
ETH Library

Triple Product Formula and Mass
Equidistribution on Modular
Curves of Level N

Journal Article

Author(s):
Hu, Yueke

Publication date:
2018-05

Permanent link:
https://doi.org/10.3929/ethz-b-000285249

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
International Mathematics Research Notices 2018(9), https://doi.org/10.1093/imrn/rnw322

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000285249
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1093/imrn/rnw322
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Y. Hu (2017) “Triple Product Formula and Mass Equidistribution on Modular Curves of Level N,”

Triple Product Formula and Mass Equidistribution on Modular
Curves of Level N

Yueke Hu∗

Swiss Federal Institute of Technology in Zürich, Rämistrasse 101, 8092
Zürich, Switzerland

∗Correspondence to be sent to: e-mail: huyueke2012@gmail.com

Let N be a fixed integer and f be a holomorphic newform of level q, weight k and trivial

nebentypus, where q is a multiple of N . In this article, we prove that the pushforward to

the modular curve of level N of the mass measure of f tends weakly to the Haar measure

as qk → ∞. This generalizes the previous results for modular curve of level 1. The main

innovation of this article is to obtain an upper bound for the local integral which cancels

the convexity bound of the corresponding L-function in level aspect.

1 Introduction

Let �0(N) be the standard congruence subgroup of SL2(Z), and let Y0(N) = �0(N)\H be

the corresponding modular curve of level N . Let

dμ(z) = dxdy

y2
(1.1)

be the standard hyperbolic volume measure on Y0(N).

Let f : H → C be a holomorphic newform of weight k ∈ 2N, level q and trivial

nebentypus, where N |q. For a bounded continuous test function φ on Y0(N), consider the
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2900 Y. Hu

following pushforward of mass measure on Y0(N) associated to f :

μf (φ) =
∫

�0(q)\H

φ(z)|f |2(z)yk dxdy
y2

. (1.2)

We will show that the measure μf converges weakly to dμ on Y0(N) as qk → ∞. To be

more precise, define

Df (φ) = μf (φ)

μf (1)
− μ(φ)

μ(1)
. (1.3)

Theorem 1.1. Let φ be a fixed bounded continuous function on Y0(N) and let f traverse

a sequence of holomorphic newforms of weight k and level q, where k ∈ 2N and N |q.
Then

Df (φ) → 0 (1.4)

whenever qk → ∞. �

Such results were first proved conditionally for the N = q = 1,k → ∞ case by

Sarnak in [21] and by Luo-Sarnak in [15]. Holowinsky and Soundararajan proved this

case unconditionally in [7], [8], and [22]. Their work provided the basic framework for

subsequent papers. Nelson in [17] and Nelson-Pitale-Saha in [18] generalized the work of

Holowinsky–Soundararajan and solved the case N = 1,qk → ∞. This paper is a natural

successor to those papers and allows general level N .

1.1 Sketch of proof

Theorem 1.1 will follow from the spectrum decomposition result of square integrable

functions on Y0(N), and the following two inequalities:

Theorem 1.2. Let φ be a Maass eigencuspform or an incomplete Eisenstein series.

Then

Df (φ) <<φ,ε log(qk)
ε (q/

√
C)−1+2α+ε

log(kC)δL(f ,Ad, 1)
. (1.5)
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Triple Product Formula and Mass Equidistribution 2901

Here α ∈ [0, 7/64] is a bound towards the Ramanujan conjecture for φ at primes dividing

q, and α = 0 if φ is an incomplete Eisenstein series. C is the finite conductor of π × π .

δ = 1/2 or 1 according as φ is cuspidal or incomplete Eisenstein series. �

Theorem 1.3. Let φ be aMaass eigencuspform or an incomplete Eisenstein series. Then

Df (φ) <<φ,ε log(qk)
εqε♦log(qk)

1/12L(f ,Ad, 1)1/4. (1.6)

Here q♦ is the largest integer such that q2
♦|q. �

Separately none of these two inequalities suffices to prove the main theorem due

to the subtle behavior of the adjoint L-function L(f ,Ad, 1). But together they guarantee

that Df (φ) → 0.

The structure of this article is organized to prove Theorems 1.2 and 1.3 sepa-

rately. Section 2 will be about notations and preliminary results. Wewill prove Theorem

1.2 for the Maass eigencuspforms in Section 3, and for the incomplete Eisenstein series

in Section 4. Section 5 will be devoted to prove Theorem 1.3.

The idea to prove Theorem 1.2 is to adelize the integal μf (φ) and reduce the prob-

lem to Triple product integral in the case of Maass eigencuspforms, or Rankin–Selberg

integral in the case of incomplete Eisenstein series. Then Theorem 1.2 would follow

from Soundararajan’s weak subconvexity bound for the corresponding L-functions, and

a reasonable bound for the local integrals.

The main innovation of this article is to control the local integrals for general

high ramifications. We will actually consider more general situation than we need, that

is, as long as two local representations have same levels, larger than the last one. This is

mainly done in Section 3 and we will also introduce more details in the next subsection.

The upshot here is that we can give an upper bound for these local factors which will

cancel the convexity bound in general, thus proving Theorem 1.2.

On the other hand, it is relatively easier to generalize the proof in [18] for Theo-

rem 1.3 to our case. The main difference is that there are now several cusps for �0(N),

and one need to bound the Fourier coefficients of φ along each cusp. This is already done

for Maass eigencuspforms by Iwaniec in [13]. We will deal with the case of Eisenstein

series in Section 5.1. We believe such control is probably well-known or expected by

experts. But as we didn’t find a proper reference, we will give detailed proof in this

paper.
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2902 Y. Hu

1.2 The size of the local integral

In the case of Triple product integral, the corresponding local integral is given by

Iv =
∫

Q∗
p\GL2(Qp)

3∏
i=1

< πi(g)fi, fi > dg. (1.7)

Here fi are the local new forms from local unitary representations πi. < πi(g)fi, fi > is

the corresponding matrix coefficient.

Woodbury in [23] and Nelson in [17] computed this local integral for represen-

tations with squarefree levels. In [18], Nelson, Pitale and Saha computed Iv for higher

ramifications, with the assumption that π1 = π2 and π3 is unramified. Their work is

based on Lemma (3.4.2) of [16], which relates Iv to the local Rankin–Selberg integral.

But this method cannot be generalized to the case when all the representations are

supercuspidal, which is necessary for our purpose.

In general, the size of the local integral should reflect the convexity bound for

the related L−function. In particular at a non-archimedean place, we expect

Conjecture 1.4. In depth aspect, the size of the local integral for representations of

GL2, whenever nonzero, should roughly be the inverse of the convexity bound for the

corresponding special value of L-function, with proper normalized test vectors chosen

from newforms or simple variants of newforms. �

Here by simple variants of newforms, we mean the diagonal translates of

newforms, or the vectors associated to the newforms of twisted representations.

The significance of this expectation is that it relates, in depth aspect, the equidis-

tribution type of results directly with the subconvexity type of results. In [9], we proved

a power saving in the global integral, and used the size of the local integrals to get a

subconvexity bound for the triple product L-function. In this article, we will prove in a

different scenario an upper bound for the local integral which implies a saving in the

global integral.

We already have various partial evidences for this expectation. In [9], we com-

puted Iv in a more direct way, whenever one of the representations has higher level

than the other two. We showed that the size of the local integral in that case is indeed

the inverse of the convexity bound for the triple product L−function, while we picked

the test vectors to be either newforms or diagonal translates of newforms. In [11], we

computed Waldspurger’s local period integral for a scenario with joint ramifications,
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Triple Product Formula and Mass Equidistribution 2903

using carefully chosen test vectors from the pool mentioned above, and verified the

expectation in depth aspect. The L−function involved in that paper is the twisted base

change L−function. There are also various evidences for the Rankin–Selberg integral

with general levels.

In this article, we are mainly interested in the case when π1 and π2 have equally

high level, π3 is ramified of smaller level and all test vectors are chosen to be newforms.

In this case Iv is too complicated to compute directly, but we will prove an upper bound

of size as expected from Conjecture 1.4 when π1 and π2 are in general positions.

When we pick π1 = π2, the actual convexity bound becomes much smaller than

the general case for powerful level. So it may seem that we are getting an upper bound

smaller than suggested by Conjecture 1.4. I would remark here that the newforms are

not the best choice when π1 and π2 are related. Propositions 3.6 and 3.9 in this article

hint that the size of the local integral could be larger if we pick a proper old form from

π3. Similar phenomenon in the Rankin-Selberg integral is very important in the ongoing

work on the subconvexity bound of the Rankin-Selberg L−function for related modular

forms.

The basic tool in this article is the description of the Whittaker functional and

the matrix coefficient for highly ramified representations as developed in [9], [10] and

further refined in Section 2.7 of this article. The upshot for the local calculations in [9]

and this article is that,while the exact values of thematrix coefficients for such represen-

tations are very complicated involving local epsilon factors, knowing their support and

frequencies (or levels) are sometimes already enough to evaluate the local integral, as

manypieces of the integralwill haveno contributionbecause of different supports or fre-

quencies. We will also use this tool to give an upper bound for the local Rankin–Selberg

integral in Proposition 4.3.

2 Notations and preliminary results

2.1 Basic Definitions

Let H be the upper half plane with the standard hyperbolic volume measure dμ = dxdy
y2

.

Let � = y−2(∂2x + ∂2y ) be the hyperbolic Laplacian on H. Let GL+
2 be the subgroup of GL2

with positive determinants. ThenGL+
2 acts onH by the fractional linear transformations.

Let

�0(N) =
{
γ ∈ SL2(Z)|γ ≡

(
∗ ∗
0 ∗

)
mod N

}
, (2.1)
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2904 Y. Hu

�∞ =
{

±
(
1 n

0 1

)
|n ∈ Z

}
. (2.2)

Let Y0(N) = �0(N)\H be the modular curve of level N .

Given a function f : H → C and α =
(
a b

c d

)
∈ GL+

2 , we denote f |kα to be the

function

z �→ det(α)k/2(cz + d)−kf (αz). (2.3)

A holomorphic cusp form of weight k and level q with trivial nebentypus is a

holomorphic function f : H → C that satisfies f |kα = f for all α ∈ �0(q) and vanishes

at all cusps of Y0(q). A holomorphic newform is a cusp form that is an eigenform of the

algebra of Hecke operators and orthogonal to the oldforms. (See [3].)

AMaass cusp form φ of levelN (andweight 0) is a �0(N)−invariant eigenfunction

of the hyperbolic Laplacian � on H that decays rapidly at the cusps of �0(N).

(�+ 1/4 + r2)φ = 0, r ∈ R ∪ i(−1/2, 1/2). (2.4)

A Maass eigencuspform is a Maass cusp form which is an eigenfunction of the Hecke

operators at all finite places and also the involution T−1 : φ �→ [z �→ φ(−z̄)].
As we will care about asymptotic behaviors, we use the notation

f (x,y) <<y g(x,y) (2.5)

to indicate that there exists a positive real function C(y) independent of x such that

|f (x,y)| ≤ C(y)|g(x,y)|. (2.6)

Further if

f (x,y) <<y g(x,y) <<y f (x,y), (2.7)

we will say f (x,y) �y g(x,y).

We shall also work adelically. In general let F be a number field. Let v be a finite

place of it and �v be a local uniformizer at v. Let Ov be the ring of integers of the local

field Fv . For an integer c, letK0(�
c
v ) ⊂ GL2(Ov) be the set of matrices which are congruent

to

(
∗ ∗
0 ∗

)
mod(� c

v ). Similarly let K1(�
c
v ) denote those congruent to

(
∗ ∗
0 1

)
mod(� c

v ). In

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2018/9/2899/2934259 by ETH
 Zurich user on 18 Septem

ber 2023



Triple Product Formula and Mass Equidistribution 2905

this article, we are mostly interested in the case when F = Q. In that case, we will let p

denote both the place and the local uniformizer. But the arguments in Section 3 and 4

apply to a general number field directly.

We will say a local representation of GL2(Qp) is of level c, or c(πp) = c, if there is

a unique up to constant element which is invariant under K1(pc). Note that for represen-

tations of trivial central character this is equivalent to the invariance by K0(pc). For an

automorphic representation π of GL2 with trivial central character, its finite conductor

is C(π) = N = ∏
p
pep , where ep = c(πp).

For simplicity, we shall use the Haar measure on GL2 over a finite place v such

that GL2(Ov) has volume 1. At infinite, we shall normalize the Haar measure such that

the product measure is the Tamagawa measure.

2.2 Cusps and Fourier expansions

In general for a congruence subgroup � ⊂ SL2(Z), denote C(�) = �\Q ∪ {∞} to be the set

of cusps of �\H. Equivalently,

C(�) = �\SL2(Z)/�∞. (2.8)

This is a finite set. Fix a ∈ C(�), let τa ∈ SL2(Z) be such that

τa∞ = a. (2.9)

Let �a be the stabilizer of a in �. The width of the cusp a is defined to be

da = [�∞ : τ−1
a �aτa]. (2.10)

Define

σa = τa

(
da 0

0 1

)
. (2.11)

It satisfies the property that

σ−1
a �aσa = �∞. (2.12)
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2906 Y. Hu

We now specify � to be �0(N). As in Section 3.4.1 of [18], one can consider the

transitive right action of SL2(Z) on P1(Z/N):

[x : y] ·
(
a b

c d

)
= [ax + cy : bx + dy]. (2.13)

Note that �0(N) is the stablizer of [0 : 1] in SL2(Z). As a result, the set of cusps C(�0(N))

can be parameterized by the set of ordered pairs

{[c : d] : c|N ,d ∈ (Z/(c,N/c))∗}. (2.14)

If a cusp a corresponds to a pair [c : d] for c|N and d ∈ (Z/(c,N/c))∗, we will call ca = c

the denominator of the cusp a. For a fixed c|N , let C[c] denote the set of cusps whose

denominator is c. Then by the above parameterization,

�C[c] = ϕ((c,N/c)), (2.15)

where ϕ is the Euler totient function.

The width of a cusp can also be given in terms of ca:

da = [N , c2a ]
c2a

. (2.16)

Here [x,y] means the least common multiple of x and y.

Now let f be a holomorphic new form of weight k and level q. Then for any cusp

a, f has Fourier expansion along a in the following form:

f |kσa(z) = y−k/2∑
n∈N

λf ,a(n)√
n

κf (ny)e
2π inx , (2.17)

where κf (y) = yk/2e−2πy for y positive real and λf ,a ∈ C. From the Fourier expansion and

Deligne’s bound on the coefficients, one has the following control for y large enough:

|f (z)| << e−2πy . (2.18)

For a given c|q, define

λf ,[c](n) =
(

1

ϕ((c,q/c))

∑
a∈C[c]

|λf ,a(n)|2
)1/2

. (2.19)
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Triple Product Formula and Mass Equidistribution 2907

This average of Fourier coefficients is so-called factorizable, and [18] gives a bound of

convolution sums for λf ,[c](n).

For a Maass eigencuspform φ of level N and a fixed cusp a, there is a similar

Fourier expansion

φ(σaz) =
∑
n=0

λφ,a(n)√|n| κir(ny)e
2π inx , (2.20)

where κir(y) = 2|y|1/2Kir(2π |y|) with Kir being the standard K-Bessel function and r is as

in (2.4). We have |κir(y)| ≤ 1 for all s ∈ R ∪ i(−1/2, 1/2) and all y ∈ R+.

As a corollary of Theorem 3.2 of [13], we have the following result

Corollary 2.1. For a Maass eigencuspform φ of level N and any cusp a as above, we

have

∑
|n|≤M

λφ,a(n) <<φ M . (2.21)

Using Cauchy–Schwartz inequality and that C(�) is finite,

∑
|n|≤M

∑
a∈C(�)

|λφ,a(n)|√|n| <<φ,ε M
1/2+ε . (2.22)

�

2.3 Eisenstein series and the spectral theory of modular curve of level N

For a compactly supported test function h on R+ and a cusp a, the associated incomplete

Eisenstein series for � is defined to be

Ea(z,h) =
∑

γ∈�a\�
h(Im(σ−1

a γ z)). (2.23)

For Re(s) large enough, the Eisenstein series for � along cusp a is defined to be

Ea(z, s) =
∑

γ∈�a\�
Im(σ−1

a γ z)s. (2.24)

It has meromorphic continuation to the whole complex plane.
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2908 Y. Hu

Theorem 2.2. Let � be a congruence subgroup and Re(s) ≥ 1/2. Then Ea(z, s) has a

unique pole at s = 1, and

ress=1Ea(z, s) = Vol(�\H)−1. (2.25)

�

According to [13], the space of square integrable functions on �\H is spanned by the

space of Maass cuspforms and the space of incomplete Eisenstein series; The latter

can be further decomposed into residuals of Eisenstein series and direct integral of

Eisenstein series at Re(s) = 1/2.

For an incomplete Eisenstein series Ea(z,h), one can get its spectrum decompo-

sition by Mellin inversion formula. Let ĥ(s) =
∞∫
0

h(y)y−s−1dy be the Mellin transform of

h. It satisfies the growth control

ĥ(s) <<h,A (1 + |s|)−A (2.26)

for any positive A and bounded Re(s). Then the Mellin inversion formula claims that

h(y) = 1

2π i

∫
(2)

ĥ(s)ysds, (2.27)

where
∫
(2)

denotes the integral taken over the vertical contour from 2− i∞ to 2+ i∞. Then

by summing over σ−1
a γ translates for γ ∈ �a\�, we get

Ea(z,h) = 1

2π i

∫
(2)

ĥ(s)Ea(z, s)ds. (2.28)

Now move the integration to the line Re(s) = 1/2. By Cauchy’s theorem, we have

Ea(z,h) = ĥ(1)

Vol(�\H)
+ 1

2π i

∫
(1/2)

ĥ(s)Ea(z, s)ds. (2.29)

By a change of variable, we have in general for another cusp b,

Ea(σbz,h) = ĥ(1)

Vol(�\H)
+ 1

2π i

∫
(1/2)

ĥ(s)Ea(σbz, s)ds. (2.30)
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For the standard Eisenstein series E(z, s), we have its Fourier expansion

E(z, s) = ys +M(s)y1−s + 1

ξ(2s)

∑
n=0

λs−1/2√|n| κs−1/2(ny)e
2π inx , (2.31)

where λs−1/2(n) = ∑
ab=n

(a/b)s−1/2, κs−1/2(y) = 2|y|1/2Ks−1/2(2π |y|),M(s) = ξ(2s−1)/ξ(2s) and

ξ(s) = π−s/2�(s/2)ζ(s) is the completed Riemann zeta function.

In general, let a, b be two cusps for �0(N). Then by Theorem 3.4 of [13],

Ea(σbz, s) = δaby
s + ϕab(s)y

1−s +
∑
n=0

ϕab(n, s)κs−1/2(ny)e
2π inx , (2.32)

where δab is the Kronecker symbol, ϕab(s) and ϕab(n, s) are defined using generalized

Kloosterman sum.

Now let φ(z) = Ea(σbz,h) be an incomplete Eisenstein series. Using its spectrum

decomposition and the Fourier expansion above, we have

φ(z) =
∑
n∈Z

φn(y)e
2π inx , (2.33)

where

φn(y) = 1

2π i

∫
(1/2)

ĥ(s)ϕab(n, s)κs−1/2(ny)ds, (2.34)

for n = 0, and

φ0(y) = ĥ(1)

Vol(�\H)
+ 1

2π i

∫
(1/2)

ĥ(s)(δaby
s + ϕab(s)y

1−s)ds. (2.35)

2.4 Associate classical modular forms to automorphic forms

Let φ be a modular form of weight k and level N . We can associate to it an automorphic

form φ̃ as follows. By strong approximation,

GL2(A) = GL2(Q)GL
+
2 (R)

∏
p

K0(p
ep). (2.36)

For any element g ∈ GL2(A), we can then write it as

g = hg∞k,
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2910 Y. Hu

where h ∈ GL2(Q), g∞ ∈ GL+
2 (R) and k ∈ ∏

p
K0(pep). Then define φ̃ : GL2(A) → C as

φ̃(g) = φ|g∞(i), (2.37)

where φ|g∞ is as in (2.3).

This automorphic form φ̃ is called the adelization of φ. It is clearly invariant

under
∏
p
K0(pep), and its infinity component is weight k. We won’t distinguish φ and φ̃

later on when there is no confusion.

As an example, consider the Eisenstein series E(z, s) of weight 0 and level 1.

When Re(s) is large enough, its adelization is

E(g, s) =
∑

γ∈B(Q)\GL2(Q)
�s(γg), (2.38)

where �s ∈ IndGL2
B (| · |s−1/2, | · |−s+1/2) is spherical satisfying

�s

((
a b

0 d

)
g

)
= |a|s|d|−s�s(g), �s(1) = 1. (2.39)

Similarly, it has meromorphic continuation to the whole complex plane.

One can further translate the Fourier expansion of E(z, s) into adelic languages.

For z = x + iy, let

gz =
((

y x

0 1

)
, 1, 1, · · ·

)
∈ GL2(A), (2.40)

where the first component is the component at infinity. So E(z, s) can be recovered as

E(z, s) = E(gz, s). (2.41)

The general Fourier inversion theorem implies that

E(gz, s) =
∑
a∈Q

∫
Q\A

E

((
1 x

0 1

)
gz, s

)
ψ(−ax)dx. (2.42)
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Triple Product Formula and Mass Equidistribution 2911

When a = 0, the corresponding integral gives the constant term for the Fourier

expansion. A standard unfolding technique would give (see [1])

∫
Q\A

E

((
1 x

0 1

)
gz, s

)
dx = �s(gz)+

∫
A

�s

(
ω

(
1 x

0 1

)
gz

)
dx. (2.43)

Note that �s(gz) = ys, and the second integral gives M(s)y1−s.

When a = 0, the corresponding integral is related to the global Whittaker

functional

∫
Q\A

E

((
1 x

0 1

)
g, s

)
ψ(−ax)dx = W

((
a 0

0 1

)
g

)
, (2.44)

where

W(g) =
∫
A

�s

(
ω

(
1 x

0 1

)
g

)
ψ(−x)dx, (2.45)

and ω =
(

0 1

−1 0

)
. The integral (2.45) is directly a product of local integrals, which in

turn are exactly the local Whittaker functional of induced representations. See Section

2.7 for more details on Whittaker model. We write

W(g) =
∏
v

Wv(g), (2.46)

and we can normalize the local Whittaker functionals so that

W∞(

(
a 0

0 1

)
gz) = 1

ξ(2s)
κs−1/2(ay)e

2π iax , (2.47)

and

Wp(1) = 1 (2.48)

for all finite prime p.

If �s is spherical at all finite places, then Wp(

(
a 0

0 1

)
) is not zero only if a is

integral locally. As a result, the summation in the Fourier expansion (2.42) is actually
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2912 Y. Hu

only over integers. Then comparing (2.42) with (2.31), we get

λs−1/2(n) = |n|1/2
∏
p|n

Wp

((
n 0

0 1

))
. (2.49)

Under this identification, the fact that

λs−1/2(n) =
∑
ab=n

(
a

b
)s−1/2 (2.50)

would follow directly from the well-known formula for the Whittaker function associ-

ated to the spherical element in IndGL2
B (| · |s−1/2, | · |−s+1/2):

Wp

((
a 0

0 1

))
= |a|1/2p

(v(a)+1)(s−1/2) − p−(v(a)+1)(s−1/2)

p(s−1/2) − p−(s−1/2)
. (2.51)

2.5 Integrals at non-archimedean places

Let ψ be a fixed additive character of A. Without loss of generality, we will always

assume thatψ is unramified at any finite place. Let p = |�v |−1
v . Amultiplicative character

χ ofOv
∗ orF∗

v is of level c, or c(χ) = c, if c is theminimal integer such thatχ(1+� c
v Ov) = 1.

Lemma 2.3. Let m ∈ Fv such that v(m) = −j < 0, and μ be a character of O∗
v with

c(μ) = k > 0. Then

∣∣∣∣∣∣
∫

v(x)=0

ψv(mx)μ−1(x)d∗x

∣∣∣∣∣∣ =

⎧⎪⎨⎪⎩
√

p
(p−1)2pk−1 , if j = k;

0, otherwise.
(2.52)

�

This is just a variant of the classical result on Gauss sum.

Lemma 2.4. Let μ and η both be multiplicative characters of O∗
v and j ∈ Z. Suppose

that c(μ) = i > 0.

(1) If 0 < j ≤ i− 2, then ∫
v(x)=0

μ(1 +� jx)η(x)d∗x
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Triple Product Formula and Mass Equidistribution 2913

is not zero only if c(η) = i− j. If j = i− 1, it is not zero only if c(η) = 0 or 1,

and ∫
v(x)=0

μ(1 +� i−1x)d∗x = − 1

p− 1
,

(2) When i > 1, ∫
v(x)=0,x /∈−1+�Ov

μ(1 + x)η(x)d∗x

is not zero only if c(η) = i. When i = 1, it is not zero only if c(η) = 0 or 1, and∫
v(x)=0,x /∈−1+�Ov

μ(1 + x)d∗x = − 1

p− 1
,

(3) When j < 0, ∫
v(x)=0

μ(1 +� jx)η(x)d∗x

is not zero only if c(η) = i. �

Proof. If c(η) is greater than claimed, then the integral is zero by a simple change of

variable. So we just need to show that when the level of η is less than claimed, the

integral is also zero. For conciseness we will only prove part (1), as the other two parts

are very similar.

In particular let 0 < j < i. Suppose first that i − j ≥ 2. We can split the domain

of the integral into intervals of form x = a +� i−j−1u where a ∈ (Ov/�
i−j−1Ov)

∗ is fixed

and u ∈ Ov .Then η is constant on each such intervals by the condition on its level. On

the other hand,

μ(1 +� jx) = μ(1 +� ja+� i−1u) = μ(1 +� ja)μ(1 + � i−1u

1 +� ja
), (2.53)

and by a change of variable,∫
v(x)=0

μ(1 +� jx)η(x)d∗x = 1

(p− 1)pi−j−2

∑
a∈(Ov/� i−j−1Ov )∗

∫
u∈Ov

μ(1 +� ja)η(a)μ(1 +� i−1u)du.

(2.54)

The main observation here is that μ(1+� i−1u) as a function of u is a nontrivial additive

character. So each integral in u will give 0.
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2914 Y. Hu

When i− j = 1, let c(η) = 0 < 1. Then∫
v(x)=0

μ(1 +� i−1x)d∗x = − 1

p− 1
(2.55)

�

Now we record some basic facts about integrals on GL2(Fv) when v is finite.

Lemma 2.5. For every positive integer c,

GL2(Fv) =
∐
0≤i≤c

B

(
1 0

� i
v 1

)
K1(�

c
v ).

Here B is the Borel subgroup of GL2. �

Wenormalize the Haarmeasure on GL2(Fv) such thatKv = GL2(Ov) has volume 1.

Then we have the following easy result.

Lemma 2.6. Locally let f be a K1(�
c
v )−invariant function, on which the center acts

trivially. Then

∫
F∗
v \GL2(Fv )

f (g)dg =
∑
0≤i≤c

Ai

∫
F∗
v\B(Fv )

f

(
b

(
1 0

� i
v 1

))
db. (2.56)

Here db is the left Haar measure on F∗
v\B(Fv), and

A0 = p

p+ 1
, Ac = 1

(p+ 1)pc−1
, and Ai = p− 1

(p+ 1)pi
for 0 < i < c. �

2.6 Triple product formula

Let πi, i = 1, 2, 3 be three unitary cuspidal automorphic representations with central

characters wπi
. Suppose that

∏
i

wπi
= 1. (2.57)

Denote � = π1 ⊗ π2 ⊗ π3. Then one can associate the triple product L-function L(�, s) to

�. (See [4] and [19]. ) It has usual properties like analytic continuation and functional
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Triple Product Formula and Mass Equidistribution 2915

equation. In particular, there exist local epsilon factors εv(�v ,ψv , s) and global epsilon

factor ε(�, s) = ∏
v ε(�v ,ψv , s) such that

L(�, 1 − s) = ε(�, s)L(�̌, s). (2.58)

With the assumption that
∏

i wπi
= 1, we have

� ∼= �̌.

The special values of local epsilon factors εv(�v ,ψv , 1/2) are actually independent of ψv

and always take value ±1. For simplicity, we will write

εv(�v , 1/2) = εv(�v ,ψv , 1/2).

For any place v, there is a unique (up to isomorphism) division algebra Dv . Then Prasad

proved in [20] the following theorem about the dimension of the space of local trilinear

forms:

Theorem 2.7.

(1) dimHomGL2(Fv )(�v ,C) ≤ 1, with the equality if and only if εv(�v , 1/2) = 1.

(2) dimHomDv (�
Dv
v ,C) ≤ 1, with the equality if and only if εv(�v , 1/2) = −1.

Here �Dv
v is the image of �v under Jacquet-Langlands correspondence. �

This motivated the following result which is conjectured by Jacquet and later

on proved by Harris and Kudla in [5] and [6]:

Theorem 2.8.

{L(�, 1/2) = 0} ⇐⇒
⎧⎨⎩ there exist D and fi ∈ πD

i s.t.∫
ZAD∗(F)\D∗(A)

f1(g)f2(g)f3(g)dg = 0

⎫⎬⎭. �

Here the quaternion algebra D is uniquely determined by the local epsilon factors as in

Prasad’s criterion. This result hints that∫
ZAD∗(F)\D∗(A)

f1(g)f2(g)f3(g)dg
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could be a potential integral representation of L(�, 1/2). Later on there are a lot of works

on explicitly relating both sides. In particular one can see Ichino’s work in [12]. We only

need a special version here.

∣∣∣∣∣∣∣
∫

ZAD∗(F)\D∗(A)

f1(g)f2(g)f3(g)dg

∣∣∣∣∣∣∣
2

= ζ 2
F
(2)L(�, 1/2)

8L(�,Ad, 1)

∏
v

I0v (f1,v , f2,v , f3,v), (2.59)

where

I0v (f1,v , f2,v , f3,v) = Lv(�v ,Ad, 1)

ζ 2v (2)Lv(�v , 1/2)
Iv(f1,v , f2,v , f3,v), (2.60)

and

Iv(f1,v , f2,v , f3,v) =
∫

F∗
v\D∗(Fv )

3∏
i=1

< πD

i (g)fi,v , fi,v > dg. (2.61)

We will however be mainly interested in the case when D is the matrix algebra. If D

turns out to be a division algebra according to the conditions on local epsilon factors,

that means the triple product integral on the GL2 side will be zero automatically.

2.7 Whittaker model for some highly ramified representations

By saying π is highly ramified, we mean π is either supercuspidal, or induced from two

ramified characters (instead of unramified special representation). This subsection is

purely local, so we will suppress the subscript v for all notations.

Let π be a local irreducible (generic) representation of GL2. Let ψ be a fixed

unramified additive character. Then there is a unique realization of π in the space of

functions W on GL2 such that

W

((
1 n

0 1

)
g

)
= ψ(n)W(g). (2.62)

When π is unitary, one can define a unitary pairing on π using the Whittaker

model:

<W1,W2 >=
∫

F∗
W1

((
α 0

0 1

))
W2

((
α 0

0 1

))
d∗α. (2.63)
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Triple Product Formula and Mass Equidistribution 2917

Let π be a supercuspidal representation first. The Kirillov model of π is a unique

realization on the space of Schwartz functions S(F∗) such that

π

((
a1 m

0 a2

))
ϕ(x) = wπ (a2)ψ(ma−1

2 x)ϕ(a1a
−1
2 x), (2.64)

where wπ is the central character for π . LetWϕ be the Whittaker function associated to

ϕ. Then they are related by

ϕ(α) = Wϕ

((
α 0

0 1

))
,

Wϕ(g) = π(g)ϕ(1).

When π is unitary, one can define the G−invariant unitary pairing in the Kirillov

model by

< f1, f2 >=
∫
F∗

f1(x)f2(x)d
∗x. (2.65)

This is consistent with the unitary pairing defined above using the Whittaker model.

By Bruhat decomposition, one just has to know the action of ω =
(

0 1

−1 0

)
to understand

the whole group action.

For χ a character of O∗
v , define

1χ ,n(x) =
⎧⎨⎩χ(u), if x = u�n for u ∈ O∗

v ;

0, otherwise.

Roughly speaking, it’s the character χ supported at v(x) = n. We can then describe the

action of ω =
(

0 1

−1 0

)
on 1χ ,n explicitly according to [14]:

π(ω)1χ ,n = C
χw−1

0
z−n
0 1χ−1w0,−n+n

χ−1
. (2.66)

Here z0 = w(�) and w0 = wπ |Ov∗ . nχ is an integer decided by the representation π and

the character χ (and independent of n). It’s well known that nχ ≤ −2 for any χ . Further

we have c = c(π) = −n1. The local new form is simply 11,0.
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The relation ω2 = −
(
1 0

0 1

)
implies

nχ = n
χ−1w−1

0
, CχCχ−1w−1

0
= w0(−1)z

nχ
0 . (2.67)

When π is unitary, we have

|Cχ | = 1. (2.68)

One can easily show this by using the fact that

< π(ω)1χ ,0,π(ω)1χ ,0 >=< 1χ ,0,1χ ,0 > . (2.69)

It is essentially proved in [10] that

Proposition 2.9. Suppose that π is a supercuspidal representation with c = c(π) and

c(wπ ) ≤ 1. If p = 2 and χ is a level i character, then we have

nχ = min{−c,−2i}.

When p = 2 or c(wπ ) > 1, we have the same statement, except when c ≥ 4 is an even

integer and i = c/2. In that case, we only have nχ ≥ −c. �

Now let π be a unitary induced representation π(μ1,μ2), where c(μ1)=
c(μ2) = k > 0. Let c = c(π) = 2k. Then by the classical results in [2], there exists a

new form in the model of induced representation which is right K1(�
c)−invariant and

supported on

B

(
1 0

� k 1

)
K1(�

c),

where B is the Borel subgroup. From now on letW be the Whittaker function associated

to this new form. It’s normalized so that W(1) = 1.

For an induced representation of GL2, one can compute its Whittaker functional

by the following formula:

W(g) =
∫

m∈F

ϕ(ω

(
1 m

0 1

)
g)ψ(−m)dm, (2.70)

where ϕ ∈ π and ω =
(

0 1

−1 0

)
.
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Definition 2.10. Denote

W (i)(α) = W

((
α 0

0 1

)(
1 0

� i 1

))
. (2.71)

�

Let

C0 =
∫

u∈Ov∗
μ1(−� k)μ2(−�−ku)ψ(−�−ku)du. (2.72)

In [9], we gave the following formulae to compute W (i):

If i < k, then

W (i)(α) = C−1
0

∫
u∈Ov∗

μ1

(
−�

i

u

)
μ2(α�

−i(1−� k−iu))ψ(α�−i(1−� k−iu))pi−k−v(α)/2du. (2.73)

If k < i ≤ c, then

W (i)(α) = C−1
0

∫
u∈Ov∗

μ1

(
− � k

1 + u� i−k

)
μ2(−�−kαu)p−v(α)/2ψ(−�−kαu)du. (2.74)

If i = k,

W (k)(α) = C−1
0

∫
v(u)≤−k,u/∈�−k(−1+�Ov )

μ1

(
− � k

1 + u� k

)
μ2(−αu)| � k

αu(1 + u� k)
|1/2ψ(−αu)p−v(α)du.

(2.75)

Definition 2.11. We will say that a function f (x) consists of level i components, if we

can write

f (x) =
∑
c(χ)=i

∑
n∈Z

aχ ,n1χ ,n, (2.76)

where χ ’s are characters of Ov
∗.

By L2 norm of a sequence of numbers {ai}, we mean

(∑
|ai|2

)1/2
. (2.77)
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We will say that f (x) consists of level i components with L2 norm h, if f (x)

consists of level i components and the sequence of coefficients {aχ ,n} is of L2 norm h. �

Proposition 2.12. Let π be a supercuspidal representation of level c, or induced repre-

sentation π(μ1,μ2) where c(μ1) = c(μ2) = k = c/2. Let W be the normalized Whittaker

function for a new form of π , and W (i) be as in Definition 2.10.

(1) W (c)(α) = 11,0(α).

(2) For i = c − 1 > 1, W (c−1)(α) is supported only at v(α) = 0, consisting of

level 1 components with L2 norm
√

p(p−2)
(p−1)2

, and also level 0 component with

coefficient being − 1
p−1 .

(3) In general for 0 ≤ i < c − 1, i = c/2, W (i)(α) is supported only at v(α) =
min{0, 2i− c}, consisting of level c − i components with L2 norm 1.

(4) When i = k > 1, W (c/2) is supported at v(α) ≥ 0, consisting of level c/2

components with L2 norm 1.

When i = k = 1, W (1)(α) consists of level 0 component at v(α) = 0 with

coefficient being − 1
p−1 , and level 1 components at v(α) ≥ 0 with L2 norm√

p(p−2)
(p−1)2

. �

Remark 2.13. In part (2), the coefficients for level 1 components together with level

0 components have L2 norm 1. When π is supercuspidal, one can actually get that

W (i)(α) consists of level c− i components with coefficients of absolute value
√

p
(p−1)2pc−i−1 .

Counting the number of level c − i characters, one can see that this is consistent

with the L2 norm as claimed. This is however not necessarily true for the induced

representations. �

Proof. Let π be a supercuspidal representation first. Then the only difference of this

result from Corollary 2.18 in [9] is the claim about the coefficients. Part (2) can be easily

proved using Lemma 2.3 and (2.68). Part (3) and (4) follow simply from the invariance of

the unitary pairing (2.63).

Now let π = π(μ1,μ2) where c(μ1) = c(μ2) = k = c/2. The proof refines that of

Lemma 4.2 in [9] by using Lemma 2.4 above. For conciseness we will only prove part (4)

when i = k > 1. So

W (k)(α) = C−1
0

∫
v(u)≤−k,u/∈�−k(−1+�Ov )

μ1(− � k

1 + u� k
)μ2(−αu)ψ(−αu)p− 1

2 v(α)+v(u)du. (2.78)
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Let χ be an multiplicative unitary character.

∫
v(α) fixed

W (k)(α)χ(α)d∗α = C−1
0

∫
v(u)≤−k,u/∈�−k(−1+�Ov )

⎛⎝ ∫
v(α) fixed

χ(αu)μ2(−αu)ψ(−αu)d∗α

⎞⎠
μ1(− � k

1 + u� k
)χ−1(u)p− 1

2 v(α)+v(u)du. (2.79)

For each fixed v(u), the integral
∫

v(α) fixed

χ(αu)μ2(−αu)ψ(−αu)d∗α is actually independent

of u by a change of variable. Then by Lemma 2.4, the integral in u for fixed v(u) is not

zero only if c(χ) = k.

Then as functions in α, χ(αu)μ2(−αu) is of level ≤ k, ψ(−αu) is of level −v(α)−
v(u) ≥ k − v(α). Then we need v(α) ≥ 0 for the integral

∫
v(α) fixed

χ(αu)μ2(−αu)ψ(−αu)d∗α

ever to be nonzero.

The claim about the L2 norm of the coefficients follows from the invariance of

the unitary pairing (2.63) as in the supercuspidal case. �

We can say something more for the case i = c/2. When π is supercuspidal, W (i)

is supported at v(α) ≥ 0, and will vanish for sufficiently large v(α). This is however not

true for the induced representations.

Lemma 2.14.

W (k)(a) <<k p
(α−1/2)v(a)v(a). (2.80)

Here α is a bound towards Ramanujan conjecture and we can pick α ≤ 7/64. �

Proof. Let χ be a character of F∗
v which is trivial on a fixed uniformizer. As in the proof

above,

∫
v(a) fixed

W (k)(a)χ(a)d∗a = C−1
0

∫
v(u)≤−k,u/∈�−k(−1+�Ov )

⎛⎝ ∫
v(a) fixed

χ(au)μ2(−au)ψ(−au)d∗a

⎞⎠μ1

(
− � k

1 + u� k

)
χ−1(u)p− 1

2 v(a)+v(u)du. (2.81)
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When v(a) > 2k, we can further separate the integral above into two parts:

I1 =
∫

−2k≤v(u)≤−k,u/∈�−k(−1+�Ov )

⎛⎝ ∫
v(a) fixed

χ(au)μ2(−au)d∗a

⎞⎠μ1

(
− � k

1 + u� k

)
χ−1(u)p− 1

2 v(a)+v(u)du,

(2.82)

and

I2 =
∫

v(u)<−2k

⎛⎝ ∫
v(a) fixed

χ(au)μ2(−au)ψ(−au)d∗a

⎞⎠μ1(− 1

u
)χ−1(u)p− 1

2 v(a)+v(u)du. (2.83)

Note that the first integral will be non-zero only if χ is essentially μ−1
2 . (This means they

are identical on units, but can differ on a uniformizer.) Then it’s clear that∫
v(a) fixed

χ(au)μ2(−au)d∗a <<k p
αv(a), I1 <<k p

(α− 1
2 )v(a). (2.84)

The second integral is non-zero only if χ is essentially μ−1
1 . If μ = μ1

μ2
is

unramified, then the non-zero contribution comes from v(u) ≥ −v(a)− 1, and

I2 <<k p
(α−1/2)v(a)v(a). (2.85)

When c(μ) = j, then the non-zero contribution comes from v(u) = −v(a) − j (so that

ψ(au) is of level j). Then

I2 <<k p
(α− 1

2 )v(a). (2.86)

Combining the bounds for I1 I2 and the restriction for χ , the claim in the lemma is then

clear. �

3 The first inequality when testing on Cusp forms

In this section, we will prove Theorem 1.2 when φ is a Maass eigencuspform. In this

case μ(φ) = 0 directly. So we just need to prove the same inequality for μf (φ).

The idea is to adelize φ, f and f ′ = f̄ yk. Then μf (φ) becomes an automorphic

integral as in the triple product formula. Using (2.59), it would be enough to apply the

weak subconvexity bound for the triple product L-function (see [22]), and give a reason-

able upper bound for the normalized local integrals. As the weight aspect was already

solved in the previous works, we will focus only on the level aspect here.
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Triple Product Formula and Mass Equidistribution 2923

We will start with necessary tools to give upper bound for the local integrals.

Section 3.1–3.3 will be purely local, so we will omit subscript v without confusion.

3.1 Matrix coefficient for highly ramified representations at non-archimedean places

Let π be a supercuspidal representation of level c or of form π(μ1,μ2) where c(μ1) =
c(μ2) = k = c/2. Let ϕ be a new form for π which is invariant under K1(�

c). Let

�(g) =< π(g)ϕ,ϕ > (3.1)

be the matrix coefficient associated to ϕ. It is bi-K1(�
c)−invariant. But we will only

make use of the right K1(�
c)−invariance now. By Lemma 2.5, to understand �(g), it

will be enough to understand �

((
a m

0 1

)(
1 0

� i 1

))
for 0 ≤ i ≤ c. Let p = |� |−1. The

following result is a refinement of Lemma 4.2 in [9].

Proposition 3.1. Let � be as mentioned above.

(i) For c − 1 ≤ i ≤ c, �

((
a m

0 1

)(
1 0

� i 1

))
is supported on v(a) = 0 and

v(m) ≥ −1. On the support, we have

�

((
a m

0 1

)(
1 0

� i 1

))
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1, if v(m) ≥ 0 and i = c;

− 1
p−1 , if v(m) = −1 and i = c;

− 1
p−1 , if v(m) ≥ 0 and i = c − 1.

(3.2)

When v(a) = 0, v(m) = −1 and i = c − 1 > 1, �

((
a m

0 1

)(
1 0

� c−1 1

))
con-

sists of level 1 components with L2 norm p
√
p−2

(p−1)2
, and also level 0 component

with coefficient 1
(p−1)2

.

(ii) For 0 ≤ i < c − 1, i = c/2, �

((
a m

0 1

)(
1 0

� i 1

))
is supported on v(a) =

min{0, 2i − c}, v(m) = i − c. As a function in a it consists of level c − i

components with L2 norm
√

p
(p−1)2pc−i−1 .

(iii) When c is even and i = c/2 > 1, �

((
a m

0 1

)(
1 0

� i 1

))
is supported on

v(a) ≥ 0, v(m) = −c/2. As a function in a it consists of level c−i components

with L2 norm
√

p
(p−1)2pc/2−1 .
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2924 Y. Hu

When i = c/2 = 1, �

((
a m

0 1

)(
1 0

� i 1

))
is supported on v(a) ≥ 0, v(m) ≥

−1. When v(m) ≥ 0, its value is as in (i). When v(m) = −1, as a function in a

it consists of level 0 component at v(a) = 0 with coefficient 1
(p−1)2

, and level

1 components at v(a) ≥ 0 with L2 norm p
√
p−2

(p−1)2
. �

Remark 3.2. The second part of (iii) looks like a combination of (i) and the first part of

(iii). This case would not make essential difference for, for example, the bound for the

local triple product integral in Proposition 3.5 and 3.7. �

Proof. By definition,

�

((
a m

0 1

)(
1 0

� i 1

))
=
∫

F∗
v

π

((
a m

0 1

)(
1 0

� i 1

))
W

((
α 0

0 1

))
W

((
α 0

0 1

))
d∗α

=
∫
F∗
v

ψ(mα)W (i)(aα)W (c)(α)d∗α

=
∫

v(α)=0

ψ(mα)W (i)(aα)d∗α. (3.3)

To get a non-zero value for�, we just need a level 0 component supported at v(α) = 0 for

ψ(mα)W (i)(aα). Then the claims follow from Proposition 2.12. For conciseness we will

only prove part (ii) here.

Let i < c−1, i = c/2. According to part (3) of Proposition 2.12,W (i)(x) is supported

at v(x) = min{0, 2i− c}. So (3.3) is not zero only if v(a) = min{0, 2i− c}. We further know

that W (i)(aα) consists only of level c − i characters in α. Then to get level 0 component

for the product ψ(mα)W (i)(aα) at v(α) = 0, we need v(m) = i− c.

To make things simpler, suppose i > c/2 so thatW (i)(x) is supported at v(x) = 0.

(The case when i < c/2 is very similar.) If we write

W (i)(x) =
∑

c(χ)=c−i
aχχ(x) (3.4)

for x ∈ O∗
v , then

�

((
a m

0 1

)(
1 0

� i 1

))
=

∫
v(α)=0

ψ(mα)W (i)(aα)d∗α =
∑

c(χ)=c−i
aχ

⎛⎝ ∫
v(α)=0

ψ(mα)χ(α)d∗α

⎞⎠χ(a).
(3.5)
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So as a function in a, �

((
a m

0 1

)(
1 0

� i 1

))
consists of level c − i components with L2

norm
√

p
(p−1)2pc−i−1 . This is because the sequence {aχ } is of L2 norm 1 and

∣∣∣∣∣∣
∫

v(α)=0

ψ(mα)χ(α)d∗α

∣∣∣∣∣∣ =
√

p

(p− 1)2pc−i−1

for all χ of level c − i at v(m) = i− c.

One can prove the other parts similarly. In particular (i) follows from (1), (2) of

Proposition 2.12, and (iii) follows from (4) of Proposition 2.12. �

Corollary 3.3. Let �̃ be thematrix coefficient associated to π

((
�−n 0

0 1

))
ϕ, where ϕ is

a new form. Then �̃ is rightK1(�
c+n)−invariant, and �̃

((
a m

0 1

)(
1 0

� i 1

))
is supported

at v(m) ≥ −n− 1 for i = c + n or c + n− 1, and v(m) = i− 2n− c for i < c + n− 1. �

Proof. Let � be the matrix coefficient associated to the new form as in Proposition 3.1.

Then

�̃

((
a m

0 1

)(
1 0

� i 1

))
= �

((
a m�n

0 1

)(
1 0

� i−n 1

))
. (3.6)

When i ≥ n, we can use Proposition 3.1 directly to get �̃. When i < n, we have

(
a m�n

0 1

)(
1 0

� i−n 1

)

= � i−n
(
a�−2i+2n a(�−i+n −�−2i+2n)+m� n

0 1

)(
1 0

1 1

)(
1 −1 +�−i+n

0 1

)
. (3.7)

By Proposition 3.1, �̃ is nonzero only when v(a�−2i+2n) = −c and v(a(�−i+n −�−2i+2n)+
m�n) = −c. Note that v(a(�−i+n −�−2i+2n)) = −c+ i−n < −c in this case, which forces

v(m) = i− 2n− c. �

Remark 3.4. Using the same proof, one can get more detailed descriptions of matrix

coefficients of old forms as in Proposition 3.1. It is straightforward and we will omit

details here. �
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3.2 Bound for the local triple product integral I

Proposition 3.5. Let πi for i = 1, 2, 3 be three representations of GL2(Qv) with trivial

central characters. Suppose that c(π1) = c1 > 1 and c(π2) = c(π3) = c > c1. Let �i be the

normalized matrix coefficients associated to the new forms of πi. Then

|Iv | =

∣∣∣∣∣∣∣
∫

Q∗
v\GL2(Qv )

3∏
i=1

�i(g)dg

∣∣∣∣∣∣∣ ≤ 2

(p+ 1)pc−1

p3 − 2p2 + 1

(p− 1)3
≤ 4p−c. (3.8)

�

Proof. By Lemma 2.5 and 2.6, we can decompose the integral as

c∑
i=0

Ai

∫
a,m

3∏
j=1

�j

((
a m

0 1

)(
1 0

� i 1

))
|a|−1d∗adm. (3.9)

By our assumption on πi, Proposition 3.1 holds for �i. In particular when i < c − 1, the

support of �1 is disjoint with the support of �2 or �3. So one only need to consider i = c

or c − 1 in (3.9). When i = c, the corresponding integral is

∫
v(a)=0,v(m)≥−1

�1

((
a m

0 1

))
�2

((
a m

0 1

))
�3

((
a m

0 1

))
d∗adm

= 1 + (p− 1)(− 1

(p− 1)3
) = p2 − 2p

(p− 1)2
. (3.10)

When i = c − 1 and v(m) ≥ 0,

∫
v(a)=0,v(m)≥0

�1

((
a m

0 1

))
�2

((
a m

0 1

)(
1 0

� c−1 1

))
�3

((
a m

0 1

)(
1 0

� c−1 1

))
d∗adm

= 1

(p− 1)2
. (3.11)

When i = c − 1 and v(m) = −1,

∫
v(a)=0,v(m)=−1

�1

((
a m

0 1

))
�2

((
a m

0 1

)(
1 0

� c−1 1

))
�3

((
a m

0 1

)(
1 0

� c−1 1

))
d∗adm

(3.12)

=
∫

v(a)=0,v(m)=−1

− 1

p− 1
�2

((
a m

0 1

)(
1 0

� c−1 1

))
�3

((
a m

0 1

)(
1 0

� c−1 1

))
d∗adm.
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Triple Product Formula and Mass Equidistribution 2927

For i = 2, 3, �i

((
a m

0 1

)(
1 0

� c−1 1

))
as a function in a consists of level 1 compo-

nents with L2 norm p
√
p−2

(p−1)2
, and also level 0 component with coefficient 1

(p−1)2
. For fixedm,

suppose that

�2

((
a m

0 1

)(
1 0

� c−1 1

))
=

∑
c(χ)=1

aχχ(a)+ 1

(p− 1)2
, (3.13)

and

�3

((
a m

0 1

)(
1 0

� c−1 1

))
=

∑
c(χ)=1

bχχ(a)+ 1

(p− 1)2
. (3.14)

Then the coefficient of the level 0 component of the product �2�3 is

∑
χ of level 1

aχbχ−1 + 1

(p− 1)4
≤ p2(p− 2)

(p− 1)4
+ 1

(p− 1)4
= p3 − 2p2 + 1

(p− 1)4
. (3.15)

Here we have used Cauchy–Schwartz inequality. Then if we integrate in a first for (3.12),

we can get∣∣∣∣∣∣
∫

v(a)=0,v(m)=−1

− 1

p− 1
�2

((
a m

0 1

)(
1 0

� c−1 1

))
�3

((
a m

0 1

)(
1 0

� c−1 1

))
d∗adm

∣∣∣∣∣∣
≤ p3 − 2p2 + 1

(p− 1)4
. (3.16)

Now put all pieces together, we have

|Iv | ≤ 1

(p+ 1)pc−1

p2 − 2p

(p− 1)2
+ p− 1

(p+ 1)pc−1
[ 1

(p− 1)2
+p3 − 2p2 + 1

(p− 1)4
] ≤ 2

(p+ 1)pc−1

p3 − 2p2 + 1

(p− 1)3
.

(3.17)

Lastly

2

(p+ 1)pc−1

p3 − 2p2 + 1

(p− 1)3
≤ 4p−c (3.18)

as p ≥ 2. �

Proposition 3.6. Let πi, i = 1, 2, 3 and �2 �3 be as in Proposition 3.5. Let �1 be the

matrix coefficient associated to an old form π1

((
�−n 0

0 1

))
f1, where f1 is still a new
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form. Suppose that c1 + 2n < c. Then

|Iv | =

∣∣∣∣∣∣∣
∫

Q∗
v\GL2(Qv )

3∏
i=1

�i(g)dg

∣∣∣∣∣∣∣ ≤ 4

pc
pn. (3.19)

�

Proof. In this case we apply Corollary 3.3 to �1. By the assumption that c1 + 2n < c,

the support of�1 will still be disjoint from the support of�2 and�3 unless i ≥ c−n−1.

On the common support, the value of �1 is easy to write down by the assumption. Then

one can bound the local integral similarly as in the proof above. �

3.3 Bound for the local triple product integral II

In this subsection we consider the case when π1 is an unramified special representation,

that is, an unramified twist of Steinberg representation. Note that for the ramified qua-

dratic twist of Steinberg representation, we can pick the new form similarly as in the

previous subsection, and the integral can be bounded similarly.

Proposition 3.7. Let π1 be an unramified special representation and c(π2) = c(π3) =
c > 1. Suppose that they all have trivial central characters. Let �i be the normalized

matrix coefficients associated to the new forms of πi. Then

|Iv | = |
∫

Q∗
v\GL2(Qv )

3∏
i=1

�i(g)dg| ≤ 4p−c. (3.20)

�

Proof. Before we start, we first recall the matrix coefficient for unramified special

representation from [23].

Let σn =
(
�n 0

0 1

)
, and ω =

(
0 1

−1 0

)
.

Lemma3.8. Letπ = σ(χ |·|1/2,χ |·|−1/2)be anunramified special unitary representation of

GL2 with χ unramified. It has a normalized K1(�)−invariant new form. The associated

matrix coefficient � for this new form is bi-K1(�)−invariant and can be given in the
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following table for double K1(�)−cosets:

g 1 ω σn ωσn σnω ωσnω

�(g) 1 −p−1 χnp−n −χnp1−n −χnp−1−n χnp−n

In this table n ≥ 1. �

As in the last subsection, we can split the integral Iv as

Iv =
c∑
i=0

Ai

∫
a,m

3∏
j=1

�j

((
a m

0 1

)(
1 0

� i 1

))
|a|−1d∗adm. (3.21)

We can use the support of �2 and �3 to simplify the calculations. In particular, we put

all the information necessary for the integral into the following table.

Cases Ai �1
∫
�2�3d∗a |a|−1dm

i = c, v(a) = 0, v(m) ≥ 0 1
(p+1)pc−1 1 1 1

i = c, v(a) = 0, v(m) = −1 1
(p+1)pc−1 −p−1 1

(p−1)2
p− 1

i = c − 1, v(a) = 0, v(m) ≥ 0 p−1
(p+1)pc−1 1 1

(p−1)2
1

i = c − 1, v(a) = 0, v(m) = −1 p−1
(p+1)pc−1 −p−1 bdd by p3−2p2+1

(p−1)4
p− 1

c/2 < i < c − 1, v(a) = 0, v(m) = i− c p−i p−1
(p+1) −p1+2i−2c bdd by p

(p−1)2pc−1−i (p− 1)pc−i−1

0 < i < c/2, v(a) = 2i− c, v(m) = i− c p−i p−1
(p+1) −χ2i−cp1−c bdd by p

(p−1)2pc−1−i pi−1(p− 1)

i = 0, v(a) = −c, v(m) = −c p
(p+1) |�1| ≤ p1−c bdd by p

(p−1)2pc−1 1 − p−1

The column for �1 is a reformulation of the results of Lemma 3.8 in terms of

double B− K1(�) cosets on the support of �2. For
∫
�2�3d∗a we have used Proposition

3.1, and Cauchy–Schwartz inequality whenever we know only L2 norms of �2 and �3.
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The first observation is that the contribution to the local integral from ith piece

for 0 < i < c − 1 is always bounded by

p2−2c

p+ 1
pi, (3.22)

which is a geometric sequencewhose sum can be easily bounded.We didn’t list the piece

i = c/2 in the table, as Proposition 3.1 claims v(a) ≥ 0 instead of an equality in that

case. But whenever there is a contribution to the local integral coming from v(a) > 0,

one can check that |�1| = |−χv(a)p1−cp−v(a)| = p1−cp−v(a) while the Haar measure |a|−1dm

gives an additional pv(a). So the above bound still holds for the piece i = c/2.

The case when i = 0 is slightly more complicated.When i = 0, v(a) = v(m) = −c,

�1

((
a m

0 1

)(
1 0

1 1

))
=
⎧⎨⎩−χ−cp1−c, if v(a+m) > −c;
χ−cp−c, if v(a+m) = −c.

(3.23)

In either case |�1| ≤ p1−c. As a result of this,

|A0

∫
v(a)=v(m)=−c

3∏
i=1

�i

((
a m

0 1

)(
1 0

1 1

))
|a|−1d∗adm|

≤ p

p+ 1
p1−c

∫
v(a)=0

|�2�3

((
a m

0 1

)(
1 0

1 1

))
||a|−1d∗adm

≤ p

p2 − 1
p2−2c. (3.24)

Combining all the pieces, we can get

|Iv | ≤ 1

(p+ 1)pc−1
[1 − 1

p(p− 1)
] + p− 1

(p+ 1)pc−1
[ 1

(p− 1)2
+ p−1p

3 − 2p2 + 1

(p− 1)3
]

+
c−2∑
i=1

p2−2c

p+ 1
pi + p

p2 − 1
p2−2c

≤ 4p−c. (3.25)

�
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Proposition 3.9. Let πi, i = 1, 2, 3 and �2 �3 be as in Proposition 3.7. Let �1 be the

matrix coefficient associated to an old form π1

((
�−n 0

0 1

))
f1, where f1 is still a new

form of π1. Suppose that 1 + 2n < c. Then

|Iv | = |
∫

Q∗
v\GL2(Qv )

3∏
i=1

�i(g)dg| ≤ 4

pc
pn. (3.26)

�

Proof. As in Corollary 3.3, one can describe the matrix coefficient of an old form using

the matrix coefficient of the new form in Lemma 3.8. Then one can bound the local

integral as in Proposition 3.7. We shall skip the technical details here. �

3.4 Proof of Theorem 1.2 when φ is a Maass eigencuspform

For the cases considered in Proposition 3.5 and 3.7, we can also get a bound for the

normalized local integrals

I0v ≤ 105p−c. (3.27)

We are not very careful on bounding the normalizing L-factors, as any fixed constant

multiple will eventually be bounded by (q/
√
C)−1+2α+ε for any ε > 0. Note that this bound

is actually better than the bound obtained in Corollary 2.8 of [18], as the bound towards

Ramanujan Conjecture contributes to the local integral in their cases.

When φ is an old form, we need to use Proposition 3.6 and Proposition 3.9, and

there is an extra factor pn in the local upper bounds. But when we take a product, such

extra factors will be controlled by N , which is the fixed level of φ. So they can be ignored

when we discuss the asymptotic behavior of f . Note that we haven’t consider the case

when the local component of φ is an old form from an unramified representation. For

this case one can either compute an upper bound as in Proposition 3.9, or change the

local triple product integral into Rankin–Selberg integral as in [18], and we will give an

upper bound for the local Rankin–Selberg integral (though for tempered datum) in the

next section. So we will not consider this case in detail here.

From this point onwe can use the same argument as in [18] to prove Theorem 1.2.

So we will be very brief. Suppose that after adelization, f belongs to an automorphic

cuspidal representation π . f ′ also belongs to π , while its component at infinity is of

weight −k. Similarly suppose that the adelization of φ belongs to πφ.
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Recall that C is the finite conductor of π ×π . The conductor of π ×π ×πφ is then

�φ C2k4. The argument of [22] implies that

L(πφ × π × π , 1/2) <<

√
Ck

log(Ck)1−ε . (3.28)

Then combining the local bounds (including Corollary 2.8 of [18]) with this weak

subconvexity bound into the Triple product formula will prove the claim in Theorem 1.2.

4 Proof of Theorem 1.2 when testing on an incomplete Eisenstein series

In this section, we shall prove Theorem 1.2when φ = Ea(z,�) is an incomplete Eisenstein

series of level N . Here a is a cusp for �0(N) and � is a compactly supported function

on R+.

According to (2.29),

Ea(z,�) = �̂(1)

Vol(Y0(N))
+ 1

2π i

∫
(1/2)

�̂(s)Ea(z, s)ds. (4.1)

So

μf (Ea(z,�))

μf (1)
= �̂(1)

Vol(Y0(N))
+ 1

2π iμf (1)

∫
(1/2)

�̂(s)μf (Ea(z, s))ds. (4.2)

On the other hand,

μ(Ea(z,�)) =
∫

�0(N)\H

∑
γ∈�0(N)a\�0(N)

�(Im(σ−1
a γ z))

dxdy

y2
=

∫
�0(N)a\H

�(Im(σ−1
a z))

dxdy

y2
(4.3)

=
∫

�∞\H

�(Im(z))
dxdy

y2

In the last equality, we have made a change of variable σ−1
a z → z, and used that

σ−1
a �0(N)aσa = �∞. (4.4)

Then

μ(Ea(z,�))

μ(1)
= 1

μ(1)

1/2∫
x=−1/2

∞∫
y=0

�(y)
dxdy

y2
= �̂(1)

Vol(Y0(N))
. (4.5)
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So to prove Theorem 1.2 for an incomplete Eisenstein series, it would be enough to show

the same inequality for

μf (Ea(z, s)) (4.6)

with uniform implied constant for all s on the line Re(s) = 1/2.

The idea is then similar as in the case ofMaass eigencuspforms.We shall adelize

f f ′ and Ea(z, s). Then μf (Ea(z, s)) will be essentially the Rankin–Selberg integral. The

result will follow from the weak subconvexity bound for the Rankin-Selberg L-function

and a reasonable upper bound for the local integrals.

4.1 Adelization of Ea(z, s)

We first put Ea(z, s) into the adelic framework. The process should be standard so we

skip the proof here.

Suppose that τa =
(
a b

c d

)
where c|N and d ∈ (Z/(c,N/c))∗, as in Section 2.2. For

simplicity, let c′ = (c,N/c). Recall that N♦ is the largest integer such that N2
♦|N .

Definition 4.1. Define VE(N) to be space spanned by �s, where �s runs over new forms

or old forms of level dividing N in IndGL2
B (χ | · |s−1/2,χ−1| · |−s+1/2), and χ runs over idelic

lifts of Dirichlet characters of level dividing N♦. Define the operator Eis to be

Eis : �s �→
∑

γ∈B(Q)\GL2(Q)
�s(γg). (4.7)

�

Lemma 4.2. The adelization of ( N
cc′ )sEa(z, s) belongs to Eis(VE(N)). �

The way we are going to use this result is as follows. The factor ( N
cc′ )s is easily

controlled on Re(s) = 1/2. To prove certain asymptotic property for Ea(z, s), it would

then be enough to prove the same asymptotic property for a basis of Eis(VE(N)). We

shall choose a basis that facilitates our calculations.
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4.2 Bound for the local Rankin–Selberg integral

In this subsection we will give a reasonable upper bound for the following local integral

of Rankin–Selberg integral at finite places:

Jp(s) =
∫

NZ\GL2

Wf ,p(g)Wf ′,p(g)�s,p(g)dg, (4.8)

where �s will run over a basis of VE(N), Wf is the Whittaker functional associated to f

and a fixed additive character ψ , and Wf ′ is associated to f ′ and ψ−.

We will pick a basis for VE(N) as follows: The local component of�s at p is either

spherical, or supported on B

(
1 0

pi 1

)
K0(pep) for i < ep. Note that the case when the local

component is spherical is already covered in [18]. So we only need to consider the latter

case here.

Proposition 4.3. Suppose that πi for i = 1, 2 have trivial central characters and c(π1) =
c(π2) = c ≥ 2. LetW1 be the Whittaker functional associated to a newform of π1 and the

additive character ψ . LetW2 be the Whittaker functional associated to a newform of π2

and the additive characterψ−. Let�s be a function from IndGL2
B (χ |·|s−1/2,χ−1|·|−s+1/2), sup-

ported on B

(
1 0

pi 1

)
K0(pep) for i < ep. Suppose that W1(1) = W2(1) = �s

((
1 0

pi 1

))
=1

and c > 2ep. Then for Re(s) = 1/2,

|Jp(s)| =
∣∣∣∣∣∣

∫
NZ\GL2

W1(g)W2(g)�s(g)dg

∣∣∣∣∣∣ ≤ p− 1

p+ 1
p−c/2. (4.9)

�

Remark 4.4. By the theory of newforms and oldforms in [2], it would be automatic that

c(χ) ≤ min{i, ep − i}. �

Remark 4.5. As we will only care about asymptotic behaviors, the assumption that

c > 2ep is reasonable. �

Proof. First note that

B

(
1 0

pi 1

)
K0(p

ep) = B

(
1 0

pi 1

)
K0(p

j) (4.10)

for any j > ep > i.
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As �s is supported on B

(
1 0

pi 1

)
K0(pep) = B

(
1 0

pi 1

)
K0(pc) for i < ep, we have

directly that

Jp(s) = p− 1

(p+ 1)pi

∫
W1

((
α 0

0 1

)(
1 0

pi 1

))
W2

((
α 0

0 1

)(
1 0

pi 1

))
χ(α)|α|s−1d∗α. (4.11)

Nowwe can apply part (3) of Proposition 2.12, which implies that bothW (i)
1 (α) andW

(i)
2 (α)

are supported at v(α) = 2i−c, consisting of level c− i components with L2 norm 1. Then

one just has to apply Cauchy—Schwartz inequality, and the easy fact that

||α|s−1| = pip−c/2 (4.12)

when v(α) = 2i− c and Re(s) = 1/2. �

One can argue similarly from here on to prove Theorem 1.2 as in [18].

5 The second inequality

5.1 Fourier coefficient of an Eisenstein series of level N

Wefirst study the asymptotic behavior for the Fourier coefficients of a levelN Eisenstein

series Ea(σbz, s) by using its adelization discussed in the previous section.

Let τ(n) be the function counting the divisors of n.

Lemma 5.1. For φ = Ea(σbz, s) and Re(s) = 1/2, recall we can write its Fourier

expansion as

φ = δaby
s + ϕab(s)y

1−s + 1

ξ(2s)

∑
n=0

λφ,s(n)√|n| κs−1/2(ny)e
2π inx . (5.1)

Then

(1) ϕab(s) = O(1) as s = 1/2 + it → ∞.

(2) |λφ,s(n)| <<N τ(n) as n → ∞. �

Proof. We shall only prove part (2) here. Part (1) follows immediately from the unitarity

of the scattering matrix in [13], or a similar consideration as below.
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When N = 1,

|λφ,s(n)| = |
∑
ab=n

(
a

b
)s−1/2| ≤ τ(n). (5.2)

So the claim is clear in this case. In general, we can adelize our Eisenstein series,

and prove a similar result for the Whittaker functional for a basis in Eis(VE(N)).

According to Lemma 4.2,

(
N

cc′ )
sEa(z, s) =

∑
�s

a�s
∑

γ∈B(Q)\GL2(Q)
�s(γgz) (5.3)

for proper coefficients a�s , and �s runs over a basis of VE(N). Then(
N

cc′

)s

Ea(σbz, s) =
∑
�s

a�s
∑

γ∈B(Q)\GL2(Q)
�s(γg

′
z). (5.4)

Here g′
z =

((
y x

0 1

)
, σ−1

b , σ−1
b , σ−1

b , · · ·
)
, and we have used that each

∑
γ∈B(Q)\GL2(Q)

�s(γg) is

left GL2(Q)− invariant.

Using the Fourier expansion for adelic Eisenstein series as in subsection 2.4,

and comparing it with (5.1), we have(
N

cc′

)s 1

ξ(2s)

λφ,s(n)√|n| κs−1/2(ny)e
2π inx =

∑
�s

a�sW

((
n 0

0 1

)
g′
z

)
. (5.5)

Note that ( N
cc′ )s and a�s are negligible for asymptotic behavior. For all p � N , �s,p is

spherical and σ−1
b belongs to the local maximal compact subgroup.

Recall that we normalized the local Whittaker functional such that

W∞

((
n 0

0 1

)
gz

)
= 1

ξ(2s)
κs−1/2(ny)e

2π inx , (5.6)

and

Wp(1) = 1 (5.7)

for all finite prime p.

Write n = ∏
p|n
pnp . It would then be enough to show that

Wp

((
n 0

0 1

)
σ−1

b

)
<<N p− 1

2npτ(pnp) (5.8)
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for Whittaker functions of the local component of �s which runs over a basis of VE(N).

We will pick the basis as follows: the local component of �s is either a new form, or a

translate of new form by

(
p−j 0

0 1

)
.

For locally unramified representations, the local component of �s is then a(
p−j 0

0 1

)
translate of a spherical element. Let Wp,0 be the Whittaker functional of the

spherical element as given by (2.51). Then it’s clear that

|Wp,0

((
n 0

0 1

))
| ≤ p− 1

2npτ(pnp). (5.9)

By the Iwasawa decomposition, the translate by σ−1
b

(
p−j 0

0 1

)
amount to a fixed shift in

the valuation for np. So

|Wp,0

((
n 0

0 1

)
σ−1

b

(
p−j 0

0 1

))
| <<N p− 1

2npτ(pnp). (5.10)

Now let �s belong to a representation induced from two ramified Hecke char-

acters, and let Wp,0 be the local Whittaker functional associated to the new form of the

corresponding local representation. Again the Iwasawa decomposition (more precisely

Lemma 2.5) implies that the translate by σ−1
b

(
p−j 0

0 1

)
will give a fixed shift in np locally

and also decide which double B− K0(pep) coset that

(
n 0

0 1

)
σ−1

b

(
p−j 0

0 1

)
belongs to.

This means that we only have to care about the asymptotic behavior of W (i)
p,0 for some

fixed i. Then the Lemma follows from Proposition 2.12 and Lemma 2.14. (Note that we

can pick α = 0 for a unitary Eisenstein series in Lemma 2.14.) �

5.2 Proof of Theorem 1.3

Theorem 1.3 turns out to be easier to generalize. We shall briefly follow the proof in [7]

[17] [18], then focus on the difference.

Let φ be either a Maass eigencuspform or an incomplete Eisenstein series of

level N . Let f be a holomorphic newform of weight k ∈ 2N and level q, where N |q. Let
Y ≥ 1 be a parameter to be chosen later, and let h ∈ C∞

c (R
+) be a compactly supported

everywhere nonnegative test function whose Mellin transform is ĥ and ĥ(1) = μ(1). Let

hY be the function y �→ h(Yy).
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Test μf on E(z,hY )φ and apply (2.29) to E(z,hY ). We will then get

Yμf (φ) = μf (E(z,hY )φ(z))− 1

2π i

∫
(1/2)

ĥ(s)Ysμf (E(z, s)φ(z))ds. (5.11)

The same argument as in [17] implies that

1

2π i

∫
(1/2)

ĥ(s)Ysμf (E(z, s)φ(z))ds <<φ Y
1/2μf (1), (5.12)

as the only information about φ used is its rapid decay along cusps. Then a standard

unfolding technique gives

μf (E(z,hY )φ(z)) =
∑

τ∈�∞\SL2(Z)/�0(q)

∫
τ−1�∞τ∩�0(q)\H

hY (Im(τz))φ(z)|f |2(z)yk dxdy
y2

(5.13)

=
∑

τ∈�∞\SL2(Z)/�0(q)

∫
�∞∩τ�0(q)τ−1\H

hY (Im(z))φ(τ
−1z)|f |2(τ−1z) Im(τ−1z)k

dxdy

y2

=
∑
a∈C

∞∫
y=0

da∫
x=0

hY (Im(z))φ(τaz)|f |2(τaz) Im(τaz)k dxdyy2

=
∑
a∈C

∞∫
y=0

1∫
x=0

hY (da Im(z))φ(τa

(
da 0

0 1

)
z)|f |2(σaz) Im(σaz)

k dxdy

y2
.

Here a is considered as a cusp for �0(q). Let d′
a and σ ′

a be the width and scaling matrix

for a when considered as a cusp for �0(N). If N = 1, d′
a = 1, we have a single Fourier

expansion of φ along cusps. But in general d′
a may not be 1, and we can have several

Fourier expansions along different cusps. This is the difference between our case and

previous papers.

Suppose that we have the Fourier expansion

φ(σ ′
az) =

∑
l∈Z

φl(y)e
2π ilx . (5.14)

Let d̃a = da/d′
a. Set

S0 =
∑
a∈C

∞∫
y=0

hY (day)

1∫
x=0

φ0(d̃ay)|f |2(σaz) Im(σaz)
k dxdy

y2
,
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S0,Y1+ε =
∑
a∈C

∞∫
y=0

hY (day)

1∫
x=0

∑
0<|l|<Y1+ε

φl(d̃ay)|f |2(σaz) Im(σaz)
ke2π ild̃ax

dxdy

y2
,

S≥Y1+ε =
∑
a∈C

∞∫
y=0

hY (day)

1∫
x=0

∑
|l|>Y1+ε

φl(d̃ay)|f |2(σaz) Im(σaz)
ke2π ild̃ax

dxdy

y2
.

So

μf (E(z,hY )φ(z)) = S0 + S0,Y1+ε + S≥Y1+ε . (5.15)

Lemma 5.2. (the main term) S0 is 0 when φ is a Maass eigencuspform. If φ is an

incomplete Eisenstein series,

S0 = Yμf (1)
(
μ(φ)

μ(1)
+ Oφ

(
1 + Rf (qk)

Y1/2

))
, (5.16)

where

Rf (x) = x−1/2

L(f ,Ad, 1)

∫
R

∣∣∣∣L(f ,Ad, 1/2 + it)

(1 + |t|)10
∣∣∣∣dt (5.17)

is independent of φ. �

Proof. The first part is clear. For an incomplete Eisenstein series φ of level 1, this is

Lemma 3.6 of [17]. The argument there used that for y � 1/Y ,

φ0(y) = μ(φ)/μ(1)+ Oφ(Y
−1/2). (5.18)

By (2.35) and (4.5) we know that for φ = Ea(σbz,�) with � compactly supported on R∗
+,

φ0(y) = μ(φ)/μ(1)+ 1

2π i

∫
(1/2)

�̂(s)(δaby
s + ϕab(s)y

1−s)ds. (5.19)

If φ is of level 1, (5.18) follows from that �̂ is rapidly decreasing and ϕab(s) = M(s) is

always of norm 1 on Re(s) = 1/2. In general it follows from part (1) of Lemma 5.1. The

rest arguments would be the same as in [17]. �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2018/9/2899/2934259 by ETH
 Zurich user on 18 Septem

ber 2023



2940 Y. Hu

Lemma 5.3. (Trivial error term)

S≥Y1+ε <<φ,ε Y
−10μf (1). (5.20)

�

Proof. The original proof in [17] made use of a bound for the sum of Fourier coefficients

for φ, which in our case follows directly from Corollary 2.1 and Lemma 5.1. �

Now we consider the main error term S0,Y1+ε . Recall by (2.17),

f |kσa(z) = y−k/2∑
n∈N

λa(n)√
n
κf (ny)e

2π inx (5.21)

for any cusp a and κf (y) = yk/2e−2πy . Note that |f |2(σaz) Im(σaz)k = |f |kσa|2(z)yk. Then

|f |2(σaz) Im(σaz)
k =

∑
m,n∈N

λa(n)λa(m)√
nm

κf (ny)κf (my)e2π i(n−m)x . (5.22)

We first focus on the case when φ is a Maass eigencuspform, then we can write φl more

explicitly as

φl(y) = λφ,a(l)√
l
κir(ly). (5.23)

Define

Iφ(l,n,x) = (mn)−1/2

∞∫
0

h(xy)κir(ly)κf (my)κf (ny)
dy

y2
,m = n+ l. (5.24)

Then

S0,Y1+ε =
∑
a∈C

∞∫
y=0

hY (day)

1∫
x=0

∑
0<|l|<Y1+ε

φl(d̃ay)|f |2(σaz) Im(σaz)
ke2π ild̃ax

dxdy

y2
(5.25)

=
∑
a∈C

∑
0<|l|<Y1+ε

λφ,a(l)√
l

∑
n∈N,m=n+d̃al

λa(n)λa(m)Iφ(d̃al,n,daY)
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For simplicity, let dc = [q,c2a ]
c2a

= da for a ∈ C[c]. When N = 1, we will get

|S0,Y1+ε | =
∣∣∣∣∣∣
∑
a∈C

∑
0<|l|<Y1+ε

λφ(l)√
l

∑
n∈N,m=n+dal

λa(n)λa(m)Iφ(dal,n,daY)

∣∣∣∣∣∣ (5.26)

=
∑

0<|l|<Y1+ε

∣∣∣∣∣∑
c|q

λφ(l)√
l

∑
n∈N,m=n+dcl

Iφ(dcl,n,dcY)
∑

a∈C[c]
λa(n)λa(m)

∣∣∣∣∣
≤

∑
0<|l|<Y1+ε

∑
c|q
�C[c] |λφ(l)|√

l

∑
n∈N,m=n+dcl

|Iφ(dcl,n,dcY)||λ[c](n)λ[c](m)|.

Here λ[c](n) is as defined in (2.19), and the last inequality follows simply from Cauchy–

Schwartz inequality. Then it is proven in [17], [18] that

Iφ(l,n,x) <<A
�(k − 1)

(4π)k−1
max

{
1,

max{m,n}
xk

}−A
(5.27)

for every A > 0,

∑
0<|l|<Y1+ε

|λφ(l)|√|l| <<φ,ε Y
1/2+2ε , (5.28)

and a bound of shifted convolution sum

∑
n∈N,m=n+l,max{m,n}≤x

|λ[c](n)λ[c](m)| <<ε q
ε
♦ log log(eeq)O(1)

x
∏
p≤x
(1 + 2|λf (p)|/p)
log(ex)2−ε . (5.29)

Combining all these bounds together with Deligne’s bound |λf (p)| ≤ 2, and taking Y as

in [18] will prove Theorem 1.3 for N = 1 case.

In general for our case, the first issue is that λφ,a(l) could be different for different

cusps. But there is no harm to be a little loose as there are only finitely many fixed cusps

for �0(N). Denote

λφ,+(l) =
∑

cusps for �0(N)

|λφ,a(l)|. (5.30)

Then by Corollary 2.1

∑
0<|l|<Y1+ε

|λφ,+(l)|√|l| <<φ,ε Y
1/2+2ε , (5.31)
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which is the analogue of (5.28). Note that for fixed c|q, d′
a will also be the same for all

a ∈ C[c]. Then

|S0,Y1+ε | ≤
∑

0<|l|<Y1+ε

∑
c|q

|λφ,+(l)|√|l|
∑

n∈N,m=n+d̃al

|Iφ(d̃cl,n,dcY)|
∑

a∈C[c]
|λa(n)λa(m)| (5.32)

≤
∑

0<|l|<Y1+ε

∑
c|q
�C[c] |λφ,+(l)|√|l|

∑
n∈N,m=n+d̃c l

|Iφ(d̃cl,n,dcY)λ[c](n)λ[c](m)|.

Note that d̃c = dc
d′
c
differs from dc by d′

c which is clearly bounded and negligible for

asymptotic behavior. Then one can argue similarly from this point on to prove Theorem

1.3 as in [18]. We will not give further details. The key point here is a control for the

Fourier coefficients of a Maass eigencuspform of level N as in Corollary 2.1.

When φ is an incomplete Eisenstein series, one can decompose it into residue

spectrum and continuous spectrums as in (2.29), and proceed as in the Maass eigen-

cuspform case. The key point will again be a control of the Fourier coefficients for an

Eisenstein series of level N , which follows directly from Lemma 5.1.
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