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Abstract—We study the state-dependent multiple access chan-
nel (MAC) with causal side information at the encoders. We
consider two general models. In the first model, the state sequence
is available at the two encoders in a strictly causal manner.
We derive an achievable region, which is tight for the special
case of a Gaussian MAC where the state sequence comprises the
channel noise. Although the two senders do not have access to
each other’s massage and no feedback is present, the capacity for
this case coincides with the capacity of the same MAC without
side information, but with full cooperation between the users. A
Schalkwijk-Kailath type algorithm is developed, which achieves
this capacity with a double exponential decay of the maximal
probability of error. In the second model we consider, the state
sequence is available, as in Shannon’s model, to the two encoders
in a causal manner. A simple extension of the previous result,
with the inclusion of Shannon strategies, yields an achievability
result for this problem.

Index Terms—Causal state information, feedback, multiple
access channel, strictly-causal state-information.

I. INTRODUCTION

The problem of coding for state dependent channels with

state information at the encoder has been studied extensively

in two main scenarios: causal state information and noncausal

state information. The case where the state is available in a

strictly-causal manner or with a given fixed delay, has not

attracted much attention, possibly because in single-user chan-

nels, strictly-causal state-information (SI) does not increase

capacity. However, like feedback, strictly-causal SI can be

beneficial in multiple user channels. This can be seen using

the examples of Dueck [1]. Specifically, Deuck constructs

an additive noise broadcast channel (BC), where the noise

is common to the two users. The input and additive noise

are defined in a way that the resulting BC is not degraded.

The encoder learns the channel noise via the feedback, and

transmits it to the two users. Although valuable rate–that

otherwise could be used to transmit user messages–is spent

on the transmission of the noise, the net effect is an increase

in channel capacity, due to the noise being common to both

users. In Dueck’s example, the noise is transmitted losslessly

to the two users. However, based on his observations, it

is straightforward to construct examples where only lossy

transmission of the noise is possible, and yet the capacity

region is increased by this use of feedback. There is only one

encoder in the BC and thus, identifying the additive noise as

channel state, feedback in Dueck’s example is equivalent to

knowledge of the state in a strictly causal manner.

In this paper we study the state-dependent multiple access

channel (MAC) with common state information at the en-

coders. Two main models are considered: the strictly causal

model, where at time i both encoders have access to a common

state sequence up to time i−1 (or possibly with larger delay),

and the causal model, in the spirit of Shannon [4], where at

time i both encoders have access to a common state sequence

up to (and including) time i.
As in the case of broadcast channels, strictly causal knowl-

edge of the state increases the MAC’s capacity. Since only past

(or delayed) samples of the state are known, neither binning

(as in Gel’fand and Pinsker’s channel [2]) nor strategies [4]

can be employed. Instead, we derive a general achievable

region based on a block-Markov coding scheme. The encoders,

having access to a common state sequence, compress and

transmit it to the decoder. The users cannot establish co-

operation in the transmission of the messages, but they do

cooperate in the transmission of the compressed state, thus

increasing the achievable rates. The resulting region is tight

for the Gaussian MAC where the state comprises the channel

noise. Specifically, it is shown that for this channel, a proper

choice of the random variables in our achievable region yields

the capacity region of the same MAC without side information

but with full cooperation between the encoders. Since strictly

causal state information does not increase the capacity of

single user channels, it also cannot increase the capacity of the

MAC with full cooperation. Consequently, full cooperation is

the best that one can hope for, and thus the region must be

tight. Although the users do not have access to each other’s

message and no feedback is available, a Schalkwijk-Kailath

type algorithm can be devised for this channel, yielding the

full cooperation region with a double exponential decay in

the probability of error. The general achievability result, and

the Schalkwijk-Kailath algorithm, make use of all the past

samples of the channel noise. It turns out, however, that

much less is needed to achieve the full cooperation region.

Assume that, instead of having all the past noise samples,

only S1 and S2 are known to the encoders, in a strictly causal
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manner (i.e., available at times 3,4,....). As demonstrated in

Section II, althought only two noise samples are known, the

full cooperation region can still be achieved.

The causal model is also treated with block Markov coding,

but the transmission at time i can depend on the state Si.

All other ingredients of the coding scheme remain intact. The

resulting achievable region contains the naive region, which

uses Shannon strategies for the MAC without block Markov

coding, with the inclusion being in some cases strict.

II. PROBLEM FORMULATION AND MAIN RESULTS

A. Basic definitions

We are given a discrete memoryless state-dependent MAC

PY |S,X1,X2
with state alphabet S , state probability mass

function (PMF) PS , input alphabets X1 and X2, and output

alphabet Y . Sequences of letters from S are denoted by sn =
(s1, s2, . . . , sn) and sji = (si, si+1 . . . , sj). Similar notation

holds for all alphabets, e.g. xn
1 = (x1,1, x1,2, . . . , x1,n), x

j
2,i =

(x2,i, x2,i+1, . . . , x2,j). When there is no risk of ambiguity, n-

sequences will sometimes be denoted by boldface letters, y,

x1, etc. The laws governing n sequences of state and output

letters are given by

Pn
Y |S,X1,X2

(y|s,x1,x2) =
n∏

i=1

PY |S,X1,X2
(yi|si, x1,i, x2,i),

Pn
S (s) =

n∏
i=1

PS(si).

For notational convenience, we henceforth omit the superscript

n, and we denote the channel by P . Let φk : Xk → [0,∞),
k = 1, 2, be single letter cost functions. The cost associated

with the transmission of sequence xk at input k is defined as

φk(xk) =
1

n

n∑
i=1

φk(xk,i), k ∈ {1, 2}.

B. The strictly causal model

Definition 1: Given positive integers M1, M2, let M1

be the set {1, 2, . . . ,M1} and similarly, M2 the set

{1, 2, . . . ,M2}. An (n,M1,M2,Γ1,Γ2, ε) code with strictly

causal side information at the encoders is a pair of sequences

of encoder mappings

fk,i : Si−1 ×Mk → Xk, k = 1, 2, i = 1, . . . , n (1)

and a decoding map

g : Yn →M1 ×M2

such that the input cost costs are bounded by Γk

φk(xk) ≤ Γk, k = 1, 2,

and the average probability of error is bounded by ε

Pe = 1− 1

M1M2

M1∑
m1=1

M2∑
m2=1

∑
s

PS(s) ·

P
(
g−1(m1,m2)|s,f1(s,m1),f2(s,m2)

)
≤ ε,

where g−1(m1,m2) ⊂ Yn is the decoding set of the pair of

messages (m1,m2), and

fk(s,mk) = (fk,1(mk), fk,2(s1,mk), . . . , fk,n(s
n−1,mk)).

The rate pair (R1, R2) of the code is defined as

R1 =
1

n
logM1, R2 =

1

n
logM2.

A rate-cost quadruple (R1, R2,Γ1,Γ2) is said to be achievable

if for every ε > 0 and sufficiently large n there exists

an (n, 2nR1 , 2nR2 ,Γ1,Γ2, ε) code with strictly causal side

information for the channel PY |S,X1,X2
. The capacity-cost

region of the channel with strictly causal SI is the closure

of the set of all achievable quadruples (R1, R2,Γ1,Γ2), and

is denoted by Csc. For a given pair (Γ1,Γ2) of input costs,

Csc(Γ1,Γ2) stands for the section of Csc at (Γ1,Γ2). Our

interest is in characterizing Csc(Γ1,Γ2).
Let Psc be the collection of all random variables

(U, V,X1, X2, S, Y ) whose joint distribution satisfies

PU,V,X1,X2,S,Y = PSPX1|UPX2|UPUPV |SPY |S,X1,X2
. (2)

Note that (2) implies the Markov relations X1−◦ U−◦ X2 and

V−◦ S−◦ Y , and that the triplet (X1, U,X2) is independent of

(V, S). Let Rsc be the convex hull of the collection of all

(R1, R2,Γ1,Γ2) satisfying

R1 ≤ I(X1;Y |X2, U, V ) (3)

R2 ≤ I(X2;Y |X1, U, V ) (4)

R1 +R2 ≤ I(X1, X2;Y |U, V ) (5)

R1 +R2 ≤ I(X1, X2, V ;Y )− I(V ;S) (6)

Γk ≥ IEφk(Xk), k = 1, 2

for some (U, V,X1, X2, S, Y ) ∈ Psc. Our main result for the

strictly causal case is the following.

Theorem 1: Rsc ⊆ Csc.

The proof is based on a scheme where a lossy version

of the state is conveyed to the decoder using Wyner-Ziv

compression [7] and block-Markov encoding for the MAC

with common message [5]. The proof is omitted. In some

cases, the region Rcs coincides with Ccs. The next example

is such a case. Although Theorem 1 is proved for the discrete

memoryless case, we apply it here for the Gaussian model.

Extension to continuous alphabets can be done as in [6].

Example 1: Consider the Gaussian MAC, with input power

constraints IEX2
k ≤ Γk, k = 1, 2, where the state comprises

the channel noise:

Y = X1 +X2 + S, S ∼ N(0, σ2s). (7)

The capacity region of this channel, when S is known strictly

causally at the two encoders, is the collection of all pairs

(R1, R2) satisfying

R1 +R2 ≤
1

2
log

(
1 +

(Γ
1
2
1 + Γ

1
2
2 )
2

σ2s

)
. (8)

The region (8) is the capacity region of the same MAC when S
is not known to any of the encoders, but with full cooperation
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between the users—a situation equivalent to a single user

channel with a vector input constraint. Since strictly causal

SI does not increase the capacity of a single user channel,

we only have to show achievability in (8). We show it by

properly choosing the random variables in (3)–(6). Let us first

examine the maximal R1. Set U = X2, and let X1, X2, V, S
be zero mean, jointly Gaussian, with X1, X2 independent of

V, S. Then (3)-(6) reduce to the two bounds on R1:

R1 ≤ 1

2
log

(
σ2x1|x2

+ σ2s|v
σ2s|v

)
(9)

R1 ≤ 1

2
log

(
ΓΣ + σ2s

σ2s

)
(10)

where σ2x1|x2
is the variance of X1 conditioned on X2; σ

2
s|v is

analogously defined; and ΓΣ is the power of the sum X1+X2.

In full cooperation, ΓΣ = (Γ
1
2
1 + Γ

1
2
2 )
2, but then σ2x1|x2

= 0,

which nullifies the right hand side of (9). Note, however, that

we can take the limit σ2s|v → 0 without effecting (10). Thus

we can approach the full cooperation rate as closely as desired,

by first reducing σ2s|v , so that the right hand side of (9) is kept

high, and then reducing σ2x1|x2
. This proves that with R2 = 0,

the rate

R1 =
1

2
log

(
1 +

(Γ
1
2
1 + Γ

1
2
2 )
2

σ2s

)
(11)

is achievable. By symmetry and time sharing, (8) is achievable.

We next describe a Schalkwijk-Kailath type algorithm [3],

that achieves the same rate, with double exponential decay in

the maximal probability of error. As with the proof of (8),

first the achievability of (11) is shown. The rest will follow

by symmetry and time sharing. Split the interval [0, 1] into

M1 equally spaced sub-intervals. Let θ1 be the center of one

of these sub-intervals, representing the message of user 1, as

in [3]. At the first time instance, the users transmit

X1,1 = θ1, X2,1 = 0. (12)

The corresponding channel output is

Y1 = θ1 + S1. (13)

Starting from time instance i = 2 and on, the noise sample

S1 is known at both encoders. Thus the two encoders now

cooperate to transmit S1 to the decoder. Since they now have

a common message to transmit, knowing the states in a strictly

causal manner is equivalent to feedback. Applying the same

algorithm as in [3], after n iterations the receiver constructs

a Maximum Likelihood estimate of S1, denoted Ŝ
(n)
1 , whose

error satisfies

IE((S1 − Ŝ
(n)
1 )2|S1) =

σ2s
(α2)n

(14)

with

α2 = 1 + γ2, γ2 =
(Γ

1
2
1 +Γ

1
2
2 )

2

σ2
s

. (15)

Based on this estimate and on Y1, the decoder can now

construct an estimate θ̂
(n)
1 of θ1

θ̂1 = Y1 − Ŝ
(n)
1 (16)

whose error satisfies

IE((θ1 − θ̂
(n)
1 )2|S1) =

σ2s
(α2)n

. (17)

Therefore, choosing M1 = nr1, with r1 ≤ 1
2 log(1 + γ2), the

probability of error vanishes doubly exponentially as n→∞.

This proves that (11) is achievable. By symmetry, and applying

time sharing, this algorithm achieves the region (8).

We next show that the region (8) is achievable also when the

states at only two time instances, say S1 and S2, are known

from time i = 3 and on. It suffices to show achievability

of (11) with only S1 known, from time i = 2. First trans-

missions and output are given by (12), (13). At times i = 2
and on, both users know S1. They cooperate in transmitting

to the receiver a quantized version of S1 via a regular code

for the single user Gaussian channel. Specifically, fix ε > 0
and choose β such that PS(|S1| > β) ≤ ε. Define r1 =
1
2 log(1 + γ2). We employ two partitions. First, partition the

interval [0, 1] into M1 = 2nr1/(4β) sub intervals, where the

centers represent the messages of user 1. Let θ1 be the center

of one of these sub intervals. Partition the interval [−β, β] into

2nr1 sub intervals, and denote by mq, q = 1, 2, . . . , 2nr1 their

center points. Define

Sq = argmin
mq

|S1 −mq| (18)

The two users transmit Sq to the receiver, via a single user

code. Denote by Ŝq the receiver’s estimate of Sq . Clearly, for

n large enough,

P

(∣∣∣S1 − Ŝq

∣∣∣ ≥ 2β

(1 + γ2)n/2

)
≤ 2ε (19)

implying that the receiver can detect θ1 with probability of

error not exceeding 2ε. Note that M1 provides the claimed

rate.

C. The causal model

The definition of codes and achievable rates remain as in

Section II-B, with the only difference being the definition of

encoding maps: in the causal case (1) is replaced by

fk,i : Si ×Mk → Xk, k = 1, 2, i = 1, . . . , n. (20)

The capacity region and its section at (Γ1,Γ2) are denoted by

Cc and Cc(Γ1,Γ2), respectively. Let Pc be the collection of

all random variables (U,U1, U2, V,X1, X2, S, Y ) whose joint

distribution can be written as

PUPU1|UPU2|UPV |SPSPX1|U,U1,SPX2|U,U2,SPY |S,X1,X2
.

(21)

Observe that (21) implies the Markov relations U1−◦ U−◦ U2
and V−◦ S−◦ Y , and that the triple (U1, U, U2) is independent
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of (V, S). Let Rc be the convex hull of the collection of all

(R1, R2,Γ1,Γ2) satisfying

R1 ≤ I(U1;Y |U2, U, V ) (22)

R2 ≤ I(U2;Y |U1, U, V ) (23)

R1 +R2 ≤ I(U1, U2;Y |U, V ) (24)

R1 +R2 ≤ I(U1, U2, V ;Y )− I(V ;S) (25)

Γk ≥ IEφk(Xk), k = 1, 2

for some (U,U1, U2, V,X1, X2, S, Y ) ∈ Pc. Our main result

for the causal case is the following.

Theorem 2: Rc ⊆ Cc.

The proof proceeds along the lines of the proof of Theorem 1,

except that the inputs Xk, k = 1, 2, are allowed to depend on

the state S, and that additional external random variables U1
and U2 that do not depend on S are introduced. This resembles

the situation in coding for the single user channel with causal

side information, where a random Shannon strategy can be

represented by an external random variable independent of the

state. The proposed scheme outperforms the naive approach of

using strategies without block Markov encoding of the state.

This latter naive approach leads to the region comprising all

(R1, R2) satisfying

R1 ≤ I(T1;Y |T2, Q)

R2 ≤ I(T2;Y |T1, Q)

R1 +R2 ≤ I(T1, T2;Y |Q) (26)

for some PQPT1|QPT2|Q, where Tk are random Shannon

strategies [4], whose realizations are mappings tk : S → Xk,

k = 1, 2; Q is a time sharing random variable; and

PY |T1,T2
(y|t1, t2) =

∑
s∈S

PS(s)PY |S,X1,X2
(y|s, t1(s), t2(s)).

Clearly Rc contains the region of the naive approach as we

can choose V in (22)–(25) to be a null random variable. The

next example demonstrates that the inclusion can be strict.

Example 2: Noiseless binary MAC, with input selector.

Consider the noiseless binary MAC where X1 = X2 = Y =
{0, 1}, S = {1, 2} and PS(S = 2) = p for some p > 0.5.

The state S determines which of the two inputs is connected

to the output:

Y = XS .

Block Markov Coding. Both users know the state and hence

know, at each time, which user is connected to the output.

Thus, they can compress the state using H(S) = Hb(p) bits

per channel use and transmit the state sequence to the decoder,

via block Markov coding. If they do so, the decoder knows S,

and the users can now share between them a clean channel.

Since they already spent Hb(p) bits in transmitting the state,

the net rate remaining to share between them is

R1 +R2 = 1−Hb(p). (27)

Note, however, that not all the line (27) is achievable. The

users do not know each other’s message. Thus, user 1 can

transmit its own message only (1 − p) fraction of the time.

We conclude that the following rate is achievable for user 1:

R1 = [1−Hb(p)](1− p) [bits]. (28)

The Naive Approach. From the region (26) and the extreme

points of the capacity region of the classical MAC, the

maximal rate that user 1 can transmit is:

R1 = max I(T1;Y |T2 = t2), (29)

where the maximum is over the distribution of T1 and over all

mappings t2 : S → X2. The strategy t2 influences the output

only when S = 2, in which case it gives a certain input X2,
connected directly to the output. User 1 is then disconnected.

Therefore, the exact value of t2 is immaterial. Assume that

t2(s = 2) = 0.

Similarly, t1 influences the output only when S = 1, in

which case it gives a certain input X1 directly connected to

the output. Since the strategies are chosen independently of S,

the MAC reduces to a Z-channel from user 1:

P (Y = 0|X = 0) = 1, P (Y = 0|X = 1) = p. (30)

The capacity of this channel is given by

C(p) = log2

(
1 + (1− p)p

p
1−p

)
[bits]. (31)

At the limit where p approaches 1, we have

C(p) ≈ (1− p)e−1 log2 e ≈ 0.53(1− p), (32)

which, at the limit p→ 1, is strictly less than (28).
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