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Abstract Some of the distinct noble gas ‘‘components’’ in meteorites represent a record

of processes during and even before solar system formation. This record is difficult to

interpret. Often, one of the major problems is to recognize whether a certain noble gas

elemental and isotopic pattern has been established in a presolar epoch, later in the solar

accretion disk, during meteorite parent body formation or finally as a result of metamor-

phism on a parent body. It would also appear that noble gases are a preferred tool to deduce

the types of matter from which the Earth and other planets accreted—if the respective

parent materials are present in our extraterrestrial sample collections at all. However, also

this issue is unsettled. Noble gas isotopes originating from the decay of radioactive pre-

cursors allow us to study the early and later degassing history of terrestrial planets,

although the interpretation often remains model-dependent. This contribution briefly

reviews some of the fundamental aspects of the noble gas record in meteorites and planets.

Keywords Noble gases � Solar system formation � Planet formation �
Planet degassing

1 ‘‘Exotic’’ Noble Gases in Presolar Grains

Small amounts of dust condensing in the outflows of stars found their way into meteorite

parent bodies (Meyer and Zinner 2006; Ott 2007). These presolar dust grains (nanodia-

monds, silicon carbide, graphite and others) contain a surprisingly large part of the noble

gas inventory of primitive meteorites (Ott 2002). Some of these noble gas components

have an ‘‘exotic’’ isotopic composition, widely different from that of the sun. The search

for their host phases actually led to the discovery and first isolation of surviving circum-

stellar dust in meteorites. Xenon enriched in both the lightest and the heaviest isotopes by
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about a factor of two relative to solar Xe was discovered by Reynolds and Turner (1964),

and it soon became clear that this composition could not have formed in the solar system.

In 1987 the host phase of the anomalous Xe—representing several percent of the total Xe

inventory in primitive meteorites—was identified as tiny presolar diamond grains of about

a nanometer in size (Lewis et al. 1987). The Xe in the diamonds is likely of supernova

origin, the light and heavy isotope excesses being due to p- and r-process nucleosynthesis,

respectively (Ott 2002), but it remains unclear whether all nanodiamonds in primitive

meteorites (up to several hundred ppm) are indeed presolar. Much larger grains of up to

several lm were discovered later, the most important types being silicon carbide and

graphite. They contain noble gases from, e. g., s-process nucleosynthesis, sometimes

detectable even in single grains (Heck et al. 2007). Apart from exotic noble gases, almost

every other element analysed in presolar grains is isotopically extremely anomalous

(Meyer and Zinner 2006). Whereas differences in isotopic compositions in normal matter

are usually on the order of permil or less, presolar grain data are often displayed on a

logarithmic scale. The 18O/16O ratio in presolar oxide grains varies, for example, between a

few times 10-5 and a few times 10-2 (Meyer and Zinner 2006). This is the best and

unequivocal evidence that the grains indeed are intact condensates from other stars. The

laboratory studies of presolar grains—sometimes called astrophysics in the laboratory—

not only allow us to pinpoint stellar sources contributing material to the solar system but

also to better understand stellar nucleosynthesis, the evolution of stars, stellar mixing, or

galactic chemical evolution (cf. Ott 2007). Noble gases have been guiding us towards the

fascinating finding that a small meteorite sample contains matter from many different stars

older than the sun.

Noble gases produced by spallation of target atoms by galactic cosmic ray particles

have allowed dating the presolar age of presolar grains (Heck et al. 2009). It appears that

most grains have considerably shorter interstellar lifetimes than theoretical estimates of

about half a billion years.

2 ‘‘Normal’’ Noble Gases in Meteorites

Unlike the ‘‘exotic’’ gases, some noble gas components in meteorites have an isotopic

composition sufficiently close to that in the sun that a genetic relationship between

meteoritic and solar reservoirs is indicated or at least possible. The most important of these

components has been dubbed ‘‘Q’’ (for Quintessence). Its carrier ‘‘Phase Q’’ survives acid

attack by HF and HCl but gets destroyed by strong oxidants. It is carbonaceous and almost

massless, but has otherwise remained elusive (Wieler et al. 2006). Ne, Kr, and Xe in Q

have a mass-fractionated isotopic composition relative to solar composition, favouring the

heavy isotopes, and the lighter elements are heavily depleted in Q relative to solar com-

position. The He/Xe ratio in Q is about seven orders of magnitude lower than in the sun

(Busemann et al. 2000).

Although labelled ‘‘normal’’, it is thus important to note that the noble gases acquired by

meteorite parent bodies during their formation isotopically mostly differ from solar

composition. This is a remarkable difference to the Earth and Mars, which contain Ne (and

presumably He) of solar isotopic composition in their interior (see below). It should also be

noted that a sizeable fraction of meteorites do actually contain noble gases of an elemental

and isotopic composition close to that of the sun. These meteorites, however, were exposed

to the solar wind while being fine dust at the surface of their parent asteroids, similar to the

lunar regolith. Although some workers believe that the solar wind gases in most meteorites
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were trapped in the early solar system, they are generally not regarded as being ‘‘pri-

mordial’’. Hence, while the solar-gas-rich meteorites record processes on early or later

asteroidal surface layers and are also important to determine to composition of the noble

gases in the sun (as the lunar regolith and samples from the Genesis space mission), they

are not regarded to reflect the solar system formation history. A few meteorites appear to

contain primordial noble gases of solar-like composition though (e. g. Busemann et al.

2006; Ivanova et al. 2008), but the implications of this finding for noble gas inventories of

planets are not yet clear.

While noble gases carried by phase Q are different from solar composition, it is nev-

ertheless commonly assumed that they were derived from a parent reservoir of solar or

solar-like composition by one of more processes preferentially depleting light elements and

isotopes (e. g. Wieler et al. 2006). Unfortunately, we are far from a good understanding of

these processes and where they happened, which hampers the usefulness of meteoritic

noble gases to elucidate early solar system processes. One problem is the insufficient

characterisation of the carrier. What is clear is that Q-like gases of more or less uniform

composition were widespread in the early solar system, since they are found in many

different meteorite types originating from different parent bodies. This favours a global

process rather than one acting on a parent body, such as hydrodynamic escape upon blow-

off of transient early atmospheres (Pepin 1991). Various workers prefer an origin of Q

gases in the sun’s parent molecular cloud, e. g. by trapping of (solar-like) noble gases in icy

mantles around presolar grains (Huss and Alexander 1987), perhaps involving UV radia-

tion (Sandford et al. 1998) or by active capture on growing surfaces (Hohenberg et al.

2002). Pepin (2003) studied fractionation due to hydrodynamic escape during the dissi-

pation of the solar accretion disk. This process could reproduce to some extent the ele-

mental but not the isotopic pattern of meteoritic Q gases. Other proposed mechanisms are

not without problems either (Wieler et al. 2006), implying that the potential of the pri-

mordial noble gas record in meteorites to reveal accretionary processes in the early solar

system has not been fully exploited yet.

3 Records of an Early Energetic Particle Irradiation in Meteorites?

Noble gases produced by interactions with high-energy particles in particular phases in

meteorites (‘‘cosmogenic’’ noble gases) may yield information about energetic particle

fluxes in the early solar system or exposure durations of the respective phases to energetic

particles prior to the compaction of the meteorite. Above we mentioned the example of

presolar exposure ages of circumstellar SiC grains. Unequivocal precompaction effects in

primitive meteorites have been reported by Caffee et al. (1987) and Woolum and Ho-

henberg (1993). Olivine grains which once had been exposed to heavy (iron group)

energetic solar particles (as revealed by lattice defects, ‘‘solar flare tracks’’) contained

much higher 21Ne concentrations than the track-free grains. The authors suggested this to

be evidence for a very high energetic particle flux emitted by the early sun. Very active

young stars during their T-tauri stage are indeed common (Feigelson and Montmerle

1999). However, the correlation between solar flare tracks and excess 21Ne could also be

the result of mixing of material irradiated by both solar and galactic energetic particles in

an asteroidal regolith with unirradiated material (Wieler et al. 2000). Only olivine crystals

in the fine grained ‘‘matrix’’ of meteorites but not those in larger inclusions contain solar

flare tracks (Metzler 2004), which would not be expected if the olivines had once been

exposed in free space. Some chondrules (mm-sized spheroids in primitive meteorites) in
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two meteorites also acquired cosmogenic noble gases prior to compaction, but also these

excesses are plausibly explained by an irradiation in an asteroidal regolith (Roth et al.

2008). Although no unequivocal evidence for an exposure of chondrules to an early

energetic particle flux as individual objects has yet been found, the search for such effects

should continue.

4 Noble Gases in Planets as Tracers of Their Accretionary History

An impressive data base is available on noble gases in the terrestrial atmosphere, crust and

mantle (Ozima and Podosek 2002; Porcelli et al. 2002). In contrast, the data on the other

terrestrial and the giant planets is very limited (Wieler 2002; Swindle 2002; Taylor et al.

2004), and mostly restricted to the respective atmospheres (except for Mars, where

meteorites convey some information on the interior noble gases). Yet, these limited data

may allow inferences on processes and timing of planetary accretion, early and late

degassing of planets, as well as atmosphere formation and modification.

4.1 Giant Planets

The helium abundance in Jupiter’s atmosphere has been precisely determined by the

Galileo probe, and much less accurate values are also available from Voyager data for the

three other giant planets. The first order observation is that the He/H ratio in the atmo-

spheres all giant planets is close to the value in the sun. Hence, with an atmospheric mass

fraction of *20–30%, He is not at all a ‘‘rare gas’’ in giant planets, very much unlike in the

terrestrial planets. The giant planets thus have primary atmospheres, accreted from the

solar nebula and not produced by later degassing. The Jupiter data are precise enough to

confirm earlier suspicions that He in the outer atmosphere is somewhat depleted relative to

the protosolar abundance (von Zahn et al. 1998; Taylor et al. 2004), indicating a downward

migration of He droplets, which form because He and H become immiscible at high

pressures. A similar He migration presumably ocurred in Saturn but probably not in Uranus

and Neptune (Taylor et al. 2004).

The Galileo probe also revealed distinctly non-solar elemental abundances of the four

heaver noble gases relative to hydrogen. Ne is depleted by an order of magnitude, pre-

sumably because it is preferentially incorporated into segregating He droplets (Niemann

et al. 1998). Ar, Kr, and Xe are all enriched by about a factor of 2.5 relative to solar

composition, and similar enrichment factors are observed for other volatile elements:

carbon, sulphur, and probably nitrogen (Atreya et al. 2003; Taylor et al. 2004). Owen et al.

(1999) proposed that this uniform enrichment indicates that all these elements—and pre-

sumably others—were brought to the planet in very cold (\30 K) icy planetesimals. This is

different from other models which postulate that heavy elements in giant planets were

mainly delivered by much warmer planetesimals, condensed just beyond the ‘‘snowline’’ in

the solar nebula. It has also been proposed, however, that trapping of Ar, Kr, and Xe in icy

planetesimals may have largely been inhibited because the heavy noble gases may have

formed complexes with H3
? ions and thus remained in the gas phase, a process that might

explain the scarcity of noble gases in Titan’s atmosphere (Mousis et al. 2008).

The 3He/4He ratio in Jupiter of 1.66 9 10-4 (Taylor et al. 2004) is widely accepted as

the best value for the isotopic composition of protosolar He. The reported 20Ne/22Ne ratio

of 13 is close to the solar wind value (though with a large uncertainty), which further

supports the idea that the noble gases in the giant planets reflect solar nebula composition.
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Similarly, data from the Genesis mission (Marty et al. 2010) confirm that the nitrogen

isotopic composition in Jupiter and the solar wind are similar.

4.2 Terrestrial planets

Noble gas concentrations in the atmosphere of Venus (expressed per g planet) are about an

order of magnitude higher than in the terrestrial atmosphere, which in turn has about two

orders of magnitude higher concentrations than the martian atmosphere. All three atmo-

spheres show strongly fractionated elemental abundances of Ne–Xe relative to solar

abundances (He is not retained in the atmospheres of terrestrial planets). Essentially,

lighter gases are progressively depleted, with Ne/Xe in the terrestrial atmosphere being

almost four orders of magnitude lower than in the sun (e. g. Pepin 1991). However, despite

the highly variable gas concentrations, the Ne:Ar:Kr:Xe ratios are strikingly similar in all

three atmospheres. Moreover, they are also similar to noble gas abundances in primitive

bulk meteorites.

A seemingly obvious conclusion from these facts is that the noble gases in the terrestrial

planets have been acquired by accreting material similar to—or with similar noble gas

abundances as—known present day meteorite classes. In fact, such ‘‘gas-poor’’ noble gas

acquisition scenarios have once been popular (see reviews by Donahue and Pollack 1983;

Pepin and Porcelli 2002). These models explained the different gas concentrations in the

various planets by mechanisms such as a less efficient incorporation of noble gases into

accreting matter further from the sun due to decreasing nebular pressures with increasing

heliocentric distance. However, when isotopic compositions are also considered, the

straightforward picture of similar noble gas patterns in Venus, Earth, Mars, and meteorites

cannot easily be upheld. Ratios of (nonradiogenic) Ne, Ar, and Xe isotopes in the three

atmospheres (where known), mostly differ from each other (Wieler 2002; Swindle 2002),

hence an identical source is unlikely. For Earth and Mars, there are also important dif-

ferences between the isotopic compositions of atmospheric and interior noble gases.

Because ‘‘gas-poor’’ models have intrinsic problems to account for the isotopic vari-

ability of planetary noble gas reservoirs, ‘‘gas-rich’’ models have gained popularity. These

models assume that the planets initially accreted large noble gas amounts of perhaps solar-

like composition. The primordial atmospheres would subsequently have been largely lost,

allowing modellers to chose among a wide variety of processes potentially able to frac-

tionate isotopic ratios. Pepin and Porcelli (2002) summarize acquisition and loss scenarios.

One popular model postulates that the Earth captured noble gases from dust grains that

were irradiated by an early solar wind (similar to dust grains irradiated today on the lunar

surface). Another popular model postulates gravitational capture of nebular gases by a

protoplanet, followed, e. g., by dissolution into a magma ocean. The most widely studied

atmospheric loss process is hydrodynamic escape, where hot hydrogen-rich primary

atmospheres escape efficiently enough to drag heavier elements along (e. g. Zahnle et al.

1990; Pepin 2000).

Another important observation also strongly supports scenarios implying a solar-like

composition of the primordial planetary noble gases. Some of the noble gases trapped in

the interior of Earth and Mars have a solar-like composition—modified by additions of

other components (Graham 2002; Swindle 2002). A possibly crucial observation is that the

isotopic composition of terrestrial mantle Ne is close to that of isotopically fractionated

SW Ne as, e. g., retained in the lunar regolith (Trieloff et al. 2000; Ballentine and Holland

2008) rather than the pure solar Ne as measured, e. g., in targets from the Genesis solar

wind mission. This is interpreted as evidence that the Earth trapped its mantle Ne from

Accretion and Early History of Planetesimals and Planets 5

123



material irradiated by the solar wind and not from the solar nebula. Note that related

inferences about the nature of Earth’s parent planetesimals based on comparisons between

the noble gas inventories of the Earth’s mantle and different meteorite classes, respectively

(Trieloff et al. 2002) should be viewed with caution, since meteorites rich in solar noble

gases may have acquired them in a regolith on an asteroid much after the Earth had

finished accreting.

Summarizing this section, we need to admit that the statement by Pepin (1992) still

largely holds today: ‘‘Most workers agree that atmospheric mass distributions of the

nonradiogenic noble gases were probably established very early, through the action of

processes operating before, during or shortly after planetary accretion, but beyond this

there is no consensus as yet on the specifics of sources or mechanisms’’.

5 The Early and Later Degassing of Planets Traced with Radiogenic Noble Gases

Noble gas isotopes produced by radioactive decay are very useful to constrain the extent

and in some cases also the timing of noble gas loss—and hence probably also losses of

other volatile elements—from a planetary atmosphere or its interior (Porcelli and Ball-

entine 2002). The most important nuclides are 4He and 21Ne from decay of U and Th (21Ne

produced through 24Mg(a,n)21Ne), 40Ar from 40K, 129Xe from 129I and 136Xe from fission

of 244Pu (and 238U). The latter two noble gas nuclides are particularly important to con-

strain the timing of early degassing of the Earth, due to the short half-lives of their parents

of *16 and 80 Ma, respectively.

5.1 Xe closure age of the Earth

Only about 0.8% of the 129Xe ever produced in the Earth or its building blocks is now

present in the Earth’s atmosphere, and it is hardly possible that most of the rest still resides

in the Earth’s interior (Porcelli and Ballentine 2002). Wetherill (1975) calculated from this

a ‘‘closure’’ age of the Earth for Xe of *110 Ma after the formation of the first meteorites,

assuming complete loss of Xe before 110 Ma and complete retention thereafter. Modern

estimates—also considering fission Xe from 244Pu—yield a similar single stage closure age

of *80 Ma (Porcelli and Ballentine 2002). The radiogenic Xe isotopes thus indicate a

thorough early degassing of the Earth. It remains unclear, however, whether this degassing

can be attributed to a specific event (the moon-forming giant impact and fast core for-

mation have been proposed), or whether the degassing actually was more continuous. Since

the formation of the Earth itself lasted some 100 Ma, a large part of the Xe loss might have

occurred in the planetesimals already.

A few lunar regolith samples also contain radiogenic and fissiogenic 129Xe and 136Xe,

respectively, trapped on grain surfaces and very likely testifying of an early outgassing of

the Moon. A formal age of 63 ± 42 Ma after the first meteorites has been calculated from

the ratio 129Xe/136Xe (Swindle et al. 1986). These authors suggest that this age might

represent the onset of retention of radiogenic Xe in the Moon and thus may provide a lower

limit to the age of formation of the Moon, but they also critically discuss the assumptions

on which this interpretation is based. Wieler and Heber (2003) also note problems with this

straightforward chronological interpretation.
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5.2 Later degassing of Earth and Venus

Radiogenic 40Ar in the Earth’s atmosphere corresponds to perhaps *40% or even con-

siderably more of all 40Ar produced throughout Earth’s history (Porcelli and Ballentine

2002). Because only a small fraction of this has been produced before retention of

radiogenic Xe started, it is clear that the Earth also experienced considerable later

degassing. A reconstruction of the temporal evolution of the atmospheric 40Ar/36Ar ratio

would yield more quantitative constraints on the degassing history of the Earth. Unfor-

tunately, insufficient data are available so far (Porcelli and Ballentine 2002).

Venus’ atmosphere contains about four times less 40Ar than the terrestrial atmosphere,

although Venus has about 80% of the Earth’s mass and the two planets presumably have a

similar K abundance. This suggests that Venus is less well degassed than the Earth

(Krasnopolsky et al. 1994). This may well be the result of the lack of—or only sporadic

episodes of—plate tectonics.
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