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Abstract

As Internet of Things (IoT) systems further emerge, we face unprece-
dented security and privacy challenges, especially with regards to the
collected data. This data typically consists of sensor readings, tagged with
metadata. For scalability, ubiquitous access, and sharing possibilities, the
data is most often stored in the cloud. Securing date while in transit and
in particular when being stored in the cloud is of utmost importance, as
the data can be used to infer privacy-sensitive information. Moreover,
transparent and secure data sharing (e.g., sharing with friends or domain
experts) is considered a key requirement for the practicality and success
of typical IoT systems.

In today’s cloud-centric designs, users have no choice but to trust
centralized parties. The increased number of security and privacy
incidents, such as system compromises or unauthorized trade with users
data, show that this trust is not always justified. Despite varying levels of
privacy-awareness among users of different age and geopolitical groups,
and even societal shifts towards privacy pragmatism and indifference, the
security and privacy threats do usually have far-reaching implications,
demanding adequate mechanisms and measures to address them.

In this dissertation, we investigate building secure IoT systems that
protect data confidentiality and retain data ownership. We build secure
systems that allow reducing the trust end-users are required to put into
third parties within the IoT ecosystem, specifically towards the cloud
storage and service providers. More importantly, we take a new approach
on empowering the user with ownership and fine-grained access control
for IoT data without sacrificing performance or security. In particular, we
present three approaches to enabling a secure IoT ecosystem:

(i) Talos: Talos is a system that stores IoT data securely in a cloud
database while still allowing query processing over the encrypted data.
Talos protects data even if the server is compromised. We enable this by
encrypting IoT data with a set of cryptographic schemes such as order-
preserving and partially homomorphic encryption. We tailor Talos to
accommodate for the resource asymmetry of the IoT, particularly towards
constrained IoT devices. We assess the feasibility of Talos on low-power
devices with and without cryptographic hardware accelerators and quan-
tify its overhead concerning energy consumption, computation time, and
latency. With a thorough evaluation of our prototype implementation,
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we show that Talos is a practical system that can provide a high level of
security with reasonable overhead.

(ii) Pilatus: Storage of data on cloud services naturally facilitates data
sharing with third-party services and other users, but bears privacy risks.
We present Pilatus, a data protection platform that extends Talos where
the cloud stores only encrypted data, yet is still able to process a defined
set of database queries (e.g., range or sum). Pilatus features a novel
encrypted data sharing scheme based on re-encryption, with revocation
capabilities and in situ key-update. Our solution includes a suite of
novel techniques that enable efficient partially homomorphic encryption,
decryption, and sharing. We present performance optimizations that
render these cryptographic tools practical for mobile platforms. We
implement a prototype of Pilatus and evaluate it thoroughly. Our
optimizations achieve a performance gain within one order of magnitude
compared to state-of-the-art realizations.

(iii) Droplet: Droplet is a secure data management system that
we designed from the ground up to accommodate for the distributed
nature of the IoT and revive the IoT from the current vertical design
paradigm. The consequent myriad of isolated data silos of classical
vertical architectures is hard to manage and prevent heterogeneous
applications from interacting with our IoT data. To address this
challenge, we leverage the blockchain technology to bootstrap trust for
a distributed, secure, and resilient access control and data management
scheme. Droplet handles time series data, enables reliable sharing among
heterogeneous applications without intermediate trust entities, and
features a cryptographically-protected fine-grained and scalable access
control mechanism to data streams. We leverage a hash-chain-based
key management mechanism to enable interval sharing and compact key
distribution. The built-in cryptocurrency feature of blockchains allows
the integration of economic incentives into our system. These properties
enable a variety of applications that are presently not easily realizable
using existing systems.

The systems proposed and discussed in this dissertation demonstrate
that end-to-end encryption with secure sharing can be achieved in IoT
ecosystems with a modest overhead, while maintaining a consistent user-
experience.



Zusammenfassung

Die zunehmende Verbreitung des Internet der Dinge (Internet of Things,
IoT) konfrontiert uns mit neuen Sicherheits- und Schutzproblemen,
insbesondere in Bezug auf die anfallenden Daten. Diese Daten bestehen
in der Regel aus Sensormesswerten, die mit Metadaten versehen sind.
Um darauf einen ubiquitären Zugriff sowie eine gemeinsame Nutzung
zu ermöglichen, aber auch um die Skalierbarkeit des zugrundeliegenden
Systems zu gewährleisten, werden die bei IoT-Systemen anfallenden
Daten typischerweise in der Cloud gespeichert. Dabei ist der Schutz der
Daten während der Übertragung und insbesondere bei der Speicherung
in der Cloud von grösster Bedeutung, da aus diesen Daten oft
sensitive Informationen hinsichtlich schützenswerter Bereiche (wie z.B.
der Privatsphäre von Personen) abgeleitet werden können. Darüber
hinaus wird auch eine transparente und sichere gemeinsame Nutzung
von Daten (z.B. das Teilen mit Verwandten und Bekannten oder mit
Fachexperten) als eine wesentliche Voraussetzung für die Praktikabilität
und den Erfolg typischer IoT-Systeme angesehen.

Bei den gegenwärtig vorherrschenden cloudzentrierten Architekturen
bleibt den Nutzern keine andere Wahl, als den zentralen Elementen
und Entitäten zu vertrauen. Andererseits zeigt die zunehmende Zahl
von Sicherheits- und Datenschutzvorfällen (wie kompromittierte Systeme
oder unerlaubter Handel mit Nutzerdaten), dass dieses Vertrauen nicht
immer gerechtfertigt ist. Auch wenn bei den Nutzern je nach Alter
und soziokulturellem Hintergrund das Bewusstsein für Datenschutz
unterschiedlich stark ausgeprägt ist und aufgrund gesellschaftlicher
Veränderungen bis hin zu Datenschutzpragmatismus und Gleichgültig-
keit reichen kann, haben Bedrohung der Sicherheit und Gefährdung
des Datenschutzes in der Regel weitreichende Folgen und erfordern
dementsprechend angemessene Mechanismen und Massnahmen, um
diesen Bedrohungen zu begegnen.

Die vorliegende Dissertation hat den Bau sicherer IoT-Systeme
zum Thema, welche von vornherein die Vertraulichkeit der Daten
gewährleisten und den Nutzern eine weitreichende Kontrolle über
diese geben. Konkret konzipieren wir sichere Systeme, bei denen das
erforderliche Vertrauen substantiell reduziert werden kann, welches
Nutzer den beteiligten Drittparteien, speziell den Cloud- und Service-
Providern, entgegenbringen müssen. Dazu verfolgen wir einen neuen
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Ansatz, der es Nutzern ermöglicht, die Hoheit über ihre Daten zu behalten
und feingranulare Datenzugriffsrechte zu erteilen und zu verwalten, ohne
dass dadurch die Leistungsfähigkeit oder die Sicherheit des Systems
beeinträchtigt werden. Konkret stellen wir drei Ansätze für eine sichere
IoT-Umgebung vor:

(i) Talos: Hierbei handelt es sich um ein System, das IoT-Daten sicher in
einer Cloud-Datenbank speichert und dennoch die Abfrageverarbeitung
auf den verschlüsselten Daten ermöglicht. Talos schützt damit die Daten,
auch wenn der Server selbst kompromittiert ist. Wir ermöglichen dies,
indem wir die IoT-Daten mittels einer Reihe kryptographischer Verfahren
verschlüsseln, darunter ordnungserhaltende und partiell-homomorphe
Verschlüsselungen. Talos berücksichtigt die Ressourcenasymmetrie des
IoT, die sich vor allem in leistungsmässig stark reduzierten IoT-Geräten
manifestiert. Wir untersuchen die Machbarkeit von Talos auf Low-Power-
Geräten mit und ohne kryptographische Hardwarebeschleuniger und
quantifizieren den Overhead bezüglich Energiebedarf, Berechnungszeit
und Latenz. Mitttels einer umfassenden Evaluierung unserer Prototypim-
plementierung weisen wir nach, dass Talos ein praxistaugliches System
ist, welches ein hohes Mass an Sicherheit bei angemessenem Overhead
bieten kann.

(ii) Pilatus: Die Speicherung von Daten in Cloud-Diensten erleich-
tert zwar den Datenaustausch mit Diensten von Drittanbietern und
anderen Benutzern, birgt jedoch Risiken bezüglich der Privatsphäre
und des Datenschutzes. Pilatus stellt eine Erweiterung von Talos dar
und realisiert eine Datenschutzplattform, bei der in der Cloud die
Daten nur in verschlüsselter Form vorliegen und sie dort dennoch
mit einer eingeschränkten Menge von Datenbankfunktionen (z.B.
Abfrage bezüglich eines Zeitintervalls oder Abfrage zur Ermittlung
eines Summenwertes) verarbeitet werden können. Pilatus realisiert
ein neuartiges Konzept zum Teilen verschlüsselter Daten, das auf
Wiederverschlüsselung (re-encryption) beruht und Sperrfunktionen
sowie In-Situ-Schlüsselaktualisierung bietet. Unsere Lösung umfasst eine
Reihe neuartiger Techniken, die eine effiziente partiell-homomorphe
Verschlüsselung und Entschlüsselung sowie ein effizientes Teilen von
Daten ermöglichen. Um die kryptographischen Prinzipien für mobile
Plattformen nutzbar zu machen, sind Leistungsoptimierungen nötig; wir
konnten gegenüber anderen gegenwärtigen Realisierungen bei unserem
umfassend evaluierten Prototypen einen Leistungsgewinn von einer
Grössenordnung erzielen.

(iii) Droplet: Droplet ist ein sicheres Datenverwaltungssystem,
das wir von Grund auf so entworfen haben, dass es die verteilte
Natur des IoT berücksichtigt. Die unzähligen isolierten Datensilos,
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welche die klassischen IoT-Architekturen nach sich ziehen, sind nicht
nur schwer zu verwalten, sondern behindern in starkem Masse die
Interaktion heterogener Anwendungen mit den IoT-Daten. Um diese
Herausforderung zu meistern, nutzen wir die Blockchain-Technologie.
Somit entwerfen wir ein allgemein vertrauenswürdiges, kryptogra-
phisch abgesichertes, feinkörniges und skalierbares Zugriffskontroll-
und Datenmanagementschema. Droplet verarbeitet Zeitreihendaten und
ermöglicht heterogenen Anwendungen eine zuverlässige gemeinsame
Datennutzung ohne zwischengeschaltete Vertrauensentitäten. Um die
gemeinsame Datennutzung in Zeitintervallen und eine kompakte Schlüs-
selverteilung zu ermöglichen, wird ein auf Hash-Ketten beruhender
Schlüsselverwaltungsmechanismus genutzt. Die bei Blockchains implizit
vorhandene Kryptowährungskomponente erlaubt die Integration von
wirtschaftlichen Anreizen in unser System. Diese Eigenschaften ermög-
lichen eine Vielzahl von Anwendungen, die mit existierenden Systemen
nicht einfach realisierbar sind.

Zusammengefasst zeigen die in der vorliegenden Dissertation disku-
tierten Methoden und Systemkomponenten in prototypischer Weise, dass
in IoT-Umgebungen eine sichere Ende-zu-Ende-Verschlüsselung sowie
ein sicheres Teilen mit einem geringen Overhead und ohne wesentliche
Zusatzbelastung des Nutzers erreicht werden kann.
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1
Introduction

Privacy remains a constant concern while migrating most aspects of
our lives to the digital space. Today developers predominantly utilize
remote servers and cloud services to provide storage and ubiquitous
access to our data. Though the cloud-centric design naturally facilitates
data sharing and access to vast computational resources, it leaves users,
however, with no choice but to trust centralized parties with their private
data. The increased number of security and privacy incidents, such as
system compromises or unauthorized trade with users data, show that
this trust is often unjustified. The security and privacy implications
exacerbate with the emerging new technologies, such as the Internet
of Things (IoT), which collect an unprecedented amount of sensitive
data. The IoT introduces novel sources of nonintrusive data acquisition,
ultimately laying the groundwork for novel data analytics, richer and
potentially automated decision making process, and artificial intelligence.
Such networked ambient sensing devices are for instance installed in
buildings, at homes, and on human bodies. Collected data in the IoT
space is inherently privacy-sensitive, since it embodies multi-dimensional
representations of our immediate environment. In the face of the rapid
pace of technological innovations in the space of IoT, it is essential to
integrate data security and privacy aspects throughout the whole design
and development process. Past and current security and privacy-related
threats proved to have far-reaching implications and at times deterring
broad adoption of new technology. We have witnessed such implications
with smart meter technologies, hindering their widespread adoption [65].
Moreover, studies on perceptions of privacy in IoT [99] show that
consumers are highly concerned about the privacy of their collected data,
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e.g., companies selling them to third parties without their consent.
Consequently, lack of trust and confidence are major challenges these
technologies have yet to overcome. To address these concerns, we
envision a new design paradigm that allows reducing the trust end-
users are required to put into third parties, specifically towards the cloud
storage and service providers, without, however, compromising on user
experience nor comprehensive services. More importantly, we take a
new attempt at empowering users with data ownership and fine-grained
access control of their data, leveraging cryptographic techniques.

The fundamental goal of this thesis is to develop algorithmic and
system foundations to build practical, secure systems that compute on
encrypted data and retain control of data to users. Moreover, we delve
into the fundamental questions of how to design computing systems to
be more secure, private, and egalitarian.

Scope of thesis. This thesis focuses on data security and privacy in the
IoT space. These systems often comprise IoT devices which collect data
and store it on third party storage providers. Our goal is to conceal
data from unauthorized parties, such that service providers do not learn
anything about users data, while still being able to provide their services.
This level of protection would as well prevent unauthorized data access
due to unintended data leakage, as a consequence of internal or external
attacks, e.g., a compromised server. We intend to empower users to be
fully in control of who can access their data and to what extent. We require
a secure sharing mechanism to be in place, allowing the data owner to
transparently and selectively share their data. Data owners should be
able to securely and privately interact with their data, while being able to
exploit external services, e.g., specialized analytical services. For instance,
consider health tracking wearables that enable novel applications, such
as personalized medical care or improved personal vitality, with the help
of the unique longitudinal data over human body’s vital signs. The data
owner should be able to selectively and securely share their health data
with partner/family/friends or medical practitioners without necessarily
revealing any personal data to the infrastructure providers. Moreover, the
data owner can potentially be interested beyond the above bilateral data
sharing scenarios, and be willing to contribute to larger datasets (e.g., to
improve the accuracy of machine learning models, statistical databases,
or exploratory research purposes), as long as the privacy of their data is
guaranteed.

Empowering users with data ownership and control over their data,
requires designing systems and devising algorithms that are secure and
privacy-aware compared to the current systems. More generally, we
define data ownership as having the right and control over personal data,
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wherein the owner can define/restrict access to their data, restrict the scope
of data utility (e.g., sharing aggregated/transformed/homomorphically-
encrypted data, instead of raw data), delegate these privileges, or give
up ownership entirely. A true realization of this definition requires work
on two fronts: (i) privacy-preserving computation and (ii) decentralized
access control without centralized trust entities, to ensure private access
to externally hosted data, with strong confidentiality guarantees. In
this dissertation, we propose novel system designs that contribute to
the current state on both of these fronts. We propose three individual
systems, where the first two (i.e., Talos and Pilatus) focus on computing
on and sharing of encrypted data and the third one (i.e., Droplet) enables
a trustless decentralized access control with cryptographically-enforced
data access.

Research Questions. Massive leakage of confidential data plagues
the computing systems of today, with ever-increasing data breaches.
Additionally, large high dimensional data collections face privacy and
security risks due to lack of transparency with regards to adequate
data protection and consensual data sharing mechanisms. One effective
approach to ensure confidentiality is to store only encrypted data on
remote/third-party servers without revealing any encryption keys to
servers. While ensuring ownership (i.e., only authorized parties gain
access to decryption keys) and providing the highest level of protection
(i.e., an attacker can only see encrypted data and is prevented from
seeing data content), a strawman realization of this approach falls short
in utilizing the available resources on the cloud and lacks the required
expressiveness for a fine-grained data sharing. Hence, throughout this
thesis, we seek to answer the following two main research questions.

How to benefit from cloud computing (i.e., storage and query processing)
without compromising data control and security? The strawman solution of
storing encrypted data with traditional symmetric encryption schemes,
such as AES, would offer protection but renders the data unsearchable
and leaves out the challenge of secure sharing. Alternatively, fully
homomorphic encryption schemes enable arbitrary computations on
encrypted data but are presently impractical [184]. A large body of
research efforts has shown the potential of practical encrypted query
processing systems [184, 185, 231], which utilize a combination of different
encryption schemes to process queries on encrypted data. In this
thesis, we focus on employing Partially Homomorphic Encryption (PHE)
schemes and in particular additive homomorphic schemes. These are
practical solutions that enable an important set of queries [231], such as
encrypted data aggregation – a common operation in IoT applications
when history data needs summing or averaging. Also note that with
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limited involvement of the client side, more complex computations (e.g.,
linear regression) can also be achieved [231].

How to bring sharing with cryptographic guarantees to the IoT ecosystem?
The current PHE approaches are either targeted at single-key encrypted
data [184, 231, 213] (no support for sharing) or consider only text-based
data [185, 105] (of limited use in an IoT context). Existing protocols for
sharing, such as OAuth [153], fall short in providing strong assurances
about the policy enforcement. Crypto-based sharing approaches [234],
on the other hand, support no query processing over encrypted data.

In short, existing solutions either support encrypted query processing
or secure sharing but not both. Moreover, due to their heavy
computational overhead, PHE schemes have been considered unsuitable
for low-power mobile and IoT devices. In this work, we show the
feasibility of PHE-based schemes on low-power devices (Chapter 2) and
tackle the challenges of cryptographically-protected and efficient sharing
of (i) PHE data (Chapter 3), and (ii) time-series data (Chapter 4). Before
discussing the contributions of this thesis, we give an overview of the
state-of-the-art research efforts in the area of data privacy and data
security, and discuss our perspective on IoT data.

1.1 Data Privacy and Security Overview
To protect the privacy of data, we can distinguish between the following
five categories of approaches, which are not mutually exclusive. We now
briefly review each of them and refer to the corresponding chapters for a
more detailed discussion of the relevant approaches to our work.

(i) Authorization. With respect to externally hosted data, authoriza-
tion defines whether a request to access a resource, in our case data,
must be granted or denied. The most primitive and common form of
authorization can be realized via rudimentary password-based schemes,
which enable a coarse-grained level of access. Fine-grained access control
is more complex and challenging, specifically in cases where resources
and the involved players are not in a closed system, where all authorized
principals are known in advance. We distinguish between two types of
authorization with regards to data: policy-based and crypto-based.

Distributed Access Control. Authorizing a request involves identifying
the principal (i.e., authentication) and verifying the validity of the
request based on the resource owner’s access control policy (i.e., access
control). Authorization in distributed systems is complex, as resources
are spread across the network, potentially under multiple administrative
domains, where principals most likely are not known beforehand, rending
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authentication challenging. Such open networks require accounting for
all types of adversaries and malicious entities.

Current distributed access control schemes, such as OAuth2 [153], and
Macaroons [31], rely on tokens issued by a trusted intermediary serving
as an identity provider. Users present these tokens (i.e., credentials) to a
gatekeeper of a resource, e.g., data. The gatekeeper forwards the token
to the issuer who in return confirms the validity of the token or rejects it,
if invalid. These schemes are dependent on trusted authorities for token
issuance and validation. Today only a handful of centralized authorities
control this space, e.g., Google, Facebook, and Amazon, who as well learn
about all the services a user calls on.

Though signature-based schemes (e.g., public-key based certifi-
cates [33, 66]) do not suffer from these limitations; they require a
centralized, hierarchical network of certification authorities (CA) to
issue certificates, which come with their weaknesses [158]. Alternative
decentralized public-key based approaches, e.g., SPKI/SDSI [66] and
follow-up schemes [67], eliminate the need for complex X.509 public
key infrastructure and CAs. However, these schemes are either based
on the idea of local names and suitable for deployments under a single
administrative domain (e.g., smart home) or build upon an organically
growing trust model (i.e., Web of Trust [243]).

Crypto-enforced Data Access. Client-side encryption provides a stronger
level of protection, as the service providers and resource gatekeepers only
see encrypted data. However, it adds constraints on sharing. Data in this
setting can only be shared at a coarse-grained level. Various cryptographic
schemes [36, 13] have been introduced to overcome this limitation, among
which attribute-based encryption (ABE) [97, 234, 197, 96] offers the best
expressiveness in this space. At a higher level, in ABE data is encrypted
towards a policy (i.e., associated with a set of attributes), and only those
with the secret keys satisfying the policy can decrypt the data. However,
ABE comes with the following limitations: (i) keys are not identity-based
(i.e., not based on public keys) requiring a key distribution mechanism,
(ii) access cannot be verified without a decryption test, leaving the storage
provider susceptible to download attacks, as anyone can claim to have
the right set of keys, (iii) enc/decryption overhead, which is expensive
due to the underlying pairing-based cryptography, grows linearly with
the number of attributes, limiting the granularity of access control due to
prohibitive computational burdens [80, 3].

(ii) Perturbation-based techniques include various tools of general-
ization, suppression, swapping, and the addition of noise to data [168].
Differential privacy [62, 63] is a prominent technique in this category
enabling interaction with a statistical database without being able to de-
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identify individual records. Conceptually, differential privacy introduces
controlled randomness (i.e., noise) into the data, while maintaining a
defined quality of queries. The degree of added noise is set by the privacy
budget, which defines the total allowed leakage and determines the total
number of queries. A high privacy budget means a higher probability of
leaking data, whereas a too low budget might render the query results
useless. Initial schemes required a trusted database operator who enforces
the privacy budget. More recent schemes [68] overcome this limitation
via the randomized response technique where no raw data is collected.

(iii) Secure multi-party computation. In traditional Secure Multi-
Party Computation (MPC) [238], private functions are computed among
a set of users without a trusted party. Hereby individual values from
participating users are kept confidential, while the outcome can be public.
Though MPC requires high interaction between users, which would
drain the limited resources of mobile platforms, there have been efforts
to improve their performance [53]. With the rise of cloud computing,
server-aided/outsourced MPC approaches have emerged. However,
these schemes are either only of theoretical interest [154] or require at
least two non-colluding servers, where for instance one server has only
access to encrypted data, and the other server has access to the encryption
keys [233, 182, 175].

(iv) Encrypted data processing. Recent advancements of fully homo-
morphic encryption [83] have resulted into implementable schemes [84,
45, 204, 54], which are however presently yet too slow for real-world
applications. Searchable encryption schemes support only a limited set
of operations, but can be efficiently used in specialized domains. Initial
encrypted search schemes [223] target encrypted text files. The basic
idea here is based on deterministically encrypting the meta information
of files, and hence being able to search for them. More capable
search schemes [184, 213, 219, 38, 199, 204, 231], targeted for structured
databases, employ additional techniques such as partially homomorphic
and order-preserving encryptions. It is important to note that access
patterns to encrypted data still leak sensitive information about the
plaintext data. This shortcoming can be addressed with Oblivious
RAM approaches [195, 227]. Moreover, practical encrypted query
processing systems come with a functionality-security tradeoff, which
requires careful consideration while deciding on the required level of
data protection. For instance, order-preserving encryption, per definition
reveals the ordering information among the ciphertexts [171]. While for
specific data types, the traded leakage for performance is acceptable for
others it might pose the risk of complete disclosure. This is especially the
case for low-entropy values.
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(v) Anonymity. The rationale behind anonymity is to make users not
identifiable based on their data in a dataset. One standard technique to
realize anonymity is to remove any personally identifiable information
from the data. However, the privacy is protected only as long as
the adversary is not able to re-link the identity of an individual with
their data record in the dataset. Anonymity based on de-identification
techniques is widespread and widely deployed, as it is easily and cheaply
realizable. However, despite being practical, de-identification should not
be considered as a universal privacy-protection mechanism, as it leaves
open the types of supported computations on the dataset. Narayanan et
al. [168, 170] argue that a meaningful definition of privacy can only be
reached as a property of specific computations, as achieved by differential
privacy, and not as a property of the dataset. Hence, the increased reliance
on syntactically defined anonymity will have serious implications for
privacy in data sharing, e.g., as recently demonstrated by the Strave [23]
heat-maps of aggregated running routes disclosing locations of sensitive
governmental facilities.

1.2 Internet of Things

Though our schemes are conceptually generic, they are tailored towards
the IoT with regards to data type and resource asymmetry. The IoT [159]
consists of varies types of interconnected devices that collect data from
our surroundings. IoT deployments today are mostly in silos within
organizations that control the various involved software and computing
stacks, including the smart devices, processing of the collected data on the
cloud, and interactive web or smartphone apps to access and monitor the
collected data. IoT devices communicate directly (or via a gateway) to the
cloud and even interact with each other through Internet services. The
vision of a vibrant ecosystem in which data can be shared towards a wide
range of heterogeneous applications and services is yet to be realized.

Typical applications fall into two main categories; (i) ambient
data collection, including microcontrollers that can be installed within
appliances, at homes, or on humans via wearables, and (ii) real-time
applications, including autonomous systems, e.g., various types of
robots, and connected cars. All these applications have serious privacy
implications due to the sensitivity of data they collect. We distinguish
between two main classes of constrained IoT devices: (i) IP-enabled, e.g.,
microcontroller platforms, mini PCs, or smartphones, and (ii) short-range
wireless devices such as wearables that rely on a personal gateway (e.g.,
smartphone) for IP communication. For many application scenarios,
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the role of the cloud appears to be inevitable, as it allows resource-
limited IoT devices to upload their collected data, and enables ubiquitous
access to the data. The asymmetry of available resources in terms of
bandwidth, computation, and energy within different entities of the IoT
necessitates a careful design of security solutions for the IoT ecosystem.
IoT devices are typically equipped with limited resources regarding
computation, memory, and bandwidth. They can embed low-power
hardware crypto accelerators for efficient computation of cryptographic
operations, enabling a new class of secure applications, as envisioned by
this dissertation.

In this thesis, we focus on bilateral data sharing settings, which in
contrast to multilateral sharing (e.g., crowd-sourcing, model training)
cannot benefit from group privacy, e.g., as enabled by differential
privacy [68]. This is specifically important, as today IoT services collect
and control growing amounts of sensitive personal data (e.g., health,
home, car) with little or no transparency. Privacy and security concerns
have been steadily rising, notably for the IoT, due to the surge in
data breaches [134, 18], misconduct of service providers [59, 29], and
surveillance [186, 23].

Throughout this work, we consider the running examples of
applications collecting sensitive data that require processing and sharing,
e.g., fitness and health trackers. These applications store personal data
in the cloud that can reveal privacy-sensitive information, e.g., illness,
lifestyle, or location. Though insightful, logging such private information
raises serious privacy concerns, and requires adequate protections in
place.

At the same time, secure and transparent sharing plays an essential
role in bringing such applications to their full potential. When users are
willing to share data with experts (e.g., medical practitioners), analytical
services, or just casually with friends, they must be in full control over
who can access and what can be accessed. Moreover, it is essential to
support query processing capabilities directly in the cloud on encrypted
data, since downloading the entire data volume for on-device processing
becomes impractical as the data grows.

1.3 Dissertation Contributions
The system designs presented in this dissertation have been developed
and made available as reference implementations and evaluated
thoroughly. Our evaluations reveal that while secure systems come
with additional overheads due to more expensive computations,
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the user-experience can remain unaltered. The detailed results of each
system design are discussed in the individual chapters. The specific
contributions of this dissertation are highlighted below.

1.3.1 Talos: Encrypted Data Processing for the IoT

Several encrypted query processing approaches [184, 185, 223, 120, 38]
have been introduced in the past years, which utilize cryptographic tech-
niques (e.g., partially homomorphic encryption) that allow computations
to be carried out on encrypted data. One major barrier to employing
such cryptographic primitives on IoT devices is their resource constraints.
IoT devices are inherently limited with regards to energy, memory,
CPU, and bandwidth. This challenge is exacerbated by computationally
heavy asymmetric-crypto-based schemes, such as additive homomorphic
encryption schemes.

To overcome these challenges, we introduce Talos, a system that
stores IoT data securely in a cloud database while still allowing query
processing over the encrypted data. We enable this by encrypting IoT
data with a set of cryptographic schemes such as order-preserving and
partially homomorphic encryption. We tailor Talos to accommodate
for the resource asymmetry of the IoT, particularly towards constrained
IoT devices. Talos leverages a batching technique to utilize the large
ciphertextsize in the Paillier cryptosystem to boost the performance of
crypto operations (e.g., encryption, decryption, homomorphic addition)
due to the concept of Single Instruction, Multiple Data (SIMD), where
for instance one single homomorphic addition is required for the entire
batch. Additionally, Talos proposes EC-ElGamal as a viable and efficient
alternative to the Paillier cryptosystem. EC-ElGamal has the additive
homomorphic property and scores with more efficient key generation and
encryption. However, decryption is a bottleneck, as it requires solving a
discrete log problem. We overcome this challenge, with a multi-threaded
baby-step-giant-step algorithm for 16-bit and 32-bit integer values.

We assess the feasibility of Talos on low-power devices with and
without cryptographic hardware accelerators and quantify its overhead
regarding energy, computation, and latency. With a thorough evaluation
of our prototype implementation, we show that Talos is a practical system
that can provide a high level of security with reasonable overhead.

Chapter 2 describes the detailed architecture of Talos and discusses
results of our evaluation.
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1.3.2 Pilatus: Partially Homomorphic Encrypted Sharing
Storage of data on cloud services naturally facilitates data sharing with
third-party services and other users, but bears privacy risks. We present
Pilatus, a data protection platform that builds on Talos to support
secure sharing of encrypted data stored on cloud services, yet being
able to process a defined set of database queries (e.g., range or sum).
Pilatus features a novel encrypted data sharing scheme based on re-
encryption, with revocation capabilities and in situ key-update. Our
key revocation mechanism allows users to terminate their data sharing
at any time. The in situ key-update at the cloud, protects as well old
data with the owner’s new key, without trusting the cloud with any
private keys. Our solution includes a suite of novel techniques that enable
efficient partially homomorphic encryption, decryption, and sharing.
We present performance optimizations that render these cryptographic
tools practical for mobile platforms. More specifically, we address the
performance optimization with the Chinese Remainder Theorem, which
enables smaller, faster, and parallel computations. Our optimizations
achieve a performance gain within one order of magnitude compared to
state-of-the-art realizations.

Chapter 3 expands on Pilatus architecture and components, describes
its reference implementation, and details results of our evaluation.

1.3.3 Droplet: Decentralized Authorization for Data
Streams

The immense possibilities of data acquisitions through the IoT are
contributing to an increased number of new data sources and many
novel applications yet to come. The emerging IoT developments,
however, leave data owners with little control over their data and require
their blind trust in protecting their data. To address this challenge,
we present Droplet, a decentralized data access control service, which
operates without intermediate trust entities. Droplet enables data
owners to securely and selectively share their data, while guaranteeing
data confidentiality against unauthorized parties. Droplet leverages
the blockchain technology to bootstrap trust, for our decentralized,
secure, and resilient access control management. Droplet handles
time-series data, and features a cryptographically-enforced fine-grained
and scalable access control for encrypted data streams. With a
prototype implementation of Droplet on a public blockchain, we quantify
Droplet’s overhead and compare it to the state-of-the-art systems. We
discuss the experimental results of three case-study applications on
top of Droplet: the Fitbit activity tracker, the Ava health tracker,
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and the ECOviz smart meter dashboard. When deploying Droplet with
Amazon’s S3 as a storage layer (a popular cloud storage service), we
experience a slowdown of only 3% in request throughput. Moreover, we
show the potential of Droplet as authorization service for the serverless
computing domain, which requires request-level authorization.

Chapter 4 describes the detailed architecture Droplet and elaborates
on the individual components of Droplet.

1.4 Roadmap
Each chapter of this dissertation is organized in a chronological and
didactic order and can be read as a separate self-contained component.

We start with the description of Talos in Chapter 2. We elaborate
on the design of Talos and discuss how we overcome the resource
constraints of IoT devices, to enable a secure system based on advanced
cryptography. We discuss the design components of Talos and the
technical challenges Talos had to overcome. In Chapter 3, we present the
design of Pilatus, which builds on the design of Talos, to enable secure
sharing. We elaborate how Pilatus drastically optimizes the performance
of EC-ElGamal decryption by leveraging the Chines Remainder Theorem.
Then, we introduce the design of the Pilatus centerpiece, namely, secure
sharing, based on re-encryption. We discuss the performance overhead
of Pilatus on real-world applications. We then introduce Droplet, a
decentralized access control system, in Chapter 4. We elaborate how
Droplet ensures data ownership with a crypto-based fine-grained access
control mechanism, which eliminates the need for trusted third parties.
We discuss the design components of Droplet and elaborate on the
technical challenges we had to overcome. We conclude this dissertation
in Chapter 5 with a summary of our core contributions and a discussion
of future research avenues.
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2
Talos

The Internet of Things, by digitizing the physical world enables novel
interaction paradigms with our surroundings. This creates new threats
and leads to unprecedented security and privacy concerns. To tackle these
concerns, we introduce Talos, a system that stores IoT data securely in a
Cloud database while still allowing query processing over the encrypted
data. We enable this by encrypting IoT data with a set of cryptographic
schemes such as order-preserving and partially homomorphic encryption.
To achieve this on constrained IoT devices, Talos relies on optimized
algorithms that accelerate order-preserving and partially homomorphic
encryption by 1 to 2 orders of magnitude. We assess the feasibility of
Talos on low-power devices with and without cryptographic accelerators
and quantify its overhead regarding energy, computation, and latency.
With a thorough evaluation of our prototype implementation, we show
that Talos is a practical system that can provide a high level of security
with reasonable overhead. We envision Talos as an enabler of secure IoT
applications.

2.1 Introduction
With the advent of the Internet of Things (IoT), there has been a rise
in the number of devices empowered with sensing, actuating, and
communication capabilities. These devices are typically connected to
Cloud services, but are physically integrated with our living space.
Hence, they deal with sensitive and private data that could be misused
to infer privacy-violating information. This consequently raises security



16 Chapter 2. Talos

IoT devices 

Cloud Database 

User 

                    

IoT Devices Cloud Database User 

Gateway 

Figure 2.1: Talos enables protection of IoT data already at the origin. The Cloud
database has no access to the encryption keys, but is able to process queries over
encrypted data. All keys are derived from a master secret held by the user.

and privacy concerns, which need to be addressed in the IoT ecosystem.
Conventional security solutions for the IoT utilize, at best, an end-

to-end (E2E) secure channel to store IoT data on a Cloud database. A
secure E2E channel protects the communication against unauthorized
entities (e.g., eavesdropping and modification attacks), but leaves the data
unprotected on the Cloud. Storing data in such form leaves it vulnerable
to breaches [187], caused by hackers and curious administrators [1].
Moreover, financial incentives might lure our today’s trusted Cloud
service providers into disclosure of sensitive information derived from
our data or unauthorized sharing/selling of our data [104, 131].

Encrypted Query Processing. An intuitive approach to counter such
attacks is to store data in encrypted form in the Cloud database,
and have all data en-/decryption performed at the user-side. This,
however, is impractical, as it prevents any server-side query processing
and results in undesirable application delays. To overcome this
limitation, several encrypted query processing approaches [184, 185, 223,
120, 38] have been introduced in the past years. These approaches
utilize cryptographic techniques (e.g., order-preserving encryption and
homomorphic encryption) that allow computations to be carried out on
encrypted data.

CryptDB [184] is one of the first practical systems that integrates
efficient encrypted query processing into the database management
system. In CryptDB, the cloud can perform traditional database queries
over encrypted data and reply with the encrypted result. To achieve this,
CryptDB relies on a trusted proxy which intercepts the communication
and applies en-/decryption transparent to the user. This approach
does not require any modification of the database nor the client-side
and adds a computation overhead of 25% [184]. CryptDB is designed
with web applications in mind and is not suitable for IoT application
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scenarios, mainly because: (i) it employs cryptographic schemes that are
prohibitively expensive for constrained IoT devices and (ii) it relies on
a trusted proxy, which has access to the encryption keys and plaintext
information.

Talos: Encrypted Query Processing for the IoT. In this chapter, we
present Talos1, an IoT data protection system which securely stores
encrypted IoT data on a Cloud database, while allowing for efficient
database query processing over the encrypted data (see Figure 2.1). In
our design, we move away from CryptDB’s focus on web applications
only. Instead, we design a secure E2E system that stores encrypted data
from IoT devices on a Cloud database, where data protection is executed
at the data source. Thus, we dispense with the role of a trusted proxy which
has access to all keying material. This allows us to address a stronger threat
model, where only the end-user has access to the secret keys.

To put the use case of Talos into context, let us consider the application
scenario of a health monitoring device similar to Fitbit Tracker2 which
logs heart rate, location, and timestamps. The heart rate measurements
can be used to infer sensitive information about a person, such as stress,
depression, and heart-related diseases. Hence, heart rate information
should be protected from untrusted parties. To still allow certain
computations, e.g., average, over the protected heart rate data, Talos
utilizes additive homomorphic encryption (see Section 2.3.1 for the
detailed descriptions of different cryptographic terms). The location is
potentially also sensitive. Thus, Talos applies deterministic encryption,
allowing encrypted queries to correlate heart rate with location. Finally,
the timestamps are encrypted with order-preserving encryption, to allow
order-related searches.

One important barrier to employing cryptographic primitives on
IoT devices is their resource constraints. IoT devices are inherently
limited with regards to energy, memory, CPU, and bandwidth.
These challenges are exacerbated by computationally heavy public-key-
based cryptographic schemes, such as order-preserving and additive
homomorphic encryption. Hence, we apply optimizations to these
encryption schemes to make them suited towards IoT devices, yet
without scarifying their level of security. Our work covers (i) an
optimization of Paillier’s additive homomorphic encryption scheme
for integer data items, (ii) a solution enabling the elliptic curve

1In ancient Greek mythology, Talos is the protector and patron of just rulership and
civil society.

2Fitbit Tracker Flex comprises a low-power ARM Cortex M3 Microcontroller similar
to the one we based our prototype implementation on: https://www.ifixit.com/
Teardown/Fitbit+Flex+Teardown/16050

https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
https://www.ifixit.com/Teardown/Fitbit+Flex+Teardown/16050
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ElGamal encryption scheme (EC-ElGamal) as an alternative additive
homomorphic encryption, and (iii) employing an interactive order-
preserving encryption scheme.

Contributions. This chapter can be summarized with the following
contributions:

• Design and evaluation of Talos, a fully-implemented E2E secure
system for IoT. Talos is compatible with the core CryptDB, which
implements SQL-aware encryption schemes. We make our prototype
implementation for the Contiki OS [61] publicly available3.
Moreover, Talos is a software platform enabling additional research
on data protection and could be seamlessly integrated into various
IoT application scenarios.

• We propose practical solutions to enable different cryptographic
primitives in constrained devices, in particular for order-preserving
and homomorphic encryptions. We introduce an optimization to
Paillier (additive homomorphic encryption) tailored for use with
integers, and propose an effective way of mapping integers to
elliptic curve points to enable EC-ElGamal as an alternative additive
homomorphic encryption scheme.

• We demonstrate experimentally the feasibility of Talos. We
quantify the performance of Talos regarding energy, computation,
communication, and latency. First, we microbenchmark the
performance of the considered cryptographic primitives, both
with and without hardware accelerator. Second, we quantify the
overall system performance in Flocklab [151, 69], a public testbed,
emulating IoT-typical scenarios.

This chapter is based on the contributions made in [206, 212, 213].

2.2 Overview
We now briefly discuss background information and the security model
our system addresses. Alongside, we give an overview of Talos.

We design Talos with three main actors in mind (see Figure 2.1): (i)
the user who is interested in the IoT data, for instance, the peak heart rate
in the past month. (ii) the IoT devices where the data originates from.
IoT devices are inherently resource-limited, specifically with regards to
memory. Thus, it is necessary for IoT devices to offload their data into

3Talos can be downloaded from https://github.com/hosseinsh/Talos

https://github.com/hosseinsh/Talos
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a Cloud database regularly. In case the IoT device lacks any Internet-
connectivity, the personal gateway (e.g., the smartphone for wearables)
runs the Talos engine. (iii) the Cloud database, which stores IoT data
securely and can process queries over encrypted data. Note that IoT
devices would potentially need to query the data in the Cloud to make
certain actuation decisions, for instance in case of automated heating
systems. However, in our current design, we only consider the data
producing (i.e., sensing) IoT device and address the data consuming (i.e.,
actuating) IoT device in future work.

IoT data consists of sensor readings (e.g., integer/float), meta-data (e.g.,
time, location, and identifier), and image/audio/video files. We consider
text files to be significantly less represented in IoT data than in web and
smartphone application data. Application developers should be aware of
the sensitivity of data items and encrypt them with the adequate type of
encryption. In Section 2.3, we detail the four main types of encryption and
explain what functionality and security each type provides. We execute
the data protection already at the IoT device, to reduce the attack surface
and limit the need for trusted parties (see Figure 3.2). For the Cloud
database, we rely on our extended version of CryptDB [184] which is
tailored towards IoT-application scenarios.

2.2.1 Background
CryptDB brings together powerful cryptographic tools, to create an
encrypted query processing system targeted for database management
systems (DBMS). To remain transparent and seamless, the en/-decryption
process is performed on a trusted proxy which has access to the keying
material (see the upper part of Figure 3.2). The DBMS remains unmodified
and is only extended with additional user-defined functions (UDF) which
perform the encrypted query processing. CryptDB addresses the threat
models of honest-but-curious [222] database administrators and the
concurrent compromise of the application server, proxy, and DBMS. In
the latter threat, only data of logged-in users is disclosed.

CryptDB leverages the fact that most SQL-like database queries are
composed of simple mathematical operations, such as equality check,
order comparisons, aggregation, and joins. To allow these operations over
encrypted data, known cryptographic schemes, such as order-preserving
and additive homomorphic encryptions, are employed. However, only
a few data types must be encrypted with these encryption schemes, to
enable query executions. Hence, most data items can be protected with
efficient and secure symmetric key encryptions.

For SQL-aware encryption, CryptDB defines the following main
encryption types: random with the highest security as it provides
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Figure 2.2: Talos extends CryptDB [184] to secure IoT data. Talos supersedes
a trusted proxy with access to all keys. Instead, data protection is performed at
IoT devices or personal gateways, e.g., smartphones.

semantic security (indistinguishability under an adaptive chosen-
plaintext attack), deterministic which reveals equality information, order-
preserving encryption revealing order information, additive homomorphic
encryption, enabling addition over encrypted data, and keyword search
over encrypted texts.

We explain these encryption types in more details in Section 2.3, as
we elaborate on the specific encryption schemes we employ in Talos.
Specifically, for order-preserving and additive homomorphic encryptions,
which are computation- and bandwidth-intensive, we explore and utilize
alternative approaches to reduce overheads and render them more
efficient. We intentionally do not yet support encrypted word search,
as we do not yet see the use case of this scheme for IoT data.

2.2.2 Security Analysis
CryptDB addresses two important threat models consisting of DMBS
compromise, and a more severe one including the compromise of the
application server, proxy, and DBMS. We not only inherit the security
threat model addressed by CryptDB, but we address an even stronger
database threat model, without a trusted proxy, as illustrated in the lower
part of Figure 3.2. In addition, we address a network-based threat model.
Note that IoT devices are vulnerable to physical node capture attacks. We
do not address this attack specifically, however, we weaken it by utilizing
a memory-protected area for key storage.

Threat 1: Cloud Database Compromise. The Cloud database provides
confidentiality, i.e., secrecy of data, and no other security properties, such
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as integrity, correctness, or availability. The attacker is assumed to be
passive, i.e., with read-only access to all database data and to the RAM
of the physical machines. The attacker is however not able to modify
the queries nor the encrypted data. This threat is getting increasingly
important in today’s Internet, with the flourishing of third-party Clouds.

Unlike CryptDB, Talos is not designed to run with unmodified Web
clients, but rather to facilitate an end-to-end integration with IoT devices.
Therefore, we do not require a trusted proxy, thus providing stronger
security than CryptDB. Talos provides the following guarantees: (i) at no
time, the Cloud database has access to any keying material, (ii) during
query processing, the data remain encrypted.

Note that the security of Talos is not perfect, as it reveals relationships
among data items that allow for equality checks or ordering. Such data
items, depending on the application scenario, are only column-wide. The
remaining data items leak no further information, as long as encrypted
with probabilistic encryption. Consequently, an attacker can learn the
occurrence of a data item (e.g., via the histogram attack), however, he can
not gain access to the actual plaintext.

This data leakage could be theoretically avoided by utilizing recent
advancements in theoretical cryptography (i.e., fully homomorphic
cryptosystem [82]) that enable any computations over encrypted data,
without revealing any information. However, these approaches are still
computationally expensive, rendering them impractical [183]. Talos is
a practical system, providing strong security for most data items, while
tolerating leakage of relational information for less sensitive data items.

Approach. Talos builds on the capabilities of CryptDB to allow processing
of SQL-like queries over encrypted data. In addition to the CryptDB
encryption schemes, we introduce a set of cryptographic primitives
tailored for constrained IoT devices. This is in particular important for
the order-preserving and additive homomorphic encryptions, which are
the computationally most intensive schemes. We introduce and elaborate
our findings and the resulting design decisions further in a dedicated
section (Section 2.3).

Moreover, Talos assumes state-of-the-art database security mecha-
nisms to be in place. For instance, the Cloud database should additionally
store encrypted backups of the database. We discuss current research
approaches aiming at providing Cloud security and related cryptographic
approaches in Section 2.7.

Threat 2: Network-based Attacks. This threat targets communication
between the IoT device and the Cloud. This threat can be carried out by
passive or active attackers, as discussed in the following. A passive
attacker can launch non-intrusive eavesdropping and traffic analysis
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attacks. Talos addresses this threat by establishing a transport layer-
based E2E secure channel between the IoT device and the Cloud (see
Figure 3.2). This allows providing confidentiality, integrity protection,
and authenticity of the data.

Talos utilizes weaker encryption schemes on database elements to
enable encrypted query processing. With the secure E2E communication,
we avert any relational data leakages, guarantee integrity protection, and
authenticity of the data. An active attacker can launch a man-in-the-
middle attack, to gain access to the plaintext values originated at the
IoT device or make the IoT device believe it is communicating with the
Cloud database (i.e., impersonation of the Cloud). Talos addresses this
threat by a public-key-based authentication scheme for the E2E secure
channel. Consequently, the IoT device can ensure the identity of the
communicating peer and vice versa.

Approach. Datagram Transport Layer Security (DTLS) [166] provides
confidentiality, authenticity, and integrity protection of communication.
This is achieved using AES-CCM, which encrypts a given message while
providing data-origin authentication and integrity protection. The main
challenge with DTLS within constrained environments is the channel
establishment, where the session keys are negotiated. The conventional
approach is to rely on pre-shared keys. However, stronger security is
obtained with the public-key-based version of DTLS [203, 117, 193]. Talos
applies DTLS in the public-key mode with support of X.509 certificates
and raw public keys, where the crypto operations could be accelerated by
means of cryptographic accelerators. This way, both the IoT device and
the Cloud database can authenticate each others’ identity.

2.3 Design
Encrypted query processing is an emerging research field, enabling better
protection of user’s private data and resolving many privacy-related
issues in Cloud computing. Inspired by the recent advancements in this
field, we intend to bring the benefits of encrypted query processing to the
IoT domain.

2.3.1 Encryption Types
Encrypted query processing allows storage of encrypted data at a
third party database, yet simultaneously enabling efficient search and
computation over the stored encrypted data. Although it would be
desirable to utilize fully homomorphic encryption [82] to allow arbitrary
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computations, we are yet bound to computationally feasible and efficient
approaches, which enable only a subset of computations over encrypted
data.

To support common SQL-like queries, it is necessary to be capable
of performing equality checks and have knowledge about the order of
encrypted values. However, enabling computation over encrypted data
also means leaking information, i.e., any order-preserving encryption
scheme will, by definition, reveal order relations. The encryption scheme
is chosen per column and accounts for the intended query type, e.g., min,
order by, etc. Data items that are not involved in the processing of queries
are encrypted with the strongest cryptographic scheme (i.e., probabilistic
encryption).

In the following, we describe the four types of encryption schemes
supported in Talos.

RAND. Probabilistic or random encryption is the strongest security
scheme, allowing no operation over encrypted data. This scheme is the
conventional scheme, widely used in computing and storage. It has the
property that the encryption of the same plaintext m results into two
different ciphers c1 and c2 such that c1 and c2 are by no means related (i.e.,
semantically secure under a chosen plaintext attack (CPA)).

AES in CBC mode is a good candidate for this type of encryption.
AES-CBC is a 16 Byte block-cipher encryption, producing outputs of
size multiple times of the block-size. To this end, the input is, if
necessary, padded to have a modulo 16 Byte size. Efficient hardware
implementations of AES encryption routines are integrated into most IoT
devices. Considering the fact that IoT data typically have a smaller size
than AES’s block size, the Blowfish block-cipher encryption [202] with 8
Byte blocks is a good alternative, producing smaller ciphers. Blowfish
was as well a candidate for AES (Rijndael was selected for the final AES),
but was considered inefficient for large file sizes due to the 8 Byte block-
size. We selected Blowfish among several 8 Byte block ciphers (e.g., RC5,
Skipjack) due to its higher efficiency [224]. Talos employs both Blowfish
and AES in CBC mode. We apply the former for data smaller than 8 Byte
and the latter for data larger than 8 Byte.

DET. Deterministic encryption allows for equality checks. The encryption
of the plaintext m results always into the same cipher c.

AES-ECB is a block-cipher encryption with such a property. Due to
this deterministic property it is in general advised not to use ECB for
encryption of large packets, as an attacker can: (i) change the order of the
blocks or replace a block in an indistinguishable manner (i.e., substitution
attack), or (ii) learn information about the plaintext with a histogram of
repeated blocks. Therefore, for maximum security, AES-ECB should be
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only applied for plaintexts smaller or equal to 16 Byte. For bandwidth
efficiency reasons, we employ Blowfish for plaintexts with a size smaller
or equal to 8 Byte.

AES and Blowfish in CBC mode with a fixed initialization vector (IV)
have the deterministic property, however due to undesirable leaks of
prefix equality, they are not secure options for plaintexts larger than the
block size. Therefore, we utilize AES-CMC [102] for plaintexts larger
than 16 Byte, as recommended by CryptDB. AES-CMC is a tweaked
combination of AES-CBC with a zero IV, where AES-CBC is applied twice
on the input. The second CBC round is applied in the reverse order, i.e.,
from the last block to the first block. This way, the first blocks become
deterministically random, and do not leak equality within a data item.

OPE. In order-preserving encryption (OPE) the order relationship between
the plaintext inputs m1, m2, and m3 is preserved after encryption, i.e.:

i f m1 ≤ m2 ≤ m3, then c1 ≤ c2 ≤ c3 (2.1)

This way, the order information among the encrypted data items ci is
revealed, but not the actual data itself.

Order comparison is a common operation in SQL-like databases, e.g.,
for sorting, range checks, ranking, etc. OPE enables powerful operations
and still offers relatively strong security, such that some research fields
only focus on enabling secure databases or web applications using
OPE [199, 41]. One of the first provably secure OPE schemes is the
approach introduced by Boldyreva et al. [35]. This OPE scheme is,
however, as computationally-intensive as asymmetric encryption.

To cope with resource constraints of IoT devices, we rely on a more
recent interactive OPE approach by Popa et al. [183], which solely relies
on symmetric cryptography and trades computation overhead for latency
(i.e., it involves more communication). We refer to this lightweight
OPE scheme, as mutable order-preserving encoding (mOPE) as the order
encodings are mutable. Popa et al. [183] prove that mOPE fulfills the
ideal security (IND-OCPA), i.e., no additional information than the order
is revealed. mOPE is more secure than any other OPE approach and yet
1-2 orders of magnitude less computationally-intensive than traditional
OPE schemes.

We detail the original mOPE and our optimizations to reduce the
communication overhead further in Section 2.3.2.

HOM. Research on fully homomorphic cryptosystems has made
significant advancements in the recent years, and been able to show
that arbitrary computations on encrypted values are implementable [82].
However, the involved computations are yet prohibitively high [183] even
for full-fledged devices and by far infeasible for resource-constrained
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Figure 2.3: Illustration of mutable order-preserving encoding (mOPE) with a
balanced binary search tree [183]. The order encoding (path to the node) is
appended with a 1 and 0s, signaling the end of the encoding.

devices. To support sum and average operations over encrypted data, it is,
however, sufficient to utilize additive homomorphic encryption schemes,
such that:

decrypt(c1 ◦ c2) = decrypt(c1) + decrypt(c2) (2.2)

Several cryptosystems exhibit homomorphic properties [74]. To start
with, the textbook RSA and ElGamal’s cryptosystem are multiplicatively
homomorphic. Goldwasser-Micali’s (GM) [92] scheme is among the first
additive homomorphic cryptosystems achieving highest security level
(i.e., probabilistic public-key encryption), which inspired several later
cryptosystems. Unfortunately, GM exhibits a strong drawback as its
input consists of a single bit plaintext. Moreover, the expansion of
encryption results into large ciphertexts (i.e., |pq| bits) which, given the
single bit inputs, renders this scheme impractical. Benaloh [27] introduces
a generalization of GM, which supports encryption of plaintexts with
higher bit-length k. This, however, comes with a higher cost of decryption.
The decryption cost is dependable of k, which eliminates the gain of a
higher k. The Paillier [180] cryptosystem, one of the most well-known
homomorphic schemes, improves the previous schemes by reducing the
degree of expansion while allowing a large k (i.e., k is equal to key-
length |pq|). At the same time the en-/decryption costs are reasonable
(i.e., exponentiation and multiplication of big numbers modulo |pq|).
Efforts [121] to reduce the encryption expansion of Paillier from 2 times k
have the side-effect of significantly higher computation costs.

The Paillier [180] cryptosystem is employed by CryptDB. It is,
however, with regards to IoT resources, computationally intensive and
results into a large ciphertext size of 256 Byte, given a key size of 1024 bit
(see Table 2.1). In Talos, we apply a slight modification to Paillier, inspired
by Ge and Zdonik [81], rendering it more efficient in terms of average
bandwidth and computation per data item. Moreover, we explore the
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Figure 2.4: mOPE is an interactive approach. The number of interaction rounds
depends on the current size of the database (i.e., the tree) and the parameter k
of the k-ary tree in use. Talos selects k=10 in favor of fewer interaction rounds,
resulting in higher average rewrites per item in the Cloud (e.g., factor 4.7 for 107

items).

elliptic curve (EC)-ElGamal encryption scheme as an alternative additive
homomorphic encryption scheme.

In Section 2.3.3, we detail our modification to the Paillier cryptossytem,
our findings about EC-ElGamal, and the efficiency of each approach.

2.3.2 Optimized Order-Preserving Encryption
The traditional OPE by Boldyreva et al. [35] is computationally five orders
of magnitude more intensive than symmetric encryption. mOPE [183] is
a recent interactive order-preserving encryption scheme that allows us to
reduce this overhead drastically. mOPE utilizes lightweight symmetric
encryption and balanced search trees to preserve the order information
among ciphertexts. Intuitively, mOPE derives the order relations from
the structure of the tree. A tree node holds a deterministically encrypted
value where the order-preserving encoding is the path from the root of
the tree to the node, as illustrated in Figure 2.3. For example encrypt(77)
has the encoding 11 concatenated with 100000 (assuming 8-bit encodings)
to indicate the end of encoding. The encoding reveals that encrypt(77) is
the largest value in this tree.

mOPE is a client-server approach. The client intends to apply mOPE
on a value, while storing it in a database. The server constructs the
encoding, without learning the plaintext value, and later stores the final
encoding in the database. For each new value, the server only learns the
relation of the new value with regards to existing ones. The protocol starts
with the client sending the new ciphertext to the server, accompanied with
the request to insert. The server starts with sending the encrypted value
at the root, to learn if the new value is larger or smaller. The client decrypts
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Algorithm Plaintext Ciphertext
[Byte] [Byte]

Blowfish-ECB (0, 8] 8 (+ 8 RAND)
AES-ECB (8,16] 16 (+ 16 RAND)
AES-CMC (16, 16 + n] 16 × d n

16e (+ 16 RAND)
mOPE (0, 8] 16 (8 + 8 Byte encoding)
Paillier (1024-bit key) (0, 128] 256
EC-ElGamal (192-bit curve) (0, 4] 50 (2x 25∗ Byte EC-points)
OPE [35] (0, 8] 16

Table 2.1: Plaintext-space to ciphertext-space. ∗EC-ElGamal’s ciphertext consist
of 2 EC-points, which could each be compressed to 25 Byte. In RAND, the
initialization vector (IV) is added to the ciphertext.

the values and replies. The server traverses the tree (i.e., in worst case
O(log n) interactions) until it finds the right spot to insert the new value.
As we show later in our evaluation in Section 2.5, the communication
overhead of mOPE is lower than the computation cost of the traditional
OPE.

To avoid long paths in the search tree, the tree needs to be rebalanced
regularly. The server can rebalance without the help of the client, based
on the order relation between nodes. However, as the encoding is based
on paths in the tree, rebalancing results in mutated encodings. Hence, the
name mutable OPE (mOPE). Note that the encoding is only used at the
server side, to reveal ordering of encrypted data. The client does not store
any encoding, as it would become obsolete after the next rebalancing.

The length of the encoding corresponds to the maximum depth of the
tree, where the end of the encoding is signaled with a 10..0 padding, as
depicted in Figure 2.3. We choose an encoding length of 64 bit and apply
our previously described deterministic encryption strategy on the data
items. This implies data items smaller or equal to 8 Byte are encrypted
with Blowfish, data items between 8 and 16 Byte length are encrypted
with AES-ECB, and data items larger than 16 Byte are encrypted with
AES-CMC.

For the search tree implementation, a k-ary tree is used to achieve
a lower number of interactions. This way, in each interaction round,
the server sends the current node containing ≤ k data items. The client
replies with an index and an equality flag. The index refers to the index
of the data item, where the new value is equal or smaller than it. The
flag indicates equality of the new value to the item at the index. In the
latter case, the encoding of the existing value is taken for the new value.
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Figure 2.5: Illustration of our Paillier optimization. Several values are packed
into one block, considered as one large number. The structure of packed values
is maintained after decryption. After decryption, the sum of the final block is
equal to the sum of all packed values.

Otherwise, the interaction continues until a leaf node is reached.
We select a 10-ary tree which offers a good trade-off between the

maximum length of an interaction packet and the total number of
interactions, as depicted in Figure 2.4. Increasing k from 4 to 10, allows us
to reduce the average interaction rounds by more than half. Even though
this increases the number of decryptions and comparisons per round,
our results (see Section 2.5) suggest that the savings from having fewer
interaction rounds outweigh this computational overhead. Note that a
drawback of such tree-based interactive approach is that the worst-case
number of interactions depends on the tree size. In our case the worst-
case is O(log10 n) interactions (e.g., with 109 existing items the worst-case
is 9 rounds).

In Talos, we rely on the prototype implementation of mOPE [183] and
extend it with support for UDP and IPv6. To cope with the connectionless
UDP, retransmission timers on both ends reassurs the termination of insert
operations. More importantly, we adjusted the interaction protocol to be
more concise. We transmit 2 Byte of header information appended with
raw integer data (instead of ASCII representation of ciphertexts). This
allows us to drastically reduce the communication overhead, up to a
factor of 8. As summarized in Table 2.1, both OPE schemes produce final
ciphertexts with the same length.

2.3.3 Optimized Homomorphic Encryption
The Paillier cryptosystem is an additive homomorphic encryption scheme
which is based on asymmetric cryptography. We briefly explain the
mathematical operations involved in Paillier, to be able to explain
how we improve its efficiency with regards to encryption expansion.
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The user defines the public key (n, g) and the private key d by selecting
two large primes (p and q) of the same bit-length and g, a large random
number modulo n:

n = pq, d = (q − 1)(p − 1) (2.3)

Encryption of the message m is performed as follows:

c = (gm)(rn) mod n2 (2.4)

where r is a large random number modulo n. Decryption of cipher c is
performed as follows:

m = L(cd mod n2) µ mod n (2.5)

where L(x) =
(x − 1)

n
, and µ = (L(gd mod n2))−1mod n

The homomorphic addition function is defined by multiplication of
the ciphers modulo n2. Note, the ciphertext size is 2n, i.e., for a 1024 bit
key, 2048 bit (256 Byte).

To render Paillier more efficient, we apply a trick introduced by Ge
and Zdonik[81] and illustrated in Figure 2.5. We use the fact that Paillier
plaintext can be as large as n = 1024 bits, whereas IoT data often only
consists of integers. The idea is to concatenate several values to form a
single larger plaintext that will be encrypted in a single Paillier operation.
We leave enough space for the carry bits of each value: <space, value1,
space, value2, ... , space, valuei>. Assuming 32-bit values and 32-bit
spaces, 16 values can be packed into a ciphertext.

This way, we amortize the computation and space overhead of Paillier
among several values. This approach is possible since during the
homomorphic addition operation (i.e., multiplication of ciphertexts) the
aligned values are summed together (see Figure 2.5). A user interested
in the sum of a data item, now receives a ciphertext of this form: <sum1,
.. , sumi>. After the decryption process, she can extract any sumi and
ultimately compute the total sum.

EC-ElGamal. Paillier encryption is an expensive operation on IoT
devices, where it can take up to 3.1 s (discussed in Section 2.5). As
an alternative additive homomorphic encryption scheme to Paillier, we
present in the following EC-ElGamal in more details. EC-ElGamal’s
security is based on the elliptic curve discrete logarithm problem
(ECDLP). This means given two points P and Q on the curve, finding
the scalar k such that P = kQ, is a hard problem. Note that the scalar
multiplication kQ is calculated as k times the elliptic curve addition of Q
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Figure 2.6: Memory-computation tradeoff in the Baby-Step-Giant-Step
algorithm on a Google Nexus 5. Talos stores a pre-computed look-up table
of 45 MByte and solves an ECDLP for an unsigned 32-bit value in maximum
190 ms with only one thread.

(for more details on elliptic curve cryptography (ECC) refer to [222]). In
EC-ElGamal, after defining the elliptic curve (EC) parameters such as the
generator point G, the encryption of message M (a point on the curve) is
defined as two points on the curve C′ and C′′:

C = (C′,C′′), where C′ = M + rQ, C′′ = rG (2.6)

As it is common in ECC, Q = dG is the public key, d the private key, and
r is a large random number. Decryption of a cipher C is performed as
follows:

M = C′ − dC′′ (2.7)

To perform the homomorphic addition operation, the cipher components,
which are each EC-points, are added to each other (i.e., EC-point
addition):

C1 + C2 = (C′1, C′′1 ) + (C′2, C′′2 ) =

(M1 + M2 + r1Q + r2Q, r1G + r2G)
M1+2 = C′1+2 − dC′′1+2 =

M1 + M2 + r1Q + r2Q − d(r1G + r2G) (2.8)

where rdG = rQ, since Q = dG.

Representation of Plaintext as EC-Point. A challenge in making practical
use of EC-ElGamal is that it operates on EC-points rather than arbitrary
messages. Efficiently and deterministically mapping of an arbitrary
message into an elliptic curve point is an open research problem [137].
Koblitz suggests encoding of a message m into the x-coordinate of an
elliptic curve [137]. This approach, however, is not homomorphic and
therefore not suitable for EC-ElGamal.
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We use a theoretical assumption from cryptography [222], which
becomes practical in IoT scenarios, where we often deal with small
integers, i.e., 32-bit. To map an integer m to an EC point M, we multiply
m to a publicly known point G on the curve, i.e., M = mG. Such scalar EC
multiplications (i.e., m times addition of G) can efficiently be performed
on an IoT device. This approach is homomorphic, since

dec(C1 + C2) = M1 + M2 = m1G + m2G = (m1 + m2)G (2.9)

At decryption time, we need to map M back to m, only with the
knowledge of G. This requires solving an elliptic curve discrete logarithm
problem (ECDLP). Although this is computationally infeasible for large
numbers, solving it for a 32-bit integer m can be realized in a reasonable
time (see Figure 2.6). Using the Baby-Step-Giant-Step algorithm [216],
Talos can retrieve m from M in maximum 190 ms (benchmarked on a
Google Nexus 5, a typical device where decryption takes place). To
achieve an upper computation bound of 190 ms, a pre-computed look-up
table of 45 MByte is necessary. In Chapter 3, we introduce an optimization
(detailed in Section 3.5.2) to the EC-ElGamal encryption scheme that
renders the decryption time to only a few milliseconds, while as well
enabling efficient decryption of larger plaintext values, i.e., 64-bit integers.

Note that this procedure does not affect the overall security: we solve
the ECDLP to obtain m from M, but M itself is protected with a strong
cryptography, in our case 192-bit ECC (more secure than 1024-bit RSA).

2.3.4 Access Control
In the following, we briefly present key components of the access control
mechanism adopted in Talos.

Authorization. To ensure that only authorized entities can access/add
data in the Cloud database, Talos employs the OAuth2 protocol [103] to
grant IoT devices authorized access to the Cloud database. In the OAuth2
protocol, the IoT device initiates a request to the Cloud. Consequently, the
Cloud replies with an authentication URL, which is used to authenticate
the user to the Cloud. After a successful login, the user can define the type
and duration of the authorization. The next connection request from the
IoT device is answered with an access token used for subsequent Cloud
connections.

Key Management. Talos foresees the storage of the master secret by
the user. This master secret is used to derive all the keying material
used to protect the data. A PRF (Pseudo-Random Function, e.g., SHA-
256) can be used to generate i deterministic keys keyi to be used by
the IoT devices. For this we use a key chaining approach [184] that
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Component ROM static RAM
[Byte] [Byte]

Cryptographic accelerator 312 -
BigNumber operations* 2,832 -
EC operations* 1,144 -
ECDSA* + ECDH* 1,840 884
EC-ElGamal* 840 644
Paillier encryption* 712 780
mOPE client 2,322 1,396
AES (ECB, CBC, CCM)* 1,820 16
Blowfish (software) 4,548 4,168
SHA-256* 660 32
Subtotal 17,030 7,920
DTLS engine + client 16,942 7,370
Sum 33,972 15,290

Table 2.2: Memory size of cryptographic components of Talos on OpenMotes
(considering max sizes). *All algorithms based on hardware crypto accelerator
can be substituted by software implementations.

concatenates a well-defined identifier (ID), e.g., column-name or data
type, to the master secret (MS):

PRF(MS|IDi) = keyi (2.10)

The master secret never leaves the user device. The derived keys are
securely placed on the corresponding IoT devices.

In case key revocation is needed, for instance in case of disposed/com-
promised IoT devices, the user revokes the access token of the IoT device
and re-encrypts the data in the Cloud database with a fresh key. Moreover,
data sharing is a relevant feature that could be integrated into Talos. We
introduce a novel secure data sharing scheme in Chapter 3.

2.4 Implementation
We have implemented a prototype of the Talos system. Our prototype
implementation consists of two main components: (i) The IoT component
of Talos is implemented for OpenMotes4 in the Contiki OS 2.7 [61] and
(ii) the Cloud database component is an extended implementation of

4OpenMote platform: openmote.com

openmote.com
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Task current [mA] σ

CPU idle @32 MHz 12.8 0.11
CPU active @32 MHz 20.8 0.11
AES/SHA hardware accelerator 23.6 0.13
Public-key hardware accelerator
(CPU idle)

25.9 0.12

Radio Transmission (TX), CPU idle 24 -
Radio Reception (RX), CPU idle 20 -

Table 2.3: Current drawn during computations on OpenMotes. Given the
supply voltage (2.1 V) and the duration of a task, we calculate the drawn energy:
time [s] × voltage [V] × current [mA] = energy [mJ].

CryptDB [184]. For space reasons, we discuss only the former in more
details.

OpenMotes are based on the TI CC2538 microcontroller [229], i.e., 32-
bit ARM Cortex-M35 SoC at 32 MHz, with a public-key cryptographic
accelerator running up to 250 MHz. They are equipped with 802.15.4
compliant RF transceivers, 32 kB of RAM and 512 kB of ROM.

Talos is platform independent and our findings can be applied to
any other platform. We chose the OpenMote as our prototype platform,
because it has a public-key cryptographic accelerator (including SHA-
256) on board and due to the promising potential of 32-bit platforms
in next-generation embedded platforms [141, 6]. Moreover, low-priced
and energy-efficient cryptographic accelerators are predicted to find their
ways into low-power platforms [181, 138]. We assume the on-device
random number generators to be secure and robust [146]. For the
cryptographic accelerator, we implement generic drivers for big number
arithmetic operations (utilized by RSA and Paillier) and ECC operations
(utilized by ECDSA, ECDH, and EC-ElGamal). In case no cryptographic
accelerator is available, these fundamental operations are provided by a
software implementation. We used the crypto library Relic Toolkit[9] for
this purpose.

While relying on the cryptographic accelerator Talos requires 2.4 kB
of RAM and 10 kB of ROM for the crypto components. In case no
cryptographic accelerator is on board, a considerable amount of memory
is dedicated to Relic Toolkit. The exact memory size is dependent
on several configuration parameters to optimize Relic Toolkit. It is
however in the range of 8 kB of RAM and 66 kB of ROM. The
breakdown of memory requirements in Talos is shown in Table 2.2.

5Fitbit Tracker utilizes a microcontroller with similar capabilities.
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States Time Energy
Public-Key Crypto (ECDSA, ECDH) 1,191.75 ms 59.1 mJ
CPU 9.46 ms 0.5 mJ
TX 47.73 ms 3.4 mJ
RX 43.46 ms 2.2 mJ
Symmetric Crypto (AES-CCM, SHA) 5.86 ms 0.48 mJ
Total (without idle) 1,232.8 ms 65.4 mJ
idle/sleep (1-2 wireless hops) 455 ms - 2 s < 2.52 mJ

Table 2.4: Secure E2E channel establishment (certificate-based DTLS
handshake) on the client. The number of wireless hops affects the idle time.

We use the tools arm-none-eabi-readelf and arm-none-eabi-size to
perform our memory analysis on the binaries. Hereby, DTLS makes a
major contribution with 7 kB of RAM and 17 kB of ROM. We measure a
maximum stack size of 2 kB. It is important to mention that our memory
values cannot be directly translated for 8- or 16-bit platforms, as our
platform comes with 32-bit registers. Note that recent works, such as
SPLIT [244] support on-demand loading of DTLS functionality stored
as modules on the significantly less constrained flash storage, hence
reducing the maximum RAM requirements due to DTLS.

We assume hardware AES block encryption to be available (which has
been integrated into most RF transceivers for more than a decade). We
extend existing drivers for AES to support additional modes, such as the
AES-CMC for deterministic encryption. Unfortunately, Blowfish is not
supported in hardware. Our ported Blowfish implementation requires
380 Byte of RAM and 4168 Byte of ROM. For DTLS integration, we modify
the tinyDTLS6 implementation to support by demand cryptographic
accelerator or software implementation (i.e., Relic Toolkit). Moreover,
we extend it with a basic X.509 certificate parser.

2.5 Experimental Evaluation
In this section, we present the experimental evaluation of Talos on
OpenMotes, representing a typical IoT device. We do not discuss the
performance of the Cloud database, represented by a modified and
extended version of CryptDB instance, as it is not the core of our
contribution. However, we quantify the network overhead of Talos
during its interaction with the Cloud database.

6tinyDTLS; https://projects.eclipse.org/projects/iot.tinydtls

https://projects.eclipse.org/projects/iot.tinydtls
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In the following, we first define our evaluation objectives, describe
the setup, metrics, and methodology. We continue in Section 2.5.1 with
a brief discussion of our results for secure E2E communication, followed
by a detailed discussion of our results for encrypted data processing in
Section 2.5.2.

Goals. Throughout this section, we intend to answer the following
questions: (a) is Talos feasible on resource constrained devices? (b) what
is the overhead of Talos in terms of computation, energy, and bandwidth?
(c) what is the impact of the availability of cryptographic accelerators on
the performance and feasibility of Talos?

Evaluation Setup. For our evaluation, we rely on Flocklab [151], a public
wireless sensor network testbed. Flocklab7 supports over the Internet
communication of sensor nodes with a remote host, thus emulating IoT
scenarios. Our Cloud database resides on a normal desktop connected
via the Internet to Flocklab nodes, with an average transmission delay
of 10 ms. Our communication setup involves at least one wireless hop
within Flocklab.

Metrics. We quantify the impact of Talos in terms of computation
and communication overheads, and calculate the corresponding energy
consumption. All tests are repeated at least 100 times, if not indicated
otherwise. Standard deviation is reported only when not negligible,
since it is mostly the case with CPU computation on a non-preemptive
OS. Inspired by TinySec [130], we use the metrics Byte-time and Byte-
energy to put computation in relation to radio transmission time and
energy. In other words, we normalize our time measurements based
on the transmission time of 1 Byte in 802.15.4 (i.e., 32 µs) and the
energy measurements based on the energy required to transmit 1 Byte
on OpenMotes (i.e., 1.613 µJ). The latter is calculated as: transmission
time × voltage × transmission current = 32 µs × 2.1 V × 24 mA = 1.163 µJ.

Methodology. We verify the current draw in our crypto functions by
utilizing a mixed signal oscilloscope, as summarized in Table 2.3. We
then characterize the accuracy of system clocks, which we use for time
measurements8. To this end, we use digital inputs of our oscilloscope
connected to OpenMote pins to encode the start and end of events. We
rely on Contiki’s timer with a resolution of 30µs and a dedicated hardware
timer with an accuracy of 1µs. We measured a maximum timer inaccuracy
of 0.4%. Additionally, we leverage the energy measurement features of
Flocklab during our evaluation.

7For our project, we extended Flocklab with OpenMotes: flocklab.ethz.ch
8We open-source our test interface utilizing accurate system timers: https://

github.com/hosseinsh/Talos.

flocklab.ethz.ch
https://github.com/hosseinsh/Talos
https://github.com/hosseinsh/Talos
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Figure 2.7: Secure E2E channel (AES-CCM, SHA256) with support of
cryptographic accelerator (HW) compared to pure software implementation
(SW).

2.5.1 Secure E2E Communication
Talos employs the certificate-based DTLS to establish a secure E2E
channel. Due to space limitations, we only briefly discuss the DTLS
results.

In our setup, a DTLS client from Flocklab establishes a secure channel
with the Internet host. The handshake, since it involves public-key-based
operations (ECDSA, ECDH), is the most expensive part of a secure E2E
channel. The public-key-based operations contribute to the major part
(90%) of the total energy consumption per handshake (65.4 mJ). Hence,
a DTLS session should be kept alive as long as possible, for instance by
means of session resumption [118]. Note, the cryptographic accelerator
allows concurrent computations on the main CPU. Hence, during the
long computations ideally other tasks could be scheduled.

Table 2.4 lists the computation time and energy costs of the different
components of a handshake. The total duration of the handshake is
mainly impacted by the number of the wireless hops, as indicated by the
time spent in idle state. How much energy is drained in this state depends
on the specific MAC layer in use, e.g., the level of radio duty cycling and
the sleep mode.

Once the session is established and the keying material is agreed
upon, a modest crypto overhead is caused by AES-CCM. AES-CCM has a
performance between 31 to 55 µs for 16 to 128 Byte packets, as depicted in
Figure 2.7. This overhead is considerably larger when using software (i.e.,
293 to 1311 µs). Although the crypto accelerator draws about 13% more
current, its faster execution time leads to energy savings by a factor of up
to 20 for full frames (see Table 2.6). More importantly, the computation
of AES-CCM in hardware can run in parallel to the transmission of the
preamble (8 symbols × 16 µs = 128 µs)
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(a) Symmetric block cipher encryption, as used in random and deterministic encryption
schemes. Except for Blowfish, which is implemented in software (SW), the remaining
ciphers utilize the cryptographic accelerator (HW).

(b) Additive homomorphic encryption by means of Paillier utilizing the cryptographic
accelerator (HW). Paillier’s plaintext-size can be as large as the key size, in our case 1024
bit (128 Byte).

Figure 2.8: Microbenchmark of the cryptographic algorithms in Talos on
a typical IoT device (i.e., OpenMote).

Note that the steps in Figure 2.7 in the software implementation are
due to padding to full block sizes. AES has a block size of 16 Byte, hence
the steps are at 16 Byte steps. SHA has a block size of 64 Byte. The effect
due to padding is optimized in the hardware-based modes.

2.5.2 Encrypted Data Processing

To support encrypted data processing, Talos utilizes four types of
encryption. The strongest level of security is provided by probabilistic
encryption (RAND), additive homomorphic encryption (HOM), followed
by determinist encryption (DET), and order-preserving encoding (OPE).
Each of these schemes comes with certain security-functionality tradeoffs,
discussed in Section 2.3. In the following, we first discuss the performance



38 Chapter 2. Talos

Algorithm Input Size [Byte]
4-8 16 64 128

AES-ECB - 0.9 µJ 1.1 µJ 1.4 µJ
-CBC - 0.9 µJ 1.1 µJ 1.4 µJ
-CMC - 2.1 µJ 4.8 µJ 8.5 µJ

Blowfish-ECB 1 µJ 2 µJ 8 µJ 16 µJ
Paillier 88-91 mJ 99 mJ 128 mJ 171 mJ
EC-ElGamal 11-23 mJ 46 mJ 184 mJ 368 mJ

Table 2.5: Energy consumption of data-protection components of Talos based
on the current values in Table 2.3. Except for Blowfish, all crypto operations
utilize the hardware crypto engine.

of the individual crypto algorithms, and then elaborate on the overall
system performance.

2.5.2.1 Microbenchmarks

We now discuss the time and energy measurements of the individual
crypto algorithms, as summarized in Figure 2.8 and Table 2.5, respectively.
The performance results combined with the ciphertext overheads of each
algorithm (see Table 2.1) contributed to the design decisions in Talos.

RAND/DET. For random and deterministic encryptions, we employ
various types of symmetric block cipher encryptions (AES and Blowfish).
We utilize the cryptographic accelerator for AES modes, however, our
Blowfish is software-based. Blowfish is known for its long initialization
phase after setting the key, which in our case amounts to 12 ms,
independent of the key size. Since in Talos the key is rarely changed,
this overhead is acceptable. Blowfish with 23.5 µs shows a modest
performance, in the same order as AES-ECB (14 µs) and AES-CBC (18 µs).
Note that AES in software is by factor 3 to 10 slower, depending on
plaintext size.

As shown in Figure 2.8(a), Blowfish, which has a blocksize of 8 Byte,
quickly becomes expensive for large data. Consequently, Talos uses
Blowfish for data ≤8 Byte. Among the different AES modes (ECB, CBC,
CMC), AES-CMC has the highest overhead. This is because AES-CMC
applies AES-CBC twice to avoid early block leakage. Talos limits the use
of AES-CMC only for data ≥16 Byte.

OPE. The traditional OPE, as introduced by Boldyreva [35], relies on the
hypergeometric distribution (HGD). HGD is computationally intensive
and in similar orders as Paillier. Talos utilizes mOPE which is about two
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Communication Engine Input Size [Byte]
16 64 128

AES-CCM Hardware 8.7 µJ 9.4 µJ 10 µJ
Relic 19.7 µJ 38.8 µJ 64 µJ

Table 2.6: Energy consumption of AES-CCM. The comparison to software
implementation shows the energy gain of hardware accelerator.

orders of magnitude more efficient than OPE. This is because that mOPE
employs deterministic encryption (in our case Blowfish). Since mOPE
requires interaction with the Cloud, we elaborate on its performance
aspects in the following section.

HOM. Additive homomorphic encryption is the most expensive cipher
in Talos. Paillier encryption starts with 1,619 ms for 4 Byte plaintext and
increases linearly to 3,142 ms for 128 Byte plaintext. Decryption time is
constant at 1,593 ms. Note that decryption is typically performed on more
powerful devices. Paillier’s performance in software is by factor 6 slower.

With EC-ElGamal we explored an alternative additive homomorphic
encryption to the Paillier cryptosystem. EC-ElGamal’s performance,
since based on EC-points, is input-length independent. EC-ElGamal
encryption takes 210 ms, whereas the decryption with 95 ms is by factor
2 faster. The 210 ms encryption time already includes a maximum upper
bound of 20 ms for mapping a 32-bit value into the EC space (8-bit values
require only 9 ms).

The homomorphic encryption with both Paillier and EC-ElGamal is
energy intensive (see Table 2.5). For 4 Byte plaintext, this amounts to
88 mJ and 11.42 mJ, respectively. Note that this is equivalent to 76 and
9.8 kB-energy, respectively. Paillier’s energy consumption in software is
by factor 7.5 higher, which renders it significantly costly and not suitable
for IoT.

2.5.2.2 System Performance

We now assess the overall performance of Talos with focus on the two
schemes of order-persevering and additive homomorphic encryptions.
Moreover, we discuss the impact of Talos on the lifetime of a battery-
based IoT device.

mOPE. With mOPE we trade computation for communication. In Section
2.3.2, we discussed how to reduce the number of interactions in mOPE
by tuning the k-ary tree to hold up to 10 values (k=10). Figure 2.9
depicts the total time of interactions in mOPE, based on the number
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of interaction rounds for k=4 and k=10. The interaction time is impacted
by the transmission delay of our setup, which consists of one wireless
hop.

The average roundtrip time (RTT) per interaction is higher for k=10
(68 ms) than k=4 (53 ms) because packets carry in average more elements.
Similarly, the per interaction CPU time is for k=10 (314 µs) 19% higher
than k=4 (264 µs). This is because on average more item decryptions
are needed for the comparisons. However, in total is k=10 several times
more efficient than k=4. As depicted in Figure 2.9, with 103 items in the
database, mOPE with k=4 requires 9 interactions, whereas k=10 needs
only 4. This is 200 ms faster than k=4. This trend continues and we
experience with 105 items in the database 12 interactions for k=4 and only
6 interaction for k=10 (250 ms faster).

The IoT device can ideally utilize radio duty cycle techniques to reduce
its energy consumption to an optimal of transmission and reception of the
query and response packets of the interaction process. Assuming more
than 105 items in the database, adding new items requires 6 interaction
rounds which involves transmission and reception of 12 packets. This
results into an energy consumption of 1.3 mJ. Assuming an optimistic
lower bound of 1,600 ms computation time for the traditional OPE, shows
that mOPE is 2 orders of magnitude more efficient than OPE.

HOM. Paillier, as discussed earlier, is computationally very expensive
(encryption time is between 1.6 to 3.1 s). Its cost is prohibitive, especially
when compared to the encryption time of EC-ElGamal (210 ms), an
alternative HOM. To render Paillier more efficient, we optimized it to
pack several values into a single plaintext. This amortizes the expensive
Paillier encryption among several values. As depicted in Figure 2.10, the
energy per item decreases as the number of packed items increases.

EC-ElGamal, which operates on 32-bit plaintext values, consumes
11.42 mJ, and thus depicts the lower energy budget for HOM encryptions.
In order to reach the same per item energy efficiency as EC-ElGamal, our
optimized Paillier must pack fourteen 32-bit plaintext values. Working
with 16-bit plaintext values allows packing 32 items in one plaintext.
This results in optimal energy efficiency, by a factor 2 better than by
EC-ElGamal. The possibility of packing values, however, is application
scenario-dependent. To remain as generic as possible, we use EC-ElGamal
as the default HOM for Talos.

Energy. Talos significantly impacts the lifetime of a battery-based IoT
device, specifically due to the involved crypto operations. This is an
inevitable tradeoff that comes with higher security. We assume two AAA
alkaline batteries with a typical capacity of 3 Wh (10.8 kJ) and a targeted
lifespan of one year. This results in a daily energy budget of 29.6 J.
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Figure 2.9: mOPE. Time of an insert operation based on the number of
interactions for up to 105 items. Client is one wireless hop away from the
gateway in Flocklab. Average RTT per interaction is 53 ms for k=4 and 68 ms for
k=10. The per interaction CPU time is 264 µs for k=4 and 314 µs for k=10.

To put this into perspective, with 20% of the daily budget (5.92 J), Talos
is capable of performing: 90 DTLS handshakes, 518 EC-ElGamal based
homomorphic encryptions, 5.92×106 random or deterministic encryptions
of 32-bit values, or 5381 mOPEs (5 interactions).

Case Study. To have a better understanding about the applicability
of Talos, let us again consider the application scenario of the health
monitoring device which logs heart rate, location, and timestamps. As
we described in Section 4.1, the logged items have different sensitivities.
For instance, the heart rate measurements have the highest sensitivity,
since they can be used to infer health-related information (e.g., stress,
depression, or diseases). Hence, Talos protects heart rate with additive
homomorphic encryption to provide semantic security and allow average
and summation computations. Health monitoring devices9 typically
sample at 1 Hz (every 1 s) during sports activities and 6 times per hour
otherwise. For a person with 1 h sports activity per day, this would
result in a daily 3,738 data items encrypted with additive homomorphic
encryption. The location, logged every 15 min, is maybe less sensitive
to this person and could be encrypted with deterministic encryption,
to allow encrypted queries correlating heart rate with a given location.
Hereby, the timestamp for each heart rate record could be encrypted with
the order-preserving encryption, to allow ordering, but not revealing the
actual time.

Assuming the same underlying platform we used in our evaluation,
the total daily energy cost of additive homomorphic, deterministic, and

9Microsoft Band: http://www.windowscentral.com/how-often-microsoft-band-
checks-your-heart-rate

http://www.windowscentral.com/how-often-microsoft-band-checks-your-heart-rate
http://www.windowscentral.com/how-often-microsoft-band-checks-your-heart-rate
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Figure 2.10: Additive homomorphic encryption. Our optimized Paillier is
more efficient than original Paillier and can reach the efficiency of EC-ElGamal.

order-preserving encryptions in this scenario accounts for a total of 42.67 J
per day. This would contribute to a modest 5.4% of the daily energy
budget of a Fitbit device with five days lifetime and a lithium-polymer
battery capacity of 1.2 Wh (4.32 kJ).

2.6 Discussion
This work provides a proof-of-concept of the potential and feasibility of
building secure systems that address data privacy concerns in the IoT
ecosystem. However, more research is needed to realize the full potential
of Talos. Here we address some practical challenges and research points
that assist in evolving Talos further.

Energy. The feasibility of Talos for IoT devices is driven by its energy
efficiency. Although security comes at a price, the price should not hinder
the usability of the system. We show that with a modest energy budget,
Talos can be integrated on IoT devices providing strong network and data
security guarantees. We achieve this by making the employed HOM and
OPE schemes one order of magnitude more efficient. However, there
is still potential for further optimizations, specifically for HOM, which
with EC-ElGamal still accounts for a considerable amount of the energy
consumption.

Hardware Accelerator. We explore the impact of hardware crypto
accelerator on the feasibility of Talos. The hardware accelerator, which
utilizes a separated core (running at 250 MHz), drains with 26 mA a higher
current than the main core at 32 MHz (20 mA). The higher frequency
and consequently lower computation time result in significant energy
savings (by a factor of 2 to 20), as compared to pure software operations.
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More importantly, a separate core for crypto operations allows utilizing
the main core for other tasks. This results in an active main core, instead
of idle, as considered in our evaluation (draining a total of 33 mA for both
cores). Hence, an optimal task scheduling would increase the energy
efficiency of our system several times higher.

Security Analysis. Talos meets the security goals and efficiency
requirements outlined in Section 2.2.2. With our efficient public-key-
based E2E secure channel (DTLS), Talos defends against network-based
threats. The encryption applied by Talos protects the data against
curious database administrators and database compromises. Since we
utilize order-preserving encryption and deterministic encryption, we
allow leakage of order and equality information for less sensitive data.
Sophisticated attacks could potentially misuse the gained information
from this leakage. Hence, future steps should address this shortcoming
of Talos.

Alternative Crypto Primitives. Recent advances in theoretical cryp-
tography and careful optimization of crypto mechanisms allow us to
build practical secure systems, such as Talos, in a novel fashion that
inherently address data privacy issues through facilitating computation
on encrypted data. We are currently witnessing improvements in the
computational efficiency of fully homomorphic encryption [83, 85]. The
already achieved improvements of 6 orders of magnitude in the past
decade could be further enhanced in the near future. Talos is yet bound
to schemes with reasonable efficiency, however, our general system design
is not bound to particular schemes.

Fully Homomorphic Encryption (FHE). In Talos, we rely on additive
(rather than fully) homomorphic encryption. We measured additive
homomorphic encryption to be 5 orders of magnitude slower than AES,
which makes it the bottleneck of our system. Hence, despite recent efforts
in rendering FHE more efficient, we do not foresee FHE to be soon feasible
for IoT devices. However, with GHS [85], an approach of homomorphic
evaluation of AES circuit, there is hope that the benefits of FHE can find
their way into IoT. GHS transforms AES ciphertexts, without access to
the plaintext, into an FHE-compatible form where arbitrary computations
over the hidden plaintext are possible.

2.7 Related Work
We now discuss work related to Talos grouped in the following four
categories:
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E2E Security. Early efforts to bring security to WSN explored low-power
cryptographic approaches [152, 228], which facilitated research on secure
communication protocols for IoT. Hummen et al. [118, 119, 203] introduce
a handshake delegation scheme which allows highly constrained devices
without the capability of performing public-key-based operations to still
benefit from the scalability and security of public-key-based handshakes.
Hu et al. [114] investigated the feasibility and advantages of hardware
accelerators on low-power devices. TLS–Rotate and Release [237] allows
the auditing of secure communication channels, such that device owners
can decrypt and verify recent TLS traffic of their devices. This allows
owners (e.g., security experts and consumer watchdogs) to audit the
communication regarding the type and extent of transmitted data.

Privacy-Preserving Cryptography. There has been significant amount of
work on cryptographic schemes [154, 91, 37, 215, 90, 26, 38] that could
be utilized in privacy-preserving computations. Gentry’s work [83, 82]
marks a breakthrough in cryptography showing an implementable fully
homomorphic encryption (FHE) scheme. Since then, his work has been
incrementally enhanced up to 6 orders of magnitudes by the research
community [85]. Prior to Gentry’s work, the focus was on partial
homomorphic encryption, where only one type of computation, such
as multiplication or addition is supported [116, 39, 42].

Although FHE provides semantic security and supports at the same
time arbitrary computations over encrypted data, it is not yet best suited
for encrypted query processing. This is due to both its prohibitive cost
and the fact that the Cloud must process all existing data in the database
for queries such as equality check or comparison. This is the main reason
for using weaker encryption schemes such as OPE and DET to allow the
database to reduce the scope of computation.

Secure multi-party computation approaches [106, 238] are efficient for
simple functions, however become computationally expensive for general
functions. Moreover, MPC involves high interactions, large bandwidth,
and coordination among the involved parties. Secure in-network
processing of aggregate queries was introduced for WSNs [190, 52].
This would increase the security of approaches providing a distributed
database interface for WSNs, such as TinyDB [155].

Differential privacy [62] assumes a trusted server, which obfuscates
answers to avoid leaking information about data items and the query
patterns.

Computation on Encrypted Data. Perrig et al. [223] introduced
an efficient search over encrypted text files. This is achieved by
deterministically encrypting metadata of files which are protected with
strong encryption, i.e., probabilistic. Perrig et al.’s efforts paved the way
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for more advanced systems enabling encrypted query processing [120,
184, 185], among them CryptDB [184] which we discussed in depth
in Section 2.2. Mylar [185] introduces a multi-key searchable encryption
scheme, exemplified for smartphone applications. Mylar protects the
content of documents and the searched words from the untrusted server.

Goldwasser et al. [44] introduce an innovative and sophisticated
approach for machine learning classification over encrypted data. This
approach is complementary to ours and would allow support for a wider
range of data types.

Cloud Security. Commercial Cloud database services, such as
Google [95], encrypt data before storage (i.e., encryption at rest).
However, the queries are still processed over plaintext data. Secure data
storage is an essential measure and complementary to our approach.
Utilizing a local trusted machine [17, 11] at the database is an alternative
approach to encrypted query processing. This, however, implies that the
user considers the trusted hardware trustworthy.

Secure deletion [194] of remotely stored data is a relevant area of
research concerned with the ability to delete data irrecoverably. One
approach is client-side encryption, such that to securely delete data, it
is enough to delete the encryption key. In this case, encryption is not
intended to provide confidentiality, but rather as a problem reduction
where arbitrarily large data is securely deleted by deleting a fix sized key.

2.8 Conclusion
We presented Talos, a practical secure system that provides strong
communication and data security features for privacy-preserving IoT
applications. Talos leverages and tailors cryptographic primitives that
allow computation on encrypted data without disclosing decryption
keys to the Cloud. To achieve this, we utilize optimized encryption
schemes, specifically for the expensive additive homomorphic and order-
preserving encryptions, accelerating them by 1 to 2 orders of magnitude.

We show the practicality and feasibility of Talos through an
implementation and experimental evaluation considering both micro-
benchmarking and system performance. Talos copes with the limited
energy budget of constrained devices and requires a modest energy
budget to provide a higher security level. Advancements in Computing on
Encrypted Data is increasingly significant to the progression of data privacy
and security. Talos is the first system to address energy and computation
concerns for integrating encrypted query processing into IoT systems. We
hope that Talos facilitates further research in this direction.



46 Chapter 2. Talos



3
Pilatus

IoT applications often utilize the cloud to store and provide ubiquitous
access to collected data. This naturally facilitates data sharing with
third-party services and other users, but bears privacy risks, due to
data breaches or unauthorized trades with user data. To address these
concerns, we present Pilatus, a data protection platform where the cloud
stores only encrypted data, yet is still able to process certain queries (e.g.,
range, sum). More importantly, Pilatus features a novel encrypted data
sharing scheme based on re-encryption, with revocation capabilities and
in situ key-update. Our solution includes a suite of novel techniques
that enable efficient partially homomorphic encryption, decryption,
and sharing. We present performance optimizations that render these
cryptographic tools practical for mobile platforms. We implement a
prototype of Pilatus and evaluate it thoroughly. Our optimizations
achieve a performance gain within one order of magnitude compared
to state-of-the-art realizations; mobile devices can decrypt hundreds of
data points in a few hundred milliseconds. Moreover, we discuss practical
considerations through two example mobile applications (Fitbit and Ava)
that run Pilatus on real-world data.

3.1 Introduction
The Internet of Things (IoT), through embedded devices and wearables,
is enabling a whole new spectrum of applications. One of the prominent
offerings in this domain is the emerging field of health and fitness tracking
with over 150k [64] applications listed in the two major smartphone app



48 Chapter 3. Pilatus

Alice 

Store / retrieve Retrieve 

Retrieve processed 
 

Retrieve processed 
Bob 

Alice 

mi 

Bob 

mi 

Bob 

Σi..jm 

Alice 

Σi..jm Alice 

mn 

… 

m1 

Bob 

mn 

… 

m1 

Figure 3.1: Pilatus can both query and share encrypted data. The cloud
has access to no keys nor any plaintext. It is able to process encrypted data
(e.g., range, sum queries), as well as to re-encrypt it, enabling crypto-protected
sharing. We also address revocation, in situ re-keying, and group sharing.

stores. Examples of such applications include wristbands that can infer
stress level from skin conductance, sport trackers that can log physical
activities, and fertility apps.

The collected data typically consists of sensor readings (e.g., body
temperature, conductance response), activity meta-data (e.g., duration,
type), or health-related symptoms (e.g., migraine headaches, pain). For
scalability, ubiquitous access, and sharing possibilities, the data is most
often stored in the cloud. Transparent and secure data sharing (e.g.,
sharing with friends or domain experts) is considered a key requirement
for the practicality and success of typical IoT systems [126, 210]. Moreover,
securing the cloud storage is of utmost importance, as the data can
be used to infer privacy-sensitive information, such as heart diseases,
personal well-being, and fertility-related data [14, 48]. The privacy
risks of today’s data collection model are many, including systematic
unauthorized disclosure of personalized data on clouds [18], for personal
advertising [176], trading with insurances [59], and due to external [71]
or internal data breaches (e.g., curious cloud employees [71]).

Challenges. How to benefit from cloud computing (i.e., storage and
query processing) without compromising data control and security? Storing
encrypted data with traditional symmetric encryption schemes, such
as AES, would offer protection but render the data unsearchable
and unshareable. Alternatively, homomorphic encryption schemes
enable arbitrary computation on encrypted data but are presently
impractical [184]. In this chapter, we focus on Partially Homomorphic
Encryption (PHE) and in particular additive homomorphic schemes.
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These are practical solutions that enable an important set of queries [231],
such as the sum query on encrypted data – a common operation in IoT
applications when history data needs summing or averaging. Also
note that with limited involvement of the client side, more complex
computations (e.g., linear regression) can also be achieved [231].

How to bring cryptographically guaranteed sharing to the IoT ecosystem?
The current PHE approaches are either targeted at single-key encrypted
data [184, 231, 213] (no support for sharing) or consider only text-based
data [185, 105] (of limited use in an IoT context). Talos [213, 206] is
specifically tailored for IoT scenarios and has demonstrated PHE on
embedded devices, but it does not offer any sharing features. Existing
protocols for sharing, such as OAuth [153], fall short in providing
strong assurances about the policy enforcements. Crypto-based sharing
approaches [234], on the other hand, support no query processing over
encrypted data.

In short, existing solutions either support encrypted query processing
or secure sharing but not both. Moreover, due to their heavy
computational overhead, PHE schemes have been considered unsuitable
for low-power mobile and IoT devices. In this work, we tackle the
challenges of cryptographically-protected and efficient sharing of PHE
data, as illustrated in Figure 3.1. Our system is the first to combine
encrypted sharing with encrypted query processing. Furthermore, our
system is tailored towards mobile platforms, improving the state-of-the-
art performance by more than one order of magnitude.

Approach. We introduce Pilatus, which extends Talos [213] with sharing
capabilities. We enable efficient sharing of PHE data based on a re-
encryption scheme [13]. This means that data is (PHE) encrypted at
the client (IoT device/gateway) and uploaded to the cloud. When data
owner Alice intends to share her data with Bob, she computes a token
that enables the cloud to re-encrypt her data for Bob (without decrypting
it first). The same process is used for Alice to share her data with a
group. With only public keys and tokens (no secret keys nor plaintext
information), the cloud is able to perform query and sharing operations
directly on ciphertexts. Users can decide between sharing their individual
data points (necessary for complex analytics) or aggregated results, both
in encrypted form.

Further, we design a key revocation mechanism that allows users to
terminate their data sharing at any time. We also propose an in situ
key-update at the cloud, such that old data becomes protected with the
owner’s new key, without trusting the cloud with any private keys.

Our solutions build on the Elliptic Curve (EC)-based partially
homomorphic encryption. Hence, a major challenge is to minimize
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the decryption time of our EC-based cryptosystems, for both sharing
and encrypted processing. We address the performance optimization
with the Chinese Remainder Theorem, which enables smaller, faster, and
parallel computations. We keep the induced overheads low enough to
preserve the user experience (i.e., below 1 s response time [174], including
network latency) such that users can interact with their remotely stored
data seamlessly.

Contributions. In summary, this chapter makes the following
contributions:

• We introduce a practical construction for sharing of PHE IoT data,
with a sharing revocation mechanism that also allows in situ re-
keying of the ciphertexts in the cloud;

• We improve the underlying cryptosystems’ decryption time by one
order of magnitude compared to state-of-the-art realizations such
as Talos [213] and CryptDB [184];

• We design and implement Pilatus, a system that extends Talos with
the above sharing schemes and with the necessary features for a
practical sharing-enabled cloud storage;

• We assess the efficiency of Pilatus through end-to-end and micro
benchmarks, on cloud services, on mobile devices, and to a lesser
extent on low-power sensor devices. We also present two case study
apps running Pilatus: the Fitbit fitness tracker and the Ava fertility
tracker [14]. We make our prototype implementation of Pilatus
publicly available1.

This chapter is based on the contributions made in [210, 211].

3.2 Threat Model
We focus on IoT applications where data from wearables/smartphones
are stored on third party clouds. We consider the following parties: the
cloud (consisting of a front-end server and the database), clients (apps),
and an Identity Provider (IDP) to certify the public key of each user.

Threats. Pilatus considers the cloud service to be honest-but-curious,
such that it will follow the protocol correctly, but tries to learn as much as
possible from the stored data. This is a valid model, as protocol violations,
once detected, could penalize the service provider. At the same time,

1Pilatus is available at https://github.com/Talos-crypto/Pilatus

https://github.com/Talos-crypto/Pilatus
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the adversary might be eager to learn more about user data without
being noticed (i.e., passive). External adversaries can also gain access to
the encrypted data as a consequence of system compromise. In summary,
we consider cloud-side threats which are due to system compromise (e.g.,
data theft), financial incentives (e.g., unauthorized trades with users data),
or malicious insiders (e.g., curious admins).

Assumptions. In addition to the honest-but-curious cloud assumption,
Pilatus assumes that the IDP correctly verifies users’ identity-key pairs.
The IDP is a standard requirement in multi-user systems and can be
a known and trustworthy external entity or an internal unit. Group
members of shared data are semi-trusted, in that they do not collude with
the cloud to leak the group data or key. This is a reasonable assumption for
small groups where members are acquainted with each other. Moreover,
Pilatus assumes that the applications behave correctly and do not hand
out user keys to malicious parties. Finally, we assume state-of-the-art
security mechanisms to be in place for device security [149, 138, 150] and
that all parties communicate over secure channels.

Guarantees. Pilatus protects the confidentiality of users data stored
in the cloud in the presence of passive adversaries (e.g., compromised
servers). In case the user device is compromised and group keys are
disclosed, only data of the compromised user and the affected group are
disclosed. Pilatus cryptographically prevents unauthorized data access.
Pilatus provides user authentication mechanisms but does not guarantee
freshness or correctness of the retrieved data. In order to provide such
guarantees, one could complement our system with integrity protection
frameworks such as Verena [129]. Pilatus does not hide access patterns,
which can potentially reveal sensitive information [124].

3.3 Pilatus Overview
We briefly introduce the requirements of the applications we target and
then present the architecture of Pilatus.

3.3.1 Applications
Pilatus focuses on applications collecting sensitive data that require
processing and sharing. Examples of such applications include fitness
or health trackers. These applications store private data in the cloud
that can reveal privacy-sensitive information, e.g., illness, lifestyle, or
location. For instance, Fitbit wristbands collect a user’s heart rate, step
counts, and location data. Similarly, certain health tracking applications
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and wearables, such as Ava [14], allow women to track their menstrual
cycle, predict (in)fertile phases, and detect potential health issues. Ava
bracelets rely mainly on body temperature and various other sensors
(e.g., heart rate variability, perfusion, breathing rate, bioimpedance).
Though insightful, logging such private information raises serious
privacy concerns.

Secure and transparent sharing plays an essential role in bringing such
fitness- and health-related apps to their full potential. When users are
willing to share data with experts (e.g., medical practitioners), analytical
services, or just casually with friends, they must be in full control over
who can access and what can be accessed. Moreover, there is a need for
query processing capabilities directly in the cloud, since downloading
the entire data volume for on-device processing becomes impractical as
the data grows. For instance, in Fitbit and Ava, the mobile apps typically
display total sums or averaged values (e.g., heart rate) over a given period
of time.

To satisfy the above requirements, Pilatus facilitates storing encrypted
IoT data in the cloud, while enabling processing and cryptographically-
protected sharing of encrypted data. In Section 3.7.1, we show that
our Pilatus-based app prototypes Ava and Fitbit induce only a modest
overhead (i.e., a maximum of 130 ms) while interacting with encrypted
data. Note that while the focus of this work is on health and fitness
applications, our system design and application discussions apply as
well to other IoT applications (smart homes, connected cars, etc.).

3.3.2 Architecture
Pilatus, as an extension of Talos, uses Partially Homomorphic Encryption
(PHE) schemes to enable query processing over encrypted data in the
cloud. It offers a new scheme for secure sharing of PHE data among users
and groups, based on re-encryption techniques. Our sharing feature
includes access revocation with in situ re-keying. We optimize the
performance of the underlying cryptographic schemes by one order of
magnitude to make them practical on mobile devices. Note that Pilatus
inherits the order-preserving encryption from Talos for range queries.
Together with PHE, this enables querying a sum/average over a range of
timestamps or any other relevant combination of metadata2.

Pilatus consists of three main components: the client engine, the cloud
engine, and an identity provider, as depicted in Figure 3.2.

Client Engine. The client engine runs on the user side and is the only

2We apply range queries to data types that are of high entropy from a sparse domain
to avoid any data leakage due to inference attacks [171].
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Figure 3.2: Pilatus architecture. The client engine performs en-/decryptions,
such that the cloud only stores encrypted data. The cloud engine performs
encrypted query processing and necessary re-encryptions for data sharing.

component with access to keying material. It is primarily designed for
users’ personal mobile platforms, such as smartphones. It interacts with
the IDP to verify the ID-to-key bindings and with the cloud engine
for secure storage, sharing, and retrieving of data. More specifically,
it encrypts, decrypts, handles the keys, and sharing-related activities
such as joining new groups, issuing delegated access rights (i.e., re-
encryption tokens), triggering revocation, and re-keying. For constrained
IoT devices (sensors), we have a stripped-down client engine with limited
functionality, such as encryption to store PHE encrypted data in the cloud.

Cloud Engine. The cloud engine is application-agnostic and provides
the basic database interface and features. It stores data and processes
queries from the client engine. The cloud engine has only access to data
in encrypted form. It supports the algorithms required for processing
encrypted data, i.e., homomorphic addition, re-encryption, and in-situ
re-keying. Our design is currently targeted for structural databases (i.e.,
MySQL) and uses User-Defined Functions to replace the default routines
with crypto-enabled ones (see Section 4.4 for details).

Identity Provider. The IDP is an independent party responsible for
verifying the user identity to public key bindings. The IDP is used by
the client engine to search for the public key of another user or group.
Pilatus is independent of the IDP and outsources this role to systems
such as Keybase [133], that provide provable identity-key bindings, by
utilizing prevalent social media channels and online accounts (i.e., users
prove their identity by posting an individual token on Twitter, Facebook,
Github, etc.).
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3.4 Cryptographic Background
We present here the necessary cryptographic background to help
understand the Pilatus design.

3.4.1 Partial Homomorphic Encryption
Partial Homomorphic Encryption (PHE) schemes allow the computation
of certain mathematical operations over encrypted data. For instance,
additive homomorphic schemes, such as the Paillier cryptosystem [180],
support the addition of ciphertexts, such that the result is equal to the
addition of the plaintext values (i.e., ENC(m1) o ENC(m2) = ENC(m1+m2)).

The Elliptic Curve (EC) version of the ElGamal cryptosystem is an
alternative additive homomorphic scheme, used in Talos and Pilatus.
EC-ElGamal’s security is based on the EC Discrete Logarithm Problem
(ECDLP) [222]. It provides semantic security (i.e., IND-CPA under
the assumption of decisional Diffie-Hellman). A challenge in making
practical use of EC-ElGamal is that it operates over EC points rather than
arbitrary messages. Hence, one needs a scheme that maps an integer to
an EC point (and back), while preserving the homomorphic property of
EC-ElGamal.

Talos, which focuses on IoT data, uses a theoretical method [222]
that becomes practical for small integer data, e.g., 32-bit (frequent in
IoT scenarios, to represent an integer or fixed point number) [213]. The
process is as follows: to map an integer m to an EC point M, m is multiplied
by a publicly known point G on the curve: M = mG. After decryption, M
must, however, be mapped back to m. This requires solving an ECDLP.
Although this is computationally infeasible for large numbers, solving
it for smaller than 32-bit integers can be realized in a reasonable time
with, e.g., the Baby-Step-Giant-Step (BSGS) algorithm (this is equivalent
to breaking 32-bit security). BSGS is based on a memory-computing
tradeoff and requires an efficient lookup table. Note that this mapping
procedure, as depicted in Figure 3.3, does not affect the overall security:
the ECDLP is solved to obtain m from M, but M itself is protected with
strong cryptography, in this case, 80-bit or 128-bit security.

Pilatus inherits this scheme from Talos, but presents additional
optimizations to speed up the process by one order of magnitude, as
discussed in Section 3.5.2.

3.4.2 Re-Encryption
Re-Encryption (RE) enables a proxy to convert ciphertexts under Alice’s
key to ciphertexts under Bob’s key, without disclosing the plaintext.
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Figure 3.3: Plaintext to EC point mapping before encryption and after
decryption.

Hence Alice can share data with Bob, without sharing her private key
nor performing any encryption for Bob on her personal device.

The AFGH [13] RE scheme relies on pairing-based cryptography.
AFGH defines next to the standard functions key generation, encryption,
and decryption, two additional functions: re-encryption-token generation
and re-encryption. The former is used by Alice to generate the re-
encryption token for Bob, based on her own private key and Bob’s public
key. The latter performs the re-encryption from Alice to Bob given the
ciphertext is encrypted under Alice’s public key.

At a higher abstraction, pairings (or bilinear maps) establish a
relationship between two cryptographic groups. In AFGH, re-encryption
consists in transforming a ciphertext from the first group to the second
group. The underlying pairing in AFGH is essentially a bilinear map [37]
which, given a cyclic groupG of prime order q, has the following property
for a, b ∈ Zq and g, h ∈ G: e(ga, hb) = e(g, h)ab. Such maps can be realized
with the Weil and Tate pairings, which are efficiently computable with
Miller’s algorithm [165]. However, designing efficient pairings is an
ongoing research topic [10].

More formally, AFGH defines the system parameters as (g, e, Z,G,Gt),
where g ∈ G, Z = e(g, g) ∈ Gt and e as the map: G × G → Gt. G and Gt

are both cyclic groups of the same prime order. The user Alice computes
her public key as pka = ga and her private key as ska = a. Alice can issue
Bob the re-encryption token based on his public key pkb as the Tokena→b =

pk1/a
b = gb/a

∈ G. The encryption of m is performed as:

Ca = (mZr, gar) (3.1)

where r is a random number. Note that the ciphertext Ca is composed
of two components, similar to the EC-ElGamal ciphertext. A proxy with
access to Tokena→b performs the re-encryption by transforming the second
component of Ca:

Cb = (mZr,Zbr), with Zbr = e(gar, gb/a) (3.2)

Bob can now decrypt the ciphertext Cb with his private secret skb = b and
the pairing Z as:

m =
mZr

(Zbr)1/b
(3.3)
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Figure 3.4: Encrypted query processing. The data is encrypted with Alice’s
public key. Computations take place in the cloud, on ciphertexts. The result is
decrypted with Alice’s private key.

In Section 3.5.1.2, we show how to employ AFGH in an efficient
additive homomorphic context. The cloud serves as the proxy, in charge
of re-encrypting data of a user to another user or group.

3.5 Pilatus Design

This section presents our EC-based encryption for sharing of PHE data
and discusses aspects such as performance optimization, revocation, and
authorization.

3.5.1 Processing and Sharing Encrypted Data
We present Pilatus’s two modes of operation: Standard Mode and
Data Sharing. The former covers the single-key case, while the
latter enables cryptographically-protected sharing. Both modes exhibit
additive homomorphic properties, as illustrated in Figure 3.4.

3.5.1.1 Standard Mode

When uploading data that is not intended for sharing, the Pilatus client
engine selects the standard mode. The standard mode is mostly inherited
from Talos and uses EC-Elgamal as an additive homomorphic encryption
scheme (Section 3.4.1). However, the decryption in Talos suffers from an
exponential increase of computational costs for larger integer values, as
shown in Figure 3.6. In Section 3.5.2, we introduce our optimizations to
overcome this shortcoming and accelerate decryption and enable the use
of integers larger than 32-bit as plaintext.
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3.5.1.2 Data Sharing

In Pilatus, we construct an efficient additive homomorphic interpretation
of AFGH (presented in Section 3.4.2). This enables cryptographically-
protected (as opposed to policy-based) sharing of PHE data, without the
need to disclose any private keys to the cloud. All the cloud needs is
a token generated by the owner, from the owner’s private key and the
target user/group’s public key, as illustrated in Figure 3.5.

To realize the homomorphic additive property, we use the algebraic
structure of elliptic curves over finite fields, similar to [233]. Note that
bilinear-map-based cryptosystems, such as AFGH, leave the selection
of the underlying pairing-friendly elliptic curve to implementation. In
the recent years, research on optimal paring curves [76] has further
progressed. In Pilatus, we rely on the optimal Ate pairing [232]3.

To enable the additive homomorphic property, we represent mes-
sage m as M = Zm, with Z as the pairing. Given the public key pka = ga of
Alice with g as a generator point in G and the random r, we encrypt as:

Ca = (ZmZr, pkr
a) = (Zm+r, gar) (3.4)

and re-encrypt for Bob as:

Cb = (Zm+r,Zbr), with Zbr = e(gar, gb/a) (3.5)

With access to the private key b, Bob can decrypt as:

M =
Zm+r

(Zbr)1/b
=

Zm+r

Zr = Zm (3.6)

Note that in the final step of decryption, we still need to map back M
to m (i.e., solving a discrete log problem), which similar to the standard
mode benefits from our performance optimization, presented in the next
section.

The homomorphic addition of two ciphertexts Cb1 and Cb2 (encrypted
under Bob’s key) is performed as follows:

Cb1 + Cb2 = (Zm1+r1,Zbr1) � (Zm2+r2,Zbr2)

= (Zm1+r1Zm2+r2,Zbr1Zbr2) = (Zm1+r1+m2+r2,Zbr1+br2)

= (Zm1+m2+r1+r2,Zb(r1+r2))

(3.7)

Because AFGH is key-optimal, Pilatus’s storage size for a user remains
constant regardless of the number of users/groups it shares the data
to. Moreover, the re-encryption tokens are unidirectional and non-
transitive. This implies, given Tokena→b it is only possible to re-encrypt

3The optimal Ate pairing is over Barreto-Naehrigopera curves [19, 10], which are
pairing-friendly elliptic curves of prime order, with embedding degree 12.
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Figure 3.5: Data sharing (re-encryption). Alice generates a token, from her
private key and Bob’s public key. The cloud uses the token to re-encrypt Alice’s
data as Bob’s data. Bob can in turn decrypt with his private key. The same
mechanism is used for group sharing. Note that re-encryption is non-transitive,
i.e., the result can not be re-encrypted again.

Alice’s ciphertexts Ca to Bob’s ciphertexts Cb. The opposite direction is
cryptographically not feasible. Additionally, given Tokena→b and Tokenb→m

it is cryptographically not feasible to transform Alice’s ciphertext to
Mallory’s ciphertext.

3.5.2 Performance Optimization

At decryption, the EC mapping proposed by Talos (see Section 3.4.1)
requires solving an ECDLP problem to convert a plaintext EC point to the
original plaintext integer. As discussed earlier, using the Baby-Step-Giant-
Step (BSGS) algorithm we can solve the ECDLP for small integer values
(i.e., ≤32-bit) within a few milliseconds. However, the performance of
this algorithm decreases exponentially with larger integers, as depicted
in Figure 3.6 (e.g., already 15 s for decryption of 38-bit integers). This
is because with each additional bit the search space is doubled until it
becomes too large to efficiently find the solution (i.e., computing the
discrete logarithm).

This technique has two major shortcomings with regards to our
design: (i) batch decryption can harm user experience, exceeding 1 s
with as few as 25 decryptions (32-bit values); (ii) with larger numbers,
e.g., 64-bit integers, this approach becomes impractical. This demands
an optimization that also maintains the homomorphic property of these
schemes.

Approach. Our optimization is based on combining the Chinese
Remainder Theorem (CRT) [116] with the BSGS algorithm. It is applicable
for decryption in both the standard and sharing modes. With CRT,
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Figure 3.6: Decryption in EC-ElGamal with the Baby-Step-Giant-Step
algorithm, 80-bit security and 4 threads on Nexus 5. Smaller plaintexts (23-
bit) are decrypted efficiently (<3 ms), larger plaintexts cause an exponential
slowdown.

we reduce solving one difficult ECDLP problem (i.e., a large integer) to
solving several smaller ECDLP problems, for which the BSGS algorithm
performs efficiently, as illustrated in Figure 3.7. As BSGS exhibits
an exponential cost, our approach can provide drastic performance
improvements.

CRT is used in many cryptographic constructions [58, 222] and Hu
et al. [116] present a formal treatment on how to leverage CRT for
homomorphic encryption schemes. We are the first to utilize the general
CRT optimization in combination with the BSGS algorithm for an efficient
computation of discrete logarithms in a pairing-based re-encryption.

The CRT technique is based on the simple idea of representing a
number X uniquely by its remainders ai from the following congruence
equations, where ni are co-primes (i.e., gcd(ni,n j) = 1, ∀ i, j):

X � ai mod ni (3.8)

Hereby, N which is the product of all co-primes ni (i.e., N =
∏

ni)
should be larger than X. With regards to our encryption schemes (i.e., EC-
ElGamal and pairing-based re-encryption), X corresponds to the plaintext
value which can now be represented with the remainders ai. Since the
remainders are significantly smaller than X, the decryption is performed
more efficiently. Given the co-primes ni and the remainders ai, X can be
efficiently computed, as:

X =

r∑
i=1

aiNiyi(mod N) (3.9)

where Ni = N/ni and yi = N−1
i mod ni. Note that yi and Ni remain

unchanged for a given set of co-prime values ni and hence can be pre-
computed in advance.
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Figure 3.7: We optimize the decryption in both standard and sharing modes,
with a technique based on the Chinese Remainder Theorem (CRT) where a larger
value is represented by several smaller ones.

Realization. To utilize CRT to our benefit, we first compute the
remainders a1 and a2 (assuming two congruences) for a given value X (i.e.,
as defined in Equation 3.8). Now instead of encrypting X, we encrypt a1

and a2. Note that the co-prime values n1 and n2 are public information.

Utilizing CRT has the side effect of increased encryption cost and
ciphertext-size (linearly by the number of congruences). For instance,
with 160-bit ECC (80-bit security), the ciphertext-size of EC-ElGamal
increases for 32-bit values from 42 bytes (2 compressed EC-points) to
84 bytes (4 compressed EC-points), which is still lower than the ciphertext-
size in the Paillier cryptosystem (256 bytes with 80-bit security).

The advantage of CRT becomes apparent while performing decryp-
tions. Instead of solving ECDLP for a large X (which can take seconds
to hours for larger values), we now solve it efficiently for the remainders
(i.e., a1, a2). The larger the plaintext value, the higher the performance
gain due to CRT (i.e., several orders of magnitude for large values). For
instance, the 15 s decryption time for a 38-bit value is reduced to less than
10 ms for EC-ElGamal (see Section 3.7.0.1).

Homomorphism. We discuss here how we keep the additive
homomorphic property with our CRT extension. To add two large
integers Xa and Xb, we add their remainders (ai and bi respectively) in
the corresponding congruences, as follows:

Xa + Xb =

r∑
i=1

(ai + bi)Niyi (mod N) (3.10)

This is possible due to modular arithmetic (Xa + Xb = ai + bi mod ni).
Since our underlying encryption schemes are additive homomorphic, we
can compute the addition of the corresponding encrypted remainders,
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as follows:

ENC(X1) + ENC(X2) =

(ENC(a1),ENC(a2)) + (ENC(b1),ENC(b2)) =

ENC(a1 + b1),ENC(a2 + b2)
(3.11)

Hence, EC-ElGamal and our pairing-based re-encryption remain
additive homomorphic.

Note while configuring the CRT in EC-ElGamal, we make a space-
computation trade-off, such that we access a larger ciphertext size
due to the remainders in favor of efficient decryption. One essential
configuration parameter to consider is the number of homomorphic
additions to be expected. In the plaintext domain, a 32-bit integer
addition can result in overflow. However, in the ciphertext domain,
the homomorphically added final value can grow over 32-bits, rending
the decryption very expensive. The lack of module or overflow in the
ciphertext domain is a limitation. With CRT, the remainders represent
a 32-bit integer value within two modulo 17-bit prime values. The
encrypted congruences can similarly grow with homomorphic additions
to exceed the corresponding prime modulus. For instance, with
a high number of homomorphic additions, an encrypted remainder
can grow significantly larger than 17-bit, becoming too expensive to
decrypt (see Figure 3.6). One possible way to support a higher number
of homomorphic additions is to select more congruences. For instance
for 32-bit integers, instead of the default two 17-bit congruences, we
could use four 9-bit congruences, leaving enough space for the individual
congruences to grow with each homomorphic addition.

3.5.3 Key Revocation
To authorize data sharing, a data owner issues a cryptographic token,
used by the cloud to re-encrypt users data towards the destination
user. We address here the challenge of terminating such a data sharing,
cryptographically.

Key Update. In Pilatus, when users decide to revoke a data sharing,
they simply begin using new keys for new data. This renders previously
issued tokens obsolete and prevents new ciphertexts cryptographically
from being re-encrypted with the old token. Once new keys are in place,
valid sharing relationships are updated with new tokens such that the
sharing flow can be maintained. We discuss in Section 3.5.4 in more
details how the data sharing authorization works with regards to joining
and leaving groups. Note that a key revocation event can as well occur,
when the encryption key of the user is compromised.
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Figure 3.8: Data revocation (in situ re-keying). Alice builds a token from both
her old and new private keys (none of which is leaked). The cloud uses the token
to re-key Alice’s data, such that they can now be decrypted with the new key.
Alice can re-key multiple times and apply re-encryption to re-keyed data.

We consider two cases for the key update: malicious cloud and semi-
honest cloud. In the former case, we leave old data protected with old
keys. We consider such old data to be in the wild, since already shared
and possibly cached at sharing parties. However, in the latter case, it is
desirable to update the encryption keys of the old data to the latest keys,
for consistent access. Hence, it is important to devise a secure solution
that allows the semi-honest cloud to perform the re-keying without access
to any private key.

In Situ Re-keying. To construct our re-keying mechanism, we leverage
the fact that user Alice has access to both old and new private keys (a and
a′, respectively), neither of which is disclosed to any party4. Hence, at the
time of re-keying, the private keys of Alice are not compromised.

The re-keying (see Figure 3.8) is carried out on data, at the cloud, prior
to sharing (i.e., ciphertexts in level-1, as represented in Equation 3.4). To
this end, Alice issues a key-update token δ = a′/a and the cloud performs
the re-keying as follows (only the second component of the ciphertext is
adjusted):

Ca′ = (C1, δC2) = (C1, ra′G) (3.12)

After re-keying, all ciphertexts on the cloud are encrypted with the
latest key a′. Note that re-keying, unlike re-encryption, is transitive, i.e.,
the re-keying can be applied multiple times to the same item. The scheme
would, however, be poorly suited for sharing, as it requires both the
source and target private keys.

Note that since both old and new keys are only known to Alice,

4Note that in contrast to key homomorphic PRFs (i.e., Pseudo Random
Functions) [234], where a symmetric key is shared between parties, our re-keying scheme
is key-private.
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(IDinitiator@group, Pkinitiator)signed-by-IDP 

(IDuser-1@group, Pkuser-1)signed-by-initiator (IDuser-2@group, Pkuser-2)signed-by-initiator 

(IDuser-3@group, Pkuser_3)signed-by-user-1  (IDuser_4@group, Pkuser_4)signed-by-user-1 …

Figure 3.9: Access graph for group membership.

a curious cloud cannot learn anything about the private keys from δ.
However, a malicious cloud could use the reverse of the key-update token
(i.e., a/a′) and downgrade ciphertexts encrypted under newest keys to old
keys. This is why we only enable re-keying in case a semi-honest cloud
or a trusted proxy is present.

3.5.4 Group Sharing Authorization
Data in Pilatus can be shared either directly with a user or a group.
We describe a simple sharing authorization mechanism for group-related
operations. The construction of the authorization is crucial as it ensures
that a joining group member (i) issues the re-encryption token for the
authentic group; and (ii) retrieves the correct group key. These two aspects
are related, since the correct group key is necessary for the process of
generating the re-encryption token.

Access Graphs. In our construction, we leverage access graphs, which
are similar to certification paths in the public key infrastructure, in
combination with our re-encryption scheme. We form an access graph
for each group. The root node holds the initiator’s ID concatenated with
the group identity (e.g., “runners") and the public key of the initiator,
as depicted in Figure 3.9. The joining members of the group compose
the access graph nodes. Each node, except for the root, is signed by the
immediate parent node. The root is signed by the IDP. The access graph
allows group members to vouch for the membership of other members.

Joining. Group membership is authorized by a group member in two
steps: (i) signing the extended identity (i.e., ID@group name) and the
public key of the new member, e.g., Alice, (after verifying the key
correctness over the IDP); and (ii) issuing a re-encryption Tokeng→a which
is then stored in the cloud. After joining the group, Alice provides the
re-encryption Tokena→g, required for sharing with the group. To issue this
re-encryption token and later be able to access (i.e., decrypt) group data,
Alice needs the public (PKg) and private (SKg) keys of the target group.
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This information is stored signed and partly encrypted on the cloud:

(IDg,PKg,ENCg(SKg))signed−by−initiator

Note that the initiator’s signature on the key information prevents
a malicious entity in deceiving Alice into issuing a token for a fake
group with the same name. Currently, group members are authorized
to add new members. We can restrict this authority to the initiator only
by encrypting the group’s private key with the initiator’s key. A new
member would require the initiator’s authorization which is expressed in
the Tokeninitiator→a to access the group key.

Leaving. To leave a group, Alice initiates our revocation procedure (c.f.
Section 3.5.3). After revocation, new coming data is encrypted with new
keys and can no longer be transformed with the expired Tokena→g. Her
previous data, however, remains in the wild and can still be accessed by
the group members, unless Alice decides to trigger our in-situ re-keying
feature. Note that disclosure of the group’s secret key SKg and Alice’s
Tokena→g does not expose Alice’s private key.

3.5.5 Security Analysis

Our main security goals are to defy passive attacks targeted at data on the
cloud as well as to prevent access of unauthorized users (see Section 3.2).
Pilatus achieves these goals such that data on the cloud remains strongly
encrypted (i.e., semantic security) at all times. The cloud never gains
access to any decryption keys. We rely on the IDP to prevent fake user
creations.

To protect the data from unauthorized access, we cryptographically
restrict data access to users with decryption keys (i.e., either individual or
group keys). With the re-encryption token, the cloud can only re-encrypt
the stored data towards the authorized group/service. Moreover, we
prevent a malicious cloud from performing unauthorized re-encryptions
towards a malicious user (thanks to the one-hop property of the re-
encryption scheme).

The disclosure of group keys does not affect the security of the
corresponding private keys of the group members. This is because our
underlying re-encryption scheme is key-private. After such an incident,
members can perform a revocation to terminate the data transformation
into group data. Our in situ key-update technique assumes a semi-honest
cloud. In other cases, re-keying can either be disabled or delegated to a
trusted proxy.
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Cryptosystem
Setup time [ms]

80-bit sec. 128-bit sec.

Paillier 1623 42190
Standard 0.28 0.61
Sharing: Key setup 4.15 6.72
Sharing: Token gen. 2.5 4.7

Table 3.1: Average setup time on Nexus 5 for 80-bit and 128-bit security levels.

3.6 Implementation
We implemented a prototype of Pilatus for mobile platforms (user/client
devices) and the cloud (structured data storage). The client engine
(Android) consists of a REST client for interactions with the cloud.
Application developers can use the Pilatus API which internally calls
their previously defined SQL procedures. The client engine handles data
encryption before performing requests and decryption after retrieving
the data from an API call. The client engine parses the query (i.e., JSQL
parser), checks if the operations are valid, encrypts the query, and sends
it to the cloud.

For the EC-ElGamal encryption, we utilize the ECC module of the
OpenSSL library (v1.1.0). We implemented the data sharing components
(i.e., re-encryption) based on the RELIC toolkit [9, 10]. We support 80-bit
and 128-bit security levels. Our BSGS algorithm implementation relies
on hash-map (i.e., klib library) for the look-up table.

The cloud engine supports a MySQL database, for which we
implemented the corresponding User Defined Functions (UDF). We use
UDFs to replace the default routines with crypto-enabled ones, without
the need of recompiling the database. Incoming queries indicate the
UDF to be used, e.g., SELECT SUM_EC_ELGAMAL(column-x) FROM table-y,
where the standard SUM is replaced with the dedicated homomorphic
addition sum for EC-ElGamal. Moreover, the cloud engine is equipped
with a REST engine (i.e., Restlet library).

The implementation of Pilatus consists of 2000 sloc of C/C++,
10000 sloc of Java, and another 4000 sloc for testing, setup scripts,
and benchmarking. Our prototype Android applications Fitbit and Ava
consist of 2400 and 2500 sloc, respectively.

Example Applications. To show the feasibility of Pilatus and evaluate its
end-to-end performance, we developed two example mobile applications
that integrate Pilatus, where the cloud components are hosted on
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Amazon’s cloud services. Our Android activity tracking app operates
on data collected by our personal Fitbit device. It fetches the data from
Fitbit servers and stores it encrypted in our cloud instance. For our Ava
fertility tracking app, we received anonymized data from the Avawomen
startup [14]. In both apps, the users can interact with the data similar
to the original apps. Our applications do not cache any data locally
which allows us to study the worst-case performance while interacting
with remote data. The cloud and the client communicate over HTTPS
and data is encoded in JSON format, as a compact data representation
form. For authentication, we rely on the OpenID Connect [153], where
we currently support Google accounts [94] as a proof-of-concept.

Constrained IoT Devices. We implemented a prototype of Pilatus
for more constrained IoT devices, where the client-engine only
accommodates the encryption logic in the standard mode. We based our
implementation on Contiki [61], an open-source low-power operating
system for IoT devices. For cryptographic processing, we utilize both
software libraries (i.e., RELIC toolkit [9]) and the hardware crypto
accelerator.

3.7 Evaluation

This section presents a thorough evaluation of Pilatus, both on the cloud
and on client sides (mobile device and, to a lesser extent, constrained IoT
device).

Evaluation Setup. Our evaluation setup consists of the client engine
running on a smartphone and the cloud engine running at Amazon cloud
services (AWS). We use an LG Nexus 5, equipped with a 2.3 GHz quad-
core 64-bit processor and 2 GB RAM, running Android 5.1.1. Our AWS
account provides 25 GB of storage and one instance of Intel Xeon 3.3 GHz
CPUs with 1 GB RAM. For micro-benchmarks of homomorphic addition,
we additionally use a MacBook Pro equipped with 2.2 GHz Intel Core i7
and 8 GB of RAM.

For the client engine, we also present results on constrained IoT
devices with our Contiki implementation. We select OpenMotes as the
hardware platform, which utilize the same class of MCU as popular
activity trackers such as Fitbit. OpenMotes are based on the TI CC2538
microcontroller [229], i.e., 32-bit ARM Cortex-M3 SoC at 32 MHz, with a
public-key crypto accelerator running up to 250 MHz. They are equipped
with IEEE 802.15.4-compliant RF transceivers, 32 kB of RAM and 512 kB
of ROM.
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Figure 3.10: On-device Standard Mode evaluation. Compares Paillier (utilized
in CryptDB) with our optimized EC-ElGamal. With the CRT technique, our
standard mode can differentiate between different input lengths.
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Metrics. We rely on the following metrics to report on the overheads and
performance of Pilatus:

• Computation time indicates the CPU time required to perform a
certain operation. The computation time has a direct impact on the
application delay and energy consumption of mobile platforms.

• Ciphertext size is an important metric considering network
bandwidth. It measures the impact of Pilatus on the communication
requirements.

• System throughput is the rate of operations on encrypted data
performed in the cloud.

• Application latency reflects the time from a client initiating a query
to the client receiving and decrypting the results. It accounts for
query processing at the client side, plus network latency and cloud
processing time.

In the next sections, we continue with discussing the results of the
system components benchmark and then elaborate on the end-to-end
evaluation results. Table 3.2 summarizes the evaluation results.

3.7.0.1 Standard Mode

In the standard mode, we utilize EC-ElGamal to process data encrypted
under a single key (no data sharing). While the focus of our benchmark
is on EC-ElGamal’s performance, we also compare it to the more
conventional Paillier cryptosystem, used for instance in CryptDB [184].

Key Generation. Table 3.1 shows the average setup time on the Nexus 5
device. EC-ElGamal requires less than 0.3 ms to generate keying material
with 80-bit security. This is significantly lower than the 1623 ms required
for Paillier, even though our key generation additionally includes finding
the corresponding primes for the congruences in the CRT. Anyhow,
key generation does not frequently occur, compared to encryption and
decryption, detailed next.

Ciphertext Size. Figure 3.10(a) shows the ciphertext sizes for different
integer sizes and security levels. In the standard mode, we support 16,
32 and 64-bit integers. Each integer size requires a different number of
congruences, leading to a ciphertext size between 42 and 126 bytes in the
80-bit security case. In contrast, Paillier requires 256 bytes, regardless
of the integer size. The difference is even more pronounced as the
security level increases, negatively impacting network bandwidth and
cloud storage.
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Encryption/Decryption. Figure 3.10(b) shows the encryption and
decryption time with EC-ElGamal vs. Pailler, for different integer sizes,
with both 80-bit and 128-bit security. Paillier has constant computation
times due to its large padding, while EC-ElGamal sees its performance
increase for smaller plaintext. EC-ElGamal outperforms Paillier for
encryption with a factor of 3 and more. For decryption, EC-ElGamal is
the fastest in all settings but the case of 80-bit security and 64-bit integers.
Paillier’s sharp decrease in performance with 128-bit security is due to
larger key sizes (from 1024 to 3072-bit) and the resulting big number
operations.

Figure 3.10(c) shows the batch decryption time at the mobile device.
Even for 64-bit integers, hundreds of items can be decrypted in some
hundred milliseconds. This is an important factor for the responsiveness
of smartphone applications.

Note that the good performance of EC-ElGamal is to a large part
due to our CRT optimization, as discussed in Section 3.5.2. Moreover,
the benefits of an efficient encryption are particularly important in an
IoT context, since IoT applications tend to encrypt more data items than
they decrypt (all measurements are stored in the cloud, only a subset or
aggregates are accessed for display).

Homomorphic Addition. We measure the homomorphic addition in
isolation on a MacBook Pro, thus exclude the bootstrapping overhead of
the database’s UDF. The homomorphic addition in the standard mode
requires between 27 and 82 µs for 16 and 64-bit integers, respectively
(see Table 3.2). This is higher than Paillier (8 µs), which is mainly due
to the underlying structure of EC-ElGamal where the ciphertext consists
of two EC points. Note that parallelizing the homomorphic addition on
the cloud would potentially result in considerable performance gain. In
Section 3.7.1, we discuss the impact of this overhead on sum queries.

3.7.0.2 Data Sharing Mode

We evaluate the data sharing mode, where the client encrypts data and
issues a token such that the cloud can re-encrypt a ciphertext to the target
user or group. The key setup is with 4 ms similarly efficient to EC-ElGamal
(see Table 3.1).

Ciphertext Size. Note that we use the same number of congruences as
in standard mode. Since our re-encryption scheme is based on bilinear
maps, we have to select the parameters such that we achieve at least
80-bit (i.e., subgroup size 160 and extension field size 1024) or 128-bit
security. This results in larger ciphertext sizes compared to standard
mode (i.e., between 186 and 558 bytes as depicted in Figure 3.11(a)).
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This is four times larger than in standard mode, but still comparable with
Paillier. After sharing (i.e., re-encryption) the ciphertext sizes expand by
a factor of 1.7 due to pairing.

Encryption/Decryption. Figure 3.11(b) shows the performance of
encryption and decryption in the sharing mode, for different integer sizes
and security levels. Overall, the sharing mode is slower than standard
mode by a factor of 2.2 to 3.3, but remains within acceptable bounds, that
is, below 30 ms.

Note that this overhead is, to some extent, offset by the performance
gains of offloading the re-encryption operation to the cloud. To enable
sharing, the client only needs to generate a token (takes 2.5 ms) and
then encrypt the data in sharing mode. As depicted in Figure 3.11(c),
a client can issue a few hundred re-encryption tokens within 500 ms.
Issuing a large number of re-encryption tokens becomes relevant after
access revocation, as discussed in Section 3.5.4. The performance of
re-encryption at the cloud is evaluated in Section 3.7.1.

Homomorphic Addition. The homomorphic addition with the data
sharing mode is more efficient than the standard mode. Note that with
data sharing, we have two types of additions: prior share and post share,
which amount to 31 and 15 µs per CRT, respectively (see Table 3.2).

3.7.0.3 Constrained IoT Devices.

We now turn our attention to constrained IoT devices and evaluate
encryption performance with the OpenMote’s hardware accelerator. For
the time and energy measurements, we rely on a dedicated hardware
timer with an accuracy of 1 µs and a mixed signal oscilloscope,
respectively. Paillier in 80-bit security requires 1.8 s to encrypt a 16-
bit value. The same encryption with EC-ElGamal is significantly more
efficient with 126 ms (corresponds to 6.85 mJ). Table 3.2 compares the
results of constrained devices to smartphones. Although the encryption
time on constrained devices is more than one order of magnitude higher
than encryption on the more powerful IoT gateways, it is still feasible with
only 10% of the daily energy budget of a typical Fitbit (400 mAh lithium-
polymer battery) to encrypt at a rate of 0.24 Hz. To put this number
into context, assuming heart rate tracking at 1 Hz during sport and six
times per hour otherwise5, we can encrypt the heart-rate of a person with
6 hours of sports activity per day.

5Microsoft Band: http://www.windowscentral.com/how-often-microsoft-band-
checks-your-heart-rate

http://www.windowscentral.com/how-often-microsoft-band-checks-your-heart-rate
http://www.windowscentral.com/how-often-microsoft-band-checks-your-heart-rate
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Figure 3.11: On-device Data Sharing evaluation. The Client engine performs
encryptions and decryptions of data. After revocation, new re-encryption tokens
are issued for valid sharing relationships. Note batch encryption/decryption with
multithreading (e.g., 4 threads) yields a factor of 3 performance improvement,
e.g., decryption of 64-bit integers is reduced to 5.5 and 10 ms, for 80-bit and
128-bit security, respectively.

3.7.1 System Benchmark

This section evaluates Pilatus as a full system: processing throughput,
end-to-end latency, and our two case study applications: Fitbit and Ava.

Methodology. We utilize our client and cloud engines for the system
benchmark. The client engine has an average ping time to the Amazon
cloud of 22 ms, or it can be co-located at the cloud, neglecting network
latency in favor of more isolated throughput measurements. Similar
to micro-benchmarks, we rely on the Stopwatch class for the time
measurements, instrumented at the client engine. To compute the
system’s throughput at the cloud engine, we initiate SQL sum queries
over a varying number of values from our client module. For the end-to-
end evaluation, the ciphertexts are additionally decrypted and provided
to the corresponding application.

Encrypted Query Processing. Figure 3.12(a) and Figure 3.12(b) depict
the performance of the cloud engine on AWS when performing sum SQL
queries, over either plaintext or encrypted data. We create queries with
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variable lengths (i.e., summands) and measure the time to process each,
and compute the average system throughput of the cloud engine for a
single connection. In Figure 3.12(a), we initiate the requests locally from
the cloud (no network latency) and in Figure 3.12(b) from the client engine
over the Internet.

Without consideration of network communication, plaintext sum
operations are about two orders of magnitude faster than the homo-
morphically encrypted sums. With network communication, the relative
performance loss is lower, in particular when only a few items are added
and network delay is the bottleneck. However, the larger the number
of items, the more the overhead of homomorphic additions impacts the
performance, e.g., with 1000 values to be added, the performance loss
reaches a factor 2.7. Note that such queries are highly parallelizable,
allowing for better performance; plaintext operations already benefit from
parallelization. Our current evaluation results show the lower bound
performance and in future work, we plan to parallelize our routines at
the database.

For data sharing, the computations take place offline in the cloud,
without user interaction. The throughput of re-encryptions per data item
amounts to 1136 re-encryptions per second, with a single thread (see
Figure 3.12(a)). Note that re-encryption is the most expensive operation
as it involves expensive pairing. The re-encryptions should also be
parallelized in the cloud to reach the best performance.

End-to-end Latency. Figure 3.12(c) depicts the end-to-end latency for
varying sum queries. The latency values follow a similar trend as the
throughput values, as depicted in Figure 3.12(b). For lower range sum
queries, the average performance of data sharing and standard mode are
close to queries over plaintext. For larger ranges, the average latency
increases by a factor of 2 and 2.7, respectively. To guarantee a smooth
user interaction with encrypted data, the latency should be below 1 s,
which is the case even for larger ranges (i.e., below 50 ms for 1000 items).

Applications. Our two Android applicationsrun Pilatus on real-world
collected data and allow the user to upload encrypted data and interact
with them similarly to the original apps (see Table 3.4). Our FitBit app
adds an overhead of 1.3 s for uploading data of one day – an operation that
takes place in the background. While rendering different views of the app
(e.g., daily, weekly, detailed graphs), we measure a maximum overhead
of 32 ms due to decryptions. Note that we use no local caching to emulate
worst case scenarios. Our Ava fertility tracking app collects data from a
more diverse set of sensors at a higher granularity during sleep and hence
produces more data points. Additionally, we discuss the numbers in the
context of the more expensive data sharing mode. Our Ava app induces
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Figure 3.12: Cloud evaluation of Standard Mode and Data Sharing, with our
cloud engine running on Amazon, with 80-bit security. Pre- and post-sharing
sum refer to sum queries before and after sharing.

an overhead of 31 s for uploading one day worth of data. For rendering
different views after sharing, the maximum overhead is 127 ms. For both
apps, the overhead due to decryption is well below the 1 s requirement.
Hence, the user experience with Pilatus remains unaltered.
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App (mode)
Upload (encrypt) View (decrypt)

[s] [# items] [ms] [# items]

Fitbit (Standard) 1.3 1500 30 50
Ava (Sharing) 31 9000 127 50

Table 3.4: Fitbit and Ava enhanced with Pilatus. Encryption overhead when
uploading one day worth of data and decryption overhead at visualization for
the most costly view. Security is set to 80-bit, all data items are 32-bit values, and
multithreading enabled.

Conclusion. Our evaluation shows the practicability of Pilatus, especially
for mobile platforms which play a vital role in the IoT ecosystem (i.e., as
the gateways). The end-to-end latency results show that Pilatus succeeds
in preserving the user experience while interacting with encrypted data.
Pilatus induces a moderate overhead for an increased level of data privacy
and security.

3.8 Related Work
In the following, we discuss important research directions in relation to
Pilatus.

Encrypted Search. Recent advancements of fully homomorphic
encryption [83] have resulted into implementable schemes [84, 45, 204],
which are however presently too slow for real world applications.
Searchable encryption schemes support only a limited set of operations,
but can be efficiently used in specialized domains. Song et al. [223]
introduced the first encrypted search scheme for text files, where the
metadata is encrypted deterministically and hence searchable. Their
idea is based on deterministically encrypting the meta information of
files, and hence being able to search over them. Follow-up schemes
address other problems such as encrypted data de-duplication [132], deep
packet inspection [218], and private network function virtualization [12].
More capable search schemes [184, 213, 219, 38, 199, 204, 198], targeted
for structured databases, employ additional techniques such as partially
homomorphic and order-preserving encryptions. Among these, CryptDB
has early adopters in industry [162, 93]. Monomi [231] improves the
performance of CryptDB and extends supported queries. In CryptDB,
the application server has access to keys and carries out en-/decryptions.
Hence, it can leak information if compromised. Talos [213, 206] tailors
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CryptDB for IoT devices and eliminates the need to trust the application
server. Mylar [185] introduces encrypted text file search with multiple
keys. Shi et al. [220] propose private aggregation for time series data,
which blends secret sharing with homomorphic encryption. Access
patterns to encrypted data still leak sensitive information about the
plaintext data. This shortcoming can be addressed with Oblivious RAM
approaches [195, 227]. Pilatus is the first practical system to support
processing of multi-key encrypted data and is tailored for constrained
devices. This opens practical encrypted data processing to a new space
of applications that existing systems do not support.

MPC. In traditional Secure Multi-Party Computation (MPC) [238], private
functions are computed among a set of users without a trusted party.
Hereby individual values from participating users are kept confidential,
while the outcome can be public. This requires high interaction between
users, which would drain the limited resources of mobile platforms. With
the rise of cloud computing, server-aided/outsourced MPC approaches
have emerged. However, these schemes are either only of theoretical
interest [154] or require at least two non-colluding servers, where for
instance one server has only access to encrypted data and the other server
has access to the keys [233, 182, 175].

Trusted Computing. An orthogonal approach to encrypted computing
assumes a trusted computing module on an untrusted cloud envi-
ronment [21, 160, 17]. The data remains encrypted at rest and is
decrypted in the trusted module for computations. This approach
is appealing to data center operators, due to control over hardware.
However, it implies that users consider the trusted computing module
trustworthy. Autocrypt [230] combines PHE and trusted computing to
enable encrypted computing on sensitive Web data on virtual machines.

Re-Encryption. The idea of Re-Encryption (RE) has been initially
proposed for email forwarding. The initial schemes [32, 125] have
the bi-directional property and are not resistant against collusion.
Moreover, the parties need to exchange their private keys. The later
schemes [13, 98] address these weaknesses and are uni-directional and
non-interactive. Pilatus utilizes the RE scheme by Ateniese et al. [13]
to allow transformation of encrypted data for data sharing. More
importantly, we extend this scheme with the CRT technique, to render
it efficient. The symmetric-key RE based on the key-homomorphic PRF
scheme [40] lacks our required homomorphic property and master-secret
secrecy. Sieve [234] utilizes this key-homomorphic scheme to provide
cryptographically enforced access control for cloud data. Sieve’s key
revocation assumes that the cloud does not yield access to compromised
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shared keys. Otherwise, the new key will be automatically compromised
as the cloud can use the old key to compute the new key from the re-
keying delta. In Pilatus, even with access to the revoked key of Bob and
re-keying delta, the cloud cannot learn the new key of Alice.

3.9 Conclusion
We presented Pilatus, a new practical system tailored for the IoT
ecosystem. We empower the user with full control over their data, despite
it being stored in third-party clouds. In Pilatus, the cloud does not have
access to any secret keys and stores only encrypted data. It can though
process queries on encrypted data and re-encrypt it for sharing. Our
sharing scheme comes with cryptographic guarantees and the possibility
of revocation. We have optimized the underlying cryptographic
operations towards mobile platforms. Our implementation and case
studies on Fitbit and Ava show that Pilatus has reasonable overhead
in processing time and end-to-end latency. We anticipate the presented
cryptosystem and open-source platform to be helpful for the design of
secure mobile applications and to enable further research in this field.



4
Droplet

This chapter presents Droplet, a decentralized data access control service,
which operates without intermediate trust entities. Droplet enables data
owners to securely and selectively share their data, while guaranteeing
data confidentiality against unauthorized parties. Droplet handles time-
series data, and features a cryptographically-enforced fine-grained and
scalable access control for encrypted data streams. In this chapter, we
present Droplet’s design, the reference implementation of Droplet, and
experimental results of three case-study applications on top of Droplet:
Fitbit activity tracker, Ava health tracker, and ECOviz smart meter
dashboard.

4.1 Introduction
Billions of Internet-enabled things contribute relentlessly to a new data
deluge that needs to be managed, processed, and adequately secured to
realize the full potential of the Internet of Things (IoT). IoT systems are
commonly comprised of decentralized and collaborative entities. These
include heterogeneous IoT devices (i.e., data sources), infrastructure
entities (e.g., storage), and various services that exploit the sensor data.
Often, these entities span across different protection domains, execution
environments, and communication channels. Hence, security and access
control are of critical concern, particularly as data in this space is
inherently privacy-sensitive. In today’s IoT development, user data
is often scattered across multiple storage silos whose access control is
governed by corresponding applications. This leaves data owners with
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little control over their data; users basically lack the ultimate authority to
determine how and with whom their data is shared. This chapter focuses
on providing users with control over their data in decentralized settings.

State-of-the-art distributed access control mechanisms, such as
OAuth2 [153] and Macaroons [31], require central trusted parties to issue
and verify access tokens. Users have no choice but to rely on a third party’s
promises of security and privacy protection. Trusted third parties are,
however, inherently prone to compromise [30], misconduct [59, 29, 23],
collusion/corruption [241], and coercion (e.g., susceptible to pressure
by autocratic institutions to violate user’s data privacy rights [164]).
Further, these schemes cannot enforce any cryptographic constraints for
data access, as they are decoupled from the underlying data protection.
Consequently, the user has no cryptographic guarantees that their data
will not be shared against their will, nor that the sharing relationship
will remain private. In this work, we realize a secure decentralized access
control scheme that diminishes the need for trusted third parties, supports
auditability, maintains the privacy of the sharing relationships, and more
importantly is cryptographically enforced.

To address these challenges, we introduce Droplet, a new secure
data access management system that we design for IoT time-series
data. In Droplet, we realize a cryptographically-enforced decentralized
access control service to empower the user with data ownership.
Droplet leverages the blockchain technology to bootstrap trust, for
a decentralized, secure, and resilient access control management.
Blockchains like Bitcoin [167] and Ethereum [70] and their respective
peer-to-peer networks have seen notable adoption in the last few years,
allowing the realization of powerful decentralized systems without
trusted intermediaries [5, 73, 188, 225, 178, 177], beyond cryptocurrencies.
Realizing Droplet requires overcoming the challenges of: (a) the
narrow bandwidth and privacy-transparency tension in blockchains, and
(b) designing a private access control service unified with crypto-enforced
data access to enable fine-grained sharing of data streams.

In Droplet, IoT devices produce streams of encrypted data without
directly handling the access permissions. Instead, data owners
register data streams and securely associate privacy-preserving access
permissions in the blockchain. Only the data owner can subsequently
adjust access permissions, i.e., grant access to new principals or
revoke existing access. Additionally, the integrity of data can be
protected via the blockchain (i.e., secure time-stamping), such that
even the data owner cannot later alter data (e.g., necessary in
contractual arbitration). Moreover, the cryptocurrency feature of
blockchains enables a self-sustained ecosystem with economic incentives
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(e.g., payment for storage [189]).
Public blockchains inherently exhibit a high overhead and low

capacity due to their consensus protocols. To overcome this limitation, we
place only the minimum necessary logic of our system in the blockchain,
via an indirection. Though chain writes are inherently slow, they are
not bound to time critical operations in Droplet. Only granting/revoking
access permissions and data timestamping require writing to the chain.
All other operations, such as data storage and retrieval, (i.e., write/read
operations), use only the read operation which is not subject to this
limitation. Note that in Droplet, data streams are stored off-chain,
similarly via an indirection. We construct our access control state machine
on top of a running blockchain, such that any node can independently
bootstrap the state in a decentralized manner and check the access
permissions.

Realizing privacy-preserving access permissions that protect the
privacy of sharing relations (i.e., who is granted access to what)
is an essential property of our access control system. This is,
however, particularly challenging in public blockchains, because of the
transparency of transactions. We overcome this challenge by employing
the cryptographic technique of dual-key stealth addresses [57], ensuring
unlinkability between the set of all principals.

Our system is designed from the ground up to support continuous
data streams. We encrypt chunked data streams at the application layer
on the client, and only authorized principals are cryptographically able
to access/decrypt the intended data chunks. We design a novel key
distribution and management scheme to enable efficient key updates and
fine-grained yet scalable sharing of both arbitrary ranges and open-ended
streams. Our design builds on key regression and hash trees via a layered
encryption technique.

The underlying physical storage is oblivious to our design and we
support various storage modalities. Droplet storage nodes can consist of
on-premise storage, locality-aware decentralized storage (e.g., IPFS [128]),
or the cloud. Storage nodes in Droplet act as primitive nodes, decoupled
from the data access control logic. Recent efforts explored the benefits of
this decoupling paradigm [234, 50, 217], which enables seamless interplay
of heterogeneous applications. This is particularly relevant for the IoT,
as heterogeneous services will integrate data from various sources (e.g.,
smart thermostats that sense thermal comfort from wearables [20]).

In Droplet, we build on research in time-series databases [147,
101, 75, 7], key management [78, 46], and recent blockchain-powered
efforts, e.g., in archiving files [236, 189] and domain name registries [5].
The contribution of this work is the design of Droplet, a novel



82 Chapter 4. Droplet

decentralized access control service for time-series data. More specifically,
our contribution consists of (i) a decentralized access control system
with privacy-preserving permissions, (ii) cryptographically secure data
sharing with fine-grained yet scalable access to encrypted data and the
possibility of access revocation, (iii) a flexible storage layer tailored for
time-series data with optional blockchain-based integrity protection. Our
work is the first to enable a (trustless) decentralized access control service
that works with encrypted data streams.

With a prototype implementation1 of Droplet on a public blockchain,
we quantify Droplet’s overhead and compare it to the state-of-the-art
systems. When deploying Droplet with Amazon’s S3 as a storage layer,
we experience a slowdown of only 3% in request throughput. Moreover,
we show the potential of Droplet as authorization service for the serverless
computing domain with an AWS Lambda-based prototype. We show
Droplet’s performance is within the range of the industry-standard
protocol for authorization (OAuth2). Also, we deploy Droplet with a
decentralized storage layer (similar to the peer-to-peer storage service
IPFS [128]). With our example apps on top of Droplet, we show that real-
world applications with unaltered user-experience can be developed.

Droplet comes with certain limitations that we hope to address
collectively within the research community and future work. For instance,
the time until access permissions come into effect is bound by the
transaction time of the underlying blockchain. We give an overview
of various state-of-the-art blockchain solutions that Droplet can utilize.
However, we acknowledge that addressing the scalability issues of
blockchains is a prominent challenge that has a direct impact on systems
like Droplet, requiring further research.

This chapter is based on the contributions made in [207].

4.2 Overview
We discuss the design goals of our system, review relevant aspects of the
IoT, and give a primer on the blockchain technology. We conclude with a
discussion on the security guarantees and assumptions of Droplet.

4.2.1 Design Goals
Droplet’s primary goals are to retain users ownership and control
over their data in a trustless setting, as a means to achieve a
higher level of privacy and security compared to the state-of-the-art

1Droplet is available under https://github.com/dropletchain

https://github.com/dropletchain
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access control schemes. We define data ownership as having the
right and control over data, wherein the owner can define/restrict
access to their data, restrict the scope of data utility (e.g., sharing
aggregated/transformed/homomorphically-encrypted data, instead of
raw data), delegate these privileges, or give up ownership entirely. A
true realization of this definition requires work on two fronts: (i) privacy-
preserving computation (i.e., differential privacy and secure computation)
and (ii) decentralized access control without centralized trust entities, to
ensure private access to externally hosted data, with strong confidentiality
guarantees. In this work, we focus on the latter, specifically in the context
of time-series data. In the following, we briefly discuss limitations of
current solutions in facilitating ownership and make a case for Droplet.
Table 4.1 provides a qualitative overview of current approaches compared
to Droplet.

Distributed Access Control. Research in distributed authorization has
matured in the last decade with important prior work. The decentralized
authorization model of Droplet is a combination of these techniques with
a trust-less realization. Current distributed access control schemes, such
as OAuth2 [153], and Macaroons [31], rely on tokens issued by a trusted
intermediary serving as an identity provider. Users present these tokens
(i.e., credentials) to a gatekeeper of a resource, e.g., data. The gatekeeper
forwards the token to the issuer who in return confirms the validity of
the token or rejects it, if invalid. These schemes are reliant on trusted
authorities for token issuance and validation. Today only a handful of
centralized authorities control this space, e.g., Google, Facebook, and
Amazon, who as well learn about all the services a user calls on. This is,
however, undesirable and not aligned with our goal of diminishing the
role of trusted intermediaries. Moreover, these schemes come without
any cryptographic guarantees and lack built-in audibility features. These
systems, despite being architecturally decentralized, they are logically
centralized (in contrast to Droplet).

Though signature-based schemes (e.g., public-key based certifi-
cates [33, 66]) do not suffer from these limitations, they require a
centralized, hierarchical network of certification authorities (CA) to issue
certificates, which come with their weaknesses, as extensively studied by
prior work [158]. Alternative decentralized public-key based approaches,
e.g., SPKI/SDSI [66] and follow-up schemes [67], eliminate the need
for complex X.509 public key infrastructure and CAs. However, these
schemes are either based on the idea of local names and suitable for
deployments under a single administrative domain (e.g., smart home) or
build upon an organically growing trust model (i.e., Web of Trust [243]).
While the key idea of public-key based schemes underpins Droplet,
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we leverage a public blockchain to overcome the challenge of certificate-
chain discovery (Section 4.3.1.1). In Droplet, data owners directly issue
access permission rights (i.e., similar to signed certificates) for their data
streams, where the blockchain allows us to ensure the global ordering
and protect the integrity and authenticity of access permissions.

Crypto-enforced Data Access. To meet our design goals, our system
should ensure strong data protection using client-side encryption, to
avoid privacy risks due to: (i) Unauthorized trade with users data (e.g.,
targeted advertising). (ii) Access by rogue employees to users data
(i.e., insider attacks). (iii) Data leakage due to system compromise.
(iv) Collaboration/coercion with government agencies without user’s
consent. While cloud providers support various options of encryption for
data protection [100], they have access to the encryption keys, specifically
in encryption at rest.

Though client-side encryption provides a stronger level of protection,
it adds constraints on sharing. Data in this setting can only be shared
at a coarse-grained level. Various cryptographic schemes [36, 13] have
been introduced to overcome this limitation, among which attribute-
based encryption (ABE) [97, 234, 197, 96] offers the best expressiveness
in this space. At a high level, in ABE data is encrypted towards a
policy (i.e., associated with a set of attributes), and only those with the
secret keys satisfying the policy can decrypt the data. Several ABE-
based systems [234, 239] introduce crypto-based access control for remote
storage services. However, ABE suffers from expensive crypto operations
(due to the underlying pairing crypto), and the costs grow linearly
with the number of attributes, limiting the granularity of access due
to computational burdens [80, 3]. The overhead dominates even with
a hybrid encryption technique [234, 239], where large amounts of data
is encrypted with fast encryption and the rather small encryption keys
are encrypted with the expensive ABE, e.g., only two attributes result in
100 ms for enc/decryption on desktops and few seconds on low-power IoT
devices [235]. Hence, in Droplet, we opt to design a new crypto-enforced
data access mechanism that is tailored for the velocity of data streams and
supports scalable fine-grained sharing (Section 4.3.1.3).

4.2.2 Background

Internet of Things Data. The pre-dominant IoT system design consists of
the stove-piped architecture [240], where IoT devices are tightly coupled
with a specific application and stream their data directly to the cloud.
resulting in users data being scattered across multiple isolated storage
silos. Realizing the limitations of this design, i.e., latency, privacy,
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durability, interoperability, has led to the emergence of new design
paradigms, e.g., IoT edge computing [242, 55, 144] and designs that
decouple data storage and applications [234, 50, 217]. The collected
data typically consists of immutable time-series, i.e., append-only data
records, with a single writer and multiple readers. Time-series data is
deemed as the most pervasive type of data in the IoT space [7, 51, 122].
It is characterized as a sequence of data points (i.e., time-stamped
records), where time is a primary axis. Data in this space is inherently
privacy-sensitive, since it embodies multi-dimensional representations
of our immediate environment. Today, IoT services collect and control
sensitive data (e.g., health, home, car, agriculture, etc.) with little or
no transparency. Privacy and security concerns have been steadily rising,
notably for the IoT, due to the surge in data breaches [134, 18], misconduct
of service providers [59, 29], and surveillance [186, 23]. Enabling secure
and transparent sharing of the data is crucial to the success of the IoT.
This is specifically relevant for bilateral data sharing, which in contrast to
multilateral sharing (e.g., crowd-sourcing, model training), cannot benefit
from group privacy (e.g., differential privacy [68]).

Applications. In the following, we discuss two classes of IoT applications
to understand their requirements better. In Section 4.5, we evaluate
Droplet on top of these apps.
Quantified Self. Health and fitness applications are one of the prominent
domains in the IoT space. For example, Fitbit wristbands collect users’
heart rate, step counts, and location data. Similarly, certain health tracking
applications and wearables, such as Ava [14], allow women to track their
menstrual cycle, predict (in)fertile phases, and detect potential health
issues. Since privacy-sensitive information can be inferred from this data
(e.g., illness, lifestyle, or location), data security is of utmost importance
for these applications. Moreover, secure and transparent sharing plays an
essential role in unlocking the full potential of these applications. Users
should be in full control of their data and be able to securely share it with
experts (e.g., medical practitioners), analytical services, or just casually
with friends. We extend example Fitbit and Ava apps with Droplet and
show that the user experience remains unaltered.
Smart e-Metering Smart electricity meters are being deployed in millions
of households worldwide to collect fine-grained electricity consumption
data. Electricity providers utilize this data for load management and
billing purposes. Beyond enabling dynamic pricing policies, it enables
other interesting applications [140, 25, 221, 145]. In our analysis, we
consider a scenario where users utilize Droplet for storing fine-grained
electricity data generated by smart meters. Users can authorize sharing of,
e.g., daily aggregated energy consumption values with utility providers
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for billing. More specifically, our case study is on ECOviz, an interactive
dashboard app [139] to monitor and analyze home energy consumption.

Blockchain. Conceptually, blockchain is a technology that facilitates the
realization of distributed applications without the need for a centralized
trust, by distributing trust in the peer-to-peer network that spans it
(i.e., democratize trust). Cryptocurrencies [169], such as Bitcoin [167]
and Ethereum [70], leverage blockchains to enable mutually mistrusting
parties to trade, without requiring traditional trusted centralized
intermediaries. A blockchain is essentially a distributed ledger that
consists of a continuously growing set of records. Tampering with past
records is prevented with a high computational barrier. The distributed
nature of blockchains implies no single entity controls the ledger (i.e.,
censorship/coercion resistant), but rather the participating peers together
validate the authenticity and ordering of records. These records are
organized in blocks which are linked together using cryptographic hashes,
ensuring the ordering of the transactions. The blockchain incentivizes
the network of peers to carry out computations towards a network-wide
consensus, i.e., solving a computational intensive mathematical puzzle
referred to as proof-of-work (PoW).

Permissioned (closed) blockchains have a designated set of authorized
validators and use a variant of the practical Byzantine fault tolerance
(PBFT) [49] consensus, which tolerates a malicious behavior by f
validators among 3 f + 1. Since, the set of validator nodes is known,
PBFT can handle a higher transaction throughput compared to PoW
blockchains, i.e., 10 vs. 104 transactions per second. However, PBFT
has its limitations. Most importantly, it requires a trusted third party
to initially authorize the set of validators. Moreover, due to the high
communication overhead of the consensus protocol (in O(n2)), only
deployments with up to a few tens of validators are practical. Note
that given a modified trust assumption, permissioned blockchains can
also be leveraged in Droplet.

Blockchain Evolution. Permissionless (public) blockchains have to cope
with a dynamic set of membership, where anyone can join and leave at any
time. Hence, they leverage the expensive PoW to mitigate sybil attacks
which induces high overhead regarding throughput, latency, and energy
footprint. To understand the extent of this overhead, consider Bitcoin
as an example; which has currently a throughput of 7 transactions per
second with an average latency of 10 min and finality after 6 blocks [43].
Academia and industry are persistently working on designing next-
generation blockchains [87, 47, 72, 163, 143] to achieve higher throughputs
and lower latencies, which is crucial for the adoption of cryptocurrencies
in retail payments and financial sector, and for realizing practical large-
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scale decentralized applications. Recent works [142, 143] introduce a
hybrid consensus by combining the slow PoW to bootstrap the faster PBFT
algorithm, where for each epoch a random set of validators is selected.
Hence, they bring the best of both worlds: secure open enrollment and
high throughput and low latency. Other works [87] depart from PoW
completely and alternatively employ a publicly verifiable, unpredictable,
and deterministic source of randomness to select a dynamic set of
validators. These scalable blockchain protocols, e.g., OmniLedger [143],
lay the groundwork enabling practical advanced decentralized services,
such as Droplet.

4.2.3 Security Model

Threat model. The threat model addressed by Droplet consists of a
passive honest-but-curious adversary, who is interested in learning about
users data without necessarily being noticed (i.e., it follows the protocol
correctly without deviating from it). Our threat model covers malicious
storage nodes, potential real-world security vulnerabilities leading to data
leakages, and as well external adversaries who gain access to data as a
result of system compromise. Moreover, an adversary can launch a data
scraping attack against storage nodes.

Guarantees. Droplet provides users with autonomy and control over
their data. As depicted in Figure 4.1, after an initial pairing of the
IoT device’s public-key-based identity to that of the data owner via
the blockchain, the IoT device is authorized to store its data on the
storage provider directly, which can consist of on-premise, decentralized,
or cloud storage. Data is encrypted at the client-side and keys are
never revealed to the storage provider, guaranteeing confidentiality.
Decryption keys are only shared with authorized parties via a blockchain-
based indirection. Data chunks are digitally signed, allowing parties
without decryption keys to verify data ownership and integrity. Droplet
enables checking the freshness of data and it provides data immutability
optionally via an authenticated data structure anchored in the blockchain,
such that even the data owner can no longer modify past data. Droplet
cryptographically prevents evicted users from accessing future data.
However, evicted users may have cached old data locally. Moreover,
a new device owner will have no rights over past data. Droplet encodes
user-defined access permissions on the blockchain, eliminating trusted
intermediaries and assuring collusion-resistance and auditability. Even
malicious institutions cannot illegitimately modify access permissions.
Moreover, we employ privacy-preserving access permissions, preventing
an observer from learning the identities of the sharing parties.
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The combination of encryption-based and decentralized access control
mechanisms enable Droplet to address the above threat model. Droplet
does not protect against denial-of-service attacks nor does it hide
access patterns. It could be extended with ORAM techniques to hide
access patterns [127, 226]. Cryptographic techniques alone are not
sufficient to prevent a malicious storage provider from denial-of-service
or deconstruction of data. Hence, adequate replication strategies on
multiple providers are necessary to ensure preservation and availability
of data.

Assumptions. In Droplet, we make the following assumptions to provide
the above guarantees. We assume the storage nodes to be honest-but-
curious, such that they would follow the protocol correctly. This is a valid
assumption, since the storage node could face financial (and potentially
legal) consequences upon detection of misbehavior. We assume the
adversaries to be subject to the standard cryptographic hardness and
the underlying blockchain to be secure. We assume users store their
private keys securely and that multi-device key recovery techniques are
deployed [214]. We assume the correctness of data generated by IoT
devices and more importantly that only the owner has physical access to
the device. We assume that there exists a financial agreement between the
storage provider and data owner (i.e., to provide persistent storage) which
can be facilitated through the cryptocurrency feature of the underlying
blockchain.

4.3 Droplet Design
Our design considers the following main parties: Data owner is someone
who owns a set of IoT devices (e.g., wearables, appliances, or apps) which
produce time-series data. In an industrial setting, the data owner can be an
organization that owns a swarm of IoT devices. Data owners store data
generated by their devices online and can decide to selectively expose
their data to principals who can produce an added value from their data.
The storage provider is in charge of storing data and providing access
to principals as defined by the data owner. The storage node can take
various forms, such as edge (e.g., gateway), decentralized (e.g., a node in
a peer-to-peer storage service [128]), or cloud storage (e.g., Amazon’s S3).
The owners claim their ownership by binding their IoT devices to their
identity. The identity of a principal is established by verifying the validity
of the corresponding public-private key pair. A principal can be granted
access to arbitrary intervals of past data or a data stream subscription,
which is valid either temporarily or until revoked. Note that an owner
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can be represented by a single or subset of personal and trusted devices,
e.g., smartphone and tablet.

Droplet in a Nutshell. In Droplet, we decouple the control and data
planes, enabling data owners to express fine-grained access permissions
independent of a trusted intermediary (Section 4.3.1.1). During the initial
setup, the owner and the device share a master key out-of-band, which
is later used to generate data encryption keys (Section 4.3.1.3). In this
setup, the public key of the device is bound to the owner’s public key.
Thereafter, the device independently stores encrypted data in the data
plane. Droplet’s data plane is tailored for time-series data and provides
an adequate query interface (Section 4.3.2.1). We realize the control plane
with an access control state machine on top of a public and deployed
blockchain (Section 4.3.1.2). The access control state machine assembles
the current global state (i.e., access permissions and data ownership)
through embedded state transitions. The control plane serves as well as
a decentralized entry point to the storage layer.

Challenges. To realize Droplet, we have to overcome several technical
challenges; (i) Blockchain write operations are inherently slow and on-
blockchain memory is scarce and expensive. (ii) Transparency and
privacy are at odds in public blockchains, as any blockchain data is
accessible by the public, impacting the privacy of access permissions
in Droplet. (iii) A crypto-enforced data access implies access to data
authorized by encryption keys. For time-series data with continuous
data coming in, we have to design a low overhead and efficient key
management to enable a fine-grained and expressive access control
management. We now introduce and elaborate on different aspects of
Droplet and describe how we overcome the above challenges.

Without loss of generality, we begin with simplified descriptions of our
system components and gradually converge to the full system design.

4.3.1 Control Plane

In Droplet, the control plane is logically separated and agnostic of the
data plane. This separation is a fundamental property of our design. In
the following, we elaborate on the control plane components. We discuss
how we manage identities and access permissions. As the backbone of
our encryption-based data access, we present the design of an efficient
key-management scheme.
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4.3.1.1 Blockchain

We employ a publicly verifiable blockchain to maintain an accountable
distributed access control system and bootstrap trust in a network
without a central trust entity. The reasons why we opt to discard trusted
intermediaries and alternatively utilize blockchain for access control
are manifold: (i) resilience against centralized corruption/coercion,
(ii) identity management, specifically of relevance to the IoT, (iii) audibility
of access permissions by authorized parties, (iv) immutability of data
streams after a defined interval, (v) potential of nano-payments for storage
services and data market. Droplet embeds ownership of data streams
and corresponding access permissions in the blockchain transactions.
We now describe the owner-device pairing, blockchain encoded access
permissions, and how we protect the privacy of principals. We conclude
with our approach to overcome the narrow bandwidth of blockchains.

Owner-Device Pairing. The blockchain ecosystem relies on public
key cryptography for identification and authentication of the involved
principals. The hash digest of the public key serves as a unique pseudo-
identity in the network. We leverage this feature to allow IoT devices to
securely and autonomously interact with the access control and storage
layers. This way we overcome the hurdle of passwords and rely on public-
key crypto for authentication and authorization. During the bootstrap
phase of a new device, it creates locally a new pair of public-private keys,
where the private key is stored securely (e.g., in the trusted hardware) and
never leaves the device. Through an initial multisignature registration
transaction on the blockchain, Droplet allows the binding of the IoT
device (PKIoT, SKIoT) to the owner (PKOw, SKOw). Hereafter, the owner
can set access permissions (via the signing key SKOw) and the IoT device
is permitted to securely store data (via the signing key SKIoT).

In the event of device decommissioning, the new owner must issue
a new multisignature device-binding transaction, to gain ownership
rights of future data. Note that there is no need for the IoT device to
interact with the blockchain network directly. The owner creates the raw
multisignature registration transaction and uses an out-of-band channel
(e.g., BLE) to get the device’s signature. After adding her signature, she
broadcasts the register transaction to the blockchain network. During this
process, neither the owner’s nor the device’s private keys leave the secure
local memory area.

Access Permissions. We utilize the blockchain to store access permissions
in a secure, tamperproof, and time-ordered manner. Access permissions
are granted per data stream and the data owner can revoke the sharing of
a data stream. Initially, the data owner issues a transaction including the
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stream ID which creates the initial state. To change this state, e.g., grant
read access permissions to a principal, the data owner issues a subsequent
transaction which holds, among others, (i) the stream ID, (ii) the public
key of the principal they want to share their data with, (iii) the temporal
scope of access (e.g., intervals of past or open-end subscription), and
(iv) encrypted keying material for data decryption (Section 4.3.1.3).

For any request to store or retrieve data, the storage node retrieves
the access permissions from the blockchain in a decentralized manner.
The requesting party proves (i.e., in our case via a digital signature with
a freshness guarantee) that it is in possession of the correct private key.
The blockchain-based access permissions provide auditable information
about when access was granted for a stream and to whom. In the next
section, we discuss how we allow only authorized entities to perform
the audit. For the storage nodes, the access permissions allow them to
protect network resources (i.e., bandwidth/memory) from unauthorized
users. For instance, this mitigates an attack, where malicious nodes flood
the network with download/storage requests of large files. The storage
node can terminate malicious sessions (e.g., data scraping and storage
spamming attacks) after checking the access permissions (Section 4.3.1.2).
The impact of a malicious node handing out data without permission is
low, since data is additionally protected via encryption (Section 4.3.1.3).

Privacy-Preserving Sharing. In blockchain, users are represented
through virtual addresses, providing pseudonymity. However, advanced
clustering heuristics can potentially lead to the de-anonymization of
users [161, 8]. Access permissions in Droplet should be enforceable
by storage nodes and be auditable by authorized parties. However,
we want to protect the privacy of sharing relationships from the
network. To realize this, we leverage the technique of dual-key stealth
addresses [57] which builds on known crypto primitives (a modification
of the Diffie-Hellman protocol). Dual-key Stealth addresses do not
require off-blockchain communication (i.e., no out-of-band channel) and
provide strong anonymity for the principals that are granted access
permissions. Moreover, different streams shared with the same principal
are unlinkable. Conceptually, in dual-key stealth addresses, each user is
represented by two public keys (main and viewer keys), which are used
by other parties to generate unlinkable new addresses. The viewer key
can be shared with an auditor to audit the permissions. Note that we are
not protecting the identity of a principal from a storage provider.

More specifically, let us consider the case of a data owner Alice giving
access permission to a subscriber Bob. Bob has initially constructed and
published his dual public keys (B, V): B = bG and V = vG, with G as
the elliptic curve group generator and the private keys b and v. Alice
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constructs a new address P using Bob’s stealth addresses by using a
hashing function H, and generating a random salt r:

P = H(rV)G + B (4.1)

Alice embeds the tuple (P,R) in the access permissions, with R = rG (r
is protected and not recoverable from R). Only Bob can claim the address
P, as he is the only one capable of recovering the private key x, such that
P = xG, as follows:

x := H(vR) + b (4.2)

Hence, he can prove (e.g., with a signature) to the storage node
that he is the rightful principal. Note that guessing x, given G and P,
is equivalent to solving the elliptic curve discrete log problem, which
is computationally intractable for large integers. The correctness of x
from Equation 4.2 can be shown as:

xG = (H(vR) + b)G = H(vR)G + bG =

H(vrG)G + B = H(rvG)G + B = H(rV)G + B = P �
(4.3)

Except Alice and Bob no other party can learn that P is associated with
Bob’s stealth addresses. Moreover, the randomness r in the address
generation ensures the uniqueness and unlinkability of new addresses.
To enable an authorized auditor to audit the sharing, Bob discloses the
private viewer key v to the auditor. The auditor can verify the mapping
of the tuple (P,R) to Bob’s main key address B as:

P −H(vR)G = P −H(vrG)G =

H(rV)G + B −H(rV)G = B �
(4.4)

Note that the auditor is cryptographically prevented from using v to
compute Bob’s private key x. The auditor breaks the unlinkability of the
addresses linked to Bob for the auditing purpose.

ACL Indirections. Each change to the access permissions of a data stream
requires a new transaction. The time until a change comes into effect is
tied to the transaction waiting time of the underlying blockchain, ranging
from few seconds to minutes depending on the blockchain. Moreover,
transactions require a per-byte fee to ensure that they are added to the
blockchain. To keep the number/size of transactions as low as possible,
our design includes the off-chain storage of the access control list (ACL), as
illustrated in Figure 4.2. The transaction, instead of holding the address
information of all services, just includes an indirection to the ACL via
the hash digest of it. This allows managing access permissions with an
unlimited number of services in a single transaction. Similar to before, any
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Figure 4.2: Overview of access control transactions. Transactions embed
transitions to the global access control state via an indirection (i.e., hash to the
ACL). OPCode takes values for issuing a new stream, granting/revoking access,
changing chunk metadata, and terminating the stream sharing.

change to the ACL requires a new transaction. The hash digest serves
as a data pointer and more importantly ensures integrity protection of
the ACL. The ACL is stored off-chain in the storage network of Droplet
(Section 4.3.1.2). Note that the ACL includes as well the encrypted key
information for each service, as explained in Section 4.3.1.3.

4.3.1.2 Access Control State Machine

Today, there are three main options developers can take for realizing
decentralized applications that employ a blockchain as a ubiquitous trust
network (i.e., a shared ground truth): (i) operating a new blockchain,
(ii) piggybacking on an existing cryptocurrency blockchain, (iii) using
a blockchain with built-in scripting, such as Ethereum. We opt for the
second approach where we piggyback our logic without alternation of
the underlying blockchain. This allows us to benefit from the security
properties of an existing production blockchain and make our design
generic. We briefly discuss the reasons why we opt for this choice and
detail on how we realize this efficiently.

Integrating a new application logic into a running production
blockchain typically results in consensus-breaking changes and hard
forks, i.e., a new blockchain with a subset of peers enforcing the new
application logic. While necessary for specific applications, this results
in parallel blockchains which may not exhibit strong security properties
due to a smaller network of peers. To benefit from security properties
of a strong and robust production blockchain, new applications include
their log of state changes in transactions. This is in turn used to bootstrap
the global state in a secure and decentralized manner. While offering the
highest level of security, this approach requires addressing consistency
and efficiency challenges.
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We employ the approach of virtualchain [172] which addresses these
challenges adequately. A virtualchain is a fork*-consistent replicated
state machine, allowing different application logic to run on top of any
production blockchain, without breaking the consensus. One of the
most prominent systems utilizing virtualchains is Blockstack [5, 4], a
decentralized domain registration service. While the combination of
virtualchain and blockchain is comparable to Ethereum with its built-in
scripting language, we explicitly decide to make our design independent
of a specific blockchain, such that Droplet can be deployed on the most
secure and efficient blockchain of choice. The virtualchain instance
in Droplet creates a global state of access permissions based on the
blockchain’s totally-ordered and tamper-resistant transaction logs and
updates the state according to new state transitions. A virtualchain
instance essentially scans the blockchain for the corresponding access
permission transactions and maintains the global state in a database that
can be queried for access permissions of a given data stream and principal.
The virtualchain approach [172] introduces several improvements that
make maintaining the global state efficient and fast, such as automatic
fork-resolution, cross-chain migration, and fast bootstrap. Anyone can
run a virtualchain instance2, either as a storage node to lookup access
permissions or just to provide it as a service. The instances span among
each other a peer-to-peer storage network, which we employ to store part
of access control metadata, e.g., ACL and keying material. Due to the
public nature of blockchain, third party apps can be developed around
Droplet, e.g., allowing data owners to view/modify access permissions.

4.3.1.3 Key Management

In the following, we discuss how we realize an expressive and fine-
grained sharing. In Droplet we distinguish between three types of
sharing. (i) subscription, where the subscriber is granted continuous
access to the data stream until revoked (e.g., sharing of fitness tracker
data with an analytical service or friends), (ii) sharing arbitrary intervals
of past data (e.g., sharing the fitness data of only past marathons or
smart meter readings of past winters), and (iii) a combination of i and ii.
To meet our design objective of a fine-grained yet scalable encryption-based
access control, we design a low-overhead and efficient key management
scheme, with the constraints of IoT devices in mind.

Our design basically combines hash trees [46] and key regression [78]
and employs an efficient symmetric key encryption. While a hash
tree gives us the expressiveness of defining arbitrary intervals of keys,

2A virtualchain node can run either as a full node or in lightweight mode.
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it falls short meeting our low overhead requirement with regards to
subscriptions. Key regression [78] provides an efficient and low overhead
key management scheme for subscriptions, however, it does not support
sharing of arbitrary intervals. In the following sections, we describe the
components of our key management individually and gradually put them
together as a whole system. We first describe the basic key-regression
scheme combined with scalable key distribution. We then detail on how
we extend the basic key-regression to support bounded interval sharing.
Finally, we describe the integration of a hash tree to realize the maximum
level of expressiveness for sharing arbitrary intervals of past data (e.g.,
weekends in 2018). As our key management heavily relies on hash chains,
we later discuss how to construct compact chains for an efficient and fast
key rotation.

Scalable Subscriber Sharing In key regression, initially a hash chain
is created and later a secret key is derived from each hash token.
Given a hash token, one can derive all previous keys by applying
the cryptographic hash function successively. The pre-image resistance
property of hash functions ensures forward-secrecy, such that given the
current key (i.e., hash token) no future keys can be computed. However,
given key Kt in time t one can compute all keys until the initial key K0, i.e.,
∀i∈[0..t]Ki. This is, however, not always desirable. Before we discuss how
we enable bounded interval sharing, let us discuss the key distribution
aspect. For now, we assume our encryption keys are generated by key
regression and that the encryption key is rotated at a predefined time
epoch. The interval defines the granularity at which we can give access
to data. After each key update, only the new Kt+1 is shared with the
subscribers, allowing us to keep the number of keys to be managed at the
minimum. However, given s subscribers, this still incurs communication
and computation overheads in O(s): at each key update, the new key
must be shared s times after encrypting it with each subscriber’s public
key (PK): ENCPKi(Kt+1), i ∈ s.

To reduce this overhead, we distribute the latest data encryption key Kt

within a digitally signed and encrypted lockbox. Authorized subscribers
obtain a long-term distribution key KD to open the lockbox. When sharing
access to a data stream, we share the distribution key KD encrypted
for the new subscriber within the ACL (as depicted in Figure 4.2):
ENCPKi(KD||metadata), i ∈ s. Afterwards, each subscriber can use the
distribution key to get the latest encryption key: ENCKD(Kt||t), where
the counter t serves to identify the key. While the data encryption key
is frequently updated at a defined interval, the distribution key KD
is updated only in case of access revocations, as detailed later in this
section. Note that for performance optimization, the latest lockbox can
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Figure 4.3: Our dual key regression supports time-bounded sharing, via a
secondary hash chain. The gray elements depict the standard key regression
mechanism. Given current kc, one can compute all keys up to k0. Our scheme
allows the sharing of keys for a time-bounded interval via a secondary hash
chain.

by piggybacked to each data retrieval.

Revocation. Revocation can either take place implicitly, as the
permissions expire or explicitly, by the data owner issuing a new
transaction overwriting previous permissions. To revoke access to a
data stream, the data owner updates the distribution key and issues a
new transaction with a state transition that evicts the revoked service.
The transaction includes the new distribution key KD′ contained in
the encrypted key information per subscriber. Hereafter, the new
data encryption key Kt+1 is only available to the remaining authorized
subscribers, protected with the new distribution key: ENCKD′(Kt+1||t + 1).

With the newly issued blockchain transaction, the global access
permission state is updated. In our access control model, Droplet
cryptographically prevents any future access to new data by the evicted
subscriber. Revoking access to old data is however difficult, as the user
might have cached the data anyway. Nevertheless, in this case, the storage
nodes decline future access requests by the corresponding subscriber.

Time-bounded Subscription. A limitation of key-regression-based
sharing is that it enables sharing from the beginning until current time i
(i.e., all-or-nothing principle). We design a key management mechanism
that enables sharing in subscription mode with a defined lower time
bound, e.g., access to data of a particular stream from Jan’18 till revoked.
To realize this, we extend key regression with an additional hash chain
in the reverse order, to cryptographically enforce both boundaries of the
shared interval, as depicted in Figure 4.3. We refer to this scheme as dual
key regression.
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In the standard key-regression, hash tokens are consumed in the
reverse order of chain generation as input to a key derivation function
to derive the current key. Due to the pre-image resistance property of
hash functions, it is computationally hard to compute future tokens and
hence future keys (i.e., given token hi it is intractable to find token hi+1).
However, the reverse is performed efficiently, allowing the derivation
of past keys. We leverage this property of hash chains for defining the
beginning of an interval through a secondary hash chain in the reverse
order, as depicted in Figure 4.3.

In dual key regression, the key derivation function (KDF) takes an
additional hash token h′i to derive a key: KDF(hi||h′i) = Ki, where h′i comes
from a secondary hash chain as depicted in Figure 4.3. For instance, to
share a data stream from time ti to t j, the user provides the tokens h′i
and h j. Since it is infeasible to compute h j+1, no key posterior to k j can
be computed. Conversely, since it is infeasible to compute h′i−1, no key
prior to ki can be computed. With access to the two hash tokens (h j, h′i),
indicating the beginning and end of the shared interval, one can compute
all the encryption keys within this interval. Note that the time epoch of
key update defines the granularity of the interval sharing (e.g., hourly,
daily, or weekly).

For upcoming key updates, the lockbox still contains only the updated
token h j+1 from the main chain, while the individual secondary token h′i
for the start of the interval remains unchanged. A subscriber computes
the current key K j+1 given the current token h j+1 and the start token h′i as
follows:

KDF(h j+1||h′j+1) = K j+1,with H( j−i+1)(h′i) = h′j+1 (4.5)

with H as a hash function. The secondary token, indicating the start
of the interval is hence stored along the long-term key information per
reader in the ACL, as shown in Figure 4.2.

Compound Key Management. Our construction so far, while consistent
with our low overhead requirements, lacks in expressiveness for sharing
past data. For instance, dual key regression does not allow sharing of
multiple disjoint intervals within the same stream. We now explain the
role of binary hash trees (BHT) and describe our key management in its
entirety. A BHT is constructed top-down with an initial secret seed at
the root with a hash function Hl() and Hr(), for the left and right child
nodes, respectively. Each parent serves as input to the corresponding
hash function to compute the child node. BHTs are similar to hash chains
in that due to the preimage resistance of crypto hash functions, it is
computationally intractable to find the parent of a given child node, while
the reverse is efficiently computable.

In Droplet, we first construct a binary hash tree of depth d given a
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Figure 4.4: Droplet’s hybrid key management system supports sharing of both
arbitrary intervals and subscriptions. While DEKs are managed through the
binary hash tree structure, SEKs are managed through dual key regression.

seed as the root. We realize the two hash functions by concatenating 0 or
1 to the input for the left and right hash functions, respectively. The leaf
nodes deliver the encryption keys (via KDF), as depicted in the upper part
of Figure 4.4. To share any arbitrary interval, the data owner includes the
nodes necessary to compute the corresponding keys within the encrypted
key information of the ACL. Note that a hash-tree-based key management
is not suitable for subscriptions, as it requires managing per subscriber
state which is not inline with our low-overhead requirement concerning
distributing keys.

To overcome this challenge, we combine dual key regression with a
hash tree construction via a layered encryption technique. Conceptually,
we exploit the hash tree to allow arbitrary sharing of intervals and
the dual key regression to support sharing in subscription mode. The
layered encryption consists of three steps: (i) the hash tree delivers data
encryption keys DEKi which we use to encrypt data during the time epoch
i. (ii) the dual key regression delivers subscriber encryption keys SEKi

of the same epoch i. We use SEKi to encrypt the corresponding data
encryption key: ENCSEKi(DEKi). (iii) each encrypted data chunk holds the
encrypted DEK.

Note that we can give access to data encryption keys either via the
hash chain (arbitrary intervals) or dual key regression (subscription),
as depicted in Figure 4.4. To a subscriber, DEKs appear as random
encryption keys per epoch. For principals with access to past data, DEKs
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are the leaf nodes of the hash tree which they locally compute based on the
shared parent nodes of the corresponding subtrees. Note that a principal
can assume both roles, as illustrated in the example of Figure 4.4. In this
example, the data owner has granted the principal access to the intervals
t[0−3] and t[6−7], where access to the corresponding data encryption keys
is realized through the hash tree. Additionally, the principal is granted
access to a subscription from t12 which is realized over dual key regression.
We describe next how to handle long key chains efficiently.

Compact Hash Chains. Our key management scheme, specifically dual
key regression, relies heavily on hash chains. The underlying chains can
grow quickly due to frequent key updates. Hash chains are computed
based on a random secret seed. They can be either stored locally or re-
computed on demand for each key update. Due to memory-constraints
of IoT devices, a combination of re-computing on demand and storing a
segment of the hash chain is desirable, to achieve fast and efficient key
rotations. We leverage hierarchical hash chains [115] which maintain the
same security features as traditional hash chains but reduces the worst
case compute time from O(n) to O(

√
n) computation.

In a nutshell, we divide the hash chain into segments, enabling
efficient access (i.e., computation-wise) to individual segments. In this
construction, a main hash chain with

√
n nodes is first computed, as

illustrated in Figure 4.5. Each token of the main hash chain, marked as fi,
serves as a seed of a side chain. Each side chain is

√
n long. The tokens of

the side chain are used as input to the key regression. The advantage of
our construction is that the current side chain in use can be re-computed in
O(
√

n). For key regression, this comes at the cost of additionally sharing
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Figure 4.6: Data streams are chunked, compressed, and encrypted at defined
intervals. To lookup a record, the timestamp of the record is mapped to the
chunk identifier.

the seed of the last used side channel (the token from the main chain).
For instance, in the given example of Figure 4.5, the client starts with the
first side chain: tokens hmk+k up to hmk+1. Note that, as the case with hash
chains, we use them in the reverse order, such that given hi it is intractable
to find hi−1. After consuming all k tokens from the first side chain, we
switch to the next side chain h(m−1)k+k to h(m−1)k+1. From this point onwards,
the client shares fm from the main chain in addition to the current side
chain token. This allows the computation of already disclosed main chain
tokens, and hence all previously disclosed side chains (this corresponds
to computing old keys in key regression). In our evaluation discussions
in Section 4.5.1, we show how compact chains allow for a two-orders of
magnitude key rotation speed-up.

4.3.2 Data Plane
Droplet’s design is agnostic of the physical storage utilized in the data
plane. Data is however protected from storage services with client-side
encryption. The key management and data sharing model in Droplet are
tailored for time-series data, specifically in the IoT space. We now discuss
data serialization, namely, chunking and encrypting of data records.
Later, we detail our search mechanism for encrypted data chunks, our
optional data immutability feature, and storage nodes role in Droplet.

4.3.2.1 Data Serialization

Droplet focuses on time-series data with a stream nature, where data
records are generated continuously, as depicted in Figure 4.6. The key
element of Droplet’s data model is data chunking which is a common
technique for time-series data [101, 75, 7]. Instead of storing individual
data records, we store data chunks, which are an ordered batch of data
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records of an arbitrary type (i.e., pairs of timestamp/value). Each chunk
contains as well a hash link to the previous chunk, enabling absolute time-
ordering. Although chunking prevents random access at the record level,
there is a positive gain on the performance of data retrieval since in time-
series data most queries involve data that are co-located in time [101].
E.g., data analytic apps work with temporal data records (e.g., all records
of a day).

Encryption. Each data chunk is initially compressed and then encrypted
at the source with an efficient symmetric cipher. We rely on AES-GCM,
as an authenticated encryption scheme. Note that NIST bounds the use
of AES-GCM to 232 encryptions for a given key/nonce pair. Due to our
frequent key rotations, we stay far below this threshold. The chunks
have a metadata segment containing, among others, the chunk identifier,
the owner’s address, the key version, the encrypted key (Section 4.3.1.3),
hashes to previous chunks (Section 4.3.2.3), and the stream identifier.
The data field contains the encrypted and compressed data records. We
employ authenticated encryption to protect the integrity of both the
plaintext metadata and ciphertext, and to authenticate them. Services
with access to the encryption key can verify the integrity of the chunk
and perform an authenticated decryption. To ensure data ownership, for
instance towards the storage layer, each chunk is also digitally signed.
This allows parties without access to the encryption key to still be able to
verify the owner of the data stream, albeit at a higher computation cost. In
general, digital signature operations are three orders of magnitude slower
than symmetric key operations, as discussed in Section 4.5.1. Hence,
authenticated encryption in our design allows a higher read throughput
for authorized subscribers with access to the symmetric encryption key.

Compression. IoT data is highly compressible, as it exhibits a low entropy
from a limited range. However, individual record compression has a low
yield. Hence, we compress data chunks before encryption. This reduces
bandwidth and storage requirements significantly. In Droplet, we employ
zlib as the compression algorithm, except for images, where we utilize
the state-of-the-art compression algorithm Lepton [113].

4.3.2.2 Search

The storage layer in Droplet resembles a key-value store (in our case
UUID-chunk pairs). We define the universally unique identifier (UUID)
as the cryptographic hash of the tuple: <owner address, streamID,
#counter>, where streamID is a unique identifier of an owner’s various
data streams. Since the values are comprised of encrypted data chunks
and will not allow any indexing, we need to devise a mechanism to
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Figure 4.7: Immutable chunks after a defined grace period. After the grace
period, the hash of the latest chunk is included in the blockchain. Each chunk
contains hash links to previous data chunks, forming a geometric series. Hence,
one can verify the integrity of all data chunks within the grace period.

perform temporal range queries efficiently. To avoid consistency issues
of a shared index, we exploit a simple local lookup mechanism to enable
temporal range queries. For a constant lookup time of a record with
timestamp ti, we compute the counter of the chunk holding it based on
the known time interval ∆ of the chunks: b(ti − t0)/∆c. For instance,
Droplet maps the lookup of value 7 in Figure 4.6 to the identifier of chunk
#1. The chunk metadata is included in the stream registering transaction,
as depicted in Figure 4.2. Note that the chunk metadata additionally
enables freshness checks for chunks, since the chunk interval indicates
the frequency and time at which new data chunks are generated. The
data owner can additionally include a dedicated freshness window, to
tolerate for common delays.

4.3.2.3 Strong Immutability.

While Droplet provides integrity protection via authenticated encryption
and digital signatures, the data owner can still modify old data.
Specific applications might require a stronger notion of immutability
such that even the data owner can no longer modify the data (e.g.,
contractual agreements in logistics). Droplet enables such a notion
of immutability through blockchain’s append-only property [43]. The
application developer can define a grace period until data chunks become
immutable. For sensitive applications, this can be per chunk. Otherwise,
a longer period can be selected. To accommodate for the narrow
bandwidth of blockchains, we leverage an anchoring technique, where
data immutability transactions are reduced to the level of the grace
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period. To realize this, the first data chunk holds a pointer to the
registration transaction and after the grace period another transaction
with a pointer to the latest chunk is issued, as depicted in Figure 4.7.
Since all data chunks are cryptographically linked via hashes, all data
chunks in the grace period become immutable at once, forming a chain
of data chunks. To avoid a linear verification time, chunks hold hashes
to several previous chunks, forming a geometric series. This enables a
logarithmic verification time.

4.3.2.4 Storage Interface.

Droplet’s design supports various storage modalities, e.g., edge,
decentralized, or cloud storages. The storage node exposes a simple
store/get interface with various flavors of get, such as getAll or getRange. For
each request, the storage node verifies the identity of the client and looks
up the corresponding access permissions regarding the client’s identity,
i.e., public key.

4.3.3 Privacy and Security Analysis

Control Plane. For an adversary to alter access permissions in the
blockchain, it requires forging a digital signature (i.e., breaking public
key cryptography with 128-bit security level) or gaining control over
the majority of the computing power in the blockchain network (i.e.,
51% attack). Moreover, an adversary is not capable of learning sensitive
information from the public blockchain, since only unlinkable pseudo-
identities and stream identifiers are stored there. In profiling attacks,
the adversary creates profiles of all user identifiers and the network of
users [161]. This would allow the adversary to break the pseudonymity
of specific users. To protect Droplet against profiling attacks, we employ
dual-key stealth addresses, where the anonymity set is equal to the set
of users with stealth addresses. Note that if dual-key stealth addresses
are used for signing transactions, additional measures are required to to
maintain the anonymity. A malicious storage node could hand out data
without permission. However, the impact of this action is limited since
data is encrypted. The blockchain provides auditable information about
when a stream was shared with whom; a crucial piece of information to
prove or disprove access right violations should the need arise.

Data Plane. Data chunks are encrypted, integrity protected, and
authenticated. Any data chunk manipulations are detectable with
the digital signature and authenticated encryption. The optional data
immutability is based on the security of blockchain. The secure channel
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(i.e., TLS) for storing and fetching data prevents replay attacks, in addition
to ensuring an authenticated and confidential channel. An adversary with
access to encryption keys cannot alter old chunks, as it requires access to
the signing private key. Our store and get are susceptible to a denial of
service attack.

4.4 Implementation

Our reference implementation of Droplet is composed of three entities
implemented in Python: the client engine, the storage node engine,
and the virtualchain. Droplet’s client engine is in charge of composing
a data stream and data serialization, i.e., chunking, compression,
and encryption. It handles viewing, setting, and modifying access
permissions via the virtualchain. It provides the interface to interact with
the storage layer via TLS. The client engine is implemented in 1700 sloc.
We utilize Pythons’s cryptography library [191] for our crypto functions.
For compression, we use Lepton [60] for images and zlib [56] for all other
value types.

The storage engine can either run on a centralized cloud or the nodes
of a p2p storage network. Currently, we have integrated drivers for
Amazon’s S3 storage service. On individual nodes, we employ LevelDB,
an efficient key-value database [148]. We have as well a realization of
Droplet with a serverless computing platform with ASW Lambda serving
as the interface to the storage (i.e., S3). Emerging serverless platforms such
as Lambda [16], require request-level authorization [2]. In this setting,
the client directly accesses backend resources (i.e., without a gatekeeper
server) where each request needs to be separately authorized, which
makes this setting an interesting case study for Droplet. Our serverless
setup consists of AWS Lambda serving as the interface to the storage
(in our setup S3). Once Lambda is invoked, it performs a lookup in
the access control state machine to process the request. For comparison,
we implement as well an OAuth2-based authorization based on AWS
Cognito [15] as the identity provider. For the distributed storage, we build
a DHT-based storage network. We instantiate a Kademlia library [192]
and extend it with the security features of S/Kademlia [22]. The Kademlia
protocol runs an asynchronous JSON/RPC over UDP. We add support
for TCP connections for storing/fetching large chunks. Our extensions
amount to 2400 sloc.

The virtualchain is instantiated from Blockstack [34] and extended to
implement our access control state machine. The virtualchain scans the
blockchain, filters relevant transactions, validates the encoded operations,
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AES Encrypt SHA Hash ECDSA Sign

[µs] [op/s] [µs] [op/s] [ms] [op/s]

IoT SW 298 3.4k 297 3.4k 270 3.7
IoT HW 42 23.8k 17 58.8k 174 5.7
Phone 50 20k 45 22.2k 4.4 227
Laptop 5.4 185k 1.6 623k 1.3 770
Cloud 2.6 384k 1.2 833k 1.1 909

Table 4.2: Performance of security operations with 128-bit security on different
platforms (i.e., AES256, SHA256, ECDSA256). The IoT is represented by the
OpenMote microcontroller with software (SW) computations or crypto hardware
accelerator (HW). For smartphone, we use a Nexus 5 and for Laptop we use
Macbook Pro. The cloud is represented by an Amazon t2.micro instance.

and applies the outcome to the global state. The state is persisted in an
SQLite database. The global state can either be queried through a REST
API or accessed directly through the SQLite database. Our extensions to
the virtualchain amount to 1400 sloc. As the underlying blockchain, we
employ a Bitcoin test-network with a low block generation time to emulate
a hybrid consensus blockchain [143] (i.e., ca. 15 s block confirmation).

4.5 Evaluation
We now discuss the micro-benchmark evaluation of Droplet functional-
ities and then present the overall system performance in the end-to-end
evaluation. We run and present the performance of Droplet on top of
centralized and decentralized storage layers, i.e., Amazon’s S3 and 1024
DHT nodes running in real time on an emulated network. Evaluating
and prototyping Droplet within a decentralized storage setting is an
interesting case, as peer-to-peer storage networks could become a viable
solution for the IoT [242]. Additionally, this setup resembles storage-
oriented blockchains (e.g., Storj [236], Filecoin [189]). These efforts still
lack adequate mechanisms for secure data sharing, where Droplet can be
helpful.

We additionally evaluate the performance of Droplet in a serverless
setting and compare it to OAuth2 authorization. Emerging serverless
platforms such as Lambda [16], require request-level authorization [2].
Hence, this is particularly an insightful setting as Droplet serves as an
independent Authorization as a Service, which can be particularly useful
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Figure 4.8: store/get performance for centralized (Vanilla: w/o Droplet, Secure:
with) and decentralized storage layers (DHT). The distributed storage latency is
dominated by network routing. For fairness, all settings, including Vanilla S3
operate on compressed data chunks.

to the Function as a Service (FaaS) paradigm. Our control plane runs on
a Bitcoin test network which has similar properties to the main Bitcoin
network, except we tune the network to emulate the performances of
recent scalable blockchains [143] (i.e., ca. 15 s block confirmation).

Methodology. Throughout the evaluation, we are interested in
quantifying the overhead of Droplet and measuring its performance. For
this, we rely on the following metrics: (i) computation: indicates the
CPU time required to perform a certain operation. It has a direct impact
on the application delay and energy consumption. (ii) latency: reflects
the time from a client initiating a store or get to the client receiving the
confirmation or result, and is typically dominated by network round trip
time. (iii) throughput: reflects the number of reads and writes per unit
of time. Note that in evaluation, we do not cache any data, to emulate
the worst case scenarios. For each experiment, we show the mean and
distribution (i.e., standard deviation) or Tukey box plot of 100 iterations.
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Figure 4.9: Compression ratio of our chunking for Fitbit, Ava, and smart energy
dataset.

Setup. The serverless setting is composed of Lambda, S3 storage, and
AWS Cognito in case of the OAuth2 baseline benchmark. Our setup
for the decentralized storage consists of a memory-optimized instance of
Amazon’s EC2 (r3.4xlarge, 122 GiB, 16 vCPU), where we run up to 1024
instances of storage nodes. We use netem [173] to emulate a network
roundtrip time of 20 ms between the instances of storage nodes. We use
one instance of Amazon’s S3 storage service (a round trip time of 20 ms)
for the centralized storage scenario. Both our S3 and EC2 instances are
located in central Europe (Frankfurt). For the crypto operations, we use
four classes of devices: (i) IoT device: OpenMotes microcontroller are
equipped with 32-bit ARM Cortex- M3 SoC at 32 MHz, with a public-key
crypto accelerator running up to 250 MHz. Fitbit trackers utilize a similar
class of microcontroller; (ii) smartphone: LG Nexus5 equipped with a
2.3 GHz quad-core 64-bit CPU and 2 GiB RAM; (iii) laptop: MacBook Pro
equipped with 2.2 GHz Intel Core i7 and 8 GiB RAM; (iv) Cloud VM: EC2
t2.micro (1 vCPU, 1 GiB RAM).

Datasets We validate Droplet on three datasets and quantify the end-to-
end overhead: (i) for the Fitbit activity tracker, we use one of the co-
author’s data from Fitbit Charge HR for one year (16 data types, 130 MB).
(ii) for the Ava health tracker, we use an anonymized dataset for Ava (10 s
intervals, 13 sensors, 1.3 GB). (iii) for the ECOviz smart meter dashboard,
we use the ECO dataset (1.85 GB) for 6 Swiss households over a period of
8 months [24] (1 Hz accuracy).
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4.5.1 Micro-Benchmark
We instrument the client engine to perform the micro benchmark
operations in isolation with up to 1000 repetitions.

Compression Ratio. We study the compression ratio as a function of
chunk size, for three different datasets. In all three cases, a data stream
includes more than 10 types of sensor data. As depicted in Figure 4.9,
almost for all three cases, we reach the optimum compression ratio already
with a chunk size of 2000 records. This corresponds to chunk intervals
of about one day for Ava and one hour for energy data. However, as
our Fitbit data is already aggregated by the service, a chunk interval of
one day only corresponds to about 100 records (60% of the optimum
compression ratio). The resulting trade-off is between granularity and
size-efficiency.

Cryptographic Operations Table 4.2 summarizes the costs of the crypto
operations involved in Droplet on four different platforms. All these
operations, namely AES encryption, SHA hash, and ECDSA signature
are performed once per chunk for store requests. For data retrieval, the
client does not perform a signature verification, since AES-GCM has built-
in authentication. Running the crypto operations only in software on the
IoT devices shows the highest cost, with 3.4k encryptions/hashes per sec
and only 3.7 signatures per sec. With the onboard hardware crypto,
the cost of AES and SHA is improved by one order of magnitude and
approaches that of smartphones. Note that overall signatures are three
orders of magnitude slower than symmetric key operations.

Dual Key Regression Hash computations are the basis for dual key
regression. The computation takes place at the initial setup and each
key update if the client chooses to re-compute keys on-demand rather
than store them. This is a practical solution to handle long chains in
constrained devices. Assuming a long chain of length 9000 (hourly key
updates for one year), it takes 405 ms to compute the entire chain on
smartphones and 2.7 s on an IoT device without hardware crypto engine,
as depicted in Figure 4.10. With the compact hash chain technique, we
reduce this worst case compute time to 4.3 and 28.2 ms, respectively. The
savings become pronounced with smaller epoch intervals.

4.5.2 System Performance.
To model the real-world performance of Droplet, we constructed an end-
to-end system setup, where we use our three app datasets. Note that we
do not cache any data to emulate worst case scenarios. The chunk size of
the data stream is set to 8 KiB. We evaluate get and store requests to the
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Figure 4.10: Impact of compact chains on the compute time. The O(
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(n))
optimized computation time of hash chains of length n benefits computationally
constraint devices significantly.

storage layer, which include the overhead of Droplet’s access control.

Serverless Computing In the serverless setting, Lambda either runs
Droplet for the access control or uses the AWS Cognito service, which
runs OAuth2, as the baseline. Lambda with both Droplet and Cognito
exhibits a latency of around 118 ms (0.4% longer with Droplet). Note
that with OAuth2, to reach the same level of access granularity as with
Droplet, separate access tokens are required for each data chunk, which is
impractical. This is why in practice long-lived and more broadly-scoped
access tokens are granted.

Cloud. We extend AWS S3 storage with Droplet and compare its
performance against vanilla S3. Figure 4.8(a) shows the throughput for
different request types. We follow Amazon’s guidelines to maximize
throughput: for instance, the chunk names are inherently well distributed
allowing the best performance of the underlying hash-table lookup. The
vanilla S3 throughput of 211 gets/s is within Amazon’s optimal range (100-
300). With Droplet, we maintain an average rate of 204 get/s (3 % drop).
Figure 4.8(b) shows the latency for individual store and get operations.
In Droplet, the latency overhead is 13% for get and 11% for store (incl.
crypto operations). Part of the overhead is due to the expensive signature
operation. Additionally, there is an overhead for a fresh lookup of access
permissions at the access control DB of the virtualchain instance. The
access permissions are only cached for 1 minute.

Distributed Storage. We measure the performance of get and store
requests on a secure DHT with Droplet, with varying network sizes,
from 16 to 1024 nodes. Figure 4.8(a) shows the throughput results.
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Figure 4.11: The impact of degree of replications (k) with 512 DHT nodes. A
higher k results in faster retrieval time, as more nodes are likely to hold the data.
The inverse effect is the increased time for storing chunks.

As the number of nodes increases from 16 to 1024, the performance
decreases from 142 to 96 get/s. Figure 4.8(b) shows the latency results,
divided into routing and retrieval. The total get latency increases from 76
to 140 ms as the number of nodes grows. This is about 3 times slower than
S3’s centralized storage. However, note that this slowdown is dominated
by the routing cost. After resolving the address of the storage node with
the data chunk, the secure retrieval time is similar to that of S3. Also,
note that get requests have a lower routing overhead than store requests.
This is because for get requests, the routing process is aborted as soon as
a node holding the data chunk is found.

An important factor defining the performance of store and get is the
initial replication factor k. Figure 4.11 shows the latency of get and store
as a function of k. Notice how the store latency increases with k, while the
get latency decreases. We set k to 10 in our experiments, as it provides a
reasonable trade-off.

Applications. For our three applications, we measure the overhead of
store and get for different views in the app running on top of Droplet. At
the storage layer, we discuss here the case of the decentralized storage
setting with 1024 nodes. Fitbit and Ava rely on a smartphone to store their
data. Due to memory constraints, data synchronization should take place
at least weekly for Fitbit and daily for Ava. This results in an average store
latency of 176 ms and 1.2 s for Fitbit and Ava, respectively. Note that store
operations runs in the background. For different views, the maximum get
latency is below 150 ms. Hence, the user experience remains unaltered.
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Figure 4.12: EccoViz app results. Retrieving records from the energy dataset in
the EccoViz dashboard app (peer-to-peer storage).

In contrast to Fitbit and Ava, the smart meter node has direct Internet
connectivity. Instead of synchronizing periodically, it stores chunks
immediately after generation. This takes 176 ms per chunk. The most
comprehensive view in the ECOViz dashboard can visualize the entire
data stream. Figure 4.12 shows the latency to fetch chunks dependent on
the number of days requested. Fetching data for 128 days of 6 h chunk
size requires about 10 s, whereas the one-week chunk size requires less
than 1 s.

Blockchain. In Droplet, we inherit the security properties [86], as
well as the limitations of the underlying blockchain. Consequently, the
performance of Droplet’s control plane is bound to that of the underlying
blockchain. In our prototype, the transaction confirmation time is set
to 15 s, similar to that of Ethereum. The slow blockchain writes have a
direct impact on the time until new access permissions take effect, which
is significantly higher compared to OAuth2 protocol. Read throughput
is, however, fast and comparable to that of OAuth2. Data stream
registrations and access permission adjustments (e.g., grant/revoke
access) require transactions writes. To scale Droplet to data streams in the
order of billions, a blockchain throughput in the order of thousands of
transactions per sec is necessary. While currently deployed blockchains
achieve only a fraction of this throughput, next-generation blockchains
could soon close this gap [143].

4.6 Related Work
In Section 4.2.1, we discussed relevant work in distributed and crypto-
based access control in length. Hence, we keep our review here brief.
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Distributed Access Control. In the OAuth2 protocol [153], a
trusted entity issues tokens that allow a principal to access data.
Macaroons [31] build upon pure bearer tokens, using chained HMACs,
enabling delegation and attenuation of capabilities for access scope.
Such tokens, however, require a trusted intermediary to verify a
principals authorization, whereas Droplet handles the authorization
itself. SPKI/SDSI [66] is a certificate-based scheme which requires
either certification authorities or works only in an isolated deployment.
DelegaTEE [157] introduces the concept of brokered delegation using
Trusted Execution Environments (TEE). DelegaTEE leverages TEEs, e.g.,
Intel SGX, to handle and manage access delegations.

Crypto-enforced Access Control. A large body of cryptographic
research [80] focuses on private access control on untrusted cloud
providers, such as (hierarchical) identity- based encryption, attribute-
based encryption (ABE), predicate encryption, and functional encryption.
ABE [197, 179, 96, 28, 97] is the most expressive among these
schemes. However, it comes with limitations with respect to revocation,
fine-grained access, and dynamic access updates [80] (Section 4.2.1).
Sieve [234] combines ABE with key-homomorphic encryption, to enable
revocation, where the cloud is trusted not to collude with adversaries
to disclose the new key or launch a rollback attack. ABE-based schemes
target file-based storage and fall short in providing fine-grained access for
time-series data. Moreover, the storage provider has no means to verify
the access request, as access can be only verified with a decryption test.
Droplet does not suffer from these limitations and additionally enables
unique features such as immutability and audibility.

Untrusted Servers. The SFS read-only file system [79, 77] is among
the first efforts to introduce efficient secure content distribution using
untrusted servers. They introduce the concept of key regression as
a means of access control, where the data publisher is contacted for
the latest keys. Tutamen [201] proposes a distributed and federated
access control system, with a set of trusted servers in charge of key
management. GORAM [156] introduces an ORAM primitive to enforces
access-control restrictions on encrypted cloud data within a group of
users. GORAM while effective in hiding access patterns, it imposes high
overhead upon users (in O(polylog(n))), requires a-priori knowledge of
maximum number of principals, and in general falls short in supporting
efficient and concurrent access. Anonymized and controlled sharing of
files in peer-to-peer networks [123] overcomes the challenge of untrusted
servers, however, is not suited for sharing data streams.

Blockchain. In recent years, a new class of blockchain technologies
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have emerged that utilize the accountable computing and auditability
of blockchains for other domains. Blockstack [5] introduces the concept
of virtualchains and proposes a decentralized server-less domain name
registry. Storj [236] and FileCoin [189] introduce distributed object
storage. They are both targeted for archiving files and currently lack
sharing features. Enigma [245, 246] introduces a similar approach in
leveraging the blockchain for access control and sharing of off-chain
stored data. However, Enigma does not account for stream data and
stores data access logs within the blockchain, without addressing the
consequent scalability issues. Our approach is inspired by the above
approaches, but our focus on access control and data streams leads to a
number of important design differences.

4.7 Conclusion
In this chapter, we introduce the design of Droplet, a decentralized and
auditable access control service, tailored for time-series data. We leverage
a public blockchain to bootstrap the necessary trust in our system and
eliminate the role of trusted intermediaries. Droplet enables fine-grained
crypto-based data access and secure sharing of data streams. With
our prototype implementation and experimental results, we show the
feasibility and applicability of Droplet as a decentralized authorization
service that operates without a centralized logic.
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5
Conclusions and Outlook

Today’s Internet of Things deployments are developed vertically within
organizations which are in control of the collected data, with little to no
transparency or guarantees on how they ensure the privacy and security
of the collected data. The privacy implications of this paradigm are
immense, especially as data leakages and misuse of private data plague
numerous computing systems and have become commonplace. This can
hurdle the adoption of new disruptive technologies (e.g., personalized
healthcare) and has unforeseen societal implications (e.g., profiling,
discrimination, extortion, misuse). While policymakers efforts to tackle
these concerns with regulatory provisions (e.g., European Union’s
General Data Protection Regulation) are necessary to hold service
providers accountable, we believe that designing and developing
powerful alternative secure systems and technologies, which ensure
the privacy of users data and their data ownership is inevitable. We
think that practical secure systems, which do not compromise on user-
experience nor functionality, will enable the transition towards a more
secure and privacy-preserving Internet ecosystem. The mechanisms
and system designs proposed in this dissertation provide essential
building blocks contributing to the realization of practical secure
systems with high degree of security and privacy guarantees, based on
cryptographic techniques. To ultimately conquer all aspects of data
privacy and security from a holistic point of view, we need to work beyond
technical solutions on several fronts and across disciplines, such as societal
awareness, technological awareness, human-computer interaction for
usable security, new legislation and legal frameworks, and alternative
economic models.
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We conclude this dissertation with a summary of our contributions,
a short discussion of potential research challenges for future work, and
final remarks.

5.1 Contributions
In this thesis, we argued for systems that ensure users data ownership and
control over their data. We leveraged cryptographic techniques to achieve
our goals and showed that practical, secure systems with reasonable
overheads are feasible. To support our argument, we introduced
three system designs that contribute to the state of data privacy and
security; Talos, Pilatus, and Droplet, where each propose novel design
components, which we consider of independent interest.

Talos is our effort in embracing the recent advancements in encrypted data
processing, and bringing these to the IoT. One major barrier to employing
such cryptographic primitives on IoT devices is their resource constraints.
IoT devices are inherently limited with regards to energy, memory,
CPU, and bandwidth. This challenge is exacerbated by computationally
heavy asymmetric-crypto-based schemes, such as additive homomorphic
encryption schemes. With Talos, we focus on designing and developing
an encrypted query processing system for the IoT, where we overcome the
computational challenges with our proposed optimizations, rendering
our system feasible for the IoT. At a higher level, Talos is a system
that stores IoT data securely in a cloud database while still allowing
query processing over the encrypted data. We enable this by encrypting
IoT data with a set of cryptographic schemes such as order-preserving
and partially homomorphic encryption. We tailor Talos to accommodate
for the resource asymmetry of the IoT, particularly towards constrained
IoT devices. Talos leverages a batching technique to utilize the large
ciphertext size in the Paillier cryptosystem to boost the performance of
crypto operations (e.g., encryption, decryption, homomorphic addition)
due to the concept of Single Instruction, Multiple Data (SIMD), where
for instance one single homomorphic addition is required for the entire
batch. Additionally, Talos proposes EC-ElGamal as a viable and efficient
alternative to the Paillier cryptosystem, where we leverage the baby-step-
giant-step algorithm for efficient decryptions. With a thorough evaluation
of our prototype implementation, we show that Talos is a practical, secure
system that can provide a high level of security with reasonable overhead.

Pilatus features a novel encrypted data sharing scheme based on re-
encryption, with revocation capabilities and in situ key-update. Our
key revocation mechanism allows users to terminate their data sharing



5.2. Future Work 119

at any time. The in situ key-update at the cloud, protects as well old
data with the owner’s new key, without trusting the cloud with any
private keys. Our solution includes a suite of novel techniques that enable
efficient partially homomorphic encryption, decryption, and sharing.
We present performance optimizations that render these cryptographic
tools practical for mobile platforms. More specifically, we enable the
performance optimizations with the Chinese Remainder Theorem, which
leads to shorter, faster, and parallel computations. Our optimizations
achieve a performance gain within one order of magnitude compared to
state-of-the-art realizations.

Droplet enables data owners to securely and selectively share their data,
while guaranteeing data confidentiality against unauthorized parties.
Droplet leverages the blockchain technology to bootstrap trust, for our
decentralized, secure, and resilient access control management. Droplet
handles time-series data and features a cryptographically-enforced fine-
grained and scalable access control mechanism for encrypted data
streams. We design a hybrid low-overhead key management scheme
based on hash trees and key regression, to support sharing of arbitrary
intervals and open-end subscriptions. With a prototype implementation
of Droplet on a public blockchain, we quantify Droplet’s overhead and
compare it to the state-of-the-art systems. When deploying Droplet with
Amazon’s S3 as a storage layer (a popular cloud service), we experience
a slowdown of only 3% in request throughput. Moreover, we show the
potential of Droplet as authorization service for the serverless computing
domain, which requires request-level authorization.

5.2 Future Work
We now provide insights into interesting potential future work in the field
of data security and privacy related to our work.

Private Statistical Queries on Encrypted Data Streams. With Droplet, we
support client-side encrypted data storage on third-party services, where
only user’s devices and authorized parties have access to encryption
keys and can perform encryption/decryption operations. While with our
simple temporal queries, we support a wide range of interaction patterns
specific to times series data, it is desirable to support more rich queries,
such as private statistical queries on encrypted data, without accessing
raw data.

This is motivated by the pattern, that is often observed while
interacting with time series data; the queries are concerned with statistical
values, e.g., the average of a certain metric during a defined time window.
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This has inspired recent efforts in times-series databases [7], to construct
a time-partitioned tree-based index over large volumes of raw time-series
data. The index, since smaller in size compared to the raw data, fits in
memory and enables fast processing of statistical queries. A potential
research challenge is to bring private statistical analytics for encrypted
time-series data, which would render Droplet capable of processing
private statistical queries.

Data Quality and Data Authenticity. While in the threat model of our
thesis, we assumed data source devices to be trustworthy and produce
only correct values, it is an interesting challenge to relax this model and
ensure the correctness and quality of data values. Data quality and
authenticity are crucial for service correctness. Quality in this setting
refers to the data record correctly representing the real-world event it
represents, i.e., the sensor is not malfunctioning. Authenticity in this
setting refers to the data record being indeed produced by trusted sensor
hardware and not artificially crafted. This allows preventing a rough
person contributing with incorrect sensor records to a dataset. It would
be desirable that certified sensing hardware attest to the quality and
authenticity of data records. Such assurances would play an essential
role, not only in public datasets, but as well in critical applications, such
as private digital healthcare, where devices, e.g., wearables, generate large
volumes of data. The trustworthy sensing efforts [89, 88, 200] indicate the
key role of trusted execution environments which are becoming pervasive
in a wide range of platforms. Integration of these efforts intro encrypted
data processing systems is a relevant future research avenue.

Additionally, for datasets it is possible to define serval data validation
rules to ensure the data quality, such as data-type, range and constraint,
and structured validations. Realizing such validations on encrypted data
is a major research challenge.

Decentralized Large-Scale Storage. With the emergence of blockchain-
based technologies, realizing decentralized large-scale storage has
become one of the core envisioned services. The vision behind this service
is allowing users to provide their unused storage to the network and
in return be rewarded for the memory and bandwidth they contribute.
Data providers can tune their storage strategies based on factors such as
redundancy, the retrieval latency, and cost. The decentralized storage
complements today’s cloud-centric storage and could play a key role
in the edge computing paradigm. Moreover, it creates a price and
performance competitive alternative. Droplet provides essential insights
as of how to enable secure sharing in such a decentralized storage setting.
However, Droplet leaves out several challenges yet to be addressed in
this space, such as the integration of the financial incentives into the
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security model of access control. Moreover, decentralized storage offers
many exciting research challenges, such as proof-of-replication to verify
storage, locality-aware storage to enable a dynamic and fast retrieval
time, and private computations on encrypted data stored in the network,
to name only a few.

Practical Secure Multi-Party Computation. Secure Multi-Party Compu-
tation (MPC) [238] allows computation of private functions among a set of
users without a trusted party. The individual values from participating
users are kept confidential, while the outcome can be public, enabling
many interesting interaction patterns. Despite MPC being a well-studied
cryptographic field, its widespread adoption has been hindered by its
current impracticality. With the emergence of egalitarian computing
systems via blockchain technology there is a strong demand for MPC-
based approaches, where the participants can be financially incentivized
to perform the distributed computations. Designing and developing
practical MPC solutions for the emerging blockchain technologies is an
exiting research avenue.

5.3 Final Remarks
In this thesis, we introduced three system designs that innovate with
powerful data security and privacy mechanisms. We leverage advanced
cryptographic techniques to empower users with data ownership and
control over their data. We show that it is feasible to achieve a higher level
of data security and privacy, without sacrificing the user experience nor
functionality. Our measures and designs create additional barriers for the
adversary and assume other components of the ecosystem to be secure.
This leaves many research challenges in this area to be yet addressed,
some of which we have identified and discussed in the previous section,
as future research directions.

We hope our findings and system design insights facilitate further
research and system realizations towards a more secure and privacy-
preserving digital world. Moreover, we hope the research outcome of
this thesis contributes to shaping a roadmap to transform the way current
systems store, process and interact with users data.
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