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Abstract

We investigate autonomous racing of cars and derive control approaches replacing the

decision-making process of a human race car driver. The task has three main challenges.

First, the controller needs to be able to control the car at the limit of handling. Second,

the car has to stay safe on the track and finally, the controller needs to able to interact

with other race cars and dynamically adapt to the driving of the other cars. We derive a

control approach that can tackle all three goals and validate the proposed approach on

the miniature race car set-up hosted at the Automatic Control Lab at ETH Zürich. The

validation is performed either on the experimental set-up, or in a simulation environment

replicating the experimental set-up.

In a first step, we propose a novel path planning model which is based on a dynamic

bicycle model with nonlinear tire forces. The proposed model is able to generate a

rich set of possible trajectories that approximate the capabilities of the dynamic bicycle

model. The path planning model is optimized for decision making, with only a few

decisions and a long discretization time which allows for long term predictions with a

few prediction steps. Based on the path planning model, in a second step, we propose a

hierarchical racing controller, which uses the strength of the path planning model in an

upper level to generate a set of finite look-ahead trajectories out of which the trajectory

that maximizes the progress and stays within the track is selected. This trajectory is

then tracked using an MPC controller in the lower level subject to the dynamic bicycle

model and track constraints.

We propose to use the viability kernel in the path planning step, to guarantee that

all generated finite look-ahead trajectories are recursively feasible with respect to static

obstacles (e.g., stay inside the track). This formally adds safety to the path planning

step and at the same time speeds up the computation time and increases the closed-loop

performance. The viability kernel computation is based on space discretization. To make

the calculation robust against discretization errors, we propose a novel numerical scheme

based on game theoretical methods, in particular the discriminating kernel. We show

that the resulting algorithm provides an inner approximation of the viability kernel and

guarantees that, for all states in the cell surrounding a viable grid point, there exists

an input that keeps the system within the kernel. The performance of the proposed

hierarchical racing controller with viability constraints is studied in simulation where we

determine the effects of various design choices and parameters and in experiments in the

autonomous racing set-up. Both simulation and experimental results suggest that the
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more conservative approximation using the discriminating kernel results in a safer driving

style which starts braking earlier into curves, but this changed driving style comes at

the cost of a small increase in lap time.

The proposed hierarchical racing controller with viability constraints is able to tackle

the first two challenges in autonomous racing. For the third task where racing against

other cars is of interest, we propose an approach to formulate racing decisions as a non-

cooperative non-zero-sum game. We design three different games where the players aim

to fulfill static track constraints as well as avoid collision with each other; the latter con-

straint depends on the combined actions of the two players. The difference between the

games are the collision constraints and the payoff. In the first game collision avoidance

is only considered by the follower, and each player maximizes their own progress towards

the finish line. We show that, thanks to the sequential structure of this game, equilib-

ria can be computed through an efficient sequential maximization approach. Further,

we show that these actions, if feasible, are also a Stackelberg and Nash equilibrium in

pure strategies of our second game where both players consider the collision constraints.

The payoff of our third game is designed to promote blocking, by additionally reward-

ing the cars for staying ahead at the end of the horizon. We show that this changes the

Stackelberg equilibrium, but has a minor influence on the Nash equilibria. For online im-

plementation, we propose to play the games in a moving horizon fashion, and discuss two

methods for guaranteeing feasibility of the resulting coupled repeated games. Finally,

we study the performance of the proposed approaches in simulation for the miniature

race car set-up. The simulation study shows that the presented games can successfully

model different racing behaviors and generate interesting racing situations.
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Zusammenfassung

Wir untersuchen autonomes rennfahren von Autos und entwickeln Regelalgorithmen die

den Entscheidungsprozess eines menschlichen Rennfahrers ersetzen können. Die Auf-

gabe hat drei Hauptherausforderungen. Erstens muss der Regler fähig sein das Auto

im Grenzbereich zu beherrschen. Zweitens, sollte das Auto immer sicher innerhalb der

Strecke bleiben und letztlich sollte der Regler mit anderen Autos interagieren können

und dynamisch auf das Fahrverhalten der anderen Autos reagieren. In dieser Doktorar-

beit entwickelten wir einen Regelalgorithmus der alle diese Herausforderungen lösen kann

und validierten den vorgestellten Ansatz mithilfe des Miniatur-Rennauto Versuchsauf-

baus, des Institutes für Automatik an der ETH Zürich. Die Validierung wurde entweder

auf dem experimentalen Versuchsaufbau durchgeführt oder in einer virtuellen Simula-

tionsumgebung, die den experimentalen Versuchsaufbau wiederspiegelt.

In einem ersten Schritt präsentieren wir ein neuartiges Pfadplanungsmodel, wobei das

Model auf einem dynamischen Einspurmodel mit nichtlinearen Reifenkräften basiert.

Das vorgeschlagene Model kann ein umfangreiche Menge von Trajektorien generieren,

welche die Fähigkeiten des dynamischen Einspurmodels gut approximieren. Das Pfadpla-

nungsmodel ist optimiert für Entscheidungsprozesse, mit nur wenigen möglichen Entschei-

dungen und einer langen Diskretisierungszeit die es ermöglicht trotz eines kurzen Prä-

diktionshorizonten mit nur wenigen Zeitpunkten, Langzeit Entscheidungen zu treffen.

Basierend auf diesem Pfadplanungsmodel, schlagen wir in einem zweiten Schritt einen

hierarchischen Regler für autonomes Rennfahren vor, der in einer oberen Stufe die

Stärken des Pfadplanungsmodels ausnutzt um eine Menge von prädiktiven Trajekto-

rien zu generieren aus dieser Menge von Trajektorien wird die Trajektorie ausgewählt

die den Fortschritt entlang der Strecke maximiert und innerhalb der Strecke bleibt. Diese

Trajektorie wird dann, in der zweiten Stufe, von einem MPC Regler gefolgt, unter den

Nebenbedingungen das die MPC Trajektorie das dynamische Einspurmodel erfüllt und

innerhalb der Strecke bleibt.

Wir schlagen vor den Viabilitätskern (viability kernel) im Pfadplanungsschritt zu

verwenden um zu garantieren das alle generierten prädiktiven Trajektorien rekursiv

zulässig (recursive feasible) sind mit Respekt zu statischen Hindernissen (z.B. inner-

halb der Strecke bleiben). Das garantiert, dass der Pfadplanungsschritt formell sicher

ist und führt gleichzeitig dazu, dass die Rechenzeiten reduziert werden und verbessert

das Verhalten des geschlossenen Regelkreises. Die Berechnung des Viabilitätskernes

basiert auf der Diskretisierung des Zustandsraums. Um die Berechnung robust gegen
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diese Diskretisierungsfehler zu machen, schlagen wir einen neuen spieltheoretischen nu-

merischen Algorithmus vor, welcher auf dem “discriminating kernel” Algorithmus basiert.

Wir Zeigen, dass der resultierende Algorithmus eine innere Approximation des Via-

bilitätskernes generiert und garantiert, dass für alle Zustände in einer Zelle um einen

“viable” Gitterpunkt auch eine Regelgrösse existiert, die das System innerhalb des

Kerns behält. Die Leistungsfähigkeit des vorgeschlagenen hierarchischen Regler mit Vi-

abiliätsnebenbedingungen wurde in einer Simulationsstudie untersucht, wo die Effekte

von verschiedenen Designausführungen und Parametern bestimmt wurden, sowie in dem

experimentellen autonomen Rennauto Versuchsaufbau. Beide die Simulations- und Ex-

perimentellen Resultate suggerieren, dass die konservativere Approximation basierend

auf dem “discriminating kernel” zu einem sichereren Fahrstil führt, wobei sich die Run-

denzeit nur leicht erhöht.

Der vorgeschlagene hierarchische Regler mit Viabilitätsnebenbedingungen, kann die

ersten zwei Herausforderungen im autonomen Rennfahren lösen. Für die dritte Aufgabe,

wo das Rennfahren gegen andere Autos von Interesse ist, schlagen wir eine Methode

vor, die den Entscheidungsprozess als ein Kein-Nullsummenspiel formuliert. Genauer

haben wir drei verschiedene Spiele hergeleitet, und in allen Spielen müssen die Spieler

Nebenbedingungen erfüllen die Verlangen, dass die Autos innerhalb der Streck bleiben,

sowie dass die Autos keine Kollisionen haben, was die Entscheidungen der zwei Spieler

verbindet. Der Unterschied zwischen den Spielen sind die Kollisionsnebenbedingungen

und der Gewinn der Spieler. Im ersten Spiel werden die Kollisionsnebenbedingungen

nur vom Follower berücksichtigt und jeder Spieler maximiert sein Fortschritt in Rich-

tung der Ziellinie. Durch die sequentielle Struktur im Spiel kann die optimale Lösung,

durch einen sequentiellen Maximierungsansatz berechnet werden. Zusätzlich können wir

zeigen, dass die gleichen Entscheidungen, wenn zulässig für die Nebenbedingungen, auch

ein Stackelberg und Nash Equilibrium in reinen Strategien von unserem zweiten Spiel

sind, wo beide Spieler die Kollisionsnebenbedingungen berücksichtigen. Der Gewinn der

Spieler im dritten Spiel ist konstruiert um Verteidigungsverhalten zu belohnen, dass ist

erreicht indem das Auto was am Ende des Horizontes in Führung ist einen zusätzlichen

Bonus Gewinn bekommt. Wir zeigen, dass diese geänderte Gewinnstruktur die Stack-

elberg Equilibria ändert aber nur eine minimalen Einfluss auf die Nash Equilibria hat.

Für eine Online Implementierung schlagen wir vor das Spiel in einer “Moving Horizon”

Art zu Spielen, und wir präsentieren zwei Methoden die garantieren das alle Entschei-

dungen der verknüpften repetitiven Spielen zulässig mit den Nebenbedingungen sind.

Schlussendlich, untersuchen wir die Leistungsfähigkeit der vorgeschlagenen Methoden in

einer Simulationsstudie für den autonomen Rennauto Versuchsaufbau. Die Simulation-

sstudie zeigt, dass die präsentierten Spiele erfolgreich verschiedene Rennfahrer Verhalten

modellieren kann, und interessante Rennsituationen generieren können.
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CHAPTER 1
Introduction

Control design for autonomous driving has attracted considerable attention from the

research community and has been successfully demonstrated on several occasions, for

example in the context of Autonomous Highway Systems (AHS) in 1997 [1] within the

California PATH program, or in contests such as the DARPA Grand Challenge in 2005 [2]

and the Urban Challenge in 2007 [3] by numerous research groups. Autonomous driving

stayed an active research field ever since, see [4–6] for three recent surveys. In these

projects, the main goal was to develop autonomous driving systems for public roads. In

contrast to this stands autonomous racing, where the goal is to drive as fast as possible

around a predefined track, which requires driving the car at the limit of the handling.

Autonomous racing has attracted far less attention than autonomous driving nevertheless

several approaches do exist for autonomous racing [7–9].

In this thesis, we mainly focus on optimization-based controllers for autonomous rac-

ing, more specifically we present a hierarchical racing controller. For the given controller

we tackle two problems, which are also generally arising in optimization-based control

for autonomous driving. The first problem is caused by the requirement for the car to

stay on the track which is encoded through state constraints. However, without appro-

priate modifications, these constraints can lead to a loss of feasibility of the underlying

optimization problem when the control algorithm is implemented in a receding horizon

fashion, which may lead to accidents. In receding horizon control, recursive feasibility

can be achieved by imposing terminal set constraints [10]. In autonomous driving, how-

ever, this issue is often neglected because terminal set constraints can be difficult to

compute. One approach to incorporate terminal set constraints is by using the method

proposed in [9], where the repetitive nature of autonomous racing is used to construct a

terminal set from past observations. In this thesis, we propose an approach which uses

viability theory to derive a safe set which is incorporated using viability constraints that

guarantee recursive feasibility of the controller. The second problem we tackle is the

interaction with other cars. This is a problem not limited to autonomous racing and is

one of the biggest challenges for self-driving cars on public roads as well. The funda-

mental problem comes from the fact that the intentions of the other cars are not known.
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Chapter 1. Introduction

Autonomous racing allows for a more controlled environment where the rival cars gen-

erate a dynamically changing environment. However, in racing the interactions between

the vehicles are governed by less strict rules than on public roads; for example, there

are no lanes and lane changes are not indicated. This implies that while in autonomous

driving one can develop methods that assume a minimum degree of cooperation from

neighboring vehicles [11–13], such an approach is harder for autonomous racing. There-

fore, methods for autonomous racing often ignore obstacle avoidance altogether [7–9],

or only consider the avoidance of static obstacles [14, 15]. In this thesis, we propose a

game theoretical approach to deal with the uncertainty in the driving behavior of the

opponent cars resulting in an autonomous racing game.

1.1 Outline and contribution

In the following, the outline of this thesis is presented, and the contributions are put

into the context of the existing literature.

1.1.1 Experimental set-up

In Chapter 2 the experimental set-up is introduced. The set-up is used in subsequent

chapters either directly to validate the controller or as a basis for our simulation environ-

ment. Furthermore, we introduced some additional work conducted on the experimental

set-up during this thesis.

1.1.2 Hierarchical racing controller

In Chapters 3 and 4 we discuss the vehicle models used in this thesis. This includes a

newly developed vehicle model which is tailored for path planning and decision making.

In Chapter 4 the model is then incorporated into a hierarchical control structure wherein

the higher level plans a finite horizon path using this model, and in the lower level a

Model Predictive Controller (MPC) tracks the planned trajectory. In the autonomous

driving literature, hierarchical control structures are a popular technique. Often the

lower level incorporates a detailed model of the vehicle, but the higher level is based on

simplified models. Using an MPC tracking controller in the lower level is common due

to the systematic way constraints can be incorporated. The main difference between

the different approaches is the way the nonlinear vehicle dynamics are considered in the

MPC problem. The most popular techniques are to either directly use the nonlinear dy-

namics and rely on a nonlinear programming (NLP) solver [16], or to use approximation

techniques, for example, linear time-varying (LTV) approximations [17] or piece-wise

affine (PWA) approximations [18], resulting in a convex quadratic program (QP) or a

2



1.1 Outline and contribution

mixed-integer QP, respectively. Our approach follows the same ideas and uses an LTV

approximation, mainly due to computational benefits. Note that there exists a signifi-

cant amount of non-MPC based low-level controllers, see for example [7,19,20], however,

these methods have the drawback that state constraints are hard to incorporate.

When designing a hierarchical controller, one of the main challenges is the interplay

between the two levels. The main problem is to guarantee that the decision of the

higher level path planner can be executed by the lower level tracking controller. For

example, in [21] a simple point mass model is used in the high-level path planner to

limit the computational complexity. This, however, can be problematic if the generated

trajectory is infeasible with respect to the car’s physical dynamics, which can lead to

preventable collisions [22]. The latter reference suggests to use a library of steady-state

movements (trims) with parametrizable length, which are generated from a more complex

dynamical model, and to connect them by maneuvers which allow the transition from

one trim to another, similar to the idea of [23]. This path planning methodology has

the advantage that it generates feasible reference trajectories for the low-level tracking

controller. However, the resulting optimization problem is a mixed-integer program that

is too complex to be solved within the typical sampling times. In [24], this problem

is overcome by incorporating the lower level steering controller in the higher level path

planner, which allows one to guarantee that the planned path is drivable by the car.

In our approach, the model used in the higher level path planner is designed such

that the path generated is a good approximation for the vehicle model in the lower level

controller. Our modeling approach is similar to the trim and maneuver based approach

used in [22, 23]. However, by simplifying the model and only considering trims and by

modifying the task from a standard point-to-point path planning problem to a finite

horizon optimal control problem with a well-chosen objective function the computation

times can be reduced. These modifications allow implementing the higher level path

planner in real-time, at least for short prediction horizons.

Alternatively to hierarchical controllers, to avoid non-driveable references by the path

planner, one-level approaches have been investigated, for example, based on nonlinear

optimization [8, 14, 21, 25, 26] or using rapidly exploring random trees (RRT) in [27, 28].

However, in [21], where obstacle avoidance is incorporated by using a cost term that

penalizes coming too close to the obstacle, the controller is reported to perform worse

than its two-level counterpart, especially if the car has to diverge from the reference

trajectory. The second disadvantage of these methods are often long computation times

that prohibit real-time implementations. Exceptions include [8, 14] where the NLP is

approximated using the real-time iterations [29] to achieve low computation times needed

for a real-time implementation.

3



Chapter 1. Introduction

1.1.3 Viability constraints

In Chapter 5 we show how viability theory can be used to guarantee recursive feasi-

bility of the high-level path planner in the hierarchical controller presented in Chapter

4. Recursive feasibility is a well-known and well studied issue with receding horizon

controllers [10, 30] and can be tackled by appropriately chosen terminal constraints. In

autonomous driving, however, it is often neglected since it is hard to compute the neces-

sary invariant sets. In this work, we use the particular structure given by an autonomous

racing set-up to compute the viability kernel which, by enforcing the predictive path

planner to stay inside, guarantees recursive feasibility.

Viability theory was developed to characterize states of a dynamical system for which

solutions exist that satisfy its state constraints [31]. Though the use of viability theory in

model predictive control has been considered [32], most applications of the theory limit

themselves to establishing safe/viable regions in the state space [33–37] and reconstruct-

ing safe feedback controls [38]. At the heart of all these applications is the computation

of the viability kernel, the largest subset of states for which the state constraints can

be satisfied indefinitely. The viability kernel is typically approximated numerically us-

ing either the viability kernel algorithm introduced in [39], the discriminating kernel

algorithm in the case of an additional disturbance input [40], or by exploiting the link

to optimal control through viscosity solutions for Hamilton-Jacobi partial differential

equations [41, 42]. All these numerical methods are based on gridding the state space,

and hence their computational complexity grows exponentially in the dimension of the

state space. To reduce the computational load the link to reachable set calculation has

been exploited in [43], that allows for the development of efficient algorithms for linear

systems [44–47]. Similarly, if the dynamical system is polynomial and the constraints are

semi-algebraic sets, gridding can be avoided by using methods based on linear matrix

inequality (LMI) hierarchies [48].

The contributions in this chapter are threefold: We show that apart from guaran-

teeing safety, resorting to viability constraints also reduces computation times, which

enables the use of longer prediction horizons. A related approach was proposed in [49],

where the authors exhaustively generate trajectories and then discard the infeasible ones

a posteriori. Viability theory was also used in [35, 50] to construct safe trajectories and

speed up trajectory planning processes, respectively. Similarly, viability and reachability

analysis have also been used in autonomous driving to guarantee safety [11,37,51]. The

main difference between those approaches and our method is that we use the viability

kernel in a receding horizon fashion to generate viable trajectories only, which not only

ensures recursive feasibility but also speeds up the computation.

The second contribution of this chapter concerns the computation of the viability

kernel. In particular, we propose a method which takes into account the discretization

error due to the gridding in the viability kernel algorithm. More specifically, we pro-
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pose to model the discretization error as an additive uncertainty, and then formulate

the viability computation as a dynamic game between the uncertainty and the control

input. The victory domain of this game is then computed using the discriminating kernel

algorithm [40]. This stands in contrast to other algorithms for computing the viability

kernel, which mainly establish inner or outer approximations thereof. For example, the

effects due to the discretization are considered in [39, 40] by “extending” the set-valued

dynamics, which results in an outer approximation of the viability kernel; an error bound

for this approximation is given in [52]. A different approach was proposed in [53], where

interval analysis is used to find inner and outer approximations of the viability kernel.

Compared to those methods our game theoretical approach, which is an inner approxi-

mation of the viability kernel, does not only guarantee viability of the grid points, but

also viability of points “close” to viable grid points. This property is of special interest

in real applications, where the state of a system rarely coincides with a grid point.

As a third contribution of this chapter, we examine the performance of the proposed

controller in an extensive simulation study where we perform a detailed sensitivity analy-

sis with respect to parameters of our viability-based controller. We demonstrate that the

proposed controller scheme not only improves the overall performance of the race cars

but also dramatically decreases the online computation time compared to the original

controller presented in Chapter 4; the price to pay for this reduction in online compu-

tation is a significant increase in offline computations. Finally, we verify the controller’s

performance experimentally and demonstrate that our viability-based controller is indeed

suited for autonomous racing.

1.1.4 Racing games

In Chapter 6 we introduce a game theoretical approach for dealing with the uncertainty in

the driving behavior of the opponent cars in autonomous racing. The approach builds on

the high-level path planner introduced in Chapter 4 by adding game theoretical decision

making. The use of game theory is a popular method for dealing with uncertain actions

of an opponent agent. For example, zero-sum game methods have been investigated for

related problems in air traffic [54] and autonomous driving [55]. However, since such

games assume the worst-case behavior of the opponent, special care would be needed to

ensure that the resulting driving style is not too defensive for autonomous racing. Game

theory has also been used to derive driver models to simulate and verify autonomous

driving algorithms [56, 57]. Those approaches do not assume a worst-case behavior and

are typically investigated by means of Stackelberg equilibria.

Adopting some of the assumptions of these game theory based driver models, we

assume that in a race the competing car has no benefit from causing a collision. We

propose to model the interactions between race cars as a non-cooperative non-zero-

sum game, where the players only get rewarded if they do not cause a collision. By
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restricting our attention to finite horizon two-player games, we derive three different

games that, under the additional hypothesis that the action set of the two players is

finite are formulated as bimatrix games. In the first game, both players maximize their

progress, but only the follower is concerned with avoiding collisions. For this game,

we show that the Stackelberg and Nash equilibria can be computed by a sequential

maximization approach, where the leader determines his trajectory independently of the

follower, and the follower plays his best response. In the second game, both players

consider collisions. This allows to prove that the players always choose a collision-free

trajectory pair if possible. Further, we show that if the sequential maximization approach

leads to a collision-free trajectory pair, this trajectory pair is also a Stackelberg and

Nash equilibrium of the second game. In the third game, we propose a modified payoff

that promotes blocking behavior, by rewarding actions that do not necessarily maximize

progress towards the finishing line but instead aim at preventing the opponent from

overtaking. For the third game, we show that the Stackelberg equilibrium is a blocking

trajectory pair if one exists, which stands in contrast to the Nash equilibrium which only

results in blocking trajectories in particular cases.

The approach proposed here is related to [58], where a similar game theoretic ap-

proach to autonomous racing is proposed. Also related is the approach proposed in [59],

which formulates a zero-sum game for drone racing, which is played in a receding hori-

zon fashion. However, in both [58] and [59] the equilibria of the games are not analyzed

and only best-response dynamics are consider to solve the game. One could in principle

also consider extending autonomous racing approaches with static obstacle avoidance,

such as those developed in [14,15], to incorporate dynamical obstacles by predicting the

opponent movement and using time-varying constraints. This, however, would not allow

the flexibility of our game theoretic approach, where both players influence each other’s

decisions.

For online implementation, we propose repeating the game in a receding horizon

fashion, similar to MPC, giving rise to a sequence of coupled games. The use of moving

horizon games has been proposed in other applications [60–62], as a method to tackle

higher dimensional problems not tractable by dynamic programming. We investigate the

sequence of coupled games and propose modified constraints based on viability theory

which guarantee recursive feasibility and introduce an exact soft constraint reformulation

that guarantees feasibility at all times. Compared to Chapter 5 where viability theory

is used to guarantee recursive feasibility only with respect to track constraints, here

recursive feasibility is additionally guaranteed with respect to the actions of the opponent

player.

Finally, we investigate the game formulations in a simulation study, replicating the

miniature race car set-up, and investigate the influence of the game formulation on

different performance indicators such as the number of overtaking maneuvers and the

collision probability.
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1.1.5 Conclusion and Outlook

Concluding remarks and a brief summary of the thesis are given in Chapter 7, where we

also provide an outlook to possible directions for future research.

1.2 Publications

The work presented in this thesis was obtained in close collaboration with colleagues,

and is documented in submitted or published articles which are listed below:

• A. Liniger, A. Domahidi and M. Morari, “Optimization-Based Autonomous Rac-

ing of 1:43 Scale RC Cars”, Optimal Control Applications and Methods, vol 36, pp

628–647, September 2015, [14].

• A. Liniger and J. Lygeros, “A viability approach for fast recursive feasible finite

horizon path planning of autonomous RC cars”, Hybrid Systems: Computation and

Control (HSCC), Seattle (USA), April 2015, [63].

• A. Liniger and J. Lygeros,, “Real-Time Control for Autonomous Racing Based

on Viability Theory”, IEEE Transactions on Control System Technology, [64].

• A. Liniger and J. Lygeros,, “A Non-Cooperative Game Approach to Autonomous

Racing”, IEEE Transactions on Control System Technology, Submitted, [65].

The following papers have been prepared during my doctorate. Most are related

to autonomous racing, but in the interest of space their contributions have not been

included in this thesis (listed in chronological order).

• M. Tranzatto, A. Liniger, S. Grammatico, and A. Landi, “The debut of Aeolus,

the autonomous model sailboat of ETH Zurich”, OCEANS, Genova (Italy), May,

2015, [66].

• J. Carrau?, A. Liniger?, X. Zhang? and J. Lygeros, “Efficient Implementation of

Randomized MPC for Miniature Race Cars”, European Control Conference (ECC),

Aalborg (Denmark), June 2016, [67].

• A. Liniger?,X. Zhang?, P. Aeschbach?, A. Georghiou and J. Lygeros, “Racing

miniature cars: Enhancing performance using Stochastic MPC and disturbance

feedback”, American Control Conference (ACC), Seattle (USA), May 2017, [68].
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• X. Zhang?, A. Liniger?, and F. Borrelli, “Optimization-Based Collision Avoid-

ance”, IEEE Transactions on Control System Technology, Submitted, [69].

• T. Novi, A. Liniger, R. Capitani, M. Fainello, G. Danisi and C. Annicchiarico,

“The influence of autonomous driving on passive vehicle dynamics”, SAE World

Congress Experience (WCX), Detroit (USA), 2018, [70].

• L. Hewing, A. Liniger, and M. Zeilinger, “Cautious NMPC with Gaussian Process

Dynamics for Autonomous Miniature Race Cars”, European Control Conference

(ECC), Limassol (Cyprus), 2018, [71].

• T. Novi, A. Liniger, R. Capitani, M. Fainello, G. Danisi and C. Annicchiarico,

“The influence of autonomous driving on passive vehicle dynamics”, SAE Interna-

tional Journal of Vehicle Dynamics, Stability, and NVH, accepted, 2018, [72].

• X. Zhang?, A. Liniger?, A. Sakai and F. Borrelli, “Autonomous Parking using

Optimization-Based Collision Avoidance”, Conference on Decision and Control

(CDC), Miami Beach (USA), accepted, [73].

• T. Novi, A. Liniger, R. Capitani and C. Annicchiarico, “Control of vehicle at

at-limite on a predefined path”, Vehicle System Dynamics, submitted, [74].

?: These authors contributed equally to the respective works.
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CHAPTER 2
Experimental set-up

The experimental set-up used in this thesis consists of remote controlled (RC) miniature

race cars driven around a race track. In this chapter the set-up is introduced and

discussed. Furthermore, additional projects conducted on the experimental set-up are

briefly discussed. The set-up was build through a series of M.Sc. student projects, which

are referred to throughout the discussion.

2.1 Control loop

The control loop shown in Figure 2.1 consists of four main parts, the race track, the

miniature race cars, the vision system and the controller PC. These four parts are dis-

cussed next, and the section is finished with a short discussion on the control loop and

the resulting delays and how they are handled.

2.1.1 Race track

The track is built on a 4x4 meter area, and consists of 13 turns with a resulting length

of 18.43 meters. The track is 37 cm wide which is approximately six car widths, similar

to the width of full-scale race tracks. The material used for the track is a fine-granulated

rubber material which together with the used soft rubber tires results in a high level of

traction. For more details on the race track layout and construction, we refer to [75].

2.1.2 Miniature RC cars

The used miniature race cars are Kyosho dnano 1:43 scale cars, which are about 12×5 cm

in size and weigh 41 grams. The cars are rear wheel driven by a DC electric motor and

have a proportional front wheel steering. The cars do not have separated breaks, but

the motor can break the rear axle. Furthermore, the cars are equipped with front and

rear suspension and a rear axle differential.

9



Chapter 2. Experimental set-up

Vision System Controller

Car and Track

Ethernet

Figure 2.1: Schematic drawing of the control loop in the experimental set-up.

The original electronics of the cars are replaced with a custom electronics that allow

a custom made communication protocol, onboard sensing, as well as low-level control

loops. In particular the custom electronics feature a Bluetooth chip, current and voltage

sensors, H-bridges for DC motor actuation, a steering angle sensor, a six degree of

freedom internal measurement unit and an ARM Cortex M4 microcontroller. For the

presented experiments, only the basic functionality of the board is used, mainly the

Bluetooth communication link, as well as a steering angle controller. For more details

on the custom electronics see [76, 77].

2.1.3 Vision based localization system

The localization of the cars, is based on an infrared vision-based system. Since the cars

are moving in a plane one camera is enough to measure the position and orientation, this

stands in contrast to commercial systems which are usually designed for 3D applications

and use multiple cameras [78]. In the following, we briefly discuss the used camera and

software implementation.

Camera

The camera used is a Point Grey Flea3 which runs at 100 frames per second. A wide

angle objective is used to fit the whole track on the image, and an infrared filter is

mounted in front of the camera to filter out unwanted wavelengths. Besides the camera,

an infrared light source is mounted which emits light at the desired wavelength. The
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cars are marked with reflecting tape, which reflects the infrared light better than all the

other materials used on the track. The camera is then connected via USB3 to a host PC

which runs the vision software, see [79] for more details.

Vision software

The goal of the vision software is to extract the position and orientation of all the cars on

the track and send this information to the controller PC. The software uses OpenCV [80]

and can be separated into the following steps. First, the background is subtracted from

the image, second, the marker placed on the cars are detected using a valley filling

algorithm. Note that the markers on the cars are placed in predefined patterns, see

Figure 2.2, so that in the next step one can identify the different cars based on the

detected markers. From the identified cars it is possible to extract the position and the

orientation. This information is further processed in a simple Extended Kalman Filter

(EKF) using a kinematic model, which can additionally be used to estimate the yaw rate

and velocity in the inertial frame. This information of all cars is then sent via Ethernet

and TC/IP to all controller PCs. For more detail on the vision software we refer to [81],

and for the state estimation and marker pattern design to [82].

Figure 2.2: Schematic drawing of the seven different marker patterns used to identify

the different cars [82].

2.1.4 Controller PC

The controller PC runs Ubuntu as an operating system with the control algorithm run-

ning in a soft-real-time system. The sampling time is restricted to a multiple of 10 ms,

due to the update rate of the camera system.

2.1.5 Control loop and system delays

The resulting control loop can be summarized as follows; the controller sends commands

to the car via Bluetooth which drives along the track, the camera then takes a new image
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which is transmitted via USB3 to the vision PC. The image is processed, and the new

position of the car is detected and the velocities are estimated. This information is then

sent via Ethernet to the controller PC which computes new commands for the car.

One fundamental problem of such complicated feedback loops are time delays. In our

case the delays are caused by communication latencies in all three communication links,

as well as computation delays in the vision software and the controller. To estimate

the delay a simple experiment is conducted. An infrared LED is mounted on the car

which can be remotely triggered by the Bluetooth link. Additionally, the vision software

is modified to detect the blinking LED. For the loop delay measurement the vision PC

sends a signal to the controller PC to trigger the LED and waits until the LED is detected;

the elapsed time is then the loop delay. The left plot in Figure 2.3 shows the histogram

of such an experiment. Notice that due to the sampling time of the camera system we

only have a resolution of 10 ms in the measurement. It is clearly visible that the loop

delay is in the order of 30 to 50 ms with most of the measurements between 30 and 40 ms.

When investigating the delay further, we can split it into individual components. First,

the runtime of the vision software can be measured and is around 4 ms, see the right plot

in Figure 2.3 where the computation delay is subtracted. Furthermore, from separate

roundtrip time measurements we know that the Bluetooth adds a delay of approximately

10 ms. Resulting in a remaining delay of around 20 ms caused by communication delays

in the Ethernet network, USB3 communication and asynchronous effects between the

vision and controller PC. Note that the measurements presented here do not include

computation delays of the controller PC, which in our implementation adds one sampling

period of delay.

To deal with these delays, we implemented an EKF with delay compensation, which

compensates for the computation delay of the controller as well as the previously dis-

cussed loop delay. The EKF is running on the controller PC and is using the nonlinear

bicycle model presented in Chapter 3. For simplicity, it is assumed that the delay is

constant and a multiple of the sampling time. Given this assumption the best results

are achieved with a loop delay of one sampling period of 20 ms plus 20 ms computation

delay, see [83].

2.2 Projects

Besides the results presented in the rest of the thesis, the experimental set-up was also

used in several other projects. The projects conducted can be roughly separated into

two groups, the first group is based on the so called model predictive contouring control

formulation, and the second group are projects using the experimental set-up for proof

of concept studies of a “challenging task”.
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Figure 2.3: Histogram of the loop delay, in the left plot including the vision software

computation time, and in the right plot without the computational delay of the vision

system.

2.2.1 Model predictive contouring control

Model predictive contouring control (MPCC) presented in [84], is a path following control

[85], where the goal is to follow a spatial path as fast as possible without a priory defining

a velocity profile. The MPCC formulation was originally designed for machine tools,

where the two main goals are to follow a path with an as small as possible contouring

error while follow the path as fast as possible. This can be achieved by trading-off the

tasks. The MPCC formulation can be used for autonomous racing by weighting the

contouring task low and focusing on the task of following the path as fast as possible,

which in terms is equivalent to maximizing the progress. Compared to the original

formulation we additionally impose track constraints limiting the position of the car

within the track, which is of particular importance if the contouring cost is chosen small.

Note that the MPCC formulation has since been used for other robotics application such

as control of drones [86] and for parallel autonomy for self-driving cars [87].

Real-time iteration vs nonlinear programming

The resulting MPCC problem is a Nonlinear Program (NLP) due to several reasons, (i)

the cost is nonconvex, (ii) the dynamics are nonlinear, and (iii) the track constraints
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are nonconvex. Two approaches to tackle these problems are tested on the experimen-

tal set-up, where the main difference is how the nonlinear dynamics are handled. Both

methods use a time-varying quadratic approximation of the cost function and local con-

vex track constraints, where the local time-varying approximations are based on the last

optimal solution. However, in the first approach, the nonlinear dynamics are handled by

linearizing and discretizing the dynamics around the last optimal solution, which results

combined with the other approximations in a quadratic program (QP) which can be ef-

ficiently solved using tailored solvers [88]. This approach of approximating the NLP as a

QP is often referred to as real-time iteration [29] or linear-time-varying (LTV) MPC. The

second method [89] does not approximate the nonlinear dynamics and directly solves the

problem using an NLP solver [90]. Note that the cost function and track constraints are

still approximated in the presented formulation, even though alternative nonconvex for-

mulation would be possible. In summary, the LTV approximation has the advantage that

the resulting QP can be solved more efficiently which allows implementing the MPCC on

an ARM A15 microcontroller [14]. On the other hand the NLP implementation improves

the driving performance and allows for additional non-convex constraints such as friction

ellipse constraints of the rear wheel forces [89]. The NLP implementation of the MPCC

was also successfully tested on the autonomous Formula Student race car developed by

AMZ (Akademischer Motorsportverein Zürich), see https://youtu.be/FbKLE7uar9Y.

Obstacle avoidance

Both approaches allow obstacle avoidance, in the LTV scheme a high-level dynamic

programming algorithm is used to find the “best” avoidance corridor, this new avoidance

corridor is then used to alter the convex track constraint approximation [14]. In the

NLP setting the same approach would be possible; alternatively, we tested to impose the

obstacle avoidance constraints directly as ellipses which should be avoided [89].

Efficient randomized MPCC

One problem in MPC is that the model is typically uncertain. However, if the de-

terministic MPC problem is solved this knowledge is not considered which results in

over-optimistic decisions. In [67] and [68], we investigated how the model uncertainties

can be incorporating into the MPCC design using the so called scenario approach [91]. To

implement the randomized MPCC in real-time a sparse formulation was derived which

separates the problem in a pre-processing step, which computes a time-varying con-

straint tightening factor, and a second step which solves the MPCC LTV approximation

including the scenario-based constraint tightening.

When incorporating the uncertainty in the MPC problem, it is usually required to

include feedback policies to not end up with over-conservative results. Ideally the con-
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troller should optimize over the feedback policies, unfortunately this is a nonconvex prob-

lem. However, there are two popular approaches to achieve a tractable problem. First,

pre-defined feedback policies, and second affine disturbance feedback (ADF). The first

technique, including a heuristic mimicking the behavior of the state feedback controller

was used in [67]. However, it can be challenging to tune the feedback controller. Thus

we investigated if ADF can improve the performance of the controller as well as reduce

the tuning effort, and showed that it indeed is beneficial for the performance, [68]. Since

the computational complexity of the ADF approach does not allow for a direct real-time

implementation, we further proposed a 3-sample heuristic to achieve an MPCC imple-

mentation with ADF, which can run in real-time while considering the uncertainty and

optimize over the feedback policies.

In summary, the two sampling based MPCC implementations achieve a reduced num-

ber of constraint violation while at the same time achieving lower mean lap times.

Modified tasks

Based on the MPCC formulation we also tested modified tasks, such as driving backward

[92], or driving with hard plastic tires with significantly lower traction [89].

2.2.2 Other projects

Besides projects using the MPCC formulation, the experimental set-up was also used

as a proof of concept for other projects, either using the complete set-up including

the miniature cars or only the feedback loop. For example, an approximate dynamic

programming based reach-avoid controller was verified on the set-up in [93]. The set-up

was also used to test if the miniature RC cars can be used to jump, and what is necessary

to jump over a specially designed ramp automatically [94]. Finally, the existing feedback

loop was used to test the MPC controller for the Autonomous Solar Vehicle developed

at IfA, thus not using the miniature cars and the track, but only the positioning system

and the communication links [95].
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CHAPTER 3
Vehicle model

In this chapter, we derive the vehicle models used in this thesis, which are fundamental

for the controller design. Furthermore, we compare the derived models with alternatives

that can be found in the literature [96–98]. This chapter is organized as follows, first a

bicycle model with nonlinear tire forces is derived and analyzed in Section 3.1. Based on

the analysis of the bicycle model, in Section 3.2 a new model is derived which is based

on constant velocity motion primitives, which is especially suited for path planning and

therefore called “path planning model”. The model is formally defined in terms of

a hybrid system with a slightly changed hybrid automaton, and further a discrete time

system approximation is introduced. In Section 3.3, the bicycle and path planning model

used in this thesis are compared with a 4-wheel model and a kinematic bicycle model.

In the Appendix 3.5.1, the process to identify the bicycle model is briefly discussed, and

in Appendix 3.5.2 the constant velocity motion primitives used within this thesis are

described.

3.1 Bicycle model

The miniature cars are modeled using a bicycle model as done in [99,100], where the car

is modeled as one rigid body with a mass m and an inertia Iz, and the four-wheeled car

is reduced to a bicycle. At each of the two wheels of the resulting bicycle, a lateral and

longitudinal tire force is acting, and the steering angle δ changes the angle of the front

wheel.

To derive the differential equation of the car, we make the following simplifications:

first we only consider in-plane motions, i.e. the pitch and roll dynamics as well as load

changes are neglected. Second, as the cars used are rear wheel driven and do not have

active brakes, the longitudinal force on the front wheel is neglected. The schematic

drawing of the resulting model is shown in Figure 3.1 and the corresponding differential
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equations are given by,

Ẋ = vx cos(ϕ)− vy sin(ϕ) ,

Ẏ = vx sin(ϕ) + vy cos(ϕ) ,

ϕ̇ = ω ,

v̇x =
1

m
(Fr,x − Ff,y sin δ +mvyω) , (3.1)

v̇y =
1

m
(Fr,y + Ff,y cos δ −mvxω) ,

ω̇ =
1

Iz
(Ff,ylf cos δ − Fr,ylr) .

Fry(αr)

Ffy(αf)

vy ω vx

αr

αf

δ

Frx(d)

lf

lr

X

Y
φ

Figure 3.1: Schematic drawing of the car model.

The equation of motion is derived around the center of gravity (CoG), where the

states are the position X, Y of the CoG in the inertial frame and the heading angle of

the car relative to the inertial frame, ϕ. This is the kinematic part of the model, and

just contains the integration of the velocities. The dynamic part of the model is derived

around a body-fixed frame centered at the CoG, where the states are the longitudinal

and lateral velocity of the car, vx and vy, and the yaw rate ω. The control inputs are

the Pulse Width Modulation (PWM) duty cycle d of the electric drivetrain motor and

the steering angle δ. The subscripts x and y indicate longitudinal and lateral forces or

velocities, while r and f refer to the front and rear tires, respectively. Finally, lf and

lr are the distance from the CoG to the front and the rear wheel. In the following the

state is denoted by ζ = [X, Y, ϕ, vx, vy, ω], and the inputs by ν = [d, δ].
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3.1 Bicycle model

The two most important parts of the dynamics are the lateral tire forces Ff,y and Fr,y
and the longitudinal force Fr,x. The lateral tire forces model the interaction between the

car and the road and since the goal is for the cars to race, the model of the tire forces

has to be realistic enough to represent the car at high speeds and its handling limits.

Therefore, the lateral forces Ff,y and Fr,y are modeled using a simplified Pacejka tire

model [101], see (3.2a) and (3.2b), which achieves a good approximation of the measured

friction curves. The longitudinal force of the rear wheel Fr,x is modeled using a motor

model for the DC electric motor as well as a friction model for the rolling resistance and

the drag, see (3.2c),

Ff,y = Df sin(Cf arctan(Bfαf )) , where αf = − arctan

(
ωlf + vy

vx

)
+ δ , (3.2a)

Fr,y = Dr sin(Cr arctan(Brαr)) , where αr = arctan

(
ωlr − vy
vx

)
, (3.2b)

Fr,x = (Cm1 − Cm2vx)d− Crr − Cdv2
x . (3.2c)

The parameters Bf/r, Cf/r and Df/r define the exact shape of the semi-empirical tire

force curve, Cm1 and Cm2 define the motor model, Crr the rolling resistance and Cd the

drag. Notice that due to the size of the cars, it is currently not feasible to measure

the wheel speed, which makes it impossible to use combined slip models such as done

in [25,99].
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Figure 3.2: Shape of the simplified Pacejka tire model.

The model is identified using a combination of stationary and dynamic identification

experiments, using the methodology reported in [100]. The idea is to identify the rear
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Chapter 3. Vehicle model
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Figure 3.3: Stationary velocities for v̂x = 1.5 m/s (plots on the left) and v̂x = 2 m/s

(plots on the right), parameterized by the steering angle δ̂.

wheel combined slip effects into the lateral tire friction model (3.2b), without consid-

ering them explicitly. Thus, the identified model is suitable to represent the car also

at its handling limits, when the tire forces are saturated or close to saturation. The

identification procedure is further discussed in Appendix 3.5.1.

3.1.1 Constant velocity analysis

For a better understanding of the model we investigate the points where all the velocities

are constant. Note that a similar, more elaborate analysis is presented in [99,100]. The

objective of this analysis is to find points in the model where all accelerations are zero.

This is done for different constant forward velocities v̂x and constant steering angles δ̂,

thus the problem becomes a nonlinear algebraic system of equations, with two equations

(v̇y = 0, ω̇ = 0) and two unknowns (v̂y, ω̂). By finding a solution to the algebraic

equations for different steering angles δ̂ and different initial conditions, the constant

velocities (v̂x, v̂y, ω̂) can be calculated.

The resulting constant velocities are shown for v̂x = 1.5 m/s and v̂x = 2 m/s in Figure

3.3 where the constant velocities are categorized into three different regions. The normal

driving region highlighted in blue, which is characterized by the linear dependency of

the yaw rate on the steering angle, as well as small lateral velocities. The other two

regions in red and green correspond to over- and understeering points in the model.

In the understeering region (green curves), the saturated front tire prevents the car

from achieving larger yaw rates, and thus the car cannot take a sharper turn. In the

oversteering region (red curves), the rear tire is fully saturated, and the car drives with

a high lateral velocity which is usually called drifting.

The behavior of the model in the three regions is different, for example in the over-
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3.1 Bicycle model

steering region where the car is drifting, the steering angle can be of opposite sign than

the curvature the car is driving, known as countersteering, which does not occur in the

normal and the understeering region. A stability analysis of the linearized lateral velocity

model (vy and ω), where the different stationary velocity points are used as linearization

points, also shows the difference: While the linearized models in the normal driving and

understeering regions are stable, the linearized models in the drifting region are unsta-

ble [100]. Thus, to track a constant velocity point in the drifting region requires active

steering and throttle control [99,100].

The second interesting outcome of this analysis can best be observed when looking at

the constant velocity manifold, which can be computed by finding the constant velocities

for the full range of longitudinal velocities, see Figure 3.4. From the constant velocity

manifold, it is visible that the normal steering region is getting smaller when the car is

driving faster. Thus the maximal and minimal steering angle for which the tire forces

are not saturated is reduced with increased forward velocity and at the same time the

maximal yaw rate decreases.
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Figure 3.4: Stationary velocity manifold of the bicycle model. Rendered in red the parts

corresponding to oversteering, in blue neutral and understeering.

When all velocities are constant, the movement of the car is a uniform circular move-

ment, for which the relationship between the yaw rate, the radius R and the curvature
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Chapter 3. Vehicle model

κ is known,

|ω| = v

R
= vκ where v =

√
v2
x + v2

y .

Consequently, all stationary velocity points correspond to the car driving in a circle

with a constant radius, i.e., the model can predict drifting along a circle. This insight

motivates the derivation of the path planning model, introduced next.

3.2 Path planning model

Since the bicycle model (3.1) is complex and has fast-changing dynamics, we propose

a new model especially suited for path and motion planning. The proposed model

simplification is motivated by the time scale separation present in the system, using

the fact that the system’s velocity changes significantly faster than its position and

orientation. A similar approach was adopted in [33,36,102] to reduce the number of states

of the model. The core idea is that based on the constant velocity analysis, we know

the “steady state” velocities. Thus, by considering a finite number of constant velocity

points, we can formulate the “path planning model” which only considers trajectories

corresponding to driving at these constant velocity points for a fix duration Tpp. In vehicle

dynamics, such trajectories are known as steady state cornering, whereas in aeronautics

they are referred to as trimmed flight. The trajectory segments are then directly linked

under the assumption that the new constant velocity can be reached immediately. To

ensure that these velocity discontinuities are “realistic” constraints are imposed on the

segments that can be concatenated. Therefore, we only allow for transitions that are

achievable by the nonlinear dynamical model (vx, vy and ω) in a certain small time step

Tt ≈ Tpp/2. The problem can be posed as a feasibility problem (3.3) where the goal

is to find controls which allow a transition from a constant velocity point i defined as

v̂(i) = (v̂x(i), v̂y(i), ω̂(i)) to another point j in at most Tt seconds, subject to the vehicle

dynamics and constraints on the control inputs,

find d, δ, tf ,

s.t. v(0) = (v̂x(i), v̂y(i), ω̂(i)) = v̂(i) ,

v(tf ) = (v̂x(j), v̂y(j), ω̂(j)) = v̂(j) ,

v̇(t) =


v̇x = 1

m
(Fr,x − Ff,y sin δ +mvyω) ,

v̇y = 1
m

(Fr,y + Ff,y cos δ −mvxω) ,

ω̇ = 1
Iz

(Ff,ylf cos δ − Fr,ylr) ,
(3.3)

tf ∈ [0, Tt] ,

d ∈ [d, d̄] δ ∈ [δ, δ̄] .
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3.2 Path planning model

Here, d and d̄ are the lower and upper bound on the duty cycle d and similarly

δ and δ̄ the bounds on the steering angle δ. This problem allows classifying all the

transitions from one stationary point to another as admissible or inadmissible transitions.

An illustrative example of such allowed transitions is shown in Figure 3.5, with nine

constant velocity points for three grid points in vx and δ. The allowed transitions from

one constant velocity point v̄(4) are shown by arrows.

v̂(1)

v̂(9)

v̂(8)

v̂(7)

v̂(6)

v̂(5)

v̂(4)

v̂(3)

v̂(2)δ

v
x

Figure 3.5: Schematic drawing of allowed transitions from v̂(4) to other constant velocity

points.

In practice, problem (3.3) is solved using the backward reachability algorithm of the

multi-parametric toolbox 3.0 [103] using a model linearized around the target velocity

and bounds on the controls. The allowed time to reach the new stationary velocity is

Tt ≈ 0.1s.

Note that in robotics a similar model was derived in [23] and applied to autonomously

driving cars in [22]. However, our proposed model is different since the different trims are

not linked with pre-computed maneuvers, but we propose to directly link trims and limit

the concatenation of trims. In our approach, this leads to the fact that each segment

has the same duration Tpp, which simplifies the following analysis.

The constant velocity points used in the path planning model are obtained by grid-

ding the constant velocity manifold (Figure 3.4), resulting in a grid of Nm constant

velocity points. While most of the points are gridded within the normal steering region,

several additional points from the oversteering region are also considered, to enrich the

approximation of the model by incorporating drifting trajectories into the set of mo-
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Chapter 3. Vehicle model

tion primitives. This allows, if the model is used for path planning, to consider drifting

trajectories if this is beneficial. For more details on the different grids used within this

thesis, see Appendix 3.5.2.

3.2.1 Hybrid system reformulation

The proposed path planning model is similar to a control system with zero order hold

and quantized control inputs, where additionally the controls are restricted based on

the last applied control input. Thus, the path planning fits well into a hybrid model

framework.

3.2.2 Path planning model as an hybrid automaton

A hybrid model is characterized by its interplay between continuous and discrete states,

where the continuous state changes with respect to a dynamic system, and the changes

in the discrete state happen at specific events and are determined by some automaton.

In the path planning model, the discrete mode q of the system is the current constant

velocity and the continuous evolution is given by the kinematic model with the corre-

sponding constant velocity point. Furthermore, a time state is needed to ensure that

at every Tpp seconds a jump to a different discrete mode/constant velocity is possible.

Thus the continuous evolution is given by,

Ẋ = v̂x(q) cos(ϕ)− v̂y(q) sin(ϕ) , (3.4a)

Ẏ = v̂x(q) sin(ϕ) + v̂y(q) cos(ϕ) , (3.4b)

ϕ̇ = ω̂(q) , (3.4c)

Ṫ = 1 , (3.4d)

where v̂x(q), v̂y(q), ω̂(q) are the constant velocities at the discrete mode q. The discrete

transition takes place every Tpp seconds, and a discrete control input determines the

discrete mode after the transition. To capture this behavior we consider the following

modification of the hybrid automaton considered in [104].

Definition 3.1. A hybrid automaton H is a collection H = (M,Z,Υ, η,Dom, E ,G, ρ)

comprising

• discrete state variables µ ∈M ,

• continuous state variables z ∈ Z,

• discrete control inputs υ ∈ Υ,

• vector field η(·, ·) : M × Z → Z,

• domain set, Dom(·) : M → 2Z,
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3.2 Path planning model

• edges, E ⊂M ×M ,

• guard, G(·, ·) : E ×Υ→ 2Z,

• reset map, ρ(·, ·) : E × Z → 2Z.

The modifications are kept as small as possible to keep the definition as general as

possible. The main difference to the definitions of [104, 105] is that a discrete input

appears in the discrete transition guards. To avoid technical difficulties with the def-

inition of executions of the hybrid automaton given below we introduce the following

assumption (adapted from [104]).

Assumption 3.1. The cardinality of M is finite. Z = Rnz , for some nz ≥ 0. For all

µ ∈M , the vector field η(z, µ) is globally Lipschitz continuous in z. For all e ∈ E, there

exist υ such that G(e, υ) 6= ∅, and for all, z ∈ G(e, v), ρ(e, z) 6= ∅.

Definition 3.2 ([105]). A hybrid time set τ = {Ii}Ni=0 is a finite or infinite sequence

of intervals of the real line, such that

• Ii = [τi, τ
′
i ], for all i < N ,

• if N <∞, then either IN = {τN , τ ′N} or IN = {τN , τ ′N),

• τi ≤ τ ′i = τi+1 for all i.

We are now in a position to define the execution that the hybrid automaton H

accepts. The following definition is adapted from [105].

Definition 3.3 ([105]). Let τ = {Ii}Ni=0 be a hybrid time set and consider the sequence of

functions {µi(·)}Ni=0, {zi(·)}Ni=0, {υ(·)}Ni=0, with µi(·) : Ii →M , zi(·) : Ii → Z, υ(·) : Ii →
Υ. The collection of these sequences of functions is called execution of the hybrid

automaton H starting from initial condition (µ0(τ0), z0(τ0)), if and only if it satisfies

the following conditions:

• Discrete evolution: For all i < N ,

1. (µi(τ
′
i), µi+1(τi+1)) ∈ E,

2. zi(τ
′
i) ∈ G(µi(τ

′
i), µi+1(τi+1), υi+1(τi+1)),

3. zi+1(τi+1) = ρ(µi(τ
′
i), µi+1(τi+1), zi(τ

′
i)).

• Continuous evolution: For all i with τi < τ ′i ,

1. (µi(t) = µi(τi)) and (υ(t) = υ(τi)) for all t ∈ Ii,
2. zi(·) : Ii → Z is the solution of the differential equation

żi(t) = η(µi(t), zi(t)),

over the interval Ii with the initial condition zi(τi),
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Chapter 3. Vehicle model

3. zi(t) ∈ Dom(µi(t)) for all t ∈ [τi, τ
′
i).

The main difference to the corresponding definition of [105] is point 2 in the discrete

evolution: The guard depends on υi+1(τi+1) which allows to determine the discrete state

after a transition by choosing an appropriate discrete control input υi+1.

The path planner outlined above can be captured by a hybrid automaton H with,

• M = {1, 2, 3, . . . , Nm},
• z = (X, Y, ϕ, T ) ∈ R4 = Z,

• Υ ⊂ Z,

• η(µ, z) given in Eq (3.4),

• Dom(µ) = {(X, Y, ϕ, T ) ∈ R4|T ≤ Tpp},
• E , all edges where a transition is possible,

• special guard, with two input arguments

G(e, v) =

{
{z ∈ R4|T ≥ Tpp} if G(µi, µi+1, υ) 6= ∅
∅ else

,

• ρ(e, (X, Y, ϕ, T )) = {(X̂, Ŷ , ϕ̂, T̂ ) ∈ R4|
X̂ = X, Ŷ = Y, ϕ̂ = ϕ, T̂ = 0}.

Note that the constant velocities and the allowed transitions can be always designed such

that the path planner automaton satisfies Assumption 3.1. The Lipschitz condition is

easy to verify as the vector field in (3.4) is differentiable with bounded derivatives.

3.2.3 Reformulation as a difference equation

From a computational point of view, hybrid systems can be challenging to tackle, due to

both the continuous and discrete state and their potentially complex interactions. For

example, if a gridding based algorithm is used for the proposed path planning model,

it is required to grid the four-dimensional continuous space for each of the Nm discrete

modes, a task that is computationally very demanding [105].

However, since the discrete transitions occur at fixed time intervals, the system can

be interpreted as a sampled data system, with constant inputs over the time interval Tpp.

Therefore, the system can be approximated by a discrete-time system with a sampling

time of Tpp. The discrete state q of the hybrid system is considered by embedding it in

the real numbers; hence the discrete dynamics can be encoded as a transition relation

that depends on the current mode. This renders the time state redundant and reduces

the state space dimension by one.

We denote the state of the difference equation at time step k by xk = [Xk, Yk, ϕk, qk],

and the control by uk, which determines the next mode qk+1 = uk. As the control input
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3.3 Comparison of models

depends on the current mode qk, we abstractly write uk ∈ U(qk), where U(qk) encodes the

concatenation constraints in terms of an automaton, which given qk returns all allowed

next modes qk+1, or based on the guard of the hybrid system, U(qk) = {uk ∈ M | ∃υ ∈
Υ ∃G(qk, uk, υ) 6= ∅}. Let X(xk, uk, t), Y (xk, uk, t), ϕ(xk, uk, t) denote the solution of

(3.4a)-(3.4c) at time t, with q = uk while starting at xk = [Xk, Yk, ϕk, qk]. Note that,

since the velocities are constant the solution can be explicitly computed as a function of

time. Thus, we can define the path planner as the following discrete-time model,

xk+1 = f(xk, uk) =


X(xk, uk, Tpp)

Y (xk, uk, Tpp)

ϕ(xk, uk, Tpp)

uk

 , (3.5)

where Tpp is the path planning discretization time.

3.3 Comparison of models

To evaluate the two proposed models, we compare them with two alternative models, a

4-wheel vehicle model including static load changes [98] and a kinematic bicycle model

[106]. Compared to the bicycle model the 4-wheel model includes all four wheels as well

as the varying loads on the wheels depending on the driving situation. This should result

in a more accurate representation of the forces and moments. The kinematic model, on

the other hand, assumes that the lateral velocity at the two wheels of the bicycle are

zero which allows eliminating the states vy and ω.

For our comparison we look at a simple scenario where the car is driving straight with

a fixed velocity, and at time zero we instantaneously change both control inputs (d and

δ) and keep them constant for 0.1 s. The controls are determined by gridding the two

inputs with eleven points in each direction, uniformly spaced between the input bounds.

For the path planning model, we investigate the trajectories for all allowed modes.

3.3.1 Bicycle vs 4-wheel model

When looking at the predicted position of the bicycle and 4-wheel model after 0.1 s there

is nearly no difference between the two models, even at high forward velocities of 3 m/s,

where the differences should be the largest, see Figure 3.6.

From a vehicle dynamics point of view, this makes sense since the used 4-wheel model

neglects combined slip effects as well as the stiffness of the tires. Under the assumption

that the stiffness of the tires can be neglected, which is the case for the miniature cars,

the lumping of the left and right wheels of the bicycle model only causes a negligible

error. Thus, the main difference between the two models is the longitudinal load change
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Figure 3.6: Trajectories of the bicycle and the 4-wheel model with an initial forward

velocity of 3 m/s.

which is also negligible due to the low center of gravity of the car. This observation

can also be verified by the good cross validation results of the identified bicycle model

compared to the real car in Figure 3.10 in the Appendix 3.5.1.

3.3.2 Bicycle vs path planning vs kinematic bicycle model

From the previous comparison we know that the bicycle model compares well against

more sophisticated vehicle models. However, we should still investigate the path planning

model. Therefore, we compare the path planning model with the dynamic bicycle model

and the kinematic bicycle model. The kinematic bicycle model is an attractive approach

to model cars in slow driving situations. Since the no-slip assumption is fulfilled, it is

not necessary to identify the tires, and the model has only four states. In Figure 3.7

the trajectories of the three models for different initial forward velocities of 0.6 m/s (top

left), 1 m/s (top right), 2 m/s (bottom left), and 3 m/s (bottom right) are shown. From

Figure 3.7 we can see that, as expected, the kinematic model is a good approximation

at low velocities of around 0.6 m/s. On the other hand, at higher velocities the no-slip

assumption leads to an overestimation of the turning rate. Thus, the kinematic model is

not suited for our application where the goal is high-speed driving at the limit. On the

other hand, the path planning model is significantly better in estimating the driveable

envelope of the bicycle model. For low forward velocities the path planning model slightly

over approximates the driveable envelope, and for higher forward velocities the path

planning model is a conservative approximation of the driveable envelope. Furthermore,

using more constant velocity points should improve the approximation.

Similarly, the good approximation of the path planning model can also be observed

in the velocity states. Therefore, in Figure 3.8 the velocities of the bicycle model after

0.1 s are compared to the maximal constant lateral velocity and yaw rate in the normal

driving region (bifraction point in Figure 3.3). On the left in Figure 3.8 the case for an
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Figure 3.7: Trajectories of the bicycle and kinematic model compared to the proposed

path planning model with Nm = 129 at different initial forward velocity, 0.6 m/s (top

left), 1 m/s (top right), 2 m/s (bottom left), and 3 m/s (bottom right).

initial velocity of 1 m/s is shown and on the right for an initial velocity of 2 m/s. It can

be seen that for an initial velocity of 1 m/s, the constant velocity points approximate

the bicycle model well, but for an initial velocity of 2 m/s the constant velocities slightly

underestimate the dynamic capabilities of the bicycle model.

Therefore, we can conclude that the dynamic bicycle model performs equally well as

more complex vehicle models. Thus we claim that it is also a good approximation of the

miniatures cars. This claim is also backed up by the good cross validation results pre-

sented in the Appendix 3.5.1. Furthermore, the path planning model approximates the

dynamic bicycle model well, even at high forward velocities. The slight underestimation

at high velocities can be even seen as a feature since these are states where the model

is most uncertain. Thus, both models should be good in approximating the real dnano

cars over a wide range of operation points.

29



Chapter 3. Vehicle model

vx [m/s]
0 1 2

v y [m
/s

]

-1

0

1
bicycle
const. velocity

vx [m/s]
0 1 2

ω
 [r

ad
/s

]

-10

0

10

vx [m/s]
0 1 2 3

v y [m
/s

]

-2

0

2

vx [m/s]
0 1 2 3

ω
 [r

ad
/s

]
-10

0

10

Figure 3.8: Velocities after 0.1 s for different inputs, for an initial velocity of 1 m/s on

the left and 2 m/s on the right, as well as the maximal constant velocity v̄y and ω̄ within

the normal driving region.

3.4 Conclusion

In this chapter we introduced the two vehicle models used in this thesis: first a bicy-

cle model with nonlinear tire forces which is popular in the literature, second a newly

derived model based on constant velocity motion primitives which we formally modeled

as a hybrid system using a slightly modified hybrid automaton definition. Furthermore,

the path planning model is approximated as a discrete time system which gives com-

putational advantages and a more condensed system description. Finally we compared

the two proposed models with other popular vehicle models and showed that the bicycle

and path planning model are good approximations. Therefore, the two models are well

suited to derive an autonomous racing controller.

3.5 Appendix

3.5.1 System identification

In this section, the technique used to identify the bicycle model is briefly summarized.

For more details, the interested reader is referred to [100] for the original methodology

and [107] for a more in-depth discussion.

The approach is based on a three step procedure, where in a first step static param-
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eters such as the mass are determined. Secondly, ramp steer experiments are performed

to obtain a first guess of the tire force laws. Finally, the tire forces and the drivetrain

model parameters are identified by fitting the model response to measurements in the

time-domain. Note that the identification of the miniature race car has several chal-

lenges, first the goal is to identify a model which also represents the car at the handling

limit, second, there is limited information, especially there is no wheel speed and no

body roll and pitch information. Finally, it is only possible to identify the tires using

driving experiments, since no tire measurement test-benches exist.

Static parameters

Since Kyosho does not publish exact vehicle data, i.e., mass, center of gravity, moment of

inertia and steering limits, these parameters have to be measured or identified. The mass

can be measured using a scale, and the center of gravity can be determined by finding

the balancing point of the car in longitudinal direction, in lateral direction we assume the

center of gravity is in the middle of the car. The moment of inertia was determined by a

CAD model, using an assembly of the four main parts of the car (main chassis, battery,

rear axle and hull). Finally, the steering angle limit can be determined by the turning

radius. We found the following parameters for the Lamborghini Murcielago model,

• mass: m = 41 g

• CoG: lf = 29 mm / lr = 33 mm

• moment of inertia: Iz = 27.8 · 10−6 kg m2

• steering limit: δ̄ = 0.35 rad.

Note that these parameters are only valid for the Lamborghini Murcielago, which has

the widest track and longest wheelbase of all dnano cars.

Steady state identification

An initial guess of the tire friction parameters can be obtained using the assumption

that the velocities are in steady-state, or in other words v̇y = 0 and ω̇ = 0. Thus, based

on (3.1) we get the following system of nonlinear equations describing the lateral forces,

Fr,y =
mlf
lf + lr

vxω ,

Ff,y =
mlr
lf + lr

vxω

cos(δ)
. (3.6)

Therefore, the lateral forces are completely defined given the velocities (vx, vy, ω) and

the steering angle δ. However, only few type of maneuvers fulfill the assumption. The

simplest are steady state experiments, where the inputs are fixed and the velocities are
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in steady state, but such experiments can be very time consuming. An alternative are

ramp steer inputs with a constant velocity, which result in low accelerations. In the

case of the miniature RC cars the steering angle is changed as slowly as possible, while

guaranteeing that the car stays within the given training area of about 3x3 m, and the

duty cycle is kept constant to guarantee as little interference of the drivetrain as possible.

These experiments are repeated for different duty cycles and for left and right turns.

Thus, given the velocities and the steering angle of all the experiments, it is possible

to compute αr, αf , Fr,y and Ff,y for each time point. The result is a point cloud of forces

at the corresponding slip angles. Given this data a nonlinear least-square problem can

be solved where the parameters of the Pacejka tire model are optimized to minimize the

2-norm between the forces computed using (3.6) and the tire model.
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Figure 3.9: Steady-state tire force identification

In Figure 3.9 the forces computed using (3.6) and the identified model are shown.

From the figure we can draw two main conclusions, first, the car is not completely

symmetric which can be seen especially at high slip angles. Second, similar to the

observation in [100], the experiments excited the saturated region of the front tires but

not the one of the rear tire. Therefore, the fit of the front tire model is reasonably good,

but the rear tire model seems not correct in the saturated region. Note that the relative

spread of the estimated forces in Figure 3.9 is comparable to the results in [100] where

a full-sized car is used.
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Time-domain system identification

In the time-domain system identification step, the goal is to find parameters of the model

such that the measured state evolution fits best the simulated state evolution. In the

case of the bicycle model, the parameters are the Pacejka tire model parameters of the

front and the rear wheel Bf , Cf , Df , Br, Cr, Dr, as well as the drivetrain and friction

model parameters Cm1, Cm2, Crr, Cd. There are two factors which can be changed, first,

which of the parameters are assumed fix and which are identified and second what kind

of maneuvers are used to identify the parameters.

We used two types of maneuvers to find the parameters, first ramp steer maneuvers

with high longitudinal velocities, and second maneuvers generated by an autonomous

racing controller. The advantage of the first type of maneuvers is that no working

controller is needed and that no noise is fed back by the controller, but the maneuvers

may not represent the operation range of interest. On the other hand, the second type of

maneuvers, the closed-loop trajectories have the advantage that the model is identified

in the operation range of interest and that the data is widely available once a controller is

working. However, the input trajectory is influenced by the measurement noise which can

lead to problems and the controller potentially does not excite enough of the dynamics,

which results in an overfitted model which does not generalize. In practice, the first type

of experiments is suited to identify the model and is mainly used. The identification

based on closed-loop data seems to work for the autonomous racing application, where

the model is constantly excited even in the region where the tires are saturated. However,

the approach is mainly of interest to slightly adapt the model due to model changes such

as slow tire wear, or in the case where it is not possible to perform ramp steer or other

identification maneuvers since there exists no open space using the same track material.

Regarding which parameters can be fixed, two approaches to fix parameters and

therefore simplify the task are possible. First, the drivetrain model can be separately

identified from the tire forces, by using the measured forward velocity to identify the

tire forces and given the tire forces identify the drivetrain by only investigating the

longitudinal dynamics. Secondly, instead of identifying both tire models, the front tire

model can be fixed to the one obtained by the steady-state experiments. Both ideas allow

to reduce the number of parameters, and we observed that this helps the convergence of

the optimization problem.

Model validation

We conclude this appendix on the identification approach by showing model validation

results. More precisely we show how the identified model compares against the real car

driving around the track using an automatic racing controller. When looking at Figure

3.10 we can see that the measured velocities can be accurately predicted over a long time
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span, in this case around two laps. The largest errors occur in the forward velocity state

at high velocities and in the lateral velocity at hard to characterize places. The latter

errors are most probably caused by combined slip effects which are not considered in the

model (3.1).
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Figure 3.10: Model validation of the velocity states of the idendified bicycle model

If we look at the cross validation of the X-Y position and the yaw angle in Figure

3.11, we can see that after approximately 5 s the measured and predicted states start

to diverge significantly. However, since these states are the integration of the velocity

states, all errors accumulate over time, which makes accurate predictions over longer

time spans nearly impossible. Finally, note that in our predictive controllers we only

consider look ahead predictions of around 0.5 to 1 s which is well within the time span

where the predictions are accurate.

3.5.2 Stationary velocity grid

The stationary velocity manifold is gridded in vx and δ coordinates. In the vx direction

the space is uniformly gridded between a lower and an upper velocity, with a fixed

spacing, see Table 3.1. For every vx grid point, δ is gridded within the normal driving

region with a fixed number of grid points, see Table 3.1. Additionally, in all cases the

same 12 constant velocity points corresponding to drifting are included.
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Figure 3.11: Model validation of the kinematic states of the idendified bicycle model

Table 3.1: Used gridding variables, for corresponding Nm

# modes vx range vx spacing δ grid points drifting modes

89 [0.5, 3.5] 0.25 5 12

99 [0.6, 3.4] 0.2 5 12

115 [0.5, 3.5] 0.25 7 12

129 [0.6, 3.4] 0.2 7 12
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CHAPTER 4
Hierarchical Racing Controller

Based on the previous Chapter 3, we propose a hierarchical receding horizon racing con-

troller. The controller is designed to race around a track with known boundaries and uses

both the bicycle as well as the path planning model. The two level hierarchical structure

is designed such that, at the higher level, many possible finite horizon trajectories are

generated based on the current state, the track layout, and the path planning model. In

the lower level, the trajectory with the largest progress from the higher level is tracked

using an MPC subject to the bicycle model dynamics. In the following, we will refer to

the higher level as the “path planning” step and the lower level as the “tracking MPC”

step. The chapter is structured as follows, in Section 4.1 and 4.2 the path planning

and tracking MPC step are formulated and discussed. The controller is then studied in

simulation in Section 4.3 and the chapter is concluded in Section 4.4.

4.1 Path planning step

In the path planning step all trajectories consisting of NS constant velocity segments and

fulfilling the path planning model are generated. Since the admissible input set U(qk)

is finite there only exist a finite number of state-input trajectories and once all these

trajectories have been computed the path planning algorithm discards those that violate

the state constraints (i.e., leave the track). Among the remaining feasible trajectories,

the path planner selects the trajectory with the greatest progress or in other words the

trajectory which maximizes the driven distance relative to the track.

To properly formulate the problem we need several ingredients. First, as mentioned

above we use the path planning model, where the state is x = [X, Y, ϕ, q] and the

dynamics is given by the discrete time system xk+1 = f(xk, uk) together with input

constraints uk ∈ U(qk) as described in Chapter 3. Second, the state constraints are used
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to discard trajectories where the car leaves the track and are given by xk ∈ XT, with,

XT =


(X, Y ) ∈ XTrack ,

ϕ ∈ R ,
q ∈ {1, ..., Nm} ,

(4.1)

where, XTrack represents the track in global X-Y coordinates, ϕ is unconstrained since

it is periodic and the mode q needs to be one of the Nm constant velocity points.

Finally, the objective function is the progress of the last point in the horizon. For-

mally, we define the progress by considering the center line of the track as a parametrized

curve cl : [0, L)→ R2, where 0 represents the “starting line”; note that the argument of

the function cl loops from L back to 0 every time the car completes a lap. Given a state

x ∈ R4, we define its projection p̂ : R4 → [0, L) onto the center line using the first two

components of the state

p̂(x) = arg min
l∈[0,L)

‖cl(l)− (X, Y )‖2 . (4.2)

The projection (4.2) is computed by first generating off line a piecewise affine approx-

imation of the center line, comprising 488 pieces in our case with endpoints regularly

distributed on the center line. Online the projection can then be computed by finding

the closest affine piece and taking an inner product.

p(x
NS
,c

NS
)

Figure 4.1: Visualization of the final state progress of a trajectory, shown in light blue.

To compute the progress we further consider a lap counter c which is initialized with

c = 0 and is incremented whenever the car crosses the starting line. Under the reasonable
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assumption that the track length is such that the car can only cover a fraction of one

lap in a single sampling time, we then define the update equation of the lap counter by

ck+1 = C(xk, uk, ck) =

{
ck + 1 if p̂(xk) > p̂(f(xk, uk))

ck otherwise .

Finally, given a state xk and the lap counter ck we define the progress function

p(xk, ck) = p̂(xk) + ckL , (4.3)

with Figure 4.1 visualizing the concept. Note that the lap counter allows to deal with

the discontinuity introduced by the periodic track, and is especially needed when two

cars race wheel-to-wheel in Chapter 6.

Therefore, the path planning step can be formulated as the following optimization

problem,

min
u,x

p(xNS
, cNS

) ,

s.t. x0 = x, c0 = c , (4.4)

xk+1 = f(xk, uk) , uk ∈ U(qk) ,

ck+1 = C(xk, uk, ck) ,
xk+1 ∈ XT , k = 0, ..., NS − 1 ,

where, u = [u0, ..., uNS−1] is the input sequence, x = [x0, ..., xNS
] the corresponding state

sequence, x the measured state and c the current lap counter. Note, the optimization

problem (4.4) can be solved by enumeration, since there only exist a finite number of

possible trajectories. However, the number of trajectories grows exponentially in the

horizon length NS. See Figure 4.2 for an illustration of all the positions of the path

planning model which fulfill the state constraints.

Compared to similar methods performing path planning with motion primitives such

as [22,23], our approach is different since we do not plan a path from a starting point to

a target set, but a finite horizon trajectory.

Alternatively, it is also possible to define the progress by extending the state with

the lap counter c, leading to x̄ = [x, c] ∈ R5 as well as append the lap counter update

equation to the dynamics f(x, u) which gives rise to the dynamics of the combined state

x̄k+1 = f̄(x̄k, uk). Note that the lap counter takes values in the discrete set of integers,

but similar to the discrete mode q we again can embed in the real line, since its update

equation is such that if initialized in this set it remains in this set. However, we only

adapt this formulation in Chapter 6 where it leads to a significantly more readable

notation.
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Figure 4.2: Visualization of the all the positions, which fulfill the path planning model

and stay within the track constraints, x1 shown in blue, x2 shown in red and x3 shown

in green.

4.1.1 Implementation details

There are two main implementation issues with the above described path planner. First,

the state of the path planning model cannot be measured, and secondly only checking

collision every Tpp seconds potentially allows to “jump” over constraints, see Figure 4.3.

Since it is not possible to measure the entire state of the path planning model,

we have to rely on estimation. We assume that the state of the bicycle model ζ =

[X, Y, φ, vx, vy, ω] is available. In simulation this is given, since we use the bicycle model

for simulation, and in the experimental set-up the state of the bicycle model is given

by the vision system and the EKF state estimator mentioned in Chapter 2. Thus, to

estimate the state of the path planning model x = [X, Y, ϕ, q], it is only necessary to find

the “closest” constant velocity mode q. We propose a two-step approach, first finding

the closest stationary longitudinal velocity v̂x, and second from all the constant velocity

points with this longitudinal velocity the weighted least square point is determined. The

weighting is introduced so as to scale the lateral velocity and yaw rate to plus minus one.

Note that this two-step approach is only possible since the constant velocity points are

gridded with fixed longitudinal velocities. If this is not the case other methods would be

necessary for example directly finding the weighted least square point.

The second problem arises from the fact that Tpp is large. Therefore, guaranteeing
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Figure 4.3: Visualization that only checking the switching points xk is not enough to

verify that the continuous trajectory does not leave the track. The real track boundaries

are visualized in black, and the constraints the trajectory of the CoG needs to fulfill are

marked in dotted red and finally the car illustrated by a box. Green trajectories indicate

that the endpoint is inside the red dotted track constraints and red trajectories show

that the constraints are violated.

that xk is inside the track does not guarantee that the continuous trajectory does not

leave the track and then reenters again. For example in Figure 4.3 where real track

boundaries are visualized in black, the constraints the trajectory of the CoG needs to

fulfill are marked with a dotted red line, and the car is illustrated by a box, the car

stands clearly at a position where all trajectories are infeasible. However, when only

the endpoints of the constant velocity trajectories, or in other words x1 are checked for

collision most of the trajectories are feasible. This is a common problem in sampled-

data systems and needs to be tackled appropriately [108]. Theoretically, this can be

avoided by checking that the continuous trajectory stays inside the track constraints.

Practically, this is achieved by sampling the continuous trajectory and checking that all

the sampled points stay inside the track constraints. In our implementation, we sample

the continuous trajectory every 20 ms, which is about ten times smaller than Tpp and is

small enough that the remaining violations of the continuous trajectory can be neglected

(given the used track layout).

Finally, from a computational point of view, it makes no sense to generate all trajec-

tories and then discard the ones which leave the track. It is more efficient to prune the
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tree of possible trajectories at every step. Thus, the path planning step for NS = 3, can

be summarized by the four stages in Figure 4.4. In the first three stages, the trajecto-

ries which stay inside the track are sequentially generated, where red trajectories leave

the track, green trajectories stay inside the track, and blue trajectories are the feasible

trajectories from the last stage. In the fourth stage, the progress of all trajectories is

computed, and the one with the largest progress is selected, marked in red.
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Figure 4.4: Visualization of the four stages in the path planning step, for NS = 3 and

Tpp = 0.24 s. In the first three stages, the trajectories which stay inside the track are

sequentially generated, where red trajectories leave the track, green trajectories stay

inside the track, and blue trajectories are the feasible trajectories from the last stage. In

the fourth stage, the progress of all trajectories is computed and the one with the largest

progress is selected, marked in red.

4.2 Tracking MPC step

The trajectory determined by the path planning step cannot be directly used to control

the car since the model is not sophisticated enough. Therefore, a lower level controller is

used to follow the trajectory of the higher level path planner. We propose to use a model

predictive trajectory tracking controller. The main advantage of using an MPC in this

setting is the natural way the trajectory of the path planner can be included, and that it

is straightforward to add input as well as state constraints. Additionally, it is possible to

handle the nonlinear dynamics by approximating them as a linear time-varying system.
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For the reference tracking cost, note that the path planning model does not only give

a trajectory in space, but given the constant velocity mode the velocities are known.

Further, it is possible to sample the continuous trajectory of the path planning model at

any sampling time, similar to the constraint checking in the path planning step. Thus,

we can run the MPC at any sampling time Ts as long as Tpp is a multiple of Ts. See

Figure 4.5, for an example where the optimal trajectory from Figure 4.4 is sampled with

Ts = 0.02 s. Thus the following MPC problem, with a horzion of NMPC = NsTpp/Ts can

be formulated,

min
ζ,ν

(ζNMPC
− ζref

NMPC
)TP (ζNMPC

− ζref
NMPC

)

+

NMPC−1∑
k=0

(ζk − ζref
k )TQ(ζk − ζref

k ) + ∆νTk R∆νk ,

s.t. ζ0 = ζ ,

ζk+1 = fb(ζk, νk) , (4.5)

ζk+1 ∈ Z , νk ∈ N ,

∆νk = νk+1 − νk , k = 0, ..., NMPC − 1 .

Where, ζ is the initial state, ζ = [ζ0, ..., ζNMPC
] and ν = [ν0, ...νNMPC−1] the state and

input trajectory, and Q = QT � 0, P = P T � 0, R = RT � 0 are tuning matrices.

Furthermore, ζref
k denotes the reference from the path planning step at time step k

sampled with a discretization time of Ts and ∆νk is the change in inputs. The discretized

version of the nonlinear bicycle model (3.1) is given by fb(·, ·) and Z represents the state

constraints including the track constraints and N represents the input constraints.

The MPC problem (4.5) cannot be solved efficiently, mainly due to the nonlinear

dynamics and the nonconvex track constraints. However, since we have a realistic refer-

ence trajectory, we can locally approximate these non-convex constraints as convex con-

straints. The nonlinear dynamic can be approximated by linearizing the continuous time

bicycle model around the reference trajectory and then by discretizing it using zero order

hold. This results in a discrete time linear time-varying system ζk+1 = Akζk +Bkνk + gk.

The state constraints are tackled by first separating the track constraints from the bounds

on the state, given by ζ ≤ ζk+1 ≤ ζ̄. A local convex approximation of the track con-

straints is achieved by limiting each point in the horizon to lie within two parallel half

spaces, which leads to two affine inequality constraints per time step (one for the right

and one for the left border), resulting in time varying linear constraints Fkζk ≤ fk.

Figure 4.6 depicts these border constraints which we formulate as soft constraints to

avoid infeasibility problems in practice. By using an exact penalty function (an infinity

norm in our case), we ensure that the resulting optimization problem is always feasible

and that the original solution of the hard constraint problem is recovered in case it is
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Figure 4.5: Trajectroy from the path planner, which can be used as the MPC reference.

The trajectory from the path planner has a discretization time of Tpp = 0.24 s and is

sampled with Ts = 0.02 s.

feasible [109, 110]. Finally, the input constraints νk ∈ N are already convex since we

only consider bounds on the inputs ν ≤ νk ≤ ν̄. Using this convexification approach the

resulting optimization problem is given by,

min
ζ,ν,s

(ζNMPC
− ζref

NMPC
)TP (ζNMPC

− ζref
NMPC

) + q‖sNMPC
‖∞+

NMPC−1∑
k=0

(ζk − ζref
k )TQ(ζk − ζref

k ) + q‖sk‖∞ + ∆νTk R∆νk ,

s.t. ζ0 = ζ ,

ζk+1 = Akζk +Bkνk + gk ,

Fkζk ≤ fk + sk , sk ≥ 0 , (4.6)

ζ ≤ ζk+1 ≤ ζ̄ , ν ≤ νk ≤ ν̄ ,

∆νk = νk+1 − νk , k = 0, ..., NMPC − 1 .

Here, s = [s1, ...sN ] are the positive slack variables used in the soft constraint formulation

and q > 0 is the weight which is chosen large enough to guarantee an exact reformulation.

The resulting optimization problem is a convex multi-stage quadratic program which can

be solved efficiently within milliseconds if tailored QP solvers such as FORCES Pro [111]

are used.

In practice, the matrices Q, R and P are chosen diagonal, and it is important to
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Figure 4.6: Drawing of the two half spaces approximating the track constraints. On the

left for one point in the horizon and on the right shown for all points in the horizon.

properly tune them to achieve a good performance. Especially important is the terminal

cost P which is chosen significantly larger than Q. This results in an MPC which tracks

the given path well, while not being to aggressive. However, the terminal cost is still a

tuning variable since a systematic approach to determine a terminal cost for the given

setup is difficult to determine.

4.3 Simulation results

In this section we perform a simulation study, where we vary the prediction horizon

NS from 2 to 4, to show the performance of the controller and to highlight some of

the drawbacks. For the simulation study, we use the full controller introduced in this

chapter, which includes the path planner (4.4) and the MPC tracking controller (4.6).

The controls are applied to the continuous time bicycle model (3.1), including control

quantization motivated by the communication link in the real set-up, where both control

inputs are represented using 8 bits each. The path planning model uses a discretization

time of Tpp = 0.24 s and the MPC controller uses a discretization time of Ts = 0.02 s. The

path planning model uses Nm = 129 different modes, which are generated as described

in Appendix 3.5.2. The whole controller is run at the sampling time of the MPC, and

both steps are repeated at this sampling time.

To measure a controller’s performance, we consider the mean lap time, the num-

ber of constraint violations (i.e., the number of time steps the car is outside the track

constraints) and the computation time required by the path planner, as well as the

computation time to solve the QP with FORCES Pro. Each controller is simulated for

10’000 time steps; with a sampling time of 20 ms, this corresponds to 200 s or roughly

23 laps. The simulations are performed on a MacBook Pro with a 2.4 GHz Intel Core i7

processor, implemented in C, using gcc as a compiler and −O3 code optimization.
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Table 4.1: Influence of NS

mean lap

time [s]

# constr.

violations

PP comp. time [ms] QP comp. time [ms]

NS median max median max

2 9.03 13 4.826 15.083 2.237 6.332

3 9.17 4 23.986 121.694 3.539 9.581

4 9.02 0 87.686 1305.868 4.679 9.311

The simulation results are summarized in Table 4.1, and the driven trajectory, as

well as the velocity profile of the fastest lap, is shown in Figure 4.7. When looking at the

quantitative results in Table 4.1, we first investigate the computation time, where we can

see that the median as well as maximum computation time for the path planning step (PP

comp. time) increases exponentially, which is expected since the number of trajectories

increases exponentially. The median computation time to solve the MPC problem, on the

other hand, only increases linearly with the prediction horizon, as expected by FORCES

Pro [88]. The maximum computation time for the MPC problem is caused by a few

cases where the solver needs significantly more iterations to converge. It is also visible

that only for a horizon of NS = 2 the problem is real-time feasible. Note that even

though the sum of the two max computation times is slightly above 20 ms, the maximal

computation time measured for both tasks is 16.8 ms.

For the second part of the discussion we look at the driving performance indicators.

When looking at the mean lap time, we can see that NS = 3 performs worst. This is

surprising as one would expect longer prediction horizons to perform better. However,

the number of constraint violations is ordered as expected and NS = 2 has the most

violations. To explain this behavior it is necessary to investigate the driven trajectories

in Figure 4.7, which shows the fastest lap driven for the three different horizon lengths,

in solid blue NS = 2, in dash-dotted red NS = 3 and in dashed green NS = 4. The

beginning of the lap is in the top left corner marked with a line perpendicular to the

track, and the car race counterclockwise.

In the bottom plot the forward velocity of the three controllers is shown relative to

the center line. Showing the velocity relative to the center line allows us to compare the

velocity at a given point on the track; the projection on the center line is performed as

discussed in Section 4.1. We see that for most of the track, the controllers drive similarly

and even have the same velocity. However, at some places around the track, marked

in Figure 4.7 in light green, the difference in the look-ahead leads to a different driving

style. For example at 2 m along the center line in the first curve, NS = 2 approaches the

apex very directly, and as visible in the velocity plot, needs to brake harder to get around

the curve. This is caused by a too short prediction horizon, and a similar behavior can
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also be seen at 7, 9, and 16 m along the center line.

However, due to the short horizon, the controller is also over-optimistic on straights,

driving faster in between curves than the other two controllers. This short-sighted driv-

ing style results in a lap time similar to NS = 4 and even outperforms NS = 3 regarding

lap time. However, the price to pay is a higher number of constraint violations (possible

crashes in reality) and a driving style which results in nearly three times as many feasi-

bility issues, where each infeasible path planning problem triggers an emergency braking

maneuver until the problem is feasible again.

Thus, in summary for the controller to perform well, at least a horizon of NS = 3

is needed, and an even longer horizon is preferred. However, this comes with computa-

tion times that are not real-time feasible. The only way to implement the hierarchical

racing controller as it is presented here on current computers is with a horizon of one

or two. This, on the other hand, results in a controller which is short-sighted and has a

nondesirable driving style, which inherently limits the performance.

4.4 Conclusion

In this chapter we introduced a hierarchical racing controller, which uses the strengths of

the path planning and bicycle model. The path planning model allows to plan realistic

reference paths, considering complex state constraints and objective functions. On the

other hand the bicycle model incorporated into an MPC allows to find suited inputs

to the car necessary for autonomous racing. Furthermore, the reference path from the

higher level allows to drastically simplify the MPC problem by finding a local convex

approximation around the reference. The proposed hierarchical racing controller allows

to race the cars around a predefined track, but the controller is only real-time feasible

for short prediction horizons. These short prediction horizons intrinsically limit the

performance of the controller which needs a certain look-ahead in the path planning

step, in order for the resulting closed-loop behavior to be suited for racing.
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Figure 4.7: Top left, relative position to the center line, every meter along the center line

is marked with a point, whereas points of interest are marked with a line across the track

and the length of the center line in green. Top right, controller with NS = 2 in solid

blue, middle left, controller with NS = 3 in dash-dotted red and middle right, controller

with NS = 4 in dashed green. Bottom: Velocity profile relative to the center line of the

fastest lap for all three controllers, points of interest from the top left are marked with

a green bar.
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CHAPTER 5
Real-Time Control for Autonomous Racing

Based on Viability Theory

While the hierarchical racing controller outlined in the previous chapter enables us to

perform real-time racing of the RC cars, it faces two major drawbacks that limit its

performance. The first drawback is that the number of trajectories grows exponentially

in the prediction horizon NS. The second drawback is that feasibility does not imply

recursive feasibility. Indeed the maximal progress trajectory is often not recursively

feasible when only feasibility is enforced. This manifests itself in the non-desirable driving

style of the controller with a horizon of NS = 2.

To tackle the second drawback, in this chapter we propose to restrict the path plan-

ner to trajectories that keep the system within the viability kernel (instead of just the

track). Thereby, recursive feasibility of the path planning step is guaranteed under the

assumption of no model mismatch. Moreover, the use of the viability kernel has two

computational advantages that can dramatically reduce the computation time. First,

it allows one to consider fewer trajectories (only those that remain in the viability ker-

nel instead of all trajectories that stay on the track) and second, it suffices to verify

that at any switching point remains within the viability kernel instead of checking that

the whole trajectory stays on the track. Note that using the viability kernel does not

fundamentally tackle the exponential growth of trajectories in the path planning step

with increased horizon length. Empirically, however, this additional pruning of candi-

date trajectories leads to a significant reduction in the online computation times. This,

in turn, allows extending the considered paths by more segments, resulting in a better

closed-loop performance.

The benefit of using the viability kernel in the path planning step can be seen in

Figure 5.1, where on the left the trajectories generated by the standard path planning

step discussed in Chapter 4 are shown, and on the right, all non-viable trajectories are

eliminated. Note that this helps to reduce the number of trajectories by approximately

25% and only removes trajectories which are doomed to leave the track in the future.

However, since in our setting it is only possible to approximate the viability kernel
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Figure 5.1: Left: Trajectories generated by the path planning step where only feasibility

w.r.t. the track is enforced. Right: Trajectories generated by the path planning step

with viability constraints. For NS = 3, Tpp = 0.16 s and Nm = 129.

numerically by gridding the state space, the performance is also influenced by the space

discretization. Therefore, it is also worth studying how the gridding affects the viability

kernel. Based on these observations we propose a game theoretical approach to compute

the viability kernel. More specifically we use the discriminating kernel algorithm which

considers the discretization errors as an opponent player. The resulting discriminating

kernel inner approximates the viability kernel and guarantees that also states in the

“cell” around a grid point are viable.

This chapter is structured as follows: Section 5.1 summarizes the viability and dis-

criminating kernel algorithm of [39, 40]. In Section 5.2 the new viability kernel approx-

imation is introduced. Section 5.3 discusses the necessary modification to use the path

planning model in the viablility kernel algorithm. The viability and discriminating ker-

nel based on this model are then analyzed in Section 5.4. In Sections 5.5 and 5.6 we

study the performance of the resulting controller both in simulation and in experiment.

Conclusions are provided in Section 5.7. Appendix 5.8 contains technical results and

proofs.

5.1 Viability kernel and discriminating kernel

In this section we briefly discuss discrete-time viability theory which will later on be used

to construct recursive feasible trajectories. Discrete-time viability theory addresses the

question for which initial conditions does there exists a solution to a difference inclusion,

which stays within a constraint set forever [31]. Consider a controlled discrete-time

system xk+1 = f(xk, uk), where x ∈ Rn is the state, u ∈ U ⊂ Rm is the control input and

f : Rn × U → Rn a continuous function. This system can be formulated as a difference
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inclusion,

xk+1 ∈ F (xk), with F (x) = {f(x, u)|u ∈ U} . (5.1)

We next briefly summarize the standard viability kernel algorithm of [39] for the above

class of systems.

5.1.1 Viability kernel algorithm

Given a constraint set K ⊂ Rn, solutions to the difference inclusion (5.1) which stay in

K forever are known as viable solutions.

Definition 5.1 ([39]). A set D ⊂ Rn is a discrete viability domain of F if F (x)∩D 6=
∅ for all x ∈ D. The discrete viability kernel of a set K ⊂ Rn under F , denoted by

ViabF (K), is the largest closed discrete viability domain contained in K.

Under mild assumptions on F (discussed below in Proposition 5.1) standard viability

theory arguments ensure the existence of the discrete viability kernel and establish the

existence of viable solutions for all the states contained in it.

Conceptually speaking, the viability kernel can be calculated through the so called

viability kernel algorithm:

K0 = K ,

Kn+1 = {x ∈ Kn|F (x) ∩Kn 6= ∅} . (5.2)

Proposition 5.1 ([39]). Let F be an upper-semicontinuous set-valued map with closed

values and let K be a closed subset of Dom(F ). Then,
⋂∞
n=0K

n = ViabF (K).

The viability kernel algorithm requires one to perform operations with arbitrary sets

and as such is not implementable. In practice, viability kernels are approximated by

discretizing/gridding the state space. Consider a family of countable subsets Xh of Rn,

parameterized by h ∈ R, such that

∀x ∈ Rn, ∃xh ∈ Xh s.t. ‖x− xh‖∞ ≤ α(h) ,

for some continuous function α : R+ → R+ with limh→0 α(h) = 0. Given a grid point

xh ∈ Xh, we will call the set of points {x ∈ Rn | ‖x−xh‖∞ ≤ α(h)} the cell of xh. Notice

that the cells of different grid points may overlap. We note that, unlike [39], we resort

here to the infinity norm, as this will facilitate the presentation of subsequent results.

To ensure that the discretized set-valued map F (xh) ∩ Xh is non-empty it is nec-

essary to enlarge the set-valued map before discretization, a process that is known as

“expansion” [39]. The expanded set-valued map is defined as F r(x) = F (x) + rB∞,

where B∞ is a closed unit ball in the infinity norm centered at the origin and r is the

51



Chapter 5. Real-Time Control for Autonomous Racing Based on Viability Theory

radius of the ball. It can be shown that, for r ≥ α(h), F r(x)∩Xh is non empty for all x.

Throughout we denote F r
h(xh) = F r(xh) ∩Xh and assume for simplicity that r = α(h).

When restricted to Xh the set-valued map F r
h defines the following discrete time system

over the countable set by

xh,k+1 ∈ F r
h(xh,k) . (5.3)

If the set K is compact, then the set Xh can be assumed to be finite and the viability

kernel algorithm (5.2) applied to (5.3) converges after a finite number of iterations, since

Kh = K ∩ Xh is finite. Moreover, under appropriate technical assumptions [39], the

resulting set inner-approximates the viability kernel, i.e.,

ViabF r
h
(Kh) ⊂ (ViabF r(K) ∩Xh) . (5.4)

Note that the guaranteed inner approximation is only with respect to the viability kernel

of the extended dynamics F r. The extension limits the granularity/resolution of features

that the kernel can represent due to extension, but is necessary in the finite case. Fi-

nally, the finite viability kernel converges to the discrete viability kernel as the space

discretization h goes to zero, [39].

5.1.2 Discriminating kernel algorithm

The discriminating kernel algorithm of [40] extends viability computations to systems

where the state evolution xk+1 = g(xk, uk, vk) is additionally affected by a disturbance

vk ∈ V ⊂ Rd, where g : Rn × U × V → Rn is assumed to be a continuous function. The

discriminating kernel algorithm returns all states (“victory domain”) where there exists

a control input, which is able to prevent the disturbance from driving the system to the

open set Rn \K. Notice that, in the discriminating kernel the control is able to access

the disturbance’s current action, which is not the case if the related leadership kernel is

used, for more details we refer to [112].

The difference equation can again be written as a difference inclusion

xk+1 ∈ G(x, v) with G(x, v) = {g(x, u, v)|u ∈ U} .

Definition 5.2 ([40]). A set Q ⊂ Rn is a discrete discriminating domain of G, if

for all x ∈ Q, we have that G(x, v)∩Q 6= ∅ for all v ∈ V . The discrete discriminating

kernel of a set K ⊂ Rn under G, denoted by DiscG(K), is the largest closed discrete

discriminating domain contained in K.

One can show that the discriminating kernel DiscG(K) exists if K is a closed subset

of Rn and G : Rn × V  Rn is an upper-semicontinuous set-valued map with compact
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values [40]. The discrete discriminating kernel can be calculated using an algorithm

similar to the viability kernel algorithm, by considering a sequence of nested closed sets

K0 = K ,

Kn+1 = {x ∈ Kn|∀v ∈ V, G(x, v) ∩Kn 6= ∅} . (5.5)

To numerically implement the discriminating kernel algorithm, the state space Rn, the

disturbance space V and the difference inclusion G(x, v) have to be discretized [40].

Whenever K and V are compact the algorithm (5.5) terminates after a finite number of

iterations. Similar to the viability kernel it can be shown that the finite approximation

of the discriminating kernel converges to the discrete discriminating kernel as the space

discretization h goes to zero [40].

5.2 Robustifying the viability kernel algorithm against

space discretization errors

5.2.1 Errors due to the space discretization

We start by noting that the inner approximation property of the viability kernel algo-

rithm (5.4) only holds for viable grid points and not for states in their cells. In practice

it is desirable that the viability property of a grid point is passed on to its cell. In the

following section we present a rigorous approach ensuring this property.

Assumption 5.1. The function f(x, u) is continuous in u and globally Lipschitz in x

with Lipschitz constant L, that is there exists a positive number L, such that for all

u ∈ U ,

∀x, y ∈ Rn : ‖f(y, u)− f(x, u)‖∞ ≤ L‖y − x‖∞ .

Consider xh ∈ Xh, and a point x ∈ xh+rB∞ in the cell of xh, then under Assumption

5.1, it holds that for all u ∈ U

f(x, u) ∈ f(xh, u) + LrB∞ . (5.6)

Therefore, to robustify the viability kernel algorithm against the space discretization,

we can model the discretization error as an additive disturbance on our nominal system,

i.e.,

xk+1 = f(xk, uk) + vk, with vk ∈ LrB∞ . (5.7)
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5.2.2 Inner approximation of viability kernel

To calculate an inner approximation of the viability kernel that guarantees viability of

the entire cell of a viable point, we propose to use the discriminating kernel algorithm

(5.5).

Proposition 5.2. Under Assumption 5.1, the discriminating kernel DiscG(K) of the

difference inclusion,

xk+1 ∈ G(xk, vk) = F (xk) + vk vk ∈ LrB∞ , (5.8)

enjoys the following properties:

(1) limr→0 DiscG(K) = ViabF (K).

(2) DiscG(K) is a viability domain of F .

(3) For all x ∈ DiscG(K) and for all x̂ ∈ x + rB∞, there exists a u ∈ U such that

f(x̂, u) ∈ DiscG(K).

Proof. Under Assumption 5.1 F (x) is upper-semicontinuous, henceG(x) is upper-semicontinuous,

and the conditions to apply the viability and discriminating kernel algorithms are satis-

fied.

(1) If r → 0 the disturbance set vanishes, thus
⋂
r>0 LrB∞ = {0} and using [40,

Remark 4.1], the discriminating kernel is identical to the viability kernel.

(2) By definition the discriminating kernel is a discriminating domain. Thus for all

x ∈ DiscG(K) we have,

(F (x) + v) ∩DiscG(K) 6= ∅ ∀v ∈ V = LrB∞ ,

Since v = 0 ∈ LrB∞ is an allowed disturbance, the discriminating kernel is also a

viability domain, as

∀x ∈ DiscG(K), F (x) ∩DiscG(K) 6= ∅ .

(3) First, by (5.6) we know that for all x̂ ∈ x+ rB∞

f(x̂, u) ∈ f(x, u) + LrB∞ ,

and therefore for a given u ∈ U , f(x̂, u) = f(x, u)+v, for some v ∈ LrB∞. Second,

from [113, Equation (4)] we know that the discriminating kernel DiscG(K) is the

largest closest subset of K such that for all x ∈ DiscG(K) and for all v ∈ V , there

exists a u ∈ U such that g(x, u, v) ∈ DiscG(K). Thus, together we have that for

every x̂ ∈ x+ rB∞ there exists a u ∈ U , such that f(x̂, u) ∈ DiscG(K).
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Note that if the leadership kernel is used instead of the discriminating kernel, a similar

property can be shown.

As discussed in the previous Section 5.1, it is necessary to discretize space to imple-

ment the discriminating kernel algorithm. To state similar properties as in Proposition

5.2 if the space is discretized we need an inner approximation of the discriminating kernel

DiscGr
h
(Kh) ⊂ DiscGr(K) ∩Xh. This is generally not given, therefore we derive a mod-

ified discriminating kernel algorithm, which guarantees an inner approximation for the

given system (5.8). The modified discriminating kernel algorithm is derived in Appendix

5.8 and stated in Algorithm 1. The algorithm, however needs two assumptions; (i) we

only consider square grids and (ii) the set U needs to be finite. The second assumption

is necessary to implement the algorithm and can be achieved by introducing a finite

discretization of U , which we henceforth denote by Uh ⊂ U . Note that for our system

square grids are an obvious simple choice and the path planning model has a finite input

space by construction.

Proposition 5.3. Consider the finite dynamical system corresponding to the extended

and discretized system of (5.8),

xh,k+1 ∈ Gr
h(xh,k) = (F (xh,k) + vh + rB∞) ∩Xh ,

where vh ∈ Vh is the discretization of LrB∞. If DiscGr
h
(Kh) is computed with Algorithm

1, then the following properties hold:

(1) DiscGr
h
(Kh) is a viability domain of F r

h .

(2) For all xh ∈ DiscGr
h
(Kh) and for all x̂ ∈ xh + rB∞, there exists uh ∈ Uh such that

(f(x̂, uh) + rB∞) ∩Xh ∈ DiscGr
h
(Kh).

Proof. See Appendix 5.8.

5.2.3 Reconstructing viable controls

The use of the discriminating kernel in the path planning step of the hierarchical racing

controller as presented in Chapter 4 is not directly possible as the action depends on both

the state and the disturbance. However, as the disturbance is related to the position of

the current state within the grid cell the disturbance is indirectly known. Furthermore,

we know that if the state is within a grid cell of the discriminating kernel, there exists

a control which keeps the system within a grid cell of the discriminating kernel, see

Proposition 5.3. Thus, we can formulate a predictive controller which enforces this

property.
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More precisely, we can modify the optimization problem (4.4) which defines the path

planning step in Chapter 4 to constrain the state to stay within the discriminating kernel.

Feasibility of the problem below is ensured by virtue of Proposition 5.3; the objective

function p(xNS
, cNS

) is the progress and the system dynamics xk+1 = f(xk, uh,k) is the

path planning model as described in Chapter 4,

min
uh,x

p(xNS
, cNS

) ,

s.t. x0 = x, c0 = c , (5.9)

xk+1 = f(xk, uh,k) , uh,k ∈ Uh(qk) ,
ck+1 = C(xk, uk, ck) , k = 0, ..., NS − 1 ,

(f(xk, uh,k) + rB∞) ∩Xh ⊂ DiscGr
h
(Kh) .

Where, uh = [uh,0, ..., uh,NS−1] is the control sequence, x = [x0, ..., xNS
] the corresponding

state sequence, x the measured state, c the current lap counter, ck+1 = C(xk, uk, ck) the

update equation of the lap counter and uh,k ∈ Uh(qk) the input constraints of the path

planning model. We still use the subscript h to highlight that the set of admissible inputs

needs to be finite, which is the case for the path planning model but maybe not the case

for other applications/models. Note that only the constraints are modified and that this

approach to reconstruct viable controls would also work for general objective function.

Identical to Chapter 4 the problem is solved by enumeration, which limits the horizon

to few steps. To reduce the computation time related to generate all feasible input and

state sequences, it is possible to replace uh,k ∈ Uh with uh,k ∈ UD(xk+rB∞∩Xh), where,

UD(xh) =




uh ∈ Uh |∃vh ∈ Vh

f(xh, uh) + vh + rB∞
∩DiscGr

h
(Kh) 6= ∅


if xh ∈
DiscGr

h
(Kh)

∅ otherwise

. (5.10)

If instead the viability kernel is used, the last constraint of (5.9) is replaced with

(f(xk, uh,k) + rB∞)∩Xh ⊂ ViabF r
h
(Kh). And to reduce the computation time uh,k ∈ Uh

can be replaced with uh,k ∈ UV (xk + rB∞ ∩ Xh), where the set-valued feedback law

uk,h ∈ UV (xh) can be computed similar to UD in (5.10). However, there exists no guar-

antee that the control will keep the system within the viability kernel if the state does

not always coincide with a grid point.

5.3 Upper-semicontinuity of the path planning model

In (5.9), we formulated the path planning step including viability constraints, however, to

compute the viability and discriminating kernel the path planning is required to be upper-
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semicontinuous. In Chapter 3, we showed that the path planning model can be described

as the following discrete-time model, xk+1 = f(xk, uk), where xk = (Xk, Yk, ϕk, qk) and

uk determines the mode of the path planning model, and the discretization time of the

path planning model is Tpp. The set-valued map needed for the viability kernel algorithm

is given by F (x) = {f(x, u)|u ∈ U(x)}, and the output is the union of a finite number

of points in the state space.

In the following, we show that by appropriately embedding the discrete state in the

set of real numbers, upper-semicontinuity of the set-valued map of (3.5) can be ensured

despite the hybrid structure of the model. To see this, recall that a set-valued map

F : Rn  Rn is called upper-semicontinuous if and only if for all x ∈ Rn and for all ε > 0

there exists an η > 0 such that for all x′ ∈ x+ ηB it holds that F (x′) ⊂ F (x) + εB [114].

By embedding the discrete state q in the real numbers we have x = (X, Y, ϕ, q) ∈ R4,

where the first three states (X, Y, ϕ) are continuous by virtue of the original model.

Collecting them into the continuous state xc = (X, Y, ϕ) ∈ R3 and defining the integer

lattice M = {1, ..., Nm}, where Nm is the number of modes, we can define the following

upper-semicontinuous set-valued map,

F (xc, q) =


F̃ (xc,m), if q ∈ (m− 1

2
,m+ 1

2
){

F̃ (xc,m),

F̃ (xc,m+ 1)

}
, if q = m+ 1

2

,

where F̃ (xc,m) = {f([xc,m], u)|u ∈ U(m)} is the set-valued map defined at the lattice

point m. Notice that q ∈ (1− 1/2, Nm + 1/2) is w.l.o.g. since the automaton maps the

interval to itself, forming an invariant set in R. Finally, upper-semicontinuity is ensured

because the dynamics of xc is continuous and, using the above proposed formulation

there, are no discontinuities in a set-valued sense.

To reduce the number of grid points in a practical implementation of the algorithm

it is beneficial to limit the angle between 0 and 2π. Instead of using mod(ϕ, 2π), which

would lead to a discontinuous set-valued map, we propose the set-valued mod function

Mod(ϕ, 2π) =

{
mod(ϕ, 2π) if ϕ 6= k2π

[0, 2π] otherwise
,

which is upper-semicontinuous.

Finally, as already discussed in Chapter 4 with the model (3.5) it is still possible that

the trajectory leaves the constraint set K and re-enters during the time interval Tpp.

This is an issue more generally for sampled data systems and was tackled in [108] by

a sampled data system viability/discriminating kernel algorithm that discards control

inputs and states for which the continuous evolution of the data sampled system leaves

the constraint set K.
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In the following section we will use the path planning model, including the modifi-

cations and the modified sampled data system viability/discriminating kernel algorithm

to compute the kernel with respect to the track constraints.

5.4 Viability kernel for the track

5.4.1 Track constraints

The goal is to find a viable solution of the path planning model within the track. To

that end, we can define the constraint set K as,

K :=


(X, Y ) ∈ XTrack ,

ϕ ∈ [0, 2π] ,

q ∈ {1, ..., Nm} .

In other words, X, Y are constrained within the track, while ϕ and q are unconstrained.

The state space is uniformly gridded such that the distance in the respective unit (meter

or radian) between two grid points is identical. This leads to the smallest r if the states

are not normalized. Further, as q is already finite no gridding is necessary.

The Lipschitz constant of the path planning model (3.5) can be calculated analytically

by differentiating the explicit formula for f(xk, uk). By using different Lipschitz constants

for each mode it is possible to reduce conservatism of the proposed discriminating kernel

approximation.

5.4.2 Viability vs. discriminating kernel

Proposition 5.2 statement (1) in Section 5.2 suggests that the proposed discriminating

kernel approximation converges to the viability kernel as the grid spacing r goes to

zero. To verify this, we compare the fraction of grid points in K which fall into the

respective kernels. Thus, if all grid points in K are viable, then the fraction would

be one. Figure 5.2 shows the fraction for the viability kernel and the discriminating

kernel approximation for different numbers of grid points. It is interesting to see that

the proportion of the viability kernel stays approximately at 0.35 for all grid spacings,

whereas the discriminating kernel approaches the viability kernel as the grid spacing gets

smaller. We can make two observations from Figure 5.2, first, as Proposition 5.2 suggests

the two approximations of the viability kernel get closer the smaller the grid spacing is.

Second, while the viability kernel only changes slightly as a function of the grid spacing,

the proposed discriminating kernel approximation requires a relatively fine grid to achieve

an approximation that is similar to the one of the viability kernel algorithm. Intuitively

speaking, this is because a coarse grid introduces a larger uncertainty than a fine grid,

see also (5.7).

58



5.4 Viability kernel for the track

grid points
10

7
10

8

F
ra

c
ti
o

n
 o

f 
K

 i
n

 k
e

rn
e

l 
[-

]

0

0.1

0.2

0.3

0.4

0.5

Viab Kernel

Disc Kernel

Figure 5.2: Fraction of grid points of K which fall into the viability kernel and the

discriminating kernel, as a function of the total number of grid points in K.

Figure 5.3, visualizes the two kernels by comparing slices of the four dimensional

kernels, this is achieved by fixing the angle ϕ and the mode q, resulting in just the

X-Y plane which is easy to visualize. Figure 5.3, allows to see a qualitative difference

between the viability and discriminating kernel for r = 0.02 and r = 0.015 (corresponding

to 65’528’130 and 157’284’540 grid points respectively). Note that r = 0.02 implies that

the grid points are 4 cm apart; as a comparison the track is 37 cm wide, and the size

of the cars is about 12 × 5 cm. Figure 5.3 shows that the difference between the two

kernels also qualitatively becomes smaller if we use a finer grid. More precisely Figure

5.3 shows all the viable points if the car is driving straight left with a forward velocity

of 2 m/s. For the illustrated angle and constant velocity, mainly the top straight and

the bottom S-curve are of interest (depending on the driving direction). In this region,

the difference between the kernels and the effect of grid size is visible, for example, in

the bottom S-curve, where the red region (which indicates that the grid point is in both

kernels) gets significantly larger for the finer grid.

The difference in the kernel also influence the trajectories generated in the path

planning step (5.9). See Figure 5.4 for a comparison, where we can see that if the

discriminating kernel is used even fewer trajectories are generated, as a reference Figure

5.1 shows the same situation with no viability constraints.
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Figure 5.3: Red points indicate that the grid point is in both kernels, blue grid points

are only in the viability kernel and not shown grid points are in neither kernel. Both

plots show a slice through the kernels for the angle fixed to ϕ = 180◦ and a mode where

the car is driving straight with 2 m/s. In the left figure 65’528’130 grid points are used

in the calculation whereas the right we use a finer grid with 157’284’540 grid points.

5.5 Simulation results and sensitivity analysis

We start with a simulation study to investigate the effect of the various design choices

similar to the one shown in Chapter 4. We use the two-level hierarchical racing controller

introduced in Chapter 4, however, we use the path planning step including the viability

constraints (5.9). The controls are applied to the continuous time bicycle model (3.1),

including control quantization motivated by the communication link in the real set-up,

where both control inputs are represented using 8 bit each.

The effect of the following tuning parameters in the path planner are examined:

• use of viability kernel, discriminating kernel, and no viability constraints;

• grid size in (X, Y, ϕ);

• number of modes Nm;

• path planning discretization time Tpp;

• number of constant velocity segments NS.

To measure a controller’s performance, we consider the mean lap time, the num-

ber of constraint violations (i.e., the number of time steps the car is outside the track

constraints) and the computation time required by the path planner. Each controller

is simulated for 10’000 time steps; with a sampling time of 20 ms, this corresponds to
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Figure 5.4: Left: Trajectories generated by the path planning step using the viabiltiy

kernel. Right: Trajectories generated by the path planning step using the discriminating

kernel. For NS = 3, Tpp = 0.16 s and Nm = 129.

200 s or roughly 23 laps. The simulations are performed on a MacBook Pro with a 2.4

GHz Intel Core i7 processor, implemented in C, using gcc as a compiler and −O3 code

optimization. Furthermore, we investigate the offline computation time and required

memory for certain combinations, where the viability and discriminating kernel are com-

puted in JULIA, on a computer running Debian equipped with 16 GB of RAM and a

3.6 GHz Intel Xeno quad-core processor.

5.5.1 Viability constraints and grid size

We first compare the controller including the path planner with viability constraints (Cvf ,

Cdf , Cvc and Cdc ), to the naive controller without viability constraints (Cnv) as studied in

Chapter 4. Specially, we consider both the viability kernel and the discriminating kernel

(superscript v and d), and two different grid spacing (r = 0.02 and r = 0.015) referred to

as coarse and fine (subscript c and f). All the controllers use the parameters Nm = 129,

Tpp = 0.16 s and NS = 3 in the path planner.

Table 5.1 compares all five controllers in terms of driving performance (mean lap time

and constraint violations) as well as online computation cost and Table 5.2 compares the

offline computation times as well as the storage requirements for the kernels. We see

that the number of constraint violation is negligible for all controllers as no controller

triggers more than ten violations (out of 10’000 steps). When focusing on the mean lap

time, we can distinguish three groups: First, we see that Cnv has the highest mean lap

time. Second are Cvf and Cdf , which have very similar mean lap times, and are clearly the

two fastest algorithms. Third, we have Cvc and Cdc whose mean lap times lie between the

first two groups.

If we compare the online computation times of the controllers, then we can mainly
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Table 5.1: Influence of the viability constraints on the online performance

Controller
mean lap

time [s]

# constr.

violations

online comp. time [ms]

abbr. kernel grid median max

Cnv No N/A 8.77 10 43.71 334.23

Cv
c Viab coarse 8.57 0 0.904 7.968

Cvf fine 8.39 3 0.870 7.557

Cdc Disc coarse 8.60 1 0.870 7.533

Cdf fine 8.41 6 1.032 6.518

Table 5.2: Offline aspects of the viability constraints

Controller comp.

time

kernel [s]

# of

itera-

tions

memory [MB]

abbr. kernel grid kernel control

Cnv No N/A N/A N/A N/A N/A

Cv
c Viab coarse 17957 11 65 1769

Cvf fine 43238 11 157 4246

Cdc Disc coarse 156776 23 65 1769

Cdf fine 397674 30 157 4246

differentiate between the controller without viability constraints (Cnv) and controllers

with viability constraints (Cvf , Cdf , Cvc and Cdc ) which are on average more than 40 times

faster. As Cnv does not use any viability constraints to guide the path planning process,

more branches of the tree have to be generated and checked, slowing down the computa-

tion, see Figure 5.1. Furthermore, we see from Table 5.1 that the maximal computation

time of Cnv is 334 ms, which by far exceeds the sampling time of 20 ms.

When comparing Cnv with the remaining controllers using the viability constraints, it

is also essential to investigate the offline computation time and the memory the viability

lookup tables in (5.9) require. First, for the controllers with viability constraints, we

need to compute the corresponding kernels. Their computation time mainly depends on

two factors: The choice between viability or discriminating kernel, and the used grid size.

The number of grid points has a direct influence on the offline computation time, as the

number of operations per grid point stays the same. The observation when comparing the
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chosen kernel algorithm is that the discriminating kernel algorithm is significantly slower.

This has two reasons: first each iteration needs more operations than the viability kernel

algorithm due to the disturbance (5.5); second, the discriminating kernel algorithm needs

more iterations to converge. For an implementation the required memory of the viability

based path planner (5.9) is also important, as (5.9) requires to store a four-dimensional

lookup table for the kernel and a five-dimensional lockup table for the viable inputs.

The memory needed to store these lookup tables only depends on the grid size, and for

the fine grid is 4.4 GB, and 1.8 GB for the coarse grid. Thus, we can conclude that,

if the memory requirement and offline computation time are of no concern, then Cvf
and Cdf should be preferred as they are the best performing controllers. However, if the

available memory is limited, Cvc and Cdc with a coarse grid achieve good performance at

a significantly lower memory requirement.

For the following discussions, we will compare the other tuning parameters (Nm, Tpp
and NS), of the path planner while using Cvc as the base comparison, marked as bold

text in the tables.

5.5.2 Number of modes, Nm

We examine the influence of Nm by varying the number of modes, which depends on the

grid imposed on the stationary velocity manifold, see Appendix 3.5.2 for the different

grids used. As expected, the lap time get slower the fewer modes are considered (mean

lap time with Nm = 89 is 9.69 s), but at the same time the computation time decrease

by up to a factor of two. In all cases, the number of constraint violations is zero.

5.5.3 Discretization time, Tpp

The effect of time discretization was investigating by testing different values of Tpp ∈
{0.12, 0.16, 0.2, 0.24} s. The results are summarized in Table 5.3, where we can see that

larger Tpp lead to lower computation times but the lap times getting slower. This effects

come from the influence of Tpp on the path planner model. As for the same mode (same

constant velocity), a larger Tpp implies that the car travels further. This may render

this mode non-viable as the additional traveled distance may bring the car too close to

the border. In contrast slower modes more likely stay inside the track. Thus, the path

planner more likely chooses slow trajectories for larger Tpp, which leads to slower lap

times. At the same time fewer trajectories are viable, which reduces the computation

time. Thus, even though, a larger Tpp implies a longer preview, the larger number of

non-viable states mitigate this advantage.
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Table 5.3: Influence of Tpp

mean lap

time [s]

# constr.

violations

comp. time [ms]

Tpp median max

0.12 8.51 1 1.656 11.061

0.16 8.57 0 0.904 7.968

0.2 8.79 1 0.720 6.169

0.24 9.25 1 0.599 3.473

Table 5.4: Influence of NS

mean lap

time [s]

# constr.

violations

comp. time [ms]

NS median max

2 8.83 0 0.179 2.435

3 8.57 0 0.904 7.968

4 8.56 1 17.015 114.278

5.5.4 Number of constant velocity segments, NS

The influence of the number of constant velocity segments, or in other words the predic-

tion horizon of the path planner is investigated by varying NS from two to four. In Table

5.4 we can see that more segments improve the performance but at the same time the

computation time is heavily increased. The improved lap times came from the longer

preview of the controller with larger NS. The longer preview is achieved without chang-

ing the viability of a trajectory, which stands in contrast with larger Tpp. Furthermore,

since both Tpp and NS influence the preview window, we have observed that NS and Tpp
should be tuned simultaneously, e.g., for NS = 2, Tpp = 0.2 s achieves a faster mean lap

time than Tpp = 0.16 s.

5.5.5 Concluding remarks

The above discussion is summarized in Figure 5.5, which allows us to draw the following

conclusions: First, all the tested controllers based on kernel pruning outperform Cnv
which for the horizon length considered does not even meet the real time requirements.

In contrast, the controllers with viability constraints and NS ≤ 3 are real-time feasible;

put another way, the viability constraints allow one to use longer horizons in real-time
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than would be possible with the naive controller from Chapter 4. Second, when com-

paring the variations of Cvc with different values of Nm, Tpp and NS, we have observed

that more modes Nm, shorter Tpp and larger NS are beneficial for the performance. Fur-

thermore, the numerical study indicates that, if a less powerful computer is used and

the computation time has to be reduced, the most effective way to do so is to reduce NS

to 2, see Figure 5.5. Also note that NS = 4 leads to no further improvement in the lap

time, which indicates that NS = 3 is a sufficiently long prediction horizon. This is also

confirmed by using a terminal cost which captures the possible long term progress of a

state, which improves the performance for NS = 2, but does not help to reduce the lap

time if NS ≥ 3.

Finally, we see from Table 5.1 that the viability-based controller is marginally faster

than the discriminating-based controller. The latter, however, uses the proposed dis-

criminating kernel approximation, which takes into account the discretization of the

state space. Thus, the controller (5.9) comes with additional viability guarantees.
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Figure 5.5: Visualization of the investigated cases, with the base case is marked with

a circle. Solid lines Table 5.1, dashed line Section 5.5.2, dash-doted line Table 5.3 and

doted line Table 5.4. For visualization purposes the data for Cnv and NS = 4 are excluded

from the plot.

5.5.6 Closed-loop behavior of Cvc and Cdc
Since the lap time of Cvc and Cdc are similar, it is interesting to investigate the driving

behavior of the two controllers. Figure 5.6 shows one typical lap driven with Cvc and Cdc .

The beginning of the lap is in the top left corner marked with a line perpendicular to the

track, and the cars race counterclockwise. The velocity is shown relative to center line,
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to make it possible to compare the velocity at a given point on the track; the projection

on the center line is done as discussed in Chapter 4. We see that most of the track,

the two controllers drive similarly and even have the same velocity. However, Cdc drives

somewhat slower coming into the curves, allowing higher velocity on the curve itself and

higher exit velocity, the most extreme cases are marked with green bars in Fig 5.6. It is

interesting to see that, these two different driving styles lead to practically the same lap

time.
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Figure 5.6: Top left: All trajectories of the controller using the viability kernel (in blue),

and the discriminating kernel (in dash-dotted red). Top right: To link relative position to

the center line, every meter along the center line is marked with a point, whereas points

of interest are marked with the length of the center line in green. Bottom: Velocity

profile relative to the center line of one lap for both controllers, points of interest from

the top right figure are marked with a green bar.
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5.5.7 Obstacle avoidance

To further highlight the difference between the two controllers Cvc and Cdc we included

several obstacles at challenging position. The obstacle constraints can be included by

modifying the constraint set K and recomputing the viability and discriminating kernel.

We tested two obstacle configurations shown in Figure 5.7. For the first configuration

(right plot in Figure 5.7) Cvc successfully avoids the obstacles, but the discriminating

kernel collapses to the empty set. The collapse is due to the conservatism added by

considering the space discretization and the fact that the model cannot stop. The second

obstacle configuration is easier to navigate, and both controllers are able to find paths

around the obstacles. However, Cvc is significantly faster than Cdc with a mean lap time

of 9.066 compared to 9.272 s.
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Figure 5.7: The best lap of the controllers for two obstacles= constellations marked in

black using the viability kernel (in blue), and the discriminating kernel (in dash-dotted

red). In the left obstacle configuration only the viability kernel based controller is able

to navigate the course.

Incorporating the obstacles directly in K guarantees that the obstacles can be avoided

by the path planning model if the kernel does not collapses. However, for every obstacle

configuration, a new kernel needs to be computed. Alternatively, if the position of the

obstacle is not a priori known, but the shape of the obstacle is known, viability compu-

tations can be used to improve upon only including the obstacle avoidance constraints

in the predictive controller (5.9). The idea is to combine the viability kernel for the

track constraints with a second viability kernel which only describes from which rela-

tive positions an obstacle located at the origin can be avoided. This viability kernel is

illustrated in Figure 5.8, where the complement of the kernel is shown or in other words

the positions and orientations where a collision cannot be avoided. It is visible that this

region is the obstacle itself and a triangularly shaped region in-front which depends on

the relative orientation. To include this kernel in the path planning step, the kernel
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needs to be translated and rotated to the position of the obstacle, and then the obstacle

avoidance just becomes a second viability constraint. Note that this does not guarantee

recursive feasibility of the obstacle avoidance problem, but improves compared to only

use standard obstacle avoidance constraints since it marks states non-viable from which

a collision with the obstacle cannot be avoided.

Figure 5.8: Complement of the viability kernel for the relative obstacle avoidance prob-

lem, with a car-sized obstacle in at the origin and for the ego car driving straight with

0.5 m/s.

5.6 Experimental results

To verify the simulation results, we implemented Cvc and Cdc in the experimental set-up

described in Chapter 2. The set-up consists of 1:43 Kyosho dnano RC cars, which are

driven autonomously around the race track shown in Figure 2.1. The control signals

are sent to the cars by an external computer via Bluetooth and an infrared-based vision

system captures the cars’ current position, orientation, and velocity. The controllers

were implemented on a desktop computer running Ubuntu 14.04 OS, equipped with 4

GB of RAM and a 3.5 GHz Intel i7 quad-core processor. The tracking MPC problem is

solved using FORCES Pro [111].

For the experiments we implemented the two controllers Cvc and Cdc due to their good

performance, and because they are feasible in terms of memory (compared to Cvf and

Cdf ). We ran the experiment for 200 s and extracted all completed laps, shown in Figure

5.9, together with the velocity profile of one lap. We see from Table 5.5 that constraint

violations occur more frequently than in simulation. This is mainly due to a significantly

larger model mismatch when using the real car compared to the bicycle model used in

simulation. The increased model mismatch can also be seen by the increased spread of

68



5.7 Conclusion

the trajectories between the simulation and the experimental results, compare Figure

5.6 and 5.9.

One way to deal with the model mismatch is to tighten the track constraints of the

controller to illustrate this we impose track constraints that are 1.5 cm away from the

track boundary in the viability computations, and 0.5 cm in the MPC; for comparison

the miniature cars are 12 × 5 cm in size. This provides the controller a certain margin

of errors but of course comes at the cost of a potential increase in lap time. Constraint

violation, are counted when the car is closer than 0.5 cm to the track boundary. The

model mismatch can also lead to infeasibilities in the controller. This is, for example,

the case for the path planner when the current state is not inside the viability kernel.

In such a case we resolve infeasibilities in the path planning process using the following

heuristics: First we find a viable neighboring cell and solve the path planning problem

pretending to be in the closest viable neighboring grid cell. If none of the neighboring

grid cells are viable, then an emergency stop is initiated, and the controller restarts if

the car is back in a viable state. Infeasibilities in the lower level MPC problem are dealt

with by using soft constraints, as discussed in Chapter 4.

We see from Figure 5.9 that Cdc drives more conservatively, a feature we have also

seen in the simulation studies before. By breaking earlier, Cdc is able to achieve higher

velocities on the curves itself and higher exit velocities. In contrast to the simulation,

however, the difference in the mean lap times between Cdc and Cvc is larger, see Table 5.5,

though the best and the worst laps are close with lap times in the range 8.66 to 9.54 s for

Cvc and 8.64 to 9.44 s for Cdc . Also the number of constraint violations, is nearly identical.

For a video comparison of the two controllers, see https://youtu.be/RlZdMojOni0.

Table 5.5: Experimental implementation of Cvc and Cdc .

median lap

time [s]

# constr.

violations

comp. time [ms]

Kernel median max

Viab 8.86 42 1.125 12.936

Disc 8.94 46 1.176 11.055

5.7 Conclusion

In this chapter, we showed that the existing hierarchical racing controller of Chapter 4

can be improved by incorporating the viability kernel in the path planning phase. As a

result, the path planner only generates viable trajectories that are recursively feasible,

while reducing the computation time. This, in turn, allows the use of longer predic-

69

https://youtu.be/RlZdMojOni0


Chapter 5. Real-Time Control for Autonomous Racing Based on Viability Theory

X [m]
-1 0 1

Y 
[m

]

-1

0

1

X [m]
-1 0 1

Y 
[m

]

-1

0

1

center line [m]
0 2 4 6 8 10 12 14 16

v x [m
/s]

1
1.5

2
2.5

3
3.5

Viab
Disc

9 9

2 2

10
10

16 16

Figure 5.9: All laps of Cvc (in blue) and Cdc (in dash-doted red) as well as the velocity

profile of one lap.

tion horizons, which leads to better performance in terms of lap times and constraint

violations.

To compensate for discretization errors in the computation of the viability kernel, we

formulated the viability computation problem as a game between the uncertain initial

condition introduced by the state discretization and the control input. The resulting

kernel was calculated using the discriminating kernel algorithm, which allows us to derive

an inner approximation of the normal viability kernel. Furthermore, the new kernel

guarantees that there exists a control input that keeps the system within the kernel even

if the current state is not on a grid point but somewhere within the cell around a grid

point.

In a numerical study, we investigated the influence of different parameters on the per-

formance of the controller using the viability constraints in the path planning phase of
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our controller and compared the performance of the standard viability kernel is used com-

pared with our inner approximation. Although the closed-loop behavior of the controller

using the standard viability kernel and the proposed discriminating kernel approximation

are different, the performance in terms of lap time of the two controllers is very similar.

The controller based on the proposed discriminating kernel approximation seems to drive

with more foresight and is less aggressive. The same behavior was also observed in our

experimental implementation.

5.8 Appendix

5.8.1 Finite inner approximation

Recall from (5.4) that the finite viability kernel is an inner approximation of the discrete

viability kernel with respect to an extended set-valued map. For the discriminating

kernel the authors are not aware of similar results. Even though the basic algorithms

(5.2) and (5.5) are similar, the discretization of the disturbance space Vh ⊂ V required in

the discriminating kernel algorithm “weakens” the uncertainty. This may lead to points

in the finite discrete discriminating kernel DiscGr
h
(Kh) which are outside the discrete

discriminating kernel DiscGr(K) ∩Xh.

In the following we present a method for addressing this problem for our dynamics

(5.8). This is achieved by first showing that by only discretizing space, but not the

disturbance space, the “semi-finite” discriminating kernel is an inner approximation of

DiscGr(K)∩Xh. And second by showing that for every discrete disturbance vh ∈ Vh there

exists a set of disturbances Ṽ ⊂ V which does not change the finite dynamical system

xh,k+1 ∈ G(xh,k, vh,k). This inside then allows to formulate a modified discriminating

kernel algorithm, which guarantees that DiscGr
h
(Kh) ⊂ DiscGr(K) ∩Xh.

Continuous Disturbance Space

Let us first look into the “semi-finite” discriminating kernel where the state space is

discretized but the disturbance input is continuous. To this end let us introduce a new

set-valued map G̃r
h : Xh × V  Xh, G̃

r
h(xh, v) := Gr(xh, v) ∩ Xh, which leads to the

following finite dynamical system,

xh,k+1 ∈ G̃r
h(xh,k, vk) , (5.11)

where vk ∈ V . The following result holds for the new “semi-finite” discriminating kernel

DiscG̃r
h
(Kh)

Proposition 5.4. Let G : Rn×V  Rn be an upper-semicontinuous set-valued map with

compact values, K be a closed subset of Dom(G), and V a compact set. Let r be such that,

∀v ∈ V ∀x ∈ Dom(Gr) ∩Xh , G
r(x, v) ∩Xh 6= ∅. Then, DiscG̃r

h
(Kh) ⊂ DiscGr(K) ∩Xh.
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Proof. The proof is an extension of the proof of [39, Proposition 4.1] to the case of

the discriminating kernel. We have that for any v ∈ V , G̃r
h(xh, v) ⊂ Gr(xh, v) and

additionally Kh ⊂ K. By the definition of the discriminating kernel, we know that for

all xh ∈ DiscG̃r
h
(Kh) there exists a solution to the finite dynamical system (5.11) starting

from this grid point, which forever stays within Kh, for any sequence of disturbance

inputs vk. As G̃r
h(xh, v) ⊂ Gr(xh, v) and Kh ⊂ K, there also exists a solution to xk+1 ∈

Gr(xk, vk), starting at the same grid point which stays in K, for any disturbance input

sequence. One trivial solution to xk+1 ∈ Gr(xk, vk), which fulfills the property is same

as the one of the finite dynamical system. Therefore, if xh ∈ DiscG̃r
h
(Kh) the grid point

is also an element of DiscGr(K), which concludes the proof.

Proposition 5.4 would allow us to state the discrete space counterpart of Proposition

5.2. However, DiscG̃r
h
(Kh) cannot be computed, thus we proceed by establishing a link

between G̃r
h(xh, v) and Gr

h(xh, vh), which allows to use Proposition 5.4 in the “fully finite”

case.

Discrete Disturbance Space

By discretizing the disturbance space Vh ⊂ V , the possible actions of the disturbance

input are reduced, which can result in a wrong classification of states to lay within the

discriminating kernel. More precisely we can only guarantee that there exists a trajectory

to the difference inclusion which stays in Kh for all sequences vh,k. However, this does

not necessarily hold for all continuous disturbance sequences vk, as illustrated in Figure

5.10. Even under restrictive assumptions on the used grids, e.g., square grids, and fine

disturbance grid, this problem is not solved.
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Figure 5.10: Visualization of an instance where the fully finite algorithm gives a wrong

answer for a given grid point. In the example a simple 1-D system F (x) with two discrete

values is considered. For all finite disturbances ((F (xh) + rB∞ + vh) ∩Xh) ∩Kn
h is non

empty, as the first the lines illustrate, however, there exists a v /∈ vh, where the condition

is not fulfilled.
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However, it is possible to establish a link between the continuous and discrete dis-

turbance, for the dynamical system used in Proposition 5.2, xk+1 ∈ F (xk) + vk with

vk ∈ V = LrB∞, where the uncertainty enters additive and the disturbance space is a

box. We begin with stating the assumptions on the state and disturbance grid.

Assumption 5.2.

• Xh ⊂ X is a square grid with a spacing of 2r in the infinity norm.

• Vh ⊆ V is a square grid, where any point v ∈ V ⊂ Rd has 2d neighboring points in

Vh which are closer than 2r in the infinity norm.

The assumption on the state grid is necessary to exclude special cases that can arise

with non-square grids. The assumption on the disturbance grid generates a grid where

V = LrB∞ is gridded with dLe + 1 grid points in each direction, including the corner

points and grid points at the boundary of the set. Additionally, the disturbance grid

spacing is smaller than the state grid spacing. Therefore, it is impossible that two

neighboring disturbance grid points can move F (xh) further than to the next grid cell.

In addition to Assumption 5.2 we need an assumption on the set of allowed controls.

As the proposed method will check every element of F (x), it is necessary that F (x) is

a finite set, which is the case if the set of admissible controls is finite. To achieve this,

the set of control inputs U is discretized, leading to the following finite subset Uh ⊆ U .

Notice that Uh does not need any additional structure.

Corollary 5.5. If Xh and Vh fulfill Assumption 5.2, then for all xh ∈ Xh, vh ∈ Vh, and

uh ∈ Uh, it holds that

x∗h = (f(xh, uh) + vh + rB∞) ∩Xh ,

⇔f(xh, uh) + vh ∈ x∗h + rB∞ .

Proof. It is easy to see that the two statements are equivalent, as in the first statement

the point is projected onto a grid point whenever the it is closer than r to this grid

point in the infinity norm, and the second statement states that the point is in a cell

around the grid point with radius r in the infinity norm. Both statements are only true

if ‖x∗h − (f(xh, uh) + vh)‖∞ ≤ r

From Corollary 5.5, we can see that there exists a neighborhood around vh, which

still leads to the same x∗h. Thus, for a given xh, uh and vh, we can compute the subset of

all continuous disturbances Ṽ (xh, uh, vh) ⊆ V which maps to the same state grid point

x∗h = (f(xh, uh) + vh + rB∞) ∩Xh,

Ṽ (xh, uh, vh) = {v ∈ V |‖x∗h − (f(xh, uh) + v)‖∞ ≤ r} ,
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Figure 5.11: Visualization of the box Ṽ (uh, vh), on the left for one disturbance grid point,

and on the right all resulting Ṽ (uh, vh) boxes for one control input are shown as green

boxes.

see Figure 5.11 for an illustration of Ṽ (xh, uh, vh). In the interest of readability the

dependency of Ṽ on the grid point xh will subsequently be left out, and we just refer to

Ṽ (uh, vh).

Thus, by only looking at finite disturbance vh, but considering Ṽ (uh, vh) it is possible

to make a statement about the continuous disturbance. In the following, we will discuss

how the set Ṽ (uh, vh) can be used to formulate a modified discriminating kernel algorithm

which is equivalent to the “semi-finite” case described in Proposition 5.4.

Given an instance of the discriminating kernel algorithm with a grid point xh ∈ Kn
h ,

we can compute the set of all uh, vh such that the intersection of (f(xh, uh)+vh+rB∞)∩
Xh and Kn

h is non-empty,

Iu,v(xh) = {uh ∈ Uh, vh ∈ Vh|
(f(xh, uh) + vh + rB∞) ∩Xh ∈ Kn

h} . (5.12)

Proposition 5.6. Given xh ∈ Kn
h and Iu,v(xh), it holds that for all v ∈ V there exists a

uh ∈ Uh such that

(f(xh, uh) + v + rB∞) ∩Xh ∈ Kn
h ,

if and only if,
⋃
Iu,v(xh) Ṽ (uh, vh) = V

Proof. The if part directly follows from the definition, as all continuous disturbances

v ∈ V are considered. The only if part is satisfied by Assumption 5.2, which ensures

that for a control uh the union of all Ṽ is equal to V .

Similar to the proof of Proposition 5.2, by using [113, Equation (4)], we know that

for the “semi-finite” discriminating kernel it holds that if xh ∈ DiscG̃r
h
(Kh), for all v ∈ V
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there exists a uh ∈ Uh such that (f(xh, uh) + v + rB∞) ∩ Xh ∈ DiscG̃r
h
(Kh). Thus,⋃

Iu,v(xh) Ṽ (uh, vh) = V allows us to compute DiscG̃r
h
(Kh) by only considering a finite

number of disturbances. However, we need to compute
⋃
Iu,v(xh) Ṽ (uh, vh) = V which may

be hard. Thus, we now focus on calculating and approximating of
⋃
Iu,v(xh) Ṽ (uh, vh) = V .

Notice first that the set Ṽ (uh, vh) is always a box. Therefore, they can be parameterized

as

Ṽ (uh, vh) = {v ∈ V |vj ≤ vj ≤ vj,∀j = 1, ..., d} .

Where, the subscript j refers to each dimension of the uncertainty V ⊂ Rd and for each

of these dimensions the lower and upper bound can be calculated by,

vj(uh, vh) = min(x∗h,j − f(xh, uh)j − r,−Lr) ,
vj(uh, vh) = max(x∗h,j − f(xh, uh)j + r, Lr) .

As the union of boxes is in general not convex, checking that
⋃
Iu,v(xh) Ṽ (uh, vh) = V is

a combinatorial problem. However, by approximating the union conservatively we are

able reduce the computational burden while guaranteeing an inner approximation.

To approximate the union notice that vh ∈ Ṽ (uh, vh) always holds. Thus we first

find a box approximation for the union of the boxes around each vh grid point, and

then calculate the union of the resulting |Vh| boxes, which can be done by checking

if neighboring boxes overlap. To compute a box approximation of the union at one

disturbance grid point let us define Iu(xh, vh) = {uh ∈ Uh| (f(xh, uh) + vh + rB∞) ∩
Xh ∈ Kn

h}, which is a set similar to Iu,v(xh). Here we propose two approximations of⋃
Iu(xh,vh) Ṽ (uh, vh), first the maximal volume box maxIu(xh,vh) Vol(Ṽ (uh, vh)) and second

the intersection of all boxes
⋂
Iu(xh,vh) Ṽ (uh, vh). Both approximations result in a box

and are an inner approximation of the union.

Thus, we propose the modified discriminating kernel algorithm outlined in Algorithm

1. The algorithm guarantees an inner approximation of the discriminating kernel in the

following sense, DiscGr
h
(Kh) ⊂ DiscG̃r

h
(Kh) ⊂ DiscGr(K) ∩ Xh, the first inner approxi-

mation follows due to the approximation of
⋃
Iu(xh,vh) Ṽ (uh, vh) and the second due to

Proposition 5.4.

Note that the union approximation is not necessary if one control input is robust

with respect to all discrete disturbances. Because by virtue of Assumption 5.2, we know

that in this case
⋃
Iu,v(xh) Ṽ (uh, vh) = V .

As the proposed algorithm constructs an inner approximation in the case of a finite

disturbance, it is possible to state the following finite version of Proposition (5.2).

Proposition 5.7. Consider the finite dynamical system corresponding to the extended

and discretized system of (5.8),

xh,k+1 ∈ Gr
h(xh,k) = (F (xh,k) + vh + rB∞) ∩Xh ,
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Algorithm 1: Modified Discriminating Kernel Algorithm

1 initialization K0
h = Kh and n = −1;

2 do

3 n = n+ 1;

4 for all xh ∈ Kn
h do

5 calculate Iu,v(xh), in (5.12);

6 calculate the corresponding Ṽ (uh, vh);

7 ∀vh ∈ Vh compute maxIu(xh,vh) Vol(Ṽ (uh, vh));

8 check if neighboring boxes overlap;

9 if Yes then

10 xh ∈ Kn+1
h

11 end

12 end

13 while Kn
h 6= Kn+1

h ;

Result: DiscGr
h
(Kh) = Kn

h

where vh ∈ Vh is the discretization of LrB∞ according to Assumption 5.2. And if

DiscGr
h
(Kh) is computed with the Algorithm 1 and Assumption 5.2 holds, then the fol-

lowing properties hold:

(1) DiscGr
h
(Kh) is a viability domain of F r

h .

(2) For all xh ∈ DiscGr
h
(Kh) and for all x̂ ∈ xh+ rB∞, there exists a uh ∈ Uh such that

f(x̂, uh) ∈ DiscGr
h
(Kh) + rB∞.

Proof.

(1) Identical to the proof of Proposition 5.2 statement 2), as DiscGr
h
(Kh) is a discrim-

inating domain and v = 0 is an allowed disturbance.

(2) By using the finite version of [113, Equation (4)], and the guarantee of the inner

approximation DiscGr
h
(Kh) ⊂ DiscGr(K)∩Xh we know that for all v ∈ LrB∞ there

exists a uh ∈ Uh such that (f(xh, uh) + v+ rB∞)∩Xh ∈ DiscGr
h
(Kh). Furthermore,

by Corollary 5.5 we can reformulate the discriminating kernel condition as, for all

v ∈ LrB∞ there exists a uh ∈ Uh such that f(xh, uh)+v ∈ DiscGr
h
(Kh)+rB∞. The

same Lipschitz argument as in the proof of Proposition 5.2, allows to conclude that

for all x̂ ∈ xh+rB∞, there exists a uh ∈ Uh such that f(x̂, uh) ∈ DiscGr
h
(Kh)+rB∞

We conclude our discussion by pointing out that if instead of the discriminating

kernel the leadership kernel algorithm is used, then the inner approximation is directly
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guaranteed. Because by virtue of Assumption 5.2, we know that for any robust control

input
⋃
Iu,v(xh) Ṽ (uh, vh) = V .
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CHAPTER 6
A Non-Cooperative Game Approach to

Autonomous Racing

In a car race, the goal is to finish first; mathematically this can be interpreted as a

non-cooperative dynamic game where each player tries to reach the finishing line before

any other player. In F1 or similar racing series this game is tackled by separating it into

two problems: the first problem concerns slowly changing strategic decisions (pit stops,

power consumption, tire wear, etc.) and is solved by the pit crew [115]. These high-level

decisions are then executed by a skilled race car driver, who solves the second problem by

driving the car at the handling limit while interacting with other cars. In this chapter,

we concentrate on the task of the race car driver and formulate it as a dynamic game.

In the previous chapter we showed that the hierarchical racing controller with via-

bility constraints, results in an effective autonomous racing controller. Therefore, our

racing game formulation builds on the controller and adds the game theoretical decision

making into the high level path planner. More precisely the game is formulated in terms

of trajectories, which are given by the path planning model. We propose to model the

interactions between race cars as a non-cooperative non-zero-sum game, where the play-

ers only get rewarded if they do not cause a collision. By restricting our attention to

finite horizon two-player games, we derive three different games that, since the number

of trajectories is finite, are formulated as bimatrix games.

The three games have increasingly complex interactions between the players. In

the first two games the players maximize their own progress, while avoiding collisions.

However, in the first game the leading car is not concerned with collision avoidance and

the task is only considered by the following car. In the second game, this sequential

structure is dropped and both cars consider the collision constraints. In the third game,

the players are not only concerned with maximizing their progress, but also get rewarded

to stay ahead at the end of the horizon. This is done to emphasize blocking behavior

often seen in racing. Given these three games we investigate the equilibrium solutions

of the games and conditions when the equilibria of the games are the same and when

they are different. This is especially interesting since the core structures of the games
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are similar but the interactions between the players are different.

Since this games are played in a receding horizon fashion, similar to the previous

chapter not all trajectories are recursively feasible. Therefore we investigate how via-

bility constraints need to be formulated to guarantee recursive feasibility of the moving

horizon game. Furthermore, we introduce an exact soft constraint reformulation which

guarantees feasibility of the game at all times.

Finally, we investigate the proposed games in a simulation study and investigate

how the different formulations influence the racing behavior. Mainly the number of

overtaking maneuvers and the collision probability and how these findings are related to

the structure of the game.

This chapter is structured as follows, in Section 6.1 we introduce the ingredients

to formulate the racing games. Three different racing games are formulated in Section

6.2. The optimal solution in terms of the Stackelberg and Nash equilibrium is studied

in Section 6.3. In Section 6.4, we discuss feasibility of moving horizon games. The

performance of the approaches is investigated in a simulation study in Section 6.5, while

Section 6.6 provides some concluding remarks. Appendix 6.7 contains technical results.

6.1 Game ingredients

To formulate the racing games three ingredients are required, first an appropriate vehicle

model, second an objective function representing/approximating the “finish first” goal

and third state constraints characterizing collisions.

Building on the previous chapters, we use the path planning model xk+1 = f(xk, uk)

from Chapter 3 as the vehicle model. However, to define the progress we use the extended

state progress formulation introduced in Chapter 4, the lap counter c is added to the

state leading to x̄ = [x, c] ∈ R5 and the lap counter update equation ck+1 = C(xk, uk, ck)
is appended to the path planning model giving rise to the dynamics of the combined

state

x̄k+1 = f̄(x̄k, uk) .

Finally, given a state x̄ we define the progress function

p̄(x̄) = p̂(x) + cL , (6.1)

that will form the basis for the objective function defined below, similar to the previous

two chapters.

To encode the objective function of each car as well as the fact that the cars should

avoid collisions with each other one needs to consider both cars; we use the superscript

% = 1, 2 to distinguish the state of the two cars. Furthermore, to formulate the racing
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games both cars start at their initial state denoted by x̄ 1 and x̄2, and even though both

cars use the path planning model they may be described by different constant velocity

modes, highlighted by the superscript in f̄%(·, ·) and U%. Therefore the dynamics of the

two cars are given by,

x̄%0 = x̄% , % = 1, 2 , k = 0, ..., NS − 1 ,

x̄%k+1 = f̄%(x̄%k, u
%
k) , u%k ∈ U

%(q%k) . (6.2)

Due to the discrete nature of the admissible inputs U%(q%) there exist a finite number

of state-input trajectories. These different trajectories are denoted by a subscript i =

1, ..., n for car 1 and j = 1, ...,m for car 2 and the time step along the trajectory with

k = 1, ..., NS, resulting in the notation x̄1
i (k) and x̄2

j(k) denoting the different trajectories

of the two cars at time step k.

Each trajectory of the two cars has an associated progress payoff, which is the progress

(6.1) of its final state. The progress payoff of the i-th and j-th trajectory of car 1

respectively car 2 is therefore given by p̄(x̄1
i (NS)) and p̄(x̄2

j(NS)). In addition to progress,

the objective function of the game should also reflect the fact that the car would like to

remain on the track and avoid collisions with other cars. The first requirement can be

encoded by a set X̄T ⊆ R5 that encodes the requirement that the first two components

of the state are within the physical limits of the track, similar to (4.1) used in Chapter 4.

One can then impose a constraint that for all k = 1, ..., NS, x̄1
i (k) ∈ X̄T, and x̄2

j(k) ∈ X̄T

(or more precisely, penalize the car in the objective function whenever this constraint is

violated).

Finally the collision constraints couple the two cars, in the sense that they depend

on the actions of both players. One can encode this constraint through the signed

distance1 [116]. If we assume that each car can be described by a rotated rectangle

(indeed any fixed shape) centred at the (X, Y, ϕ) component of the state, then the

signed distance of the corresponding sets induces a function d : R5 × R5 → R such that

d(x̄1, x̄2) ≥ 0 if and only if the two cars do not physically overlap. Thus, a trajectory

pair (i, j) does not have a collision if

d(x̄1
i (k), x̄2

j(k)) ≥ 0 , k = 1, ..., NS . (6.3)

6.2 Game formulation

In this section the idea is to combine the game ingredients discussed in Section 6.1 to

formulate bimatrix games representing the racing objective. Therefore, let us assume

1Where the singed distance between two sets R1 ∈ R2 and R2 ∈ R2 is defined as sd(R1, R2) =

dist(R1, R2) − pert(R1, R2), with dist(R1, R2) = inf{‖T‖|(T + R1) ∪ R2 6= ∅} and pert(R1, R2) =

inf{‖T‖|(T + R1) ∪R2 = ∅}.
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that the two cars are the players; player 1 (P1) has n possible trajectories, and player 2

(P2) has m possible trajectories to choose from, constructed by combinatorially selecting

inputs from the corresponding sets U1(q1) and U2(q2). The bimatrix game has two m×n
payoff matrices A and B with elements ai,j and bi,j representing, respectively, the payoffs

of P1 and P2, if P1 adopts trajectory i and P2 trajectory j. The payoff associated with

a trajectory pair (i, j) encodes information about both the progress and the constraints.

Before formally introducing our different racing games, let us give two definitions and

an assumption used in the rest of the chapter.

Definition 6.1. A trajectory pair (i, j) is feasible if x̄1
i (k) ∈ X̄T, x̄2

j(k) ∈ X̄T, and

d(x̄1
i (k), x̄2

j(k)) ≥ 0 for all k = 1, ..., NS.

Definition 6.2. The leader of the game is the car which is ahead at the beginning of the

game, in other words P1 if p̄(x̄1(0)) ≥ p̄(x̄2(0)) and P2 otherwise.

Without loss of generality we assume that P1 is the leader of the game.

Assumption 6.1. At the beginning of the game P1 is ahead of P2 or in other words

p̄(x̄1(0)) ≥ p̄(x̄2(0)).

In following we discuss three different approaches to combine the progress payoff,

collision, and track constraints to formulate three different bimatrix games, with in-

creasingly complex interactions between the players. In the first two games, the winning

objective is encoded as “drive as fast as possible while avoiding collision with other cars”.

In the third game, a more complex payoff structure is used to promote blocking behav-

ior, or in other words prevent an overtaking maneuver by driving sub-optimally with

respect to the progress along the track. For simplicity, we consider racing of only two

cars. Racing with multiple opponents can be treated similarly but is considerably more

challenging from a computational point of view.

6.2.1 Sequential game

In the first game, the payoff matrices are designed such that the players stay on track,

drive as fast as possible and avoid collisions. Roughly speaking, feasible trajectory pairs

receive a payoff equal to their progress if a trajectory leaves the track, this trajectory

receives a constant payoff of κ strictly smaller than the payoff of any trajectory which

remains within the track. Likewise, trajectory pairs that collide also receive a low payoff.

However, due to the leader-follower structure present in racing, we assume that only the

follower (P2) is concerned with collision avoidance. Therefore, if a trajectory pair has

a collision, P2 receives a low payoff of λ, whereas P1 receives the payoff as though the

collision was not present. The resulting payoff matrices can be computed as follows,
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ai,j =

{
κ if ∃k ∈ {1, ..., NS} : x̄1

i (k) 6∈ X̄T

p̄(x̄1
i (NS)) else

,

(6.4)

bi,j =


κ if ∃k ∈ {1, ..., NS} : x̄2

j(k) 6∈ X̄T

λ
else if ∃k ∈ {1, ..., NS} :

d(x̄1
i (k), x̄2

j(k)) < 0

p̄(x̄2
j(NS)) else

.

Intuitively, if κ and λ are smaller than min(mini(p̄(x̄
1
i (NS)),minj p̄(x̄

2
j(NS))) both player,

if possible, choose a trajectory which remains within the track and P2 will avoid a

collision, see Section 6.3 for a formal discussion. This condition can be fulfilled by

choosing κ, λ < 0, as the progress is always positive. For the rest of the chapter, we

assume that 0 > λ ≥ κ, which implicitly penalizes collisions less than leaving the track.

Note that in this game the payoff of the leader does not depend on the actions of the

follower; in other words, all elements of a row of the payoff matrix A will have the same

value. We denote by ai the leader payoff for action i ∈ Γ1 (in other words, the value of

all elements of row i in matrix A) to highlight the fact that it does not depend on the

actions of the follower. Due to this purely sequential structure the game is called the

sequential game.

To visualize the sequential game (6.4) let us look at one racing situation with only

three possible trajectories for each player, see Figure 6.1. We determine the progress by

assuming that the zero point is at the beginning of the track interval shown and that

the interval is 0.95 m long, with 12 cm long cars, which corresponds to the test track

introduced in Chapter 2 and the scale used in the subsequent simulation study. We use

κ = −10 and λ = −1 leading to the payoff matrices A (for the leader P1) and B (for

P2) of the racing game (6.4)

A =

0.83 0.83 0.83

0.88 0.88 0.88

−10 −10 −10

 B =

0.81 0.86 −10

0.81 −1 −10

0.81 0.86 −10

 . (6.5)

For each player, the bottom trajectory leaves the track, so the payoff is κ = −10 for

the corresponding trajectory, irrespective of the actions of the other player. This leads

to the third row of A and third column of B identically equal to −10. If both players

select their middle trajectory, there is a collision, giving rise to the payoff λ = −1 in the

(2, 2) entry of B, note that a2,2 is equal to the progress. The remaining combinations

of actions neither leave the track nor cause a collision. Hence the payoff is the progress,

giving rise to the entries in the order of 0.8 in the two matrices.
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Figure 6.1: The leader P1 (red car) is in front of P2 (yellow car). Each player has three

trajectories green, blue, red from top to bottom, and the trajectories are numbered from

top (1) to bottom (3).

6.2.2 Cooperative game

Compared to the sequential game in the cooperative game, the leader does also consider

collisions. This is incorporated into the game by modifying the payoff such that also

the leader receives a payoff of λ if there is a collision. In other words, both players only

receive the progress payoff if a trajectory pair is feasible. The resulting payoff matrices

can be computed as follows,

ai,j =


κ if ∃k ∈ {1, ..., NS} : x̄1

i (k) 6∈ X̄T

λ
else if ∃k ∈ {1, ..., NS} :

d(x̄1
i (k), x̄2

j(k)) < 0

p̄(x̄1
i (NS)) else

,

(6.6)

bi,j =


κ if ∃k ∈ {1, ..., NS} : x̄2

j(k) 6∈ X̄T

λ
else if ∃k ∈ {1, ..., NS} :

d(x̄1
i (k), x̄2

j(k)) < 0

p̄(x̄2
j(NS)) else

,

Note that if we choose κ, λ < 0 as suggested in the sequential game, in case of the

cooperative game the optimal trajectory pair will be feasible whenever possible since

none of the players would benefit from violating the constraints, see Theorem 6.1 for a

formal discussion. Due to this cooperative obstacle avoidance approach, we call it the

cooperative game.

When investigating the racing situation in Figure 6.1, the payoff matrices A and B
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for the cooperative game are

A =

0.83 0.83 0.83

0.88 −1 0.88

−10 −10 −10

 B =

0.81 0.86 −10

0.81 −1 −10

0.81 0.86 −10

 . (6.7)

Compared to the payoff matrices of the sequential game (6.5) the only difference is a2,2

which is now −1, since P1 also considers collisions.

6.2.3 Blocking game

When racing, maximizing progress is only a means to an end, the real objective is to

finish first. In some cases, it may, therefore, be beneficial to prevent the opponent from

overtaking, even if that means less progress. We refer to this behavior as “blocking”. In

our third game, we modify the payoff matrices of the cooperative game (6.6) to reward

staying ahead at the end of the horizon, giving rise to the so-called blocking game.

More precisely we add a parameter w ≥ 0, which allows to trade-off staying ahead and

maximizing progress. The resulting payoff matrices can be computed as follows,

ai,j =



κ if ∃k ∈ {1, ..., NS} : x̄1
i (k) 6∈ X̄T

λ
else if ∃k ∈ {1, ..., NS} :

d(x̄1
i (k), x̄2

j(k)) < 0

p̄(x̄1
i (NS)) else if p̄(x̄1

i (NS)) < p̄(x̄2
j(NS))

p̄(x̄1
i (NS)) + w else

,

(6.8)

bi,j =



κ if ∃k ∈ {1, ..., NS} : x̄2
j(k) 6∈ X̄T

λ
else if ∃k ∈ {1, ..., NS} :

d(x̄1
i (k), x̄2

j(k)) < 0

p̄(x̄2
j(NS)) else if p̄(x̄1

i (NS)) ≥ p̄(x̄2
j(NS))

p̄(x̄2
j(NS)) + w else

.

Note that in this case there are two terms linking the payoff of the two players, the

collision constraint in the second line in (6.8) and the blocking reward in the fourth line.

To visualize the effect of the additional payoff term, we look at a slightly more complex

racing situation illustrated in Figure 6.2, where compared to the first racing situation in

Figure 6.1 both players have one additional trajectory and P2 has the chance to overtake

P1.

The payoff matrices of the bimatrix game corresponding to the racing situation in
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Figure 6.2: Illustration of a blocking situation, where P2 (yellow car) has a chance to

overtake P1 (red car) at the end of the horizon by choosing the green trajectory (2).

However, by choosing the dashed green blocking trajectory P1 can avoid an overtaking

maneuver, forcing P2 to choose his gray dashed trajectory (1) to avoid a collision. The

trajectories are again numbered from top to bottom.

Figure 6.2, with w = 0.5 are,

A =


0.83 + 0.5 −1 0.83 0.83 + 0.5

0.85 + 0.5 −1 −1 0.85 + 0.5

0.88 + 0.5 0.88 −1 0.88 + 0.5

−10 −10 −10 −10

 ,

B =


0.81 −1 0.86 + 0.5 −10

0.81 −1 −1 −10

0.81 0.9 + 0.5 −1 −10

0.81 + 0.5 0.9 + 0.5 0.86 + 0.5 −10

 . (6.9)

6.3 Characterization of equilibria

6.3.1 Equilibrium concepts and feasibility

Given the bimatrix games (6.4), (6.6), and (6.8), the question is how to find the optimal

trajectory pair. Note that we only consider pure strategies, where the action space of

the two players is given by Γ1 := {1, 2, .., n} and Γ2 := {1, 2, ..,m}. Further, we consider

two types of equilibria, the classical Stackelberg and Nash.
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Stackelberg Equilibrium

In the Stackelberg equilibrium, there exists a leader, and a follower and the leader can

enforce his strategy on the follower. It is assumed that the follower plays rationally,

in the sense that he plays the best response with respect to the strategy of the leader.

Thus, the leader chooses the strategy which maximizes his payoff given the best response

of the follower.

Definition 6.3 ([117]). A strategy pair (i∗, j∗) ∈ Γ1× Γ2 is a Stackelberg equilibrium of

a bimatrix game A, B, with P1 as leader, if:

i∗ = arg max
i∈Γ1

min
j∈R(i)

ai,j , j∗ = arg max
j∈Γ2

bi∗,j ,

where R(i) := arg maxj∈Γ2 bi,j is the best response of P2 to the strategy i ∈ Γ1 of P1.

Note that the best trajectories of both the leader and the follower may be non-unique.

For the leader all optimal trajectories lead to the same pay-off; the leader can, therefore,

pick anyone among them and announce it to the follower [117]. The follower can then

select any one of the (possibly many) best responses to this announced trajectory of the

leader.

Nash Equilibrium

The Nash equilibrium is a trajectory pair, such that there is no incentive for either of

the players to deviate unless the other player does.

Definition 6.4 ( [117] ). A strategy pair (i∗, j∗) ∈ Γ1 × Γ2 is a Nash equilibrium of a

bimatrix game A, B if the following inequalities are fulfilled:

ai∗,j∗ ≥ ai,j∗ ∀i ∈ Γ1 ,

bi∗,j∗ ≥ bi∗,j ∀j ∈ Γ2 .

We note that, unlike zero sum games, existence of Nash pure strategy equilibria (as

Definition 6.4) is not guaranteed for our bimatrix games, even though the payoff matrices

are bounded; we address the issue of existence of pure strategy Nash equilibria below.

Moreover, if Nash equilibria do exists, there may be multiple of them with potentially

different payoffs for the two players [117]. To distinguish between them we use the notion

of “betterness” following terminology of [117].

Definition 6.5 ( [117]). A strategy pair (i1, j1) is said to be better than another strategy

pair (i2, j2), if ai1,j1 ≥ ai2,j2, bi1,j1 ≥ bi2,j2, and at least one of the inequalities is strict.

If neither equilibrium is better than the other we then say that the two equilibria are

incomparable. The existence of better equilibria forms the basis for a non-cooperative

equilibrium consensus [117].
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Feasibility Assumptions

Since feasibility of a trajectory pair is fundamental for the game, but the constraints

are only considered in the payoff, we investigate assumptions under which a feasible

trajectory pair is obtained.

Assumption 6.2.a. There exists a feasible trajectory pair (i, j) according to Definition

6.1.

To establish a connection between the sequential and the cooperative game we need

a more restrictive assumption involving the payoff of the leader (P1) in the sequential

game (6.4).

Assumption 6.2.b. There exists a trajectory pair (i, j), such that maxi∈Γ1 ai > κ and

maxj∈Γ2 mini′∈arg maxi∈Γ1
bi′,j > λ.

Note that, the payoff of the follower is identical in both the cooperative game (6.6)

and the sequential game (6.4), thus the assumption is well defined for both games. One

can easily verify that Assumption 6.2.b is more restrictive, since any cooperative game

which fulfills Assumption 6.2.b also fulfills Assumption 6.2.a, however, the opposite does

not necessarily hold. We note that Assumption 6.2.b is not always fulfilled in practice,

but the assumption is necessary for our technical results.

6.3.2 Equilibrium of the sequential game

When investigating the sequential game (6.4) in more detail one can see that it is not

really a game since the decisions of the follower do not influence the decisions of the

leader. Thus the optimal trajectory pair can simply be computed by a sequential max-

imization approach, where the leader selects an optimal trajectory without considering

the follower. Similar to the Stackelberg equilibrium this trajectory is then announced

to the follower, who selects a best response. This can be summarized in the following

two-step sequential maximization, which determines the sequential optimal trajectory

pair (is, js),

is = arg max
i∈Γ1

ai , js = arg max
j∈Γ2

bis,j . (6.10)

One can show that trajectory pairs (is, js) that satisfy (6.10) are both Stackelberg

and Nash equilibria of the sequential game (6.4); the proof is similar to that of Theorem

6.1 and is omitted in the interest of space. Moreover, if Assumption 6.2.b holds, these

trajectory pairs are also feasible; this follows directly from Assumption 6.2.b, which

guarantees that the follower has a feasible response to the announced optimal trajectory

of the leader. Once again multiple optimal trajectories for the leader do not pose a
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problem since their payoffs are the same and the chosen trajectory is announced to the

follower.

In the racing situation in Figure 6.1 Assumption 6.2.b is fulfilled and the sequential

optimal trajectory pair is (2, 1), where the car in front goes straight and the car in the

back avoids the car in front by going left. It is easy to verify that this trajectory pair is

indeed a Nash and a Stackelberg equilibrium for (6.5).

6.3.3 Equilibrium of the cooperative game

Let us now focus on the more complex cooperative game (6.6) which does not exhibit

the sequential structure of (6.4). When investigating the racing situation in Figure 6.1

with the corresponding payoff matrices (6.7), we see that the Stackelberg equilibrium

of the game is the trajectory pair (2, 1), which is identical to the sequential optimal

trajectory pair. Furthermore, we can also verify that the sequential optimal trajectory

pair is also a Nash equilibrium. Note that this is not the only Nash equilibrium, however:

the trajectory pair (1, 2) is also a Nash equilibrium2.

A natural question that arises is how can the two cars choose one of the two Nash

equilibria. This is generally a difficult question in game theory. In our example, if each

player assumes that the equilibrium that maximizes his own progress will be chosen, this

would result in the trajectory pair (2,2) which is not a Nash equilibrium and results in a

collision. This is because none of the Nash equilibria is better than the other. To resolve

this issue ahead of the game the players can agree on rules about how to pick a Nash

equilibrium in the case of multiple equilibria; we call those “rules of the road”. Here we

use a rule that says that if there are multiple Nash equilibria, the equilibrium with the

largest payoff for the leader (P1) is chosen. In the racing situation in Figure 6.1, the

Nash equilibrium which fulfills the rules of the road is the trajectory pair (2, 1).

Note that in this case all the different equilibrium concepts, as well as the sequen-

tial game, lead to the same feasible trajectory pair. Indeed one can show that under

Assumption 6.2.b this property holds generally.

Theorem 6.1.

(a) If Assumption 6.2.a holds, all Stackelberg equilibria are feasible, there exists at

least one feasible Nash equilibrium and all feasible Nash equilibria are better than

all infeasible Nash equilibria.

(b) Let Πs denote the set of all Nash/Stackelberg equilibria of the sequential game, Πst

the set of all Stackelberg equilibria of the cooperative game, Πn,RoR the set of all

2Note that in this example the best-response dynamics as proposed in [58] would cycle between

trajectory pair (2, 2) and (1, 1).
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Nash equilibria of the cooperative game that fulfill the rules of the road, and Πn the

set of all Nash equilibria of the cooperative game. If Assumption 6.2.b holds, then

∅ 6= Πs = Πst = Πn,RoR ⊆ Πn .

Proof. We start by noting that due to the payoff structure in the cooperative game (6.6),

specifically the symmetry of the collision constraints, it holds that

ai,j = λ⇔ bi,j = λ . (6.11)

Part (a): Under Assumption 6.2.a there exists i ∈ Γ1 such that bi,j > λ for all j ∈
R(i), hence by (6.11) maxi∈Γ1 minj∈R(i) ai,j > λ and therefore all Stackelberg equilibria

are feasible.

We now show that the Stackelberg equilibrium is a Nash equilibrium, which by

virtue of the previous point shows that a feasible Nash equilibrium exists. Note that

maxi∈Γ1 minj∈R(i) ai,j = maxi∈Γ1 maxj∈Γ2 ai,j due to the payoff structure. This observa-

tion together with P2 playing best response shows that the Nash inequalities are fulfilled.

Finally, note that for any infeasible Nash equilibrium at least one of the two players is

not using their feasible trajectory, as otherwise, the Nash would be feasible. Moreover,

none of the two players violates the track constraint; if they did, they could improve

their payoff from κ to (at least) λ by switching to another trajectory, contradicting

Nash. Hence neither is using their trajectory from the feasible pair, as if one was the

other could unilaterally improve their payoff by also switching to their feasible trajectory,

contradicting Nash again. Therefore an infeasible Nash equilibrium only exists if both

players have a payoff of λ but for both players, any unilateral change would result in a

payoff of λ or κ. However, any feasible Nash equilibrium is better than such an infeasible

Nash equilibrium, as in the feasible case both players receive the progress payoff, which

is by definition greater than λ.

Part (b): If Assumption 6.2.b holds then bis,j > λ for all j ∈ R(is), which again

implies by (6.11) that minj∈R(is) ais,j = p̄(x̄1
is(NS)). This also shows that the sequential

optimal trajectory pair is feasible and the set of trajectory pairs is non-empty.

Furthermore, the sequential optimal trajectory pair (is, js) is identical to the Stack-

elberg equilibrium since by the above observation maxi∈Γ1 minj∈R(i) ai,j = maxi∈Γ1 ai.

Thus, we can reformulate the Stackelberg equilibrium as,

i∗ = arg max
i∈Γ1

min
j∈R(i)

ai,j = arg max
i∈Γ1

ai ,

j∗ = arg max
j∈Γ2

bi∗,j

which is identical to the sequential maximization approach (6.10) and proves the second

equality.
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Finally, we show that the sequential optimal trajectory pair (is, js) is a Nash equi-

librium that fulfills the rules of the road. We know that ais,js = p̄(x̄1
is(NS)), leading

to

ais,js = p̄(x̄1
is(NS)) ≥ ai,js ∀i ∈ Γ1 ,

bis,js = bis,R(is) ≥ bis,j ∀j ∈ Γ2 .

The first inequality holds since p̄(x̄1
is(NS)) is the best possible payoff for P1, the second

because P2 plays best response. Therefore, the trajectory pair (is, js) is a Nash equilib-

rium. Furthermore, the trajectory pair (is, js) is the Nash equilibrium which fulfills the

rules of the road, as it yields to the best possible payoff for P1, which shows the last two

relationships.

To illustrate the proof of Theorem 6.1 (a), consider the racing situation depicted in

Figure 6.3 with the payoff matrices in (6.12). In this case, two Nash equilibria exist,

(2, 2) which is feasible with a payoff of (0.87, 0.89), and (1, 3) which is infeasible with

a payoff of (−1,−1). The feasible Nash is better than the infeasible one and is thus

preferable for both players.

Figure 6.3: A racing game with an infeasible Nash equilibrium. Each player has three

trajectories green, blue, red from top to bottom, and the trajectories are numbered from

top (1) to bottom (3). The green trajectory (1) of P1 (red car) collides both with the

blue (2) and the red (3) trajectory of P2 (yellow car) and the blue trajectory (2) of P1

also collides with the red trajectory (3) of P2.

A =

0.84 −1 −1

0.87 0.87 −1

−10 −10 −10

 B =

−10 −1 −1

−10 0.89 −1

−10 0.81 0.81

 . (6.12)
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Thanks to Theorem 6.1, if Assumption 6.2.b holds we can use the sequential max-

imization approach (6.10) to compute Nash and Stackelberg equilibria. This can offer

significant computational advantages since it is not necessary to generate all entries of

A and B. Moreover, collision checks are only necessary between the optimal trajectory

of the leader and the possible trajectories of the follower; this dramatically reduces the

computational burden as we will discuss in Section 6.5. We note that the only structure

necessary for Theorem 6.1 is the fact that the decisions of the players are only linked

through the constraints as the progress payoff solely depends on the players own action.

Thus, Theorem 6.1 would still hold if one uses objective functions other than progress,

e.g., fuel efficiency, or even in other applications that enjoy a similar structure. This

suggests that the theorem may have wider applicability, as many robotic multi-agent

problems with collision constraints can be formulated such that they have the same

structure.

Note that if Assumption 6.2.b is not fulfilled, in the cooperative game the leader will

choose a trajectory which allows the follower to make a choice such that the resulting

trajectory pair is feasible (as long as Assumption 6.2.a holds). On the other hand, in

the sequential game the leader does not consider the follower and a trajectory pair that

satisfies (6.10) may be not feasible even if Assumption 6.2.a is satisfied.

6.3.4 Equilibrium of the blocking game

Finally let us investigate the blocking game. To formalize the discussion, we start by

defining a blocking trajectory pair. Let (icg, jcg) denote a Stackelberg equilibrium of

the cooperative game (6.6). Note that if there are multiple Stackelberg equilibria, all

these trajectory pairs have the same progress payoff. Therefore, all the progress based

arguments still hold in the case of multiple equilibria.

Definition 6.6. A trajectory pair (i, j) is blocking if the following properties hold: (i) the

Stackelberg equilibrium of the cooperative game (icg, jcg) is such that P1 gets overtaken

at the end of the horizon p̄(x̄1
icg(NS)) < p̄(x̄2

jcg(NS)), (ii) the pair (i, j) is such that P1

does not get overtaken p̄(x̄1
i (NS)) > p̄(x̄2

j(NS)), (iii) the pair (i, j) is feasible ai,j > λ and

bi,j > λ, (iv) for all jc ∈ Γ2 such that p̄(x̄2
jc(NS)) > p̄(x̄2

j(NS)), it holds that bi,jc ≤ λ.

A blocking trajectory pair corresponds to a collision-free trajectory pair where P1 is

ahead at the end of the horizon. P1 achieves this by choosing a trajectory, such that any

trajectory of P2 that would achieve a larger progress collides with this trajectory of P1.

The last condition also implies that P2 plays a best response, as any other trajectory

would lead to a smaller payoff. Among all blocking trajectory pairs fulfilling properties

(i)-(iv), let (ib, jb) denote the one which achieves the largest progress for the leader.

When investigating the racing situation in Figure 6.2 with the payoff matrices (6.9),

we can see that the additional payoff term promotes blocking behavior since the Stack-
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elberg equilibrium (2, 1) of the game is a blocking trajectory where P1 drives a curve to

prevent P2 from overtaking at the end of the horizon. In contrast, the (unique) Nash

equilibrium is (3, 2), where P1 drives straight to maximize progress, but P2 can overtake

P1 at the end of the horizon. Interestingly, this is the same trajectory pair which would

be optimal if the cooperative game payoff would be used. Similar to the cooperative

game, the observations from the simple racing situation can again be generalized.

Theorem 6.2. Under Assumption 6.2.a:

(a) If p̄(x̄1
icg(NS)) > p̄(x̄2

jcg(NS)), and if p̄(x̄1
icg(NS)) ≤ p̄(x̄2

jcg(NS)) but there does not

exists a blocking trajectory pair, then the Stackelberg equilibrium (icg, jcg) of the co-

operative game (6.6) is identical to the Stackelberg equilibrium of the blocking game

(6.8). If there exists a blocking trajectory pair and if p̄(x̄1
icg(NS)) ≤ p̄(x̄1

ib
(NS)) +w,

then (ib, jb) is the Stackelberg equilibrium of the blocking game (6.8).

(b) The Stackelberg equilibrium (icg, jcg) of the cooperative game (6.6) is a Nash equilib-

rium of the blocking game (6.8). And only if a blocking trajectory (ib, jb) is a Nash

equilibrium of the cooperative game (6.6) it is a Nash equilibrium of the blocking

game (6.8).

Proof. We start by noting that by Assumption 6.2.a and Theorem 6.1 we know that

(icg, jcg) is feasible, and since the constraints are the same in the cooperative game and

the blocking game, we know that this trajectory pair is also feasible for the blocking

game.

Part (a): Given this observation we know that if p̄(x̄1
icg(NS)) > p̄(x̄2

jcg(NS)), it follows

that the payoffs for the blocking game of this trajectory pair are, aicg ,jcg = p̄(x̄1
icg(NS))+w

and bicg ,jcg = p̄(x̄2
jcg(NS)). We now show that jcg is the best response of P2 to icg given

the payoff of the blocking game (6.8). We know that jcg maximizes the progress given

icg due to the formulation of the cooperative game (6.6), and since the additional payoff

only depends on the progress, we know that no other trajectory would get the additional

reward, thus jcg is the best response. Second, icg maximizes the payoff for P1, therefore,

(icg, jcg) is also the Stackelberg equilibrium of the blocking game.

Second, if p̄(x̄1
icg(NS)) ≤ p̄(x̄2

jcg(NS)) and there exists no blocking trajectory pair

(ib, jb), or in other words P1 cannot avoid the overtaking maneuver, the payoff of P1

does not depend on the blocking payoff, and is therefore maximized by icg. As jcg leads

to the largest possible progress for P2 and by definition gets the additional reward w,

jcg is also the best response for the blocking game (6.8).

Third, let us assume there exists a blocking trajectory pair (ib, jb). The pair will

be chosen if it leads to the largest payoff for the two players. For P1 this is the case

if p̄(x̄1
ib

(NS)) + w ≥ ai,j for all i and j, since ib is the best possible blocking trajectory

other blocking strategies have a lower payoff. Thus, the inequality holds if the payoff
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aib,jb is larger than the largest payoff of a feasible non-blocking trajectory pair, which is

p̄(x̄1
icg(NS)). Thus P1 chooses ib if p̄(x̄1

icg(NS)) ≤ p̄(x̄1
ib

(NS)) + w and by definition jb is

the optimal response for P2. Thus (ib, jb) is a Stackelberg equilibrium.

Part (b): To show that (icg, jcg) is a Nash equilibrium of the blocking game (6.8), two

cases are possible. First, p̄(x̄1
icg(NS)) > p̄(x̄2

jcg(NS)), where aicg ,jcg = p̄(x̄1
icg(NS)) +w and

bicg ,jcg = p̄(x̄2
jcg(NS)), and second, p̄(x̄1

icg(NS)) ≤ p̄(x̄2
jcg(NS)), where aicg ,jcg = p̄(x̄1

icg(NS))

and bicg ,jcg = p̄(x̄2
jcg(NS)) +w. In the first case, because jcg is the best response in terms

of progress we know that if jcg does not get the additional reward, no other trajectory

gets the reward. Therefore, it holds that for all j ∈ Γ2, bicg ,jcg ≥ bicg ,j. As a consequence

for P2 the trajectory pair (icg, jcg) fulfills the Nash inequality. For P1 the Nash inequality

aicg ,jcg ≥ ai,jcg is fulfilled since it is the largest feasible payoff for P1. In the second case,

a similar argument holds, which is omitted in the interest of space. Thus, (icg, jcg) is

a Nash equilibrium of the blocking game (6.8) even though the additional payoff is not

considered in the computation of the trajectory pair.

For the second part, we now assume that the Nash equilibrium is a blocking trajectory

pair (ib, jb). The Nash inequality for P2 bib,jb ≥ bib,j is always fulfilled by Definition 6.6,

since no action of P2 can get the additional payoff w and jb is the best response of P2.

However, the Nash inequality for P1,

p̄(x̄1
ib(NS)) + w ≥ ai,jb ∀i ∈ Γ1 ,

is only fulfilled, if for all i ∈ Γ1 such that p̄(x̄1
i (NS)) > p̄(x̄1

ib
(NS)), it holds that ai,jb ≤ λ.

This condition, however, is identical to the one required by the Nash equilibrium of the

cooperative game (6.6). Thus, for (ib, jb) to be a Nash equilibrium of the blocking game

(6.8), it also needs to be a Nash equilibrium of the cooperative game (6.6).

This illustrates, that if the goal is to encourage blocking the Stackelberg equilibrium

is the appropriate equilibrium concept. Furthermore, this also shows that blocking needs

an asymmetric information pattern, which is logical as the leader needs to be sure that

he can enforce the blocking trajectory on the follower.

One can recognize that the blocking game subsumes the cooperative game, more

precisely for w = 0 the two games are identical. This poses the question for which values

of w the equilibrium changes. This can be answered for the Stackelberg equilibrium using

Theorem 6.2 (a). For a game instance where a blocking trajectory pair (ib, jb) exists,

there is a discrete change in the optimal trajectory pair when increasing w. This switch

occurs the moment p̄(x̄1
ib

(NS)) + w becomes larger that p̄(x̄1
icg(NS)); in (6.9) the switch

occurs if w ≥ 0.03. From a racing point of view, it is best to choose w large enough such

that whenever possible the blocking trajectory is selected.
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6.4 Moving horizon games

The racing games presented in Section 6.2 are finite horizon games. To introduce feed-

back we propose to play the games in a moving horizon fashion, solving the game with

the full horizon but only applying the first input, then reformulating the game based on

the current state measurement and solving again. Similar to [61] and [62], this allows

to approximately solve an infinite horizon game, which would not be tractable using

dynamic programming, by solving a series of finite horizon games.

An inherent problem of moving horizon approaches is that they, in general, do not

guarantee feasibility of closed-loop operation. This problem can be tackled by using ter-

minal set constraints which ensure recursive feasibility by guaranteeing that the terminal

state is within an invariant set [10]. Alternatively one can use soft constraints, rendering

the problem feasible at all times [110].

6.4.1 Terminal viability constraints

If the goal is to guarantee feasibility of the racing games at all times when played in a

receding horizon fashion, one can use tools from viability theory similar to the approach

proposed in Chapter 5. To apply this approach to ensure recursive feasibility in our

recursive gaming setting we need to distinguish the sequential game from the cooperative

and blocking games since the former requires the more restrictive Assumption 6.2.b to

hold whereas for the latter two Assumption 6.2.a suffices to guarantee feasibility.

For the sequential game the aim is to fulfill Assumption 6.2.b recursively this causes

technical difficulties due to discontinuities that arise in the dynamics which need to

be tackled appropriately. One discontinuity arises because the leader and follower may

switch roles from one solution of the game to the next. This problem can be resolved using

a hybrid state in combination with a spatial regularization to prevent unwanted switching

behavior, see [118]. Note that the system is now hybrid requiring a hybrid viability kernel

algorithm [105]. Second, the optimal viable policy of the leader leads to discontinuities

which can be tackled by appropriately smoothing the policy of the leader. Given this

continuous dynamical model incorporating the sequential maximization approach, the

viability kernel with respect to the track and collision constraints can be computed. If

the game starts with the car states in this viability kernel then the follower always has

a viable trajectory if the leader plays his optimal viable trajectory. A more detailed

discussion can be found in Appendix 6.7.1.

The cooperative and blocking game, require a conceptually simpler viability kernel

since guaranteeing Assumption 6.2.a recursively can be assured if there always exists a

cooperative collision avoiding trajectory pair. Therefore, both cars need a viable tra-

jectory with respect to track and collision constraints. For more details see Appendix
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6.7.1.

For all three games, we can theoretically compute an appropriate viability kernel,

which can be imposed as a terminal constraint to guarantee recursive feasibility. This

can be achieved by penalizing trajectory pairs for which the terminal state is not in the

viability kernel by a payoff λ.

Unfortunately, practically it is not possible to compute the described viability kernels

as they require one to consider the state of both players simultaneously. As this joint

state is ten-dimensional the computation is not tractable with the standard, grid based

viability kernel algorithm. From a practical point of view, it is possible to use the

viability kernel with respect to the track constraints, as proposed in Chapter 5, as a first

approximation. This computation is tractable and it is easy to see that the product of

the track viability kernels for the two cars is a superset of all racing viability kernels

discussed above; ensuring that the system remains in this product set therefore provides

a necessary condition for the recursive feasibility of the games. We adopt this approach

in our simulation study below.

6.4.2 Soft constraints

Alternatively one can use soft constraints that allow formulating a game which always

finds an optimal trajectory. The idea is to relax the constraints and consider them by

reducing the payoff depending on how much the constraints are violated. The advantage

compared to the above discussed terminal constraints is that no viability kernels need

to be computed. However, the resulting trajectory is not always feasible with respect to

the constraints.

The idea is similar to the soft constraints in MPC [110], however, the implementation

in the game set-up is quite different. In our racing games, we use soft constraints for

the collision constraints only. In a first step, given a trajectory pair we can compute

the smallest relaxation of the constraint necessary, which we call slack multipliers of a

trajectory pair Si,j =
∑NS

k=1 max(−d(x̄1
i (k), x̄2

j(k)), 0). Given our collision constraints,

this corresponds to how much the two cars penetrate each other and therefore Si,j is

always positive. Second, instead of penalizing a colliding trajectory pair with a payoff

of λ, the soft constrained game computes the payoff neglecting the collision constraints

and then reduces this payoff by σSi,j, where σ is a positive weight. Thus, if σ is chosen

large enough, the players in the game have still no benefit from violating the collision

constraints, and therefore the optimal trajectory pair does not change. This is often

called an exact soft constraint reformulation, and it can be shown that there always exist

such a σ for all racing games. The main reason this holds is that there is only a finite

number of trajectories and all payoffs as well as the slack multipliers Si,j are bounded.

On the other hand, if there is no feasible trajectory the soft constrained game does

still find a reasonable trajectory pair by trading off violation of the collision constraint
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and payoff depending on the value of σ. See Appendix 6.7.2 for the reformulation of

the cooperative game with soft collision constraints as well as the conditions on σ to

guarantee an exact reformulation.

6.5 Simulation results

6.5.1 Simulation set-up

Our simulation study replicates the miniature race car set-up, introduced in Chapter 2

and to simulate the cars we use the dynamical bicycle model with nonlinear tire forces

as described in Chapter 3.

To achieve high-performance driving we use a two-level hierarchical controller follow-

ing the structure introduced in Chapter 4. The upper level of the controller generates

a trajectory pair based on one of the three racing games and the path planning model

studied in the experimental set-up of Chapter 5. More precisely, for the path planning

model we use number prediction steps NS = 3, discretization time Tpp = 0.16 s and

number of constant velocities Nm = 129. Figure 6.4 shows an example of trajectories re-

sulting from the path planning model. At the lower level, we employ an MPC controller

to track the trajectories corresponding to the optimal trajectory pair. The lower level

MPC uses the linearized bicycle model, and also enforces track constraints; identical to

the MPC (4.6) described in Chapter 4.

Note that brute force implementation of the racing bimatrix game would, in this

case, require forming two 1293×1293 payoff matrices, clearly a formidable computational

task. To reduce the computation we rely on viability-based pruning of the trajectories

introduced in Chapter 5, which excludes trajectories that are doomed to leave the track

either immediately or at a later stage. Following Chapter 5 we use either the viability or

the discriminating kernel to prune the trajectories. The two kernels lead to comparable

lap times but differences in driving style that, in the context of this chapter, results in

interesting racing behaviors. More precisely, pruning based on the discriminating kernel

results in a more conservative driving style, breaking earlier into curves but achieving

higher exit velocities out of curves. Pruning based on the viability kernel, on the other

hand, results in a more aggressive driving style. In the following, we will use PV to

denote the player using the viability kernel and PD the player using the discriminating

kernel to prune the trajectories.

To generate the bimatrix game, we assume that each car shares their possible tra-

jectories with the opponent. Alternatively, it would also be possible to share the path

planning model and the pruning strategy at the beginning of the race, and online only

share the current state. For real racing, this can be extended by estimating the oppo-

nents constant velocity points as well as estimating the state based on sensors. The
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Figure 6.4: Possilbe trajectories of the path planning model for two cars using the

viability-based pruning presented in Chapter 5

estimation of the constant velocity points is simplified by the fact that similar cars have

similar constant velocities. Thus, each car only needs to adapt its own model to get an

estimate of the opponent’s model. Alternatively, for the cooperative game the modified

best response approach described in Appendix 6.7.3 can be used, where only a sequence

of best response trajectories needs to be shared to solve each game.

To further reduce the computation time, we compute collisions using a two-step

collision detection: first, the distance between the center of the cars is checked, only if

the distance is small enough for a collision to be possible in a second step a separating axis

collision detection algorithm is used [119]. Finally, we compute progress of all remaining

trajectories as described in Chapter 4. All the tasks except the path planning model

run at a sampling time of 20 ms allowing for accurate collision checks and fast feedback.

To be able to react fast to the changes of the opponent player and to deal with model

mismatch the game is also repeated every 20 ms.

The last implementation detail is concerned with the soft constraints, any constraint

violation of more than 1 cm is treated as a collision between the cars. Note that thereby

the problem is not always feasible and that in a case where no feasible solution can

be found the car behind initiates an emergency braking maneuver, until the problem is

feasible again.
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6.5.2 Results

The racing games were evaluated in a simulation study, where the cars are initiated at 500

different random initial positions along the center line of the track. To guarantee feasible

initial conditions the cars are initiated at a low forward velocity of 0.5 m/s, tangentially

to the center line. To promote interesting racing situations we choose the initial position

of the two cars in close proximity (0-20 cm apart) and the physical parameters of both

cars are identical, including engine power, braking power, and tire models. For each

initial position, the simulation is run for 40 s, which corresponds to approximately four

laps.

We compare three cases of the presented racing games. In the first case the optimal

strategy pair is computed using the Sackelberg equilibrium of the sequential game (6.4),

in the second case that of the cooperative game (6.6) and in the third case that of the

blocking game (6.8) with w = 100. Recall that the solutions of the first two approaches

are identical if Assumption 6.2.b is fulfilled, but may differ otherwise. We also assume

that the players play truthfully. This is reasonable since deviating from this trajectory

leads to a lower payoff, either due to a collision or to worse progress. We note, however,

that in the blocking game the leader could benefit from being untruthful. Simulation

studies also showed that other methods such as random play do lead to a worse payoff,

in some cases even for both players.

Table 6.1: Simulation study of the racing games

seq. game coop. game blocking game

(PV/PD) (PV/PD) (PV/PD)

# of overtaking 113 857 414

maneuvers (4/109) (502/355) (231/183)

# of runs with over-

taking maneuvers 106 309 220

collision probability 5.42 · 10−3 4.59 · 10−3 5.28 · 10−3

Let us start by noting that in all cases we observe a substantial number of overtak-

ing maneuvers (see Table 6.1), even though both cars have the same power, and only

differ in the pruning strategies they employ. However, it is visible that the sequential

game has the fewest overtaking maneuvers. The cooperative game has by far the most

overtaking maneuvers, whereas the blocking game has approximately half as many over-

taking maneuvers. It is also interesting to see that the cooperative and blocking game

lead to a more even distribution of overtaking maneuvers between the different pruning

strategies. This stands in contrast to the sequential game, where nearly all overtaking
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maneuvers are performed by the player using the discriminating kernel as a their pruning

strategy (PD). When looking at the probability of a collision, we can see that all three

implementations have a low empirical collision probability of around 5 · 10−3, especially

given the close initial proximity of the cars. The cooperative game has the lowest colli-

sion probability and the sequential game the highest. Note that some of the collisions

can also be caused by the fact that the low-level MPC does not consider the collision

constraints. Even though experimental and simulation results suggest that the low-level

MPC can follow the trajectory very precisely, the games are sometimes so tight that

even sub-millimeter tracking errors can result in a collision.

The main reason for the observed trends is first and foremost the fact that in the

sequential game the leader does not consider the follower. This explains the fewer over-

taking maneuvers, the higher collision probability, and the observation that PV has

nearly no overtaking maneuvers. Almost all overtaking maneuver need a certain co-

operation between the cars, and this holds especially when PV overtakes PD. In the

sequential game the leader does not consider the follower and ignores the risk of a col-

lision. Due to the layout of the track, this is an advantage for PD, which can prevent

nearly all overtaking maneuvers, whereas PV is not able to do so. In the cooperative

and blocking games the leader adapts his strategy to accommodate the follower. This

helps to prevent collisions, but at the same time allows for overtakes by the opposing

car. In the blocking game the leader does consider the follower, and helps to prevent a

collision, but at the same time actively tries to avoid overtaking maneuvers. This, in the

end, results in a middle ground both in terms of overtaking and collision probability.

Table 6.2: Payoff of the racing games

seq. game coop. game blocking game

(PV/PD) (PV/PD) (PV/PD)

mean progress [m] 82.89 82.49 82.53

# of stay 384 292 329

ahead runs (148/236) (230/62) (196/133)

# of wins (156/344) (412/88) (307/193)

Similar trends can also be seen when analyzing the overall payoff of the game. Table

6.2, shows the mean progress of the different games, in how many runs the car starting

ahead was able to also be ahead at the end and how many times which player won. The

first two metrics are directly the ones we try to maximize in our games, and the third

is, in a sense, the long term objective of the players. We can see that the sequential

game achieves the largest progress of the three games, whereas the cooperative and

the blocking game achieve very similar values. The sequential game achieves the largest
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progress because the leader does not adapt his strategy thus only optimizing the progress.

In the other games, there are also more overtaking maneuvers which slow down the cars.

The number of stay ahead runs, and winning runs show a similar trend to overtaking

in Table 6.1. The sequential game is the best to stay ahead and win but does this by

causing more and also deeper collisions. From the stay ahead and winning runs, it is even

better to see how the additional term in the blocking game helps to be more competitive

compared to the cooperative game.

To further highlight the difference between the three different game approaches,

one of the 500 simulation runs is shown in a video which can be found at: https:

//youtu.be/3Skl5qeFum8 for the sequential game, https://youtu.be/Cp9OchB2S_M

for the cooperative game, and https://youtu.be/Xxa8W9D3Z_A for the blocking game.

The videos emphasize the points discussed above, where the sequential game has zero

overtaking maneuvers but there are collisions, in the blocking game there is only one

overtaking maneuver, but in the cooperative game there are three overtaking maneu-

vers.
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Figure 6.5: Time elapse of two overtaking maneuvers. Left side cooperative game, right

blocking game. The blue car is PV and the red car PD, the cars are shown every 0.3 s

and every second time the car is dashed to highlight which cars are at the same time

step. The driven trajectory also is also shown as a dotted line, where each dot is 0.02 s

apart. In both cases, the blue car can overtake the red car, but in the blocking game,

the red car drives a more aggressive trajectory which tries to prevent the overtaking

maneuver.

Remarks on difference in driving style and car dynamics

The above simulation study investigated the case where one player PV uses the viability

and the other player PD the discriminating kernel to prune their trajectories. Thus, the

driving style of the two players is quite different, with PV being “aggressive” and PD

“cautious.” However, both players have the same model and identical cars. To further
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investigate the influence of different driving styles and differences in the cars, we also

investigated the effect of a reduced motor power of one of the car as well as using the same

approach to prune the trajectories for both players; the latter results in a race between

identical cars and drivers. The simulation results show as expected that reducing the

motor power of one car leads to more overtaking maneuvers. However, the influence is

smaller than expected as the power constraint mainly influenced the maximal velocity,

which is not too important in the used track layout. Using the same pruning strategy

for both players drastically reduced the amount of overtaking maneuvers. However,

even though the drivers and the cars are identical overtaking maneuvers still occur. In

conclusion, we noticed that the change in the driving style induced by different pruning

strategies seems to be more important than power differences between the cars.

6.5.3 Computation time

Simulations were carried out on a computer running Debian equipped with 16 GB of

RAM and a 3.6 GHz Intel Xeon quad-core processor. When investigating the com-

putation times reported in Table 6.3, one can see that the computation times for the

trajectory generation step is very similar for all three games, which is expected as the

different cases only have a minor influence on the trajectory planning phase. However,

the collision check for the sequential game is significantly faster than the collision checks

for the other two games.

Table 6.3: Computation time of the racing games

seq. game coop. game blocking game

mean traj. generation [s] 0.0027 0.0027 0.0027

max traj. generation [s] 0.0358 0.0314 0.0317

mean collision check [s] 0.0012 0.3365 0.2545

max collision check [s] 0.0738 109.81 112.31

The reason is that the cooperative and blocking game require checking collisions of all

trajectories of both players with each other. Roughly speaking this computation grows

quadratically in the number of trajectories available to the players and can result in up

to 109 collision checks. In the sequential game, when using the sequential maximization

approach, collisions are only checked between the best trajectory of the leader and all

trajectories of the follower. In this case, the number of collision checks grows only

linearly in the number of trajectories available to the players. We can say that the

sequential game is close to real-time feasible, whereas the cooperative and blocking game

are significantly slower and would need radical changes to implement in real-time.
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6.6 Conclusion

In this chapter we presented a non-cooperative game approach for one-to-one racing

of two autonomous cars. Three approaches to model the interaction between the two

players were considered and formulated as bimatrix games. In the first two approaches

the interaction is limited to collision constraints, and each player optimizes his progress.

The third approach augments the cost function by rewarding staying ahead at the end

of the horizon to emphasize blocking behavior. For online implementation the game is

played in a moving horizon fashion and two methods were proposed to deal with the loss

of feasibility in closed-loop. A simulation study shows that the proposed games can be

used for competitive autonomous racing of two cars. The main observation is that the

sequential game where the follower is completely neglected seems to be the most efficient

blocking technique in closed-loop, but also comes with the highest risk of a collision.

6.7 Appendix

6.7.1 Terminal viability constraints

In the main text, the challenges and solutions how to compute the appropriate viability

kernels are only roughly outlined, here we investigate them in more detail.

Sequential Game

In the case of the sequential game we use a one-step game to simplify the derivation of

the necessary constraints and models for the viability computations. Similar ideas work

for longer horizons, however, the derivation and conditions get more complex.

First, let us define the viable one-step optimal policy of the leader P1, as the following

parametric optimization problem,

ψ1(x̄1) = arg max
u1∈U p(q1)

p̄(f̄ 1(x̄1, u1)) , (6.13)

s.t. f̄ 1(x̄1, u1) ∈ ViabF̄ 1(K1) ,

where, K1 = {x̄1 ∈ R5| x̄1 ∈ X̄T}, F̄ 1(x̄1) = {f̄ 1(x̄1, u1)|u1 ∈ U1(q1)} and ViabF̄ p(K1) is

the corresponding viability kernel. Since the feedback policy could be non-unique, it is

necessary to add a deterministic tie-breaking rule, which is part of the rules of the road.

If the leader plays this feedback control law this mimics the sequential maximization

approach. However, the resulting set-valued map {f̄ 1(x̄1, u1)|u1 ∈ ψ1(x̄1)} is not upper-

semicontinuous, due to the discontinuities in the feedback control law. Therefore, it is

necessary to smooth the feedback policy to achieve an upper-semicontinuous approxima-

tion of the set-valued map, which then can be used to compute the viability kernel. We
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propose to use the set-valued map whose graph is the closure of ψ1(x̄1),

ψ̄1(x̄1) = {y|(x, y) ∈ Graph(ψ1)} . (6.14)

This smooths the discontinuities in a set-valued sense, and by [31, Proposition 2.2.2] and

the fact that the graph is closed we know that ψ̄1(x̄1) is upper-semicontinuous, and fur-

ther by [31, Proposition 2.1.4] we know that the resulting set-valued map {f̄ 1(x̄1, u1)|u1 ∈
ψ̄1(x̄1)} is upper-semicontinuous. However, the policy ψ̄1(x̄1) is now set-valued, there-

fore, at these smoothed discontinuities the leader has several possible trajectories, which

allows to cooperate with the follower since the players only need one avoiding trajectory

pair. Note that this only influences the outcome of the algorithm if the discontinuities of

ψ1(x̄1) do not have measure zero. If this would turn out to be an issue, a discriminating

kernel algorithm could be used, where the action of the leader would be adversarial.

This, however, would lead to a state dependent adversary player, which is not covered

in the standard discriminating kernel theory [40].

As described in the main text, the second discontinuity results from the leader-

follower switch. This discontinuity can be avoided by introducing a hysteresis based

switch, which uses a discrete state for each leader and spatial regularization to prevent

unwanted switching behavior, see [118]. The discrete state h is 1 if P1 is the leader and

2 if P2 is the leader. The disadvantage is that the resulting system is a discrete time

hybrid system which requires a hybrid viability kernel algorithm [105]. However, the

advantage is that then for each hybrid state the dynamics are continuous. Notice that

the changed leader-follower switch needs to be included in the rules of the road.

To describe the dynamics of the two cars, including the above discussed modifications,

we need to consider the stacked state ξ = [x̄ 1, x̄ 2], as well as the discrete states h,

resulting in the following difference inclusion ξk+1 ∈ F(hk, ξk), with the set-valued map

F(h, ξ) defined as follows,

F(h, ξ) =



{[
f̄ 1(x̄1, u1)

f̄ 2(x̄2, u2)

]∣∣∣∣ u1 ∈ ψ̄1(x̄1)

u2 ∈ U2(q2)

}
if h = 1

{[
f̄ 1(x̄1, u1)

f̄ 2(x̄2, u2)

]∣∣∣∣ u1 ∈ U1(q1)

u2 ∈ ψ̄2(x̄2)

}
if h = 2

(6.15)

Note that the reset function and guard are omitted in interest of space, however, since

they result from a spatial regularization of the leader-follower switch they can be obtained

similar to the examples in [118]. Furthermore, due to the above discussed modifications,

in addition to the modifications introduced in Chapter 5 Section 5.3 the set-valued map

(6.15) is upper-semicontinuous and describes the sequential maximization approach.

Finally, the closed constraint set K, includes the track and collision constraints,

K = {ξ ∈ R10| d(x̄ 1, x̄ 2) ≥ 0, x̄ 1 ∈ X̄T, x̄
2 ∈ X̄T} . (6.16)

The following fact is immediate from the definition of the viability kernel.
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Proposition 6.3. The sequential game (6.4) is recursively feasible if played in a moving

horizon fashion, when the leader plays ψ̄%(x̄%) the viable optimal policy (6.14), and the

terminal state of the follower remains within ViabF(K), where F(ξ) as defined in (6.15)

and K as defined in (6.16).

Progress and Blocking Game

For these two games it suffices that the state of both player remains within the viability

kernel with respect to the track and collision constraints. This viability kernel describes

all states for which there exist cooperative collision free trajectories of the two players

that remain within the track. To compute the viability kernel we again consider the

stacked state ξ = [x̄ 1, x̄ 2] with the corresponding difference inclusion,

ξk+1 ∈ F(ξk) =

{[
f̄ 1(x̄ 1

k , u
1
k )

f̄ 2(x̄ 2
k , u

2
k )

] ∣∣∣∣ u 1
k ∈ U 1(q 1

k )

u 2
k ∈ U 2(q 2

k )

}
, (6.17)

Following Chapter 5 Section 5.3 we know that the set-valued map F (ξ) is upper-

semicontinuous and K is closed. Similar to the sequential game the following fact is

immediate from the definition of the viability kernel.

Proposition 6.4. The cooperative or blocking game is recursively feasible if played in

a moving horizon fashion, if terminal state of both players remains within ViabF(K),

where F(ξ) as defined in (6.17) and K as defined in (6.16).

6.7.2 Soft constraints

In the following we show how the soft constrained version of the of the cooperative game

is formulated and what condition σ needs to fulfill to be an exact reformulation. First

the soft constrained cooperative game can be computed as follows,

ai,j =

{
κ if ∃k ∈ {1, ..., NS} : x̄1

i (k) 6∈ X̄T

p̄(x̄1
i (NS))− σSi,j else

,

(6.18)

bi,j =

{
κ if ∃k ∈ {1, ..., NS} : x̄2

j(k) 6∈ X̄T

p̄(x̄2
j(NS))− σSi,j else

,

with Si,j =
∑NS

k=1 max(−d(x̄1
i (k), x̄2

j(k)), 0).

Now lets assume that Πst is the set of Stackelberg equilibria of the cooperative rac-

ing game with (icg, jcg) denoting on of these equilibria. Further let Γ1
T and Γ2

T be all

trajectories which fulfill the track constraints. We first notice that even for the soft

constrained game, as long as for both players there exists a trajectory which stays inside
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the track and κ is chosen small enough the Stackelberg equilibrium does not leave the

track and there exists a Nash equilibrium which does not leave the track. Then if for all

(i, j) ∈ Γ1
T × Γ2

T \ Πst, σ is chosen such that the following two inequalities hold,

p̄(x̄1
i (NS))− σSi,j < p̄(x̄1

icg(NS)) ,

p̄(x̄2
j(NS))− σSi,j < p̄(x̄2

jcg(NS)) ,

the reformulation is exact. Or in other words, for all trajectory pairs which stay within

the track and are not a Stackelberg equilibria the payoff received is smaller than the

one received by all the Stackelberg equilibria. Note that similar inequalities can be

formulated for all three games, however, in the interest of space they are omitted.

6.7.3 Sequential iterative best response

Recently several research groups proposed to use iterative best response (best response

dynamics) in the context of autonomous racing of cars [58], as well as quadcopters [59].

The idea is to find a Nash equilibrium by iterating the best response of the players. This

approach is well known to find Nash equilibria of populations of players. However, it has

one fundamental problem, the approach is not guaranteed to find a Nash equilibrium

and is prune to cycling behavior.

In the context of this thesis the iterative best response can be formulated as follows,

ik+1 = arg max
i∈Γ1

ai,jk , jk+1 = arg max
j∈Γ2

bik,j . (6.19)

Where (ik, jk) is the trajectory pair at iteration k and (i0, j0) is the initial trajectory

pair, which is determined randomly or using a smart guess. It is easy to show that if

the sequence of trajectory pairs converges (ik, jk) = (ik+1, jk+1) the trajectory pair is a

Nash equilibrium.

However, if the approach is applied to the cooperative game (6.7) with the corre-

sponding racing situation in Figure 6.1, and the initial guess is not one of the two Nash

equilibria, the iterative best response cycles between the trajectory pair (2, 2) and (1, 1).

Where the trajectory pair (2, 2) leads to a collision and (1, 1) is worst feasible outcome

for both players. The problem is related to the fact that there exist two Nash equilibria

which are not distinguishable for the given game. However, this structure including mul-

tiple non-distinguishable Nash equilibria is common for the cooperative game (as well as

the blocking game). Often one Nash equilibrium corresponds to the player ahead doing

what is best for him and the following player avoiding a collision, and the second is the

opposite where the player ahead moves out of the way for the following player. Thus,

this problem is likely to occur also in real racing situations, such as shown in Figure 6.4.

In the following, we will propose a sequential iterative best response approach. This

approach has the advantage that we can show that the sequence of trajectory pairs con-

verges to a Nash equilibrium of the cooperative game if started with a feasible trajectory
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pair. The idea is inspired by the sequential maximization approach (6.10), and instead of

both players determining the best response given the trajectory pair of the last iteration,

the idea is to sequentially update the trajectory, with the leader starting first. This can

be summarized by the following sequential iterative best response scheme,

ik+1 = arg max
i∈Γ1

ai,jk , jk+1 = arg max
j∈Γ2

bik+1,j . (6.20)

It is still straightforward to show that if the sequence converges the resulting strategy

pair is a Nash equilibrium. Further, we can even weaken this statement and only require

the value of the payoff to converge for the trajectory pair (ik, jk) to be a Nash equilibrium.

Actually, if the payoff converges but (ik, jk) and (ik+1, jk+1) are not equal both trajectory

pairs are Nash equilibria.

Proposition 6.5. If the sequential iterative best response (6.20) is used to find a Nash

equilibrium of the cooperative game (6.6) and Assumption 6.2.a holds then the following

properties hold,

(1) If (ik, jk) is feasible all subsequent iterates are feasible.

(2) Every feasible sequence of trajectory pairs has a monotonically increasing payoff

for the leader (P1).

(3) Every feasible sequence of trajectory pairs converges to a Nash equilibrium.

Proof. Since we look at the cooperative game and Assumption 6.2.a holds, the symmetry

in the collision constraints used in Theorem 6.1 still holds.

(1) If (ik, jk) is feasible, there exists at least one i such that ai,jk > λ, thus ai,jk+1 > λ

and due to the symmetry in the collision constraints there also exist a j such that

bik+1,j > λ.

(2) First, it is straight forward to see that aik+1,jk ≥ aik,jk , given the first step in (6.20).

Second, since we know that P2 will chose a feasible trajectory, due to point (1), and

due to the symmetry in the cooperative game we know that aik+1,jk+1 = aik+1,jk .

Thus we have aik+1,jk+1 ≥ aik,jk which shows that the payoff of the leader (P1)

increases monotonically.

(3) Since the cost of the leader monotonically increases, and there are a finite number

of trajectory pairs, the sequential iterative best response scheme will converge to

a point where the cost does not change. Every trajectory pair with this cost is a

Nash equilibrium.
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CHAPTER 7
Conclusion and Outlook

Conclusion

In this thesis, we presented a path planning and control approach for autonomous racing

which can race around a given race track and interact with other race cars. Therefore, we

proposed a hierarchical racing controller, which is able to drive a car at the handling limit.

Further, we used viability theory to improve the upper-level path planning step in the

hierarchical controller. As a result, the path planner only generates viable trajectories

that are recursively feasible. Furthermore, by only generating viable trajectories the

computation time is reduced. These savings in computation times allow using longer

prediction horizons, which together with the guaranteed recursive feasibility, improves

the performance in terms of lap times and constraint violations. Due to the reduced

computation the controller including the viability constraints is real-time feasible. This

allowed for a successful implementation of the controller on the experimental miniature

race car set-up.

Finally, to allow the controller to interact and race against other cars, we presented

a non-cooperative game approach for one-to-one racing of two autonomous cars, which

builds on the path planning step of the hierarchical racing controller. Three approaches

to model the interaction between the two players were considered and formulated as

bimatrix games. Given these games the equilibrium solutions in terms of Stackelberg

and Nash equilibria were studied. For online implementation, the game is played in

a moving horizon fashion, and two methods were proposed to deal with the loss of

feasibility in closed-loop. A simulation study shows that the proposed games can be

used for competitive autonomous racing of two cars, with the different games resulting

in different racing styles.
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Chapter 7. Conclusion and Outlook

Outlook

Theory and Computation

There are several theoretical and computational research question which are interesting

to investigate in future work. First, how can uncertainty be incorporated into the decision

process? Mainly the uncertainty in the path planning model. There are two places

where these uncertainties should be considered; first, in the computation of the viability

constraints and second the online path planning step. However, compared to the space

discretization errors in Chapter 5 these uncertainties are not known. Thus, different

techniques are required, e.g., the leadership kernel seems the more natural concept.

The second, and arguably more interesting place to consider these uncertainties is in the

racing games. Where the collision constraints could be formulated as robust or stochastic

constraints, hopefully leading to fewer collisions, but with the potential drawback of fewer

overtaking maneuvers.

In Chapter 5 we noticed that a terminal cost can improve the performance of con-

trollers with short horizons. Currently, this terminal cost is computed heuristically, and

future work could investigate how to compute a terminal cost properly and if it is pos-

sible to include viability constraints in these computations. A terminal cost could be

especially interesting in the racing game where strategic positioning on the race track is

important to prevent overtaking maneuvers. However, similar to the terminal viability

constraints computing a terminal cost is not tractable due to the high state dimension.

Therefore, it would be interesting to investigate machine learning tools, to learn from

the cars racing against each other, similar to methods proposed in [120,121]. The main

challenge is to come up with a method to trade-off exploration and exploitation while

learning this terminal cost.

Currently, the main drawback of the presented controller is the high computational

cost, especially for the racing games. Preliminary work showed that using a GPU instead

of a CPU can significantly speed up the computation times, since the path planning

step of the controller is parallelizable [122]. For example, the worst case computation

time for the path planning step for a horizon of NS = 4 can be reduced from 85 ms

to below 3 ms. However, this only covers the path planning step. It would also be

necessary to use a GPU in the computation of the game payoffs, mainly when checking

if trajectories collided. Therefore, future work should investigate how to parallelize the

whole racing game controller, especially how to efficiently split the problem into (small)

parallel executable work packages.

Finally, it is also possible to improve the lower level MPC controller, for example

by considering the uncertainty in the bicycle model such as done in [67] and [68], or by

using an NLP solver which allows using the nonlinear dynamics directly and considering

combined slip tire force constraints, similar to [89]. Furthermore, in the racing games
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currently no collision constraints are considered in the lower level MPC. One possibility

to consider collision constraints is to use an NLP solver and the collision constraint

formulation proposed in [69].

Experimental

In future work, it would be interesting to test the hierarchical racing controller including

the racing games and the above discussed ideas on the experimental miniature race car

set-up. However, it would also be interesting to test the controller on real cars. One

challenge with real sized cars is that real circuits are larger in relative size. Therefore,

significantly longer horizons are needed to determine a good racing trajectory. In theory,

this problem can be tackled using the proposed viability constraints as well as a mean-

ingful terminal cost. Thus, this would be a real challenge for several of the previously

described future directions.
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