

Big data, AI, and data privacy for transport planning

Presentation

Author(s): Anda, Cuauhtémoc

Publication date: 2018-10-22

Permanent link: https://doi.org/10.3929/ethz-b-000299710

Rights / license: In Copyright - Non-Commercial Use Permitted

Tongji University

Cuauhtemoc Anda anda@arch.ethz.ch

22.Oct.2018

Tongji University

Cuauh**temo**c Anda anda@arch.ethz.ch

22.Oct.2018

Tongji University

Cuauhtemoc **Anda** anda@arch.ethz.ch

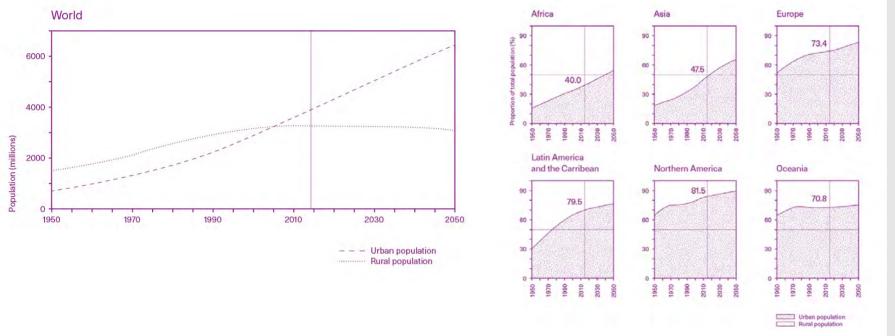
22.Oct.2018

(SEC) SINGAPORE-ETH 新加坡-ETH CENTRE 研究中心

[FCL] Future Cities Laboratory

Sustainable Future Cities: Through Science, By Design, In Place

Rationale



Urbanisation

Global phenomenon with unique local features

Presenting new threats and possible futures

Requiring new forms of description, analysis and action at global and local scales

Urban and rural population of the world, 1950–2050. Urban and rural population as proportion of total population, by major region, 1950–2050 (UN DESA 2014)

What Future City?

Developing a roadmap to inform future city-making and urban policies through 'Transformative Research':

- Innovative research approaches, tools and methods
- Design exploration
- Scenario testing
- Technology platforms

Inter-Disciplinary Scenarios

High-Density Mixed-Use Cities

The *Grand Projet* Ecosystem Services Multi-Scale Energy Systems Dense and Green

Responsive Cities

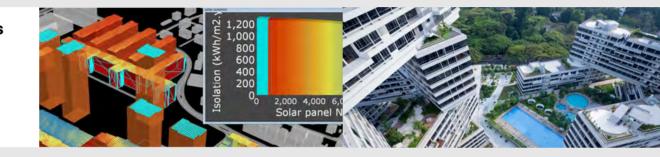
BigData-Informed Urban Design Cyber Civil Infrastructure Engaging Mobility Cognition, Perception and Behaviour

Archipelago Cities

Inter-Disciplinary Scenarios

High-Density Mixed-Use Cities

The *Grand Projet* Ecosystem Services Multi-Scale Energy Systems Dense and Green



Responsive Cities

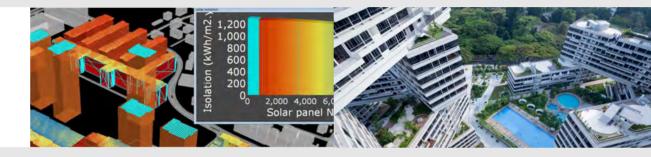
BigData-Informed Urban Design Cyber Civil Infrastructure Engaging Mobility Cognition, Perception and Behaviour

Archipelago Cities

Inter-Disciplinary Scenarios

High-Density Mixed-Use Cities

The *Grand Projet* Ecosystem Services Multi-Scale Energy Systems Dense and Green



Responsive Cities

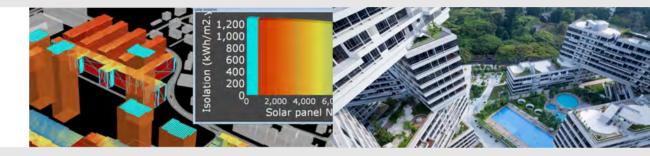
BigData-Informed Urban Design Cyber Civil Infrastructure Engaging Mobility Cognition, Perception and Behaviour

Archipelago Cities

Inter-Disciplinary Scenarios

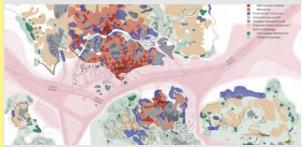
High-Density Mixed-Use Cities

The *Grand Projet* Ecosystem Services Multi-Scale Energy Systems Dense and Green



Responsive Cities

BigData-Informed Urban Design Cyber Civil Infrastructure Engaging Mobility Cognition, Perception and Behaviour



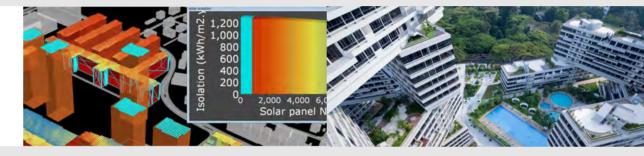
Archipelago Cities

Disciplines

Inter-Disciplinary Scenarios

High-Density Mixed-Use Cities

The *Grand Projet* Ecosystem Services Multi-Scale Energy Systems Dense and Green



Arts & Humanities Energy Systems Lanscape & Ecosystems

Responsive Cities

BigData-Informed Urban Design Cyber Civil Infrastructure Engaging Mobility Cognition, Perception and Behaviour

Engineering & Materials Science Information Technology

Computer Science

A COMPANY COMPANY PICTOR

Archipelago Cities

Disciplines

Inter-Disciplinary Scenarios

Network

Programme Structure

Information Technology

Computer Science

SIJORI and Extended Urbanisation **Urban-Rural Systems** Alternative Construction Materials Tourism and Cultural Heritage

Development Banks: ADB, WB SALDAY ASH NO KING AND NGOs: Rockefeller, Mercy Corps

NGOs: KPC, Habitat for Humanity

What transport policy and design decisions can foster more liveable and sustainable cities in the future?

Engaging Active Mobility

How can we assess and evaluate cycling infrastructure designs based on behavioural reactions of cyclists?

Engaging Big Data How can newly available large streams of big data be loweraged to improve

big data be leveraged to improve transportation simulation models?

Planning for AV How can we understand and evaluate impacts of AVs on Urban form and transport supply in Singapore?

Measuring Pedestrian Comfort How can we enhance pedestrian comfort and mitigate negative impacts of crowding through better design?

Aims, Approach and Links Findings and Output Self Evaluation Future Work

We are making steady progress on our four ongoing projects.

Sources:

Top Left, Bottom right: Lina Meisen Bottom left: Michael v Eggermond Top right: Tanvi Maheshwari

Dr. Pieter Fourie Project Leader Simulation

Dr. Alex Erath Project Advisor

Prof. Dr. K. Axhausen Co-Pl Transport Planning

Prof. Dr. C. Hölscher Co-Pl Cognitive Psychology

Dr. Michael v. Eggermond Project Coordinator Senior Researcher Active Mobility

r Contraction

Dr. Sergio Ordonez Senior Researcher Computer Science

Shuchen Xu Researcher Architect

Biyu Wang MATSim developer

Cuauhtémoc Anda PhD Researcher Data Science

Mohsen Nazemi PhD Researcher Active Mobility

Tanvi Maheshwari PhD Researcher Urban Design

Michael Joos Senior Software Engineer Gaming Developer

Tongji University

Cuauhtemoc Anda anda@arch.ethz.ch

22.Oct.2018

What is MATSim?

MATSim

Multi-Agent Transport Simulation

- Tool for Transport Planning
- Make inform decisions
- Predicts and evaluates future mobility scenarios
- Co-evolutionary algorithm (AI)

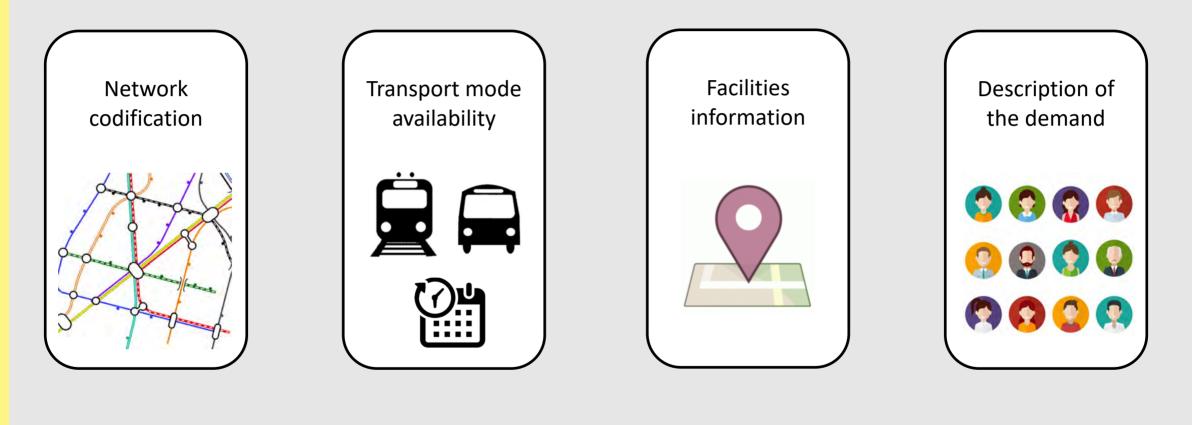
[policy | infrastructure | landuse | new mobility systems]



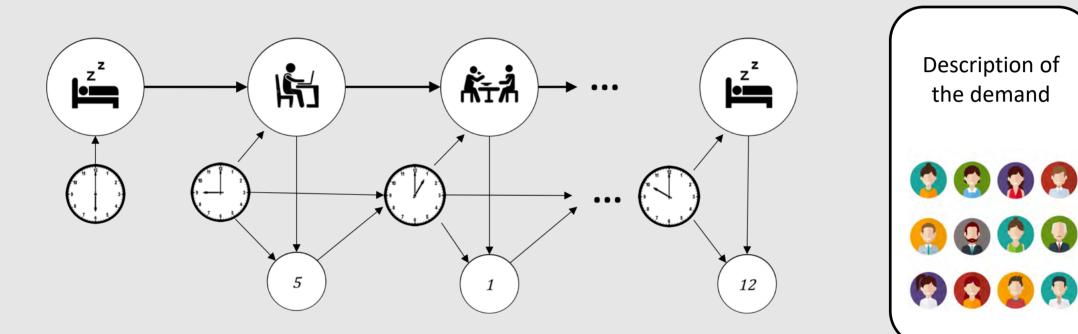
Up. Mobile Phone Data MATSim (Anda, et al., 2017)

What is needed?

What is needed to run a simulation?



Generating the population of agents



[activities | trips | schedules | socio-demographics | transport mode]

How to get this information?

Data input: Household Travel Survey

• Rich data: destinations, activities, mode of transport, household structure, sociodemographic info, etc.

But,

- Covers only 1% of the population
- Expensive
- 4-5 years update
- Based on what people report

What if ...

there were **mobility data** that **covers 50% of the population**. It is **collected everyday**. Not reported but **measured data**. Continuously sensing **position and trajectories**. You **don't need** to invest in **additional infrastructure**.

Data inputs

What is it?

• Mobile phone antennas are scattered around Shanghai. Your mobile phone gets connected to the closest one, and leaves a timestamp.

Mobile phone telco data

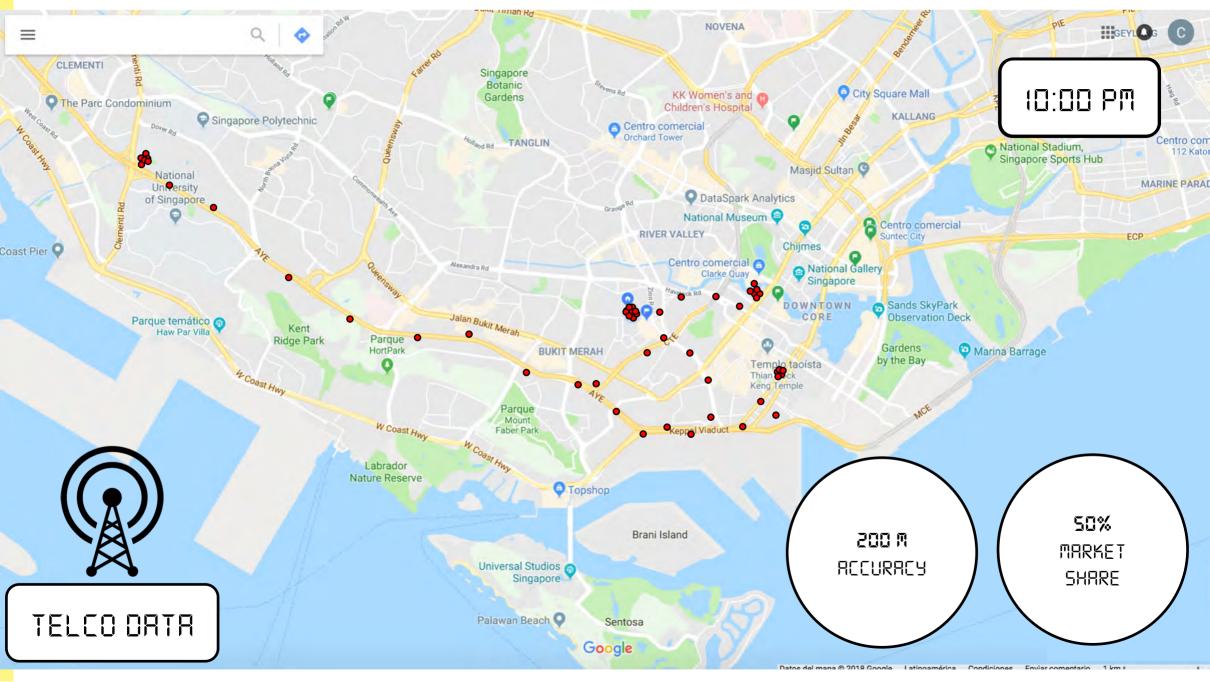
How does it look like?

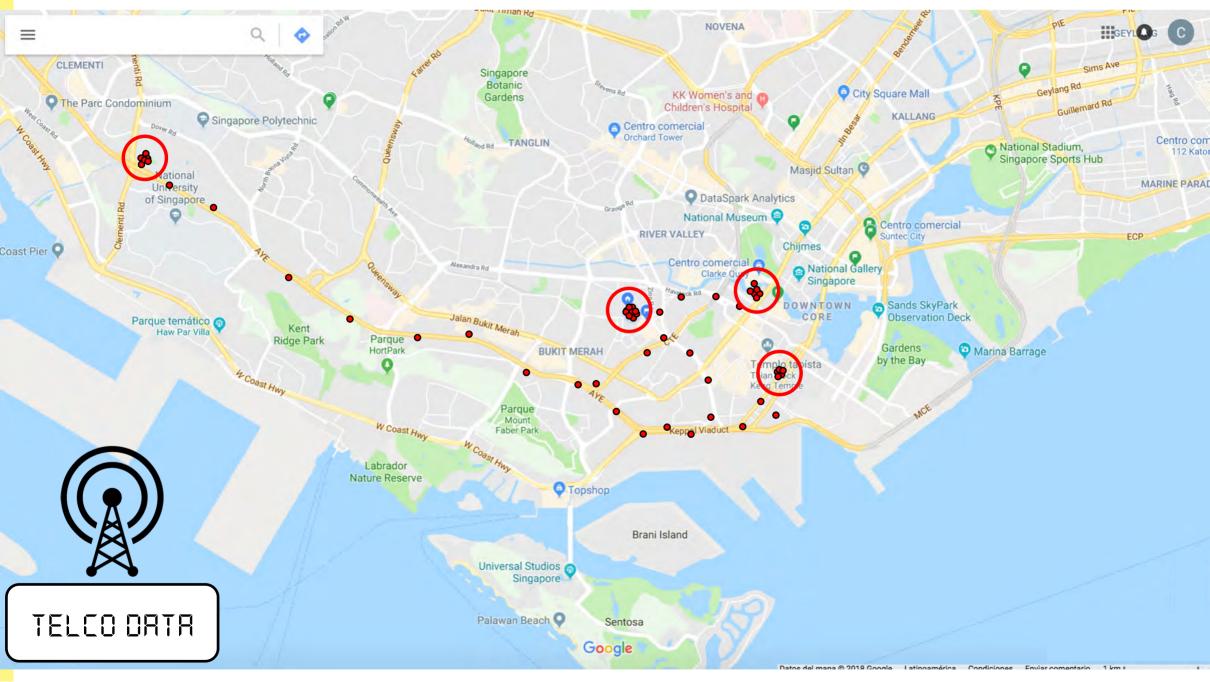
Name	Mobile	Connections		
Dr. SHI Cheng	+86 1601	CT45_20180112_07:51:23:2345, CT45_20180112_07:54:54:4351, CT47_20 CT51_20180112_08:33:25:2432		
Temo Anda	+65 8732	CT23_20180112_06:30:44:6322, CT23_20180112_06:32:41:1211, CT23_20 CT20_20180112_07:55:33:5254		
Lu Han	+86 2021	CT89_20180112_06:45:43:4425, CT90_20180112_06:45:59:9888, CT89_20 CT90_20180112_07:23:55:6329		

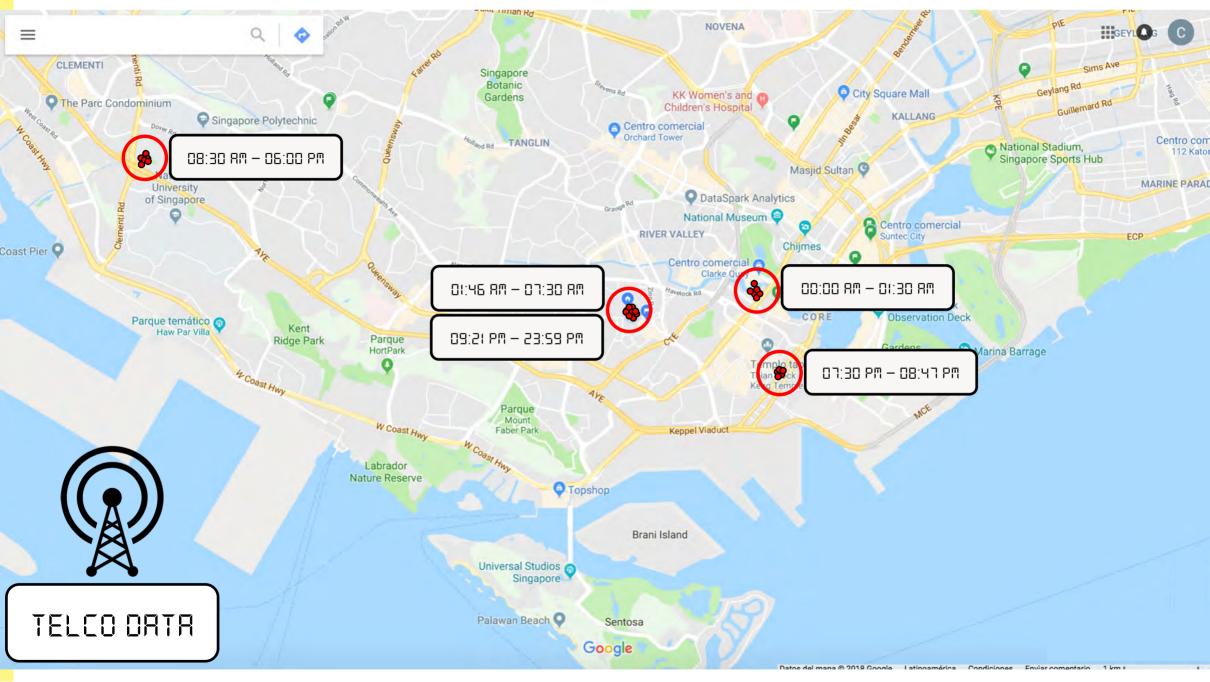
What if we anonymize it?

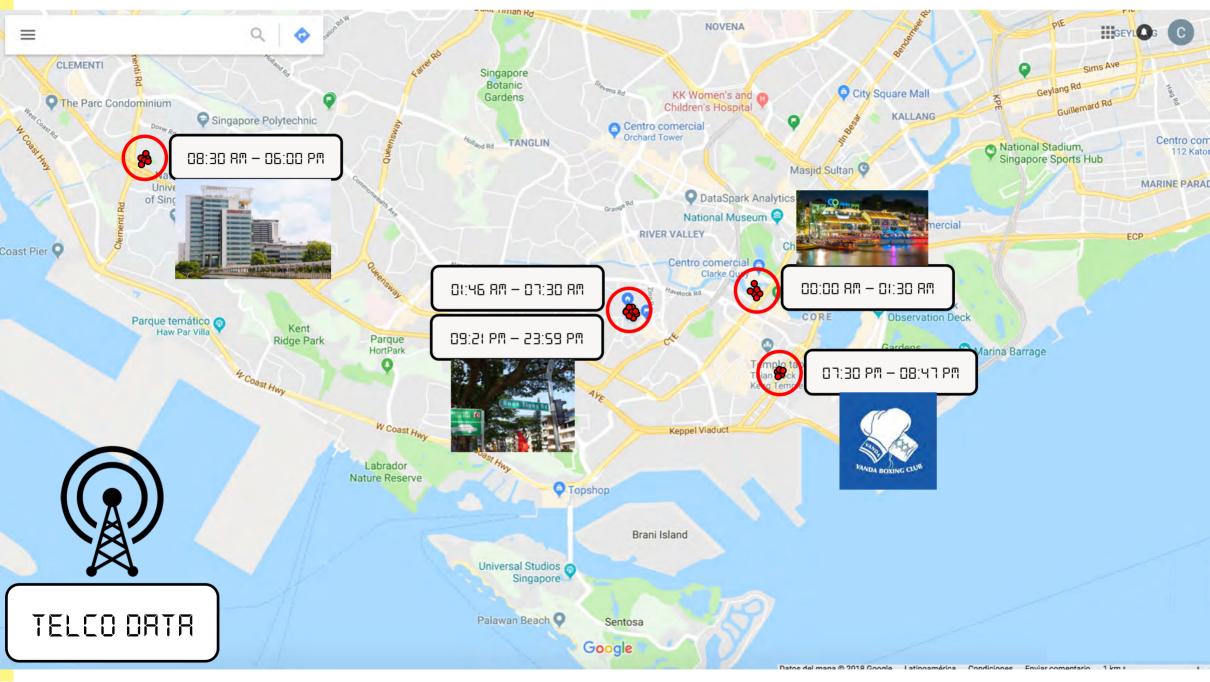
Id	Connections	
X11234FFD8	CT45_20180112_07:51:23:2345, CT45_20180112_07:54:54:4351, CT47_20180112_08:11:02:3421, CT51_20180112_08:33:25:2432	
X95840908F	CT23_20180112_06:30:44:6322, CT23_20180112_06:32:41:1211, CT23_20180112_06:40:37:8678, CT20_20180112_07:55:33:5254	Is it safe?
X85040VDY3	CT89_20180112_06:45:43:4425, CT90_20180112_06:45:59:9888, CT89_20180112_06:51:63:6895, CT90_20180112_07:23:55:6329	

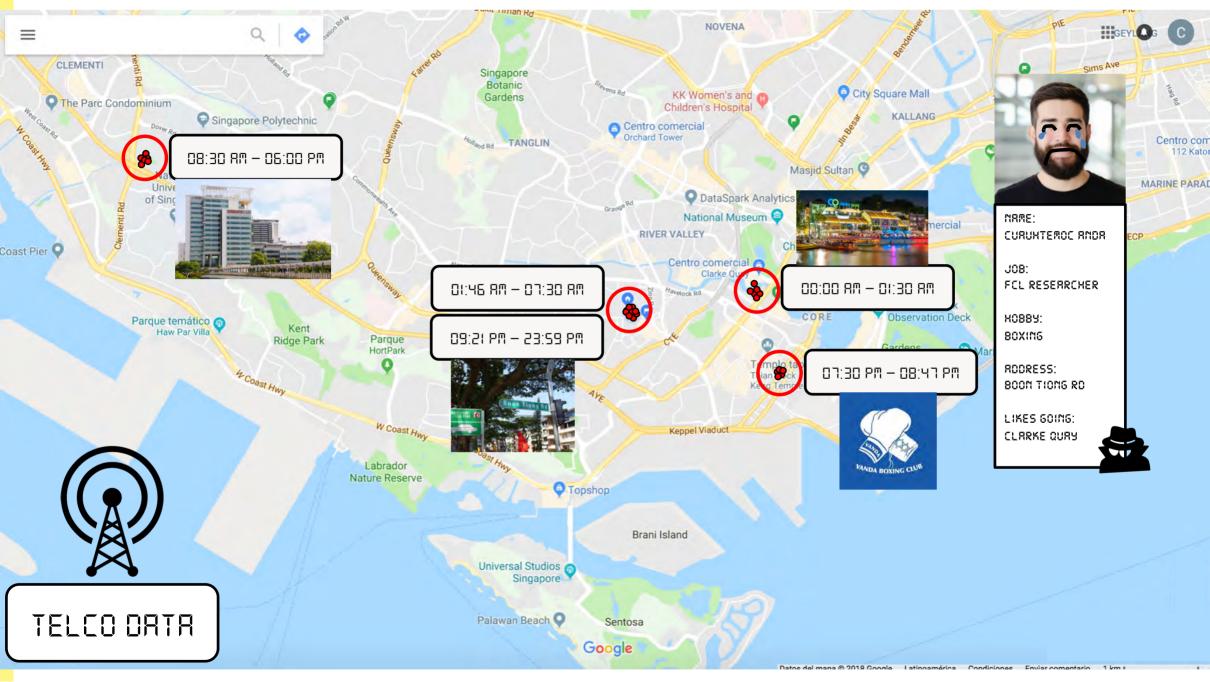
Mobile phone data: Let's take a closer look











Mobile phone telco data

And Privacy

"... in a dataset where the location of an individual is specified hourly, and with a spatial resolution equal to that given by the carrier's antennas, four spatiotemporal points are enough to uniquely identify 95% of the individuals."

de Montjoye, Y.-A., C. A. Hidalgo, M. Verleysen, and V. D. Blondel. Unique in the Crowd: The Privacy Bounds of Human Mobility. *Scientific reports*, Vol. 3, 2013, p. 1376. https://doi.org/10.1038/srep01376.

What to do then?

Mobile phone telco data is very valuable for transport planning...

Big question for Big Data

... Can we extract useful information without compromising users' privacy?

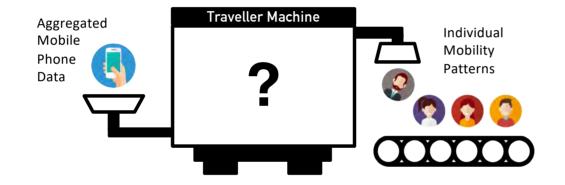
(Easy-sharing) (Less Cost)

The Doppelgänger idea

The Doppelgänger idea

Keanu Reaves (Matrix) Adam Driver (Star Wars) We are interested in a detailed description of agents for MATSim...

Generating a doppelgänger population



<u>Task</u> Without consulting individual data generate realistic individual mobility patterns

An intuitive example

Real population weight

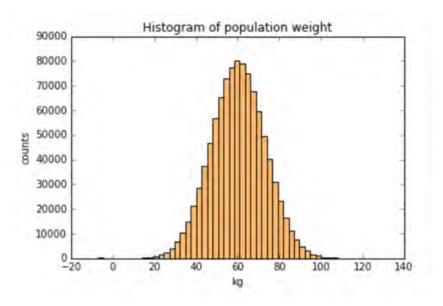
50.11532168513191

48.65649004247139

61.403481911621405

59.1568694908791

...



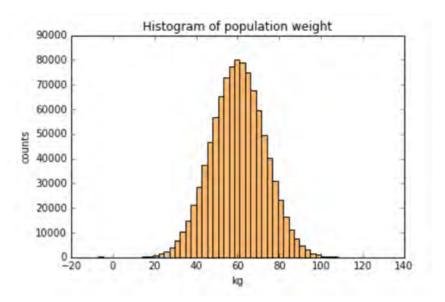
Intuitive example:

Real population weight 50.11532168513191

48.65649004247139

61.403481911621405

59.1568694908791

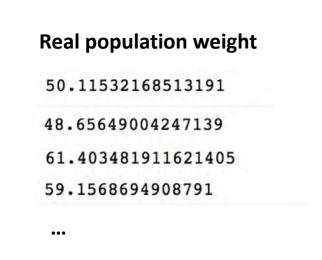


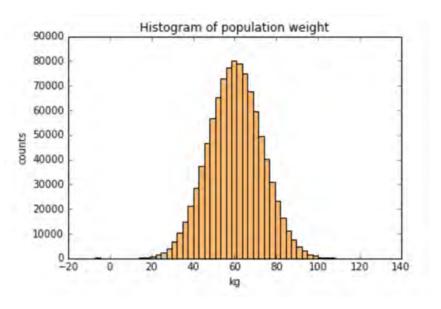
Intuitive example:

Weight of citizens of Shanghai

In []: np.random.normal()

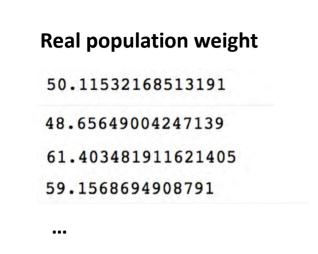
...

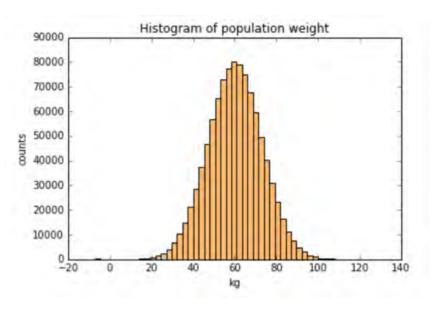




Intuitive example:

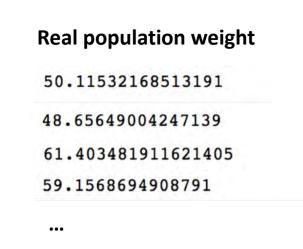
In [2]:	np.random.normal()
Out[2]:	63.29561731708119





Intuitive example:

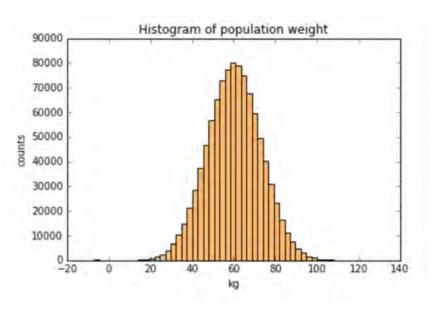
In [3]:	np.random.normal()
Out[3]:	67.25242342967776



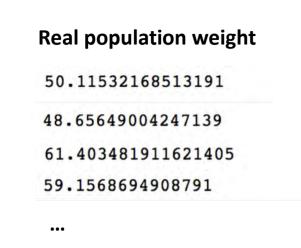
np.random.normal()

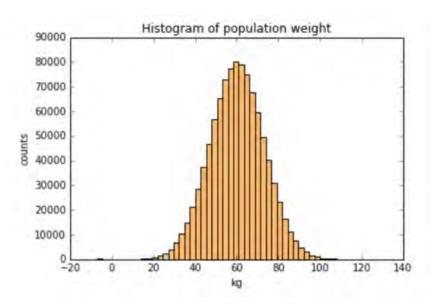
Out[4]: 52.30204118306012

In [4]:



Intuitive example:





Intuitive example:

In [5]:	np.random.normal()
Out[5]:	46.52883437707794

Real population weight

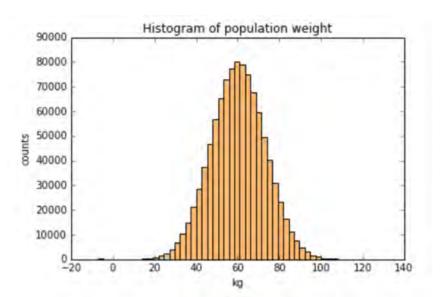
50.11532168513191

48.65649004247139 61.403481911621405

59.1568694908791

...

...

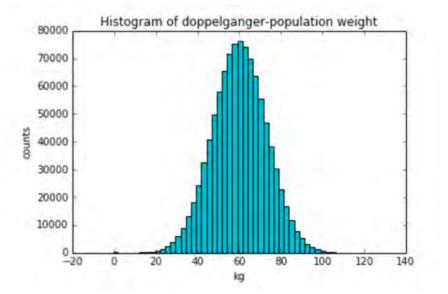


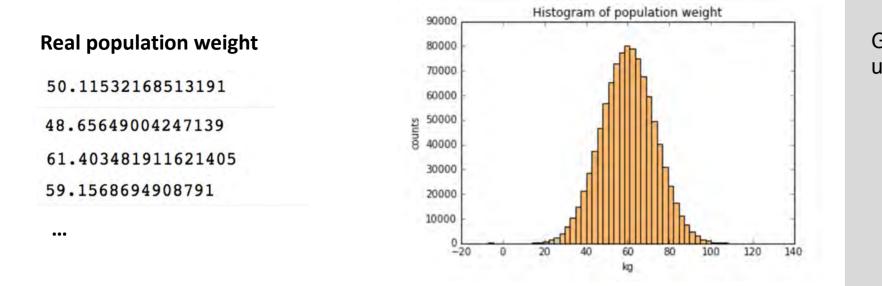
Intuitive example:

Weight of citizens of Shanghai

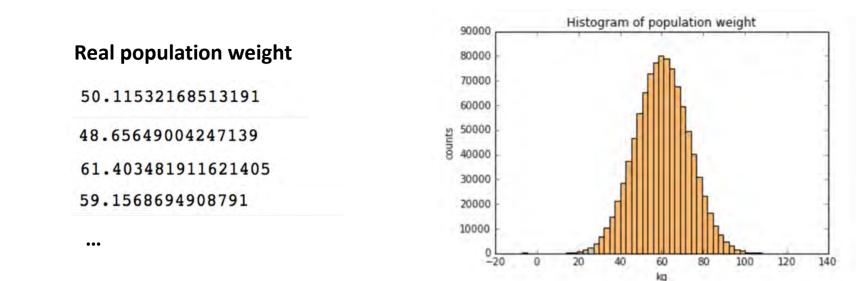
Doppelgängers weight

63.29561731708119 67.25242342967776 52.30204118306012 46.52883437707794





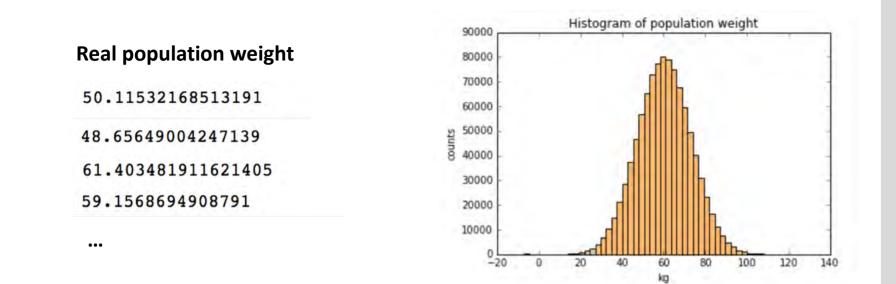
In []: GenerateAgentLocations()



In [11]: GenerateAgentLocations(1)

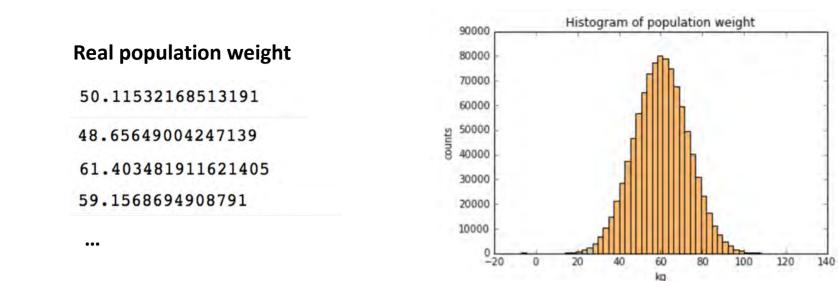
Out[11]:

	User	Start Time	Subzone	Duration	End Time
0	u_1	00:00:00	KEAT HONG	8	08:00:00
1	u_1	08:30:00	CENTRAL SUBZONE	14	22:30:00
2	u_1	23:30:00	KEAT HONG	12	36:00:00



In [12]: GenerateAgentLocations(1)

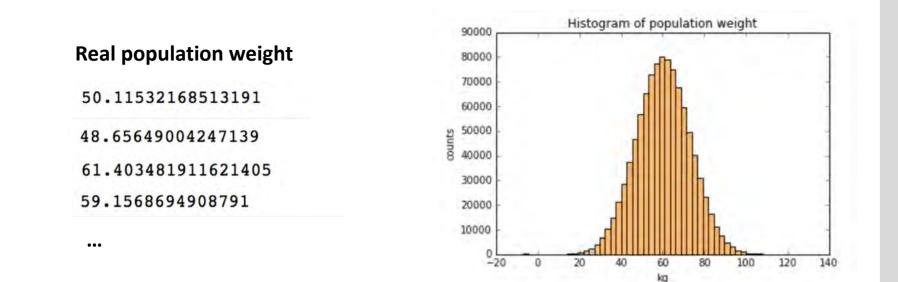
Out[12]:		User	Start Time	Subzone	Duration	End Time
	0	u_1	00:00:00	YUNNAN	7	07:00:00
	1	u_1	07:30:00	TUAS NORTH	2	09:30:00
	2	u_1	10:30:00	TAI SENG	1	12:00:00
	3	u_1	13:00:00	YUNNAN	16	29:30:00



In [13]: GenerateAgentLocations(1)

Out[13]:

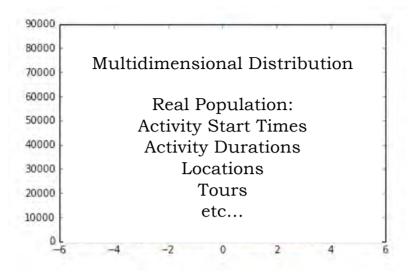
	User	Start Time	Subzone	Duration	End Time
0	u_1	00:00:00	FLORA DRIVE	4	04:00:00
1	u_1	05:00:00	CHANGI AIRPORT	1	06:00:00
2	u_1	07:00:00	MARINA EAST	3	10:30:00
3	u_1	11:30:00	KALLANG BAHRU	6	18:00:00
4	u_1	19:00:00	FLORA DRIVE	11	30:30:00



In [14]:

4]: GenerateAgentLocations(1)

Out[14]:		User	Start Time	Subzone	Duration	End Time
	0	u_1	00:00:00	GEYLANG EAST	7	07:00:00
	1	u_1	07:30:00	SINGAPORE GENERAL HOSPITAL	11	18:30:00
	2	u_1	19:00:00	GEYLANG EAST	3	22:30:00
	3	u_1	22:45:00	GEYLANG EAST	13	36:15:00



In [14]:

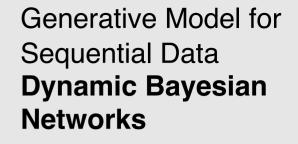
4]: GenerateAgentLocations(1)

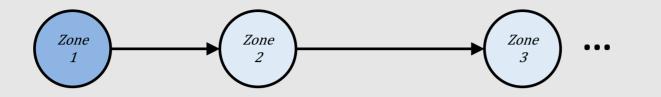
n	11+-	r 1	A 1	
	ut		~	
-		L -	_	

	User	Start Time	Subzone	Duration	End Time
0	u_1	00:00:00	GEYLANG EAST	7	07:00:00
1	u_1	07:30:00	SINGAPORE GENERAL HOSPITAL	11	18:30:00
2	u_1	19:00:00	GEYLANG EAST	3	22:30:00
3	u_1	22:45:00	GEYLANG EAST	13	36:15:00

Generative model of individual mobility patterns

[Dynamic Bayesian Networks]

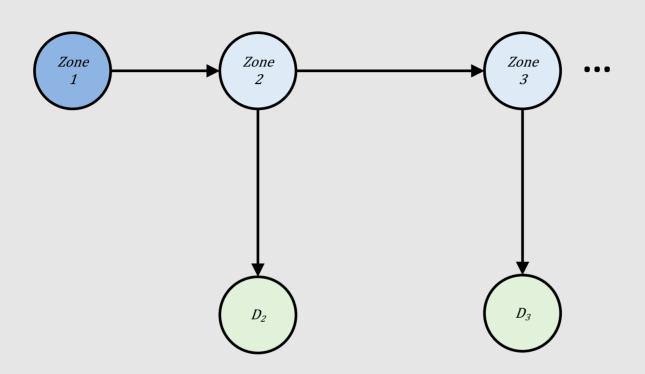




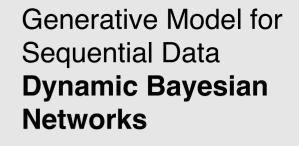
$$\boldsymbol{P}(\boldsymbol{Z}_{1:N}) = P(Z_1) \prod_{k=2}^{N} P(Z_k | Z_{k-1})$$

Generative Model for Sequential Data **Dynamic Bayesian Networks**

Hidden Markov Model

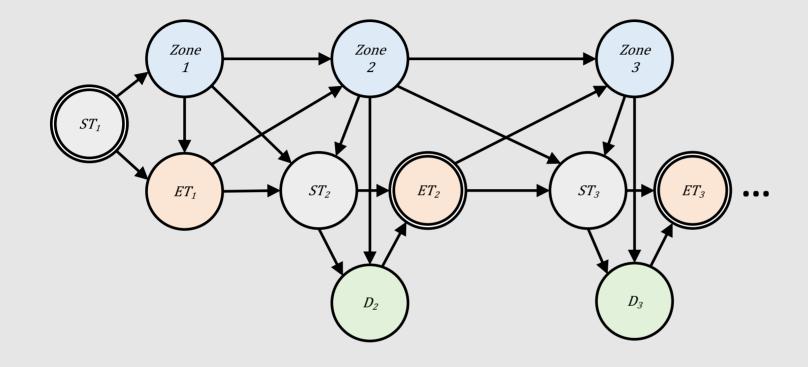


$$P(Z_{1:N}, D_{2:N}) = P(Z_1) \prod_{k=2}^{N} P(Z_k | Z_{k-1}) P(D_k | Z_k)$$



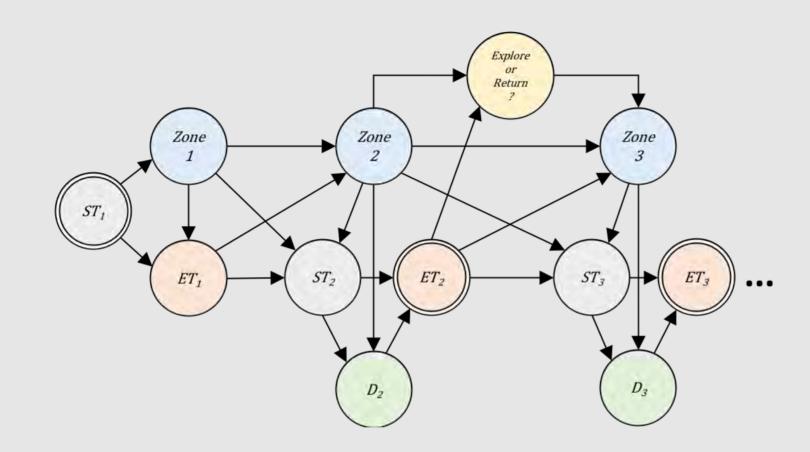
Our architecture 1.0

1st order Markov constraint



 $P(Z_{1:N}, ET_{1:N}, ST_{2:N}, D_{2:N}) =$

 $P(ST_1)P(Z_1|ST_1)P(ET_1|ST_1,Z_1)\prod_{k=2}^{N}P(Z_k|ET_{k-1},Z_{k-1})P(D_k|Z_k,ST_k)P(ST_k|Z_{k-1},ET_{k-1})$



Generative Model for Sequential Data **Dynamic Bayesian Networks**

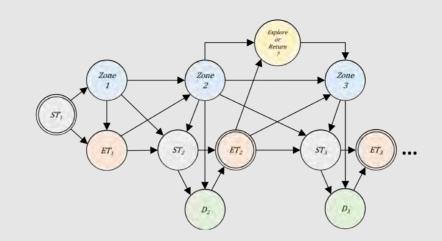
Our architecture 2.0

 $P(Z_{1:N}, ET_{1:N}, ST_{2:N}, D_{2:N}, ER_{2:N}) =$

 $P(ST_1)P(Z_1|ST_1)P(ET_1|ST_1,Z_1)\prod_{k=2}^{N}P(Z_k|ET_{k-1},Z_{k-1},ER_{k-1})P(D_k|Z_k,ST_k)P(ST_k|Z_{k-1},ET_{k-1})P(ER_k|Z_k,ET_k)$

Random Variables

215		AL:
315	Subzones	Aljunied
	(Discrete)	Raffles Place
		Tiong Bahru MRT
		Changi Airport
		Bedok
		Cecil
		Woodlands
24	Start Times	00:00
	(Discrete)	01:00
		23:00
24	End Time	00:00
	(Discrete)	01:00
		23:00
17	Durations	0 hr
	(Discrete)	1 hr
		16 hr
2	Explore or Return	Explore
	(Discrete)	Return



Time-space model of Urban Mobility **Variables**

Model parameters

Symbol	Description	# parameters
$z1_i$	probability of starting at zone <i>i</i>	315
$et1_k$	probability of first end time k	24
$\boldsymbol{z}_{i,j,k}$	probability of transition to zone <i>i</i> from zone <i>j</i> at time <i>k</i> subject to <i>explore/return</i> filter	315x315x24
$st_{p,j,k}$	probability of start time p given zone j at time k	24x315x24
$d_{q,i,p}$	probability of duration q at zone i and time p	17x315x24
$r_{q,i,p}$	probability of return r from zone j and time k	2x315x24
	Total # of parameters	2,706,819

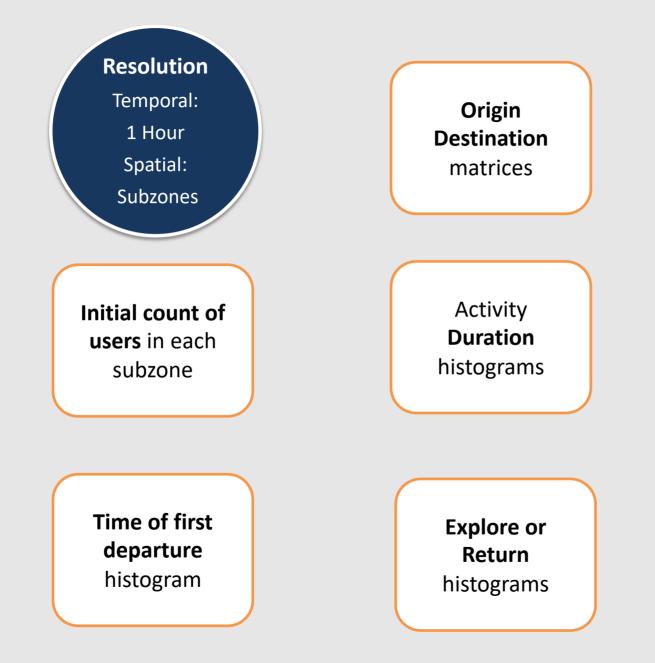
1. Obtain Likelihood Function

 $Likelihood(\Theta) = P(Data|Model(\Theta))$

- 2. Minimize negative log-likelihood subject to parameters of random variables sum to one
- 3. For categorical and fully observable random variables a closed-form solution is obtained.
- 4. Learning is the counts of **occurrences** in the data (i.e. frequencies).

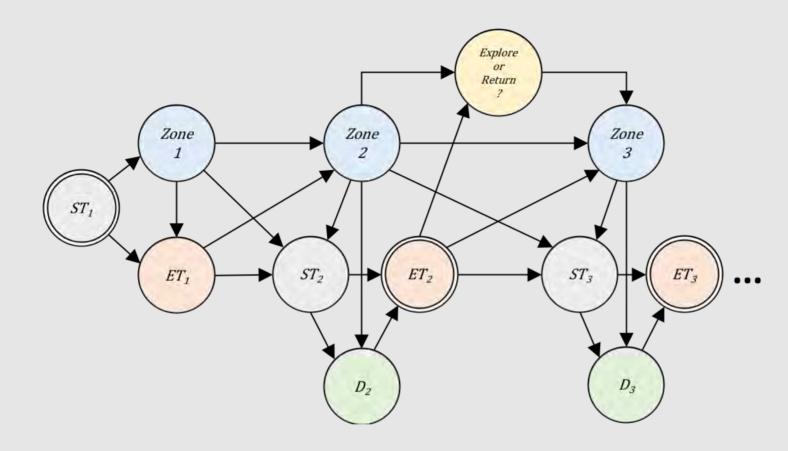
Time-space model of Urban Mobility **Learning**

Maximum Likelihood Estimation



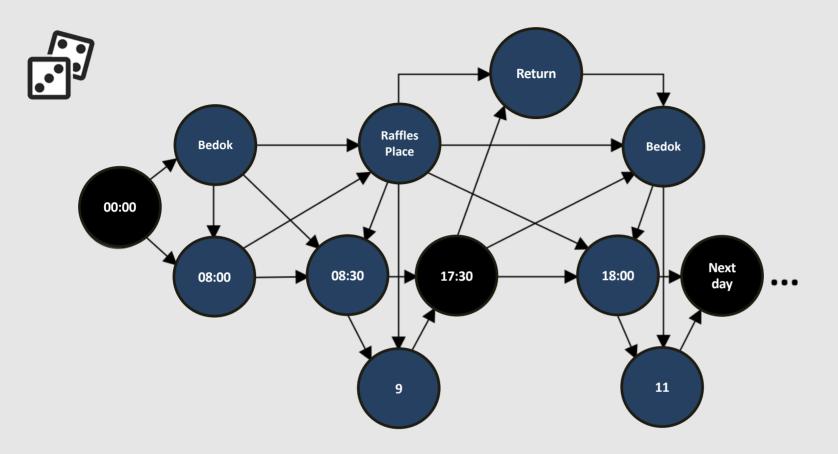
Time-space model of Urban Mobility Learning

5 Histograms or distributions needed from the mobile phone operator



Time-space model of Urban Mobility **Sampling**

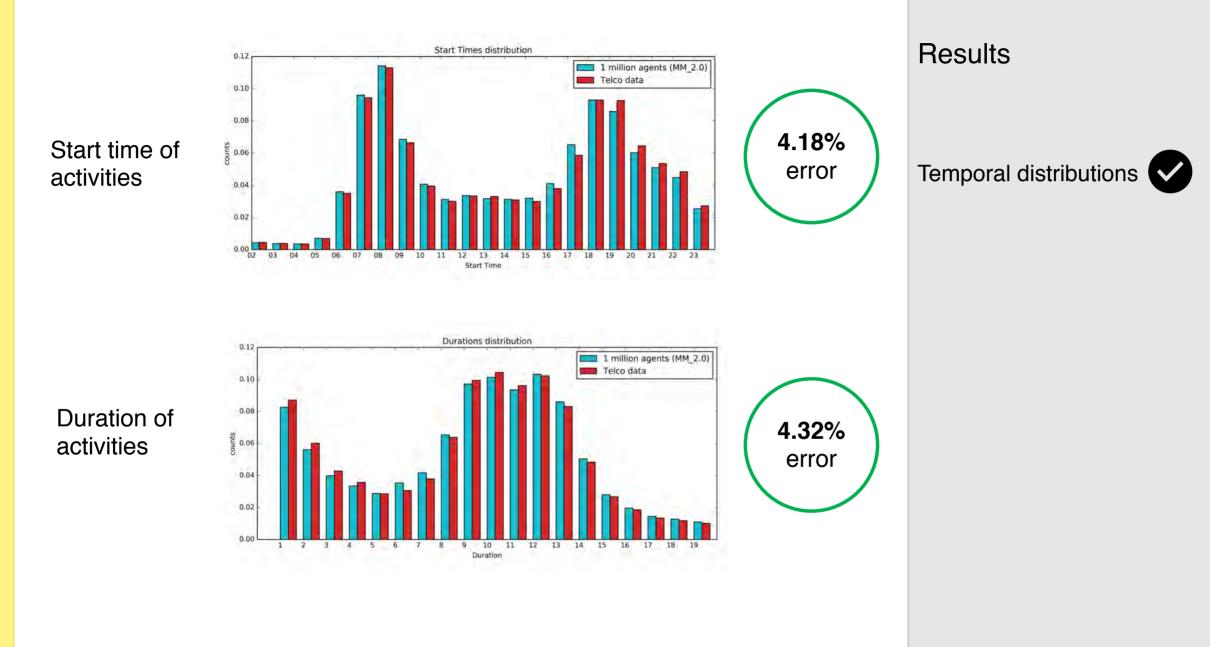
Prior (Forward) Sampling



Time-space model of Urban Mobility **Sampling**

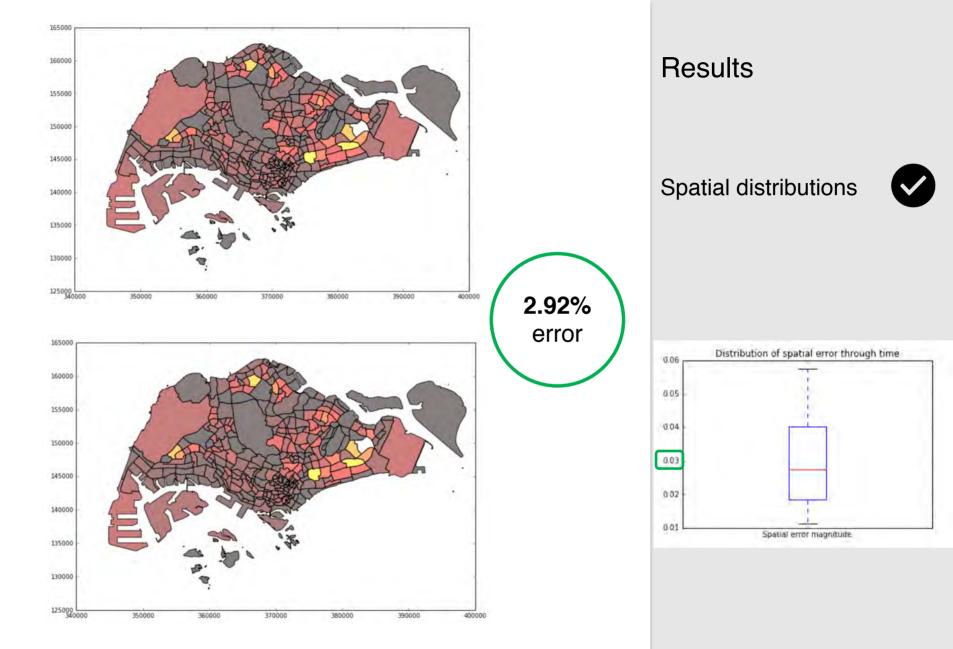
Prior (Forward) Sampling

[Generating 1 million agents]

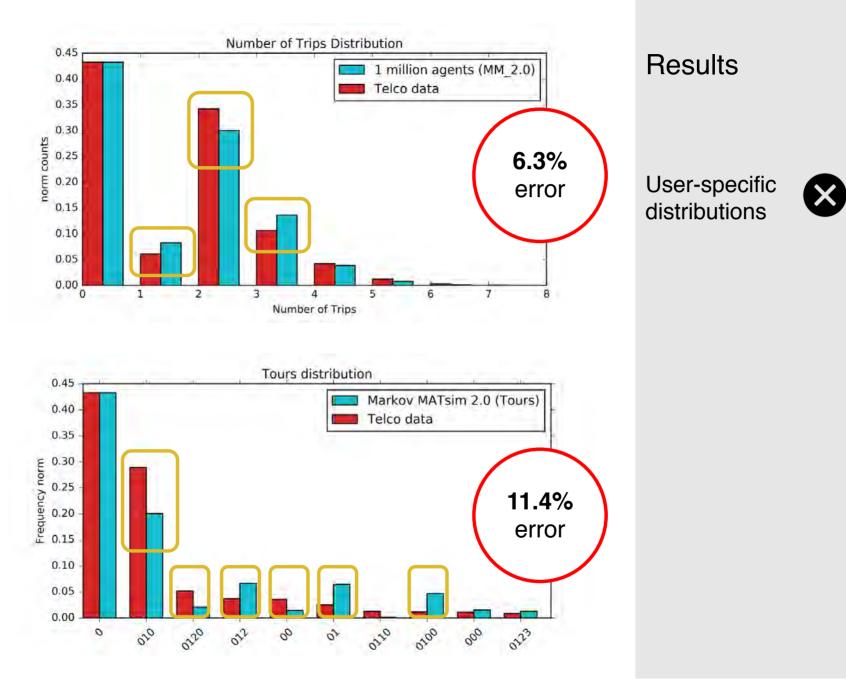


7 am density of **telco users**

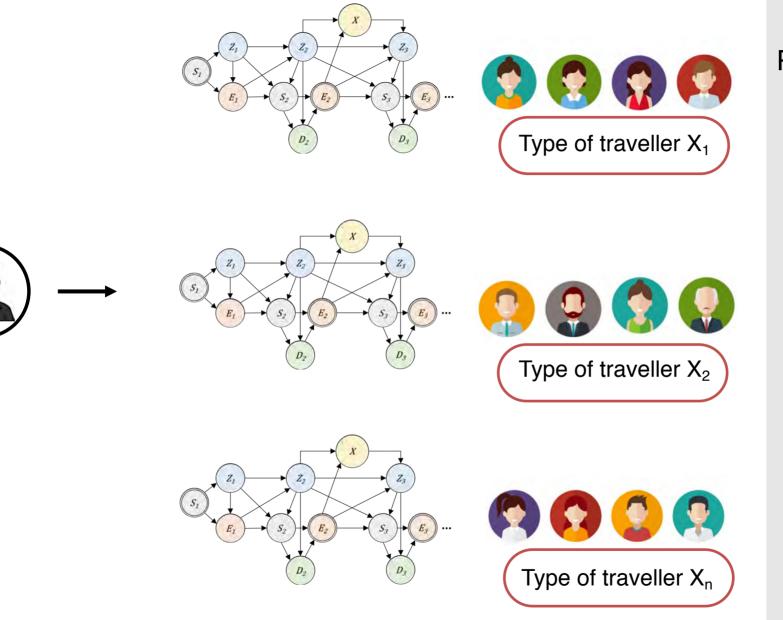
7 am density of agents generated



Number of trips per person



Top 10 daily tour configurations



Problem explanation

Archetypes of Urban Travellers [in Singapore] In transport studies, travellers are segmented into groups:

However,

No context / socio-demographics in mobile phone telco data (CDR)

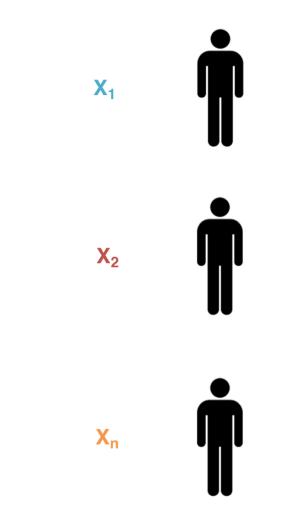
Workers

In transport studies, travellers are segmented into groups:

However,

No context / socio-demographics in mobile phone telco data (CDR)

By **only looking** at the **digital trace** left by mobile phones, how can we **group** the different types of **travellers**?



The idea

 Design a set of features that describe the travel behavior observed in mobile phone stay locations data

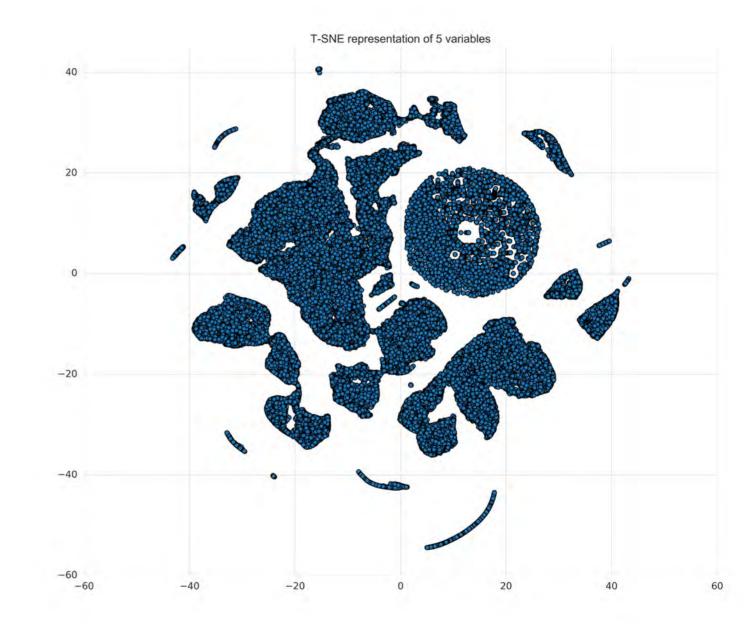
2. Use an appropriate **clustering** algorithm to find the emerging clusters of travellers

3. For **each** of the **clusters** found create a **generative model**, hopefully, the validation histograms will have a better match.

Feature Engineering

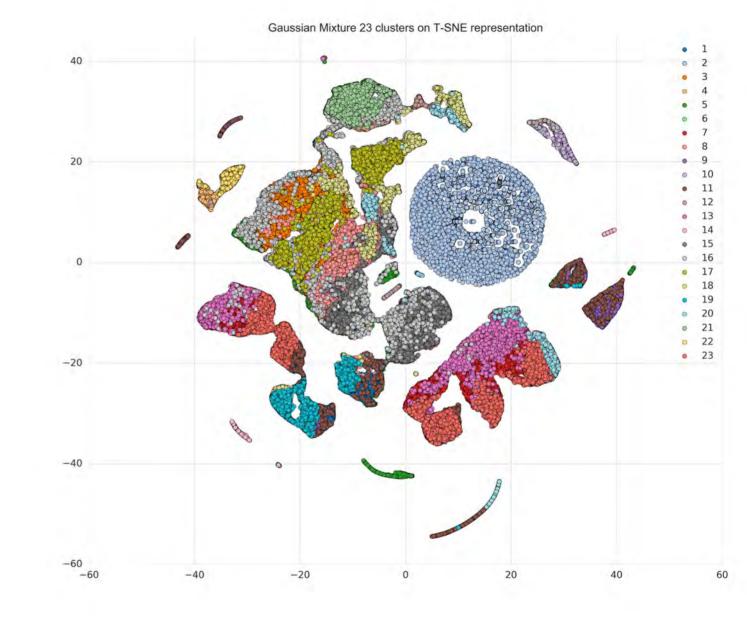
1	Mean of stay durations	The average of all user's stay durations. It gives a notion of the number of trips done by the user	[min]
2	Standard deviation of stay durations	Standard deviation of user's stay durations. Differentiate users with homogenous and non-homogenous activity durations	[min]
3	Bias morning / night	Mean of durations before 12pm – Mean of durations after 12pm Tells if user is a mornig or late traveler	[min]
4	First departure	Time of the day when user makes his/her first trip	[min]
5	Last arrival	Time of the day when user makes his/her last arrival	[min]

T-SNE representation (dimensionality reduction)



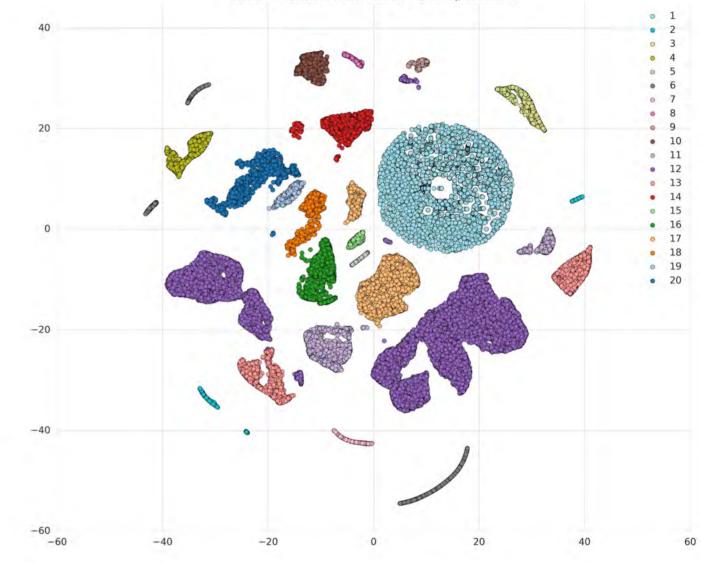
Clustering: Gaussian Mixture

Bayesian Information Criterion (BIC) -1.2 le7 -1.3 -1.4 -1.5 -1.6 -1.7 -1.8 -1.9 -2.0 -2.1 L 10 15 20 25 5



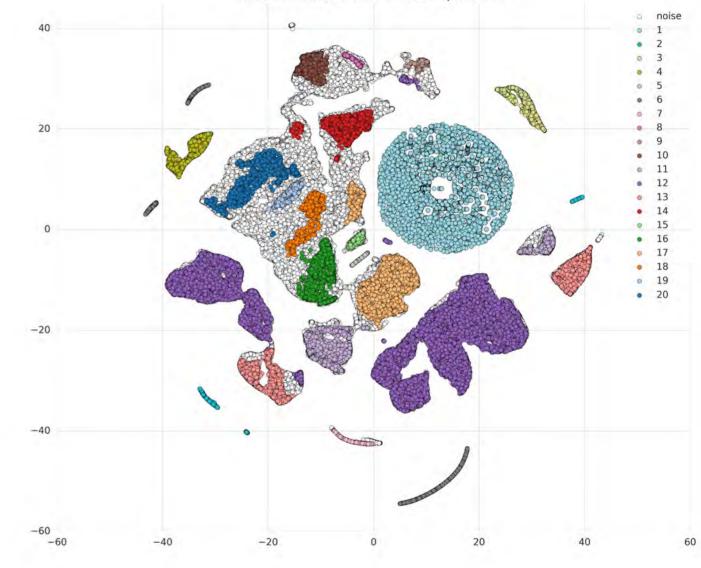
DBSCAN without noise

DBSCAN clusters without noise on T-SNE representation

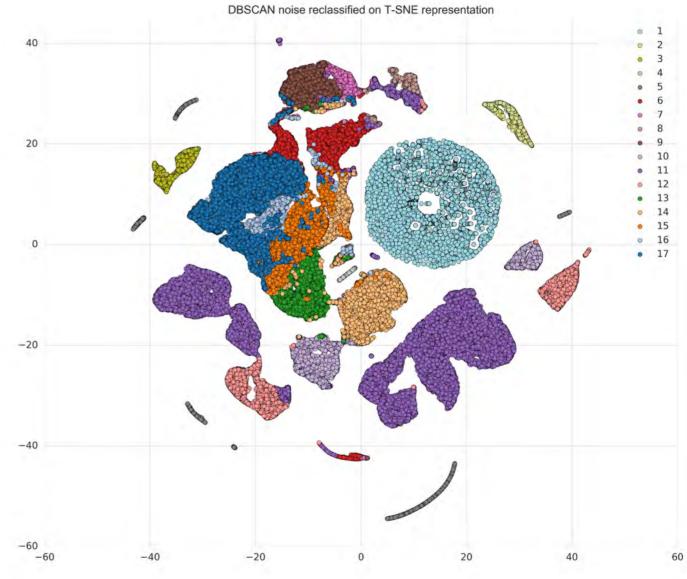


DBSCAN with noise

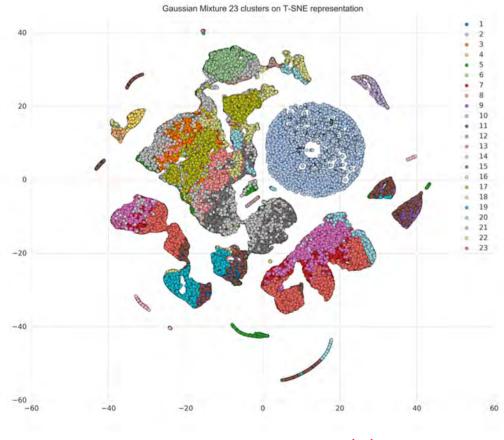
DBSCAN clusters with noise on T-SNE representation

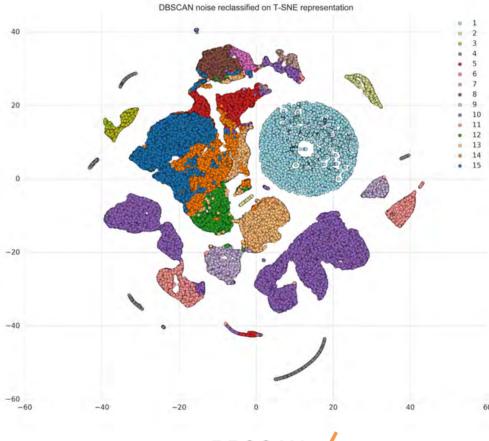


DBSCAN reclassification of noise (K-nearest neighbors)



Gaussian Mixture vs DBSCAN

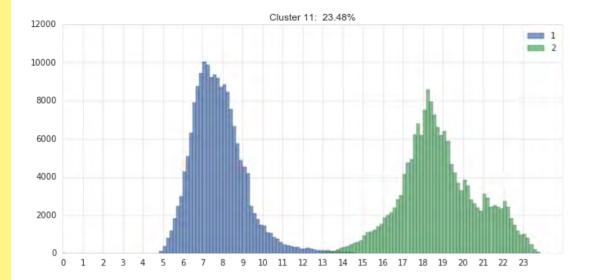


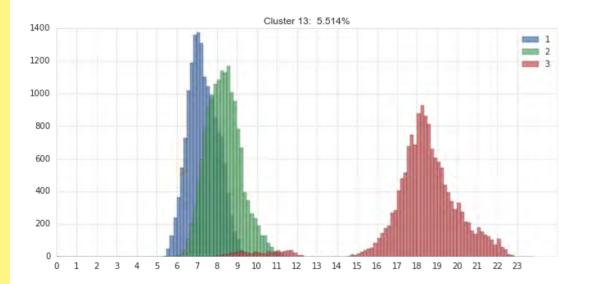


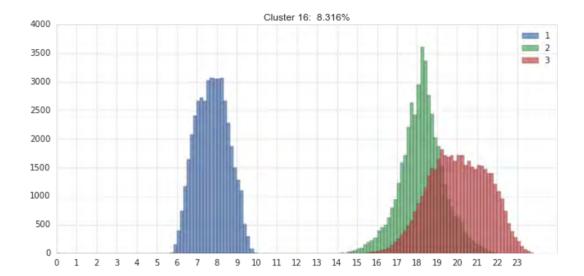
DBSCAN 🗸

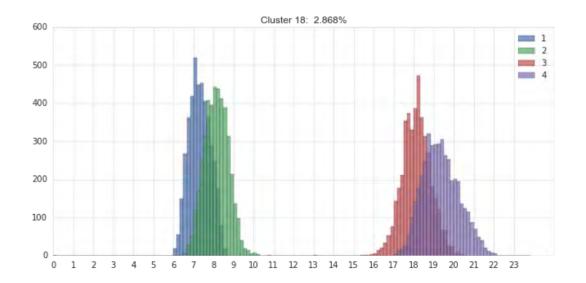
Gaussian Mixture X

Commuter with extra stop(s)

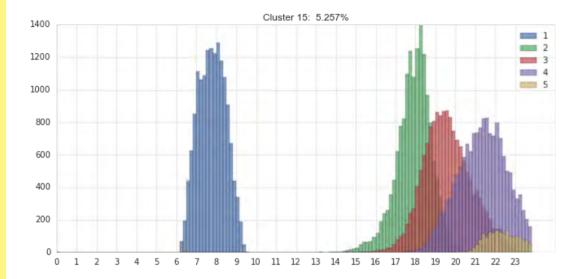


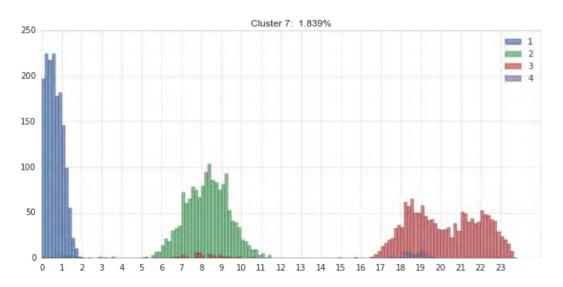


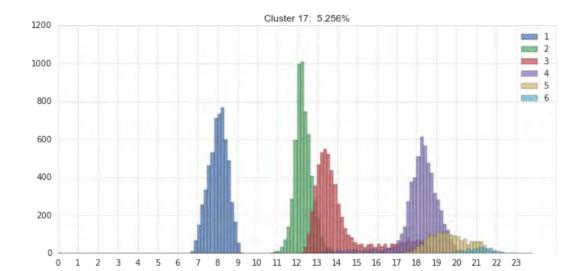




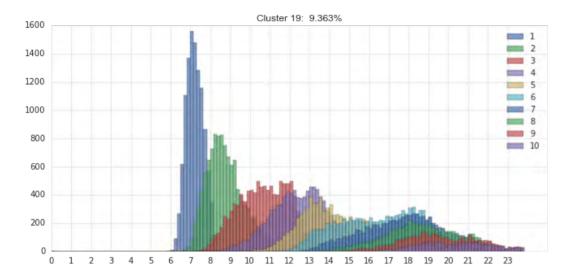
Commuter with additional trips

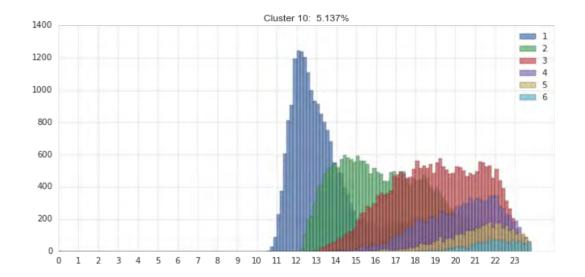


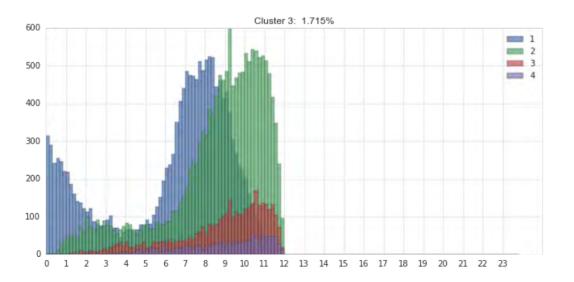


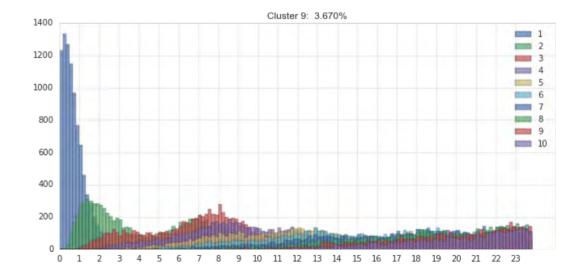


Non commuter with several trips

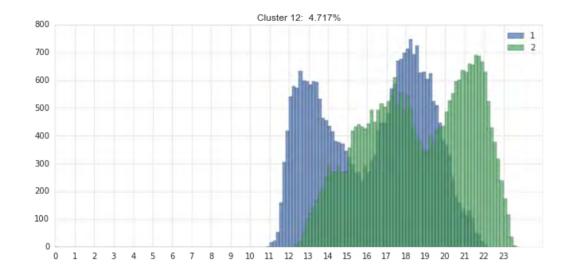


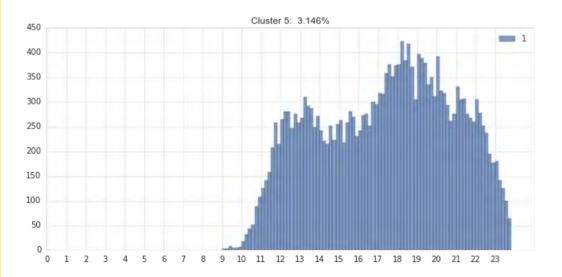


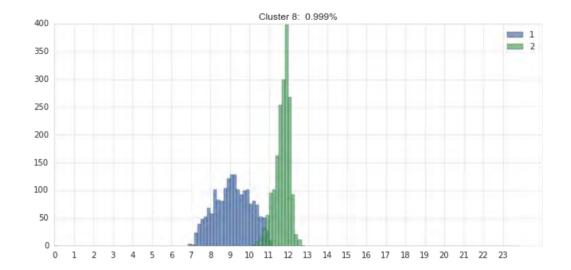


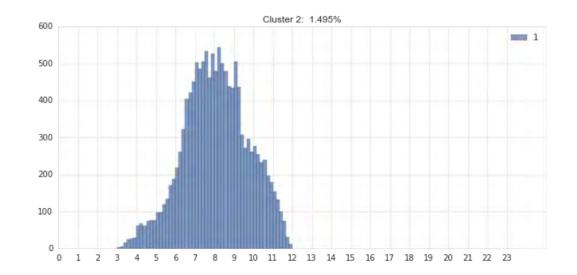


Non commuter with one activity/trip





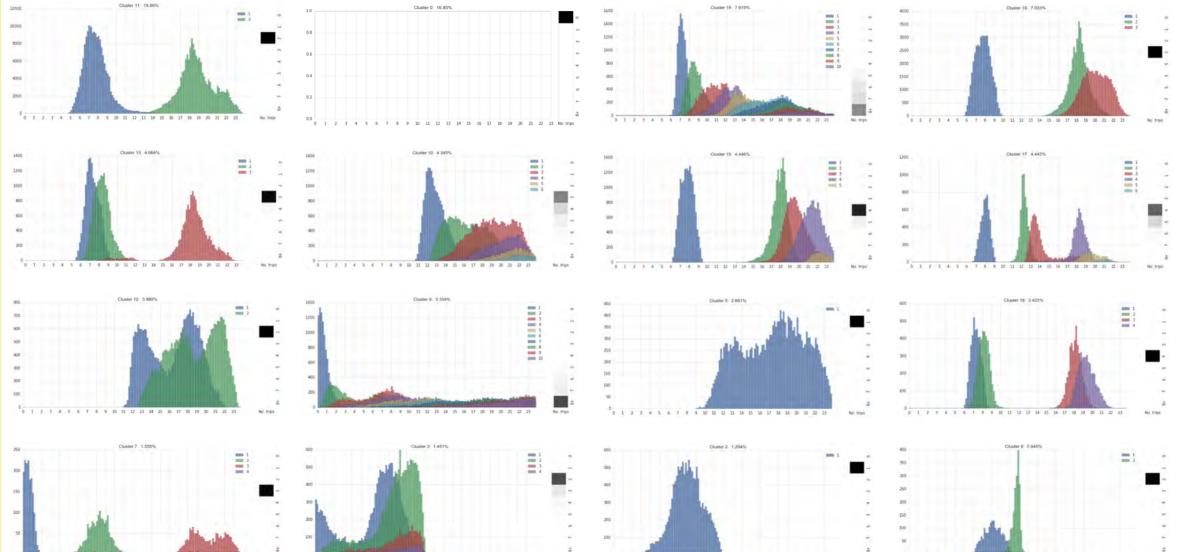




16 traveller archetypes in Singapore

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23



0 1 2 3 4 5 6 7 8 9 10 11 12

No trips 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

8 15 16 17 18 19 20 21 22 23 No trus 0 0 1 7 9 4 5 6 7 8 9 10 11 12 13

Future work

Future Work

Results of generative model of individual mobility patterns for each of the clusters of travelers found **Data Fusion.** Link sociodemographics and mode of transport to individual mobility patterns. Public transport smart card + travel survey + mobile phone data

Generate population for alternative scenario Extrapolate parameters of the model to be able to generate an alternative population. Test in MATSim.

Takeaways

Takeaway

Background

Availability of **Big Data** for **urban mobility**

Big Data enables **new Al models** and applications

Big Data raises **privacy concerns**

Aim

Develop **new** Big Data-driven and privacy-by-design **models** for **urban mobility** and **transport planning**

Research question

How to use **aggregates** of Big Data to **generate** a **population** for agent based simulations?

Methodology

- 1. Find clusters of travel behaviour in Big Data
- 2. For each cluster, train a generative model (dynamic Bayesian network) which only requires aggregated data.
- 3. Sample from the model to generate population.
- 4. Use population in agentbased simulations to answer planning questions.

ENGAGING BIG DATA – ENGAGING MOBILITY - FCL

Cuauhtemoc Anda PhD Researcher Data Scientist

Dr. Sergio Ordonez Senior Researcher Computer Science

Dr. Pieter Fourie Project Leader Senior Researcher

(FCL) FUTURE CITIES LABORATORY