior to the landslide movement may prevent the 

mobilisation of the slip surface in their vicinity. The investigation of the effect of such a not fully 

mobilised friction shows that the corresponding landslide force acting on the structure may be 

significantly higher compared to the fully mobilised case. Although in practice structures in 

landslides will usually show some compliance and deform with increasing landslide pressures the 

results of this small study is a strong argument against pre-installed rigid structures. 

In the investigation of structures which are not founded below the slip surface but are 

horizontally pinned (for example using anchors) the considerations shown by Haefeli (1944) 

could be confirmed. If a shallow structure is considered a passive failure mechanism forms and 

the sliding layer keeps moving under the structure. The corresponding earth pressures are limited 

by the passive resistance. If the structure reaches a certain critical embedment the whole sliding 

layer fails at the limit state and the landslide pressure mechanism can be evoked. While structures 
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shallower than this critical embedment can only provide a limited stabilisation force, with deeper 

structures the stabilisation force cannot be increase further. Therefore the critical embedment can 

be regarded as an optimum solution. 

 Notation 4.6

�̇�𝑖 Rate of internal dissipation 

𝐸𝑙 Limiting landslide force in the sliding layer 

𝐸𝑙ℎ Limiting landslide force in the sliding layer 

𝐸𝑙𝑤 Limiting landslide force acting on the retaining structure 

𝐸𝑙ℎ𝑤 Horizontal landslide force acting on the retaining structure 

𝐺𝑖 Weight of the blocks in the upper-bound solution 

𝐻 Vertical height of the sliding layer above the slip surface 

𝐻𝑤𝑎𝑙𝑙 Vertical height of the retaining structure 

𝐾𝑙ℎ Horizontal landslide pressure coefficient 

𝑅𝑖 Resulting frictional resistance force 

𝑣𝑖 Virtual velocity 

�̇�𝑒 Rate of external work 

𝛼 Inclination of slip surface 

𝛾 Unit weight of soil 

𝛿 Soil-wall interface friction angle 

𝜌 Angle between the wall and the log-spiral shearing zone in the passive earth pressure 

mechanism 

휃 Inclination of slope surface 

𝜑′ Angle of internal friction in the sliding layer 

𝜑′2 Angle of internal friction in the slip surface 

𝜌 Angle of the log-spiral shearing zone in the passive earth pressure mechanism 

𝜔𝑖 Angle of the slip discontinuities 
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 Ultimate loads on buildings in landslides 5

This chapter has been published as an article: 

Hug S., Friedli B., Oberender P., & Puzrin A. M., (2017) Ultimate loads on buildings in 

landslides. Géotechnique, Published ahead of print: https://doi.org/10.1680/jgeot.17.P.134 

Republished with permission. 

 Abstract 5.1

Existing buildings embedded in permanently moving landslides often exhibit significant damage. 

This damage is mostly caused by excessive loads acting on the building due to relative 

displacements of the landslide. For buildings in the compression zone of a landslide the existing 

classical earth pressure and landslide pressure solutions are not capable of describing the loads 

adequately. In this chapter it is shown that accumulated loads acting on a building eventually lead 

first to a local limit state with failure in the vicinity of the building, followed by a global limit 

state where the whole sliding body reaches failure. Both limit states are analysed by means of 

limit analysis, resulting in analytical solutions for the ultimate loads for general cases, and the 

finite element method, resulting in the loading history for particular cases, respectively. The 

derived solutions are practically applicable for the assessment and potential retrofitting of 

existing buildings as well as for the design of new ones, possibly preventing future damage. 
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 Introduction 5.2

Landslides are one of the major natural hazards endangering a large number of communities in 

mountainous regions. In Switzerland, for example, studies assess that more than six percent of 

the area is prone to slope instability (Lateltin et al. 2005). The landslide hazards are typically 

classified (e.g., Cruden & Varnes 1996) into fast moving catastrophic mass movements, 

representing a dynamic event, and slow, permanently moving landslides, in the literature 

sometimes referred to as ‘creeping’ (e.g., Puzrin & Schmid 2011). As in such permanently 

moving landslides the sliding often takes place in narrow zones with reduced strength (Bernander 

& Olofsson 1981), the overlaying sliding body is moving downslope almost intact. For this 

reason and because the displacement rates can be very small, construction activities have often 

spread into such instable areas. Regulations for the design of buildings in these conditions remain 

vague, which often leads to structural damage (e.g., Cascini et al. 2013; Alexander 1986; Glade et 

al. 2005; Mansour et al. 2011) potentially caused by the underestimation of the landslide induced 

loads. 

Past research focused on the correlation of occurred damage on existing structures to the 

displacement field of landslides (e.g., Mansour et al. 2011; Picarelli 2011; Lateltin et al. 2005; 

Urciuoli 2008; FOEN 2016; Palmisano et al. 2016). These authors found that in particular the 

cumulated displacements (absolute downslope displacements of the landslide) and the relative 

displacements (difference of the displacements between two points on the landslide) are 

important parameters for vulnerability analyses of structures. In addition, the type of construction 

(e.g. statically determined or redundant) as well as the orientation towards the landslide 

movement was identified to influence their damage. While these studies allow for a qualitative 

assessment of existing structures based on empirical relations, only little work has been done to 

quantify the loads acting on such structures. The knowledge of these loads, however, is crucial 

for the design of new buildings and the potential strengthening of existing buildings. 

The loads induced on buildings in landslides are commonly assessed using the same earth 

pressure theories as in stable slopes (e.g., Rankine 1857; Coulomb 1776; Müller-Breslau 1906; 

Caquot & Kérisel 1948; Sokolovskii 1960). While active earth pressure is probably a non-safe 

estimate, using passive earth pressures for the design may be overly conservative. A solution for 

the earth pressure acting on natural or artificial obstacles that constrain the movement of a 

landslide was presented by Haefeli (1944) and Brandl & Dalmatiner (1988) using limited 

equilibrium. A rigorous limit analysis solution for this problem was recently published by Friedli 

et al. (2017), (chapter 3 of this thesis). These solutions, however, are only valid for structures 

embedded below the slip surface. In contrast, buildings embedded in the sliding body are moving 

together with the landslide and have to be treated differently. 

The difference in stiffness and weight between the sliding body and a structure disturbs the 

displacement field of the landslide. This disturbance leads to stress changes which eventually 

result in one of the following limit states: 

i. Failure of the soil in the vicinity of the structure (local failure) 

ii. Failure of the whole sliding body (global failure) 

iii. Structural failure 



 Chapter 5: Ultimate loads on buildings in landslides 

 

 
69 

Investigating the limit states of local and global failure allows evaluating the ultimate loads 

acting on a building in a landslide and preventing its structural failure by an appropriate design. 

In the present chapter this concept is applied to buildings embedded in the compression zone of a 

sliding body. Such conditions are present, for example if the sliding body is constrained at the 

bottom by an obstacle which can be artificial (retaining structure) or natural (rock outcrop), 

leading to decreasing displacement rates downslope towards the obstacle (e.g., Puzrin & Schmid 

2012; Oberender & Puzrin 2016; Puzrin & Sterba 2006). The ultimate loads acting on the 

building at local failure and in the sliding body at global failure are quantified by means of the 

kinematic method of limit analysis which has proven to be a suitable tool for geotechnical 

problems (e.g., Chen 1975; Michalowski 1989; Randolph & Houlsby 1984; Smith 1998) and the 

finite element method (FEM). 

 Problem formulation 5.3

Consider a landslide with a slope surface inclination 휃. The sliding takes place along a narrow 

weak zone, denoted ‘slip surface’, inclined by 𝛼 (Figure 5-1). The problem is considered to have 

infinite dimension in the out of-plane direction (plane strain assumption). The slope and the slip 

surface are assumed to be planar in the vicinity of the building. The soil of the sliding body is 

assumed to be cohesionless and is characterised only by its angle of internal friction 𝜑′ and the 

unit weight 𝛾. As permanently moving landslides are studied, the friction angle on the slip 

surface 𝜑′2 is assumed to be equal to the surface inclination 𝛼. The displacements of the 

landslide decrease downslope causing compression of the sliding body. The velocity field is 

assumed constant over the depth of the sliding body. 

A building with the total weight 𝐺𝑏 is embedded within the sliding body. Its cross-sectional 

geometry is simplified by a rectangular shape with embedment depths 𝑑1 and 𝑑2 at the up- and 

downhill sides, respectively; the vertical thickness of the sliding body 𝑡 is measured at the uphill 

edge of the building. The interface friction between the building and the surrounding soil is 𝛿. 

Further, it is assumed that the building is stiffer than the surrounding soil of the sliding body and 

does not collapse before the failure state is reached in the soil. 

For the design of new buildings and the assessment of existing ones, the ultimate horizontal loads 

on the uphill and the downhill walls (that is, the ultimate earth pressure) are of main interest. 

 

Figure 5-1. Geometry of the slope and the embedded building. 
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 Upper-bound limit analysis 5.4

To calculate the ultimate loads acting on a building embedded in the compression zone of a 

landslide the kinematic method of limit analysis is used. For the application of this method, it 

assumed that the soil failure is perfectly plastic following to the Mohr-Coulomb failure criterion 

with associated flow. The implications of a non-associated flow are discussed in the results 

section by comparison with the FEM solution. 

To formulate an upper-bound solution, a kinematic admissible failure mechanism has to be found 

(e.g., Chen 1975). At the limit state the rates of external work �̇�𝑒 and the internal dissipation 

rates �̇�𝑖 have to be equal which allows solving for the loads acting on the building (local failure) 

or in the sliding body (global failure). While for a global failure the kinematic method is 

applicable directly, in the case of local failure it cannot be applied in a straightforward manner, 

because only a part of the sliding body (that is, the soil in the vicinity of the building) is at the 

limit state. Despite this difficulty, it is still possible to evaluate the local limit state using the 

kinematic method. This is shown later in this chapter and the kinematic admissibility is proven in 

Appendix 5-1. In the following, first two local mechanisms and later two global mechanisms are 

introduced which allow the derivation of the corresponding ultimate loads. 

5.4.1 Local failure mechanisms 

The local failure is investigated using two families of mechanisms. In the first family (Figure 5-2 

(a)) the building slips on the interface between its base and the surrounding soil. It consists of the 

uphill part of the sliding body (block 1) moving downslope, the downhill part of the sliding body 

(block 2), the building and a connected uphill soil wedge (block 3) and a soil wedge at the 

downhill wall (block 4). 

In the second family (Figure 5-2 (c)) the velocity discontinuity does not occur in the interface 

beneath the building. It consists of the uphill and downhill part of the sliding body (blocks 1 and 

2) and one translating block including the building, an uphill soil wedge and a part of soil beneath 

the building (block 3). With the two a priori unknown angles of the wedges 𝜔1 and 𝜔2 both 

mechanisms have two degrees of freedom which have to be optimised. Note that both angles 

count positive in anti-clockwise direction. 

Both types of mechanisms are divided into two subtypes A and B depending on the uphill 

velocity discontinuity between blocks 1 and 3. While in subtype A shear failure of the soil 

occurs, forming a soil wedge on the uphill side of the building, in subtype B the failure occurs in 

the soil-structure interface at the uphill wall. In Figure 5-2 only the subtype A is illustrated. Note 

that in subtype B, 𝜔1 = 𝜋/2 is determined and reduces the degrees of freedom to one. 

In reality as long as no global failure has occurred, the soil beneath the building experiences a 

gradually decreasing velocity field causing changes in elastic strain energy due to the 

compression of the soil. The exact formulation of this energy rate is rather cumbersome, but can 

be replaced with the equivalent work rate of an internal force 𝑹12 acting on a vertical ‘velocity 

step’ in the sliding body. This velocity step, which is not to be confused with the velocity 

discontinuities of the mechanisms, is illustrated in Figure 5-2 (a) and (c) as a interpenetration of 

block 1 into block 2. The kinematic admissibility of the velocity step is demonstrated in 

Appendix 5-1. 
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As only relative displacements lead to increasing loads on the building, the downhill part of the 

sliding body (block 2) is introduced to be at rest, 𝒗2 = 0, in both mechanism families. In contrast 

the part of the sliding body on the uphill side of the building (block 1) moves with the velocity 

𝒗1. Note that according to the associated flow rule the direction of velocity 𝒗1 is defined by the 

frictional strength on the slip surface and in this case the solution represents a rigorous upper-

bound. In Appendix 5-2 it is shown that the local mechanisms are independent on the direction of 

𝒗1 and result in the same ultimate loads. Block 3 and block 4 move with their velocities 𝒗3 and 

𝒗4 according to the associated flow rule. 

As cohesionless soil is assumed the dissipation rate �̇�𝑖 is zero. Consequently the work equation is 

calculated from the external work rates done on blocks 1, 3, 4 against gravity (𝑮1, 𝑮3 and 𝑮4), 

the work rates done by the force in the uphill sliding body, 𝑬𝑙, the internal force in the velocity 

step, 𝑹12, and the resistance force on the slip surface, 𝑹𝑆𝑆. 

𝑊�̇� = (𝑬𝑙 + 𝑹𝑆𝑆 + 𝑮1 + 𝑹12) ∙ 𝒗1 + 𝑮3 ∙ 𝒗3 + 𝑮4 ∙ 𝒗4 = �̇�𝑖 = 0 (5-1) 

The work equation (5-1) is also valid for the local mechanism type 2 with 𝑮4 = 0. 

 

Figure 5-2. (a) Local mechanism type 1A and (b) the corresponding free body diagram; (c) local mechanism 

type 2A and (d) the corresponding free body diagram. 
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In addition to equation (5-1), all the forces acting on block 1, including the internal force 𝑹13, 

have to be in equilibrium (Figure 5-2 (b) and (d)). 

𝑬𝑙 + 𝑹𝑆𝑆 + 𝑮𝟏 + 𝑹12 = 𝑹13 (5-2) 

Inserting equation (5-2) into (5-1) allows solving for the internal force 𝑹13. The horizontal 

component of the force on the uphill wall of the building 𝑃𝑢ℎ results from the horizontal 

component of 𝑹13, (Figure 5-2 (b)). 

For the first family of mechanisms evaluating the work equation (5-1) and inserting the weights 

and the velocities according to the geometry of Figure 5-2 (a), allows solving for 𝑃𝑢ℎ. Detailed 

derivations of the weights and the velocities can be found in Appendix 5-2. 

𝑃𝑢ℎ1 = (𝐺𝑏 +
𝛾𝑑1

2

2

1

tan 𝜔1 − tan 휃
) ⋅

sin 𝛿 sin(𝜑′̃ + 𝜔1)

sin(𝜑′̃ + 𝛿 + 𝜔1)
 

+
𝛾𝑑2

2

2
⋅

sin (𝜑′ − 𝜔2) cos 2𝛿 sin(𝜑′̃ + 𝜔1)

(tan 휃 − tan 𝜔2) cos(𝜑′ + 𝛿 − 𝜔2) sin(𝜑′̃ + 𝛿 + 𝜔1)
 

(5-3) 

Where the angle of friction in the velocity discontinuity between block 1 and 3, 𝜑′̃, corresponds 

to the soil friction angle 𝜑′ (local mechanism type 1A) or the interface friction 𝛿 (local 

mechanism type 1B) depending on the value of the angle 𝜔1. 

𝜑′̃ = {
𝜑′, 𝜔1 < 𝜋/2
𝛿, 𝜔1 = 𝜋/2

  (5-4) 

The force on the downhill wall follows from equilibrium on the building. The horizontal 

component of this force results in 

𝑃𝑑ℎ1 =
𝛾𝑑2

2

2
⋅

tan(𝜑′ − ω2)

(tan 휃 − tan 𝜔2)(1 − tan(𝜑′ − 𝜔2) tan 𝛿)
 (5-5) 

Equation (5-3) is to be optimised with respect to the angles of the velocity discontinuities 𝜔1 and 

𝜔2, with the following constraints, which follow from geometric (Figure 5-2 (a)) and kinematic 

considerations Figure 5-11 (a)). 

휃 ≤ 𝜔1 ≤ min {𝜋 − 𝜑′ − 𝛿;
𝜋

2
} 

𝜑′ + 𝛿 −
𝜋

2
≤ 𝜔2 ≤ 𝜑′ − 𝛿 

(5-6) 
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For the second family of local mechanisms (Figure 5-2 (c) and (d)) the horizontal component of 

the force on the uphill wall is calculated analogously to 

𝑃𝑢ℎ2 = [
𝛾𝑑1

2

2
(

1

tan 𝜔1 − tan 휃
+

1

tan 휃 − tan 𝜔2
) −

𝛾(𝑑1
2 − 𝑑2

2)

2
cot 휃 + 𝐺𝑏] 

⋅
sin(𝜙′ − 𝜔2) sin(𝜑′̃ + 𝜔1)

sin(𝜑′ + 𝜑′̃ + 𝜔1 − 𝜔2)
 

(5-7) 

Where �̃�′ still depends on 𝜔1 according to equation (5-4) and divides the mechanism into the 

subtypes 2A and 2B. The angles of the velocity discontinuities have to be optimised with the 

following constraints, which follow from geometric (Figure 5-2 (c)) and kinematic considerations 

(Figure 5-11 (b)). 

휃 ≤ 𝜔1 ≤ min {𝜋 − 𝜑′ − 𝛿;
𝜋

2
} 

0 ≤ 𝜔2 ≤ 휃 

(5-8) 

Note that in this mechanism no failure occurs along the downhill wall and the base of the 

building (Figure 5-2 (d)) and therefore the force acting on the downhill wall cannot be 

determined. 

5.4.2 Global failure mechanisms 

After reaching the local failure in the vicinity of the building the landslide can be loaded further 

until global failure of the whole sliding body is reached. This limit state is closely related to the 

solution presented in chapter 3, Friedli et al. (2017). The building, however, introduces additional 

constraints on the mechanism and possibly alters the weight of the sliding body, which allows the 

formation of at least two possible failure configurations. While for buildings lighter than the 

excavated soil a mechanism including the building may occur (type 1, Figure 5-3 (a)), heavier 

ones may prevent such a mechanism and lead to failure further elsewhere along the slope, 

excluding the building (type 2, Figure 5-3 (b)). 

 

Figure 5-3. (a) Geometry of the global mechanism type 1; (b) geometry of the global mechanism type 2. 
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Both global mechanisms consist of three blocks bounded by two velocity discontinuities inclined 

by 𝜔1 and 𝜔2 to the slip surface. Block 1 moves downslope with velocity 𝒗1, block 2 is at rest, 

𝒗2 = 0, and block 3 consists of either the building and the surrounding soil (type 1, Figure 5-3 

(a)) or only a soil wedge (type 2, Figure 5-3 (b)) which is pushed upwards with velocity 𝒗3. The 

derivation of the velocities from the hodograph and the expressions for the weights contributing 

to the work equation are presented in Appendix 5-2. Formulating the work equation 

𝑊�̇� = 𝑬𝑙 ∙ 𝒗1 + 𝑮3 ∙ 𝒗3 = �̇�𝑖 = 0 (5-9) 

allows solving for the force required to cause global failure of the sliding body 𝑬𝒍. Note that the 

force 𝑬𝒍 acts along the velocity discontinuity between block 1 and 3. 

For the global mechanism type 1 the horizontal component of this force results in 

𝐸𝑙ℎ1 = {
𝛾

2
[(𝑡 +

(𝑡 − 𝑑1)(tan 𝛼 − tan 휃)

tan(𝛼 + 𝜔1) − tan 𝛼
)

2

 

⋅ (
1

tan(𝛼 + 𝜔1) − tan(휃) 
+

1

tan 휃 + tan(𝜔2 − 𝛼)
)] 

−
𝛾(𝑑1

2 − 𝑑2
2)

2
cot 휃 + 𝐺𝑏} ⋅

sin(𝜑′ − 𝛼 + 𝜔2) sin(𝜑′ + 𝛼 + 𝜔1)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

(5-10) 

This force has to be optimised with the following constraints on the angles of the velocity 

discontinuities, which follow from geometric (Fig. 3) and kinematic considerations (see Fig. 

11 (c) later in the chapter). 

max{0; 휃 − 𝛼} ≤ 𝜔1 ≤
𝜋

2
− 𝛼 

max{0; 𝛼 − 휃} ≤ 𝜔2 ≤
𝜋

2
− 𝜙′ + 𝛼 

2𝜙′ + 𝜔1 + 𝜔2 ≤ 𝜋 

𝜔2 − [𝛼 + arc tan (
tan(𝛼 + 𝜔1)

𝑑1 − 𝑑2
𝑡 − 𝑑1

cot 휃 (tan(𝛼 + 𝜔1) − tan 𝛼) − 1
)] ≤ 0 

(5-11) 

The horizontal component of the force required to cause failure of the sliding body according to 

the global mechanism type 2 (Figure 5-3 (b)), corresponds to the solution presented in chapter 3, 

Friedli et al. (2017): 

𝐸𝑙ℎ2 =
𝛾𝑡2

2
⋅

cos2 𝛼 sin(휃 − 𝛼 + 𝜔2) sin(𝜑′ − 𝛼 + 𝜔2)

sin 𝜔2 sin(𝛼 − 휃 + 𝜔1) sin(2𝜑′ + 𝜔1 + 𝜔2)
  

⋅
sin (𝜔1 + 𝜔2) sin(𝜑′ + 𝛼 + 𝜔1)

sin 𝜔2 sin(𝛼 − 휃 + 𝜔1) sin(2𝜑′ + 𝜔1 + 𝜔2)
 

(5-12) 

The angles of the velocity discontinuities in (5-12) have to fulfil the first three constraints of 

equation (5-11). 
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5.4.3 Optimisation 

The angles of the velocity discontinuities have to be optimised to derive the most critical 

mechanism. In the presented case the kinematic method provides an upper-bound solution for the 

load acting on the loads acting on the building. The lowest upper-bound has to be found by 

optimisation of the solution. Before presenting the optimised loads, a normalisation of the 

geometry and the weight of the building with respect to the landslide is introduced below. 

The ratio between the embedment depth of the downhill wall 𝑑2 and the uphill wall 𝑑1, is 

denoted ‘embedment ratio’ 𝜆: 

𝜆 =
𝑑2

𝑑1
 (5-13) 

The ratio between the embedment depth of the uphill wall 𝑑1 and the thickness of the sliding 

body 𝑡, is denoted ‘relative embedment depth’ 휂: 

휂 =
𝑑1

𝑡
 (5-14) 

The ratio between the weight of the building 𝐺𝑏  and the weight of the excavated soil of the 

sliding body, is denoted ‘weight compensation ratio’ 𝛽: 

𝛽 =
2𝐺𝑏

𝛾(𝑑1
2 − 𝑑2

2) cot 휃
 (5-15) 

This ratio is equal to unity, 𝛽 = 1, for buildings which exactly compensate the weight of the 

excavated soil, denoted ‘weight compensation’ in this chapter. 

The force on the uphill wall of the building, derived for the local mechanisms in equations (3) 

and (5-7) is also normalised 

𝐾𝑢ℎ =
2𝑃𝑢ℎ

𝛾𝑑1
2  (5-16) 

and can be interpreted as earth pressure coefficient 𝐾𝑢ℎ corresponding to a linearly distributed 

stress increasing with depth. The force on the downhill wall is normalised similarly using the 

embedment depth 𝑑2. As the ultimate force required to cause global failure acts over the whole 

thickness of the sliding body 𝑡, equations (5-10) and (5-12) are normalised as follows 

𝐾𝑙ℎ =
2𝐸𝑙ℎ

𝛾𝑡2
 (5-17) 

In the following sections the normalised expressions for the load on the building at local failure 

and the load in the sliding body at global failure are presented including the respective optimised 

angles of the velocity discontinuities.  
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5.4.3.1 Local failure mechanism type 1A 

In case of 𝜔1 < 𝜋/2 the normalised load on the uphill wall of the building is 

𝐾𝑢ℎ1𝐴 = [sin 𝛿 (cot 휃 (1 − 𝜆2)𝛽 +
1

tan 𝜔1 − tan 휃
) 

+
𝜆2

tan 휃 − tan 𝜔2

sin(𝜑′ − 𝜔2) cos 2𝛿

cos(𝜑′ + 𝛿 − 𝜔2)
] ⋅

sin(𝜑′ + 𝜔1)

sin(𝜑′ + 𝛿 + 𝜔1)
 

(5-18) 

with the optimised angle 𝜔1 

𝜔1 = −𝜑′ + arc cot (cot(𝜙′ + 휃) +
tan 𝜑′ + cot(𝜑′ + 휃)

𝜒(tan 𝜑′ + tan 휃) − 1
 

⋅ [1 − √1 +
𝜒(tan 𝜑′ + tan 휃) − 1

tan(𝜑′) + cot(𝜑′ + 휃)
(cot(𝜑′ + 휃) + cot 𝛿)]) 

(5-19) 

where 𝜒 is 

𝜒 = cot 휃 (1 − 𝜆2)𝛽 +
𝜆2 sin(𝜑′ − 𝜔2) cos 2𝛿

(tan 휃 − tan 𝜔2) cos(𝜑′ + 𝛿 − 𝜔2) sin 𝛿
 (5-20) 

The optimised angle 𝜔2 is 

𝜔2 = 𝜑′ − arc cot (− tan 𝜑′ + √(cot(𝜑′ − 휃) + tan 𝜑′)(tan 𝜑′ + tan 𝛿)) (5-21) 

The normalised horizontal force on the downhill wall is  

𝐾𝑑ℎ1 =
tan(𝜑′ − 𝜔2)

(1 − tan(𝜑′ − 𝜔2) tan 𝛿)(tan 휃 − tan 𝜔2)
  (5-22) 

The angle of the second velocity discontinuity 𝜔2 given in equation (5-21) also optimises the 

force on the downhill wall. 

5.4.3.2 Local failure mechanism type 1B 

In case of 𝜔1 = 𝜋/2 the normalised load is 

𝐾𝑢ℎ1𝐵 =
cos 𝛿

cos 2𝛿
[sin 𝛿 cot 휃 (1 − 𝜆2)𝛽  

+
𝜆2 sin(𝜑′ − 𝜔2) cos 2𝛿

(tan 휃 − tan 𝜔2) cos(𝜑′ + 𝛿 − 𝜔2)
] 

(5-23) 

where the optimised expression for 𝜔2 given in equation (5-21) is still valid and the normalised 

force on the downhill wall is still described by (5-22).  
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5.4.3.3 Local failure mechanism type 2A 

Similarly for the mechanism type 2 in case of 𝜔1 < 𝜋/2 the normalised load on the building is 

𝐾𝑢ℎ2𝐴 = [(
1

tan 𝜔1 − tan 휃
+

1

tan 휃 − tan 𝜔2
) + cot 휃 (1 − 𝜆2)(𝛽 − 1)] 

⋅
sin(𝜑′ − 𝜔2) sin(𝜑′ + 𝜔1)

sin(2𝜑′ + 𝜔1 − 𝜔2)
 

(5-24) 

For this case the angles of the velocity discontinuities, 𝜔1 and 𝜔2, have been optimised 

numerically. A closed solution can only be presented for the special case of weight 

compensation, 𝛽 = 1 

𝜔1 =
1

2
[arc cos (−

𝑠𝑖𝑛 휃

𝑠𝑖𝑛 𝜑′
) − 𝜑′ + 휃]  

𝜔2 = 𝜔1 + 𝜑′ −
𝜋

2
 

(5-25) 

provided that the angle of the second velocity discontinuity is inclined downslope 𝜔2 > 0. 

5.4.3.4 Local failure mechanism type 2B 

In case of 𝜔1 = 𝜋/2 the normalised load is 

𝐾𝑢ℎ2𝐵 = [(
1

tan 휃 − tan 𝜔2
) + cot 휃 (1 − 𝜆2)(𝛽 − 1)]

sin(𝜑′ − 𝜔2) cos 𝛿

cos(𝜑′ + 𝛿 − 𝜔2)
 (5-26) 

And the corresponding optimised angle of the velocity discontinuity is 

𝜔2 = 𝜑′ − arc cot (− tan 𝜑′ + √(cot(𝜑′ − 휃) + tan 𝜑′)(tan 𝜑′ + tan 𝛿)) (5-27) 

5.4.3.5 The critical local failure mechanism 

As these normalised loads of the building are all upper-bounds, the mechanism leading to the 

minimum load represents the most critical mechanism. Therefore the minimum value among the 

solutions given by equations (5-18), (5-23), (5-24) and (5-26) is used depending on the geometry, 

weight and strength parameters. 

𝐾𝑢ℎ = min{𝐾𝑢ℎ1𝐴, 𝐾𝑢ℎ1𝐵, 𝐾𝑢ℎ2𝐴, 𝐾𝑢ℎ2𝐵} (5-28) 

The ultimate force on the downhill wall is only defined in the local mechanism types 1A and 1B 

by equation (5-22), which corresponds to the passive earth pressure coefficient using a 

translational mechanism (e.g., Coulomb 1776; Müller-Breslau 1906). 
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5.4.3.6 Global failure mechanisms 

For the global mechanism type 1, involving the building, the normalised force in the sliding body 

is derived from equation (5-10). 

𝐾𝑙ℎ1 =
sin(𝜑′ − 𝛼 + 𝜔2) sin(𝜑′ + 𝛼 + 𝜔1)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 

⋅ [(1 + (1 − 휂)
tan 𝛼 − tan 휃

tan 𝜔1 − tan 𝛼
)

2

(
1

tan(𝛼 + 𝜔1) − tan 휃
 

+
1

tan 휃 + tan(𝜔2 − 𝛼)
) − 휂2 cot 휃 (1 − 𝜆2)(1 − 𝛽)] 

(5-29) 

In this case the optimised angles of the velocity discontinuities could not be derived in closed-

form, therefore they have to be optimised numerically. 

For the global mechanism type 2 the normalised force is derived from equation (5-12). 

𝐾𝑙ℎ2 =
cos2 𝛼 sin(휃 − 𝛼 + 𝜔2) sin(𝜑′ − 𝛼 + 𝜔2) sin(𝜔1 + 𝜔2) sin(𝜑′ + 𝛼 + 𝜔1)

sin2 𝜔2 𝑠𝑖𝑛(𝛼 − 휃 + 𝜔1) sin(2𝜑′ + 𝜔1 + 𝜔2)
 (5-30) 

For general slope and slip surface inclinations the optimised angles of the velocity discontinuities 

could also not be derived analytically. However, in the special case of slope parallel slip surface 

(𝛼 = 휃) the angles 

𝜔1 =
1

2
(arccos (−

sin 휃

sin 𝜑′
) − 𝜑′ − 휃)  

𝜔2 =
𝜋

2
− 𝜑′ − 𝜔1 

(5-31) 

optimise equation (5-30) and the corresponding normalised force acting in the sliding body 

results in 

𝐾𝑙ℎ2(𝛼 = 휃)  =
cos4 휃

cos2 𝜑′
(1 + √1 − cos2 𝜑′ (1 + tan2 휃))

2
 (5-32) 

which corresponds to the exact solution of the ‘landslide pressure’ coefficient presented in 

chapter 3, Friedli et al. (2017). 
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 Finite element model 5.5

The above presented upper-bound solutions allow only the evaluation of the limit state and no 

conclusion can be drawn regarding the evolution of the loads on a building either before or after 

reaching the local failure. Furthermore, for local failure, the velocity step had to be introduced 

beneath the building which is a simplification of the actual elastic-plastic compression of the 

sliding body. To validate the assumptions and the results, the loading process of a building in a 

landslide was modelled using the FEM. 

The commercial FEM Code Abaqus/Standard (Dassault Systèmes Simulia Corp., RI, USA) was 

used to model the landslide with the embedded building in plane strain conditions. The geometry 

of the model is shown schematically in Figure 5-4. Only the case with slope parallel slip surface 

휃 = 𝛼 was investigated with the FEM. The material of the sliding body was modelled using a 

linear elastic – perfectly plastic constitutive law with the Mohr-Coulomb failure criterion. Note, 

that the built-in Mohr-Coulomb model in Abaqus uses a smooth plastic potential surface 

(Menétrey & Willam 1995) which does not allow modelling associated flow in the deviatoric 

plane and only approximates associated flow in the meridional planes. To model associated flow, 

the dilation parameter 𝜓 was chosen to match as close as possible the plastic potential to the 

failure surface in the meridional plane. The influence of the flow rule has been analysed by 

comparing the results in additional simulations where only half of the dilation was used. The 

embedded building was modelled as linear elastic, with significantly higher stiffness than the soil 

body; the contact between the building and the surrounding soil was modelled with frictional 

interfaces. The interfaces in Abaqus use a non-dilative flow rule. At the uphill end of the model 

an elastic block was tied to the sliding body to prevent failure at this boundary. Note that due to 

the used constitutive model for the soil and the interfaces, the FEM simulations do not fully 

match the assumptions of limit analysis for the flow rule. 

The initial stress state in the model was introduced by applying the gravity loading as a body 

force both to the soil and the building. The exact stresses depend therefore on this loading and the 

elasto-plastic constitutive model and strongly depend on the Poisson ratio which was chosen as 

𝜈 = 0.3. Note that the apparent initial earth pressure coefficients at the uphill and the downhill 

 

Figure 5-4. Geometry and boundary conditions of the finite element model in ABAQUS. 
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walls in the model are not identical because the wall heights differ (otherwise equilibrium of 

forces would not be fulfilled). After applying the gravity loading, the entire sliding body was 

displaced downslope (𝒗1 = 𝒗2 > 0) to mobilise the interface resistance along the full length of 

the slip surface. Then the bottom of the landslide was kept at rest (𝑣2 = 0) and the sliding body 

was compressed applying a velocity boundary condition on the elastic block (𝑣1 > 0) until first 

local and afterwards global failure occurred. During this process the contact pressure at the 

interfaces around the building, the horizontal force in the remaining part of the sliding body 

beneath the building as well as the horizontal force at the top of the landslide were evaluated. 

 Results 5.6

5.6.1 Loads on the uphill wall 

The limit analysis solutions are shown in Figure 5-5 (a) (solid thick lines) for the special case of 

weight compensation, 𝛽 = 1, and a constant embedment ratio, 𝜆 = 0.5, for three different angles 

of internal friction of the sliding body, 𝜑′. It is shown that increasing strength of the sliding body 

leads to increasing ultimate loads on the building which is a result of the increased resistance 

against local failure. The zones 1A and 2A show the regions where the corresponding local 

mechanism provides the lowest upper-bound. At low slope inclinations the local mechanism type 

1A dominates and the corresponding loads are high, only capped by the passive earth pressure 

(that is, formation of a classical passive failure on the uphill wall of the building). The passive 

earth pressure shown in Figure 5-5 (a) corresponds to the log-sandwich upper-bound solution 

according to Chen (1975). With increasing slope inclination the loads decrease and for moderate 

slopes the local mechanism 1A and 2A result in the same loads (shaded region in Figure 5-5 (a)). 

At steeper slopes, characterised by the condition 

휃 ≥ arccot (
1 + sin2 𝜑′

sin 𝜑′ cos 𝜑′) (5-33) 

the mechanism 2A becomes solely governing and the normalised force 𝐾𝑢ℎ coincides with the 

landslide pressure coefficient (5-32), (chapter 3, Friedli et al. 2017). Note that the landslide 

pressure solution results from a global mechanism and it is normalised over the height of the 

sliding body 𝑡, whilst the normalisation of the forces from the local mechanisms is done over the 

embedment depth of the uphill  

 wall 𝑑1. In Figure 5-5 the normalised force 𝐾𝑢ℎ derived from the local mechanisms is equal or 

higher than the normalised force from the global mechanism. However, considering the relative 

embedment depth 휂=0.5, the total force acting on the building is actually lower than the total 

force derived from the landslide pressure. At low slope inclination and high relative embedment 

depth 휂 it is possible that the landslide pressure mechanism is reached before local failure could 

appear. This scenario did not appear to be relevant in the investigated cases. 

Similar to the strength of the soil, increasing the interface strength between the building and the 

sliding body results in significantly higher ultimate loads on the building (Figure 5-5 (b)). In 

cases with low interface friction and high slope inclination the normalised force calculated using 

the local mechanisms may even drop below the active earth pressure coefficient, which means 

that the building would slip under active earth pressure. 
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Note that in Figure 5-5 (a) and (b) the embedment ratio, 𝜆, is kept constant which means that the 

width of the building increases with decreasing slope inclination. This explains the significant 

increase of the normalised force at low slope inclination. For a building with constant width, 𝜆 

increases with decreasing slope and the corresponding loads are lower. However, for the 

presented special case with 𝛽 = 1 and 𝛿 = 𝜑′ the results shown in Figure 5-5 (a) actually hold 

for any 𝜆 as long as the local mechanism type 2A is governing and therefore the width of the 

building has no influence. This is shown in Figure 5-5 (c) where the loads are presented 

depending on the weight compensation ratio 𝛽 for different 𝜆. Further it is shown that for 

buildings lighter than the excavated soil, 𝛽 < 1, the ultimate loads decrease, while for heavier 

buildings, 𝛽 > 1 they increase. 

 

Figure 5-5. Normalised horizontal force 𝐾𝑢ℎ on the uphill wall (휂 = 0.5): (a) depending on the slope 

inclination 휃 for three different 𝜑′; (b) depending on the slope inclination 휃 for three different interface friction 

ratios 𝛿/𝜑′; (c) depending on the weight compensation ratio 𝛽 for different embedment ratios 𝜆; (d) evolution 

of the components of 𝐾𝑢 in the FEM model. 
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In Figure 5-5 (d) the evolution of the loads on the uphill wall of the building (depending on the 

average horizontal strain 휀ℎ in the vicinity of the building) is presented for one particular set of 

parameters according to the FEM simulation. The average horizontal strain, 휀ℎ, is calculated as 

the ratio of the relative horizontal displacement of the sliding layer between two points, chosen 

uphill and downhill from the building outside the expected range of the local mechanism, and the 

horizontal distance between these two points. Starting from an initial loading, which in our 

analysis is rather low (𝐾0 ≈ 0.4), the horizontal (𝐾𝑢ℎ) and the vertical components (𝐾𝑢𝑣) of the 

force on the uphill wall increase to the point when local failure is reached. Afterwards, further 

compression of the landslide does not lead to increasing forces on the building until eventually 

the whole sliding body fails. Once this global failure has occurred a redistribution of the forces 

from the uphill wall to the remaining part of the sliding body beneath the building can take place. 

This leads to a slight decrease in the wall force and confirms that the local mechanism determines 

the ultimate load on a building in a landslide. Plots of the plastic strain magnitudes at local and 

global failure are shown in Appendix 5-3. The loads calculated with a non-associated flow rule 

(𝜓 = 𝜑′/2) are similar to the other solutions (load evolution is indicated with a dotted line in 

Figure 5-5 (d)). The influence of the dilatancy is limited because the problem is not overly 

constrained. 

The results of the FEM simulations at local failure are also presented in (Figure 5-5 (a), (b) and 

(c)). These results are quite close to the developed upper-bound solutions using limit analysis and 

represent some validation of the results. For heavy buildings, the solution deviates more from the 

FEM simulations (Figure 5-5 (c)). This is a shortcoming of the considered translational 

mechanisms which are not able of capturing local bearing capacity failure beneath the downhill 

edge of the building, observed in the FEM simulations. 

5.6.2 Loads on the downhill wall 

The force on the downhill wall calculated from the local mechanisms type 1 is presented in 

Figure 5-6 (a) depending on the slope inclination 휃 with 𝜑′ = 34° for different interface frictions 

𝛿. Since in the local mechanisms type 2 no interface failure occurs between the downhill wall and 

the soil, limit analysis does not allow evaluating the force acting on this wall. Similar to the 

uphill wall the force decreases with increasing slope inclination and the values lie closely to the 

classical passive earth pressure. 

In Figure 5-6 (b) the evolution of the force components acting on the downhill wall are presented 

for the same set of parameters used for Figure 5-5 (d). Similarly, the horizontal component (𝐾𝑑ℎ) 

and the vertical component (𝐾𝑑𝑣) of the force increase until local failure is reached. After this 

point the force remains constant even when reaching global failure. The interface friction is 

mobilised almost over the whole depth of the downhill wall, only close to the downhill edge the 

stress field is disturbed which slightly reduces the vertical component of the force. 
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Figure 5-6. Normalised horizontal force 𝐾𝑑ℎ acting on the downhill wall: (a) depending on the slope 

inclination 휃 for different interface friction ratios 𝛿/𝜑′; (b) evolution of the components of 𝐾𝑑 in the FEM 

model using the same parameters as in Figure 5 (d). 

The comparison of the FEM results with the upper-bound solution is also shown in Figure 5-6 

(a). While the two models compare well for low interface friction angles, 𝛿, the proposed local 

mechanism overestimates the forces significantly for 𝛿 = 𝜑′. As the mechanism consists of one 

translational wedge at the downhill wall, it is basically identical to the classical Coulomb passive 

earth pressure mechanism (Coulomb 1776). However, the single degree of freedom, together 

with the associated flow rule overly constrains the mechanism at higher slope inclinations. This is 

reflected in higher load values compared to the Coulomb solution. Introducing more degrees of 

freedom, for example, by using a log-sandwich mechanism (e.g., Chen 1975) to calculate the 

passive earth pressure, provides an upper-bound closer to the FEM solution. This leads to the 

conclusion that the ultimate load on the downhill wall should be calculated using the best 

available passive earth pressure solution. 

5.6.3 Force on the building base 

In case of the local mechanism type 1 the force acting on the building base, 𝑹23, can be derived 

from equilibrium of forces on the building (Figure 5-2 (b)). Using upper-bound limit analysis 

does only allow finding the total force on the base but not its distribution. Note that in local 

mechanism type 2 no failure occurs along the downhill wall and the base of the building (Figure 

5-2 (d)) and therefore the force acting along these interfaces cannot be determined.  



5.6 Results 

 

 
84 

5.6.4 Force in the sliding body 

The influence of the relative embedment depth, 휂, on the ultimate force in the sliding body is 

illustrated in Figure 5-7 (a) depending on the slope inclination 휃 for a light (𝛽 = 0.5) and a heavy 

(𝛽 = 1.5) building. The normalised force of the global failure mechanism type 2 (that is, the 

landslide pressure) is independent of the building properties. In contrast the force of the global 

mechanism type 1 strongly depends on the size and the weight of the building, as it contributes to 

the external work. 

For a heavy building (𝛽 > 1) the force according to the global mechanism type 1 increases with 

increasing embedment depth 휂. However, for such buildings the global mechanism type 2 always 

provides lower forces. Therefore all values of mechanism type 1 that lie above the line for the 

global mechanism type 2 (landslide pressure) in Figure 4-7 (a) cannot be reached. For a light 

building (𝛽 < 1), in moderate to steep slopes, the force decreases with increasing embedment 

depth. In mildly inclined slopes the building acts as a geometrical constraint and therefore even 

light buildings cause a significant increase of the force, potentially exceeding the landslide 

pressure. At weight compensation (𝛽 = 1) the force given by both global mechanisms is equal 

and therefore this point represents the switchover between the two mechanisms (Figure 5-7 (b)). 

However, for strongly embedded buildings in mild slopes, where the geometrical constraint of 

the building increases the force, the landslide pressure becomes governing also for buildings 

lighter than those with weight compensation (Figure 5-7 (b), 휃 = 10°). 

  

 

Figure 5-7. Normalised horizontal forces in the sliding body 𝐾𝑙ℎ at global failure: (a) depending on the slope 

inclination 휃, the weight compensation ratio 𝛽 and the relative embedment depth 휂; (b) depending on the 

weight compensation ratio 𝛽 and the slope inclination 휃. 
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The results of the FEM analysis (Figure 5-8) show the evolution of the total normalised 

horizontal force in the sliding body upslope of the building 𝐾𝑙ℎ, the normalised horizontal force 

on the building 2𝑃𝑢ℎ/(𝛾𝑡2) and the normalised horizontal force in the remaining part of the 

sliding body beneath the building 2𝑅12ℎ/(𝛾𝑡2). Note that all forces are normalised using the 

thickness of the sliding body 𝑡. Starting from the initial conditions all three forces increase until 

the force on the building reaches its maximum at local failure. All additional loading caused by 

the landslide is redistributed through the remaining part of the sliding body beneath the building 

until a plateau is reached. At this point the global mechanism has fully developed and no further 

loading is possible (see plastic strain increment plot in Appendix 5-3). Nevertheless, a further 

redistribution from 𝑃𝑢ℎ to 𝑅12ℎ is possible which leads to a slight unloading of the wall. In the 

FEM analyses this redistribution was only observed in cases with reduced interface strength. 

The FEM analysis shown in Figure 5-8 was performed with reduced interface friction  

𝛿 = 2/3 𝜑′. A part of the failure took place along the base of the building (see Appendix 5-3, 

Figure 5-12 (b)) and therefore the total force is slightly lower compared to the analytical solution. 

For not reduced interface friction, however, the limit analyis solution is close to the FEM results 

(Figure 5-7 (a)). Note that in the case of heavy buildings, 𝛽 > 1, the global failure mechanism 

does not include the building and coincides with the landslide pressure. Therefore, the FEM 

results coincide with the results of a building with weight compensation, 𝛽 = 1. 

  

 

Figure 5-8. Evolution of normalised horizontal forces in the FEM model using the same parameters as in 

Figure 5-5 (d). 
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5.6.5 Approximation of the time to local failure 

Though the upper-bound solution allows estimating the ultimate loads on a building at the limit 

state, the time necessary to reach this state remains an open question. With a parametric study 

using the FEM the strain needed to reach this state was investigated (Figure 5-9). For different 

average soil stiffness the necessary mean horizontal strain in the vicinity of the building to reach 

local failure was evaluated. 

If the strain rate in a landslide is known, the critical average horizontal strain 휀ℎ𝑓 in the vicinity 

of the building can be transformed into the time needed to reach local failure. For example in the 

Brattas landslide in St. Moritz, Switzerland, an average compression strain rate of  

0.2 𝑚𝑚/(𝑚 ∙ 𝑦𝑒𝑎𝑟) has been observed in large parts of the built-up area (internal report IGT 

1994), leading to the local failure times provided in the second ordinate of Figure 5-9. In this 

example, for reasonable ranges of the building weight and the stiffness of the sliding body the 

local failure is reached after 3÷30 years, which is likely to be within the lifetime of a building. 

Only very heavy buildings require more time to reach local failure. Note that the time to failure 

increases with decreasing initial stresses. In the FEM analysis the initial stresses were rather low 

(𝐾0 ≈ 0.4) therefore the analysis represents an upper estimate for the time until local failure is 

reached. 

  

 

Figure 5-9. Critical horizontal strain needed to reach local failure depending on the stiffness of the soil for 

an example case. 



 Chapter 5: Ultimate loads on buildings in landslides 

 

 
87 

 Conclusions 5.7

The loads on the buildings embedded in permanently moving landslides increase over time, 

eventually leading to a local limit state where the soil in the vicinity of the building fails. In this 

work the ultimate loads have been quantified for the special case of a building in the compression 

zone of a landslide. The applied limit analysis and the FEM proved to be suitable tools for the 

evaluation of the limit loads and the loading history, respectively. 

It was demonstrated that, compared to stable slopes, the loads on a building in a landslide can be 

significantly higher. As the analytical solutions are derived using the kinematic method they 

represent upper-bounds of the loads. The solutions are applicable for the assessment of existing 

and the design of new buildings in landslides, potentially preventing future damage. In addition 

to the geometry of the building and the slope, the only parameters needed for such an analysis are 

the soil friction, the interface friction, the weight of the soil and the building. Note that, from 

equations (5-18), (5-23), (5-24) and (5-26) it follows that the ultimate load on the building is 

independent of the depth and inclination of the slip surface. 

Further compression of the landslide after the local limit state leads to a global failure of the 

whole sliding body. Buildings lighter than the excavated soil may evoke such a failure in their 

vicinity at a lower force in the sliding body and therefore earlier in time. 

The results of the local and global failure mechanisms allow the discussion of the following 

design concepts for buildings in the compression zone of permanently moving landslides. 

(i) Preventing the local limit state during the lifetime of a building should keep the relative 

displacements low in its vicinity. This might reduce damage to connected non-ductile 

structures such as pipes or electrical lines. However, it was shown that significant delay 

in local failure can only be achieved for heavy buildings resulting in higher ultimate 

loads. 

(ii) Light buildings with low interface friction experience lower ultimate loads resulting in a 

cheaper structure. It may, however, lead to accelerated global failure in the vicinity of the 

building and therefore such a weakening of the sliding body should be avoided. 

(iii) The results derived from the local and global failure mechanisms suggest that in order to 

avoid premature global failure and at the same time minimise the loads acting on the 

building, it should be designed to imitate the sliding body by using weight compensation 

and high interface strength. 

For the proposed design case of not reduced interface strength (𝛿 = 𝜑′) and weight compensation 

(𝛽 = 1), in average to steep slopes the ultimate loads on the uphill wall of a building coincide 

with the landslide pressure calculated using equation (5-32). In other cases the minimum load 

derived from the four local mechanisms, equation (5-28), is to be applied. In contrast the limit 

state of the soil at the downhill wall corresponds to the classical passive earth pressure problem 



5.7 Conclusions 

 

 
88 

and therefore these well-known solutions can be used. The ultimate loads on the uphill and the 

downhill wall can be used to design the bending and shear capacity of the respective walls. 

Furthermore, it should be noted that the load transfer between these exterior walls and the bottom 

plate has to be studied carefully. The solutions for the ultimate loads on a rectangular building 

where derived on the assumption of plane strain conditions, homogeneous soil and constant 

velocity field over the depth of the sliding body, imposing some limitations on their application. 

The presented approach of investigating the local and global limit states, however, could be 

extended to more general building and slope geometries, other velocity fields (for example in 

extension zones or shear zones) and 3D situations.  
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 Appendix 5-1: Discrete velocity step 5.8

The solution of the local limit state requires the introduction of a discrete velocity step in the 

sliding body beneath the building. Here, the influence of a continuous velocity gradient is 

investigated (Figure 5-10 (a)). The velocity decreases between the uphill edge of the building, 

point A, and a certain point along the base, point D. While above the building the sliding body 

moves at the velocity 𝒗1 it is at rest downslope of point D, 𝒗2 = 0. The construction of the 

hodograph (Figure 5-10 (b)) shows that only between point D and E, where the underlying soil is 

at rest, the relative velocities coincide with the absolute velocity of the building 𝒗3. Between 

point A and D the relative velocities are inclined with respect to the absolute velocity of the 

building resulting in a tension crack in the interface. The admissibility of this tension crack is 

shown in Figure 5-10 (c) and as cohesionless material was considered no internal dissipation has 

to be taken into account. The position of point D can be shifted along the base of the building 

with the two extremes of point D equal to point A or point E, in any case the velocity field 

remains kinematically admissible. Note that the absolute velocity of the building is not altered by 

the location of point D, which leads to the conclusion that the exact velocity field in the sliding 

body has no influence on the external work rate done by the building. 

 

Figure 5-10. Velocity step beneath the building for the local failure mechanism type 1: (a) geometry, velocity 

field and relative velocity along the base; (b) hodograph; (c) velocity vectors in the  
𝜏 − 𝜎 space. 

 Appendix 5-2: Hodographs and weights 5.9

To derive the work equation the velocities of all the moving blocks are expressed as a function of 

the geometry and the velocity of the landslide 𝒗1. The hodographs are illustrated in Figure 5-11 

(a) for the local mechanism type 1, in Figure 5-11 (b) for the local mechanism type 2 and in 

Figure 5-11 (c) for both types of global mechanisms. The velocity of the uphill part of the sliding 

body is inclined by 휁 with respect to the horizontal. 

 

Figure 5-11. Hodographs for: (a) the local failure mechanism type 1; (b) the local failure mechanism type 2; 

(c) the global failure mechanism type 1 and type 2  
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5.9.1 Local failure mechanisms 

For the local mechanism type 1 the velocity ratios between block 3 and 1 is derived to 

|𝒗3|

|𝒗1|
 =

sin(𝜑′̃ + 𝜔1 − 휁)

sin(𝜑′̃ + 𝛿 + 𝜔1)
 (5-34) 

and between block 4 and 1 it is 

The weight of block 3 is the sum of the weight of the building 𝐺𝑏 and the weight of the uphill 

wedge. Block 4 only consists of a single soil wedge. 

For the local mechanism type 2 only the velocity ratio 

|𝒗3|

|𝒗1|
 =

sin(𝜑′̃ + 𝜔1 − 휁)

sin(𝜑′̃ + 𝜑′ + 𝜔1 − 𝜔2)
 (5-37) 

and the sum of the weight of the building and both soil wedges is required 

|𝑮3| = 𝐺𝑏 +
𝛾𝑑1

2

2
(

1

tan 𝜔1 − tan 휃
+

1

tan 휃 − tan 𝜔2
) −

𝛾(𝑑1
2 − 𝑑2

2)

2
cot 휃 (5-38) 

For both local failure mechanisms the work equation can be written as follows (for mechanism 

type 2 set |𝑮4| = 0): 

|𝑹13| sin(𝜑′̃ + 𝜔1 − 휁) − |𝑮3|
|𝒗3|

|𝒗1|
sin 𝛿 − |𝑮4|

|𝒗4|

|𝒗1|
sin(𝜑′ − 𝜔2) = 0 (5-39) 

Note that |𝑹13 | is independent of 휁 when the expressions for the velocity ratios from above are 

applied.  

|𝒗4|

|𝒗1|
 =

cos 2𝛿

cos(𝜑′ + 𝛿 − 𝜔2)

sin(𝜑′̃ + 𝜔1 − 휁)

sin(𝜑′̃ + 𝛿 + 𝜔1)
 (5-35) 

|𝑮3| = 𝐺𝑏 +
𝛾𝑑1

2

2

1

tan 𝜔1 − tan 휃
 

|𝑮4| =
𝛾𝑑2

2

2

1

tan 휃 − tan 𝜔2
 

(5-36) 
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5.9.2 Global failure mechanisms 

The velocity ratios of the two global mechanisms are equal and can be derived with Figure 5-

11 (c). 

|𝒗3|

|𝒗1|
=

sin(𝜑′ + 𝛼 + 𝜔1 − 휁)

sin(2𝜑′ + 𝜔1 + 𝜔2)
 (5-40) 

The expression for the weight of the block 3 for the global mechanism type 1 results in 

|𝑮3| = 𝐺𝑏 +
𝛾

2
[(𝑡 +

(𝑡 − 𝑑1)(tan 𝛼 − tan 휃)

tan(𝛼 + 𝜔1) − tan(𝛼)
)

2

 

⋅ (
1

tan(𝛼 + 𝜔1) − tan 휃 
+

1

tan 휃 + tan(𝜔2 − 𝛼)
) − (𝑑1

2 − 𝑑2
2) cot 휃] 

(5-41) 

and for the global mechanism type 2 it is 

|𝑮3| =
𝛾𝑡2

2

cos2 𝛼 sin(휃 − 𝛼 + 𝜔2)sin (𝜔1 + 𝜔2)     

sin2 𝜔2 sin(𝛼 − 휃 + 𝜔1)
 (5-42) 

For both global failure mechanisms the work equation can be written as follows 

|𝑬𝑙| sin(𝜑′ + 𝛼 + 𝜔1 − 휁) − |𝑮3|
|𝒗3|

|𝒗1|
sin(𝜑′ − 𝛼 + 𝜔2) = 0 (5-43) 

Similar to the local mechanisms the ultimate force in the sliding body at global failure is 

independent of 휁.  
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 Appendix 5-3: Plastic strain magnitude increment plots 5.10

In Figure 5-12 the plastic strain increments are illustrated for (a) local failure and (b) global 

failure, considering a building with weight compensation (𝛽 = 1) and reduced interface strength 

(𝛿 = 2/3 𝜑′). In (c) and (d) local and global failures are illustrated for a heavy building (𝛽 =

1.25) with not reduced interface strength (𝛿 = 𝜑′). The analytically derived velocity 

discontinuities are shown with solid lines for comparison, fitting closely the plastic strain 

increments of the FEM solutions. 

 

Figure 5-12. Plastic strain magnitude increments: (a) local and (b) global failure for a building with weight 

compensation and reduced interface friction; (c) local and (d) global failure for a heavy building with not 
reduced interface friction. Solid lines represent the analytical velocity discontinuities.  
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 Notation 5.12

�̇�𝑖  Internal dissipation rate 

𝑑1  Embedment depth of the building at the uphill wall 

𝑑2  Embedment depth of the building at the downhill wall 

𝐸  Young’s modulus in the FEM Model 

𝑬𝑙  Total force in the sliding body 

𝐸𝑙ℎ  
Horizontal component of the force in the sliding body for the global failure 

mechanisms 

𝐺𝑏  Weight of the building 

𝑮𝑖  Weight of the rigid blocks in the mechanisms 

𝐾0  At rest earth pressure coefficient 

𝐾𝑑ℎ  Normalised horizontal component of the downhill wall force 

𝐾𝑑𝑣  Normalised vertical component of the downhill wall force 

𝐾𝑙ℎ  Normalised horizontal component of the force in the sliding body 

𝐾𝑢ℎ  Normalised horizontal component of the uphill wall force 

𝐾𝑢𝑣  Normalised vertical component of the uphill wall force 

𝑃𝑑ℎ  Horizontal components of the downhill wall forces 

𝑃𝑢ℎ  Horizontal components of the uphill wall forces 

𝑹𝑖𝑗  Internal resistance forces in the mechanisms 

𝑅𝑖𝑗ℎ  Horizontal component of an internal resistance force in the mechanism 

𝑹𝑠𝑠  Resistance force on the slip surface 

𝑡  Vertical thickness of the sliding body at the uphill wall of the building 

𝒗𝑖  Velocity for the limit state analysis and velocity of a boundary in the FEM model 

�̇�𝑒  External work rate 

𝛼  Inclination of slip surface 

𝛽  Weight compensation ratio 𝛽 =  2𝐺𝑏/ ((𝑑1
2 − 𝑑2

2)𝛾 cot(휃)) 

𝛾  Unit weight of soil 

𝛿  Soil-building interface friction angle 

휀ℎ  
Average horizontal strain in the sliding body 

(measured between two points outside the range of the local mechanism) 

휀ℎ𝑓  Average horizontal strain in the sliding body when reaching local failure 

휁  Inclination of the velocity vector 𝑣1 

휂  Relative embedment depth 휂 = 𝑑1/𝑡 

𝜆  Embedment ratio 𝜆 = 𝑑2/𝑑1 

𝜈  Poisson ratio in the FEM model 

휃  Inclination of slope surface 

𝜑′  Angle of internal friction in sliding body 

𝜑2
′   Angle of internal friction in slip surface 

�̃�′  Friction angle at the uphill velocity discontinuity in the local failure mechanism 

𝜓  Angle of dilatancy in the FEM model  

𝜔𝑖  Angle of the velocity discontinuity 

𝜒  Substitution parameter in the solution of the local failure mechanism 
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PART B: APPLICATIONS OF FIBRE-OPTIC 

SENSORS IN GEOMECHANICS 

 Ground-buried fibre-optic sensors for object identification 6

This chapter has been submitted as an article: 

Friedli B., Pizzetti L., Hauswirth D. & Puzrin A.M., (2018) Ground-buried fibre-optic sensors for 

object identification, ASCE Journal of Geotechnical and Geoenvironmental Engineering, under 

review, manuscript submitted 09/05/2017. 

 Abstract 6.1

Currently available perimeter-security systems use ground-buried fibre-optic sensors to detect 

objects on the ground surface, and some of them compare the observed signal patterns with those 

in a predefined library to identify specific types of objects. Such qualitative approaches neglect, 

however, a wealth of information contained in the measured signal. Here a more rational 

approach is presented that uses ground-buried distributed fibre-optic strain sensors with very high 

spatial and strain resolution to quantify the strain field induced by an object in contact with the 

ground surface. The contact interactions on the ground surface are calculated from the strain 

measurements using a mechanical soil model and inverse analysis algorithms similar to those 

used in image deblurring. The approach should enable a variety of applications where the 

knowledge of contact interactions on the ground surface is beneficial, from biodiversity survey, 

perimeter security and weigh-in-motion systems to biomechanical applications and sports 

medicine.  
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 Introduction 6.2

Any object touching the ground applies contact forces to the ground surface. These contact forces 

induce stresses in the subsurface that in turn lead to a deformation of the ground. Measuring such 

ground deformations enables the detection and possibly identification of objects on the ground 

surface, opening up several possible applications. One of them is perimeter security, where 

ground-buried fibre-optic sensors (FOSs) are used already and offer a number of advantages 

compared to conventional systems such as ultrasonic, radar or photo-electric sensors. In general, 

FOSs have high sensitivity, long-distance sensing capabilities and are immune to electro-

magnetic interference. They are relatively easy to install in a trench in the ground and they do not 

require electrical power at the sensing location. 

Early intrusion-sensing systems used conventional optical time-domain reflectometry (OTDR) 

and ground-buried FOSs (Taylor & Lee 1993) to detect frequency shifts induced in the reflected 

light upon stressing the fibre. This idea was improved on by combining the buried FOSs with 

different, more quantitative interrogation modalities, including phase-sensitive or coherent 

OTDR (𝜙-, C-OTDR, Park & Taylor 2003; Owen et al. 2012; Hong et al. 2010; Juarez et al. 

2005; Kirkendall et al. 2007; Juarez & Taylor 2007) and Brillouin OTDR (BOTDR, Kwon et al. 

2002; Nikles 2009). In a next step towards identifying an intruder, the ‘signature’ of specific 

events was extracted (Madsen et al. 2007; Madsen et al. 2008). More recently, it was proposed to 

train the system using a predefined library of signals corresponding to events of interest (Wu et 

al. 2015). A measured event is then compared to those stored in the system. However, such 

systems are only able to classify previously known events and may be prone to misclassification 

caused by environmental influences, such as rain or snow, or seasonal changes in the mechanical 

behaviour of the ground. Another interesting application of FOSs lies in the detection of 

underground tunnels (built for smuggling) using BOTDR (Klar & Linker 2010) and swept 

wavelength interferometry (SWI, Klar et al. 2014) where the tunnels are detected using wavelet 

decomposition of the measured strain signals. 

 

Figure 6-1. Basic principle of object identification with buried fibre-optical cables measuring the strain field 

induced by surface loads. 
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To overcome the limitations of currently available intrusion detection systems, distributed FOSs 

based on SWI to measure Rayleigh scattering (Gifford et al. 2007; Froggatt et al. 2006) in 

standard single-mode optical fibres are used to quantitatively measure the strain field in the 

ground (which corresponds to the derivative of the displacement field with respect to the sensor 

coordinate). Such a strain-sensing system is commercially available (optical backscatter 

reflectometer (OBR) 4600, Luna Inc., Roanoke VA, US) and enables measuring deformations 

with an unprecedented strain and spatial resolution of < 1 𝜇휀 and 5 mm, respectively (Gifford et 

al. 2007), providing an accurate image of the strain field in the ground along the fibre axis. Here 

a framework for using such a system for quantitative object identification is established, based on 

inversely calculating the contact forces acting on the surface from the FOS measurements and a 

mechanical model of the ground (Figure 6-1). As practical applications are often based on linear 

systems (for example in perimeter security or in weigh-in-motion of road traffic), the FOSs are 

buried in a parallel layout in a shallow trench in the ground. Calculating the contact forces acting 

on the ground surface enables the identification and classification of objects based on their 

respective contact-force patterns. A patent on the idea of object identification has been filed 

(Puzrin et al. 2013). 

 Experimental setup 6.3

For the proof-of-concept demonstration, a test site consisting of a shallow trench in the field was 

developed; where FOSs have been buried in a serpentine layout with five parallel sections of 

sensor cables (Figure 6-2). The length of each section is approx. 6 m, the spacing between them 

0.25 m and the burial depth 0.4 m. Tight-buffered single-mode fibres with polyethylene coating 

to ensure mechanical safety in the rather rough conditions within the trench were used (details to 

the sensor cables are presented in Appendix 6-1). The sensor cables were further protected by 

thin sand layers within the refilled and compacted soil material. Three different cable types were 

installed to test the influence of different longitudinal stiffness and surface corrugation of the 

cables. Here only the results using the most promising sensor cables are presented. The end of the 

sensor cable that is connected to the OBR 4600 enters the soil through a shaft whereas the 

second, free end is installed in a shaft at the other end of the experimental site. 

During the experiment the ground surface was loaded with polyvinylchloride cylinders of 0.1 m 

diameter filled with lead. The lead filling allowed realizing different masses between 10 kg and 

50 kg. The loading cylinders were placed on a thin sand cushion to flatten the natural ground 

surface and ensure better contact. First a reference measurement without loading was performed 

before arranging the cylinders on the ground and measuring under load. To avoid undesired 

loading of the ground surface, the cylinders were placed from a bridge structure spanning across 

the test site (for further information, see the Appendix 6-2). 
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 Inverse Analysis 6.4

Calculation of a strain field at the level of the ground-buried FOSs, caused by contact forces 

between the object and the ground, requires a mechanical model of the ground. For normal 

traction, this problem can be mathematically formulated as a half space loaded on its free surface 

(shear traction is assumed to be negligible.) Although the constitutive behaviour of soil is in 

general nonlinear and anisotropic, the assumption of linear isotropic elasticity is a first-step 

approximation that enables using an efficient numerical solution of the inverse problem. The 

effects of soil nonlinearity are discussed below. For the problem of a linear isotropic half space 

loaded on its free surface, a well-known analytical solution exists (Boussinesq 1885; Green & 

Zerna 1968). The strain field in the ground follows from the solution of the Laplace equation for 

the potential function of the displacements 𝜙, 

Δ𝜙 = 0 (6-1) 

For the boundary condition of a normal point force acting at the origin on the free surface and 

using Cartesian coordinates (𝑥, 𝑦, 𝑧), the solution of the potential function takes the form 

𝜙 = −
𝑃(1 + 𝜈)

2𝜋𝐸
ln(𝑅 + 𝑧);  𝑅 = √𝑥2 + 𝑦2 + 𝑧2 (6-2) 

where 𝑃 is the magnitude of the point force and 𝐸 and 𝜈 the Young’s modulus and the Poisson 

ratio of the half space, respectively. 

 

Figure 6-2. Experimental setup of the buried FOSs; (a) plan view; (b) cross-section; (c) FOSs during 

installation in the trench; (d) layout of the experiment after refilling the trench and grass grown over it. 
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This solution has a singularity at the origin, which could be lifted by applying finite-strain theory. 

However, for the problem at hand, only displacements at the depth of the buried FOS are of 

interest, and these are sufficiently far away from the origin. The horizontal strains 휀𝑥𝑥 are 

calculated by differentiating the potential function with respect to the in-plane coordinate 𝑥 and 

the vertical coordinate 𝑧 (for the full derivation of the elastic strain function see Appendix 6-3). 

휀𝑥𝑥 = (1 − 2𝜈)𝜙,𝑥𝑥 + 𝑧𝜙,𝑥𝑥𝑧 

=
𝑃

𝐸
⋅

(1 + 𝜈)

2𝜋
[
(1 − 2𝜈) (2 +

𝑧
𝑅

) 𝑥2

𝑅2(𝑅 + 𝑧)2
−

(1 − 2𝜈)

𝑅(𝑅 + 𝑧)
+

(𝑅2 − 3𝑥2)𝑧

𝑅5 ] 

=
𝑃

𝐸
⋅ 𝑓(𝑥, 𝑦 , 𝑧, 𝜈) 

(6-3) 

As linear elastic behaviour of the soil is assumed, the superposition principle holds and the strain 

field caused by an arbitrary force distribution on the surface, 𝑞(𝑥𝑝, 𝑦𝑝), is determined by the 

convolution of the force distribution with the strain mapping function from equation (6-3): 

휀𝑥𝑥 = ∫ ∫
𝑞(𝑥𝑝, 𝑦𝑝)

𝐸
⋅ 𝑓(𝑥𝑐 − 𝑥𝑝, 𝑦𝑐  − 𝑦𝑝, 𝑧𝑐 , 𝜈)𝑑𝑦𝑝

∞

−∞

𝑑𝑥𝑝

∞

−∞

 (6-4) 

where 𝑥𝑝, 𝑦𝑝 denote the coordinates of the force distribution on the surface and 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 are the 

coordinates of the point in the ground where the strain is evaluated. In the inverse problem, the 

force distribution acting on the surface can be found from equation (6-4) by deconvolution. This 

 

Figure 6-3. Analogy of surface-load identification to blurred-image restoration. 
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problem is ill-posed; that is, whereas a unique solution does exist if more than one FOS with non-

zero spacing is used, the stability of the solution is sensitive to small errors in the strain 

measurements (Hadamard 1902). It turns out, however, that the present problem has an analogy 

in the restoration of blurred images in photography, where distortions (for example, due to 

unwanted or engineered imperfections in the camera system) lead to a blurred image as the real 

image is convoluted with a point spread function (PSF). Numerous numerical approaches have 

been developed to deblur images based on prior knowledge of the PSF. In our case, the strain 

field at the depth of the FOS can be regarded as the blurred image of the surface forces, and the 

elastic strain mapping function 1 𝐸⁄ ⋅ 𝑓(𝑥, 𝑦, 𝑧, 𝜈) in equation (6-3) is analogous to the PSF in 

image restoration (Figure 6-3). However, because the strain field only along discrete linear 

sections is measured, not the entire planar image is available. 

The identification of surface loads from real strain measurements requires the discretisation of 

the inverse problem into single point loads acting on a grid at the surface (Figure 6-4). The 

discrete strain measurements and the load distribution are transformed into vectors 𝜺𝑥𝑥 and 𝒑, 

respectively, and the elastic-strain mapping function becomes the mapping matrix 𝑨. The forward 

problem is then described as a system of linear equations where the matrix 𝑨 is found from 

mapping point forces with coordinates 𝑥𝑝, 𝑦𝑝 at the surface to discrete strain points on the FOS 

cables with coordinates 𝑥𝑐 , 𝑦𝑐 , 𝑧𝑐 (Figure 6-4) using the elastic-strain mapping function given in 

equation (6-3): 

𝜺𝑥𝑥 = 𝑨𝒑 (6-5) 

Tikhonov regularisation (Hansen 1992; Tikhonov 1943) and a fast non-negative least-squares 

algorithm (Lawson & Hanson 1974; Zdunek 2011; Bro & De Jong 1997) is used to solve 

numerically for the optimal load vector 𝒑𝑜𝑝𝑡. The non-negativity constraint is used as no tension 

forces can exist between an object and the ground surface. This constraint enhances the stability 

of the solution significantly as it prevents force oscillation around zero, providing an additional 

regularizing effect. The problem therefore becomes 

𝒑𝑜𝑝𝑡 = argmin
𝒑≥0

{‖𝑨𝒑 − 𝜺𝑥𝑥‖2
2 + 𝜆‖𝑳𝒑‖2

2} (6-6) 

where 𝜆 is the regularisation parameter, which we optimised using simulations with synthetically 

produced strain data (the full optimisation procedure is described in Appendix 6-4). 𝑳 is a penalty 

matrix, which can contain prior information on the position of surface forces. A matrix of ones 

𝑳𝑖𝑗 = 1 is used, prescribing that every load and corresponding magnitude in the grid is equally 

probable. Other penalty matrices (based on fitting the strain data perpendicular to the cables with 

a Gaussian or a Lagrangian polynomial) have been tested. While raising computational cost, they 

did not improve the quality of the inverse analysis significantly. For the results shown in this 

chapter, a discretisation grid for the surface loads with 𝑁 =10’000 nodes on an area of 4 m x 4 m 

was used. It is possible that multiple neighboring loads on the grid approximate the strains caused 

by one load in the experiment better than one single load acting at one grid node. The loads that 
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are closer to each other than the diagonal of the square in the grid are aggregated to a single 

equivalent static load, leading to a sub-grid resolution of the load location (see Appendix 6-5). 

For the successful identification of surface loads, the two elastic parameters of the strain-mapping 

function have to be known a priori. This can be ensured by determining these parameters using 

laboratory tests on a soil sample or by calibrating them inversely by performing on site strain 

measurements with known loads. Such a calibration, however, is complicated by the fact that the 

stiffness of the soil is strongly nonlinear at the very low strains present in our problem (Friedli & 

Puzrin 2015). (This phenomenon is known in geomechanics as small-strain nonlinearity (e.g., 

Burland 1989)). In general, soils do not even behave elastically; that is, after removal of the loads 

a small irreversible strain remains. Accounting for this nonlinear constitutive behaviour in the 

half-space model would affect the analytical expression for the strain-mapping function and 

prevent the use of the superposition principle. Therefore, as an approximation it is assumed that 

the entire soil behaves as a linear elastic half space and correct for the nonlinearity based on the 

magnitude of the applied load. Equation (3) shows that the strain field is linearly dependent on 

the Young’s modulus 𝐸, which means that each calculated load has only to be corrected to 

account for the nonlinear Young’s modulus 𝐸, assuming that the Poisson ratio remains constant 

(which is approximately the case in our experiment). In a first step the load distribution is 

calculated for an average constant Young’s modulus. Because the stiffness depends on strain and 

therefore on load, in a second step each load is corrected to be compatible with the load-

dependent stiffness. The loads are corrected by using a characteristic curve that correlates the 

magnitude of each load 𝑃 to the corresponding soil stiffness 𝐸(𝑃). This curve is obtained 

experimentally by loading the ground surface in steps over the entire expected load range and 

inversely optimising the ‘pseudo-elastic’ stiffness parameters (for details, see the Appendix 6-6). 

Although the approach does not solve the true nonlinear strain field for all calculated loads, it 

was found to perform well in accurately identifying their magnitudes. 

 

 

 

Figure 6-4. Discretisation of the surface loads in a grid. 
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 Results 6.5

The three different load patterns tested in the experimental study are presented in Figure 6-5 (a)-

(c), with the corresponding results of the inverse analysis given in Figure 6-5 (d)-(f). Where both 

the shape of the loads and their location are captured reasonably well, the reconstructed 

magnitudes show small deviations from the real values. The study shows that the accuracy of the 

calculated loads is higher for loads placed within the perimeter of the buried cables, in particular 

for the line load configuration (Figure 6-5 (b), (e)). Loads placed outside this perimeter are 

reconstructed with lower accuracy in both position and magnitude. This can be explained by the 

smaller amount of available measured strain data (that is, a smaller part of the strain image is 

captured by the FOSs). For the circle load configuration (Figure 6-5, (c), (f)) the inverse analysis 

yields a lower number of loads than have been present in the experiment. This is a direct result of 

 

Figure 6-5. (a)-(c) Experimental load patterns, (a) point, (b) line,(c) circle. (d)-(f) Reconstructed load 

patterns, (d) point, (e) line, (f) circle (dot size and shading indicate the load magnitude). (g)-(i) Measured and 
reconstructed strain along FOS, (g) point, (h) line, (i) circle; the reconstructed strain corresponds to the 
inversely calculated loads in (d)-(f). 
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the regularisation and the aggregation of loads, which prefers solutions with a low number of 

loads and high magnitudes. 

For practical applications, the point load configuration (Figure 6-5 (a), (d)) is probably the most 

realistic one, as objects moving on the ground usually consist of a small number of feet or 

wheels, leading to a sparse contact-force pattern on the surface. 

 Discussion and conclusions 6.6

The inversely calculated surface loads (Figure 6-5 (g)-(i)) induce theoretical strains that match 

well the measured ones. However, there are some deviations, most likely as a result of soil 

inhomogeneity (that is, spatially variable stiffness). The measured strain magnitudes for all three 

load cases are very small (5–15 µε) and the corresponding noise levels in the measurements are 

therefore rather high. The tiny strain magnitudes and the resulting low signal-to-noise ratio 

(SNR) for the circular load pattern are another possible explanation for the accuracy loss 

affecting the inverse analysis in that case. Nonetheless, the accuracy of the inverse analysis of 

surface loads seems rather remarkable, considering that the mechanical system (that is, the 

ground) is made of non-engineered natural material. 

Ground-buried FOSs with high-resolution SWI strain sensing provides a powerful tool for the 

identification of surface loads. Despite some inaccuracies in load magnitude and position outside 

the area of buried cables, the framework introduced here enables capturing successfully and 

accurately different load patterns. A combination of such a system with high-temporal-frequency 

sensing (which is already commercially available for sensing lengths smaller than tens of meters) 

should provide a dynamic-load identification system. The spatial and temporal distributions of 

contact forces attained in this way could be used as an input for pattern recognition with machine 

learning, to identify objects moving on the ground surface. The knowledge of the contact-force 

distributions provides more information about the object compared to correlating measurements 

to a pre-defined library of signals. One of the main issues towards real-time identification is the 

computational time of the inverse analysis. One possible approach to reducing it is to use already 

reconstructed load patterns of past time frames as prior estimators for the reconstruction of the 

current measurement frame under load, for example using the penalty matrix 𝐿 in equation (6-6). 

Further improvements of the reconstruction could be achieved by using FOSs buried in shallower 

depth, leading to more favourable SNRs; a drawback of this approach, however, is that the 

elastic-strain function is narrower and that therefore less information can be gathered by one 

FOS, thus reducing the robustness of the reconstruction for loads outside the perimeter of the 

FOSs. Therefore the optimal depth has to be found for a particular application depending on the 

expected magnitude of loads, the stiffness of the soil and the desired width of reliable 

identification around the FOSs. 

6.6.1 Outlook 

Further improvement of distributed strain sensing, and therefore longer sensing distances with 

comparable high strain and spatial resolution, would open up a path for several practical 
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applications. In particular, the ability to identify the number and magnitudes of contact forces 

makes it possible to discriminate, for example, between bipedal humans and quadrupedal 

animals, which should reduce the number of false alarms in perimeter-security systems. Such 

systems would strongly benefit if, in addition to their detection, intruders could also be classified 

based on their contact-force pattern. In biodiversity measurements, the step lengths and 

corresponding contact-force magnitudes, which differ from species to species, can be used to 

discriminate between different species. In this way the number of animals of each species could 

be counted as they cross a line perpendicular to their common migration path. Based on the 

identification of load magnitudes, dynamic weigh-in-motion systems for road traffic and airports 

could be developed, where the FOSs are embedded into the asphalt. The ability to measure the 

contact forces for each wheel independently should facilitate the classification of vehicles, such 

that in addition to the load of the entire truck also that of individual axes — caused, for instance, 

by improper placement of the freight — could be checked. Finally, in biomechanical applications 

and sports medicine, the contact-force patterns could provide new insights regarding stresses on 

an athlete’s body during training and competition. 
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 Appendix 6-1: Description of the fibre-optic sensors 6.7

6.7.1 Fibre-optic sensor (FOS) cables 

In the experiment three different FOS cables were used, which vary in their structure, material, 

diameter and longitudinal stiffness. All three cables consist of a standard single mode fibre, 

which is coated with different plastic material to strengthen its behaviour in rough conditions in 

the ground (Table 6-1). The thinnest cable, GR, is rather vulnerable to mechanical damage and 

was only used to validate the other two. While the RU cable, which turned out to be the most 

promising in our application, has only a Polyethylene coating, the V9 cable has an additional 

metal jacket which makes it robust but also much stiffer. 

Table 6-1. FO cables used in the experiment 

Name GR RU V9 

Diameter (mm) 0.9 2.9 3.2 

Longitudinal stiffness (kN) 1.0 5.0 59 

Surface Smooth Smooth Corrugated 

6.7.2 Swept wavelength interferometry (SWI) 

The technique uses the Rayleigh backscattering caused by small random variations of the density 

and the refractive index in the fibre (e.g., Froggatt & Moore 1998). A laser source sweeps over a 

defined wavelength range and the backscattered light is measured using an optical interferometer. 

By performing a cross correlation analysis of the reference measurement and the measurement in 

the tested sensor, the spectral shift is found which linearly depends on the applied temperature 

and strain change (Figure 6-6), (Gifford et al. 2007). 

A commercially available interrogator from Luna Inc., (Luna 2012) was used. This device allows 

measuring strain and temperature with sensing ranges up to 70 m on single-ended fibres. In this 

study a spatial resolution of 5 mm was used, which allows strain resolution in the range of <1 με. 

 

Figure 6-6. Basic principle of swept wavelength interferometry, from Hauswirth (2015). 
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 Appendix 6-2: Details of the experimental facility 6.8

6.8.1 Pre-tensioned cables 

Figure 6-7 (a) shows the FOS cables in the trench of the experimental facility before its refilling 

by the excavated material. The three different cables were placed close to each other in a 

serpentine layout to form five parallel sections. The cables have to be pre-tensioned in order to 

measure strain changes accurately and ensure that the sections are straight. In particular, in order 

to measure compressive strains, a sufficiently high pre-tensioning level has to be reached. 

 

(a) 

 

(b) 

Figure 6-7. (a) Photo of the trench with pre-tensioned fibre-optic cables. Note, while here cables at a depth 

of 0.2 m are shown the presented experiment data is measured using FOS at a depth of 0.4 m; (b) Detail of 
the pre-tensioning of the FOS cables. 

In Figure 6-7 (b) the fixations used for the pre-tensioning are shown. All the cables were pre-

tensioned to a strain level of approximately 1500 με before the excavated material was refilled. 

After refilling and compacting the trench, the pre-tensioning fixations were released, therefore at 

both ends of each section the pre-tensioning is zero. However, the friction between the cables and 

the surrounding soil allows for building up of the necessary tension forces for the pre-tensioning 

over in a middle part of the experimental facility (Hauswirth 2015), where the loading of the 

ground surface during the experiment is applied. 

6.8.2 Three different cables 

A loading test on the three different cables was performed and the corresponding strain 

measurements are shown in Figure 6-8 (a). The most sensitive thin GR cable, which cannot be 

used under realistic harsh conditions in soil, is utilised here as a reference measurement. This 

cable captures the true strain of the soil most exactly due to its very low stiffness. While the 

stiffer cable RU differs only slightly at the peak strain value, the V9 cable with metal jacket 

dampens the measured strain peak significantly. This dampened measurement is most likely a 

result of the large longitudinal stiffness of the V9 cable which prevents the cable to follow 

exactly the deformations of the soil. It is concluded that the RU cable represents a good choice 

for the applications considered in this chapter; therefore the experiments are performed using 

only the measurements in this cable. 
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Figure 6-8. (a) Measured strain along the three different FOS cables for a point load of 85 kg placed directly 

above the cables. (b) Arrangement of the cylinders on the ground surface using a printed template for the 
correct placing (line load example). 

6.8.3 Loading of the ground surface 

The ground surface was loaded using Polyvinylchloride cylinders with an outer diameter of 

100 mm which are filled with lead balls. On the ground surface a thin sand cushion ensures good 

contact. The cylinders were placed on the ground surface using a bridge structure to prevent 

loading of the ground during placement of the loads. To ensure a correct arrangement of the 

loading cylinders a template was placed on the ground. The location and rotation of the poster 

were referenced with respect to fix points besides the experimental facility. This procedure 

allows positioning of the loading cylinders on the ground surface with an accuracy of 

approximately 1 cm. 

 Appendix 6-3: Elastic half space loaded on its free surface 6.9

For completeness, the derivation of the strain field in a homogeneous isotropic linear elastic half 

space (Boussinesq 1885) is revisited here. More general derivations are found in several 

textbooks on elasticity theory, e.g., Green & Zerna (1968). The stresses and strains are described 

in a Cartesian coordinate system since in the final application strains along a line are needed. The 

derivation is done using index notation. As only the change of strains due to surface loads is of 

interest, body forces are neglected. The equilibrium conditions are 

𝜎𝑖𝑗,𝑖 = 0 

𝜎𝑖𝑗 = 𝜎𝑗𝑖 
(6-7) 

In the problem of interest only small displacement gradients 
𝜕𝑢𝑖

𝜕𝑥𝑗
≪ 1 occur, therefore linearised 

Cauchy strain is used. 

휀𝑖𝑗 =
1

2
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖) (6-8) 
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As mentioned above, isotropic linear elastic constitutive behaviour is assumed. The constitutive 

law is written here in terms of the Lamé constants (Lamé 1852). 

𝜎𝑖𝑗 = 𝜆𝐼1𝛿𝑖𝑗 + 𝜇휀𝑖𝑗 (6-9) 

where 𝐼1 denotes the first invariant of the strain tensor 𝐼1 = 휀𝑖𝑖 and 𝛿𝑖𝑗 is the Kronecker delta. By 

inserting (6-9) and (6-8) into (6-7), special cases of the Navier equations are derived.  

(𝜆 + 𝜇)𝐼1,𝑖 + 𝜇Δ𝑢𝑖 = 0   (6-10) 

Introducing a potential function 𝜙 from which the displacements are calculated by 

𝑢𝑥 =
𝜇

𝜆 + 𝜇
𝜙,𝑥 + 𝑧𝜙,𝑥𝑧  

𝑢𝑦 =
𝜇

𝜆 + 𝜇
𝜙,𝑦 + 𝑧𝜙,𝑦𝑧  

𝑢𝑧 = −
𝜇

𝜆 + 𝜇
𝜙,𝑧 + 𝑧𝜙,𝑧𝑧 

(6-11) 

reduces the number of unknowns to a single function. Substituting the displacements (6-11) into 

equation (6-10) leads to the condition that the potential function has to satisfy the Laplace 

equation. 

Δ𝜙 = 0 (6-12) 

For the special case of a point load acting at the origin on the surface of a half space, the potential 

function 

𝜙 = −
𝑃

4𝜋𝜇
𝑙𝑛 (𝑧 + √𝑥2 + 𝑦2 + 𝑧2) (6-13) 

fulfils (6-12) and the stress boundary conditions on the free surface of the half space. 

𝜎𝑧𝑧(𝑧 = 0) = 0, 𝑥, 𝑦 ∈ ℝ\{0} 

∫ ∫ 𝜎𝑧𝑧(𝑧 = 0)𝑑𝑥

∞

−∞

𝑑𝑦

∞

−∞

= −𝑃. 
(6-14) 

The horizontal displacements are derived from the first equation in (6-11) and the Lamé constants 

are substituted by the Young’s-modulus 𝐸 and the Poisson’s ratio 𝜈: 

𝑢𝑥 =
𝑃𝑥(1 + 𝜈)

4𝜋𝐸
(

𝑧

𝑅3
−

2𝜈

𝑅(𝑧 + 𝑅)
) 

𝑢𝑦 =
𝑃𝑦(1 + 𝜈)

4𝜋𝐸
(

𝑧

𝑅3
−

2𝜈

𝑅(𝑧 + 𝑅)
) 

𝑅 = √𝑥2 + 𝑦2 + 𝑧2 

(6-15) 

Linear strains are calculated by differentiating the corresponding displacements with respect to x 

or y. The horizontal strain along the x-coordinate reads: 

휀𝑥𝑥 = 𝑢𝑥,𝑥 =
𝑃

𝐸
⋅

(1 + 𝜈)

2𝜋
[
(1 − 2𝜈) (2 +

𝑧
𝑅) 𝑥2

𝑅2(𝑅 + 𝑧)2
−

(1 − 2𝜈)

𝑅(𝑅 + 𝑧)
+

(𝑅2 − 3𝑥2)𝑧

𝑅5 ] 
(6-16) 
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 Appendix 6-4: Optimisation of the regularisation parameters 6.10

To optimise the regularisation parameter 𝜆 and the load grid of the inverse analysis a suite of 

synthetic experiments was performed. It was assumed that the ground behaves as an isotropic 

linear elastic material with a Young’s modulus 𝐸=35 MPa and Poisson ratio 𝜈=0.22. These 

stiffness parameters have been determined as average values in a preliminary field experiment. 

Synthetic strain measurements were produced using the half space solution shown in equation (6-

16). To simulate the random measurement error, a Gaussian noise was added. The parameters of 

the Gaussian noise were calibrated using a field measurement with zero load. 

For the assessment of the influence of the regularisation parameters two different error estimators 

were used: 

 Error 1: Force resultant error; this error describes the accuracy of the inversely calculated 

resultant load 𝑃𝑟𝑒𝑠,𝑐𝑎𝑙𝑐 with respect to the synthetically applied true load 𝑃𝑟𝑒𝑠,𝑡𝑟𝑢𝑒. This error 

estimator includes information on the accuracy of the magnitude of the surface load 

distribution. 

𝑒𝑟𝑟𝑜𝑟 1 = ‖
𝑷𝑟𝑒𝑠,𝑡𝑟𝑢𝑒 − 𝑷𝑟𝑒𝑠,𝑐𝑎𝑙𝑐

𝑷𝑟𝑒𝑠,𝑡𝑟𝑢𝑒
‖ (6-17) 

 Error 2: 2D strain error; this error estimator describes the accuracy of the calculated strain 

field in the whole plane at the depth of the FOS 𝜺𝑥𝑥,𝑐𝑎𝑙𝑐(𝑥, 𝑦, 𝑧𝑐) with respect to the forward 

calculated strain 𝜺𝑥𝑥,𝑠𝑦𝑛𝑡ℎ(𝑥, 𝑦, 𝑧𝑐) resulting from the synthetically applied loads and 

additional Gaussian noise. This error estimator includes information on the accuracy of the 

‘shape’ of the surface load distribution. 

𝑒𝑟𝑟𝑜𝑟 2 = ‖
𝜺𝑥𝑥,𝑠𝑦𝑛𝑡ℎ(𝑥, 𝑦, 𝑧𝑐) − 𝜺𝑥𝑥,𝑐𝑎𝑙𝑐(𝑥, 𝑦, 𝑧𝑐)

𝜺𝑥𝑥,𝑠𝑦𝑛𝑡ℎ(𝑥, 𝑦, 𝑧𝑐)
‖ (6-18) 

These error estimators were calculated for varying regularisation parameters 𝜆 and the three load 

patterns (point, line and ring load) and are shown in Figure 6-9 (a)-(d). In Figure 6-9 (c) the 

computational time is shown depending on 𝜆. The choice of the regularisation parameter is a 

trade-off between accuracy and computational time. In Figure 6-9 (d)-(e) the influence of the grid 

density on the error estimators is presented. It is shown that a denser grid increases the stability of 

the inverse analysis. However, this comes with increasing computational cost. For the presented 

experiment a grid with N=10’000 nodes is used. In Figure 6-9 (f)-(g) the influence of the Poisson 

ratio on the error estimators is presented for varying 𝜆. These considerations constrain the useful 

range of the regularisation parameter between 2.510
-11

 and 510
-11

. In the presented experimental 

study 𝜆 = 410
-11

 was used. 
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Figure 6-9. Error calculations and computation time for varying regularisation parameter 𝜆 based on 

synthetic experiments: (a) Regularisation parameter 𝜆 vs. Error 1 for the three load types. (b) Regularisation 

parameter 𝜆 vs. Error 2 for the three load types. (c) Regularisation parameter 𝜆 vs. computational time for 

the three load types. (d) Regularisation parameter 𝜆 vs. Error 1 for the three load types with three grid 

densities. (e) Regularisation parameter 𝜆 vs. Error 2 for the three load types with three grid densities. (f) 

Regularisation parameter 𝜆 vs. Error 1 for the three load types with three Poisson ratios. (g) Regularisation 

parameter 𝜆 vs. Error 2 for the three load types with three Poisson ratios. 
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 Appendix 6-5: Aggregation of loads 6.11

Here it is shown how multiple loads located close to each other in the grid are aggregated into 

one single static equivalent load. An algorithm similar to a k-d-tree is used which checks the 

distance of all non-zero forces to each other. The solution set merges all the loads which are 

within a certain distance from each other. Figure 6-10 shows schematically how this aggregation 

works. While load 4 is not aggregated, loads 1, 2 and 3 are aggregated to the new static 

equivalent load A. In the experimental study presented in the chapter the loads are aggregated 

which are closer to each other than the diagonal of one grid square. With N=10’000 nodes on an 

area of 4x4 m this distance corresponds to √2 ⋅ 0.04 m. 

 

Figure 6-10. Schematic sketch of the aggregation of surface loads. 

The inverse analysis, although regularised, often produces some small artefact loads which have 

to be excluded from the solution set. Synthetic experiments were performed where the magnitude 

of a point load at the origin was increased gradually. The corresponding error estimators are 

presented in Figure 6-11. At low load magnitudes the signal to noise ratio is low which leads to 

high errors, i.e., for our inverse analysis small load artefacts are likely to be caused by 

measurement errors. The error decreases strongly after reaching a load magnitude of 𝑃>4-5 kg. 

Therefore a threshold value of 5 kg was introduced below which the calculated loads are 

excluded from the solution set. 
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Figure 6-11. Error estimators of error 1 and error 2 depending on the load magnitude in the synthetic 

experiment with Gaussian noise 

In Figure 6-12 the inversely calculated loads are shown of the presented experimental study 

before (a)-(c) and after aggregation (d)-(f). It is shown that before the aggregation the correct 

loads are approximated by a number of small loads which are then merged. Additionally, the 

small artefact loads are removed by the threshold value of 5 kg. The aggregation proves to be a 

powerful tool to merge the inversely calculated loads in to a set which is close to the applied 

ones. Note, that this aggregation may impose errors if the applied loads are not sparse, which in 

practical applications are relatively unlikely to occur. 

 

Figure 6-12. Calculated loads before aggregation; (a) points, (b) line, (c) ring; Aggregated loads which pass 

the threshold value, (d) points, (e) line, (f) ring. 
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 Appendix 6-6: Accounting for soil non-linearity 6.12

It is shown how soil non-linearity influences the measured strain caused by a point load acting on 

the ground surface. The load magnitude was stepwise increased from zero to 100 kg. After each 

loading step a strain measurement was performed, the results of these measurements are shown in 

Figure 6-13. 

For each load step the equivalent Young’s modulus is optimised by comparing measured strain 

𝜺𝑥𝑥,𝑚𝑒𝑎𝑠 with calculated strain 𝜺𝑥𝑥,𝑐𝑎𝑙𝑐 which is a function of 𝐸 and 𝜈: 

𝐸𝑜𝑝𝑡 , 𝜈𝑜𝑝𝑡 = arg min
𝐸,𝜈

‖𝜺𝑥𝑥,𝑚𝑒𝑎𝑠 − 𝜺𝑥𝑥,𝑐𝑎𝑙𝑐(𝐸, 𝜈)‖ (6-19) 

This evaluation shows that the stiffness drops with increasing load, which is a result of the 

nonlinear soil stiffness (known as small strain non-linearity (Burland 1989)), Figure 6-13 (b). In 

contrast, the Poisson ratio remains relatively constant, which is reflected in Figure 6-13 (a) by the 

fact that the location of the zero strain point (approx. x = ∓0.15 m) remains constant for all the 

load steps (indeed, the theoretical coordinate of this point only depends on the Poisson ratio). 

Therefore it is concluded that the equivalent Poisson ratio is almost independent from the load 

magnitude. 

In our approximate method to account for the soil non-linearity the Poisson ratio is set to a 

constant value 𝜈 = 0.18 and optimise only the Young’s modulus which captures the measured 

strain best for each load step. This correlates the point load magnitude 𝑃 to the corresponding 

equivalent Young’s modulus resulting in a characteristic curve 𝐸(𝑃). In the inverse analysis of 

surface loads, the first iteration calculates initial values of the loads on the surface 𝑃0 using a 

mid-range Young’s modulus 𝐸0.  

 

Figure 6-13. (a) Strain caused by a stepwise increased point load above the cable. (b) Young’s modulus 

and Poisson ratio depending on the load magnitude. 
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Since strains are proportional to the ratio of the load magnitude and the Young’s modulus 

(equation (6-16)), the load magnitude of each load can be corrected by solving 

𝜺𝑥𝑥,𝑚𝑒𝑎𝑠 =
𝑃0

𝐸0
⋅ 𝑓(𝑥, 𝑦 , 𝑧, 𝜈 = 𝑐𝑜𝑛𝑠𝑡. ) =

𝑃𝑐𝑜𝑟𝑟

𝐸(𝑃𝑐𝑜𝑟𝑟)
⋅ 𝑓(𝑥, 𝑦 , 𝑧, 𝜈 = 𝑐𝑜𝑛𝑠𝑡. ) (6-20) 

with respect to the corrected load 𝑃𝑐𝑜𝑟𝑟. The Young’s modulus is also depending on the load 

magnitude and is only known piece-wise, which would require an iterative procedure to find the 

correct pair of the corrected load and Young’s modulus 
𝑃𝑐𝑜𝑟𝑟

𝐸(𝑃𝑐𝑜𝑟𝑟)
. Therefore the characteristic 

curve is converted to depend on the maximum strain caused by the corresponding load magnitude 

(Figure 6-14). 

휀𝑥𝑥,𝑚𝑎𝑥(𝐸) =
𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑

𝐸(𝑃𝑎𝑝𝑝𝑙𝑖𝑒𝑑)
⋅ 𝑓(𝑥 = 0, 𝑦 , 𝑧, 𝜈 = 𝑐𝑜𝑛𝑠𝑡. ) (6-21) 

This allows solving directly for the corrected load magnitude: 

𝑃𝑐𝑜𝑟𝑟 =
𝑃0𝐸(휀𝑥𝑥,𝑚𝑎𝑥)

𝐸0
 (6-22) 

Note, that since the soil non-linearity prevents the use of the analytical solution (6-16) and the 

superposition principle, this approach induces certain errors if multiple surface loads are close to 

each other. An additional error comes from the distance of a load perpendicular to the FOS cable 

since the characteristic curve is evaluated for a load placed directly above the FOS. The used 

approach proves, however, to be powerful in identifying accurately the load magnitude for sparse 

load distributions even if they deviate strongly from the initial calibration of the Young’s 

modulus. 

 

Figure 6-14. Young’s modulus depending on the maximum strain value caused by a corresponding point 

load directly above the FOS. Yellow points show the example of the point load layout. 
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 Notation 6.14

𝑨 Strain transfer matrix 

𝐸 Young’s modulus 

𝐸𝑜𝑝𝑡 Optimised Young’s modulus 

𝐸0 Mid-range (initial) Young’s modulus 

𝐼1 First invariant of the strain tensor 휀𝑖𝑖 

𝑳 Penalty matrix for the regularisation 

𝑁 Number of load nodes at the surface 

𝑃 Load magnitude 

𝑃0 Initial guess of the load values 

𝑃𝑐𝑜𝑟𝑟 Corrected load values 

𝑷𝑟𝑒𝑠,𝑡𝑟𝑢𝑒 True load vector 

𝑷𝑟𝑒𝑠,𝑐𝑎𝑙𝑐 Calculated load vector 

𝑅 Radial distance to the origin √𝑥2 + 𝑦2 + 𝑧2 

𝒑 Load vector 

𝒑𝑜𝑝𝑡 Optimised load vector 

𝑞(𝑥𝑝, 𝑦𝑝) Load distribution at the surface 

𝑢 Displacement 

𝑥𝑐 x-coordinate of a point on the cable 

𝑥𝑝 x-coordinate of the load 

𝑦𝑐 y-coordinate of a point on the cable 

𝑦𝑝 y-coordinate of the load 

𝑧𝑐 z-coordinate of a point on the cable 

𝛿𝑖𝑗 Kronecker delta 

휀𝑖𝑗 Strain tensor 

휀𝑥𝑥 Horizontal strain in x-direction 

𝜺𝑥𝑥 Strain vector along the cable 

𝜺𝒙𝑥,𝑐𝑎𝑙𝑐 Inversely calculated strain vector 

𝜺𝑥𝑥,𝑠𝑦𝑛𝑡ℎ Synthetically, forward calculated strain vector 

𝜆 Regularisation parameter, (in Appendix 6-3: Lamé parameter) 

𝜇휀 microstrain 𝜇𝑚/𝑚 

𝜇 Lamé parameter 

𝜎𝑖𝑗 Stress tensor 

𝜈 Poisson ratio 

𝜈𝑜𝑝𝑡 Optimised Poisson ratio 

𝜙 Potential function for the displacements 
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 Small strain nonlinearity in Boussinesq’s problem –  7

fibre-optic strain measurements and numerical modelling 

 Abstract 7.1

The ground deforms under the action of normal forces on its surface (loaded half space, 

Boussinesq problem). During such loading the soil shows strongly nonlinear behaviour known as 

small strain nonlinearity. The chapter studies this nonlinearity at very small strains using ground 

buried distributed fibre-optic strain sensors in a field experiment which was initially developed to 

identify objects on the ground surface by inverse analysis. The results of the fibre-optic 

measurements are compared to the response of a finite-element half space model using four 

different linear and nonlinear elastic constitutive models. The same nonlinearity is observed in 

triaxial tests using local strain measurement which serve as independent verification of the 

constitutive models and their parameters. It is shown that not only the nonlinear deviatoric but 

also the nonlinear volumetric behaviour is important to capture the response of the soil in the 

Boussinesq boundary value problem. 
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 Introduction 7.2

An object moving on the ground applies a load to its surface. The stresses induced by these loads 

result in deformations of the ground which can be measured using buried distributed fibre-optic 

sensors (FOSs) (Figure 7-1). Starting from the measured strain in the ground the loads acting on 

the surface can be calculated using a mechanical model (e.g., half space loaded on its surface) 

and inverse analysis algorithms. Knowing the contact forces induced by an object moving on the 

surface over the buried FOSs enables applications ranging from biodiversity survey, perimeter 

security to weigh-in-motion systems. The concept of such an inverse analysis was presented in 

chapter 6, Friedli et al. (2017) based on the works of Juarez et al. (2005); Kwon et al. (2002); 

Madsen et al. (2007; 2008); Nikles (2009); Owen et al. (2012); Park and Taylor (2003); Taylor 

and Lee (1993) on intrusion sensing systems using FOSs, further a patent application was filed 

(Puzrin et al. 2013). 

The experimental study on the inverse analysis of static surface loads (Friedli et al. 2017), shown 

in chapter 6 revealed significantly nonlinear behaviour of the soil at the very small loads applied 

corresponding to a mass between 10 kg and 100 kg. This nonlinearity is most likely an effect of 

the well-known degradation of soil stiffness at low strains (Burland 1989) which was investigated 

extensively in laboratory and/or field tests. In the laboratory triaxial tests with local strain 

measurements (e.g., Jardine et al 1984), resonant column tests (e.g., Bellotti et al. 1996; Hardin 

and Drnevich 1972) and bender element tests (e.g., Dyvik and Madshus 1985) were used. In field 

tests the small-strain stiffness was mainly measured by means of shear wave velocity (e.g., 

Stokoe and Woods 1972; Woods 1978). The influence of the small-strain nonlinearity in 

geotechnical boundary value problems was shown to be crucial for the correct assessment of 

settlements caused by deep excavations (e.g., Burland and Hancock 1977) or tunneling (e.g., 

Addenbrooke et al. 1997). 

 

Figure 7-1. Basic principle of object identification using ground buried fibre-optic strain sensors (from 

Friedli et al. 2017). 
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In this chapter a different view on the small-strain nonlinearity is offered by the use of distributed 

strain measurements of ground-buried FOSs in a Boussinesq problem. First the experimental 

setup is introduced, the strain sensing layout and the loading assembly are explained. The results 

of the strain data measured with the FOSs is shown and discussed. The soil behaviour is 

discussed by comparing the experimental data to a finite-element model using four different 

linear and nonlinear elastic constitutive models. Triaxial test on soil excavated close to the buried 

FOSs with local strain measurements are presented and discussed. Finally the constitutive models 

and their parameters are compared to the triaxial test results. 

 Experiment 7.3

7.3.1 Experimental setup 

A shallow trench with depth of 0.5m was excavated in the field. FOSs were buried at 0.2 m and 

0.4 m depth in serpentines to achieve five parallel cable sections in a distance of 0.25 m to each 

other (Figure 7-2). The natural soil at the experimental site is classified as sandy silt with a small 

amount of clayey fines. The FOSs were prestrained and protected by a thin sand layer before the 

trench was refilled and compacted to its initial density using a vibrating plate. While one end of 

the FOS was placed in a shaft where it was connected to the strain sensing device, the second end 

was placed in a small shaft at the other end of the experiment. 

7.3.2 Strain Sensing 

 

Figure 7-2. Layout of the fibre-optic sensors in the experimental setup: (a) plan view, (b) cross section, (c) 

fibre-optic cables before refilling, (c) ground surface few weeks after installation (from Friedli et al. 2017). 
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The FOSs buried in the experimental setup consists of a standard single mode fibre which is 

protected by a plastic coating from the harsh environment in the trench. The coating is tight 

buffered (that is, mechanically connected to the fibre in the centre) to ensure a good strain 

transfer from the coating to the fibre. 

The distributed strain sensing in the experiment was achieved using the OBR 4600 device (Luna 

Inc., Roanoke, VA) which uses swept wavelength interferometry (SWI) based on measuring the 

Rayleigh scattering (Froggatt et al. 2006; Froggatt and Moore 1998; Gifford et al. 2007). A 

change of strain or temperature along the fibre causes a spectral shift in the Rayleigh backscatter. 

This shift is correlated to the applied strain and temperature change. SWI allows measuring the 

strain along standard fibres with high precision (~1 𝜇휀) and high spatial resolution (5 𝑚𝑚) along 

sensors with length up to 70 m. As the temperature and strain both affect the measurement, 

strictly speaking they should be separated. This separation could be done for example by 

measuring the temperature independently. Furthermore, environmental effects, such as changes 

of humidity do also influence the measurement results. In this study, however, the time between 

reference measurements and measurements under load is short (in the range of a few minutes). 

Therefore the environmental effects and the temperature effects can be neglected. 

7.3.3 Loading Assembly 

The ground surface over the buried FOSs was loaded by a plastic barrel placed on a circular steel 

plate with 10 cm diameter (Figure 7-3). The plastic barrel was filled with water in steps of 5 kg 

up to 100 kg which was weighted before each loading step. After each loading step a strain 

measurement was taken along the FOSs. Wooden girders (Figure 7-3), supported more than 3 m 

from the FOSs to avoid influence on the sensors, were used to stabilise the barrel horizontally. A 

small gap between the barrel and the stabilisation girders, which was checked and re-opened 

manually after each loading step, ensured no load loss to the stabilisation structure. The water 

was brought into the barrel using an additional wooden bridge structure next to the stabilisation 

girders to avoid influencing the experiment by stepping onto the ground surface. Preliminary 

results of this experiment were presented in (Friedli and Puzrin 2015). 

 

Figure 7-3. Loading assembly: (a) plan view, (b) photo of the plastic barrel and the horizontal stabilisation. 
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7.3.4 Results 

The results of the strain measurements along the FOSs shows that directly underneath the load, at 

both depths of 0.2 m and 0.4 m, extension strains are measured (geotechnical sign convention is 

used, positive is compression). These extension strains decay quickly with increasing distance 

from the load and turn into compressive strains at a distance of ~0.15 − 0.2 m to the axis of the 

load. At the shallower depth of 0.2 m the distance between the zero crossings is narrower than at 

the depth of 0.4 m, which is a result of the wider stress distribution with depth. With increasing 

load the magnitude of the strain increases but the shape of the strain profile and in particular the 

distance between the zero crossings remains approximately constant. By following the extension 

peak at 𝑥 = 0 it is observed that the scaling of the strain magnitudes with increasing load is not 

linear, which is a first indication of the nonlinear behaviour of the soil. 

Assuming linear elastic soil behaviour allows the application of the well-known (Boussinesq 

1885) solution for a half space loaded by a point load at the origin on the surface. The derivation 

of the solution can be found in text books (e.g., Green and Zerna 1968). The strain along a 

horizontal line is calculated from the derivative of the horizontal displacement. In Cartesian 

coordinates (𝑥, 𝑦, 𝑧) this results in 

휀𝑥𝑥 =
𝑃

𝐸
⋅

(1 + 𝜈)

2𝜋
[
(1 − 2𝜈) (2 +

𝑧
𝑅) 𝑥2

𝑅2(𝑅 + 𝑧)2
−

(1 − 2𝜈)

𝑅(𝑅 + 𝑧)
+

(𝑅2 − 3𝑥2)𝑧

𝑅5 ] 

𝑅 = √𝑥2 + 𝑦2 + 𝑧2 

(7-1) 

Where 𝑃 is the load magnitude, 𝐸 is the Young’s modulus and 𝜈 is the Poisson ratio. Using this 

solution allows to inversely calculate the Young’s modulus 𝐸 and Poisson ratio 𝜈 for each 

loading step. This is done by assuming that they are constant in the whole half space and using 

constrained nonlinear least squares optimisation (fmincon in Matlab Optimisation toolbox 

R2016b, (MATLAB 2016)) to minimise the error between the measured, 𝜺𝑥𝑥,𝑚𝑒𝑎𝑠, and the 

calculated strain, 𝜺𝑥𝑥,𝑐𝑎𝑙𝑐, which depends on the elastic parameters 𝐸, 𝜈. 

𝐸𝑜𝑝𝑡 , 𝜈𝑜𝑝𝑡 = arg min
𝐸,𝜈

‖𝜺𝑥𝑥,𝑚𝑒𝑎𝑠 − 𝜺𝑥𝑥,𝑐𝑎𝑙𝑐(𝐸, 𝜈)‖ (7-2) 

The evolution of this optimised equivalent 𝐸 and 𝜈 with increasing load is presented in Figure 7-

5. It is shown that the equivalent 𝐸 decreases strongly from almost 70 MPa at the lowest applied 

load to below 20 MPa at the load with a mass of 100 kg. Note that the decay of 𝐸 is strongest at 

the lowest applied loads and is in a similar range for both depths. 
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Figure 7-4. Measured strain profiles along cable 1 for loads corresponding to a mass between 3.1 kg and 

100 kg: (a) at a depth of 0.2m, (b) at a depth of 0.4m. 

 

Figure 7-5. Optimised equivalent Young’s modulus and Poisson ratio depending on the applied surface 

load. 
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 Triaxial Tests 7.4

7.4.1 Sample preparation 

To have an independent measure of the soil behaviour in the field experiment triaxial tests were 

performed. A probe of soil close to the trench with the FOSs was excavated on the same day as 

the loading experiment was conducted. This ensured to have the same water content in the 

triaxial soil samples and the field experiment. The excavated soil was re-compacted inside of the 

rubber membrane in a mounting help. The re-compacted soil lied between 1.66-1.76 g/cm
3
 

(details to the soil samples used are presented in in Appendix 7-1 (Table 7-1) and in Appendix 7-

2). The final probes in the triaxial cell had a diameter of 56.4 mm and a height of 119 mm.  

7.4.2 Test setup 

The triaxial tests were performed on the triaxial testing apparatus of the geomechanics group at 

IGT (details on the used triaxial testing apparatus can be found for example in Messerklinger 

(2006)). The in-situ pressure at the depth of the FOSs is very low (~2.3 kPa at 0.2 m or ~4.5 kPa 

at 0.4 m). To perform a triaxial test at such low pressure level raises difficulties regarding the 

accuracy of the pressure regulation in the cell and the sensitivity of the volumetric strain 

measurement. To overcome these difficulties the tests were performed with a free water table in a 

burette fixated to the top of the cell (Figure 7-6 (b)) and the tap of the cell was closed. Due to the 

small diameter of the burette (𝐷=5.98 mm) a change in the cell volume leads to a change of the 

water table in the burette and therefore a change of the water pressure in the cell which was 

measured with the pressure sensor. This procedure allows measuring the volume changes of the 

probe with higher resolution compared to direct measurement of the volume change. Note that 

not only the volume change of the probe but also the moving rods of the loading frame cause a 

change of the cell volume which had to be subtracted from the total volume change. Axial 

compression tests were performed. 

 

(a) 

 

(b) 

Figure 7-6. Photos of the triaxial test: (a) probe after the test with LVDT’s for local strain measurements, 

(b) burette on top of the triaxial cell with free water table. 
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Due to the applied procedure the radial stress changes slightly which leads to stress paths slightly 

deviating from the inclination ∆𝑝/∆𝑞 =1/3. With the procedure low initial pressures at the 

bottom of the probe (~10 kPa) were achieved, which are however still a higher than the expected 

in-situ pressures at the depth of the FOSs. This may lead to an overestimation of the stiffness. 

Note that compared to the low pressure the pressure gradient over the height of the probe is high, 

which is to a smaller degree also the case in the field. 

After installing the probe in the triaxial apparatus the water was raised to a level within the 

burette. During the filling of the cell and the burette with water it was attempted to prevent air 

bubbles within the cell. The axial stress was then increased slowly to the same level as the radial 

stress. Due to creep of the soil sample the axial stress reduced under constant displacement of the 

loading pedestal. This creep was compensated over the duration of approximately 12 hours in 

steps. After this time the axial stress stayed quite stable and the sample was sheared with a 

constant axial displacement rate. The loading rate was 0.001 𝑚𝑚/𝑠 which corresponds to an 

axial strain rate of 8.4 𝜇휀/𝑠. 

The triaxial tests were performed with local strain measurements using linear variable 

displacement transducers (LVDT) with an initial axial distance of 70 mm glued to the rubber 

membrane (Figure 7-6 (a)) to avoid errors caused by the compliance at the contact of the pedestal 

and the soil probe. These errors are most pronounced at very small strains and would lead to an 

underestimation of the stiffness. The used local strain sensing system is described in detail in 

(Messerklinger 2006). 

7.4.3 Test results 

The triaxial test results of three tests are presented in the relevant strain range compared to the 

field experiment (0-300 𝜇휀) in Figure 7-7. As expected the stress paths deviate slightly from the 

axial compression path due to the free water table in the burette which leads to small pressure 

changes caused by the volume changes in the cell. The deviatoric behaviour clearly shows a 

strong nonlinear behaviour of the soil at very small strains. The apparent tangent shear modulus 

decays from about 20’000 kPa to about 1’500-3’000 kPa at 1’000 𝜇휀. Similar to the inversely 

calculated stiffness from the FOSs in the field experiment the rate of the stiffness degradation is 

very fast at the origin and becomes smaller with increasing strains. The apparent tangent bulk 

modulus in the volumetric behaviour similarly degrades quickly from about 12’000-30’000 kPa 

to about 5’000-20’000 kPa at 1’000 𝜇휀. As Triax 3 seems not to show the exact same behaviour 

as Triax 1 and 2, the high stiffness values obtained from the Triax 3 test have to be treated with 

care. Triax 3 is still shown here for completeness. The strain paths in the relevant strain range 

seem to be almost linear, at least for Triax 1 and 2, which indicates that the decay of the shear 

modulus and the decay of the bulk modulus are somehow proportional. 
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Figure 7-7. Results of the triaxial tests: (a) stress path, (b) deviatoric stress-strain behaviour, (c) volumetric 

stress-strain behaviour, (d) strain path. 

(a) (b) 

(c) (d) 
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 Modelling 7.5

Four different constitutive models are used to investigate their effect on the response in the 

Boussinesq boundary value problem. The strains in the loaded half space are calculated using the 

finite-element (FE) method with the four constitutive models implemented. As only loading is 

considered and in the experiment small irreversible strains were observed after removal of the 

load and in particular because the inverse analysis for object identification benefits from a unique 

relation between the applied load and the measured strain only elastic (reversible) models are 

considered here. However, it is known that the small strain nonlinear behaviour is, at least partly, 

not reversible (e.g., Puzrin et al. 2001; Puzrin & Burland 1998). The first model uses linear 

isotropic elasticity, where also an analytical solution for the loaded half space exists (e.g., 

Boussinesq 1885). The other three models are nonlinear elastic constitutive models with 

nonlinear deviatoric behaviour and linear volumetric behaviour (Nonlinear 1), both nonlinear 

deviatoric and volumetric behaviour (Nonlinear 2) and coupled nonlinear deviatoric and 

volumetric behaviour (Nonlinear 3). The idea of coupling the volumetric and the deviatoric 

behaviour arised because of the proportional decay of the deviatoric and the volumetric stiffness 

observed in the triaxial tests and the fact that the zero crossings of the strain measurements in the 

field experiment are constant. 

The nonlinear behaviour of all three models is based on a normalised stress-strain fitting curve. 

The response of the three nonlinear models is derived according to the hyperelastic approach 

from a strain energy density function or, following Houlsby & Puzrin (2007) from the Helmholtz 

free energy function. The stresses are derived from the derivative of the Helmholtz free energy 

with respect to strains. 

7.5.1.1 Normalised stress-strain function 

The logarithmic function presented by Puzrin & Burland (1996) is widely accepted to capture 

accurately the stress-strain curve in the small-strain region of soils in laboratory tests. It has, 

however, the drawback that the stress-strain function has to be split at the point where the 

limiting stress is reached and a second function has to be added tangentially (e.g., a linear 

function). The function is used in the normalised form with the normalisation according to 

Hardin & Drnevich (1972) and Puzrin (2012), the normalisation is shown here examplarily for 

the deviatoric behaviour. 

𝑦 =
𝑞

𝑞𝐿
;      𝑥 =

휀𝑠

휀𝑠𝑟
;      휀𝑠𝑟 =

𝑞𝐿

3𝐺0
;       𝑥𝐿 =

휀𝑠𝐿

휀𝑠𝑟
  (7-3) 

Where 𝑞𝐿 is the limiting stress at the strain 휀𝑠𝐿 and 𝐺0 is the initial stiffness. 
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The logarithmic function is defined as 

𝑦(𝑥) = 𝑥 − 𝛼𝑥(𝑙𝑛(1 + 𝑥))𝑅 (7-4) 

with the parameters 

𝑅 =
(1 + 𝑥𝐿) ln(1 + 𝑥𝐿)

(𝑥𝐿 − 1)
(

1

𝑥𝐿
− 𝑏) 

𝛼 =
𝑥𝐿 − 1

𝑥𝐿(ln(1 + 𝑥𝐿))𝑅
 

(7-5) 

and 

𝑏 =
𝐺𝐿

𝐺0
 (7-6) 

Where 𝐺𝐿 is the stiffness at the limiting stress 𝑞𝐿. The normalised stress strain behaviour of the 

logarithmic function is shown, as an example, in Figure 7-8 (b). 

The constitutive models used in this study are formulated in terms of total stress. As the soil is in 

a partially saturated state the evaluation using effective stresses is very cumbersome and not 

within the scope of the chapter. Although the model behaviour depends only on the stress and 

strain changes during loading of the ground surface, the initial stress and strain states are omitted 

in the notation (for example the mean stress change is denoted 𝑝 and not Δ𝑝 = 𝑝 − 𝑝0 and the 

volumetric strain change is 휀𝑣 and not ∆휀𝑣 = 휀𝑣 − 휀𝑣0. 

  

 

Figure 7-8. (a) Small strain region (SSR) as an ellipse in the p-q-stress space, definition of the limiting 

stresses 𝑝𝐿 and 𝑞𝐿; (b) Example of the normalised logarithmic stress strain function. 
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7.5.2 Non-linear elasticity 1: nonlinear deviatoric behaviour and linear 

volumetric behaviour 

7.5.2.1 Triaxial stress-strain space 

The Helmholtz free energy potential for this model in the triaxial space is (Puzrin 2012): 

𝑓(휀𝑣 , 휀𝑠) = 𝐾
휀𝑣

2

2
+

𝑞𝐿
2

3𝐺0
⋅ ∫ 𝑦(𝑥)𝑑𝑥

3𝐺0𝜀𝑠
 𝑞𝐿

0

 
(7-7) 

Where 𝐾 is the bulk modulus, 𝑞𝐿 is the limiting deviatoric stress where the limiting stiffness 𝐺𝐿 is 

reached, 𝐺0 is the initial shear modulus and 𝑦(𝑥) is the normalised stress-strain function. The 

stresses are derived as the derivative of the Helmholtz free energy with respect to the strains. 

𝑝 =
𝜕𝑓

𝜕휀𝑣
= 𝐾휀𝑣 

𝑞 =
𝜕𝑓

𝜕휀𝑠
= 𝑞𝐿𝑦 (

3𝐺0휀𝑠

𝑞𝐿
) 

(7-8) 

7.5.2.2 Generalisation to 3D stress-strain space 

As isotropic behaviour is assumed, the extension of the constitutive model to the full stress-strain 

space is done by substituting the strains in the Helmholtz free energy function by the definition of 

the strain invariants 

휀𝑣 = 𝐼1 = 휀11 + 휀22 + 휀33 

휀𝑠 =
2

3
√3𝐼2𝐷 

(7-9) 

with 

𝐼2𝐷 =
1

6
[(휀11 − 휀22)2 + (휀33 − 휀22)2 + (휀11 − 휀33)2] + 휀12

2 + 휀23
2 + 휀31

2 (7-10) 

This results in the Helmholtz free energy function for the general 3D stress-strain space. 

𝑓(휀𝑖𝑗) = 𝐾
𝐼1

2

2
+

𝑞𝐿
2

3𝐺0
⋅ ∫ 𝑦(𝑥)𝑑𝑥

2𝐺0√3𝐼2𝐷

 𝑞𝐿

0

 
(7-11) 

The stresses in the general 3D space are derived from the derivation of (7-11) with respect to 

strains 휀𝑖𝑗. 

𝜎𝑖𝑗 =
𝜕𝑓

𝜕휀𝑖𝑗
= 𝐾𝛿𝑖𝑗 +

𝑞𝐿

√3𝐼2𝐷

𝑦 (
2𝐺0√3𝐼2𝐷

 𝑞𝐿
)

𝜕𝐼2𝐷

𝜕휀𝑖𝑗
 (7-12) 

Where 𝛿𝑖𝑗 is the Kronecker delta which is 1 if 𝑖 and 𝑗 are equal and is 0 if they are not equal. 
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7.5.3 Non-linear elasticity 2: nonlinear deviatoric behaviour and nonlinear 

volumetric behaviour 

7.5.3.1 Triaxial stress-strain space 

The Helmholtz free energy potential for this model in the triaxial space is: 

𝑓(휀𝑣 , 휀𝑠) =
𝑝𝐿

2

𝐾0
⋅ ∫ 𝑦𝑣(𝑥𝑣)𝑑𝑥𝑣

𝐾0|𝜀𝑣|
 𝑝𝐿

0

+
𝑞𝐿

2

3𝐺0
⋅ ∫ 𝑦𝑠(𝑥𝑠)𝑑𝑥𝑠

3𝐺0𝜀𝑠
 𝑞𝐿

0

 
(7-13) 

Where 𝐾0 is the initial bulk modulus, 𝑝𝐿 is the limiting mean stress in the volumetric behaviour, 

𝐺0 is the initial shear modulus, 𝑞𝐿 is the limiting deviatoric stress and 𝑦𝑣(𝑥𝑣) and 𝑦𝑠(𝑥𝑠) are the 

normalised stress-strain functions for the volumetric and the deviatoric behaviour, respectively. 

The stresses are derived as derivation of the Helmholtz free energy with respect to the strains. 

𝑝 =
𝜕𝑓

𝜕휀𝑣
= sgn(휀𝑣)𝑝𝐿𝑦𝑣 (

𝐾0|휀𝑣|

 𝑝𝐿
) 

𝑞 =
𝜕𝑓

𝜕휀𝑠
= 𝑞𝐿𝑦𝑠 (

3𝐺0휀𝑠

𝑞𝐿
) 

(7-14) 

Where sgn(휀𝑣) is the signum function which is 1 if the argument is positive, -1 if the argument is 

negative and 0 if the argument is 0. 

7.5.3.2 Generalisation to 3D stress-strain space 

Similar to the nonlinear 1 model the extension of the constitutive model to the full stress-strain 

space is done by substituting the strains in the Helmholtz free energy function by the definition of 

the strain invariants. This results in the Helmholtz free energy function for the general 3D stress-

strain space. 

𝑓(휀𝑖𝑗) =
𝑝𝐿

2

𝐾0
⋅ ∫ 𝑦𝑣(𝑥𝑣)𝑑𝑥𝑣

𝐾0|𝐼1|
𝑝𝐿

0

+
𝑞𝐿

2

3𝐺0
⋅ ∫ 𝑦𝑠(𝑥𝑠)𝑑𝑥

2𝐺0√3𝐼2𝐷

 𝑞𝐿

0

 
(7-15) 

The stresses in the general 3D space are derived from the derivation of the Helmholtz free energy 

function with respect to strains 휀𝑖𝑗. 

𝜎𝑖𝑗 =
𝜕𝑓

𝜕휀𝑖𝑗
= sgn(𝐼1)𝑝𝐿𝑦𝑣 (

𝐾0|𝐼1|

𝑝𝐿
) 𝛿𝑖𝑗 +

𝑞𝐿

√3𝐼2𝐷

𝑦𝑠 (
2𝐺0√3𝐼2𝐷

 𝑞𝐿
)

𝜕𝐼2𝐷

𝜕휀𝑖𝑗
 (7-16) 
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7.5.4 Non-linear elasticity 3, nonlinear elastic model with deviatoric and 

volumetric coupling 

7.5.4.1 Triaxial stress-strain space 

An elastic model is proposed which couples the non-linear deviatoric and the non-linear 

volumetric behaviour. As shown later, the coupling is achieved by defining the size of the small 

strain region (SSR) similarly to Puzrin et al. (2001) and Puzrin & Burland (1998) as an ellipse in 

the 𝑝 − 𝑞-stress plane. As the ellipse is defined in the stress space the consitutive behaviour is, in 

contrast to the other models, first derived from the Gibbs free energy potential. Following 

Houlsby & Puzrin (2007) the Gibbs free energy potential is 

𝑔(𝑞, 𝑝) = −
𝑎𝐿

2

𝐾0
⋅ ∫ 𝑥𝑣(𝑦𝑣)𝑑𝑦𝑣

𝑝
𝑝𝐿(𝑝,𝑞)

0

−
𝑎𝐿

2

3𝐺0
⋅ ∫ 𝑥𝑠(𝑦𝑠)𝑑𝑦𝑠

𝑞
𝑞𝐿(𝑝,𝑞)

0

 
(7-17) 

Where 𝑥𝑣(𝑦𝑣) and 𝑥𝑠(𝑦𝑠) are the inverse of the normalised stress-strain functions for the 

volumetric and the deviatoric behaviour, respectively. The stresses 𝑝𝐿 and 𝑞𝐿 define the size of 

the small strain region (SSR) in the 𝑝 − 𝑞-stress plane and are functions of the current stress state 

and the parameters 𝑎𝐿 and 𝑛 which define the ellipse used to couple the deviatoric and the 

volumetric stress-strain behaviour. The two limiting stresses 𝑝𝐿 and 𝑞𝐿 are defined to lie on the 

intersection between the ellipse described by 

𝑝𝐿
2

𝑎𝐿
2 +

𝑞𝐿
2𝑛2

𝑎𝐿
2 = 1 (7-18) 

and the radial projection of the current stress point (Figure 7-8 (a)). This leads to the following 

expressions for the limiting stresses. 

𝑝𝐿(𝑝, 𝑞) =
𝑎𝐿𝑝

±√𝑝2 + 𝑞2𝑛2
 

𝑞𝐿(𝑝, 𝑞) =
𝑞

𝑝
𝑝𝐿(𝑝, 𝑞) =

𝑎𝐿𝑞

±√𝑝2 + 𝑞2𝑛2
 

(7-19) 

For the further derivations only the positive sign is used. The strains are calculated by the 

derivative of the Gibbs free energy function with respect to the stresses. 

휀𝑣 = −
𝜕𝑔

𝜕𝑝
=

𝑝

휁(𝑝, 𝑞)
(

𝑥𝑣(휁(𝑝, 𝑞))

𝐾0
+

𝑥𝑠(휁(𝑝, 𝑞))

3𝐺0
) 

휀𝑠 = −
𝜕𝑔

𝜕𝑞
=

𝑞𝑛2

휁(𝑝, 𝑞)
(

𝑥𝑣(휁(𝑝, 𝑞))

𝐾0
+

𝑥𝑠(휁(𝑝, 𝑞))

3𝐺0
) 

(7-20) 

where 
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휁(𝑝, 𝑞) = 𝑦𝑣 = 𝑦𝑠 =
𝑝

𝑝𝐿
=

𝑞

𝑞𝐿
=

√𝑝2 + 𝑞2𝑛2

𝑎𝐿
 (7-21) 

Note that the functions 𝑥𝑣(𝑦𝑣) and 𝑥𝑠(𝑦𝑠) do not have the same parameters and therefore, 

although their argument is the same, their functional value is different. 

The ratio between volumetric and shear strains depends only on the ratio of the mean pressure, 

the deviatoric stress and the parameter 𝑛 which defines the eccentricity of the limiting ellipse in 

the stress space. Proportional loading therefore results in a constant strain ratio. 

휀𝑣

휀𝑠
=

𝑝
휁(𝑝, 𝑞)

𝑞𝑛2

휁(𝑝, 𝑞)

=
1

𝑛2

𝑝

𝑞
 (7-22) 

For the implementation in finite-element (FE) software as user subroutine the stress has to be 

defined as a function of strains. The derivation is shown here starting from the corresponding 

Helmholtz free energy function. 

𝑓(휀𝑣 , 휀𝑠) =
𝑎𝐿

2

𝐾0
⋅ ∫ 𝑦𝑣(𝑥𝑣)𝑑𝑥𝑣

𝐾0𝜀𝑣
𝑝𝐿(𝜀𝑣,𝜀𝑠)

0

+
𝑎𝐿

2

3𝑛2𝐺0
⋅ ∫ 𝑦𝑠(𝑥𝑠)𝑑𝑥𝑠

3𝐺0𝜀𝑠
 𝑞𝐿(𝜀𝑣,𝜀𝑠)

0

 
(7-23) 

Where 𝑦𝑣(𝑥𝑣) and 𝑦𝑠(𝑥𝑠) are the respective normalised stress-strain functions for the purely 

volumetric and deviatoric stress paths and the limiting stresses 𝑝𝐿 and 𝑞𝐿 are functions of the 

strain 

𝑝𝐿(휀𝑣 , 휀𝑠) =
𝑎𝐿𝑛휀𝑣

√휀𝑠
2 + 𝑛2휀𝑣

2
 

𝑞𝐿(휀𝑣, 휀𝑠) =
휀𝑠

𝑛2휀𝑣
𝑝𝐿(휀𝑣 , 휀𝑠) =

휀𝑠𝑛𝑎𝐿

𝑛2√휀𝑠
2 + 𝑛2휀𝑣

2
 

(7-24) 

The stresses are derived as derivatives of the Helmholtz free energy with respect to volumetric 휀𝑣 

and deviatoric strains 휀𝑠. 

𝑝 =
𝜕𝑓

𝜕휀𝑣
=

휀𝑣

𝜉
(𝑦𝑣(𝐾0𝜉) + 𝑦𝑠(3𝑛2𝐺0𝜉)) 

𝑞 =
𝜕𝑓

𝜕휀𝑠
=

휀𝑠

𝑛2𝜉
(𝑦𝑣(𝐾0𝜉) + 𝑦𝑠(3𝑛2𝐺0𝜉)) 

(7-25) 

With 

𝜉 =
휀𝑣

𝑝𝐿
=

εs

𝑛2𝑞𝐿
=

√휀𝑠
2 + 𝑛2휀𝑣

2

𝑛𝑎𝐿
 (7-26) 
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7.5.4.2 Model response in the triaxial stress space 

The model response for proportional loading paths is shown in Figure 7-9 calculated with the 

parameters shown in Table 7-2 in the Appendix 7-2. Note that due to the coupling of the 

volumetric and the deviatoric behaviour the stiffness parameters 𝐾 and 𝐺 do not correspond with 

the gradients of the volumetric and deviatoric behaviour. As the limiting stresses are coupled 

using an ellipse in the triaxial stress space, stress paths with more volumetric loading reach the 

limiting stiffness in the deviatoric behaviour faster than stress paths with more deviatoric loading. 

In contrast, in the volumetric behaviour stress paths with more volumetric loading reach the 

limiting stiffness slower than stress paths with more deviatoric loading. Note that, as shown in 

equation (7-22) the coupling of the deviatoric and the volumetric behaviour leads to straight 

strain paths for proportional loading. 

 

Figure 7-9. Model response in the triaxial stress space for different stress paths: (a) stress path; (b) 

deviatoric behaviour; (c) volumetric behaviour; (d) strain path 
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7.5.4.3 Generalisation to 3D stress-strain space 

Similarly to the preceding models the extension of the constitutive model to the full stress-strain 

space is done by substituting the strains in (12) by the definition of the strain invariants. This 

results in the Helmholtz free energy function for the general 3D stress-strain space. 

𝑓(휀𝑖𝑗) =
𝑎𝐿

2

𝐾0
⋅ ∫ 𝑦𝑣(𝑥𝑣)𝑑𝑥𝑣

𝐾0𝜒

0

+
𝑎𝐿

2

3𝑛2𝐺0
⋅ ∫ 𝑦𝑠(𝑥𝑠)𝑑𝑥𝑠

3𝐺0𝑛2𝜒

0

 (7-27) 

where  

𝜒 =
√4

3 𝐼2𝐷 + 𝑛2𝐼1
2

𝑛𝑎𝐿
 

(7-28) 

The stresses are derived from the derivative of (25) with respect to strains 휀𝑖𝑗. 

𝜎𝑖𝑗 =
𝜕𝑓

𝜕휀𝑖𝑗
=

𝑛2𝐼1𝛿𝑖𝑗 +
2
3

𝜕𝐼2𝐷
𝜕휀𝑖𝑗

𝑛2𝜒
[𝑦𝑣(𝐾0𝜒) + 𝑦𝑠(3𝐺0𝑛2𝜒)] (7-29) 

 Model responses in the Boussinesq problem 7.6

The application of the nonlinear elastic models to the Boussinesq problem studied in the 

experiment was done using the ABAQUS/explicit (Simulia, Dassault Systèmes, Providence, RI) 

finite element (FE) computing environment. The constitutive models were implemented with a 

user subroutine. The geometry of the axisymmetric FE model is shown in Figure 7-10. The 

loading was applied similar to the experiment on a stiff plate with diameter of 0.1 m. The 

interaction between the plate and the soil was modelled using a ‘hard’ normal contact and 

frictionless shear contact. As the comparison of the experiment and the model is done on the 

level of the buried FOSs the exact modelling of the contact is not of great importance. 

It is assumed that the behaviour is independent of the initial stress state in the soil. Therefore no 

self-weight is applied to the soil. The load 𝑃 on the stiff plate applied with a smooth step function 

to simulate quasi-static conditions which were checked by comparison of the kinetic energy and 

the applied external work. At the load steps corresponding to the experiment, virtual strain and 

 

Figure 7-10. Geometry of the axisymmetric model in ABAQUS 
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stress measurements are recorded along horizontal lines at the depth of 0.2 m and 0.4 m 

corresponding to virtual FOSs. 

The parameters of the constitutive models were optimised to fit the experimental data and are 

shown in Table 7-2 in the Appendix 7-2. This optimisation was performed manually by 

comparing the strain value directly under the load and the distance to the zero crossing of the 

strain profile. A comparison of the model responses with the triaxial tests performed is shown 

later. A validation of the FE model against the elastic solution with a point load on its surface is 

shown in Appendix 7-4. 

7.6.1 Strains along the fibre-optic sensors 

The resulting strains are shown in Figure 7-11 for the cable 02 at a depth of 0.2 m. All three 

constitutive models are able to capture the general strain profile with extension strain under the 

load and compressive strain further away. While the linear elastic model captures the ‘shape’ of 

the strain profile quite accurately it is not able to capture the nonlinearity. In contrast, all three 

nonlinear models capture the nonlinearly increasing strain with each load step but lead to a wider 

shape of the strain. In particular the nonlinear 1 model (nonlinear deviatoric and linear volumetric 

behaviour) produces a wider peak directly underneath the load. The nonlinear model 2 and 3 

capture the width of the strain peak quite well but overestimate the compressive strain at around 

cable coordinate 0.5 m. However, they both capture the fast decay of compressive strain with 

increasing distance from the load. The ‘shapes’ of the measured and calculated strain profiles are 

also compared in Figure 7-11 (f) in a normalised way. 

The resulting strains at the cable 04 at a depth of 0.4 m are shown in Figure 7-12. Similarly to 

cable 02, linear elasticity captures the ‘shape’ of the strain profile accurately. The nonlinear 1, 

although capturing the stiffness decay, leads to a wide and ‘flat’ strain peak underneath the load. 

The nonlinear 2, and in particular the nonlinear model 3 capture the narrow strain peak 

underneath the load better but both overestimate the compressive strain around cable coordinate 

0.5 m. The ‘shapes’ of the measured and calculated strain profiles are also compared in Figure 7-

12 (f) in a normalised way. 

The constitutive models used are compared in Figure 7-13 by following distinct points of the 

strain profile throughout the loading process. In Figure 7-13 (a) and (c) the strain directly under 

the load is plotted against the applied load magnitude for cable 02 and cable 04, respectively. It is 

shown that all the nonlinear models are able to capture the behaviour observed in the field 

experiment quite accurately. In Figure 7-13 (b) and (d) the distance between the zero crossings of 

the strain profile are plotted against the applied load for cable 02 and cable 04, respectively. Note 

that the spatial resolution of the zero crossings shown in Figure 7-13 (b) was chosen equal to the 

spatial resolution of the FOS measurements. It is shown that this distance remains more or less 

constant during the experiment. In the linear elastic model this distance is purely defined by the 

Poisson ratio 𝜈. As 𝜈 remains constant the distance between the zero crossings also remains 

constant. In contrast this distance increases with the nonlinear 1 model (in particular in cable 04) 

due to the increasing difference between the decaying tangent shear modulus 𝐺(휀𝑠) and the 

constant bulk modulus 𝐾. With the nonlinear model 2 and in particular the nonlinear model 3 the 

distance between the zero crossings remains again more or less constant during the loading 

history. This is a result of the more proportional decrease of both shear and bulk moduli of these 

models. 
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Figure 7-11. Horizontal strains 휀𝑥𝑥 at the level of cable 02 (0.2 m) for the four different constitutive models: 

(a) linear isotropic elasticity; (b) nonlinear deviatoric and linear volumetric behaviour; (c) both nonlinear 
deviatoric and volumetric behaviour; (d) coupled nonlinear deviatoric and volumetric behaviour; (e) 
measured strain; (f) comparison of the strains at the load corresponding to a mass of 100 kg. 
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Figure 7-12. Horizontal strains 휀𝑥𝑥 at the level of cable 04 (0.4 m) for the four different constitutive models: 

(a) linear isotropic elasticity; (b) nonlinear deviatoric and linear volumetric behaviour; (c) both nonlinear 
deviatoric and volumetric behaviour; (d) coupled nonlinear deviatoric and volumetric behaviour; (e) 
measured strain; (f) comparison of the strains at the load corresponding to a mass of 100 kg. 
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Figure 7-13. Comparison of distinct points of the strain profiles with increasing load: cable 02 (a) min. strain 

directly under the load vs. applied load; (b) distance from the load axis to the zero crossing of the strain 
profile; cable 04 (c) min. strain directly under the load vs. applied load; (d) distance from the load axis to the 
zero crossing of the strain profile. 
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7.6.2 Stress paths 

To shed more light into the different behaviours of the used constitutive models in the 

Boussinesq problem the stress paths at the depth of the buried FOSs are evaluated (Figure 7-14 

for cable 02 and Figure 7-15 for cable 04). It is shown that while with linear elasticity the stress 

paths of the evaluated points are linear and follow almost the same inclination of Δ𝑞/Δ𝑝~3.5, 

with the nonlinear model 1 their inclination is spread between purely deviatoric paths underneath 

the load and Δ𝑞/Δ𝑝~2.8. Furthermore the stress paths are curved. This can be explained by a 

redistribution of the stresses from the loaded axis towards larger distances with increasing strain. 

The same effect is observed with the nonlinear 2 model where due to the nonlinear volumetric 

behaviour the stress paths do not spread as strongly compared to the nonlinear 1 model. The 

nonlinear 3 model with its deviatoric-volumetric coupling leads, similar to the linear elastic 

model, to linear stress paths but their inclination is spread similarly compared to the nonlinear 2 

model. Note that the magnitudes of the stress paths of all nonlinear models are significantly lower 

than the stress paths of the linear elastic model. This can be explained by wider distribution of the 

stresses away from the load axis and is reflected also in the wider strain profiles of the 

nonlinear 1 model and the overestimation of the compressive strain of all three nonlinear models 

(Figures 7-11 and 7-12). 
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Figure 7-14. Comparison of the stress paths for the different constitutive models at points along cable 02; 

(a) location of the evaluated points; (b) linear elastic model; (b) nonlinear 1 model; (d) nonlinear 2 model; (e) 
nonlinear 3 model. 
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Figure 7-15. Comparison of the stress paths for the different constitutive models at points along cable 02; 

(a) location of the evaluated points; (b) linear elastic model; (b) nonlinear 1 model; (d) nonlinear 2 model; (e) 
nonlinear 3 model. 
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Figure 7-16. Comparison of the stress-strain behaviour of the four models with the parameters from Table 

7-2 with the triaxial test results: (a) deviatoric behaviour; (b) volumetric behaviour. 

7.6.3 Comparison with triaxial test results 

The performed triaxial tests showed clear nonlinear stress-strain curves in both the deviatoric and 

the volumetric behaviour. The four constitutive models where fitted to match the measured 

strains along the buried FOSs accurately. Figure 7-16 shows the comparison of the deviatoric and 

volumetric behaviours of the models with the triaxial test results for an axial compression path 

(only the nonlinear 3 model is stress path dependent). It is shown that the linear elastic model 

only captures the ‘mean’ stiffness measured in the triaxial tests as a secant modulus. Still it is 

able to reproduce the strain measurements of the field experiment quite accurately. The nonlinear 

models follow almost the same deviatoric stress-strain curve, with a smaller stiffness compared to 

the triaxial tests. This difference is most likely a result of the too high radial stresses in the 

triaxial tests. The difference between the in-situ stiffness and the stiffness in the triaxial test can 

be approximated using the well-established power laws (e.g., Janbu 1963; Ohde 1939) to take the 

influence of the confining stress into account. 

𝐺

𝐺𝑟𝑒𝑓
= (

𝑝

𝑝𝑟𝑒𝑓
)

𝑚

 (7-30) 

With 𝑚 = 0.5 for sands and silts this leads in this case to 𝐺/𝐺𝑟𝑒𝑓~0.48 and ~0.67 for cable 02 

and cable 04, respectively. These ratios may explain at least the magnitude of the difference 

between the best-fit constitutive models and the triaxial test results. 
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Fibre-optic sensors (FOSs) buried in the ground have been used in a field experiment to measure 

the strains in the ground caused by a small load acting on the surface (Boussinesq problem). 

During this experiment a significant nonlinearity of the soil stiffness was observed. The stiffness 

decreased significantly with increasing load and the rate of decrease is strongest at the smallest 

applied loads, which is a justification for the use of the logarithmic stress-strain function to model 

the soil behaviour at small strains. FOSs proved to be a suitable tool for the investigation of the 

soil behaviour at the very small strains caused by the surface loads. The experimental results 

shown in this chapter represent a unique direct measurement of the soil nonlinearity in a 

geotechnical boundary value problem in a field experiment. 

The same nonlinear behaviour could be observed in triaxial tests performed at low confining 

stresses. Both the deviatoric and the volumetric behaviour show proportional degradation of 

stiffness at small strains. 

The boundary value problem considered in the field experiment was modelled using the finite-

element method with four different constitutive models. It was found that linear elasticity 

captures the ‘shape’ of the strain profiles in the Boussinesq problem accurately but can only fit 

the measured strain data at one particular load magnitude for which the stiffness parameters are 

optimised. To overcome this limitation the response using three nonlinear elastic models was 

investigated. It is shown that not only the nonlinear deviatoric but also the nonlinear volumetric 

behaviour is important to capture the strains measured in the field experiment. 

To capture the measured strains at the FOSs buried at different depths in the ground the influence 

of pressure dependency could be implemented into the models. Although elastic models are able 

to capture the measured strains during the experiment accurately, the observed strains are partly 

irreversible. For more accurate modelling of the loading and unloading behaviour of a 

geotechnical boundary value problem at such small strains elastic-plastic kinematic hardening 

constitutive models should be used. Further improvement could also be achieved by the 

consideration of potential anisotropic soil behaviour, which may be significant at the very low 

vertical stresses close to the ground surface. 

However, none of the nonlinear models matches the ‘shape’ of the strain profiles as close as 

linear elasticity. Therefore, for the application in surface object identification a model using 

linear elasticity with constant Poisson ratio and load-dependent Young’s modulus constant in the 

whole half space should provide the best results, although such a model is mechanically 

questionable. 
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 Appendix 7-1: Details on the triaxial test samples 7.8

In table 7-1 the density and the initial stress values of the triaxial test samples is presented. 

Table 7-1. Details on the triaxial test samples 

Sample no. Density 

𝜌 (g/cm3) 

Initial axial stress 

𝜎1,𝑖𝑛𝑖𝑡 (kPa) 

Initial radial stress 

𝜎3,𝑖𝑛𝑖𝑡 (kPa) 

1 17.6 12.5 10.3 

2 16.6 10.9 10.5 

3 17.4 10.3 10.8 

 Appendix 7-2: Grading of the soil 7.9

Figure 7-17 shows grading curve of the natural soil excavated at the experimental site in the field. 

Due to the significant amount of silt and fines the curve was built from a sieving analysis (for 

particle sizes over 0.125 mm) and laser diffraction (for particle sizes below 0.125 mm). The laser 

diffraction method only provides a volumetric measure of the particle size distribution which was 

converted into a mass by assuming grain density of 2.65 g/cm
3
 (corresponding to Quartz). The 

curve therefore represents only an approximation. 

 

Figure 7-17. Grading curve 
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 Appendix 7-3: Parameters of the constitutive models 7.10

The parameters of the used constitutive models are presented in table 7-2. 

Table 7-2. Used parameters of the constitutive models 

Linear elasticity 

   𝐸 𝜈 or 𝐾 𝐺 

   kPa - 

 

kPa kPa 

   20’000 0.3 

 

16’667 7’692 

   

        Nonlinear 1 

   𝐾 𝐺0 𝐺𝐿 𝑥𝐿 𝑞𝐿 

   kPa kPa kPa - kPa 

   25‘000 20‘000 1‘200 10.5 20 

          

Nonlinear 2 

𝐾0 𝐾𝐿 𝑥𝑣𝐿 𝑝𝐿 𝐺0 𝐺𝐿 𝑥𝑠𝐿 𝑞𝐿 

kPa kPa - kPa kPa kPa - kPa 

80‘000 2‘000 20 4 20‘000 1‘200 10.5 20 

        Nonlinear 3 

𝑎𝐿 𝑛 𝐾0 𝐾𝐿 𝑥𝑣𝐿 𝐺0 𝐺𝐿 𝑥𝑠𝐿 

kPa - kPa kPa - kPa kPa - 

6 0.61 30‘000 1‘000 20 7‘000 412 11 
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 Appendix 7-4: Validation of the finite element solution 7.11

Figure 7-18 shows the comparison of the strain at the level of cable 02 calculated with the 

analytical point load solution and with the FE software ABAQUS using linear elasticity. In the 

FE solution the load was placed on top of a stiff plate with diameter of 0.1 m. The two solutions 

compare well, the small difference is most likely an effect of the difference between the point 

load with zero diameter and the small plate. The result validates the FE solution and the use of 

the elastic point load solution for object identification even if the applied loads are distributed 

over a small area. 

 

Figure 7-18. Comparison of the horizontal strain at the level of cable 02 calculated with the analytical point 
load solution and with the finite element method using linear elasticity. 
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 Notation 7.13

𝑎𝐿 Half-axis of the ellipse in the triaxial stress space for the nonlinear 3 model 

𝑏 Stiffness ratio 

𝑔 Gibbs free energy function 

𝑓 Helmholtz free energy function 

ℎ Depth of the fibre-optic cables 

𝑚 Exponent in the power law 

𝑛 Eccentricity of the ellipse for the nonlinear 3 model 

𝑝 Mean pressure 

𝑝𝐿 Limiting mean pressure 

𝑝𝑟𝑒𝑓 Reference mean pressure 

𝑞 Deviatoric stress 

𝑞𝐿 Limiting deviatoric stress 

sgn(… ) Signum function 

𝑥𝐿 Normalised limiting strain 

𝑦(𝑥) Normalised stress-strain function 

𝐸 Young’s modulus 

𝐺 Shear modulus 

𝐺0 Initial (small-strain) shear modulus 

𝐺𝐿 Shear modulus at the limiting stress 

𝐺𝑟𝑒𝑓 Reference shear modulus 

𝐼1 First invariant of the strain tensor 

𝐼2𝐷 Second deviatoric invariant of the strain tensor 

𝐾 Bulk modulus 

𝐾0 Initial (small-strain) bulk modulus 

𝐾𝐿 Bulk modulus at the limiting stress 

𝑃 Load magnitude 

𝑅 Parameter of the logarithmic stress-strain function 

𝛼 Parameter of the logarithmic stress-strain function 

휀𝑖𝑗 Strain tensor 

휀𝑥𝑥 Horizontal strain 

휀𝑥𝑥,𝑚𝑒𝑎𝑠 Measured horizontal strain 

휀𝑥𝑥,𝑐𝑎𝑙𝑐 Calculated horizontal strain 

휀𝑠 Shear strain 

휀𝑣 Volumetric strain 

휁 Substitution used in the coupled nonlinear 3 model 

𝜇휀 Microstrain, 𝜇𝑚/𝑚 

𝜈 Poisson ratio 

𝜉 Substitution used in the coupled nonlinear 3 model 

𝜎𝑖𝑗 Stress tensor 

𝜒 Substitution used in the generalized 3D coupled nonlinear 3 model 
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 Conclusions and outlook 8

 Part A: Earth pressures in landslides 8.1

8.1.1 Main results and conclusions 

In part A the earth pressures in landslides are investigated. It is shown that the earth pressures in 

landslides can be assessed as a limit state problem where the soil in the vicinity of a retaining 

structure or a building is at failure. The investigation of this limit state provides the highest 

possible earth pressure acting. Knowledge of this limiting pressure is important for the design of 

new and the assessment of existing structures. Similar to the classical earth pressure theories for 

stable ground no statement is possible about the evolution of the pressures during the movement 

of the landslide. 

Based on the application of either the static approach or the kinematic approach, lower- or upper-

bounds, respectively, are derived. Limit analysis proved to be a suitable tool for the investigation 

of such limit states as it provides not only a solution which is meaningful but additionally allows 

formulating a statement about the relation of the solution compared to the exact solution. If the 

derived earth pressures in landslides are used for the design of new or the assessment of existing 

structures it is interesting to note that the kinematic method, unlike in almost all other problems, 

provides solutions on the safe side, as the earth pressures acting on a structure are overestimated. 

In chapter 3 the earth pressures acting on a constraining structure in a landslide (that is, a 

structure stabilising the landslide) are studied using limit analysis. This earth pressure is referred 

as the ‘landslide pressure’. Rigorous upper- and lower-bounds of limit analysis were derived, 

which are shown to provide the exact solution for the special case of a planar landslide. The 

derived exact solution coincides algebraically with a solution for another problem derived by 

(Rankine, 1857), which represents a lower-bound for the passive earth pressure in stable, 

homogeneous ground with an inclined surface. It is, however, important to note that Rankine’s 

passive earth pressure solution provides a good lower-bound only for special cases but 

underestimates the passive pressure significantly for steep slopes. While the passive earth 

pressure increases significantly with increasing slope Rankine’s lower-bound decreases. 

The influence of wall friction and inclination as well as soil dilatancy and the influence of 

ground-water on the landslide pressure are discussed, broadening the field of application of the 

derived solution. The comparison of the landslides pressure solution with existing solutions from 

the literature (Brandl and Dalmatiner, 1988; Haefeli, 1944) revealed significant discrepancies 

which are explained by the use of the limit equilibrium method and some simplifying 

assumptions in the existing solutions. The derived solution can be applied for the design of new 

retaining structures in landslides and the assessment of existing structures as an earth pressure 

load acting on the structures. Further it can be used to assess the highest possible stabilising force 

which can be transmitted from a stabilisation structure into the landslide body. However, it 

should be noted that in the latter case the upper-bound limit analysis does not provide a solution 

on the safe side. 
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In chapter 4 the landslide pressure solution was applied to three selected extensions of the 

boundary conditions, releasing some geometrical conditions of the landslide and the retaining 

structure. It was shown that the special case discussed in chapter 3, although using some 

restrictive assumptions, does also provide good earth pressure values in a wide range of arbitrary 

inclinations and frictions on the weak slip surface. However, in contrast to the solution in chapter 

3 the landslide pressure acting on a retaining structure depends on the wall-friction if the 

simplifying condition of equal inclination and friction of the slip surface does not hold. The 

investigation of the closely related problem of a not fully mobilised slip surface in the vicinity of 

the structure, which is only possible for rigid structures installed before the landslide moved, 

showed that in such cases the landslide pressures can be significantly higher compared to the 

fully mobilised case. Regarding the design of the structure, this is a strong argument for 

compliant structures in landslides. Finally, it was shown that structures which are horizontally 

pinned but do not reach down to the slip surface are only able to evoke the landslide pressure 

mechanism if they are embedded deeper than a critical value. This critical embedment, which 

decreases with increasing slope inclination, can be used as an optimum criterion for the design of 

landslide stabilisation structures. 

In chapter 5 the closely related problem of the earth pressures acting on buildings embedded in 

the compression zone of a moving landslide (that is, the displacement rates decrease towards the 

bottom end) are studied using limit analysis and the finite-element method (FEM). The difference 

in stiffness between a building and the landslide body can lead to a disturbance of the 

displacement field of the moving soil mass. This disturbance results in an increase of the loads 

acting on the building until eventually (when failure of the building is excluded) a limit state of 

the soil is reached. It is shown that in practical cases first a local limit state where the soil in the 

vicinity of the building fails is reached. Further compression of the landslide later leads to a 

global failure of the whole sliding body which is similar to the failure used to determine the 

landslide pressure in chapter 3 but may be altered by the building. 

After the local failure is reached the loads on the building do not increase anymore. Therefore the 

evaluation of this limit state is used to evaluate the ultimate loads acting. Depending on the 

geometry of the slope and the building, the weight of the building as well as the strength of the 

soil and the interface between the soil and the building different mechanisms are proposed and 

evaluated using the kinematic method of limit analysis and the corresponding solutions for the 

ultimate loads are presented. Note that similar to the landslide pressure in chapter 3 the upper-

bound solutions represent a safe estimate for the loads if used for the design and the assessment 

of the buildings. 

Using the FEM it was shown for a case study, which is typical for permanently moving 

landslides in the Alps, that it is likely to reach the local limit state within the lifetime of a 

building. Therefore it is concluded that buildings in landslides should be designed in order to 

withstand the ultimate loads acting at this limit state. For temporary structures, such as 

construction pits, it may be overly conservative to design against these relatively high loads. The 

assessment of evolution of the loads over time is not within the scope of this thesis but should be 

topic of future research. 
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In general the findings provide an understanding of the most relevant factors which determine the 

limiting earth pressures in landslides. The developed earth pressure solutions should provide a 

tool for engineers for the assessment of existing and the safe design of new structures in 

landslides. The concepts used to determine these earth pressures (based on the investigation of 

the limit states) may also be applied to cases with other displacement fields (not only structures in 

the compression zone of constrained landslides) in future research and practice, for example for 

structures crossing the boundary of a landslide or structures in the extension zone at the top end 

of a landslide. The derived solutions will hopefully also contribute to codes and regulations 

dealing with retaining structures and buildings in landslides. 

8.1.2 Future research 

The developed solutions are based on the plane strain assumption, which at least for long 

retaining structures is a valid simplification. Other structures in landslides (e.g., bridge piers or 

buildings) have a limited width perpendicular to the slope. It is known that for example the 

passive earth pressure is significantly higher in three-dimensional cases due to the larger amount 

of soil involved in the mechanisms. Therefore it is of high importance to extend the solutions 

shown here to three-dimensional conditions. 

Although this work is based on sound geotechnical concepts it is purely theoretical. Therefore an 

experimental and field validation of the solutions is of high importance to increase the confidence 

and allow a broad practical application. Such a validation in the field is however not straight 

forward since absolute pressures would have to be measured on, for example, a retaining wall in 

a landslide and it has to be decided at which point in time the limit state is reached. 

For the evaluation and the design of temporary structure (e.g., construction pits) the consideration 

of the landslide displacement rate on the evolution of the loads is important. It is likely that in 

many cases with moderate displacement rates the loading of such structures is slow and that the 

derived ultimate loads at the limit state of soil failure are not reached within the lifetime. The 

evaluation of the load evolution will require a good understanding of the initial stress and 

displacement conditions of the landslide and the constitutive behaviour of the sliding body and 

the retaining structure has to be modelled accurately including the staged constructions. From an 

engineering view it is however more important to design robust structures which can cope with 

possible differences between the modelling and the reality. The safety of the structure should not 

be based purely on the correct modelling of such a complex problem. 

As existing structures in landslides often show significant structural damage, which is likely to be 

the result of an underestimation of the landslide induced loads, it is also important to study the 

structural behaviour of the damaged buildings or retaining structures in particular also regarding 

their potential retrofitting. 
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 Part B: Applications of fibre-optic sensors in Geomechanics 8.2

8.2.1 Main results 

In Part B the application of distributed fibre-optic strain sensors (FOSs) in geomechanics is 

investigated. Distributed fibre-optic strain sensing with its unprecedented spatial and strain 

resolution proved to be a suitable tool for the investigation of the mechanical soil behaviour in 

geotechnical boundary value problems in previous work. Special fibre-optic cables with metal 

and plastic coatings, developed earlier at the Institute for Geotechnical Engineering at ETH 

Zurich (Hauswirth, 2015; Hauswirth and Iten, 2010), allow the use of FOSs buried directly in the 

soil. As with buried FOSs the deformations of the soil in geotechnical boundary value problems 

can be measured not only on the surface but along of a line within the soil new insight can be 

gained into the soil behaviour. 

FOSs buried in a shallow trench in the ground enable the measurement of the deformations in the 

ground caused by an object moving on its surface. In chapter 6 a system is proposed which uses 

such measurements together with inverse analysis for the calculation of the contact force patterns 

acting between the object and the ground surface. The inverse analysis which is based on a 

mechanical model of the ground loaded at its free surface (elastic half space, e.g., Boussinesq, 

1885) and an algorithm similar to those used in image deblurring. The forward problem of 

calculating the strain along the FOSs from arbitrary load patterns is presented and it is shown that 

its discretisation leads to a linear system of equations. The inverse problem is ill-conditioned; 

therefore a numerical solution using regularisation is proposed and applied. 

In a field experiment with ground-buried FOSs the strain caused by different static load patterns 

was measured. It is shown that the measurements together with the proposed inverse analysis are 

capable of identifying the load magnitudes and positions of the applied loads accurately. This 

seems rather remarkable as the ground is made of natural, non-engineered material containing 

certain non-homogeneity and shows non-linear mechanical behaviour. 

The combination of such a system with high-temporal frequency sensing (which is already 

commercially available for small lengths) enable the identification of dynamic loads on the 

ground surface. This would open up a path for practical applications such as perimeter security 

systems with identification of the intruder, biodiversity measurements (from step lengths and the 

contact force magnitudes different species crossing could be discriminated) and dynamic weigh-

in-motion systems for road traffic and airports. 

In the field experiment significant non-linear behaviour of the soil at the very small strains 

induced by small surface loads (corresponding to a mass of 10 kg – 100 kg) was observed. This 

nonlinearity is further explored in chapter 7. The ground surface was loaded on a small plate in 

steps and the corresponding strains along the buried FOSs were measured. The results reveal that 

the stiffness of the soil decreases significantly with increasing load with the highest rate of 

decrease at very small strains. This effect is known in geotechnics as small strain nonlinearity. 

The measurements using FOSs represent a direct measurement of this nonlinearity in a boundary 

value problem. 

The experiment was modelled using the finite-element method with four different constitutive 

models. Besides the linear isotropic elastic model, three non-linear models were investigated. 
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From the four applied models linear elasticity captures the ‘shape’ of the measured strain profiles 

best but is not able to capture the observed non-linearity. The response of the three other applied 

non-linear elastic models is discussed and it is shown that additionally to the non-linear 

deviatoric behaviour also the non-linear volumetric behaviour is important to capture the field 

measurements. A validation of the used constitutive models and their parameters against triaxial 

test results with local strain measurements shows good agreement of the non-linear behaviour. 

The soil behaviour is, however, stiffer in the triaxial tests. This is most likely the result of 

different levels of confining stress compared to the field conditions. 

In general FOSs, installed directly into the soil, represent a unique possibility to study the soil 

behaviour in geotechnical boundary value problems from very small to mid-range strains. 

8.2.2 Future research 

The combination of the proposed system for surface object identification with high temporal 

frequency sensing opens up possibilities for several applications. To this date such sensing 

systems are only able to measure lengths of tens of meters with the necessary high spatial and 

strain resolution. With future improvements of fibre-optic interrogators the path towards further 

applications should be open. Amongst these applications the identification of specific objects 

from the different load patterns is crucial and should be pursued for example using a large set of 

classified measurements conducted with different objects at the surface and machine learning. As 

the use of high frequency measurements requires an inverse analysis of many measurement 

frames the speed of the algorithm becomes important. This is in particular the case in the 

application of a perimeter security system, where (almost) real-time results are a prerequisite. 

The influence of environmental changes such as different weather, moisture content of the soil 

and temperature on the mechanical behaviour of the soil should be studied. The change of the 

mechanical behaviour might influence the robustness and accuracy of the inverse analysis of the 

surface loads. The study of these effects would, for example, require the loading of the ground 

surface and measurements along buried FOSs over a long period of time with parallel 

measurement of temperature and soil moisture. 

In the conducted field experiments some small irreversible strains after load removal have been 

observed (no data published in this thesis). This unloading and also subsequent reloading and 

their effect on the inverse analysis need to be investigated. The soil behaviour in the loading and 

unloading cycles could be modelled using kinematic hardening models (e.g., Puzrin and Burland, 

1998). The comparison with the experimental data could serve as a validation of such models in a 

geotechnical boundary value problem. Furthermore it was observed that the irreversible strains 

diminish over time due to potential rate effects of the soil. This could be further explored with the 

objective of determining the time required to reach a new ‘virgin’ state (that is, a state where the 

soil behaves like in first loading) after unloading and whether such a state does even exist. 

Another interesting future research would be to study the long-term behaviour of the buried fibre-

optic cables. The choice of the cable for a commercial system is very important to ensure a 

reliably working system with no failure due to cable breakage caused, for example by rodents 

like mice. Further, the evolution of the plastic coating over time and whether the strain transfer to 

the fibre in the core is persistently working is not fully clear and needs investigation. 
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