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Abstract

The martingale problem is known to be a classical and very powerful techno-
logy for the study of Markov processes through the analytical properties of the
corresponding generators. This approach permits for instance to easily model
Markov processes featuring both diffusion and jump components. The first aim
of the thesis is to develop concrete and easy–to–use tools allowing to employ this
technology in the context of probability measure-valued jump-diffusions. This
is mainly motivated by our second line of research, consisting in the study of
the so–called polynomial jump-diffusions, which have found broad applications
in mathematical finance. However, we will also show that the same tools can be
used in much greater generality.

Given a linear operator G playing the role of the generator, the martingale
problem asks for a process X := (Xt)t≥0, called jump-diffusion, such that

p(Xt)−
∫ t

0

Gp(Xs)ds

is a martingale for each test function p. Under very general conditions, the exist-
ence of such an X is essentially equivalent to G satisfying the positive maximum
principle. This very elegant property requests Gp(x) to be nonpositive for each
test function p attaining a nonnegative maximum at x.

A jump-diffusion X is called polynomial if its generator G maps any polyno-
mial to a polynomial of equal or lower degree. Polynomial jump-diffusions were
introduced in Cuchiero et al. (2012), see also Filipović and Larsson (2016). Their
most relevant property in a finite dimensional setting is the moment formula,
stating how their conditional moments can be expressed in closed form by solv-
ing a system of linear ODEs, or equivalently, by computing a matrix exponential.
Choosing the space of probability measures as state space for the process, one
needs first to understand which notion of polynomial, or more generally of de-
rivative, is convenient to use. With the choice that we will make, a first degree
monomial is an expression of the form

〈g, ν〉 :=

∫
g(x)ν(dx),

where g denotes a test function and is referred to as the coefficient of the monomial.
In this setting, a generalized version of the moment formula still holds. Given a
probability measure-valued polynomial jump-diffusion X, it provides in particu-
lar an expression for the conditional moments of a first degree monomial 〈g,Xt〉
in terms of a solution of a linear partial (integro) differential equation.
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The starting point of this thesis is the simplest context for probability measure-
valued polynomial jump-diffusions, namely where the underlying space is finite.
In this setting, every probability measure can be identified with a point on the
unit simplex. After that, we will use the know–how gained by working on the
simplex, to study probability measure-valued jump-diffusions on locally compact
Polish spaces, both in the polynomial and in the general case. The similarity
between the structure obtained in the infinite dimensional setting and that in the
finite dimensional one is strikingly high.



Sunto

Il problema di martingala è noto per essere uno strumento molto efficace per lo
studio di processi di Markov attraverso l’indagine delle proprietà analitiche del
corrispettivo generatore. Questo approccio permette per esempio di modellizzare
facilmente processi di Markov con un comportamento sia diffusivo che discon-
tinuo. Lo scopo principale della tesi consiste nello sviluppare strumenti concreti
e facili da utilizzare al fine di applicare queste tecniche nel contesto delle diffusioni
con salti a valori nello spazio delle probabilità. La motivazione principale su cui
si basa questa scelta risiede nella nostra seconda linea di ricerca, concernente lo
studio delle cosiddette diffusioni polinomiali con salti, note per la vasta applic-
abilità in matematica finanziaria. Tuttavia, mostreremo come di fatto gli stessi
strumenti possano essere impiegati anche in un contesto più generale.

Sia dato un operatore lineare G facente ruolo di generatore. Un processo
X := (Xt)t≥0, chiamato diffusione con salti, risolve il problema di martingala
relativo a G se

p(Xt)−
∫ t

0

Gp(Xs)ds

è una martingala per ogni funzione test p. Essenzialmente, sotto condizioni molto
generali l’esistenza di tale X è garantita se e solo se G soddisfa il principio del
massimo positivo. Quest’elegante proprietà richiede che Gp(x) sia nonpositivo
per ogni funzione test p avente un massimo nonnegativo in x.

Una diffusione con salti X è detta polinomiale se il suo generatore mappa poli-
nomi in polinomi conservandone il grado. Le diffusioni polinomiali con salti sono
state introdotte in Cuchiero et al. (2012), si veda anche Filipović e Larsson (2016).
La loro proprietà più importante in un contesto finito dimensionale è la formula
dei momenti, la quale stabilisce come i momenti condizionali possano essere es-
pressi in forma chiusa risolvendo un sistema di equazioni differenziali ordinarie,
o equivalentemente, calcolando l’esponenziale di una matrice. Al fine di lavorare
con lo spazio delle misure di probabilità come spazio degli eventi, è necessario sta-
bilire quale nozione di polinomio, o più in generale di derivata, è più conveniente
usare. Con la scelta che faremo, un monomio di primo grado è un’espressione
della forma

〈g, ν〉 :=

∫
g(x)ν(dx),

dove g denota una funzione test a cui ci riferiamo come coefficiente del monomio.
In questo contesto, una versione generalizzata della formula dei momenti può es-
sere stabilita. Data una diffusione polinomiale con salti X a valori nello spazio
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delle probabilità, essa fornisce un’espressione per i momenti condizionali di un
monomio di primo grado 〈g,Xt〉 in termini di una soluzione di un’equazione (in-
tegro) differenziale lineare alle derivate parziali.

Il punto di partenza di questa tesi è il contesto più semplice in cui una dif-
fusione polinomiale con salti a valori nello spazio delle probabilità possa avere
luogo, ossia quando lo spazio di base è costituito da un numero finito di punti. In
queste condizioni, ogni misura di probabilità può essere identificata con un punto
sul simplesso unitario. In seguito, useremo la conoscenza acquisita lavorando sul
simplesso per studiare diffusioni con salti a valori nello spazio delle probabilità
su spazi polacchi localmente compatti, sia nel caso polinomiale che in quello gen-
erale. La somiglianza tra la struttura ottenuta nel caso infinito-dimensionale e
quella nel caso finito è straordinaria.
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Chapter I

Introduction

The martingale problem is known to be a classical and very powerful techno-
logy for the study of Markov processes through the analytical properties of the
corresponding generators. This approach permits for instance to easily model
Markov processes featuring both diffusion and jump components. The first aim
of the thesis is to develop concrete and easy–to–use tools allowing to employ this
technology in the context of probability measure-valued jump-diffusions. This
is mainly motivated by our second line of research, consisting in the study of
the so–called polynomial jump-diffusions, which have found broad applications
in mathematical finance. However, we will also show that the same tools can be
used in much greater generality.

Given a linear operator G playing the role of the generator, the martingale
problem asks for a process X := (Xt)t≥0, called jump-diffusion, such that

p(Xt)−
∫ t

0

Gp(Xs)ds

is a martingale for each test function p. Under very general conditions, the exist-
ence of such an X is essentially equivalent to G satisfying the positive maximum
principle. This very elegant property requests Gp(x) to be nonpositive for each
test function p attaining a nonnegative maximum at x.

A jump-diffusion X is called polynomial if its generator G maps any polyno-
mial to a polynomial of equal or lower degree. Polynomial jump-diffusions were
introduced in Cuchiero et al. (2012), see also Filipović and Larsson (2016). Their
most relevant property in a finite dimensional setting is the moment formula,
stating how their conditional moments can be expressed in closed form by solv-
ing a system of linear ODEs, or equivalently, by computing a matrix exponential.
Choosing the space of probability measures as state space for the process, one
needs first to understand which notion of polynomial, or more generally of de-
rivative, is convenient to use. With the choice that we will make, a first degree
monomial is an expression of the form

〈g, ν〉 :=

∫
g(x)ν(dx),

where g denotes a test function and is referred to as the coefficient of the monomial.
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2 I Introduction

In this setting, a generalized version of the moment formula still holds. Given a
probability measure-valued polynomial jump-diffusion X, it provides in particu-
lar an expression for the conditional moments of a first degree monomial 〈g,Xt〉
in terms of a solution of a linear partial (integro) differential equation.

The starting point of this thesis is the simplest context for probability measure-
valued polynomial jump-diffusions, namely where the underlying space is finite.
In this setting, every probability measure can be identified with a point on the
unit simplex. After that, we will use the know–how gained by working on the
simplex, to study probability measure-valued jump-diffusions on locally compact
Polish spaces, both in the polynomial and in the general case. The similarity
between the structure obtained in the infinite dimensional setting and that in the
finite dimensional one is strikingly high.

1 The finite dimensional setting

Tractable families of Markov processes on the unit simplex play an important role
in a host of applications. These include population genetics (Etheridge, 2011;
Epstein and Mazzeo, 2013), dynamic modeling of probabilities (Gourieroux and
Jasiak, 2006), and mathematical finance, in particular stochastic portfolio theory
(Fernholz, 2002; Fernholz and Karatzas, 2005). In the context of polynomial
diffusions (without jumps), the unit simplex has already appeared numerous times
in the literature. In population genetics, prototypical diffusion processes on the
unit simplex known asWright-Fisher diffusions, orKimura diffusions (see Kimura
(1964)), arise naturally as infinite population limits of discrete Wright–Fisher
models for allele prevalence in a population of fixed size; see Etheridge (2011) for
a survey.

In finance, similar processes have appeared in Gourieroux and Jasiak (2006)
under the name of multivariate Jacobi processes. All these diffusions turn out to
be polynomial, and a full characterization is provided in Filipović and Larsson
(2016, Section 6.3) by means of necessary and sufficient parameter restrictions on
the drift and diffusion coefficients.

More generally, due to their inherent tractability, polynomial jump-diffusions
have played a prominent and growing role in a wide range of applications in fin-
ance. Examples include interest rates (Delbaen and Shirakawa, 2002; Filipović
et al., 2017), credit risk (Ackerer and Filipović, 2016), default risk (Krabichler
and Teichmann, 2017), exchange rates (Larsen and Sørensen, 2007), stochastic
volatility models (Gourieroux and Jasiak, 2006; Ackerer et al., 2016), life insur-
ance liabilities (Biagini and Zhang, 2016), variance swaps (Filipović et al., 2016),
dividend futures (Filipović and Willems, 2017), and commodities and electricity
Filipović et al. (2017). Applications of polynomial jump-diffusions on the unit
simplex also appear in the context of stochastic portfolio theory (Cuchiero, 2017).

In addition, polynomial jump-diffusions are highly flexible in that they allow
for a wide range of state spaces – the unit simplex being one of them – and a
multitude of possible jump and diffusion phenomena. This stands in contrast
to the thoroughly studied and frequently used sub-class of affine processes. Any
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affine jump-diffusion that admits moments of all orders is polynomial, but there
are many polynomial jump-diffusions that are not affine. In particular, an affine
process on a compact and connected state space is necessarily deterministic; see
Krühner and Larsson (2018). Thus our interest in the unit simplex forces us to
look beyond the affine class.

As most of the cited papers focus on the case without jumps, it is natural to
ask what happens in the jump-diffusion case, where the literature is much less
developed. This case is considered by Cuchiero et al. (2012) and Filipović and
Larsson (2017), however without treating questions of existence, uniqueness, and
parameterization for polynomial jump-diffusions on specific state spaces.

As mentioned before, our approach is based on the technology of the martin-
gale problem. This is based on two ingredients: a linear operator G whose domain
consists of polynomials on the unit simplex ∆d, and a point x ∈ ∆d. They will
play the role of the generator and the initial condition of the corresponding jump-
diffusion, defined as a càdlàg process X with values in ∆d such that X0 = x and
the process (N f

t )t≥0 given by

N f
t := f(Xt)−

∫ t

0

Gf(Xs)ds

is a martingale for all polynomials f on ∆d.
The key tool for dealing with the martingale problem is given by the positive

maximum principle. The operator G is said to satisfy this property if

f polynomial, x ∈ ∆d, f(x) = max
∆d

f ≥ 0 ⇒ Gf(x) ≤ 0.

The positive maximum principle is essentially equivalent to the existence of a solu-
tion to the martingale problem for G for all x ∈ ∆d. Even more, Theorem II.2.3
illustrates that in the setting of polynomial operators this property is essentially
enough to guarantee uniqueness in law of the solutions. This is remarkable since
uniqueness is often difficult to establish.

From those considerations it is now clear that a generator that does not satisfy
the positive maximum principle is not interesting for the study of jump-diffusions.
For this reason, the next step consists in studying the structure that this property
imposes on linear operators. In the spirit of Courrège (1965) and Hoh (1998), we
prove that a linear operator satisfying the positive maximum principle is of Lévy–
type, specified by a drift, diffusion, and jump triplet (b, a, ν); see Theorem II.2.8.

With this result, we are now in the position to study polynomial jump-
diffusions on the unit simplex by studying the properties of the corresponding
triplet of parameters.

Our next goal in this finite dimensional setting is to provide a concrete, large,
class of polynomial jump-diffusions on the unit simplex. The aim is to describe
the properties of the elements of that class, in order to have them ready–to–use in
practice. To do that, we restrict our attention to jump specifications with affine
jump sizes, namely,

ν(x,A) = λ(x)

∫
1A\{0}(γ(x, y))µ(dy) (1.1)
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where λ : E → R+ is a nonnegative measurable function, µ a Lévy measure and
γ = (γ1, . . . , γd) is of the affine form

γi(x, y) = y0
i + y1

i x1 + · · ·+ ydi xd; (1.2)

see Definition II.3.1. This is the most general specification in the class of jump ker-
nels with polynomial dependence on the current state; see Theorem II.3.3. Under
the structural hypothesis of affine jump sizes, we classify all polynomial jump-
diffusions on the unit interval (i.e. the unit simplex in R2); see Theorem II.4.3.
This classification is subsequently extended – under an additional assumption –
to higher dimensions; see Theorem II.6.3. Referring to the unit interval for nota-
tional convenience, we can distinguish four types of jump-diffusions, in addition
to the pure diffusion case without jumps:

Type 1: λ is constant and the support of ν(x, · ) is contained in [−x, 1−x];

Type 2: λ is (essentially) a linear-rational function with a pole of order
one at the boundary, and the process can only jump in the direction of the
pole;

Type 3: λ is (essentially) a quadratic-rational function with a pole of order
two in the interior of the state space. There is no jump activity at the pole,
but an additional contribution to the diffusion coefficient.

Type 4: λ is a quadratic-rational function whose denominator has only
complex zeros, and µ in (1.1) is of infinite variation.

This classification already gives an indication of the diversity of possible behavior,
an impression which is strengthened in Section II.5, where we provide a number
of examples both with and without affine jump sizes. On the one hand, these
examples clearly show that without any structural assumptions like (1.1)–(1.2),
a full characterization of all polynomial jump-diffusions on the simplex, or even
the unit interval, is out of reach. On the other hand, the examples illustrate
the richness and flexibility of the polynomial class. The findings in the finite
dimensional setting are presented in Chapter II and will be published in Cuchiero
et al. (2018a).

2 The infinite dimensional setting

The primary motivation for this part of the thesis stems from finding tractable
classes of stochastic processes for dynamic modeling of random probability meas-
ures. The applications in this respect are rich and include population genetics,
interacting particle systems, stochastic partial differential equations, statistical
physics, non-parametric Bayesian inference, and mathematical finance, in partic-
ular stochastic portfolio theory.

The common denominator of these areas is modeling of systems (evolving in
time) for which the spatial structure plays an essential role. For instance, in
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population genetics the spatial motion of the individuals, corresponding to some
Markov process on the underlying space E, is usually interpreted as the mutation
between genetic types, constituting the space E. Since a continuum of types is
natural (for several arguments in this direction see e.g. Ethier and Kurtz (1993)),
we are automatically led to an uncountably infinite underlying space E. The
way to deal with such a setting was pioneered by Fleming and Viot (1979) who
introduced what is now called the Fleming–Viot process which is the infinite di-
mensional analog of the Wright–Fisher diffusion. While in population genetics
the (random) distribution of the genetic types is the quantity of interest, in other
areas, like physics or finance, it is the distribution of diffusive fluids or capital
among companies with a “type space” that is usually Rd or R+ for nonnegative
capital. In general, dynamic modeling of random probability measures (beyond
finite dimensional ones having the same finite support at each time) clearly ne-
cessitates an infinite dimensional setup with an underlying space E containing
infinitely many points.

Our approach consists now in following step by step the construction provided
in the finite dimensional setting. In particular, we will again define a jump-
diffusion as a solution of a martingale problem, then show the (essential) equi-
valence between the positive maximum principle and the existence of solutions
of the martingale problem, and finally characterize the structure induced by this
property on linear operators.

The main object is thus again a linear operator, now denoted by L, whose
domain consists of polynomials on the space M1(E) of probability measures on
some locally compact underlying space E, endowed with the topology of weak
convergence. The choice of the notion of derivative and the induced polynomial
structure now becomes crucial. Our choice falls on the following natural notion
of derivative, well–known since the work of Fleming and Viot (1979): for p :
M(E)→ R, we say that p is differentiable at µ in direction δx if

∂xp(µ) := lim
ε→0

p(µ+ εδx)− p(µ)

ε
(2.1)

exists, and we write ∂p(µ) for the map x 7→ ∂xp(µ). Note that for p regular
enough, the map ν 7→ 〈∂p(µ), ν〉 coincides with the Fréchet derivative of p at
µ. This choice is in contrast with the notion of Lions’ derivative (see Lions
(2007-2008) for the original video-taped lectures and Cardaliaguet (2012) for
the corresponding transcriptions), which has often been used, for instance in
the context of mean-field games; see e.g. Carmona and Delarue (2017) and the
references given there. However, in the last part of the thesis we will illustrate that
the machinery we are going to present provides a compact and efficient method
to approach many different fields of application, see for example Section IV.5.3
and Section IV.5.4. This in particular shows that the derivative (2.1) is highly
tractable and flexible.

The polynomial structure induced by this notion of derivative is very simple:
a monomial of degree k consists of an expression of the form

〈g, νk〉 :=

∫
Ek
g(x1, . . . , xk)ν(dx1) · · · ν(dxk), (2.2)
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where g : Ek → R is a well–behaved symmetric continuous function and is referred
to as the coefficient of the monomial.

Having now fixed the notion of derivative and the corresponding polynomial
structure, we can define a probability measure-valued jump-diffusion as a solu-
tion of the martingale problem corresponding to L. As in the finite dimensional
setting, the positive maximum principle is essentially equivalent to the existence
of a corresponding jump-diffusion for all initial conditions, see Lemma III.3.5 and
Lemma III.3.6. The similarity continue in Theorem III.4.2, stating that an oper-
ator L satisfying the positive maximum principle is necessarily a Lévy type op-
erator, specified by a killing, drift, diffusion, and jump quadruplet (Γ, B,Q,N).
With this result we can thus conclude that the study of probability measure-
valued jump-diffusions can again be approached by studying the corresponding
quadruplet of parameters, completing the picture of the machinery that we are
going to use to tackle the infinite dimensional setting.

Next, in order to guarantee that an operator satisfies the positive maximum
principle, we need to dispose of (necessary) optimality conditions, namely, prop-
erties shared by all maps on M1(E) having a maximum at some point of the
domain. In the finite dimensional setting such optimality conditions are very
well studied, see for instance the classical Karush–Kuhn–Tucker conditions. In
the infinite dimensional setting, and in particular on the space of probability
measures, this is not the case. Theorem III.5.1 and Theorem III.5.3 provide the
necessary conditions to cover a wide class of generators, and in particular all the
examples presented in this thesis. It is interesting to observe that the condition
provided by the second theorem describes a behavior that cannot appear if the
underlying space (and thus in particular the support of the studied measures)
consists of finitely many points. As we explain in Section IV.5.1.4 this condi-
tion is however essential in some very fundamental examples, for instance the
probability measure-valued process δW for W denoting a brownian motion. The
results on this general approach to the infinite dimensional setting are presented
in Chapter III and will be published in Larsson and Svaluto-Ferro (2018).

The last, but not less important, unexploited knowledge gained from the unit
simplex regards the polynomial property of the generator. Our goal here is to
systematically characterize the class of probability measure-valued polynomial
diffusions, i.e. the class of probability measure-valued continuous jump-diffusions
whose generator maps a polynomial of measure argument (in sense of (2.2))
to a polynomial of measure argument of equal or lower degree. As in the finite
dimensional setting, this leads to a moment formula, which provides an expression
for the corresponding k-th moments in terms of a solution of a k-dimensional
linear partial (integro) differential equation. In other words, the measure-valued
Kolmogorov backward PIDE reduces in the case of probability measure-valued
polynomial diffusions and a polynomial terminal condition to a k-dimensional
linear PIDE.

Our systematic analysis automatically leads to Fleming–Viot type processes
(Fleming and Viot, 1979; Ethier and Kurtz, 1993) which are – as already men-
tioned above – in their standard form certainly the most prominent examples of
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probability measure-valued processes. Their popularity is in particular due to the
fact that their moments can be explicitly calculated by solving a certain system of
linear PDEs describing the evolution of their moment measures (see e.g. Dawson
and Hochberg (1982) or Dawson (1993), Section 2.8). This feature is also key
for the method of duality which has been widely applied in the study of infinite
particle systems (see e.g. Liggett (2012)).

The standard way to construct Fleming–Viot processes is as weak limits of
the empirical measures of certain particle systems, usually the Moran particle
process (see e.g. (Dawson, 1993, Section 2.5)). This can be achieved either by
adopting semigroup methods as in (Dawson, 1993, Section 2), or via martin-
gale problem approaches as for instance in Ethier and Kurtz (1987, 1993). As
explained before, our approach relies also on the martingale problem however
without approximations but rather by directly characterizing the positive max-
imum principle of the respective generators. This in turn leads, as in the finite
dimensional case, to a full characterization of probability measure-valued polyno-
mial diffusions when the domain of the generator is assumed to be the space of all
polynomials, see Theorem IV.3.10. The class which we obtain in this case is an
extension of the so-called Fleming–Viot process with weighted sampling which is
mentioned as an example in Dawson (1993), Section 5.7.8. Indeed, the constant
sampling–replacement rate of the standard Fleming–Viot process is modified to
allow for a type dependent rate.

As our method to prove existence of solutions of the martingale problem
differs from the ones in the literature, the same is true also for our approach to
duality and the computation of moment. Indeed, instead of considering function
valued stochastic dual processes (see e.g. Dawson and Hochberg (1982)), our
dual processes are solutions of deterministic PIDEs. Let us be more precise on
this point. Observe that for each polynomial p of degree k there is a coefficient
g : Ek → R such that p(ν) = 〈g, νk〉 for all ν ∈M1(E) (see Corollary III.2.6; in the
finite dimensional setting this coincides with the property that each polynomial on
the unit simplex has a homogeneous representation). This leads to the definition
of the k-th dual operator Lk : D → C(Ek) of L which is uniquely determined by

Lp(ν) = 〈Lkg, νk〉, ν ∈M1(E), (2.3)

for every p(ν) = 〈g, νk〉 with g ∈ D⊗k and D being a suitable dense subspace
of C(E). Theorem IV.3.2 then states that if L is sufficiently regular, then the
conditional expectation of the k-moments of Xt is uniquely determined by the
solution of the PIDE corresponding to Lk. Mathematically, given g ∈ D⊗k, a
solution u : R+ × Ek → R of

∂u

∂t
(t, x) = Lku(t, · )(x), (t, x) ∈ R+ × Ek,

u(0, x) = g(x), x ∈ Ek,
(2.4)

and X being a polynomial jump-diffusion corresponding to L, the moment for-
mula

E
[
〈g,Xk

T 〉 | Ft
]

= 〈u(T − t, ·), Xk
t 〉 (2.5)
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holds true for all T ≥ t. Moreover, if the moment formula holds for a sufficiently
large set of coefficients g, then the law of X is uniquely determined by L and ν;
see Corollary IV.3.4.

Formula (2.5) shows on the one hand the inherent tractability of probability
measure-valued polynomial processes, in the sense that all moments can be com-
puted by solving a linear PIDE. In the case of a finite state space this boils down
to the system of ODEs known from the theory of finite dimensional polynomial
diffusions. Even in the present case, when Lk is itself a polynomial operator, we
can express the right hand side of (2.5) via matrix exponentials. On the other
hand one can also turn this perspective around and view (2.5) as a stochastic
representation of PIDEs of type (2.4) whose solutions can in turn be obtained
by simulating X and applying Monte Carlo techniques. This is particularly ap-
pealing in high dimensions. See Henry-Labordère et al. (2014) for recent work
in this direction. New numerical schemes for solving PIDEs thus naturally arise
from the theory of probability measure-valued polynomial processes, through we
do not pursue this idea in this thesis.

Now that the power of the moment formula has been explained, we can come
back to the meaning of “sufficiently regular polynomial operator L”. As in the
finite dimensional setting, if the domain of L consists in the space of all poly-
nomials, then the positive maximum principle is enough to guarantee that the
moment formula holds true for all g ∈ D⊗k, see Theorem IV.3.10. This in partic-
ular implies that the corresponding martingale problem is well–posed.

It turns out that restricting the domain of L to the subspace of polynomials
whose coefficients are more regular allows for an enlargement of the class of lin-
ear operators considered by the theory. For instance, one can see by (2.3) that if
we require the coefficients g to be sufficiently differentiable, then the operator Lk
can be a differential (and thus in particular unbounded) operator. This reflects in
an enlargement of the class of probability measure-valued polynomial diffusions
covered by the theory, including for instance the probability measure-valued pro-
cess δW for W denoting a brownian motion. Theorem IV.3.7 provides a very
general specification for L guaranteeing that it satisfies the positive maximum
principle, and thus that the corresponding martingale problem has a solution for
each initial condition. As one can imagine, reducing the amount of test functions
for which the martingale problem has to hold, translates into an increase in dif-
ficulty of proving uniqueness, and thus in particular the conditions under which
the moment formula holds true. We will however show, see e.g. Remark IV.3.3 or
Example IV.4.4, that under simple conditions the moment formula still holds true
for all g ∈ D⊗k and the corresponding martingale problem is thus still well–posed.

The findings about probability measure-valued polynomial jump-diffusions are
presented in Chapter IV and will be published in Cuchiero et al. (2018b).

The last part of the thesis is devoted to applications and examples of poly-
nomial and non-polynomial probability measure-valued jump-diffusions. In Sec-
tion IV.4 we investigate polynomial diffusions for particular choices of state–
spaces. The goal of Section IV.5 is two-fold. On the one hand we present many
different examples to explain how the various parameters influence the corres-
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ponding probability measure-valued jump-diffusion (see Sections IV.5.1–IV.5.2).
On the other hand we illustrate the flexibility of the proposed machinery and how
it can be used to study a number of different problems including in particular
particle systems with and without common noise and mean fields interactions
(see Sections IV.5.3–IV.5.4).
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Chapter II

Polynomial jump–diffusions on the
unit simplex

As explained in the introduction, tractable families of Markov processes on the
unit simplex, featuring both diffusion and jump components, are challenging to
construct, yet play an important role in a host of applications. The present
chapter addresses this challenge by specifying Markovian jump-diffusions on the
unit simplex that are polynomial, meaning that the (extended) generator maps
any polynomial to a polynomial of the same or lower degree.

Polynomial processes were introduced in Cuchiero et al. (2012), see also Fili-
pović and Larsson (2016), and are inherently tractable. Indeed, any polynomial
jump-diffusion

(i) is an Itô semimartingale, meaning that its semimartingale characteristics
are absolutely continuous with respect to Lebesgue measure. This justifies
the name jump-diffusion in the sense of Jacod and Shiryaev (2003, Chapter
III.2);

(ii) admits explicit expressions for all moments in terms of matrix exponentials.

To analyze existence, uniqueness, and parametrization for polynomial jump–
diffusions on the unit simplex, the technical difficulties associated with the dif-
fusion case remain, arising from the fact that the unit simplex is a non-smooth
stratified space (Epstein and Mazzeo, 2013, Chapter 1), and that the diffusion
coefficient degenerates at the boundary. This complicates the analysis, and pre-
cludes the use of standard results regarding existence and regularity of solutions
to the corresponding Kolmogorov backward equations. Additionally, in the jump
case, the drift and diffusion interact with the (small) jumps orthogonal to the
boundary, which leads to further mathematical challenges.

Allowing for jumps is not only of theoretical interest, but has practical relev-
ance as well. A concrete illustration of this fact comes from stochastic portfolio
theory (Fernholz, 2002; Fernholz and Karatzas, 2009), where one is interested
in the market weights Xi = Si/(S1 + · · · + Sd) computed from the market cap-
italizations Si, i = 1, . . . , d, of the constituents of a large stock index such as
the S&P 500 or the MSCI World Index. The time evolution of the vector of

11
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Figure 1: Market weights of the MSCI
World Index, August 2006 – October 2007

Figure 2: Example of market weights
which exhibit jumps

market weights is thus a stochastic process on the unit simplex (see Figure 1,
reprinted from Cuchiero et al. (2016)). To model the market weight process,
polynomial diffusion models without jumps have been found capable of matching
certain empirically observed features such as typical shape and fluctuations of
capital distribution curves (Fernholz and Karatzas, 2005; Cuchiero, 2017; Cuch-
iero et al., 2016) when calibrated to jump-cleaned data. However, the absence of
jumps is a deficiency of these models. Indeed, an inspection of market data shows
that jumps do occur and are an important feature of the dynamics of the market
weights. This is clearly visible in Figure 2 (reprinted from Cuchiero et al. (2016))
where, for illustrative purposes, three companies have been extracted from the
MSCI World Index, whose market weights exhibit jumps in the period from Au-
gust 2006 to October 2007. This application from stochastic portfolio theory
underlines the importance of specifying jump structures within the polynomial
framework. We elaborate on this in Section 7.1.

Another natural application of the results developed in this chapter arises in
default risk modeling following the framework of Jarrow and Turnbull (1998) and
Krabichler and Teichmann (2017). One is then interested in modeling a [0, 1]-
valued stochastic recovery rate which remains at level 1 for extended periods of
time, while occasionally performing excursions away from 1. Polynomial jump-
diffusion specifications turn out to be capable of producing such behavior, while
at the same time maintaining tractability. Further details are given in Section 7.2.

The chapter is organized as follows. Section 1 summarizes some notation used
throughout the chapter. Section 2 is concerned with polynomial operators on
general compact state spaces and their associated martingale problems. Section
3 introduces affine jump sizes. In Section 4 we classify all polynomial jump-
diffusions on the unit interval with affine jump sizes. It is followed by Section 5
which deals with examples. Section 6 treats the simplex in arbitrary dimension.
Finally, Section 7 discusses applications in stochastic portfolio theory and default
risk modeling. Most proofs are gathered in appendices.
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1 Preliminaries

We denote by N the natural numbers, N0 := N∪{0} the nonnegative integers, and
R+ the nonnegative reals. The symbols Rd×d, Sd, and Sd+ denote the d × d real,
real symmetric, and real symmetric positive semi-definite matrices, respectively.
For any subset E ⊆ Rd, we let as usual C(E) denote the space of continuous
functions on E. For any sufficiently differentiable function f we write ∇f for
the gradient of f and ∇2f for the Hessian of f . Next, ei stands for the i-th
canonical unit vector, |v| denotes the Euclidean norm of the vector v ∈ Rd, δij is
the Kronecker delta, δx is the Dirac mass at x, and 1 is the vector whose entries
are all equal to 1. We denote by Pol(Rd) the vector space of all polynomials on
Rd and Poln(Rd) the subspace consisting of polynomials of degree at most n. A
polynomial on E is the restriction p = q|E to E of a polynomial q ∈ Pol(Rd). Its
degree is given by

deg p = min{deg q : p = q|E, q ∈ Pol(Rd)}.

We then let Pol(E) denote the vector space of polynomials on E, and write
Poln(E) for those elements whose degree is at most n. We frequently use multi-
index notation so that, for instance, xk = xk1

1 · · ·xkdd for k = (k1, . . . , kd) ∈ Nd
0.

2 Polynomial operators on compact state spaces

Let E ⊆ Rd be a compact subset of Rd that will play the role of the state space
for a Markov process. Later we will specialize to the case where E is the unit
interval or the unit simplex. In this chapter we are concerned with operators of the
following type, along with solutions to the corresponding martingale problems.

Definition 2.1. A linear operator G : Pol(E)→ C(E) is called polynomial if

G
(
Poln(E)

)
⊆ Poln(E) for all n ∈ N0.

Given a linear operator G : Pol(E) → C(E) and a probability distribution ρ
on E, a solution to the martingale problem for (G, ρ) is a càdlàg process X with
values in E defined on some probability space (Ω,F ,P) such that P(X0 ∈ · ) = ρ
and the process (N f

t )t≥0 given by

N f
t := f(Xt)−

∫ t

0

Gf(Xs)ds (2.1)

is a martingale with respect to the filtration FXt = σ(Xs : s ≤ t) for every
f ∈ Pol(E). We say that the martingale problem for G is well–posed if there exists
a unique (in the sense of probability law) solution to the martingale problem for
(G, ρ) for any initial distribution ρ on E. If G is polynomial, then X is called a
polynomial jump-diffusion; this terminology is justified by Theorem 2.8 and the
subsequent discussion.
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2.1 The positive maximum principle

Definition 2.2. A linear operator G : Pol(E) → C(E) satisfies the positive
maximum principle if Gf(x0) ≤ 0 holds for any f ∈ Pol(E) and x0 ∈ E with
supx∈E f(x) = f(x0) ≥ 0.

Roughly speaking, the positive maximum principle is equivalent to the exist-
ence of solutions to the martingale problem. A typical result in this direction is
Theorem 4.5.4 in Ethier and Kurtz (2005). For polynomial operators on compact
state spaces more is true: we also get uniqueness.

Theorem 2.3. Let G : Pol(E)→ C(E) be a polynomial operator. The martingale
problem for G is well–posed if and only if G1 = 0 and G satisfies the positive
maximum principle.

Proof. The existence of a solution to the martingale problem for (G, ρ) for any
initial distribution ρ on E, is guaranteed by Theorem 4.5.4 and Remark 4.5.5 in
Ethier and Kurtz (2005). To prove uniqueness in law, by compactness of E it
is enough to prove that the marginal mixed moments of any solution X to the
martingale problem for (G, ρ) are uniquely determined by G and ρ; see Lemma 4.1
and Theorem 4.2 in Filipović and Larsson (2016). To this end, fix any n ∈ N,
let h1, . . . , hN be a basis of Poln(E), and set H = (h1, . . . , hN)>. The operator G
admits a unique matrix representation G ∈ RN×N with respect to this basis, so
that

Gp(x) = H(x)>G~p,

where p ∈ Poln(E) has coordinate representation ~p ∈ RN , that is, p(x) = H(x)~p;
cf. Section 3 in Filipović and Larsson (2016) and the proof of Theorem 2.7 in
Cuchiero et al. (2012). Following the proof of Theorem 3.1 in Filipović and
Larsson (2016) we use the definition of a solution to the martingale problem,
linearity of expectation and integration, and the fact that polynomials on the
compact set E are bounded, to obtain

~p>E[H(XT )|FXt ] = E[p(XT )|FXt ] = p(Xt) + E
[∫ T

t

Gp(Xs)ds|FXt
]

= ~p>H(Xt) + ~p>G>
∫ T

t

E[H(Xs)|FXt ]ds

for any t ≤ T and any ~p ∈ RN . For each fixed t this yields a linear integral equa-
tion for E[H(XT )|FXt ], whose unique solution is E[H(XT )|FXt ] = e(T−t)G>H(Xt).
Consequently,

E[p(XT )|FXt ] = ~p>E[H(XT )|FXt ] = H(Xt)
>e(T−t)G~p, (2.2)

which in particular shows that all marginal mixed moments are uniquely determ-
ined by G and ρ, as required.

For the converse implication, observe that since every solution to the martin-
gale problem for (G, ρ) is conservative, the condition G1 = 0 follows directly by
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the martingale property of (2.1) with f = 1. The necessity of the positive max-
imum principle is standard; see for instance the proof of Lemma 2.3 in Filipović
and Larsson (2016).

Remark 2.4. Observe that a solution to the martingale problem is conservative
by definition since it is supposed to take values in E. This is reflected by the
condition G1 = 0 of Theorem 2.3 and in the definition of Lévy type operator
in the next section. Let us remark that the condition in Theorem 2.3, namely
that the positive maximum principle and G1 = 0 are satisfied, is equivalent to
the maximum principle, that is, Gf(x0) ≤ 0 holds for any f ∈ Pol(E) and any
x0 ∈ E with supx∈E f(x) = f(x0).

Remark 2.5. While existence of a solution to the martingale problem is equival-
ent to the maximum principle in very general settings, it is remarkable that in
the case of polynomial operators on compact state spaces uniqueness also follows.
Indeed, without the assumption that G is polynomial, it is well-known that the
maximum principle is not enough to guarantee uniqueness. For example, with
E = [0, 1] and Gf(x) =

√
x(1 − x)f ′(x), the functions Xt = (et − 1)2/(et + 1)2

and Xt ≡ 0 are two different solutions to the martingale problem for (G, δ0).
In the polynomial case, well–posedness is deduced from uniqueness of moments,
which is a consequence of (2.2). Let us emphasize that (2.2) gives more than
mere uniqueness: it gives an explicit formula for computing the moments via a
matrix exponential. This tractability is crucial in applications, and was used as a
defining property of this class of processes in Cuchiero et al. (2012).

2.2 Lévy type representation

Definition 2.6. An operator G : Pol(E)→ C(E) is said to be of Lévy type if it
can be represented as

Gf(x) =
1

2
Tr
(
a(x)∇2f(x)

)
+ b(x)>∇f(x)

+

∫ (
f(x+ ξ)− f(x)− ξ>∇f(x)

)
ν(x, dξ),

(2.3)

where the right-hand side can be computed using an arbitrary representative of f ,
and the triplet (a, b, ν) consists of bounded measurable functions a : E → Sd+ and
b : E → Rd, and a kernel ν(x, dξ) from E into Rd satisfying

sup
x∈E

∫
|ξ|2ν(x, dξ) <∞, ν(x, {0}) = 0, ν(x, (E − x)c) = 0 for all x ∈ E.

(2.4)

Polynomial operators satisfying the positive maximum principle are always
Lévy type operators, as is shown in Theorem 2.8 below. This parallels known
results regarding operators acting on smooth and compactly supported functions,
see Courrège (1965) or Böttcher et al. (2013, Theorem 2.21) for Feller generators,
and also Hoh (1998). A crucial ingredient in the proof of Theorem 2.8 is the
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classical Riesz-Haviland theorem, which we now state. A proof can be found in
Haviland (1935) and (1936), or e.g. Marshall (2008).

Lemma 2.7 (Riesz-Haviland). Let K ⊆ Rd be compact, and consider a linear
functional W : Pol(K)→ R. Then the following conditions are equivalent.

(i) W(f) =
∫
f(ξ)µ(dξ) for all f ∈ Pol(K) and a Borel measure µ concentrated

on K.

(ii) W(f) ≥ 0 for all f ∈ Pol(K) such that f ≥ 0 on E.

We now state Theorem 2.8 regarding the Lévy type representation of operators
satisfying the positive maximum principle. The proof is given in Section A.

Theorem 2.8. Consider a linear operator G : Pol(E)→ C(E). If G1 = 0 and G
satisfies the positive maximum principle, then G is a Lévy type operator.

Suppose G : Pol(E)→ C(E) is a linear operator with G1 = 0 that satisfies the
positive maximum principle, and let X be a solution to the associated martingale
problem. ThenX is a semimartingale, as can be seen by taking f(x) = xi in (2.1).
We claim that its diffusion, drift, and jump characteristics (with the identity map
as truncation function) are given by∫ t

0

a(Xs)ds,

∫ t

0

b(Xs)ds, ν(Xt−, dξ)dt,

where (a, b, ν) is the triplet of the Lévy type representation (2.3). To see this,
first note that G can be extended to C2 functions on E using (2.3). Then, an
approximation argument shows that N f in (2.1) remains a martingale for such
functions f . The claimed form of the characteristics of X now follows from The-
orem II.2.42 in Jacod and Shiryaev (2003); see also Proposition 2.12 in Cuchiero
et al. (2012). This justifies referring to X as a polynomial jump-diffusion. Since
the martingale problem is well–posed by Theorem 2.3, such a polynomial jump-
diffusion is a Markov process, and hence a polynomial process in the sense of
Cuchiero et al. (2012).

The following lemma provides necessary and sufficient conditions on the triplet
(a, b, ν) in order that G be polynomial.

Lemma 2.9. Let G : Pol(E)→ C(E) be a Lévy type operator with triplet (a, b, ν).
Then G is polynomial if and only if

bi ∈ Pol1(E), aij +

∫
ξiξjν( · , dξ) ∈ Pol2(E),

∫
ξkν( · , dξ) ∈ Pol|k|(E)

for all i, j ∈ {1, . . . , d} and |k| ≥ 3.

Proof. This result is well–known, see for instance Cuchiero et al. (2012), and the
proof is simple. Indeed, direct computation yields 0 = G(1)(x), bi(x) = G(e>i ( · −
x))(x), aij(x) +

∫
ξiξjν(x, dξ) = G(e>i ( · − x)e>j ( · − x))(x), and

∫
ξkν(x, dξ) =

G(( · −x)k)(x) for |k| ≥ 3. Thus, if G is polynomial, one can show that the triplet
satisfies the stated conditions. The converse implication is immediate from the
observation that deg(pq) ≤ deg(p) + deg(q) for any p, q ∈ Pol(E).
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2.3 Conic combinations of polynomial operators

Due to Theorem 2.3 and Theorem 2.8, every member of the set

K := {G : Pol(E)→ C(E) : G is polynomial
and its martingale problem is well–posed}

is of Lévy type (2.3). The set K also possesses the following stability properties,
which are useful for constructing examples of polynomial jump-diffusions; we do
this in Section 5. The proofs of the following two results are given in Section B.

Theorem 2.10. The set K is a convex cone closed under pointwise convergence,
in the sense that if Gn ∈ K for n ∈ N and Gf(x) := limn→∞ Gnf(x) exists and is
finite for all f ∈ Pol(E) and x ∈ E, then G ∈ K.

If an operator G is the limit of Gn as in Theorem 2.10, then its triplet (a, b, ν)
can be expressed in terms of the triplets (an, bn, νn) of the operators Gn.

Lemma 2.11. Suppose that Gn ∈ K, and let an, bn, and νn(x, dξ) be the coeffi-
cients of its Lévy type representation, for all n ∈ N. Then

Gf(x) := lim
n→∞

Gnf(x)

exists and is finite for all f ∈ Pol(E) and x ∈ E if and only if the coefficients

bni , anij +

∫
ξiξjν

n( · , dξ),
∫
ξkνn( · , dξ)

converge pointwise as n → ∞ for all i, j ∈ {1, . . . , d} and |k| ≥ 3. In this case
the triplet (a, b, ν) of the Lévy type representation of G is given by

bi(x) = lim
n→∞

bni (x), aij(x) = lim
n→∞

(
anij(x) +

∫
ξiξjν

n(x, dξ)

)
−
∫
ξiξjν(x, dξ),

for all x ∈ E and i, j ∈ {1, . . . , d}, where the kernel ν(x, dξ) is uniquely determ-
ined by ∫

ξkν(x, dξ) = lim
n→∞

∫
ξkνn(x, dξ), |k| ≥ 3.

Remark 2.12. The diffusion coefficient a(x) is the limit of an(x) if and only if
the weak limit of |ξ|2νn(x, dξ) exists and has no mass in zero. If the weak limit
does have mass in zero, then this mass is equal to the difference between Tr(a(x))
and the limit of Tr(an(x)).

3 Affine and polynomial jump sizes

Throughout this section we continue to consider a compact state space E ⊆ Rd.
In the absence of jumps it is relatively straightforward to explicitly write down
a complete parametrization of polynomial diffusions on the unit interval or the
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unit simplex; see Filipović and Larsson (2016). With jumps this is no longer the
case. Indeed, examples in Section 5 illustrate the diversity of behavior that is
possible even on the simplest nontrivial state space [0, 1]. Therefore, in order to
make progress we will restrict attention to specifications whose jumps are of the
following state-dependent type. Consider a jump kernel ν(x, dξ) from E into Rd

satisfying (2.4).

Definition 3.1. The jump kernel ν(x, dξ) is said to have affine jump sizes if it
is of the form

ν(x,A) = λ(x)

∫
1A\{0}(γ(x, y))µ(dy) (3.1)

where λ : E → R+ is a nonnegative measurable function, γ = (γ1, . . . , γd) is of
the affine form

γi(x, y) = y0
i + y1

i x1 + · · ·+ ydi xd, (3.2)

and µ(dy) is a measure on Rd(d+1) satisfying
∫

(|y|2 ∧ 1)µ(dy) < ∞. Here we
use the notation y = (yji : i = 1, . . . , d, j = 0, . . . , d) ∈ Rd(d+1) for the vector of
coefficients appearing in (3.2).

Remark 3.2. By (2.4) and compactness of E, the measure µ(dy) can always be
chosen compactly supported. In this case, all its moments of order at least two
are finite.

Intuitively, (3.1) means that the conditional distribution of the jump ∆Xt,
given that it is nonzero and the location immediately before the jump is Xt− =
x, is the same as the distribution of γ(x, y) under µ(dy); at least when µ(dy)
is a probability measure. The jump intensity is state-dependent and given by
ν(x,Rd) = λ(x)µ({γ(x, · ) 6= 0}), which may or may not be finite.

Jump kernels with affine jump sizes can be used as building blocks to obtain a
large class of specifications by means of Theorem 2.10. The jump kernels obtained
in this way are of the form

ν(x, dξ) =
∑
k

νk(x, dξ),

where each jump kernel νk(x, dξ) has affine jump sizes. We refer to such specific-
ations as having mixed affine jump sizes.

The affine form of γ(x, y) is a particular case of the seemingly more general
situation where γ(x, y) is allowed to depend polynomially on the current state x.
However, this would not actually lead to an increase in generality in the context
of polynomial jump-diffusions. Indeed, at least in the case when E has nonempty
relative interior in its affine hull, the following result shows that whenever jump
sizes are polynomial, they are necessarily affine. The proof is given in Section C.

Theorem 3.3. Assume that E has nonempty relative interior in its affine hull.
Let ν(x, dξ) be a jump kernel from E into Rd of the form (3.1) and satisfying
(2.4), where λ is nonnegative and measurable, γ is given by

γi(x, y) =
∑
|k|≤K

yikx
k
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for some K ∈ N0, and µ(dy) is a measure on (Rd)dim PolK(Rd) with
∫

(|y|2 ∧
1)µ(dy) <∞. Assume also that ν(x, dξ) satisfies∫

ξkν( · , dξ) ∈ Pol|k|(E), |k| ≥ 3, (3.3)

and that E has nonempty interior. Then one can choose µ(dy) so that yik = 0
a.e. for all i = 1, . . . , d and all |k| ≥ 2. That is, ν(x, dξ) has affine jump sizes.

Remark 3.4. Note that if ν(x, dξ) has affine jump sizes and satisfies (3.3), then
the function λ is can be expressed as the ratio of two polynomials of degree at
most four,

λ(x) =

∫
|ξ|4ν(x, dξ)∫
|γ(x, y)|4µ(dy)

,

at points x where the denominator is nonzero. At points x where the denominator
vanishes, we have γ(x, y) = 0 for µ-a.e. y, whence ν(x, dξ) = 0 due to (3.1). Thus
we may always take λ(x) = 0 at such points.

Remark 3.5. Jump specifications of the form (3.1) are convenient from the point
of view of representing solutions X to the martingale problem for G as solutions
to stochastic differential equations driven by a Brownian motion and a Poisson
random measure. Indeed, such a stochastic differential equation has the following
form:

Xt = X0 +

∫ t

0

b(Xs)ds+

∫ t

0

√
a(Xs)dWs

+

∫ t

0

∫ λ(Xs−)

0

∫
γ(Xs−, y) (N(ds, du, dy)− dsduµ(dy)) ,

where
√ · denotes the matrix square root, W is a d-dimensional Brownian motion

and N(ds, du, dy) is a Poisson random measure on R2
+× supp(µ) whose intensity

measure is dsduµ(dy). See also, for instance, Dawson and Li (2006, Section 5),
regarding analogous representations of affine processes. Note that a representation
of the form (3.1) always exists, even with λ ≡ 1, if one allows y to lie a suitable
Blackwell space; see Jacod and Shiryaev (2003, Remark III.2.28). Thus, in view
of Theorem 3.3, our restriction to affine jump sizes in the sense of Definition 3.1
is essentially equivalent to a polynomial dependence of γ(x, y) on x, somewhat
generalized by allowing a state dependent intensity λ(x). Note also that once
γ(x, y) depends polynomially on x, there is no loss of generality to assume that y
lies in an Euclidean space.

4 The unit interval

Throughout this section we consider the state space

E := [0, 1].
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Our goal is to characterize all polynomial jump-diffusions on E with affine jump
sizes. The general existence and uniqueness result Theorem 2.3, in conjunction
with Lemma 2.9, leads to the following refinement of Theorem 2.8, characterizing
those triplets (a, b, ν) that correspond to polynomial jump-diffusions. The proof
is given in Section D.

Lemma 4.1. A linear operator G : Pol(E)→ C(E) is polynomial and its martin-
gale problem is well–posed if and only if it is of form (2.3) and the corresponding
triplet (a, b, ν) satisfies

(i) a ≥ 0 and ν(x, dξ) satisfies (2.4),

(ii) a(0) = a(1) = 0, b(0)−
∫
ξν(0, dξ) ≥ 0, and b(1)−

∫
ξν(1, dξ) ≤ 0,

(iii) b ∈ Pol1(E), a+
∫
ξ2ν( · , dξ) ∈ Pol2(E), and

∫
ξnν( · , dξ) ∈ Poln(E) for all

n ≥ 3.

Observe that condition (i) guarantees that G is of Lévy Type.

Remark 4.2. Condition (ii) implies that
∫
|ξ|ν(x, dξ) < ∞ for x ∈ {0, 1}. In-

tuitively, this means that the solution to the martingale problem for G has a
purely discontinuous martingale part which is necessarily of finite variation on
the boundary of E.

We now turn to the setting of affine jump sizes in the sense of Definition 3.1.
We thus consider Lévy type operators G of the form

Gf(x) =
1

2
a(x)f ′′(x) + b(x)f ′(x)

+ λ(x)

∫
(f(x+ γ(x, y))− f(x)− γ(x, y)f ′(x))µ(dy),

(4.1)

where λ is nonnegative and measurable, and γ(x, y) is affine in x. The main result
of this section, Theorem 4.3 below, shows that the generator must be of one of
five mutually exclusive types, which we now describe.

Type 0. Let a(x) = Ax(1−x), b(x) = κ(θ−x), where A ∈ R+, κ ∈ R+, and θ ∈
[0, 1], and set λ = 0. Then G is a polynomial operator whose martingale problem
is well–posed. The solution X corresponds simply to the well–known Jacobi
diffusion, which is the most general polynomial diffusion on the unit interval.

Type 1. Let a(x) = Ax(1− x), b(x) = κ(θ − x), and λ(x) = 1, where A ∈ R+,
κ ∈ R+, and θ ∈ [0, 1]. Furthermore, writing y = (y1, y2) we define γ(x, y) =
y1(−x)+y2(1−x) and let µ be a nonzero measure on [0, 1]2\{0}. If the boundary
conditions

κθ ≥
∫
y2µ(dy) and κ(1− θ) ≥

∫
y1µ(dy)

are satisfied, then G is a polynomial operator whose martingale problem is well–
posed.
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Note that the boundary conditions imply that
∫
|ξ|ν(x, dξ) ≤ 2

∫
|y|µ(dy)

is bounded. Thus, the resulting process behaves like a Jacobi diffusion with
summable jumps. The arrival intensity of the jumps is ν(x,E − x) = µ({y :
γ(x, y) 6= 0}), which may or may not be finite. Figure 3 illustrates the form of a,
λ and the support γ(x, y) under µ.

Type 2. Let a(x) = Ax(1 − x), b(x) = κ(θ − x), and λ(x) = 1
x
(1 + qx)1{x6=0}

where A ∈ R+, κ ∈ R+, θ ∈ [0, 1], and q ∈ [−1,∞). Furthermore, define
γ(x, y) = −xy and let µ be a nonzero square-integrable measure on (0, 1]. Notice
that y is scalar. If the boundary condition

κ(1− θ) ≥ (1 + q)

∫
yµ(dy)

is satisfied, then G is a polynomial operator whose martingale problem is well–
posed.

The boundary condition implies, if q > −1, that∫
|ξ|ν(x, dξ) ≤ (1 + |q|)

∫
yµ(dy)

is bounded. Thus, in this case, the solution X to the martingale problem for G
has summable jumps. If q = −1, the jumps need not be summable. The arrival
intensity of the jumps is ν(x,E − x) = λ(x)µ((0, 1]) and hence, even if µ is a
finite measure, the jump intensity is unbounded around x = 0. Moreover, due to
the form of γ(x, y), X can only jump to the left, and since ν(0, E) = 0, X cannot
leave x = 0 by means of a jump. Figure 4 illustrates the form of a, λ and the
support γ(x, y) under µ.

By reflecting the state space around the point 1/2, we obtain a similar struc-
ture which we also classify as Type 2, where now the jump intensity is un-
bounded around x = 1. The diffusion and drift coefficients remain as before,
while λ(x) = 1

1−x(1 + q(1 − x))1{x6=1} for some q ∈ [−1,∞), the jump sizes are
γ(x, y) = (1 − x)y, and µ is a nonzero square-integrable measure on (0, 1] as
before. The boundary condition becomes κθ ≥ (1 + q)

∫
yµ(dy).

Type 3. Let x∗ ∈ (0, 1); this will be a “no-jump” point. Let b(x) = κ(θ − x)
and set

λ(x) =
q0 + q1x+ q2x

2

(x− x∗)2
1{x 6=x∗},

where κ ∈ R+, θ ∈ [0, 1], and q0, q1, q2 are real numbers such that the numerator
of λ is nonnegative on E without zeros at x∗. Furthermore, define γ(x, y) = −(x−
x∗)y, and let µ be a nonzero square-integrable measure on (0, (x∗ ∨ (1− x∗))−1].
Finally, let a(x) = Ax(1− x) + aν1{x=x∗} where

aν =
(
q0 + q1x

∗ + q2(x∗)2
) ∫

y2µ(dy).
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If the boundary conditions

κθ ≥ q0

x∗

∫
yµ(dy) and κ(1− θ) ≥ q0 + q1 + q2

1− x∗
∫
yµ(dy)

are satisfied, then G is a polynomial operator whose martingale problem is well–
posed.

If q0 +q1x+q2x
2 = Lx(1−x) for some constant L ∈ R+, the solution X to the

martingale problem for G may have non-summable jumps. If the numerator of
λ(x) is not of this form, then the boundary conditions imply thatX has summable
jumps. The arrival intensity of the jumps is

ν(x,E − x) = λ(x)µ

((
0,

1

x∗
∧ 1

1− x∗
])

.

As a result, even if µ is a finite measure, the jump intensity has a pole of order two
at x = x∗, which results in a contribution of size aν to the diffusion coefficient.
Moreover, due to the form of γ(x, y), the jumps of X are always in the direction
of the “no-jump” point x∗. Although the jumps may overshoot x∗, they always
serve to reduce the distance to x∗. In particular, since ν(x∗, E − x∗) = 0, X
cannot leave x = x∗ by means of a jump. Figure 5 illustrates the form of a, λ
and the support γ(x, y) under µ.

Type 4. Suppose α ∈ C\R is a non-real complex number such that |2α−1| < 1
and let µ be a nonzero square-integrable measure on [0, 1]× [0, 1] such that∫ (

y1(−α) + y2(1− α)
)n
µ(dy) = 0, n ≥ 2, (4.2)

and
∫
y1µ(dy) =

∫
y2µ(dy) =∞. Let b(x) = κ(θ − x) and set

λ(x) =
Lx(1− x)

(x− α)(x− α)
,

where κ ∈ R+, θ ∈ [0, 1], and L > 0. Furthermore, define γ(x, y) = y1(−x) +
y2(1 − x) and let a(x) = Ax(1 − x) for some A ∈ R+. Then G is a polynomial
operator whose martingale problem is well–posed.

Having described five types of processes which are polynomial jump-diffusions
due to the conditions of Lemma 4.1, we are now ready to state the converse result,
namely that all polynomial jump-diffusions on [0, 1] with affine jump sizes are
necessarily of one of these types. The proof is given in Section D.

Theorem 4.3. Let G be a polynomial operator whose martingale problem is well–
posed. If the associated jump kernel has affine jump sizes, then G necessarily
belongs to one of the Types 0-4.

Remark 4.4. Let us end this section with some remarks regarding Type 4. First,
note that

∫
y1µ(dy) =

∫
y2µ(dy) = ∞ implies that µ(dy) cannot be a product
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measure since in this case
∫
y1y2µ(dy) would be infinite too, which however con-

tradicts square integrability. Second, after passing to polar coordinates (r, ϕ),
condition (4.2) becomes∫

[0,π]×R+

rneinϕµα(dϕ, dr) = 0, n ≥ 2, (4.3)

where µα is the compactly supported measure given by

µα(A) :=

∫
1A

(
Arg

(
y1(−α) + y2(1− α)

)
,
∣∣y1(−α) + y2(1− α)

∣∣)µ(dy)

for all measurable subsets A ⊆ [0, π] × R+. It can then be shown that r and ϕ
cannot be independent, i.e., µα cannot be a product measure. These observations
indicates that natural attempts to find combinations of α and µ satisfying (4.2) do
not work. In fact, it is unknown to us what a potential example of Type 4 might
look like. Note also that Type 4 is distinct from all other types in the following
respect. For Types 1–3, λγn( · , y) is a polynomial on E (outside the “no-jump”
point) of degree n ≥ 2 for all y ∈ supp(µ), whereas for Type 4 this property holds
true only for the integrated quantity λ

∫
γ( · , y)nµ(dy).

5 Examples of polynomial operators on the unit
interval

In this section we present a number of examples that illustrate the diverse beha-
vior of polynomial jump-diffusions on [0, 1]. While the diffusion case is simple –
the Jacobi diffusions (Type 0) are the only possibilities – the complexity increases
significantly in the presence of jumps. For instance, in Example 5.5 we obtain
jump intensities with a countable number of poles in the state space.

5.1 Examples with affine jump sizes

Example 5.1. We start with a well–known example of a polynomial jump-dif-
fusion on [0, 1]; see Cuchiero et al. (2012, Example 3.5). Consider the Jacobi
process, which is the solution of the stochastic differential equation

dXt = κ0(θ0 −Xt)dt+ σ
√
Xt(1−Xt)dWt, X0 = x0 ∈ [0, 1],

where θ0 ∈ [0, 1] and κ0, σ > 0. This process can also be regarded as the unique
solution to the martingale problem for (G, δx0), with the Type 0 operator

Gf(x) :=
1

2
σ2x(1− x)f ′′(x) + κ0(θ0 − x)f ′(x).

This example can be extended by adding jumps, where the jump times correspond
to those of a Poisson process with intensity λ and the jump size is a function of
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Figure 3: A representation of Type 1, where λ(x) = 1 (in blue), a is a polynomial
of second degree vanishing on the boundaries (in red), and the support of ν(x, · )
is contained in [−x, 1− x] (in green).

Figure 4: A representation of Type 2, where λ has a pole of order 1 in x = 0 (in
blue), a is a polynomial of second degree vanishing on the boundaries (in red),
and the support of ν(x, · ) is contained in [−x, 0] (in green) for all x ∈ E. This
in particular implies that the distance to the “no-jump” point always decreases if
a jump occurs. Note that in x = 0 there is no jump activity since λ(0) = 0 and
thus ν(0, E) = 0.

Figure 5: A representation of Type 3, where λ has a pole of order 2 in x∗ ∈
(0, 1) (in blue), a is a polynomial of second degree on E \ {x∗} vanishing on the
boundaries (in red), and the support of ν(x, · ) is contained in [−2(x − x∗), 0],
resp. [0,−2(x− x∗)], (in green) for all x ∈ E. This in particular implies that the
distance to the “no-jump” point x∗ always decreases if a jump occurs. Note that
in x∗ there is no jump activity since λ(x∗) = 0, but there is an extra contribution
to the diffusion coefficient at this point.

the process level. One can for instance specify that if a jump occurs, then the
process is reflected in 1/2. In this case the process would be the unique solution
to the martingale problem for (G, δx0), where

Gf(x) :=
1

2
σ2x(1− x)f ′′(x) + κ0(θ0 − x)f ′(x) + λ

(
f(1− x)− f(x)

)
,
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which is an operator of Type 1 with A = σ2, κ = κ0 + 2λ, θ = κ0θ0+λ
κ0+2λ

, and
µ = λδ(1,1).

Example 5.2. The following example features a simple state-dependent jump dis-
tribution. Consider a Lévy type operator G whose jump kernel ν(x, dξ) is chosen
such that x+ξ is uniformly distributed on (α(x), β(x)), where α, β ∈ Pol1(E) and
0 ≤ α(x) ≤ β(x) ≤ 1 for all x ∈ E. This in particular implies that α and β can
be written as

α(x) = α0(1− x) + α1x and β(x) = β0(1− x) + β1x

for some 0 ≤ α0 ≤ β0 ≤ 1 and 0 ≤ α1 ≤ β1 ≤ 1. Choosing the drift coefficient
b suitably, the operator G is then of Type 1 for µ being the pushforward of the
uniform distribution on (0, 1) under the map z 7→ (1 − z(β1 − α1) − α1, z(β0 −
α0) + α0).

The solution to the corresponding martingale problem is a Jacobi process ex-
tended by adding jumps, where the jump times correspond to those of a Poisson
process with unit intensity, and the jump’s target point is uniformly distributed on
(α(x), β(x)), given that the process is located at x immediately before the jump.

Example 5.3. Polynomial operators are not always easy to recognize at first
sight. Consider a Lévy type operator G whose diffusion and drift coefficients a
and b are zero, and whose jump kernel ν(x, dξ) is given by

ν(x,A) = 1{x 6=0}
1− x
x

∫ 1

0

1A\{0}(−x sin2((x+ z)π))dz.

Despite the presence of the sine function, the operator G satisfies all the conditions
of Lemma 4.1. It is thus polynomial and its martingale problem is well–posed. In
fact, this operator is of Type 2. Using the periodicity of the sine function, one can
show that ν(x, dξ) has affine jump sizes with λ(x) = 1−x

x
1{x 6=0}, γ(x, y) = −xy,

and µ being the pushforward of Lebesgue measure on [0, 1] under the map z 7→
sin2(zπ). The associated polynomial jump-diffusion is a martingale since b = 0.
Moreover, the arrival intensity ν(x,E − x) of the jumps is given by 1−x

x
1{x 6=0},

which is unbounded around zero.

Example 5.4. The Dunkl process with parameter n ∈ N0 is a polynomial jump-
diffusion on R, see e.g. Cuchiero et al. (2012, Example 3.7), and can be character-
ized as the unique martingale whose absolute value is the Bessel process of dimen-
sion 1+2n; see Gallardo and Yor (2006). The corresponding polynomial operator
GDunkl is of Lévy type with diffusion and jump coefficients a(x) = 2 + 2n1{x=0}
and b(x) = 0, and jump kernel

ν(x, dξ) = 1{x 6=0}
n

2x2
δ−2x(dξ).

The arrival intensity of its jumps is thus given by ν(x,R) = n
2x21{x 6=0}, which is

a rational function with a pole of second order in x = 0.
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Observe that ν(x, dξ) exhibits several similarities with jump kernels of oper-
ators of Type 3, such as the form of the arrival intensity of the jumps, and the
extra contribution to the diffusion coefficient at the “no-jump” point x = 0. In
fact, defining f̃ :=f(·+ 1

2
) and

Gf(x) = x(1− x)GDunklf̃(x− 1/2),

we obtain a polynomial operator of Type 3 with “no-jump” point x∗ = 1/2.

5.2 Constructions using conic combinations

We provide two examples illustrating the usefulness of Theorem 2.10 for com-
bining operators with affine jump sizes to achieve specifications with interesting
properties.

Example 5.5. We now construct a polynomial operator whose martingale prob-
lem is well–posed, such that the arrival intensity of the jumps is unbounded around
infinitely many points, but finite for all x 6= 1/2.

Let Gn, n ≥ 3, be operators of Type 3 with “no-jump” points x∗n = 1
2

+ 1
n
. Let

their diffusion coefficients be given by

an(x) =
1

3n2
x∗n(1− x∗n)1{x=x∗n},

the drift coefficients be 0, and the parameters of the jump kernels νn(x, dξ) be
given by

λn(x) = n−2 x(1− x)

(x− x∗n)2
1{x 6=x∗n}, γn(x, y) = −y(x− x∗n),

and µ be Lebesgue measure on [0, 1]. Note that for all k ≥ 2 we have

∞∑
n=3

(
an(x)δk2 +

∫
ξkνn(x, dξ)

)
=
x(1− x)

k + 1

∞∑
n=3

n−2(x∗n − x)k−2 <∞. (5.1)

By Theorem 2.10 and Lemma 2.11 this implies that the operator G :=
∑∞

n=3 Gn
is again polynomial and its martingale problem is well–posed. In particular, G is
a Lévy type operator with coefficients a(x) =

∑∞
n=3 an(x) and b(x) = 0, and jump

kernel ν(x, · ) :=
∑∞

n=3 νn(x, · ). As a result, the arrival intensity of the jumps is
given by

ν
(
x,E − x

)
=
∞∑
n=3

λn(x) = x(1− x)
∞∑
n=3

1

n2(x− x∗n)2
1{x 6=x∗n},

which is unbounded around each x∗n but finite for all x 6= 1/2. At x = 1/2 the
jump intensity is infinite. Figure 6 contains an illustration.
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Figure 6: A graphical representation of arrival intensity of the jumps ν(x,E− x)
appearing in Example 5.5.

Example 5.6. This example shows that the operator of a polynomial diffusion,
or equivalently an operator of Type 0, can always be written as the limit of “pure
jump” polynomial operators, i.e. with zero diffusion coefficients. Consider the
Jacobi diffusion with operator G given by

Gf(x) := Ax(1− x)f ′′(x) + κ(θ − x)f ′(x),

for some A ∈ R+, κ ∈ R+, and θ ∈ [0, 1]. Let then Gn be an operator of Type 2
and suppose that its diffusion coefficient an is zero, the drift coefficient is given
by bn(x) = κ(θ − x), and the parameters of the jump kernel νn(x, dξ) are

λn(x) = n2A(1− x)

x
1{x 6=0}, γn(x, y) = −yx, µ = δ1/n.

Observe that, trivially, we have limn→∞ bn(x) = κ(θ − x). Also,

lim
n→∞

(
an(x) +

∫
ξ2νn(x, dξ)

)
= Ax(1− x) and lim

n→∞

∫
ξkνn(x, dξ) = 0, k ≥ 3.

By Lemma 2.11 we thus conclude that G = limn→∞ Gn in sense of Theorem 2.10.

5.3 Mixed affine jump sizes

Consider now a Lévy type polynomial operator G whose jump kernel has mixed
affine jump sizes in the sense of Section 3, i.e.,

ν(x, dξ) =
L∑
`=1

ν`(x, dξ), (5.2)

where each kernel ν`(x, dξ) has affine jump sizes. Suppose the martingale prob-
lem for G is well–posed, or equivalently, its triplet satisfies the conditions of
Lemma 4.1. A natural question is now whether the individual kernels ν`(x, dξ)
also satisfy the conditions of Lemma 4.1. If this were to be true, it would have
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the pleasant consequence that G could be represented as a sum of operators of
Types 0–4. Unfortunately this is not the case, which we illustrate in Example 5.7
below. In fact, there exist kernels of the form (5.2) that cannot even be obtained
as an infinite conic combination of the kernels appearing in Types 0–4.

Example 5.7. Consider a Lévy type operator G, whose coefficients are given by
a(x) = 0, b(x) = 1 − 2x, and whose jump kernel is given by (5.2) for L = 2,
where ν1(x, dξ) and ν2(x, dξ) have affine jump sizes with parameters λ1(x) =

1
x(x+1)

1{x 6=0}, µ1 = δ(1,0), and λ2(x) = 2
(1−x)(x+1)

1{x 6=1}, µ2 = δ(0,1/2). Observe that

γ(x, y) = −x µ1-a.s. and γ(x, y) =
1

2
(1− x) µ2-a.s.

One can verify that G satisfies all the conditions of Lemma 4.1, and is thus
polynomial and its martingale problem is well–posed.

Assume now for contradiction that ν(x, dξ) =
∑∞

`=1 ν̃`(x, dξ) for some kernels
ν̃`(x, dξ) that satisfy the conditions of Lemma 4.1 for some coefficients a`(x) and
b`(x). By Theorem 4.3, each ν̃`(x, dξ) then follows one of Types 0–4. Let λ̃`(x)
and µ̃`(x) be the parameters of the jump kernel ν̃`(x, dξ).

Since supp ν(x, · ) ⊆ {−x, (1−x)/2}, we also have supp ν̃`(x, · ) ⊆ {−x, (1−
x)/2} for all x ∈ E, or equivalently,

µ̃` = α` δ(1,0) + β` δ(0,1/2) (5.3)

for some α`, β` ≥ 0. This already excludes that ν̃`(x, dξ) is of Type 3 or 4, and
gives us that for all x ∈ (0, 1)

λ̃`(x) =


qα` (x)

x
if β` = 0,

qβ` (x)

1−x if α` = 0,
c` otherwise,

for some qα` , q
β
` ∈ Pol1(E) and c` ∈ R+. In particular note that for all x ∈ (0, 1)

and ` ∈ N,

α`λ̃`(x) = α`
qα` (x)

x
and β`λ̃`(x) = β`

qβ` (x)

1− x (5.4)

and hence, since Pol1(E) is closed under pointwise convergence,

∞∑
`=1

∫
ξnν̃`(x, dξ) =

qα(x)

x
(−x)n +

qβ(x)

1− x

(
1− x

2

)n
,

for all n ∈ N and some qα, qβ ∈ Pol1(E). Since
∫
ξnν(x, dξ) =

∑∞
`=1

∫
ξnν̃`(x, dξ)

by assumption, we obtain

−(−x)n−1 + ((1− x)/2)n−1

x+ 1
= −qα(x)(−x)n−1 +

1

2
qβ(x)

(
1− x

2

)n−1

,
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for all x ∈ (0, 1), n ∈ N. The shortest way to see that this condition cannot be
satisfied is to use that if two polynomials coincide on (0, 1) they have to coincide
on R, too. But, choosing x = −1 we obtain

−qα(−1) +
1

2
qβ(−1) =

n− 1

2

for all n ∈ N, which is clearly not possible.

Example 5.8. It is possible to show that operators with jump kernels of the form
(5.2) can have intensities λ` with multiple poles of multiple order outside the state
space. On the other hand, under some non-degeneracy conditions, they can only
have a single pole of order at most 2 inside the state space. We develop this idea
in more detail for the case when ν(x, · ) consists of finitely many atoms for all
x ∈ E.

Let G : Pol(E)→ C(E) be an operator of the form described in Lemma 4.1 and
suppose that its jump kernel ν(x, dξ) is supported on {γ1(x), . . . , γL(x)}, where
γ` ∈ Pol1(E), ` = 1, . . . , L, are pairwise distinct polynomials with x + γ`(x) ∈ E
for all x ∈ E. As a result, we have

ν(x, dξ) =
L∑
`=1

λ`(x)δγ`(x)(dξ) (5.5)

for some functions λ` : E → R+. For n ≥ 2, set rn :=
∫
ξnν( · , dξ) =

∑L
`=1 λ`γ

n
` ,

and recall that rn ∈ Poln(E) for all n ≥ 3 and that r2 is bounded on E. Using
the nonnegativity of λ and the boundary conditions for a, one can then establish
the following properties, which we state here without proof.

(i) If λ` has a pole at a point x0 ∈ E, then γ`(x0) = 0. Moreover in this case,
analogously to Types 2 and 3, if x0 ∈ {0, 1}, the order of the pole is 1 and if
x0 ∈ (0, 1), the order of the pole is 2. Note that nonnegativity of λ` and the
fact that γ` ∈ Pol1(E) imply that λ` can have a pole in at most one point
of the state space.

(ii) r2 ∈ Pol2(E \ {x∗1, . . . , x∗L}), where x∗` denotes the zero of γ`, and we have

λ` =
q`

γ2
`

∏
j 6=`(γ` − γj)

1{γ` 6=0}, (5.6)

where q` ∈ PolL+1(E) and on E \ {x∗1, . . . , x∗L} it is given by

q` =
L−1∑
k=0

(
(−1)krL−k+1

∑
`1<...<`k
`1,...,`k 6=`

γ`1 · · · γ`k
)
.

(iii) Since a+
∫
ξ2ν( · , dξ) ∈ Pol2(E) by Lemma 4.1, we can conclude that

a(x) = Ax(1− x) +
L∑
`=1

(
(−1)L−1q`(x)∏

j 6=` γj(x)
1{x=x∗`}

)
, (5.7)

for some A ∈ R+ and all x ∈ E.
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Conversely, fix a sequence of polynomials rk+2, k = 0, . . . , L − 1, such that
rk+2 ∈ Polk+2(E) for all k. If for some affine functions γ1, . . . , γL as above,
the functions λ` given by equation (5.6) satisfy (i) and are all nonnegative on
E, one can conclude that for ν(x, dξ) as in (5.5), a as in (5.7), and a suitably
chosen b ∈ Pol1(E), the corresponding Lévy type operator is polynomial and its
martingale problem is well–posed.

Remark 5.9. It is interesting to observe that Shur polynomials appear naturally
in the context of Example 5.8. Indeed, by point (ii) we know that each λ`(x),
and thus every moment rn(x) of the measures ν(x, · ), is uniquely determined by
γ1, . . . , γL and r2, . . . , rL+1. More precisely for all n > L+ 1 we can write

rn =
L∑
k=1

(−1)L−ksµL,n,k(γ1, . . . , γL)rk+1,

where µL,n,k = (µ1
L,n,k, . . . , µ

L
L,n,k) is the partition given by

µ1
L,n,k = n−L−1, µ2

L,n,k = . . . = µL−k+1
L,n,k = 1, and µL−k+2

L,n,k = . . . = µLL,n,k = 0,

and sµL,n,k is the corresponding Shur polynomial.

We now propose two interesting applications of Example 5.8, showing that it
can happen that λ1, . . . , λL have poles of high order and in several points outside
the state space.

Example 5.10. Consider a kernel of the form described in (5.5) for

γ1(x) = −x, γ2(x) = 1− x, γ3(x) =
1

3
(1− 2x), γ4(x) =

2

3
(1− 2x).

Defining λ` through expression (5.6) where we set r2(x) = 1,

r3(x) =
1− 2x

2
, r4(x) =

2x2 − 2x+ 5

18
, r5(x) =

(2x− 1)(5x2 − 5x+ 1)

6
,

we obtain

λ1(x) =
9

2

(1− x)

x(x+ 1)(2− x)
, λ2(x) =

9

2

x

(1− x)(x+ 1)(2− x)
,

λ3(x) =
9

(x+ 1)(2− x)
, λ4(x) =

9

4

1

(x+ 1)(2− x)
,

for all x ∈ E. Note that the rational functions λ` satisfy point (i) of Example 5.8
and are all nonnegative on E. As a result, choosing the diffusion and drift coef-
ficients suitably, G is a polynomial operator whose martingale problem is well–
posed. Observe that each λ` has a pole in x = −1 and x = 2.

Example 5.11. Consider a kernel of the form described in (5.5) for

γ1(x) = −x, γ2(x) =
1

2
(1− x), γ3(x) =

1

3
(1− 2x).
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Defining λ` through expression (5.6) where we set

r2(x) = 1, r3(x) =
1− 2x

2
, r4(x) =

10x2 − 9x+ 3

12
,

we obtain

λ1(x) =
1

x(x+ 1)2
, λ2(x) =

4(2x+ 1)

(1− x)(x+ 1)2
, λ3(x) =

27x2

(1− 2x)2(x+ 1)2
,

for all x ∈ E. Note that the rational functions λ` satisfy point (i) of Example 5.8
and are all nonnegative on E. As a result, choosing the diffusion and drift coef-
ficients suitably, G is a polynomial operator whose martingale problem is well–
posed. Observe that each λ` has a pole of second order in x = −1.

6 The unit simplex

Throughout this section the state space E ⊆ Rd is the unit simplex of dimension
d− 1, which we denote by

E := ∆d =

{
x ∈ Rd

+ :
d∑
i=1

xi = 1

}
.

Similarly as in Section 4 our goal is to provide a characterization of polynomial
jump-diffusions on E with affine jump sizes. Again, we combine Theorem 2.3 and
Lemma 2.9 to specialize Theorem 2.8 to the state space E. The proof is given in
Section E.

Lemma 6.1. A linear operator G : Pol(E)→ C(E) is polynomial and its martin-
gale problem is well–posed if and only if it is of form (2.3) and the corresponding
triplet (a, b, ν) satisfies

(i) a(x) ∈ Sd+ for all x ∈ E and ν(x, dξ) satisfies (2.4),

(ii) aii(x) = 0 and bi(x)−
∫
ξiν(x, dξ) ≥ 0 for all x ∈ E ∩ {xi = 0},

(iii) a1 = 0 and b>1 = 0,

(iv) bi ∈ Pol1(E), aij +
∫
ξiξjν( · , dξ) ∈ Pol2(E), and

∫
ξkν( · , dξ) ∈ Pol|k|(E)

for all |k| ≥ 3.

Observe that conditions (i) and (iii) guarantee that G is of Lévy Type. This
in particular ensures that the right-hand side of (2.3) can be computed using an
arbitrary representative.

Remark 6.2. Condition (ii) implies that
∫
|ξi|ν(x, dξ) <∞ for all x ∈ E∩{xi =

0}. Analogously to the unit interval case, this give us some intuition about the
behavior of the solution X on the boundary segment x ∈ E ∩ {xi = 0}. Indeed,
even if the component orthogonal to the boundary of the purely discontinuous
martingale part of X is necessarily of finite variation, the other components do
not need to satisfy this property. Moreover, since a(x) ∈ Sd+, condition (ii) also
implies that aij(x) = 0 for all j ∈ {1, . . . , d}.
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We now focus on the setting of affine jump sizes in the sense of Definition 3.1.
We thus consider Lévy type operators G of the form

Gf(x) =
1

2
Tr
(
a(x)∇2f(x)

)
+ b(x)>∇f(x)

+ λ(x)

∫ (
f(x+ γ(x, y))− f(x)− γ(x, y)>∇f(x)

)
ν(x, dξ),

(6.1)

where λ is nonnegative and measurable, and γ(x, y) is affine in x. In order to
describe the form of the jump sizes, let us introduce the set (∆d)d which is given
by

(∆d)d = {y = (y1, . . . , yd) ∈ Rd×d
+ : yi ∈ ∆d for all i ∈ {1, . . . , d}}.

Type 0. For some αij ∈ R+, αij = αji, B ∈ Rd×d such that Bij ≥ 0 for i 6= j
and Bii = −∑j 6=iBji, let

aii(x) =
∑
i 6=j

αijxixj and aij(x) = −αijxixj for all i 6= j, (6.2)

b(x) = Bx, (6.3)

and set λ = 0. Then G is a polynomial operator whose martingale problem is well–
posed. The solutions X are multivariate Jacobi-type diffusion processes which
have been characterized in this form by Filipović and Larsson (2016, Section 6.3).
In the special case where αij = σ2 for all i, j, they correspond to Wright-Fisher
diffusions, which are also known under the name multivariate Jacobi process; see
Gourieroux and Jasiak (2006).

Type 1. Let λ(x) = 1 and a(x), b(x) be given by (6.2) and (6.3). For all
y ∈ (∆d)d set

γ(x, y) =
d∑
i=1

(yi − ei)xi, (6.4)

and let µ be a nonzero measure on (∆d)d. If the boundary conditions

Bij −
∫
yjiµ(dy) ≥ 0

hold for all i 6= j, then G is a polynomial operator whose martingale problem is
well–posed.

Note that the boundary conditions imply that∫
|ξ|ν(x, dξ) ≤

d∑
i=1

∫
|yi − ei|µ(dy)

is bounded. Hence the resulting process behaves like a multivariate Jacobi-
type diffusion process in the spirit of Filipović and Larsson (2016, Section 6.3),
generalized to include summable jumps. The arrival intensity of the jumps is
ν(x,E − x) = µ({y : γ(x, y) 6= 0}), which may or may not be finite.
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Type 2. Fix i ∈ {1, . . . , d}. Let a(x), b(x) be given by (6.2) and (6.3), and let
λ(x) = q1(x)

xi
1{xi 6=0} for some nonnegative q1 ∈ Pol1(E) such that λ is not constant

on E ∩ {xi 6= 0}. Furthermore, for y ∈ ∆d we define

γ(x, y) = (y − ei)xi,
and let µ be a nonzero square-integrable measure on ∆d \ {ei}. If the boundary
conditions

Bkj − q1(ej)

∫
ykµ(dy) ≥ 0 (6.5)

hold for all k 6= i and j 6= k, then G is a polynomial operator whose martingale
problem is well–posed.

If q1(x) = Lxk for some k 6= i and L > 0, the jumps need not to be summable.
More precisely, we can have

∫
|yi − 1|µ(dy) =

∫
|yk|µ(dy) = ∞. Otherwise, if

q1(x) is not proportional to xk on E for any k, the expression
∫
|ξ|ν(x, dξ) is

bounded, and the solution X to the martingale problem for G has thus summable
jumps. Indeed, ∫

|ξk|ν(x, dξ) ≤ sup
x∈E

q1(x)

∫
ykµ(dy),

which is bounded due to (6.5) and the existence of some x ∈ E∩{xk = 0}∩{xi 6=
0} such that q1(x) 6= 0; see Lemma E.1 in Section E for more details on the second
point.

The arrival intensity of the jumps is ν(x,E − x) = λ(x)µ(∆d \ {ei}) and
hence, even if µ is a finite measure, the jump intensity is unbounded around
xi = 0. Moreover, due to the form of γ(x, y), X can only jump in the direction
of the boundary segment E ∩ {xi = 0}, and since ν(x,E) = 0 whenever xi = 0,
X cannot leave this boundary segment by means of a jump. Figure 7 illustrates
the form of λ and the support of γ(x, y) under µ.

Type 3. Let i, j ∈ {1, . . . , d} be such that i 6= j, and fix some constant c > 0.
Consider the hyperplane {cxi = xj} which will be a “no-jump” region. Let b be
given by (6.3) and set

λ(x) =
q2(x)

(−cxi + xj)2
1{cxi 6=xj}

for some q2 ∈ Pol2(E) given by q2(x) =
∑d

k=1(qikxixk+qjkxjxk), where qk` ∈ R are
chosen such that λ is nonnegative, and nonconstant on {cxi 6= xj}. Furthermore,
define

γ(x, y) = y(−cxi + xj)(ei − ej)
and let µ be a nonzero square-integrable measure on

(
0, 1

c
∧ 1
]
. Finally, let

a(x) = ac(x) + aν(x)Aν1{cxi=xj}

where ac is of form (6.2), Aν ∈ Rd×d is a symmetric matrix given by Aνii = Aνjj = 1,
Aνij = −1, and Aνk` = 0 if k /∈ {i, j}, and where

aν(x) = q2(x)

∫
y2µ(dy).
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If the boundary conditions∑
6̀=k

Bk`x` −
q2(x)

(−cxi + xj)
1{cxi 6=xj}

∫
y(δik − δjk)µ(dy) ≥ 0 (6.6)

are satisfied for all x ∈ E ∩ {xk = 0} and k ∈ {1, . . . , d}, then G is a polynomial
operator whose martingale problem is well–posed. Note in particular that for
k /∈ {i, j}, condition (6.6) coincides with bk ≥ 0 on E ∩ {xk = 0}.

If the numerator of λ is of the form q2(x) = 2qijxixj for some qij ∈ R+, the
solution X to the martingale problem for G may have nonsummable jumps. If
q2(x) is not of this form, then by similar reasoning as for Type 2, the boundary
conditions imply that

∫
yµ(dy) < ∞ and thus X has summable jumps. The

arrival intensity of the jumps is

ν(x,E − x) = λ(x)µ

((
0,

1

c
∧ 1

])
.

As a result, even if µ is a finite measure, the jump intensity has a singularity of
order two along {cxi = xj}, which results in a contribution of aν(x)Aν to the
diffusion coefficient. Moreover, due to the form of γ(x, y), the jumps of X are
always in the direction of the “no-jump” hyperplane {cxi = xj}. Although the
jumps may overshoot {cxi = xj}, they always serve to reduce the distance to
{cxi = xj}. In particular, since ν(x,E − x) = 0 for all x ∈ E ∩ {cxi = xj}, X
cannot leave {cxi = xj} by means of a jump. Figure 8 illustrates the form of λ
and the support of γ(x, y) under µ.

In order to simplify the analysis, in particular in view of the arguments out-
lined in Remark 4.4, we do not consider operators corresponding to Type 4 on
the unit simplex. A condition on the jump kernel excluding this class is given by
the following assumption.

Assumption A. The condition λγi( · , y)3 ∈ Pol3(E) holds for all i ∈ {1, . . . , d}
and all y ∈ supp(µ).

The polynomial property of G implies that the integrated quantities

λ

∫
γi( · , y)3µ(dy)

lie in Pol3(E). Assumption A strengthens this by requiring that the functions
λγi( · , y)3 themselves lie in Pol3(E). This is a natural assumption, in particular
in view of Types 1-3 on the unit interval. Moreover, it will turn out in the course
of the proof of Theorem 6.3 that Assumption A implies under the condition of
affine jump sizes and nonconstant λ that

γ( · , y) = H(y)P1

where H is a µ-measurable function and P1 ∈ Pol1(E). Analogous to the unit
interval, the “no-jump” region is the intersection of E with the hyperplane given
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e2e1

e3

{x2 = 0}

Figure 7

1

e2e1

e3

{cx1 = x2}
Figure 8

1

Figure 7: A representation of Type 2, where λ explodes on the boundary segment
{x2 = 0} (in blue) and the support of ν(x, · ) is always contained in

(
∆3 − e2

)
x2

(in green) for all x ∈ E. This in particular implies that the distance to the
“no-jump” hyperplane {x2 = 0} always decreases if a jump occurs. Note that on
{x2 = 0} there is no jump activity since ν(x, dξ) = 0 for all x ∈ E ∩ {x2 = 0}.

Figure 8: A representation of Type 3, where λ explodes on the hyperplane {cx1 =
x2} (in blue) and the support of ν(x, · ) is always contained in ∆3 ∩ {x3 = 0}
(in green) for all x ∈ E. Moreover the distance to the “no-jump” hyperplane
{cx1 = x2} always decreases if a jump occurs. Note that on {cx1 = x2} there is
no jump activity since ν(x, dξ) = 0 for all x ∈ E ∩{cx1 = x2}, but we know form
the description of this type that there is an extra contribution to the diffusion
matrix a.

by the zero set of a polynomial of first degree. The following theorem states the
announced characterization of polynomial jump–diffusions with polynomial jump
sizes under Assumption A. The proof is given in Section E.

Theorem 6.3. Let G be a polynomial operator whose martingale problem is well–
posed. If the associated jump kernel has affine jump sizes and satisfies Assump-
tion A, then G necessarily belongs to one of the Types 0-3.

7 Applications

In this section we outline two natural applications in finance of polynomial jump-
diffusions on the unit simplex. The first application concerns stochastic portfolio
theory, while the second application is in the area of default risk.
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7.1 Market weights with jumps in stochastic portfolio the-
ory

In the context of stochastic portfolio theory (SPT), polynomial diffusion models
for the process of market weights have been found capable of matching certain
empirically observed properties when calibrated to jump-cleaned data; see Cuch-
iero (2017); Cuchiero et al. (2016). This concerns the typical shape and dynamics
of the capital distribution curves, but also features such as high volatility for low
capitalized stocks. As mentioned in the introduction, a crucial deficiency of these
models is the lack of jumps since they are present in typical market data; see
Figure 2.

We now demonstrate how the results of Section 6 can be used to construct
polynomial jump-diffusion models for the market weights. We focus on a concrete
specification that extends the volatility stabilized models introduced by Fernholz
and Karatzas (2005) by including jumps of Type 2. In the standard (diffusive)
volatility stabilized model, the market weights follow a Wright-Fisher diffusion,
which is a special case of Type 0 with parameters

αij = 1 ∀i 6= j and B =
1 + β

2
11> − d(1 + β)

2
Id,

for some β ≥ 0. These models have two key properties which are of particular
relevance in SPT. First, the market weights remain a.s. in the relative interior of
∆d, denoted by ∆̊d. Second, the model allows for relative arbitrage opportunities.
We may preserve these features by adding jumps of Type 2. More precisely, we
consider a model for the market weights (Xt)t≥0 of the form

Xt,i =

∫ t

0

(
1 + β

2
− d(1 + β)

2
Xs,i

)
ds+

∫ t

0

√
Xs,i(1−Xs,i)dWs,i

−
∑
i 6=j

∫ t

0

Xs,i

√
Xs,idWs,j +

∫ t

0

∫
ξi(µ

X(dξ, ds)− ν(Xs, dξ)ds),

where µX denotes the integer-valued random measure associated to the jumps of
X, and W a d-dimensional standard Brownian motion. The jump specification
is given as a sum of Type 2 jumps,

ν(x,A) =
d∑
i=1

λi(x)

∫
1A((y − ei)xi)µi(dy),

where λi(x) = qi(x)
xi
1{xi 6=0} for some nonnegative qi ∈ Pol1(E) such that λ is not

constant on E ∩ {xi 6= 0}, and the measures µi are supported on ∆d \ {ei} and
satisfy

∫
|y|µi(dy) < ∞. Economically, this specification means that downward

jumps occur with higher and higher intensity the closer the assets are to 0, and
can therefore be used to model downward spirals in stock prices. We require that
for all j 6= k,

β

2
−
∑
i 6=k

qi(ej)

∫
ykµi(dy) + qk(ej)

∫
(1 + log(yk)− yk)µk(dy) > 0,
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which ensures that X remains in the relative interior ∆̊d. This can be proved sim-
ilarly as in Filipović and Larsson (2016, Theorem 5.7). Furthermore, this model
admits relative arbitrage opportunities. To see this, we argue that no equival-
ent probability measure can turn X into a martingale. Indeed, Lemma 5.6 in
Cuchiero (2017) implies that, under any martingale measure, X must reach the
relative boundary of ∆d with positive probability on any time horizon, contra-
dicting equivalence. Since no equivalent martingale measure exists for the market
weights, the model admits relative arbitrage.

Clearly any other polynomial diffusion model on the simplex can be enhanced
by jumps of this form, which yields a large class of tractable jump-diffusion models
applicable in the realm of SPT.

7.2 Valuation of defaultable zero–coupon bonds

This section founds on discussions with Thomas Krabichler. Polynomial jump-
diffusions on the unit interval can be brought to bear on default risk modeling.
We consider the stochastic recovery rate framework of Jarrow and Turnbull (1998)
and Krabichler and Teichmann (2017). For further references, see also Filipović
and Trolle (2013), Zheng (2006), and Jeanblanc et al. (2009, Chapter 7) for an
overview, as well as Duffie (2004) for the classical approach using affine pro-
cesses. Note also that polynomial diffusion models for credit risk have appeared
in Ackerer and Filipović (2016).

Let (Ω,F ,F,Q) with F = (Ft)t≥0 be a filtered probability space satisfying
the usual conditions. Here Q is a risk neutral measure. Let B = (Bt)t≥0 be the
value of the risk-free bank account with initial value of one monetary unit. For
any t ≤ T , we denote by P̃ (t, T ) the price at time t of a defaultable zero–coupon
bond with maturity T ≥ 0 and unit notional. Due to default risk, its actual
payoff P̃ (T, T ) at maturity is random and lies between zero and one. Under the
premise that all discounted defaultable zero–coupon bond prices P̃ (t, T )/B(t) are
true martingales under Q, we get

P̃ (t, T ) = EQ

[ Bt

BT

ST

∣∣∣Ft],
where St := P̃ (t, t) is known as the recovery rate. Suppose now for simplicity
that B and S are conditionally independent under Q. Then

P̃ (t, T ) = EQ

[
Bt

BT

∣∣∣∣Ft]EQ[ST |Ft] = P (t, T )EQ[ST |Ft],

where P (t, T ) is the price of a non-defaultable zero–coupon bond with maturity
T ≥ 0 and unit notional.

Motivated by the typically long and complicated unwinding process after a
default occurs, Krabichler and Teichmann (2017) drop the assumption that the
recovery rate S is known when default happens. Excursions of S below 1 are
interpreted as liquidity squeezes resulting in a delay of due payments, which may
or may not turn into a default. In this framework, the risk-neutral recovery rate
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S typically starts with a constant trajectory at level 1. Once the recovery has
jumped below 1, it pursues an unsteady course. Downward moves of the recovery
rate are self-exciting, as deterioration of the counterparty’s credit quality typically
makes full recovery more unlikely. Nonetheless, S may return to 1 and remain
there for some period of time.

A polynomial model for the recovery rate S can be constructed as follows.
Let X be a polynomial jump-diffusion of Type 2 with “no-jump” point x∗ = 0.
Assume that κ(1 − θ) = (1 + q)

∫
yµ(dy); this condition guarantees that if X

reaches level 1, it can leave it only by means of a jump. More precisely, X persists
at level 1 until its first jump, which occurs according to an (1 + q)–exponentially
distributed stopping time and a downward µ-distributed jump size. Moreover,
since the jump intensity is the positive branch of a hyperbola with a pole in zero,
downward jumps of X get more and more likely as the process approaches zero.

In view of the discussion above, polynomial transformations S := p(X) of X,
where p ∈ Pol([0, 1]) is increasing and satisfies p([0, 1]) ⊆ [0, 1], are well-suited
to describe the recovery rate. The polynomial property of X permits to express
the forward recovery rate F (t, T ) = EQ[ST | Ft] in closed form. We provide two
concrete specifications, by choosing p(x) = x and p(x) = x2. In the first case,
S = X, the moment formula (2.2) yields

F (t, T ) =
(
1− e−(T−t)κ)θ + e−(T−t)κSt.

In the second case, S = X2, we find

F (t, T ) =

(
κ(1− e(T−t)G2) +G2(1− e−(T−t)κ)

)
θ

κ+G2

+
G1

(
e(T−t)G2 − e−(T−t)κ)

κ+G2

√
St + e−(T−t)κSt,

where G1 := A+ 2κθ +
∫
y2µ(dy) and G2 := −A− 2κ+ q

∫
y2µ(dy).

A Proof of Theorem 2.8

We assume that G : Pol(E)→ C(E) is a linear operator that satisfies the positive
maximum principle and G1 = 0.

Fix x ∈ E and define the linear functionals Wij : Pol(E − x) → R for i, j =
1, . . . d by

Wij(p) := G
(
p( · − x)e>i ( · − x)e>j ( · − x)

)
(x),

as well as Wu : Pol(E − x)→ R for u ∈ Rd by

Wu(p) :=
d∑

i,j=1

uiujWij(p) = G
(
p( · − x)(u>( · − x))2

)
(x).

Here and throughout the proof we view u>( · −x) as a polynomial on E to avoid
the more cumbersome notation u>( · − x)|E.
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If p ≥ 0 on E − x, then p( · − x)(u>( · − x))2 ∈ Pol(E) is minimal at x,
which by the positive maximum principle yields Wu(p) ≥ 0. The Riesz-Haviland
theorem, Lemma 2.7, thus provides measures νu(x, dξ) concentrated on E − x
such that

Wu(p) =

∫
p(ξ)νu(x, dξ).

By polarisation we have Wij = 1
2
(Wei+ej −Wei −Wej), whence

Wij(p) =

∫
p(ξ)νij(x, dξ), νij =

1

2
(νei+ej − νei − νej).

The triplet (a, b, ν) is now defined at x by

aij(x) := νij(x, {0}), bi(x) := G(e>i ( · − x))(x), (A.1)

and

ν(x, dξ) :=
1

|ξ|21{ξ 6=0} (νe1(x, dξ) + · · ·+ νed(x, dξ)) .

Next, observe that

∫
ξiξjp(ξ)|ξ|2ν(x, dξ) =

d∑
k=1

∫
ξiξjp(ξ)νek(x, dξ)

=
d∑

k=1

G
(
p( · − x)e>i ( · − x)e>j ( · − x)(e>k ( · − x))2

)
(x)

= G
(
p( · − x)e>i ( · − x)e>j ( · − x)| · − x|2

)
(x)

=Wij(p | · |2)

=

∫
p(ξ)|ξ|2νij(x, dξ),

for all p ∈ Pol(E − x). By Weierstrass’s theorem and dominated convergence,
this actually holds for all p ∈ C(E − x), whence 1{ξ 6=0}νij(x, dξ) = ξiξjν(x, dξ).
Consequently,

Wij(p) =

∫
p(ξ)ξiξjν(x, dξ) + p(0)aij(x). (A.2)

Consider now any polynomial p ∈ Pol(E − x), and choose a representative q ∈
Pol(Rd), p = q|E−x. Note that q is of the form

q(ξ) = c0 +
d∑
i=1

ciξi +
d∑

i,j=1

ξiξjqij(ξ)

for some polynomials qij ∈ Pol(Rd). Let pij := qij|E−x ∈ Pol(E − x). Then the
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linearity of G, the fact that G1 = 0, and (A.1) and (A.2) yield

G(p( · − x))(x) = c0 G1(x) +
d∑
i=1

ci G(e>i ( · − x))(x)

+
d∑

i,j=1

G
(
pij( · − x)e>i ( · − x)e>j ( · − x)

)
(x)

=
d∑
i=1

cibi(x) +
d∑

i,j=1

(∫
qij(ξ)ξiξjν(x, dξ) + qij(0)aij(x)

)
=

1

2
Tr
(
a(x)∇2q(0)

)
+ b(x)>∇q(0)

+

∫ (
q(ξ)− q(0)− ξ>∇q(0)

)
ν(x, dξ).

Thus, with p(ξ) = f(x + ξ) for a polynomial f ∈ Pol(E), we obtain the desired
form (2.3), where the right-hand side is computed using a representative of f , the
choice of which is arbitrary.

It remains to verify that the a, b, and ν satisfy the additional stated proper-
ties. First, a(x) is positive semidefinite since u>a(x)u =

∑d
i,j=1 uiujνij(x, {0}) =

νu(x, {0}) ≥ 0, and ν clearly satisfies the support conditions ν(x, {0}) = 0
and ν(x, (E − x)c) = 0. Next, since G maps polynomials to continuous func-
tions, it is clear from (A.1) that b is bounded and measurable. Similarly, x 7→∫
p(ξ)νu(x, dξ) = G(p( · − x)(u>( · − x))2)(x) is continuous, hence bounded and

measurable, for every p ∈ Pol(E), and so by the monotone class theorem νu( · , A)
is measurable for every Borel set A ⊆ E − x. Thus νu(x, dξ) is a kernel, from
which it follows that a is measurable and ν(x, dξ) is a kernel. Finally, continuity
in x of

Tr(a(x)) +

∫
|ξ|2ν(x, dξ) = νe1(x,E − x) + · · ·+ νed(x,E − x) = G(| · − x|2)(x)

implies that a and
∫
|ξ|2ν( · , dξ) are bounded on E.

B Proof of Theorem 2.10 and Lemma 2.11

Proof of Theorem 2.10. Let α, β ∈ R+ and G1,G2 ∈ K, and fix f ∈ Polk(E) for
some k ∈ N. Then, since G1f,G2f ∈ Polk(E), we have that

Gf := αG1f + βG2f ∈ Polk(E)

as well, proving that it is polynomial. By Theorem 2.3, the well–posedness of the
martingale problem for G follows directly by the well–posedness of the martingale
problems of G1 and G2. For the second part, set (Gn)n∈N as in the statement of the
theorem and recall that Polk(E) is closed under pointwise convergence for each
k ∈ N0. Fixing f ∈ Polk(E), since Gnf ∈ Polk(E) by the polynomial property of
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Gn, we can conclude that Gf ∈ Polk(E) as well. Again, existence and uniqueness
of a solution to the martingale problem is guaranteed by Theorem 2.3, since
G1 = 0 and the positive maximum principle is preserved in the limit.

Proof of Lemma 2.11. In order to prove the first part of the lemma, it is enough
to observe that for all n ∈ N and |k| ≥ 1,

Gn
(
( · − x)k

)
(x) =


bni (x) if k = ei,

anij(x) +
∫
ξiξjνn(x, dξ) if k = ei + ej,∫

ξkνn(x, dξ) if |k| ≥ 3.

(B.1)

For the second part of the lemma, if G is well–defined we know from Theorem 2.10
that it has a Lévy-Khintchin representation, for some coefficients a and b, and a
kernel ν(x, dξ). As a result, the analog of (B.1) holds true for G and by definition
of the limit we thus obtain

bi(x) = G
(
( · − x)k

)
(x) = lim

n→∞
Gn
(
( · − x)k

)
(x) = lim

n→∞
bni (x),

and similarly

aij(x)1{k=ei+ej}+

∫
ξkν(x, dξ) = lim

n→∞

(
anij(x)1{k=ei+ej}+

∫
ξkνn(x, dξ)

)
, (B.2)

for all |k| ≥ 2. Since ν(x, dξ) does not have mass in 0,

ν(x, dξ) = |ξ|−4
(
|ξ|4ν(x, dξ)

)
.

Moreover, using that moments completely determine compactly supported finite
distribution, the kernel |ξ|4ν(x, dξ), and thus ν(x, dξ), is uniquely determined by
(B.2).

C Proof of Theorem 3.3

Throughout the proof we assume without loss of generality that E has nonempty
interior. Suppose that ν(x, dξ) is the zero measure for all x ∈ E. Setting λ = 0,
the form of γ(x, y) and the measure µ are irrelevant and we are thus free to choose
K ≤ 1. We may therefore suppose that ν(x, · ) is nonzero for some x ∈ E, and
thus in particular

µ
(
γ(x, · ) 6= 0

)
> 0 (C.1)

for at least one x ∈ E. As in Remark 3.2, we can assume without loss of generality
that µ is compactly supported and hence all its moments of order at least two
are finite. Set then

pn :=

∫
γn( · , y)µ(dy) and rn :=

∫
ξnν( · , dξ) = λpn
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and note that, by the integrability conditions on µ and condition (3.3) respect-
ively, pn and rn are polynomials on E for all |n| ≥ 3. In particular, p4ei is a
nonzero polynomial for at least one i ∈ {1, . . . , d} by (C.1), and thus

λ(x) =
r4ei(x)

p4ei(x)
(C.2)

for all x ∈ E \ {p4ei = 0}.
Since E has nonempty interior by assumption, each polynomial p ∈ Pol(E)

has a unique representative p ∈ Pol(Rd) such that p|E = p. In particular, the
degree of a polynomial on E always coincides with the maximal degree of its
monomials. Assume now for contradiction that K cannot be chosen less than or
equal one. Let

nj := sup{k : µ(yjk 6= 0) 6= 0}
be the multi-index corresponding to the leading monomial of γj(x, y), with respect
to some graded lexicographic order. Choose j ∈ {1, . . . , d} such that |nj| ≥ 2
and note that by the maximality of nj and since

∫
(yjnj)

10µ(dy) > 0 we have that

deg(p10ej) = deg

(∫
(yjnj)

10µ(dy)x10nj

)
= 10|nj|.

Analogously, deg(p4ej) = 4|nj| and thus (C.2) holds true for i = j. Since
p10ej(x)r4ej(x) = p4ej(x)r10ej(x), using that |nj| ≥ 2 we can compute

deg(p10ejr4ej) ≥ 10|nj| > 4|nj|+ 10 ≥ deg(p4ejr10ej),

and obtain the desired contradiction. As a result, K can always be chosen smaller
than or equal one.

D The unit interval: Proof of Lemma 4.1 and
Theorem 4.3

Proof of Lemma 4.1. Assume G is a polynomial operator and its martingale prob-
lem is well–posed. Theorem 2.3 and Theorem 2.8 imply that G is of Lévy type
for some triplet (a, b, ν), so that in particular (i) holds. Condition (iii) follows
from Lemma 2.9. To verify (ii), let fn be polynomials on [0, 1] with 0 ≤ fn ≤ 1,
fn(0) = 1, xnfn(x) ≤ 1, and fn(x) ↓ 0 for x ∈ (0, 1]. For example, one can choose
fn(x) := n−1

n
(1− x)n + 1

n
. Let gn(x) := x

n
− x2fn(x). Then gn has a minimum at

x = 0, so by the positive maximum principle,

0 ≤ Ggn(0) = −a(0) +
1

n
b(0)−

∫
fn(ξ)ξ2ν(0, dξ)→ −a(0), n→∞,

where the dominated convergence theorem was used to pass to the limit. Simil-
arly, hn(x) := xfn(x) is nonnegative on [0, 1] with a minimum at x = 0, so the
monotone convergence theorem yields

0 ≤ Ghn(0) = b(0)−
∫
ξ(1− fn(ξ))ν(0, dξ)→ b(0)−

∫
ξν(0, dξ), n→∞.
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We have thus shown (ii) for the boundary point x = 0. The case x = 1 is similar.
We now prove the converse. Lemma 2.9 and (iii) imply that G is polynomial.

Next, clearly G1 = 0. Thus, by Theorem 2.3 it only remains to verify the positive
maximum principle in order to deduce that the martingale problem for G is well–
posed. To this end, let f ∈ Pol(E) be an arbitrary polynomial having a maximum
over E on some x ∈ E. If x ∈ int(E) it follows that f ′(x) = 0, f ′′(x) ≤ 0, and
f(x) ≥ f

(
x + ξ

)
for all ξ ∈ E − x. Hence, using that a ≥ 0 on E, we conclude

that Gf(x) ≤ 0. On the other hand, if x ∈ ∂E = {0, 1} we use that a(x) = 0 and
the integrability of ξ with respect to ν(x, · ) to write

Gf(x) =

(
b(x)−

∫
ξν(x, dξ)

)
f ′(x) +

∫
(f(x+ ξ)− f(x)) ν(x, dξ).

The classical Karush-Kuhn-Tucker conditions (see e.g. Proposition 3.3.1 in Bertse-
kas (1995)) imply that f ′(x) ≤ 0 if x = 0 and f ′(x) ≥ 0 if x = 1, and thus the
first summand is nonnegative by (ii). Using as before that f(x) ≥ f

(
x + ξ

)
for

all ξ ∈ E − x, we conclude that Gf(x) ≤ 0.

Proof of Theorem 4.3. By assumption G is polynomial and its martingale prob-
lem is well–posed. Hence, conditions (i)-(iii) of Lemma 4.1 are satisfied. As in
Remark 3.2, we can assume without loss of generality that µ is compactly sup-
ported. In particular, all its moments of order at least two are finite. For all
n ≥ 2 set then

pn :=

∫
γn( · , y)µ(dy) and rn :=

∫
ξnν( · , dξ) = λpn. (D.1)

Note that pn ∈ Poln(E) for all n ≥ 2 by the integrability conditions on µ, and
rn ∈ Poln(E) for all n ≥ 3 by condition (iii) of Lemma 4.1. By Remark 3.4 we
know that

λ(x) =
r4(x)

p4(x)
1{p4(x)6=0}

and hence the condition ν
(
x, (E − x)c

)
= 0 of (2.4) implies that µ can be chosen

to be supported on [0, 1]2 and such that γ(x, y) = y1(−x) + y2(1 − x) µ-a.s. By
Lemma 4.1(iii) we also know that b ∈ Pol1(E) and, by Lemma 4.1(ii), that the
boundary conditions

b(0) ≥ λ(0)

∫
γ(0, y) µ(dy) and b(1) ≤ λ(1)

∫
γ(1, y) µ(dy) (D.2)

hold. We consider now five complementary assumptions, which will lead to
Types 0 to 4.

Assume that ν(x, dξ) = 0. Then Lemma 4.1 implies that a(x) = Ax(1 − x)
for some A ∈ R+. This proves that G is an operator of Type 0.

Assume now that ν(x, dξ) 6= 0 and λ can be chosen to be constant. We
can then without loss of generality set λ = 1. Moreover, since in this case
r2 ∈ Pol2(E), we can conclude as before that a(x) = Ax(1−x) for some A ∈ R+.
This proves that G is an operator of Type 1.
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Assume that ν(x, dξ) 6= 0, λ cannot be chosen to be constant, and p4(x∗) = 0
for some x∗ ∈ R. By definition of p4 this automatically implies that γ(x∗, y) = 0,
and in particular x∗ = y2(y1 + y2)−1, for µ-a.e. y ∈ [0, 1]2. As a result, x∗ lies
in E, and setting y := y1 + y2 we obtain γ(x, y) = −y(x − x∗). Moreover, since
y = y2

x∗
= y1

1−x∗ µ-a.s., we can conclude that it is square-integrable and takes values
in the set [0, (x∗ ∨ (1− x∗))−1] µ-a.s. By (D.1) we can then write

λ(x) =
r3(x)

p3(x)
=

r3(x)

(x− x∗)3

for some r3 ∈ Pol3(E), for all x ∈ E \ {x∗}. Since in this case ν(x∗, · ) = 0 we are
free to choose λ(x∗) = 0. By Lemma 4.1 we also know that r2 is bounded on E.
Therefore, noting that

r2(x) =
r3(x)

(x− x∗)

∫
(−y)2µ(dy) for all x ∈ E \ {x∗},

it follows that r3(x∗) = 0, and thus λ(x) = q2(x)
(x−x∗)2 for some q2 ∈ Pol2(E) and all

in x ∈ E \ {x∗}. This in particular implies that r2 ∈ Pol2(E \ {x∗}) and hence
a ∈ Pol2(E \ {x∗}). Knowing that a + r2 has to be continuous by condition (iii)
of Lemma 4.1, we can finally deduce that

a(x∗) = lim
x→x∗

a(x) + q2(x∗)

∫
y2 µ(dy).

Suppose now x∗ ∈ {0, 1}. Then, since a ≥ 0 on E and a(0) = a(1) = 0,
we conclude that q2(x∗) = 0, a(x) = Ax(1 − x) for some A ∈ R+, and thus
λ(x) = q1(x)

(x−x∗)1{x 6=x∗} for some q1 ∈ Pol1(E). For x∗ = 0, respectively x∗ = 1, the
nonnegativity of λ implies that q1(x) = 1 + qx, respectively q1(x) = 1 + q(1− x),
for some q ∈ [−1,∞). As a result, G is an operator of Type 2.

On the other hand, if x∗ ∈ (0, 1), using again that a ≥ 0 on E and a(0) =
a(1) = 0, we conclude that

a(x) = Ax(1− x) +

(
q2(x∗)

∫
y2 µ(dy)

)
1{x=x∗},

for some A ∈ R+, proving that G is an operator of Type 3.
Assume now that ν(x, dξ) 6= 0, λ cannot be chosen to be constant, and p4(x) 6=

0 for all x ∈ R. We must argue that G is then necessarily of Type 4. By
(D.1) we have λ(x) = r4(x)

p4(x)
on E, and thus on R. Consequently, λ is locally

bounded, nonnegative, and non-constant. Moreover, (D.1) yields the expression
λ(x) = r3(x)

p3(x)
for all x ∈ E with p3(x) 6= 0. These facts combined with the

fundamental theorem of algebra imply that

λ(x) =
q2(x)

(x− α)(x− α)
(D.3)

for some positive q2 ∈ Pol2(E) and α ∈ C \ R. Without losing generality we
choose to satisfy Im(α) < 0. Note that no further cancellation of polynomial
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factors is possible in (D.3) since λ is non-constant. Furthermore, condition (iii)
of Lemma 4.1 yields rn ∈ Poln(E) for all n ≥ 3. Therefore, since pn(x)q2(x) =
(x− α)(x− α)rn(x) due to (D.1) and (D.3), it follows that pn(x) = (x− α)(x−
α)Rn−2(x) for all x ∈ E and n ≥ 3, for some Rn−2 ∈ Poln−2(E). This already
implies (4.2) for n ≥ 3, i.e.,

pn(α) =

∫
γn(α, y)µ(dy) =

∫
(y1(−α) + y2(1− α))nµ(dy) = 0, n ≥ 3. (D.4)

Next, we will establish (4.2) also for n = 2. In preparation for an application
of Lemma D.1 later on, choose a constant Cα such that∣∣∣∣1 +

iγ(α, y)

Cα

∣∣∣∣ < 1 and
2|γ(α, y)|

Cα
< tan−1

∣∣∣∣Im(1− α)

Re(1− α)

∣∣∣∣ (D.5)

for all y ∈ [0, 1]2 \ {0}. Define

fk(z) := 1−
(

1 +
iz

Cα

)k
,

and note that |fk(γ(α, y))| ≤ 2 and limk→∞ fk(γ(α, y)) = 1 for all y ∈ [0, 1]2\{0}.
By dominated convergence we then obtain∫

γ2(α, y)µ(dy) = lim
k→∞

∫
γ2(α, y)fk

(
γ(α, y)

)
µ(dy) = 0, (D.6)

where the last equality follows since, for each k ≥ 3, the integral on the right-
hand side is a linear combination of

∫
γn(α, y)µ(dy) with 3 ≤ n ≤ k, and therefore

vanishes due to (D.4). Hence, (4.2) holds also for n = 2.
We now derive some consequences. First, r2 ∈ Pol2(E) and hence a(x) =

Ax(1− x) for some A ∈ R+. Moreover, since

Arg
(
γ2(α, · )

)
⊆
[
2Arg(1− α), 2Arg(−α)

]
holds µ-a.s., (D.6) implies that Arg(−α) − Arg(1 − α) ≥ π/2, or equivalently,
|2α − 1| ≤ 1. In the description of Type 4 it is claimed in addition that the
inequality is strict, i.e.

|2α− 1| < 1. (D.7)

To see this, observe that in case of equality, (D.6) would imply that Arg(γ(α, y)) ⊆
{Arg(−α),Arg(1 − α)} for µ-a.e. y ∈ [0, 1]2, which is clearly incompatible with
having

∫
γ3(α, y)µ(dy) = 0 for some nontrivial measure µ.

Next, we claim that
∫
y1µ(dy) =

∫
y2µ(dy) =∞. We prove this by excluding

the complementary possibilities. First, assume for contradiction that
∫
y1µ(dy) <

∞ and
∫
y2µ(dy) < ∞. Then

∫
|γ(α, y)|µ(dy) < ∞. Proceeding as with (D.6)

we then deduce∫
γ(α, y)µ(dy) = lim

k→∞

∫
γ(α, y)fk

(
γ(α, y)

)
µ(dy) = 0,
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which is clearly not possible since Im(γ(α, y)) > 0 µ-a.s. This is the desired
contradiction.

Suppose instead
∫
y1µ(dy) <∞ and

∫
y2µ(dy) =∞. Define

gk(y) := Re
(
γ(α, y)fk

(
γ(α, y)

))
. (D.8)

Set C := Im(1− α)(Re(1− α))−1 and observe that C > 0 due to the fact that
Re(1− α) > 0 in view of (D.7). Then define the set

A :=

{
y ∈ [0, 1]2 :

Im
(
γ(α, y)/Cα

)
Re
(
γ(α, y)/Cα

) ∈ [C, 2C],

2|γ(α, y)|
Cα

≤ tan−1(C), Im
(γ(α, y)

Cα

)
≥ 0

}
.

Choosing ε > 0 small enough such that {y1 < εy2} ∩ [0, 1]2 ⊆ A, by Lemma D.1
we have that

{y1 < εy2} ∩ [0, 1]2 ⊆ A ⊆
{
hk

(
γ(α, y)

Cα

)
≥ 0

}
=

{
gk(y)

Cα
≥ 0

}
= {gk(y) ≥ 0}.

We can then compute

gk(y) ≥ −2|γ(α, y)|1{gk(y)<0} ≥ −2|γ(α, y)|1{y1≥εy2} ≥ −2(y1|α|+ ε−1y1|1− α|),

for all k ∈ N and µ-a.e. y ∈ [0, 1]2. Fatou’s lemma then yields

0 = lim
k→∞

∫
gk(y)µ(dy) ≥ −Re(α)

∫
y1µ(dy) + Re(1− α)

∫
y2µ(dy) =∞,

using in the last step that Re(1− α) > 0. Again we arrive at a contradiction.
Finally, suppose

∫
y1µ(dy) = ∞ and

∫
y2µ(dy) < ∞. We may then repeat

the arguments from the first case, using the function −gk instead of gk to ob-
tain the required contradiction. In summary, we have shown that

∫
y1µ(dy) =∫

y2µ(dy) =∞, as claimed.
Finally, the boundary conditions (D.2) now forces λ(0) = λ(1) = 0, which in

view of (D.3) yields q2(0) = q2(1) = 0. Therefore q2(x) = Lx(1 − x) for some
constant L > 0, as claimed. As a result, G is an operator of Type 4, and the
proof of Theorem 4.3 is complete.

Lemma D.1. Fix C > 0 and set hk(z) := Re
(
z(1 − (1 + iz)k)

)
for all k ∈ N.

Then there is some K ∈ N such that{
Im(z)/Re(z) ∈ [C, 2C], 2|z| ≤ tan−1(C), Im(z) ≥ 0

}
⊆ {hk(z) ≥ 0}

for all k ≥ K.

Proof. Fix c ∈ [C, 2C] and let z ∈ C such that Im(z) = cRe(z) and Im(z) ≥ 0.
Define then w := 1 + iz and compute

hk(z) = hk(i− iw) = Im(w)
(
1− Re(wk) + cIm(wk)

)
.
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Let x := Arg(w), note that x = Arg(1 + iz) ∈
[
0, 2|z|

]
and moreover

Re(wk)− cIm(wk) =
cos(kx)− c sin(kx)(
c sin(x) + cos(x)

)k =

√
1 + c2 cos(kx+ tan−1(c))(√
1 + c2 cos(x− tan−1(c))

)k .
(D.9)

Since Im(w) = Re(z) ≥ 0, it is then enough to show that for k big enough this
expression is smaller than or equal to 1 for all x ∈

[
0, tan−1(C)

]
and c ∈ [C, 2C].

Let xck := (π − tan−1(c))/k be the first minimum of the numerator. Observe
that for x = xck the denominator converges to exp

(
c(π − tan−1(c))

)
>
√

1 + c2

uniformly on compact sets. As a result, for k big enough, we have that

sup
c∈[C,2C]

cos(kx)− c sin(kx)(
c sin(x) + cos(x)

)k ≤ sup
c∈[C,2C]

cos(kx)− c sin(kx)(
c sin(xck) + cos(xck)

)k ≤ 1,

for all x ∈ [xck, tan−1(C)]. Since expression (D.9) takes value 1 for x = 0 and is
decreasing in x on [0, xck], we conclude the proof.

E The unit simplex: Proof of Lemma 6.1 and The-
orem 6.3

Proof of Lemma 6.1. Assume G is a polynomial operator and its martingale prob-
lem is well–posed. Theorem 2.3 and Theorem 2.8 imply that G is of Lévy type
for some triplet (a, b, ν), so that in particular (i) holds. Condition (iv) follows
from Lemma 2.9. To prove (ii), fix x ∈ E ∩ {xi = 0}. Let gin(x) := gn(xi) and
hin(x) := hn(xi), where gn and hn are the functions on [0, 1] described in the proof
of Lemma 4.1. Then by the positive maximum principle we conclude that

0 ≤ Ggin(x)→ −aii(x) and 0 ≤ Ghin(x)→ bi(x)−
∫
ξiν(x, dξ).

The positive semidefiniteness of a(x) then implies that aij(x) = 0 for all j ∈
{1, . . . , d}. In order to verify (iii), note that setting f∆(x) := x>1 − 1, by the
positive maximum principle we have

0 = G(f∆)(x) = b(x)>1 and 0 = G
(
( · − x)ejf∆

)
(x) = aj(x)>1,

where aj(x) denotes the j-th column of a(x).
Conversely, Lemma 2.9 and (iv) imply that G is polynomial. Thus by The-

orem 2.3, the martingale problem for G is well–posed, provided that G1 = 0 and
G satisfies the positive maximum principle. The first condition is clearly satisfied.
For the second one, let gi(x) := xi and f ∈ Pol(E) be an arbitrary polynomial
having a maximum over E at some x ∈ E. Observe that

E =
{
x ∈ Rd : f∆ = 0 and gi ≥ 0 for all i ∈ {1, . . . , d}

}
,
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and let I(x) be the set of all active inequality constraints at point x, that is, I(x)
is the set of all i ∈ {1, . . . , d} such that xi = 0. By the necessity of the Karush-
Kuhn-Tucker conditions (see e.g. Proposition 3.3.1 in Bertsekas (1995)), there
exist multipliers µ ∈ Rd

+ and λ ∈ R such that µi = 0 for all i ∈ {1, . . . , d} \ I(x),

∇f(x) = −
∑
i∈I(x)

µi∇gi(x) + λ∇f∆(x) = −
∑
i∈I(x)

µiei + λ1,

and v>∇2f(x)v ≤ 0 for all v ∈ Rd such that v>1 = 0 and vi = 0 for all i ∈ I(x).
Since ξ>1 = 0 for ν(x, · )-a.e. ξ, b(x)>1 = 0 by (iii), and

∫
|ξi|ν(x, dξ) < ∞ for

all i ∈ I(x) by (ii), we can thus write

Gf(x) =
1

2
Tr
(
a(x)∇2f(x)

)
+
∑
i∈I(x)

−µi
(
bi(x)−

∫
ξiν(x, dξ)

)
+

∫
(f(x+ ξ)− f(x)) ν(x, dξ).

We must argue that Gf(x) ≤ 0. The second term on the right-hand side is
nonpositive by (ii). The last term is also nonpositive since f is maximal over E
at x. It remains to show that the first term is nonpositive. To this end, let

√
a(x)

denote the symmetric and positive semidefinite square root of a(x). Condition
(iii) yields a(x)1 = 0 and thus

√
a(x)1 = 0. By symmetry of

√
a(x) we deduce(√

a(x)v
)>

1 = v>
√
a(x)1 = 0 for all v ∈ Rd.

Moreover, by (ii) we also have that a(x)ei = 0, and hence
√
a(x)ei = 0, for all

i ∈ I(x). This implies that
(√

a(x)
)
ij

= 0 and thus
(√

a(x)v
)
i

= 0, for all
i ∈ I(x) and v ∈ Rd. As a result,

v>
(√

a(x)∇2f(x)
√
a(x)

)
v =

(√
a(x)v

)>∇2f(x)
(√

a(x)v
)
≤ 0,

which implies that
√
a(x)∇2f(x)

√
a(x) is negative semidefinite. This gives the

desired inequality

Tr
(
a(x)∇2f(x)

)
= Tr

(√
a(x)∇2f(x)

√
a(x)

)
≤ 0,

showing that Gf(x) ≤ 0. This completes the proof of the lemma.

Before starting the proof of Theorem 6.3, we prove three auxiliary lemmas.

Lemma E.1. Consider a polynomial p ∈ Poln(E).

(a) If p vanishes on E ∩ {xi = xj = 0}, it can be written as

p(x) = xip
i
n−1(x) + xjp

j
n−1(x) for some pin−1, p

j
n−1 ∈ Poln−1(E). (E.1)

(b) If p vanishes on E ∩
(
{xi = 0}∪{xj = 0}

)
for some i 6= j, it can be written

as
p(x) = xixjpn−2(x) for some pn−2 ∈ Poln−2(E). (E.2)
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(c) If p vanishes on E ∩
{
cxi = xj} for some c ≥ 0 and i 6= j, it can be written

as

p(x) = (−cxi + xj)pn−1(x) for some pn−1 ∈ Poln−1(E). (E.3)

Proof. Since every affine function on E can be written as a linear one, there is
a real collection (pn)|n|=n such that p(x) =

∑
|n|=n pnx

n, for all x ∈ E. Observe
that for all x ∈ E ∩ {xi = xj = 0} we have that

0 = p(x) =
∑
|n|=n

ni=nj=0

pnx
n.

Assume without loss of generality that i = d and j = d − 1 (resp. i = j = d if
i = j) and note that, the polynomial q ∈ Pol(Rj−1) given by

q(x) :=
∑
|n|=n

ni=nj=0

pnx
n,

where n =
∑j−1

k=1 nkek, is a homogeneous polynomial vanishing on the simplex.
This directly implies that q = 0 and hence pn = 0 for all |n| = n such that
ni = nj = 0. We can thus conclude that p satisfies (E.1).

Proceeding as before for the second part, we obtain that pn = 0 for all |n| = n
such that ni = 0 or nj = 0 and can thus conclude that p satisfies (E.2).

Finally, for the third part it is enough to note that the polynomial p ∈ Poln(E)
given by

p(x) := p
(
x+

cxi
1 + c

(ej − ei)
)

vanishes on E ∩ {xj = 0}. By (a) this gives us that

p(x) = p
(
x+ cxi(ei − ej)

)
= (−cxi + xj)p

j
n−1(x)

on E ∩ {xj ≥ cxi} and thus on E, proving that p satisfies (E.3).

Lemma E.2. Let µ be a nonzero measure on
(
∆d
)d \ {e1, . . . , ed}. The function

γ : E × (∆d)d → R given by γ(x, y) =
∑d

i=1(yi − ei)xi can be represented as

γ(x, y) = H(y)P1(x) µ-a.s., (E.4)

for a measurable function H : (∆d)d → Rd and P1 ∈ Pol1(E), if and only if one
of the following cases holds true

(a) γ(x, y) = (yi − ei)xi µ-a.s. for some i ∈ {1, . . . , d}.

(b) γ(x, y) = yji (−cxi + xj)(ei − ej) µ-a.s. for some i 6= j and c > 0. In this
case yji ∈ (0, 1

c
∧ 1] µ-a.s.
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Proof. First assume that (E.4) holds true. Since P1 ∈ Pol1(E), and as every
affine function on E has a linear representation, we can write P1(x) = C>x, for
some C ∈ Rd. If C = 0, the support of µ has to be contained in {e1, . . . , ed},
which is not possible by assumption.

If Ci 6= 0 for some i ∈ {1, . . . , d}, item (a) follows if Cj = 0 for all j 6= i.
If Ci and Cj are nonzero for some i 6= j, item (b) follows if C` = 0 for all

` /∈ {i, j}. Indeed, by assumption we have (yk − ek) = CkH(y) for k ∈ {i, j} and
thus

yi − ei =
Ci
Cj

(yj − ej).

Since yi, yj ∈ ∆d µ-a.s., we can conclude that yi` = yj` = 0 for all ` /∈ {i, j} and
hence

yij

yji
=

1− yii
yji

= −Ci
Cj

=: c (E.5)

proving that the conditions of item (b) hold true. In this case yji ∈ (0, 1
c
∧1] µ-a.s.

by (E.5).
Finally, if Ci 6= 0 for at least three different values of i, the same reasoning

as for case (b) implies yi` = 0 for all ` 6= i and thus H = 0 µ-a.s., which is not
possible by assumption.

The converse direction is clear.

Lemma E.3. The following assertions are equivalent.

(i) The matrix a(x) ∈ Sd+ satisfies a1 = 0, aij ∈ Pol2(E), and aii = 0 on E ∩
{xi = 0}.

(ii) The matrix a(x) satisfies

aii(x) =
∑
i 6=j

αijxixj and aij(x) = −αijxixj for all i 6= j,

for some αij = αji ∈ R+.

Proof. We start by proving (i) ⇒ (ii): By Lemma E.1 we already know that for
all i 6= j we have aij = −αijxixj for some αij ∈ R. Moreover, as a1 = 0 on E, we
also have that

aii(x) = −
∑
j 6=i

aij(x) =
∑
i 6=j

αijxixj

for all x ∈ E. Since a ∈ Sd+ on E and αij = 4aii ((ei + ej)/2) for all i 6= j, it
follows that αij ∈ R+, which finishes the proof of the first direction. Concerning
(ii) ⇒ (i), the only condition which is not obvious is positive semidefiniteness of
a on E, which follows exactly as in the proof of Proposition 6.6 in Filipović and
Larsson (2016).
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Proof of Theorem 6.3. As G is polynomial and its martingale problem is well–
posed, the conditions of Lemma 6.1 are satisfied. As in Remark 3.2, we can assume
without loss of generality that µ is compactly supported and all its moments of
order greater or equal two are thus finite. Analogously to (D.1) we set then

pn :=

∫
γn( · , y)µ(dy) and rn :=

∫
ξnν( · , dξ) = λpn (E.6)

for all |n| ≥ 2. Note that pn ∈ Pol|n|(E) for all |n| ≥ 2 by the integrability
conditions on µ. By condition (iv) of Lemma 6.1 we also have that rn ∈ Pol|n|(E)
for all |n| ≥ 3. By Remark 3.4 we know that

λ(x) =

∫
|ξ|4ν(x, dξ)∫
|γ(x, y)|4µ(dy)

1{
∫
|γ(x,y)|4µ(dy)6=0},

and hence condition ν
(
x, (E − x)c

)
= 0 implies that µ can be chosen supported

on (∆d)d and such that

γ(x, y) =
d∑
i=1

(yi − ei)xi µ-a.s.

By definition of affine jump sizes, the measure µ has to be square-integrable.
Concerning the statement on the drift this is a consequence of Lemma 6.1.

Indeed (iv) yields the affine (and thus linear) form of the drift, (ii) leads to∑
j 6=i

(
Bijxj − λ(x)

∫
yjixjµ(dy)

)
≥ 0, x ∈ E ∩ {xi = 0} (E.7)

and finally B>1 = 0 is a consequence of (iii), namely b>1 = 0 for all x ∈ E.
Since condition (E.7) yields

∑
j 6=iBijxj ≥ 0, choosing x = ej we get Bij ≥ 0 for

j 6= i and Bii = −∑j 6=iBji for all i ∈ {1, . . . , d}. We will now consider four
complementary assumptions, which will lead to Type 0 to 3.

Assume that ν(x, dξ) = 0. Then by Lemma 6.1 we can apply Lemma E.3 to
conclude that a satisfies (6.2). This proves that in this case G is an operator of
Type 0.

Assume now that ν(x, dξ) 6= 0 and λ can be chosen to be constant. We
can then without loss of generality set λ = 1. Moreover, since in this case
rei+ej ∈ Pol2(E) for all i, j ∈ {1, . . . , d}, condition (iv) of Lemma 6.1 implies that
the entries diffusion matrix aij ∈ Pol2(E). We can thus conclude as before that
a can be chosen to be of form (6.2). Finally, condition (E.7) can be rewritten as∑

j 6=i
(
Bij−

∫
yjiµ(dy)

)
xj ≥ 0 for all x ∈ E∩{xi = 0}, which yields Bij−

∫
yjiµ(dy)

for all i 6= j. As a result, G is an operator of Type 1.
Assume now that ν(x, dξ) 6= 0 and λ cannot be chosen to be constant. We

already know that λ = p(x)
q(x)

for some p, q ∈ Pol(E). Supposing without loss
of generality that p(x) and q(x) are coprime polynomials, we necessarily have
due to Assumption A that q(x) is a divisor of γi(x, y)3 for each i ∈ {1, . . . , d}
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and µ-a.e. y ∈ (∆d)d. Since γi( · , y) ∈ Pol1(E) µ-a.s., this in turn implies that
γ(x, y) = H(y)P1(x) µ-a.s. with a measurable function H : (∆d)d → Rd and
P1 ∈ Pol1(E).

Choose now i ∈ {1, . . . , d} such that µ
(
Hi(y) 6= 0

)
> 0. By equation (E.6) we

have that

λ(x) =
r3ei(x)

p3ei(x)
=

r3ei(x)(
P1(x)

)3

for some r3ei ∈ Pol3(E), for all x ∈ E \ {P1 = 0}. Since in this case ν(x, dξ) = 0
for all x ∈ E∩{P1 = 0}, we are free to choose λ(x) = 0 on this set. By Lemma 6.1
we also know that r2ei has to be a bounded function on E. Noting that for all
x ∈ E \ {P1 = 0}

r2ei =
r3ei(x)

P1(x)

∫
H2
i (y)µ(dy),

we see that this condition holds true if and only if r3ei(x) = 0 for all x ∈ {P1 = 0}.
Since we know by Lemma E.2 that P1(x) = −cxi + xj for some c ≥ 0, by Lemma
E.1 we thus have that

λ(x) =
q2(x)(
P1(x)

)21{P1 6=0}

for some q2 ∈ Pol2(E). This in particular implies that rek+e` ∈ Pol2(E \{P1 = 0})
and hence, by condition (iv) of Lemma 6.1, ak` ∈ Pol2(E \ {P1 = 0}) for all
k, ` ∈ {1, . . . , d}. By the same condition we also have that for all x ∈ E∩{P1 = 0}

ak`(x) = ak`(x) + rek+e`(x) = lim
z→x

ak`(z) + q2(x)

∫
Hk(y)H`(y)µ(dy), (E.8)

and thus in particular, by positive semidefiniteness of a(x) and condition (ii) of
Lemma 6.1,

aii(x) = lim
z→x

aii(z) = q2(x) = 0 (E.9)

for all x ∈ E ∩ {P1 = 0} ∩ {xi = 0}. Setting ack` ∈ Pol2(E) be such that
ack`|E\{P1=0} = ak`|E\{P1=0}, we obtain that ac := (ack`)k` satisfies the conditions of
Lemma E.3 and thus ac can be chosen to be of the form (6.2). By (E.8) we can
then conclude that

a(x) = ac(x) + q2(x)1{P1=0}

∫
H(y)H(y)>µ(dy).

By Lemma E.2, we know that there are only two complementary choices of H
and P1.

The first choice isH(y) = (yi−ei) and P1(x) = xi for some fixed i ∈ {1, . . . , d}.
Then by (E.9) and Lemma E.1 we have q2(x) = q1(x)xi for some q1 ∈ Pol1(E).
Moreover, using that q1(x) =

∑d
j=1 q1(ej)xj, condition (E.7) can be rewritten as

∑
j 6=k

(
Bkj − q1(ej)1{xi 6=0}

∫
yikµ(dy)

)
xj ≥ 0, x ∈ E ∩ {xk = 0}
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for all k ∈ {1, . . . , d}, which yields (6.5) for all k 6= i and j 6= k. As a result, G is
an operator of Type 2.

The second choice of H and P1 is H(y) = yji (ei − ej) and P1(x) = −cxi + xj
for some i, j ∈ {1, . . . , d} such that i 6= j, where yji ∈ (0, 1

c
∧ 1]. Then by

(E.9) and Lemma E.1 we have q2(x) =
∑d

k=1 qikxixk + qjkxjxk for some qk` ∈ R.
Since condition (E.7) coincides with condition (6.6), we can conclude that G is
an operator of Type 3.
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Chapter III

Probability measure-valued
jump-diffusions

1 Introduction

Probability measure-valued processes have been studied for many years in many
different contexts. Among the most famous ones, one can cite Fleming and Viot
(Fleming and Viot, 1979) who introduced the well–known homonym process, or
Dawson and Watanabe (Watanabe, 1968; Dawson, 1977, 1978): the significance
of their works is reflected in the choice to give their names to the corresponding
superprocesses. After them, a wide theory grew and the field was explored in
many different directions. Among many others, there is a very remarkable col-
lection of lecture notes of the famous summer school in St. Flour by Sznitman,
Dawson, and Perkins (Sznitman, 1991; Dawson, 1993; Perkins, 2002), a deep and
rigorous study done by Ethier and Kurtz (Ethier and Kurtz, 1987, 1993, 2005),
but also the works of many other prominent authors like Etheridge, Hochberg,
Vaillancourt, or Xiong.

As explained in the general introduction, the applications in this respect are
rich and range from population genetics, interacting particle systems, stochastic
partial differential equations, and statistical physics. From a mathematical fin-
ance perspective, one can for instance be interested in modeling high dimensional
financial markets involving many assets in a tractable and robust way. By the
notion of high dimensional financial markets we mean for instance term struc-
tures in fixed income, commodities or electricity markets involving potentially
an uncountably infinite number of assets. But also joint stochastic modeling of
a large finite number of stocks or market capitalizations constituting the major
indices (e.g., 500 in the case of S&P 500) falls in this category. This is an essen-
tial task, in particular in the area of stochastic portfolio theory (Fernholz, 2002;
Fernholz and Karatzas, 2009). Measure-valued processes can serve as universal
models to describe the time evolution of a large number or a continuum of assets,
market weights, zero–coupon bonds, etc. In this way, high dimensionality can be
captured using one measure valued process.

Let us be more precise on this construction: let E be a locally compact
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Polish space and denote by C some finite or infinite subset of bounded continuous
functions. Consider a process X taking values inM+(E), the set of finite, positive
measures on E. Then asset prices (or market capitalizations) can be defined via

Sgt :=

∫
E

g(x)Xt(dx), g ∈ C. (1.1)

Similarly, in the context of stochastic portfolio theory the market weights obtained
from market capitalizations by normalizing with the total market capitalization
can be modeled by

µgt :=

∫
E

g(x)Xt(dx), (1.2)

where now X takes values in M1(E), the set of probability measures on E, and
g is, for instance, an indicator function 1Ak , where (Ak)dk=1 is a partition of E.

The latter example already indicates that a particular relevant subclass are
probability measure-valued processes. Apart from modeling market weights, such
processes can be used to describe the empirical measure of the capitalizations,

1

|C|
∑
g∈C

δSgt . (1.3)

The empirical measure is important for the study of capital distribution curves
(Fernholz, 2002; Shkolnikov, 2013). Analyzing (1.3) as the number |C| of assets
tends to infinity allows to draw conclusions on the shape and fluctuations of the
implied capital distribution curves for large markets.

Another area of mathematical finance which is closely related to probability
measure-valued jump-diffusions is given by mean field games. This field plays an
important and constantly growing role in a wide range of applications. In par-
ticular, examples include models of population growth, computational methods
in probability and stochastic processes (including simulation), genetics and other
stochastic models in biology and the life sciences, stochastic control, stochastic
models in stochastic optimization, stochastic models in the physical sciences (see
e.g. Carmona and Delarue (2017) for theory and applications).

As explained in the introduction, our approach is based on the martingale
problem and consists in directly characterizing the positive maximum principle
of the corresponding generators and in providing some general optimality con-
ditions. Chapter II provides the guidelines needed for doing this in practice.
The present chapter is organized as follows. Section 2 summarizes some nota-
tion and provide the mathematical background needed throughout this chapter
and Chapter IV. Section 3 treats the martingale problem, its connection with
the positive maximum principle in the context of existence of solutions to the
martingale problem. In that section, we also illustrate how some properties of a
jump-diffusion can be read directly from the corresponding generator. Section 4
is concerned with Lévy type operators and Section 5 with optimality conditions
for functions of polynomial argument. The proof of Theorem 4.2 and those of
some technical lemmas are gathered in appendices.
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2 Preliminaries

The aim of this section is to introduce the mathematical background needed
to deal with probability measure-valued jump-diffusions. As explained in the
introduction, we approach this field following the line suggested by Chapter II
and we thus need to understand which notion of polynomial, and more generally
of derivative, is convenient to use. We address this task in Sections 2.2 and 2.3.
In Section 2.4 we study functions of measure argument, whose derivative are
particularly well–behaved.

2.1 Notation

Throughout this chapter E is a locally compact Polish space endowed with its
Borel σ-algebra. We denote by M+(E) the space of all finite measures on E
with the topology of weak convergence. The subset M1(E) ⊆ M+(E) denotes
the set of probability measures, and M(E) = M+(E) − M+(E) the space of
signed measures of bounded variation (i.e., they are of the form ν = ν+−ν− with
ν+, ν− ∈ M+(E)), again topologized by weak convergence. For µ, ν ∈ M(E) we
write µ ≤ ν if ν − µ ∈ M+(E) and |ν| for ν+ + ν−. Moreover, given two Polish
spaces E1 and E2, both endowed with their Borel σ-algebra, some µ ∈ M(E1),
and a measurable map f : E1 → E2, we denote by f∗µ ∈M(E2) the pushforward
of µ with respect to f .

We let C(E) denote the space of all continuous functions f : E → R. The
subscript b (respectively c) indicates that they are also bounded (respectively
have compact support). Both spaces Cb(E) and Cc(E) are given with the to-
pology of uniform convergence and we denote by ‖ · ‖ the supremum norm. If
E is noncompact, we let E∆ = E ∪ {∆} be the one-point compactification (or
Alexandroff compactification) of E. Note that since E is a locally compact Polish
space, E∆ is a compact Polish space. In order to simplify the notation we write
E∆ = E when E is compact. We let C∆(Ek) be the closed subspace of Cb(Ek)
given by

C∆(Ek) :=
{
f |Ek : f ∈ Cb

(
(E∆)k

)}
and let C0(E) denote the subspace of C∆(E) of all continuous functions vanishing
at infinity. Concerning notation, we will switch between C∆(E) and C(E∆) every
time it is needed, which is possible due to their one to one correspondence. For
E compact, we have C(E) = Cb(E) = C∆(E) = C0(E) and we therefore simply
write C(E). Finally, with a small abuse of notation, for p : M(E) → R we
write p ∈ C(M1(E)) if p|M1(E) is continuous with respect to the topology of weak
convergence and p ∈ C(M1(E∆)) if p|M1(E) = p|M1(E) for some continuous map
p : M1(E∆)→ R.

Remark 2.1. For each locally compact Polish space E, the spaces M+(E) and
M1(E) are Polish. This in particular implies that both spaces are metrizable and
thus sequential spaces. If E is also compact, then M+(E) is locally compact and
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M1(E) is a compact. However, if E is noncompact, M1(E) is not even locally
compact.

We let Ĉ∆(Ek) denote the closed subspace of C∆(Ek) consisting of functions f
that are symmetric, i.e., f(x1, . . . , xk) = f(xσ(1), . . . , xσ(k)) for all σ ∈ Σk, where
Σk denotes the permutation group of k elements. Ĉ0(Ek) and Ĉ(Ek) are defined
similarly. For any g ∈ Ĉ∆(Ek), h ∈ Ĉ∆(E`) we denote by g ⊗ h the function in
Ĉ∆(Ek+`) given by

(g ⊗ h)(x1, . . . , xk+`)

=
1

(k + `)!

∑
σ∈Σk+`

g
(
xσ(1), . . . , xσ(k)

)
h
(
xσ(k+1), . . . , xσ(k+`)

)
. (2.1)

Moreover, for a linear subspaceD ⊆ C∆(E) we setD⊗D := span{g⊗g : g ∈ D}.
For any sufficiently differentiable function g : Rd → R we write ∇g for the

gradient of g and ∇2g for the Hessian of g. If d = 1, we simplify the notation
by setting g′ := ∇g and g′′ := ∇2g. By convention we set ∇g(∆) = 0 and
∇2g(∆) = 0. Finally, given E ⊆ Rd and n ∈ N ∪ {∞}, we denote by Cn

∆(E) the
space of all f ∈ C∆(E) such that f = g|E for some g : Rd → R n-times continuous
differentiable. Cn

c (E) and Cn(E) are defined analogously.

2.2 Differentiation for functions of measure argument

Following the classical literature, we will use a notion of derivative which is well–
known since the work of Fleming and Viot (1979).

Fix x ∈ E. If p : M(E) → R is any function, we say that p is differentiable
at µ in direction δx if

∂xp(µ) := lim
ε→0

p(µ+ εδx)− p(µ)

ε

exists. We then write ∂p(µ) for the map x 7→ ∂xp(µ) and we use the notation

∂kx1,...,xk
p(µ) := ∂x1 · · · ∂xkp(µ)

for iterated derivatives, writing ∂kp(µ) for the corresponding map. Observe that
for p(µ) =

∫
g(x)µ(dx) for some g ∈ C∆(E) we get

∂xp(µ) = lim
ε→0

∫
g(y)εδx(dy)

ε
= g(x).

2.3 Monomials and polynomials of measure argument

The compactness explained in Remark 2.1 justify the use of a class of polynomial
of measure arguments. As in the finite dimensional setting, we can use the Stone–
Weierstrass’s theorem to prove the density of this class in the space of continuous
function (see Lemma 2.8(iii) later for more details).
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A monomial on M(E) is an expression of the form

〈g, νk〉 :=

∫
Ek
g(x1, . . . , xk)ν(dx1) · · · ν(dxk)

for some k ∈ N0, where g ∈ Ĉ∆(Ek) is referred to as the coefficient of the
monomial. We identify Ĉ∆(E0) with R, so that for k = 0 we have 〈g, ν0〉 = g ∈ R.
If g is not the zero function, then k is called the degree of 〈g, νk〉. If g is the zero
function, the degree is defined to be −∞. It is clear that the map ν 7→ 〈g, νk〉 is
homogeneous of degree k, and that g 7→ 〈g, νk〉 is linear. Furthermore, one has
the identity 〈g, νk〉〈h, ν`〉 = 〈g ⊗ h, νk+`〉, where the symmetric tensor product
g⊗h is defined in (2.1). A polynomial onM(E) is now defined as a (finite) linear
combination of monomials,

p(ν) =
m∑
k=0

〈gk, νk〉, (2.2)

with coefficients gk ∈ Ĉ∆(Ek). The degree of the polynomial p(ν), denoted by
deg(p), is the largest k such that gk is not the zero function. The representa-
tion (2.2) is unique; see Corollary 2.5 below.

Example 2.2. Let E = {1, . . . , d} be a finite set. Then every element ν ∈M(E)
is of the form

ν = z1δ1 + · · ·+ zdδd, (z1, . . . , zd) ∈ Rd,

where δi is the Dirac mass concentrated at {i}. Monomials take the form

〈g, νk〉 =
∑
i1,...,ik

g(i1, . . . , ik) zi1 · · · zik ,

where the summation ranges over Ek = {1, . . . , d}k. Therefore, as g ranges over
all symmetric functions on Ek, we recover all homogeneous polynomials of total
degree k in the d variables z1, . . . , zd. In particular, in view of Corollary 2.6 later,
this relation provides a one to one correspondence between polynomials on the
unit simplex ∆d, namely the set

∆d :=
{
z ∈ Rd :

d∑
i=1

zi = 1, zi ≥ 0
}

defined in Section II.6, and polynomials on M1(E).

We will usually think of a polynomial on M(E) as the map it induces. We
are then led to consider the following function spaces.

Definition 2.3. The set

P := {ν 7→ p(ν) : p is a polynomial on M(E)}

denotes the algebra of all polynomials on M(E) regarded as real-valued maps,
equipped with pointwise addition and multiplication.
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Just like ordinary polynomials, the elements of P are smooth. This is made
precise in the next lemma.

Lemma 2.4. (i) Each p ∈ P is sequentially continuous (on M(E)) and con-
tinuous onM+(E). In particular, every polynomial is continuous onM1(E).
Moreover, each p ∈ P can be uniquely extended to a polynomial on M(E∆).

(ii) Let p ∈ P be a monomial of the form p(ν) = 〈g, νk〉. Then, for every x ∈ E
and ν ∈M(E),

∂xp(ν) = k〈g( · , x), νk−1〉,
where g( · , x) ∈ Ĉ∆(Ek−1) is the map (x1, . . . , xk−1) 7→ g(x1, . . . , xk−1, x).
If k = 0, the right-hand side should be read as zero.

(iii) For each p ∈ P and x ∈ E the map ∂xp : ν 7→ ∂xp(ν) lies in P .

(iv) For each p ∈ P and ν ∈M(E), the map ∂p(ν) : x 7→ ∂xp(ν) lies in C∆(E).

(v) The identity
∂x(pq)(ν) = p(ν)∂xq(ν) + q(ν)∂xp(ν)

holds for all p, q ∈ P , x ∈ E, ν ∈M(E).

(vi) The Taylor representation

p(ν + µ) =
k∑
`=0

1

`!
〈∂`p(ν), µ`〉,

holds for all p ∈ P and ν, µ ∈M(E), where k denotes the degree of p.

Proof. (i): For h ∈ C∆(E)⊗k we can write h =
∑L

`=1 λ`h
⊗k
` for some h` ∈ C∆(E)

and λ` ∈ R. Since 〈h`, ν〉 is continuous by definition of weak convergence,

〈h, νk〉 =
L∑
`=1

λ`〈h⊗k` , νk〉 =
L∑
`=1

λ`〈h`, ν〉k

is continuous as well. Note then that by linearity in (2.2) it is enough to prove
the result for p(ν) = 〈g, νk〉 and g ∈ Ĉ∆(Ek). Choose h ∈ C∆(E)⊗k such that
‖g − h‖ ≤ ε and let νn ∈M(E) converge weakly to ν ∈M(E). Observe that, by
Banach–Steinhaus theorem, supn |νn|(E) <∞. Then∣∣〈g, νkn〉 − 〈g, νk〉∣∣ ≤ ∣∣〈h, νkn〉 − 〈h, νk〉∣∣+ ε

(
sup
n
|νn|(E)k + |ν|(E)k

) n→∞−−−→ Cε

for some C ≥ 0. Since ε is arbitrary, this proves sequential continuity of p
on M(E). Finally, since by Remark 2.1 M+(E) is a Polish space and thus a
sequential space, we can conclude that p is continuous on M+(E). The last
part follows from the observation that every function in C∆(Ek) can be uniquely
extended to a function in C((E∆)k).
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(ii): A direct calculation yields

p(ν + εδx)− p(ν) =

∫
g(x1, . . . , xk)

(
k∏
i=1

(ν + εδx)(dxi)−
k∏
i=1

ν(dxi)

)

= ε

k∑
i=1

∫
g(x1, . . . , xk)δx(dxi)

∏
j 6=i

ν(dxj) +O(ε2)

= εk

∫
g(x1, . . . , xk−1, x)

k−1∏
j=1

ν(dxj) + o(ε),

using the symmetry of g in the last equality. The expression for ∂xp(ν) follows.
For the remaining part of the proof it suffices to consider monomials p(ν) =

〈g, νk〉 for g ∈ Ĉ∆(Ek) due to the linearity in (2.2).
(iii): Fix x ∈ E and note that kg( · , x) ∈ Ĉ∆(Ek−1). The claim follows by (ii).
(iv): For p(ν) = 〈g, νk〉 we have

|∂xp(ν)| = |〈kg( · , x), νk−1〉| ≤ k‖g‖|ν|(E)k−1 <∞.

Continuity of x 7→ ∂xp(ν) follows from the dominated convergence theorem and
the fact that E is Polish, and thus a sequential space.

(v): For monomials p(ν) = 〈g, νk〉 and q(ν) = 〈h, ν`〉, we have pq(ν) =
〈g ⊗ h, νk+`〉. We can then compute

∂xpq(ν) = k〈g( · , x), νk−1〉〈h, ν`〉+ `〈g, νk〉〈h( · , x), ν`−1〉
= p(ν)∂xq(ν) + q(ν)∂xp(ν)

for all x ∈ E and ν ∈M(E).
(vi): Observing that for p(ν) = 〈g, νk〉 it holds

p(ν + µ) =
k∑
`=0

(
k

`

)∫
g(x1, . . . , xk)

k∏
i=`+1

ν(dxi)
∏̀
i=1

µ(dxi)

the result follows by (ii).

From Lemma 2.4(ii) one can deduce the uniqueness of the representation (2.2).

Corollary 2.5. Suppose p(ν) =
∑m

k=0〈gk, νk〉 equals zero for all ν ∈M(E). Then
gk = 0 for all k.

Proof. Let x1, . . . , xm ∈ E be arbitrary and note that differentiating m times
using Lemma 2.4(ii) we get m!gm(x1, . . . , xm) = ∂x1x2···xmp(ν) = 0. Thus gm = 0.
Now repeat this successively for gm−1, gm−2, . . ., g0.

The next property is particularly useful in the context of probability measure-
valued polynomial jump-diffusions (see Remark IV.2.6 later). In the finite-dimensional
setting, the result states that every polynomial on the unit simplex has a homo-
geneous representative.
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Corollary 2.6. Every polynomial on M(E) has a unique homogeneous repres-
entative on M1(E). That is, for every p ∈ P with deg(p) ≤ k there is a unique
g ∈ Ĉ∆(Ek) such that

p(ν) = 〈g, νk〉 for all ν ∈M1(E).

Proof. Corollary 2.5 yields a unique set of coefficients g0, . . . , gk with g` ∈ Ĉ∆(E`)
and p(ν) =

∑k
`=0〈g`, ν`〉. The result follows by setting g :=

∑k
`=0 g`⊗1⊗(k−`).

Remark 2.7. If we choose to work with coefficients in Ĉ0(Ek) instead of Ĉ∆(Ek)
we would obtain the same class of polynomials on M1(E). This is because every
g ∈ Ĉ∆(Ek) equals

∑k
i=0 gi⊗1⊗(k−i) for some gi ∈ Ĉ0(Ei), and therefore 〈g, νk〉 =∑k

i=0〈gi, νi〉 for all ν ∈M1(E). Indeed, the gi are given iteratively by

g0 := g(∆, . . . ,∆) and gi :=

(
k

i

)(
g(∆, . . . ,∆, · )−

i−1∑
j=0

gj ⊗ 1⊗(i−j)
)
.

However, not every such polynomial admits a homogenous representative onM1(E)
in the sense of Corollary 2.6, unless E is compact. An example is 1 + 〈g, ν〉
with g ∈ C0(E) nonzero. The existence of homogeneous representatives leads to
significant notational simplifications in the context of probability measure-valued
polynomial diffusions. This is the main reason for working with the space C∆(E)
instead of C0(E).

2.4 Cylindrical functions and cylindrical polynomials

As we saw in Lemma 2.4(iv), derivatives of polynomials inherit continuity from
their coefficients, but additional regularity is sometimes needed. This leads us to
consider subspaces of polynomials whose coefficients are sufficiently nice.

More precisely, let D ⊆ C∆(E) be a dense linear subspace containing the
constant function 1 and for all n ∈ N let Cn,D denote the space of functions on
M(E) defined by

Cn,D :=
{
µ 7→ φ(〈g1, µ〉, . . . , 〈gk, µ〉) : k ∈ N, g1, . . . , gk ∈ D,φ ∈ Cn(Rk)

}
.

We call this space the space of cylindrical functions. The space of cylindrical
polynomials with coefficients in D is then the subspace of Cn,D given by

PD := span
{

1, µ 7→ 〈g, µ〉k : k ∈ N, g ∈ D
}
. (2.3)

Thus PD is the subalgebra of P consisting of all (finite) linear combinations of
the constant polynomial and “rank-one” monomials 〈g⊗· · ·⊗g, νk〉 = 〈g, ν〉k with
g ∈ D. Equivalently, PD consists of all polynomials p(ν) = φ(〈g1, ν〉, . . . , 〈gk, ν〉)
with k ∈ N, g1, . . . , gk ∈ D, and φ a polynomial on Rk.

The next lemma refines the properties given in Lemma 2.4. In order to simplify
the notation, for φ ∈ Cn(Rk) we write φi1,...,in for dn

dxi1 ···dxin
φ.
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Lemma 2.8. (i) Fix φ ∈ Cn(Rk) and g1, . . . , gk ∈ D. Then p ∈ Cn,D given by

p(µ) = φ(〈g1, µ〉, . . . , 〈gk, µ〉) (2.4)

is n-times differentiable at µ in direction δx for each µ ∈M(E) and x ∈ E.
Moreover, for all x1, . . . , xn ∈ E

∂nx1,...,xn
p(µ) =

k∑
i1,...,in=1

gi1(x1) · · · gin(xn)φi1,...,in
(
〈g1, µ〉, . . . , 〈gk, µ〉

)
.

This in particular yields

∂xp(µ) = ∇φ
(
〈g1, µ〉, . . . , 〈gk, µ〉

)
(g1(x), . . . , gk(x))>

for all x ∈ E and, whenever n ≥ 2,

∂2
xyp(µ) = (g1(y), . . . , gk(y))∇2φ

(
〈g1, µ〉, . . . , 〈gk, µ〉

)
(g1(x), . . . , gk(x))>,

for all x, y ∈ E.
(ii) For p ∈ Cn,D and µ ∈M(E), we have ∂kp(µ) ∈ D⊗k for all k ∈ {1, . . . , n}.

In particular, each p ∈ PD is infinitely differentiable and ∂kp(µ) ∈ D⊗k.
(iii) PD, adequately extended and restricted, is a dense subset of the space of

continuous functions on M1(E∆).

(iv) For all ν, µ ∈M(E), the Taylor approximation

p(µ+ εν) =
n∑
`=0

ε`

`!

〈
∂`p(µ), ν`

〉
+ o(εn)

holds for all p ∈ Cn,D.

(v) Let p be as in (2.4) for some differentiable function φ : Rk → R. Then

∂νp(µ) := lim
ε→0

p(µ+ εν)− p(µ)

ε
= 〈∂p(µ), ν〉.

For those functions, the map ν 7→ ∂νp(µ) thus coincides with the Fréchet
derivative of p at µ. This is in particular the case for all p ∈ C1,D.

Proof. (i) For each ν ∈ M(E) set vν := (〈g1, ν〉, . . . , 〈gk, ν〉)>. Noting that for
each i ∈ {1, . . . , k} it holds 〈gi, µ+ εδx〉 = 〈gi, µ〉+ ε〈gi, δx〉, differentiability of φ
yields

∂xp(µ) = lim
ε→0

φ(vµ + εvδx)− φ(vµ)

ε
= ∇φ(vµ)v>δx

= ∇φ
(
〈g1, µ〉, . . . , 〈gk, µ〉

)
(g1(x), . . . , gk(x))>.

The conclusion for higher order derivatives follows similarly.
(ii) Follows by (i) and the regularity of the coefficients g1, . . . , gk.
(iii) Continuity of polynomials follows by Lemma 2.4(i). Stone–Weierstrass

and the fact that D is densely contained in C(E∆) yield the density.
(iv) Similarly to (i), the result follows by noting that p(µ+ εν) = φ(vµ + εvν)

and applying the classical Taylor approximation theorem.
(v) Follows by (iv).
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3 The martingale problem

Again, let E be a locally compact Polish space and D ⊆ C∆(E) be a dense linear
subspace. Since we are not interested in reducing the generality at this point, we
consider a linear operator

L : PD → F (M(E))

where F (M(E)) denotes the set of all real-valued functions on M(E). Fix S ⊆
M(E) and let Sτ be the topological space of S endowed with a topology τ . We
assume that Lp|S are continuous (with respect to τ) for all p ∈ PD.

Definition 3.1. (i) Let X be an S-valued process defined on some filtered prob-
ability space (Ω,F , (Ft)t≥0,P) and suppose that X has càdlàg paths with
respect to τ . Then X is called conservative Sτ -solution (or simply Sτ -
solution) to the martingale problem for L with initial condition µ ∈ S if
X0 = µ P-a.s. and

Np
t = p(Xt)− p(X0)−

∫ t

0

Lp(Xs)ds (3.1)

defines a local martingale for every p ∈ PD. Uniqueness of solutions of the
martingale problem is always understood in the sense of law. The martingale
problem for L is well–posed if for every µ ∈ S there exists a unique Sτ -
solution to the martingale problem for L with initial condition µ.

(ii) More generally, let µ† denote an isolated point playing the role of a cemetery
state. Define (L†p)|S := L((p − p(µ†))|S) and L†p(µ†) = 0 for all p :
S ∪ {µ†} → R such that p|S ∈ PD. Then, any (S ∪ {µ†})τ -solution to the
martingale problem for L† with initial condition µ ∈ S is called possibly
killed Sτ -solution to the martingale problem for L with initial condition µ.1

Remark 3.2. Observe that since L†p(µ†) = 0 for all p : S ∪ {µ†} → R, once the
corresponding possibly killed solution X reaches µ† it stays there forever. In this
case, we say that the solution is killed. If on the contrary X is S-valued, one can
easily verify that it is also a conservative Sτ -solution.

It is interesting to note that in most of the applications Lp|S is bounded for
every p ∈ PD. This implies that for any solution X to the martingale problem
for L and any p ∈ PD, the process Np is a bounded local martingale on [0, T ],
and thus a true martingale. This in particular yields

E[p(Xt)] = E
[
p(X0) +

∫ t

0

Lp(Xs)ds

]
.

The notion of M1(E)-solution permits us to introduce the object that the title of
the thesis refers to.

1With (S ∪ {µ†})τ we indicate the topological space of S ∪ {µ†} endowed with the topology
given by {U ⊆ S ∪ {µ†} : U \ {µ†} ∈ τ}.
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Definition 3.3. An M1(E)-solution X to the martingale problem for a linear op-
erator L : PD → C(M1(E)) is called probability measure-valued jump-diffusion.

If 〈g,X〉 is a real valued martingale for all g ∈ D, then X is called probability
measure-valued martingale.

Probability measure-valued martingales are particularly interesting for applic-
ations in mathematical finance, see for instance Beiglböck et al. (2017).

3.1 The positive maximum principle

We introduce now the main tool of this chapter. The power behind this concept
is given by Lemma 3.5 and Lemma 3.6.

Definition 3.4. Fix µ ∈M(E). Then L is said to satisfy the positive maximum
principle on S at µ if

p ∈ PD, sup
S
p = p(µ) ≥ 0 ⇒ Lp(µ) ≤ 0.

If this holds for all µ ∈ S, then L is said to satisfy the positive maximum principle
on S.

The next two lemmas illustrate how the positive maximum principle is essen-
tially equivalent to the existence of a (possibly killed) solution to the martingale
problem for L for all initial conditions. The proof of Lemma 3.5 is standard and
we thus omit it. See for instance the proof of Lemma 2.3 in Filipović and Larsson
(2016).

Lemma 3.5. Let L : PD → C(M1(E)) be a linear operator, fix µ ∈ M1(E) and
suppose that there exists a (possibly killed) M1(E)-solution X to the martingale
problem for L with initial condition µ. Then L satisfies the positive maximum
principle on M1(E) at µ. If X is conservative, then L1 = 0.

The next lemma is an adaptation of a classical result from Ethier and Kurtz
(2005). For the application of this result it is crucial for L to be an operator on the
space of continuous functions on a locally compact, separable, metrizable space.
Since this is not the case of M1(E) for E noncompact, we need to go around this
problem. The principle is simple. Instead of working with M1(E) we first accept
the possibility that the total mass of the solution to the corresponding martingale
problem is not preserved. Mathematically, this can be achieved by working with
M1(E∆)-valued processes, where E∆ denotes the one-point compactification of
E. Since E is a locally compact Polish space, E∆ is a compact Polish space and
M1(E∆) is a compact Polish space with respect to the corresponding topology
of weak convergence (see Remark 2.1). The result of Ethier and Kurtz (2005)
can then be applied and we just have to check that if the initial condition of an
M1(E∆)-solution X assigns mass 1 to E, then Xt(E) = 1 almost surely for each
t ≥ 0.

From a technical point of view, we need now to guarantee that L can be
seen as an operator acting on continuous functions on M(E∆). Observe that by
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Lemma 2.4(i) every polynomial on M(E) can be uniquely extended to a polyno-
mial on M(E∆). If we also have that Lp has a continuous extension to M1(E∆),
we can then view the operator L as an operator acting on continuous functions
on M1(E∆). This is in particular the case if Lp ∈ P for all p ∈ PD. Recall that
for p ∈ F (M(E)) we write p ∈ C(M1(E∆)) if

p|M1(E) = p|M1(E)

for some continuous map p : M1(E∆)→ R.

Lemma 3.6. Let L : PD → C(M1(E∆)) be a linear operator satisfying the
positive maximum principle on M1(E∆). Then, there exists a (possibly killed)
M1(E∆)-solution to the martingale problem for L for each initial condition µ ∈
M1(E). If L1 = 0, then every possibly killed M1(E∆)-solution is conservative.

Suppose in addition that there exists a sequence (gn)n∈N ⊆ D ∩ C0(E) such
that setting pn(µ) = 〈gn, µ〉 it holds

lim
n→∞

gn = 1, and lim
n→∞

(Lpn)− = 0 (3.2)

bounded pointwise on E and M1(E∆), respectively. Then, every M1(E∆)-solution
with initial condition µ ∈M1(E) is also an M1(E)-solution.2

Proof. The first part of the result is a consequence of Theorem 4.5.4 in Ethier
and Kurtz (2005) and the successive Remark 4.5.5. We now explain how the
necessary conditions hold true. By Remark 2.1 and Lemma 2.8(iii) we know that
M1(E∆) is a compact separable metrizable space and

PD(M1(E∆)) := {p|M1(E∆) : p ∈ PD}

is a dense subset of the space of continuous functions on M1(E∆). Moreover, the
positive maximum principle implies that Lp|M1(E∆) = Lq|M1(E∆) for all p, q ∈ PD

such that p|M1(E∆) = q|M1(E∆). We may thus regard L as an operator on the space
of continuous functions on M1(E∆) with domain PD(M1(E∆)).

For the second part, observe that by the dominated convergence theorem,
(3.1), and Fatou’s lemma we can compute

E[Xt(E)] = lim
n→∞

E[〈gn, Xt〉] = lim
n→∞

(
〈gn, µ〉+ E

[ ∫ t

0

Lpn(Xs)ds

])
≥ µ(E) = 1.

Finally, note that a càdlàg processX onM1(E∆) such thatXt(E) = 1 almost sure
is càdlàg also with respect to the topology of weak convergence on M1(E).

Clearly, it would be nice if the conditions of Lemma 3.6 could be expressed
in terms of M1(E) instead of M1(E∆). Even if this is not possible in general, we
provide now a result connecting the positive maximum principle on M1(E) with
the positive maximum principle on M1(E∆).

2More precisely, every M1(E
∆)-solution X with initial condition µ ∈ M1(E

∆) such that
µ(E) = 1, satisfies Xt(E) = 1 almost surely for all t ≥ 0. Moreover, the paths of the solution
are càdlàg with respect to the topology of weak convergence on M1(E).
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Lemma 3.7. Suppose that E is noncompact.

(i) Fix µ ∈M1(E). Then L satisfies the positive maximum principle on M1(E)
at µ if and only if it does so on M1(E∆) at µ.

(ii) Suppose that D ⊆ R + Cc(E) and Lp ∈ C(M1(E∆)) for all p ∈ D. Then L
satisfies the positive maximum principle on M1(E) if and only if it does so
on M1(E∆).

Proof. (i) Note that the closure of M1(E) with respect to the topology of weak
convergence onM1(E∆) is given byM1(E∆). Combined with Lemma 2.8(iii) this
implies that supM1(E) p = maxM1(E∆) p for all p ∈ PD and the result follows.

(ii) Let L satisfy the positive maximum principle on M1(E). Fix µ ∈M1(E∆)
and p ∈ PD such that p(µ) = maxM1(E∆) p ≥ 0. Note that for |x| big enough

p
(
µ+ µ({∆})(δx − δ∆)

)
= p(µ) = max

M1(E∆)
p ≥ 0

and hence, by the first part and the positive maximum principle on M1(E),
Lp
(
µ + µ({∆})(δx − δ∆)

)
≤ 0. Letting |x| go to infinity, the continuity of Lp

yields Lp(µ) ≤ 0. The converse implication follows by (i).

3.2 Properties of M1(E)-solution

The same principle behind condition (3.2) can be used to investigate other prop-
erties of a solution to the martingale problem. As illustrative examples, we
present now sufficient conditions for the so–called support containment condi-
tion (item (i)), for guaranteeing that a given solution is not absolutely continuous
(item (ii)), and for the invariance of the Wasserstein space (items (iii) and (iv)). It
will be clear to the reader that the same method can be used for the investigation
of many other properties of a solution.

Lemma 3.8. Let L : PD → C(M1(E∆)) be a linear operator satisfying the
positive maximum principle on M1(E∆) and let X be an M1(E)-solution on
(Ω,F , (Ft)t≥0,P) to the corresponding martingale problem with initial condition
µ ∈M1(E).

(i) Fix an arbitrary subset A ⊆ E and suppose that there exists a sequence
(gn)n∈N ⊆ D such that setting pn(ν) := 〈gn, ν〉 it holds

lim
n→∞

gn = 1A, and lim
n→∞

(Lpn)− = 0

bounded pointwise on E and M1(E), respectively. Then, µ(A) = 1 yields
Xt(A) = 1 a.s. for all t ≥ 0.

(ii) Suppose that there exists a sequence (gn)n∈N ⊆ D ⊗ D such that setting
pn(ν) := 〈gn, ν2〉 it holds

lim
n→∞

gn(x, y) = 1{x=y}, and lim
n→∞

(Lpn)− = 0
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bounded pointwise on E × E and on M1(E), respectively. Then,

lim
n→∞

(
L(pn)(µ)

)−
> 0

yields Xt not absolutely continuous with positive probability, for all t > 0.
More precisely, in this case for each t > 0 there is a positive probability that
Xt has at least one atom.

(iii) Suppose that E ⊆ Rd and let D ⊆ R + Cc(E). Consider an increasing
function ψ ∈ C∞(R+) such that

0 ≤ ψ(x) ≤ C(1 + x)

for some C ∈ R+ and limx→∞ ψ(x) =∞. Fix also mp ∈ C∞(Rd) such that
mp(x) = |x|p for |x| big enough. Suppose that there exists a nonnegative
increasing sequence (gn)n∈N ⊆ D converging to mp on E and such that for
pn(ν) := ψ(〈gn, ν〉) it holds

sup
n

sup
M1(E)

(Lpn)+ <∞.

Then 〈| · |p, µ〉 <∞ yields 〈| · |p, Xt〉 <∞ a.s. for all t ≥ 0.

(iv) Let E and D be as in (iii), and suppose that (Ft)t≥0 is right continuous and
complete. Then if (iii) is true for some ψ being also strictly increasing and

sup
n

sup
M1(E)

|Lpn| <∞,

the process X has a càdlàg modification with respect to the p-Wasserstein
distance.

Proof. (i) By the dominated convergence theorem, (3.1), and Fatou’s lemma we
compute

E[Xt(A)] = lim
n→∞

E[〈gn, Xt〉] = lim
n→∞

(
〈gn, µ〉+ E

[ ∫ t

0

Lpn(Xs)ds

])
≥ µ(A) = 1.

(ii) First observe that for each measure ν ∈ M1(E) it holds
∑

x∈E ν({x})2 =
〈1{x=y}, ν

2〉. By the dominated convergence theorem, (3.1), and Fatou’s lemma
we then compute

E
[∑
x∈E

Xt({x})2
]

= lim
n→∞

E[〈gn, X2
t 〉] = lim

n→∞

(
〈gn, µ2〉+ E

[ ∫ t

0

Lpn(Xs)ds

])
> 0.

(iii) By the monotone convergence theorem, (3.1), and Fatou’s lemma we
compute

0 ≤ E[ψ(〈mp, Xt〉)] = lim
n→∞

E[pn(Xt)] = lim
n→∞

(
pn(µ) + E

[ ∫ t

0

Lpn(Xs)ds

])
≤ ψ(〈mp, µ〉) + t sup

n

∥∥(Lpn)+
∥∥ <∞,
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proving that ψ(〈mp, Xt〉), and thus 〈| · |p, Xt〉, is finite P-a.s.
(iv) Since we already know that X has càdlàg paths with respect to the topo-

logy of weak convergence, it suffices to show that (〈mp, Xt〉)t≥0 has càdlàg paths.
Since ψ is strictly increasing, this can be proved by showing that (ψ(〈mp, Xt〉))t≥0

has càdlàg paths. First note that setting L(ψ(〈mp, · 〉))(ν) := lim supn→∞ Lpn(ν)
and

Mt := ψ(〈mp, Xt〉)−
∫ t

0

L(ψ(〈mp, · 〉))(Xs)ds,

monotone convergence theorem and dominated convergence theorem yield

E[Mt −Ms|Fs] = lim
n→∞

E
[
ψ(〈gn, Xt〉)− ψ(〈gn, Xs〉)−

∫ t

s

Lpn(Xu)du
∣∣∣Fs] = 0.

Since, as a by–product of the proof of (ii), we already know that Mt is integrable,
this proves that M is a martingale. By Theorem 2.2.9 in Revuz and Yor (1999)
we can then conclude that Mt, and thus 〈mp, Xt〉, has a càdlàg modification.

The Fleming–Viot diffusion was introduced by Fleming and Viot (1979) and
subsequently studied by several other authors. It can be defined as the M1(R)-
solution to the martingale problem for L : PD → P given by

Lp(ν) =

∫
E

B(∂p(ν))(x)ν(dx)+
1

2

∫
E2

∂2
xyp(ν)ν(dx)(δx(dy)−ν(dy)), ν ∈M1(E),

where D = C2
∆(R) and Bg(x) = 1

2
σ2g′′(x) for some σ > 0. It is well–known,

see for instance Konno and Shiga (1988), that it takes values among absolutely
continuous probability measures. In the next example, we show that choosing
σ = 0 this property is not satisfied anymore.

Example 3.9 (Fleming–Viot martingale). Fix σ = 0 such that L can be rewritten
as Lp(ν) = 〈Q(∂2p(ν)), ν2〉 for Qg(x, y) = 1

2
(g(x, x) + g(y, y)− 2g(x, y)). Choose

an arbitrary sequence (gn)n∈N ⊆ C∞c (R) ⊗ C∞c (R) converging bounded pointwise
on R2 to 1{x=y}. Setting pn(ν) := 〈gn, ν2〉, the boundedness of Q yields

lim
n→∞

Lpn(ν) = 〈1{x 6=y}, ν2〉,

bounded pointwise onM1(R). By Lemma 3.8(ii) we can conclude that anyM1(R)-
solution X of the corresponding martingale problem has at least an atom with
positive probability for each positive time. More precisely, noting that

E[〈1{x=y}, X
2
t 〉] = E[〈1{x=y}, X

2
0 〉] +

∫ t

0

1− E[〈1{x=y}, X
2
s 〉]ds,

we can conclude that if the initial condition is free of atoms, then

E
[∑
x∈R

Xt({x})2
]

= E[〈1{x=y}, X
2
t 〉] = 1− e−t.

This in particular shows that for t going to infinity Xt converges to a Dirac
measure.
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3.3 Continuity of M1(E)-solutions

The operator L also contains information about path continuity of corresponding
M1(E)-solutions to the martingale problem. As in Bakry and Émery (1985), we
now introduce the two central notions to formulate this more precisely.

Definition 3.10. The carré-du-champ operator of L is the symmetric bilinear
map Γ: PD × PD → F (M(E)) defined by

Γ(p, q) = L(pq)− pLq − qLp. (3.3)

For S ⊆M(E), we say that a symmetric bilinear map Γ: PD ×PD → F (M(E))
is an S-derivation if

Γ(pq, r) = pΓ(q, r) + qΓ(p, r) on S

for all p, q, r ∈ PD.

The next lemma states, roughly speaking, that path continuity for a jump-
diffusion corresponding to L holds precisely when the carré-du-champ operator
of L is a derivation.

Lemma 3.11. Let L : PD → C(M1(E)) be a linear operator. If the carré-du-
champ operator Γ of L is an M1(E)-derivation, then any M1(E)-solution to the
martingale problem for L has continuous paths. Conversely, if for every initial
condition ν ∈M1(E) there is an M1(E)-solution to the martingale problem for L
with continuous paths, then the carré-du-champ operator Γ associated to L is an
M1(E)-derivation.

Proof. Let X be anM1(E)-solution to the martingale problem for L. By Propos-
ition 2 in Bakry and Émery (1985), the real-valued process p(X) is continuous for
every p ∈ PD, in particular for every linear monomial p(ν) = 〈h, ν〉 with h ∈ D.
Choose any g ∈ C∆(E) and ε > 0. Since D is dense in C∆(E) there is h ∈ D
such that ‖g − h‖ ≤ ε. Therefore,

lim
s→t
|〈g,Xs〉 − 〈g,Xt〉| ≤ ε+ lim

s→t
|〈h,Xs〉 − 〈h,Xt〉| = ε.

Since ε > 0 was arbitrary, lims→t〈g,Xs〉 = 〈g,Xt〉. In particular Xt(E) = 1 =
lims→tXs(E), and we deduce that X is continuous with respect to the topology
of weak convergence on M1(E).

Conversely, if X is an M1(E)-solution to the martingale problem for L with
continuous paths, then, by Lemma 2.4(i), the map t 7→ p(Xt) is continuous for all
p ∈ PD. The result now follows by Proposition 1 in Bakry and Émery (1985).

4 Lévy type operators

Let E ⊆ Rd be a closed set. As explained in Remark 2.7, the class of polynomials
on M1(E) with coefficients in Ĉ∆(Ek) coincides with the class of polynomials
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on M1(E) with coefficients in Ĉ0(Ek). Till now, we always worked with C∆(E)
since this space is more suitable for the study of polynomial jump-diffusions.
However, for the content of this section, choosing C0(E) as space of coefficients
is more convenient. The main advantage in this framework is that a polynomial
extension fromM1(E) toM1(E∆) coincides with its extension fromM1(E) to the
set of subprobabilities on E, denoted M≤1(E). More precisely, for g ∈ C0(E) and
µ ∈M≤1(E) we have that

〈g, µ+ (1− µ(E))δ∆〉 := lim
|x|→∞

〈g, µ+ (1− µ(E))δx〉

= 〈g, µ〉+ (1− µ(E)) lim
|x|→∞

g(x) = 〈g, µ〉,

and thus similarly for D ⊆ C0(E) and p ∈ PD we get

p(µ+ (1− µ(E))δ∆) = p(µ).

This in particular implies that a linear operator L : PD → F (M(E)) for D ⊆
C0(E) satisfies the positive maximum principle on M1(E∆) is and only if it does
so on M≤1(E).

Because of those considerations and also considering Lemma 3.7(ii), in this
section we decided to work with

P∞c (Rd) := span{ν 7→ 〈g, ν〉k : g ∈ C∞c (Rd), k ∈ N0}.

Observe that the name of the set is mnemonic for the space C∞c (Rd) of coeffi-
cients. In this framework, we denote by M v

≤1(E) the space of subprobabilities
on E endowed with the topology of vague convergence.3 Note that, as M1(E∆),
M v
≤1(E) is a locally compact Polish space.
Consider a linear operator L : PD → F (M(E)). As in the finite dimensional

case, the positive maximum principle imposes some structure to the operator L
(see e.g. Courrège (1965), Section 2.2 in Hoh (1998), but also Theorem II.2.8 for
operators on functions of E-arguments, where E is a compact subset of Rd).

Definition 4.1. Fix µ ∈M≤1(E). The operator L is said to be of Lévy type at
µ if the operator mapping P∞c (Rd) to R given by p 7→ Lp(µ) can be represented
as

Lp(µ) = −Γ(µ)p(µ) +B(∂p(µ), µ)

+
1

2
Q(∂2p(µ), µ) +

∫
p(ξ)− p(µ)− 〈∂p(µ), ξ − µ〉N(µ, dξ),

(4.1)

where the quadruplet
(
Γ(µ), B( · , µ), Q( · , µ), N(µ, · )

)
consists of some constant

Γ(µ) ∈ R+, some linear operators

B( · , µ) : C∞c (Rd)→ R, and Q( · , µ) : C∞c (Rd)⊗ C∞c (Rd)→ R,
3Recall that a sequence (µn)n∈N ⊆M(E) is said to converge vaguely to µ ∈M(E) if 〈g, µn〉

converges to 〈g, µ〉 for all g ∈ Cc(Rd).
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and some (positive) measure N(µ, · ) on M≤1(E) \ {µ} satisfying

Q(g ⊗ g, µ) ≥ 0 and
∫
〈g, ξ − µ〉2N(µ, dξ) <∞,

for all g ∈ C∞c (Rd). If L is a Lévy type operator at µ for all µ ∈ M≤1(E), then
it is said to be of Lévy type.

Observe that because of Lemma 2.8(ii) the operators B and Q need not to
be defined on the whole spaces C0(Rd) and Ĉ0((Rd)2), respectively. This will in
particular allow them to be differential operators.

The proof of the next theorem follows the proof of its finite dimensional ana-
logue given by Theorem II.2.8. The only technical difference is that in the finite
dimensional setting the square of the norm is a polynomial (and thus a test func-
tion) whose value in x is 0 if and only if x = 0. Such a test function does not
exist in the present setting and we thus need to work with a separating sequence,
i.e. a sequence (gn)n∈N ⊆ C∞c (Rd) such that for µ ∈ M≤1(E) it holds 〈gn, µ〉 = 0
for all n ∈ N if and only if µ = 0. The proof can be found in Section A.

Theorem 4.2. Fix µ ∈ M≤1(E). If L satisfies the positive maximum principle
on M≤1(E) (or equivalently on M1(E)) at µ, then L is of Lévy type at µ.

For E ⊆ Rd being also compact the space M1(E) is closed with respect to
the vague (or equivalently weak) topology. This yields the following refinement
of Theorem 4.2.

Lemma 4.3. Consider the setting of Theorem 4.2 and suppose that E ⊆ Rd is
also compact. Then, the measure N(µ, dξ) appearing in (4.1) is a measure on
M1(E) \ {µ}.

Proof. Choose g ∈ C∞c (Rd) such that g|E = 1 and note that p(ν) =
(
1− 〈g, ν〉

)4

satisfies p(ν) = 0 for all ν ∈ M1(E). The positive maximum principle then
yields 0 = Lp(µ) =

∫
p(ξ)N(µ, dξ) proving that ξ(E) = 〈g, ξ〉 = 1 for N(µ, · )-

a.e. ξ ∈M≤1(E).

Observe that by Theorem 4.2, if L satisfies the positive maximum principle
on M1(E) we can define some operators Γ : M1(E)→ R+,

B : C∞c (Rd)×M1(E)→ R, and Q : C∞c (Rd)⊗ C∞c (Rd)×M1(E)→ R,

and some kernel N( · , dξ) from M1(E) to M≤1(E) such that L is a Lévy type
operator at µ where the corresponding quadruplet is given by(

Γ(µ), B( · , µ), Q( · , µ), N(µ, · )
)

for each µ ∈ M1(E). By Lemma 3.5 we know that this is always true if there
exists a (possibly killed) M1(E)-solution to the martingale problem for L for all
initial conditions µ ∈M1(E).
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If we additionally have that Lp|M≤1(E) ∈ C(M v
≤1(E)) for all p ∈ P∞c (Rd), by

Lemma 3.7(ii) we get that L satisfies the positive maximum principle onM≤1(E).
In this case, the form of L explained before extends to all µ ∈M≤1(E).

The previous considerations illustrate how all the relevant linear operators L
corresponding to a jump-diffusion need in fact to be of Lévy type. This conclu-
sion strongly supports the choice to work with the notion of derivative introduced
in Section 2.2. Secondly, it decomposes the complexity of a probability measure-
valued jump-diffusion into four (deterministic) parameters Γ, B,Q,N , each of
them with a specific, classical, interpretation. In Lemma 4.5, Lemma 4.6, and
by means of numerous examples (see Section IV.5.2) we will deepen this aspect.
Finally, but not less important, by Lemma 3.6 we know that the positive max-
imum principle onM1(E) is the first step in order to guarantee the existence of an
M1(E)-solution to the martingale problem for L. From a practical point of view,
checking the positive maximum principle always reduces to finding (necessary)
optimality conditions for the functions in its domain. Knowing a priori that L is
a Lévy type operator gives us an intuition about the form of the optimality con-
ditions we would like to have, and guarantees that the conditions we will present
in Section 5 are of effective utility.

In fact, more properties can be deduced using the positive maximum principle,
as we illustrate in the next lemma.

Lemma 4.4. Let µ ∈ M1(E), L be a Lévy type operator at µ, and suppose that
it satisfies the positive maximum principle on M1(E) at µ. Then

〈g, µ〉 = sup
E
g ⇒ Q(g⊗ g, µ) = 0 and B(g, µ)−

∫
〈g, ξ − µ〉N(µ, dξ) ≤ 0,

and

〈g2, µ〉 = 0 ⇒ Q(g ⊗ g, µ) +

∫
〈g, ξ − µ〉2N(µ, dξ) ≤ B(g2, µ).

Proof. Without loss of generality suppose that g ≥ 0 and supE g = 1. Let then
(Fn)n∈N be polynomials on [0, 1] with 0 ≤ Fn ≤ 1, Fn(0) = 1, xnFn(x) ≤ 1, and
Fn(x) ↓ 0 for x ∈ (0, 1]. For example, one can choose Fn(x) := n−1

n
xn + 1

n
. Let

φn(x) := 1−x
n
− (1 − x)2Fn(x). Then φn has a minimum at x = 1, so by the

positive maximum principle,

0 ≤ L
(
φn(〈g, · 〉)

)
(µ) = − 1

n
B(g, µ)−Q(g⊗g, µ)−

∫
Fn(〈g, ξ〉)(1−〈g, ξ〉)2N(µ, dξ)

and hence, be the dominated convergence theorem, Q(g ⊗ g, µ) ≤ 0. Similarly,
ψn(x) := (1− x)Fn(x) is nonnegative on [0, 1] with a minimum at x = 1, so

0 ≤ L
(
ψn(〈g, · 〉)

)
(µ) = −B(g, µ) +

∫
〈g, ξ − µ〉(1− Fn(〈g, ξ〉))N(µ, dξ)

and the monotone convergence theorem yields B(g, µ)−
∫
〈g, ξ−µ〉N(µ, dξ) ≤ 0.

The last bound follows by noting that p(ν) = 〈g2, ν〉 − 〈g, ν〉2 has a minimum in
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µ and hence

0 ≤ Lp(µ) = B(g2, µ)−Q(g ⊗ g, µ)−
∫
〈g, ξ − µ〉2N(µ, dξ).

We now provide two results, illustrating how some interesting information
about the corresponding M1(E)-solution to the martingale problem can be read
from the parameters Γ, B, Q, and N . As for C(M1(E)) and C(M≤1(E), with
a small abuse of notation we will write p ∈ C(M≤1(E)) if the map p|M≤1(E) :
M v
≤1(E)→ R is continuous.
As in Section 3.3, the result concerning continuity ofM1(E)-solutions is based

on Bakry and Émery (1985).

Lemma 4.5. Let L : P∞c (Rd)→ C(M v
≤1(E)) be a linear operator.

(i) If Γ = 0, then any possibly killed M1(E)-solution to the martingale problem
for L is conservative. Conversely, if for every initial condition ν ∈ M1(E)
there is a conservative M1(E)-solution to the martingale problem for L,
then Γ = 0.

(ii) If Γ = 0 and N = 0, then any possibly killed M1(E)-solution to the martin-
gale problem for L is conservative and has continuous paths. Conversely,
if for every initial condition ν ∈ M1(E) there is a conservative M1(E)-
solution to the martingale problem for L with continuous paths, then Γ = 0
and N = 0.

Proof. (i) Since L1 = −Γ, the conclusion follows by Lemma 3.5 and Lemma 3.6.
(ii) From Lemma 3.11, it is sufficient to show that Γ = 0 and N = 0 if and

only if the carré-du-champ operator of L is an M1(E)-derivation, i.e.

L(p1p2p3)(µ) =
3∑
i=1

∑
j 6=i

∑
k 6=i,j

pi(µ)L(pjpk)(µ)− pi(µ)pj(µ)Lpk(µ), (4.2)

for all p1, p2, p3 ∈ P∞c (Rd) and µ ∈ M1(E). Noting that by Lemma 2.8(i) we
know that ∂(p1p2) = p1∂p2 + p2∂p1, a direct computation shows that if Γ = 0
and N = 0 condition (4.2) holds true. Conversely, applying condition (4.2) to
p1 = p2 = p3 = 1 directly yields Γ = 0. Fix then µ ∈M1(E). Applying condition
(4.2) to p1(ν) = p2(ν) = p3(ν) =

(
〈g, ν〉 − 〈g, µ〉

)2 then yields∫
(〈g, ν〉 − 〈g, µ〉)6N(µ, dξ) = 0, g ∈ C∞c (Rd),

proving that N(µ, · ) = 0.

The next lemma provides an expression for the predictable quadratic vari-
ation and covariation of cylindrical polynomials evaluated in probability measure-
valued jump-diffusions. Due to the conflict of notation with the monomials, we
indicate those two quantities with PQV( · ) and PQC( · , · ).

Since the result holds true also for cylindrical functions (in sense of Sec-
tion 2.4), we state the result in this more general framework.
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Lemma 4.6. Fix p, q : M(E) → R such that p, q ∈ C2,C∞c (Rd). Let L be a Lévy
type operator and X be an M1(E)-solution to the martingale problem for L. The
predictable quadratic variation of p(X) is then given by

PQV(p(X)) =

∫
Q(∂p(Xs)⊗ ∂p(Xs), Xs)ds.

Similarly, the predictable quadratic covariation of the pair (p(X), q(X)) reads

PQC(p(X), q(X)) =

∫
Q(∂p(Xs)⊗ ∂q(Xs), Xs)ds.

Proof. Fix g1, g2 ∈ C∞c (Rd) and observe that an application of the Itô formula
yields

〈g1, Xt〉〈g2, Xt〉 = 〈g1, X0〉〈g2, X0〉+
∑
i 6=j

∫ t

0

〈gi, Xs〉d〈gj, Xs〉

+ PQC(〈g1, X〉, 〈g2, X〉) +
∑
s≤t

∆〈g1, Xs〉∆〈g2, Xs〉.

(3.1) and the form of L then yield

〈gi, Xt〉 = 〈gi, X0〉+

∫ t

0

B(gi, Xs)ds+ (martingale), i ∈ {1, 2},

〈g1, Xt〉〈g2, Xt〉 = 〈g1, X0〉〈g2, X0〉+
∑
i 6=j

∫ t

0

〈gi, Xs〉B(gj, Xs)ds

+

∫ t

0

Q(g1 ⊗ g2, Xs)ds+
∑
s≤t

∆〈g1, Xs〉∆〈g2, Xs〉+ (martingale),

proving that PQC(〈g1, X〉, 〈g2, X〉) =
∫
Q(g1 ⊗ g2, Xs)ds. The result for the

general case follows by the linearity of Q and Lemma 2.8(i).

We conclude this section giving a second look at Lemma 3.8, under the as-
sumption that L is a Lévy type operator.

Remark 4.7. Observe that if Γ = 0 and B = 0, condition (3.2) in Lemma 3.6 is
automatically satisfied. This choice of the parameters automatically implies that
every possibly killed M v

≤1(E)-solution X to the martingale problem for L is a con-
servative M1(E)-solution and also a martingale (in the sense of Definition 3.3).
By Lemma 3.8(i) we also get that in this case for all A ⊆ E and t ≥ s,

P(Xt(A) = 1|Xs(A) = 1) = 1.

It is important to note that this condition does not imply that if X0 is nonathomic
the same is true for Xt. Example 3.9 shows how this can in fact happen.
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Lemma 4.8. Consider a Lévy type operator L for Γ = 0, and let X be the
corresponding M1(E)-solution to the martingale problem with initial condition µ.
Let mp be as in Lemma 3.8(iii) and suppose also that there exists a nonnegative
sequence (gn)n∈N ⊆ C∞c (Rd) such that gn increases to mp and

sup
n

sup
M1(E)

(
B(gn, · )+

1 + 〈gn, · 〉

)
<∞.

Then 〈| · |p, µ〉 <∞ yields 〈| · |p, Xt〉 <∞ a.s. for all t ≥ 0.

Proof. Set pn as in Lemma 3.8(iii) for ψ(x) = log(x+ 1) and note that

∂pn(µ) = (〈gn, µ〉+ 1)−1gn and ∂2pn(µ) = −(〈gn, µ〉+ 1)−2gn ⊗ gn.

Since Γ(µ) ≥ 0, Q(gn ⊗ gn, µ) ≥ 0, and log(x + 1) − x ≤ 0 for all µ ∈ M1(E),
n ∈ N, and x > −1, we get that (Lpn(µ))+ ≤ B(gn, µ)+(1+〈gn, µ〉)−1. The result
follows by Lemma 3.8 (iii).

5 Optimality conditions

Let E be a locally compact Polish space. We now develop optimality conditions
for polynomials of measure arguments, which are instrumental when working
with the positive maximum principle on M1(E∆). Our first result, Theorem 5.1,
extends the classical first and second order Karush–Kuhn–Tucker conditions for
functions on the finite dimensional unit simplex (see e.g. Bertsekas (1995)). It
is derived by slightly changing an optimizer ν∗ ∈ M1(E∆) via shifting small
amounts of mass to some arbitrary point on E∆. Our second result, Theorem 5.3,
is obtained by deforming the optimizer ν∗ using a group of isometries of C∆(E).
The resulting condition is genuinely infinite dimensional, as can be seen from
Lemma 5.5.

5.1 Generalization of the classical Karush–Kuhn–Tucker
conditions

We use the operator Ψ, which maps any function g : E × E → R to the function
Ψ(g) : E × E → R given by

Ψ(g)(x, y) =
1

2
(g(x, x) + g(y, y)− 2g(x, y)) . (5.1)

Theorem 5.1. Let p ∈ P and ν∗ ∈ M1(E∆) satisfy p(ν∗) = maxM1(E∆) p. Then
the following first and second order optimality conditions hold:

(i) 〈∂p(ν∗), µ〉 = supE∂p(ν∗), for all µ∈M1(E∆) such that supp(µ) ⊆ supp(ν∗).
In particular,

∂xp(ν∗) = sup
E
∂p(ν∗) for all x ∈ supp(ν∗). (5.2)
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(ii) 〈∂2p(ν∗), µ
2〉 ≤ 0 for all signed measures µ ∈ M(E∆) such that 〈1, µ〉 = 0

and supp(|µ|) ⊆ supp(ν∗). In particular,

Ψ
(
∂2p(ν∗)

)
(x, y) ≤ 0 for all x, y ∈ supp(ν∗). (5.3)

Proof. Pick any x ∈ supp(ν∗) and y ∈ E∆. For each n ∈ N, let An be the ball of
radius 1/n centered at x, intersected with supp(ν∗). Then ν∗(An) > 0, and the
probability measures µn := ν∗( · ∩ An)/ν∗(An) converge weakly to δx as n→∞.
Choose εn ∈ (0, ν∗(An)). Then ν∗ ≥ εnµn since for all B ∈ B(E)

ν∗(B)− εn
ν∗(B ∩ An)

ν∗(An)
≥ ν∗(B ∩ An)

ν∗(An)
(ν∗(An)− εn) ≥ 0.

Hence νn := ν∗ + εn(δy − µn) is a probability measure. Maximality of ν∗ and
Lemma 2.4(vi) now give

0 ≥ p(νn)− p(ν∗) = εn〈∂p(ν∗), δy − µn〉+ o(εn).

Dividing by εn, sending n to infinity, and using that x 7→ ∂xp(ν
∗) is bounded and

continuous, we obtain ∂xp(ν∗) ≥ ∂yp(ν∗). We deduce (5.2), which immediately
implies (i).

Next, in addition to the above, suppose y is in supp(ν∗). Since we also have
that supp(µn) ⊆ supp(ν∗), we get 〈∂p(ν∗), δy − µn〉 = 0 due to (i). Maximality of
ν∗ and Lemma 2.4(vi) then give

0 ≥ p(νn)− p(ν∗) =
1

2
ε2
n〈∂2p(ν∗), (δy − µn)2〉+ o(ε2

n),

and therefore 〈∂2p(ν∗), (δy − δx)2〉 ≤ 0. More generally, consider measures of the
form

νn := ν∗ + εn

(
m∑
i=1

λiδyi −
m∑
i=1

γiµi,n

)
for some points yi ∈ supp(ν∗), convex weights λ1, . . . , λm and γ1, . . . , γm, and µi,n
constructed as µn above with x replaced by xi ∈ supp(ν∗). Letting εn decrease
to zero sufficiently rapidly, the above argument gives 〈∂2p(ν∗), µ

2〉 ≤ 0 for the
signed measure

µ =
m∑
i=1

λiδyi −
m∑
i=1

γiδxi .

Passing to the weak closure yields (ii) with the additional restriction that the
positive and negative parts of µ are probability measures. The general case is
obtained by scaling. Finally, since 〈∂2p(ν∗), (δy − δx)

2〉 = 2Ψ(∂2p(ν∗))(x, y) we
obtain (5.3).

It is very interesting to note the similarity between the conditions of The-
orem 5.1 and the classical Karush–Kuhn–Tucker conditions on the finite dimen-
sional simplex ∆d, that we report here. Let f ∈ C2(Rd) and x∗ ∈ ∆d satisfy
f(x∗) = max∆d f . Then the first and second order (necessary) Karush–Kuhn–
Tucker conditions on ∆d hold:
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(i) For each v ∈ ∆d such that vi = 0 whenever x∗i = 0,

∇f(x∗)>v = max
j∈{1,...,d}

∂f

∂xj
(x∗).

(ii) For all v ∈ Rd such that 1>v = 0 and vi = 0 whenever x∗i = 0,

v>∇2f(x∗)v ≤ 0,

where 1 := (1, . . . , 1)>.

Remark 5.2. Taking E = {1, . . . , d} as example, the appearance of Ψ in (5.3)
can be understood as follows. Suppose z ∈ ∆d maximizes a function f ∈ C2(Rd)
over ∆d. Then for every i, j such that zi > 0 and zj > 0, we must have (ei −
ej)
>∇2f(z)(ei − ej) ≤ 0, where ei is the i-th canonical unit vector. Indeed,

otherwise z± ε(ei− ej) would lie in ∆d and give a higher function value for small
ε > 0. More explicitly, we must have

∂2
iif(z) + ∂2

jjf(z)− 2∂2
ijf(z) ≤ 0,

where the left hand side is equal to 2Ψ(∂2f(z))(i, j) on E = {1, . . . , d}.

5.2 An optimality condition beyond the finite dimensional
setting

In the remaining part of the section, D ⊆ C∆(E) is a linear subspace, and PD is
defined by (2.3).

Our next optimality condition is more subtle, in that it becomes trivial in the
finite-dimensional case; see Lemma 5.5. In order to understand the interpretation
of this result, let us first focus on its application, Corollary 5.7. This condition
is obtained by slightly changing an optimizer ν∗ via shifting its support in a
way that guarantees that the resulting measure is still supported on E. The next
theorem generalizes this result. The operator A described there generates a group
of isometries {Tt}t∈R of C∆(E). For any µ ∈ M+(E∆), the group induces a flow
of measures µt ∈M+(E∆) via the formula 〈g, µt〉 = 〈Ttg, µ〉 for every g ∈ C∆(E).
The value of a polynomial in its maximizer ν∗ cannot be less than its value in
ν∗ − µ + µt, for any t, and this leads to an optimality condition in terms of the
group generator A.

The tensor notation A⊗A is used to denote the linear operator from D ⊗D
to Ĉ∆(E2) determined by

(A⊗ A)(g ⊗ g) := (Ag)⊗ (Ag)

for a given linear operator A : D → C∆(E).

Theorem 5.3. Let p ∈ PD and ν∗ ∈M1(E∆) satisfy p(ν∗) = maxM1(E∆) p. Let A
be the generator of a strongly continuous group of positive isometries of C∆(E),
and assume the domain of A contains both D and A(D). Then

〈A2(∂p(ν∗)), µ〉+ 〈(A⊗ A)(∂2p(ν∗)), µ
2〉 ≤ 0

for every µ ∈M+(E∆) with µ ≤ ν∗.
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Proof. Let {Tt}t∈R be the group generated by A. For any µ ∈M+(E∆), the group
induces a flow of measures µt ∈M(E∆) via the formula

〈g, µt〉 = 〈Ttg, µ〉 for g ∈ C∆(E).

The positivity and isometry property of Tt implies that µt is nonnegative and
has constant total mass µt(E∆) = µ(E∆). Therefore, assuming henceforth that
µ ≤ ν∗, it follows that ν∗+µt−µ is a probability measure. Since ‖Ttg−g‖ = O(t)
for every g ∈ D, we have 〈g, (µt − µ)k〉 = O(tk) for every g ∈ D⊗k. Maximality
of ν∗ and Lemma 2.4(vi) then give

0 ≥ p(ν∗ + µt − µ)− p(ν∗)

= 〈∂p(ν∗), µt − µ〉+
1

2
〈∂2p(ν∗), (µt − µ)2〉+ o(t2) (5.4)

= 〈(Tt − id)∂p(ν∗), µ〉+
1

2
〈(Tt ⊗ Tt − 2Tt ⊗ id + id⊗ id)∂2p(ν∗), µ

2〉+ o(t2).

We claim that both A and −A satisfy the positive maximum principle on E∆.
Indeed, for f ∈ D and x ∈ E∆ with f(x) = maxE∆ f ≥ 0, the positivity and
isometry property give

Ttf(x) ≤ Ttf
+(x) ≤ ‖Ttf+‖ = ‖f+‖ = f(x). (5.5)

Thus

Af(x) = lim
t↓0

(Ttf(x)−f(x))/t ≤ 0 and −Af(x) = lim
t↓0

(T−tf(x)−f(x))/t ≤ 0,

proving the claim. Since ∂xp(ν∗) = supE ∂p(ν∗) for all x ∈ supp(ν∗) due to
Theorem 5.1, it follows that A(∂p(ν∗))(x) = 0 for all such x. As a result, using
that supp(µ) ⊆ supp(ν∗) and that the domain of A contains A(D), we get

〈(Tt−id)∂p(ν∗), µ〉 = 〈(Tt−id−tA)∂p(ν∗), µ〉 =
1

2
t2〈A2(∂p(ν∗)), µ〉+o(t2). (5.6)

Furthermore, using that

(Tt ⊗ Tt − 2Tt ⊗ id + id⊗ id)(g ⊗ g) = (Ttg − g)⊗ (Ttg − g)

for all g ∈ D, we deduce that

〈(Tt ⊗ Tt − 2Tt ⊗ id + id⊗ id)g, µ2〉 = t2〈(A⊗ A)g, µ2〉+ o(t2) (5.7)

for all g ∈ D⊗D. Inserting (5.6) and (5.7) into (5.4), dividing by t2, and sending
t to zero yields

0 ≥ 1

2
〈A2(∂p(ν∗)), µ〉+

1

2
〈(A⊗ A)∂2p(ν∗), µ

2〉.

This completes the proof.
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Remark 5.4. We claim that for A as in Theorem 5.3, the operator A2 satisfies
the positive maximum principle on E∆. Indeed, let f ∈ D and x ∈ E∆ with
f(x) = maxE∆ f ≥ 0. Then, as in (5.5) and with the same notation, we have
Ttf(x) ≤ f(x), and Af(x) = 0 since both A and −A satisfy the positive maximum
principle on E∆. Hence A2f(x) = limt↓0(Ttf(x) − f(x) − Af(x))/t ≤ 0, which
proves the claim.

The next lemma illustrates the pure infinite dimensional nature of the condi-
tion provided in Theorem 5.3.

Lemma 5.5. Let A be the generator of a strongly continuous group of positive
isometries of C∆(E). If the domain of A is all of C∆(E), then A = 0. This is in
particular the case if A is bounded or E consists of finitely many points.

Proof. Note that A and −A satisfy the positive maximum principle on E, and
A1 = 0. Therefore Lemma B.1 implies that A and −A are both of the form (B.1)
with B = ±A. As a result,

0 = Ag(x)− Ag(x) =

∫
(g(ξ)− g(x))(νA + ν−A)(x, dξ)

for all x ∈ E and g ∈ C(E∆). This implies that both 1{x}c(ξ)νA(x, dξ) and
1{x}c(ξ)ν−A(x, dξ) are zero for all x ∈ E and hence that A = 0. Since each linear
operator on a finite dimensional vector space is bounded, and the domain of a
bounded operator on C∆(E) can be extended to all of C∆(E), the second part
follows.

5.3 An application of Theorem 5.3

Since Theorem 5.3 is quite abstract, we provide a typical example of its applic-
ation. We will see that this is particularly important in the context of particle
system. Throughout this section E ⊆ Rd is a closed subset and D ⊆ C2

∆(Rd).
For M ∈ Rd×d we write Mj for the j-th column of M and Mij for its ij-th entry.
Finally, Σd(E) denotes the set of possible diffusion matrices for a process on E,
namely

Σd(E) :=
{
τ : E → Rd×d : τij ∈ C1

∆(E), and (5.8)

τ(x)>∇f(x) = 0 for x ∈ E, f ∈ C2
∆(E) : f(x) = max

E
f
}
.

Lemma 5.6. For τ ∈ Σd(E), the operator on C∆(E) given by

Ajg := τ>j ∇g for all g ∈ D

satisfies the conditions of Theorem 5.3, for j ∈ {1, . . . , d}.

The resulting statement is the following. Since it just consists in a reformula-
tion of Theorem 5.3, we omit the proof.
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Corollary 5.7. Fix τ ∈ Σd(E). Let p ∈ PD and ν∗ ∈ M1(E∆) satisfy p(ν∗) =
maxM1(E∆) p and for all g ∈ D set

Bτg :=
d∑
j=1

(τ>j ∇)2g(x) =
d∑
j=1

τj(x)>Dτj(x)∇g(x) + Tr
(
τ(x)τ(x)>∇2g(x)

)
,

Qτ (g ⊗ g) := Tr
(
(τ>∇g)⊗ (τ>∇g)>

)
, (5.9)

where for f : Rd → Rd, Df denotes the Jacobian of f .4 Then〈
Bτ (∂p(ν∗)), ν∗

〉
+ 〈Qτ (∂

2p(ν∗)), ν
2
∗〉 ≤ 0.

As part of the proof we will see that the involved operators Bτ andQτ are well–
defined, which means, that (τ>j ∇)2g and Tr

(
(τ>∇g)⊗ (τ>∇g)>

)
only depend on

g through its values on E. This permits us to use the expressions given in (5.9)
without specifying with respect to which representative of τj and g the appearing
derivatives are computed.

Proof of Lemma 5.6. We first prove the well–definedness. Fix τ, σ : Rd → Rd×d

enough differentiable such that τ |E = σ|E ∈ Σd(E). Set then Ajg := τ>j ∇g =
σ>j ∇g for all g ∈ C2

∆(Rd) and note that condition (5.8) then yields that Aj,−Aj,
and thus A2

j satisfy the positive maximum principle on E∆. Then, for all g1, g2 ∈
C2

∆(Rd) such that g1|E = g2|E we get that (τ>j ∇)2g1 = (σ>j ∇)2g2 and

Tr
(
(τ>∇g1)⊗ (τ>∇g1)>

)
= Tr

(
(σ>∇g2)⊗ (σ>∇g2)>

)
on E and E2 respectively.

For the second part, note that by Proposition 2.5 in Da Prato and Frankowska
(2004) there exist maps (t, x) 7→ φj(t, x) from R× E to E such that

∂

∂t
φj(t, x) = τj(φj(t, x)), φj(0, x) = x,

where τj defines the j-th column of τ . The strongly continuous group of isometries
of C∆(E) corresponding to Aj is then given by Ttg(x) = g(φj(t, x)), where the
continuity of Ttg is guaranteed by the local Lipschitz continuity of τ . Finally,
τij ∈ C1

∆(E) yields that the domain of Aj contains both D and Aj(D), proving
that the linear operator Aj satisfies the conditions of Theorem 5.3.

Choosing E = Rd, the state space has no boundaries anymore and the condi-
tions on τ can be relaxed. The resulting condition does not fall in the framework
of Theorem 5.3, but can be proved directly.

Lemma 5.8. Fix E = Rd and τ : E → Rd×d such that τij ∈ C∆(E) and τ(x) is
positive semidefinite for all x ∈ E. Let again p ∈ PD and ν∗ ∈ M1(E∆) satisfy
p(ν∗) = maxM1(E∆) p and for all g ∈ D set

Bτg := Tr
(
τ(x)τ(x)>∇2g(x)

)
and Qτ (g ⊗ g) := Tr

(
(τ>∇g)⊗ (τ>∇g)>

)
.

Then
〈
Bτ (∂p(ν∗)), ν∗

〉
+ 〈Qτ (∂

2p(ν∗)), ν
2
∗〉 ≤ 0.

4Observe that for d = 1 these expressions reduce to Bτg = ττ ′g′ + τg′′ and Qτ (g ⊗ g) =
(τg′)⊗ (τg′).
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Proof. Define νε := f ε∗ν∗ where f ε(x) := x + τj(x)ε for x ∈ Rd. Clearly νε ∈
M≤1(Rd) and thus by the maximality of ν∗ and Lemma 2.8(iv)

0 ≥ p(νε)− p(ν∗) =〈∂fεp(ν∗)− ∂p(ν∗), ν∗〉

+
1

2
〈∂2p(ν∗)− 2∂2

(·)fεp(ν∗) + ∂2
fεfεp(ν∗), ν

2
∗〉+ o(ε2).

Since Theorem 5.1(i) yields ∇∂yp(ν∗) = 0 for all y ∈ supp(ν∗), dividing the above
expression by ε2, letting ε go to 0, and summing over 1 ≤ j ≤ d we get the
result.

A Proof of Theorem 4.2

Consider the function Fg : M≤1(E)→ R as Fg(ν) := 〈g, ν − µ〉. Define Γ(µ) ∈ R
and B( · , µ) : C∞c (Rd)→ R as

Γ(µ) := −L1(µ) and B(g, µ) := LFg(µ),

and note that B( · , µ) heritages the linearity of L. By the positive maximum
principle, we also know that Γ(µ) is nonnegative on M1(E).

Consider the operator Lg : P∞c (Rd) → R given by Lgp := L(F 2
g p)(µ). Ob-

serve that by the positive maximum principle Lgp1 = Lgp2 whenever p1|M≤1(E) =
p2|M≤1(E), Lgp is nonnegative whenever p|M≤1(E) is nonnegative, and

sup
‖p‖=1

|Lg(p)| = |Lg(1)| <∞.

This implies that Lg is a well–defined bounded positive operator on {p|M≤1(E) :
p ∈ P∞c (Rd)}. By Lemma 2.8(iii), it can thus be extended to a bounded positive
(linear) operator on C(M v

≤1(E)). Since M v
≤1(E) is a compact Polish space, the

Riesz–Markov representation theorem applies and yields

L(F 2
g p)(µ) = Lg(p) =

∫
p(ξ)N(g, µ, dξ) + p(µ)G(g, µ), (A.1)

for some G(g, µ) ≥ 0 and some (positive) measure N(g, µ, · ) on M≤1(E) \ {µ}.
Our goal is now to construct a measure N(µ, · ) on M≤1(E) such that

Fg(ξ)
2N(µ, dξ) = 1{Fg 6=0}(ξ)N(g, µ, dξ) (A.2)

for all g ∈ C∞c (Rd). Fix a separating sequence, i.e. a sequence (gn)n ⊆ C∞c (Rd)
such that ν = µ whenever Fgn(ν) = 0 for all n ∈ N. Define

FK(ν) :=
K∑
n=1

Fgn(ν)2 and AK := {ν ∈M≤1(E) : FK(ν) 6= 0}.
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Observe that the sequence (AK)K∈N is increasing and converges toM≤1(E)\{µ}.
For all set A ⊆ AK we can then define

N(µ,A) :=

∫
A

FK(ξ)−11AK (ξ)
K∑
n=1

N(gn, µ, dξ).

Observe that for any p ∈ P∞c (Rd) such that supp(p) ∩ M≤1(E) ⊆ AK we can
compute∫

FK(ξ)FK+1(ξ)p(ξ)

FK(ξ)

K∑
n=1

N(gn, µ, dξ)

=
K∑
n=1

Lgn(FK+1p) =
K∑
n=1

L

(
F 2
gn

K+1∑
m=1

F 2
gmp

)
(µ) =

K+1∑
m=1

Lgm(FKp)

=

∫
FK(ξ)FK+1(ξ)p(ξ)

FK+1(ξ)

K+1∑
m=1

N(gm, µ, dξ),

proving that

FK(ξ)−11AK (ξ)
K∑
n=1

N(gn, µ, dξ) = FK+1(ξ)−11AK (ξ)
K+1∑
n=1

N(gn, µ, dξ)

and hence that N(µ, · ) is well–defined on AK . This permits to define the measure
N(µ, · ) on M≤1(E) as

N(µ,A) = lim
K→∞

N(µ,A ∩ AK), A ∈ B(M v
≤1(E)),

where B(M v
≤1(E)) denotes the Borel σ-algebra on M v

≤1(E). In order to prove
(A.2), fix now g ∈ C∞c (Rd). Observe that for each pK ∈ P∞c (Rd) such that
supp(pK) ∩M≤1(E) ⊆ AK ∩ supp(Fg) we can compute∫

pK(ξ)FK(ξ)Fg(ξ)
2N(µ, dξ) = L(pKF

2
g FK)(µ) =

∫
pK(ξ)FK(ξ)N(g, µ, dξ)

proving that

Fg(ξ)
21AK (ξ)N(µ, dξ) = 1AK (ξ)1{Fg 6=0}(ξ)N(g, µ, dξ)

and hence condition (A.2).
Finally, set Q( · , µ) : C∞c (Rd)⊗ C∞c (Rd)→ R as

Q

( n∑
i=1

λigi ⊗ gi, µ
)

:= L

( n∑
i=1

λiF
2
gi

)
(µ)−

n∑
i=1

λiN(gi, µ,M≤1(E))

and note that it is well–defined by (A.2) and linear in the first argument by
linearity of L. Equation (A.1) for p ≡ 1 then yields Q(g ⊗ g, µ) = G(g, µ) ≥ 0.
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Fix p(ν) := 〈g, ν〉k and note that by Lemma 2.4(ii) and (vi)

p(ν) = p(µ) + 〈∂p(µ), ν − µ〉+ 〈g, ν − µ〉2fg(ν), ν ∈M≤1(E) (A.3)

where fg(ν) :=
∑k

`=2

(
k
`

)
〈g, ν − µ〉`−2〈g, µ〉k−`. Linearity of L, and (A.1) then

yields

Lp(µ) = −Γ(µ)p(µ) +B(∂p(µ), µ) + fg(µ)G(g, µ) +

∫
fg(ξ)N(g, µ, dξ)

= −Γ(µ)p(µ) +B(∂p(µ), µ) +
1

2
Q(∂2p(µ), µ)

+

∫
p(ξ)− p(µ)− 〈∂p(µ), ξ − µ〉N(µ, dξ),

where in the second equality we use (A.2) and again (A.3). By linearity, we can
conclude that the result holds true for all p ∈ P∞c (Rd) and µ ∈M1(E).

B Auxiliary Lemmas

Lemma B.1. Let B : C(E∆) → C(E∆) be a linear operator. Then B1 = 0
and B satisfies the positive maximum principle on E if and only if there is a
(nonnegative, finite) kernel νB from E to E∆ such that

Bg(x) =

∫
(g(ξ)− g(x))νB(x, dξ) (B.1)

for all x ∈ E and g ∈ C(E∆). In this case, B is bounded and satisfies the positive
maximum principle on E∆, and {etB}t≥0 is a strongly continuous contraction
semigroup. Moreover, there is some nonnegative (finite) measure νB(∆, · ) such
that (B.1) holds also for x = ∆.

Proof. Assume there is a (nonnegative, finite) kernel νB from E to E∆ such that
(B.1) holds for all x ∈ E and g ∈ C(E∆). Then clearly B1 = 0. Suppose
g ∈ C(E∆), x ∈ E, and g(x) = maxE g ≥ 0. Then g(x) = maxE∆ g, so that
g(ξ) − g(x) ≤ 0 for all ξ ∈ E∆ and hence Bg(x) ≤ 0. Thus B satisfies the
positive maximum principle on E, which proves sufficiency.

To prove necessity, assume B1 = 0 and B satisfies the positive maximum
principle on E. By Lemmas 4.2.1 and 1.2.11 in Ethier and Kurtz (2005), the
restriction B|C0(E) is dissipative, hence closable, and even closed since it is globally
defined on C0(E). By the closed graph theorem B|C0(E) is bounded, and then
so is B since B1 = 0. Pick any g ∈ C(E∆) with g(∆) = maxE∆ g ≥ 0. Then
g−g(∆) ≤ 0, so there exist functions hn ∈ Cc(E) with hn ≤ 0 and hn → g−g(∆)
uniformly. Then Bhn → B(g − g(∆)) = Bg uniformly as well. Taking xn such
that hn(xn) = 0 and xn → ∆, we obtain Bg(∆) = limn→∞Bhn(xn) ≤ 0. We
have thus proved that B is bounded and satisfies the positive maximum principle
on E∆. As a result, Lemma 4.2.1 and Theorem 1.7.1 in Ethier and Kurtz (2005)
yield that {etB}t≥0 is a strongly continuous contraction semigroup.
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It remains to exhibit a kernel νB from E∆ to E∆ such that (B.1) holds for
all x ∈ E∆ and g ∈ C(E∆). To this end, fix x ∈ E∆ and define h ∈ C(E∆) by
h(y) := d(x, y), where d( · , · ) is a compatible metric for the Polish space E∆.
Since B satisfies the positive maximum principle on E∆, the map

C(E∆)→ R, g 7→ B(gh)(x)

is a positive linear functional. By the Riesz–Markov representation theorem,
there is a measure µ(x, · ) ∈ M+(E∆) such that B(gh)(x) =

∫
E∆ g(ξ)µ(x, dξ) for

all g ∈ C(E∆). We define

νB(x, dξ) := 1E∆\{x}(ξ)
1

h(ξ)
µ(x, dξ),

which is permissible since h(y) > 0 for all y 6= x. For every g ∈ Cc(E∆ \ {x}) we
have g/h ∈ C(E∆), and therefore

Bg(x) = B
(g
h
h
)

(x) =

∫
E∆

g(ξ)

h(ξ)
µ(x, dξ) =

∫
E∆

g(ξ)νB(x, dξ).

Since B is bounded, the identity Bg(x) =
∫
E∆ g(ξ)νB(x, dξ) extends by continuity

to all g ∈ C(E∆) with g(x) = 0. Thus, using also that B1 = 0,

Bg(x) = B(g − g(x))(x) =

∫
E∆

(g(ξ)− g(x))νB(x, dξ).

Repeating this for every x ∈ E∆ yields that νB satisfies (B.1) for all x ∈ E∆ and
g ∈ C(E∆). To see that νB(x,E∆) <∞, just note that

∫
E∆ g(ξ)νB(x, dξ) ≤ ‖B‖

whenever g ∈ C(E∆) satisfies 0 ≤ g ≤ 1. Measurability of νB( · , A) for every
Borel set A ⊆ E∆ follows from a monotone class argument, so that νB is indeed
a kernel from E∆ to E∆.
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Chapter IV

Probability measure-valued
polynomial diffusions and other
applications

1 Introduction

Inspired by the study of jump-diffusions taking value on the unit simplex provided
in Chapter II, our first goal here is to systematically characterize the class of
probability–valued polynomial diffusions, i.e. the class of probability–valued con-
tinuous jump–diffusions whose generator maps a polynomial of measure argument
(in sense of Section III.2.3) to a polynomial of measure argument of equal or lower
degree. As explained in the introduction, this leads to the class of probability
measure-valued polynomial diffusions whose k-th moments can be computed by
solving a k-dimensional linear partial (integro) differential equation.

More precisely, to each polynomial operator L we associate some dual operat-
ors L1, L2, . . . each of them being the generator of a jump-diffusion taking values
in E,E2, . . ., respectively. We then provide a moment formula stating that if
u : R+ × Ek → R is a (regular enough) solution of

∂u

∂t
(t, x) = Lku(t, · )(x), (t, x) ∈ R+ × Ek,

u(0, x) = g(x), x ∈ Ek,
(1.1)

then each jump-diffusion X corresponding to L satisfies

E
[
〈g,Xk

T 〉 | Ft
]

= 〈u(T − t, ·), Xk
t 〉

for all T ≥ t. Moreover, if the moment formula holds for a sufficiently large set
of coefficients g, then the law of X is uniquely determined by L and X0.

As explained in Chapter II, the class of finite dimensional polynomial jump-
diffusions is considerably tractable. However, unfortunately, it is not immune to
the curse of dimensionality: on the unit simplex ∆d, the number of ODEs to solve
in order to characterize moments up to degree k is given by

(
k+d−1
k

)
, which grows

87
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with d as dk. The probability measure-valued approach is a tractable alternative
for the cases where high dimensionality breaks the tractability of the finite di-
mensional setting. For illustrating the numerical and computational advantages
of that framework, in particular in comparison with finite dimensional polyno-
mial jump-diffusions, let us come back to the linear factor model introduced in
(III.1.1). Consider a d-dimensional process S defined via

Sit := 〈gi, Xt〉, i ∈ {1, . . . , d}, (1.2)

where gi, i ∈ {1, . . . , d} are continuous (or, if needed, even more regular) functions
and X is a probability measure-valued diffusion with underlying state space E =
R. We here think of truly high dimensional situations with d ∼ 103. Using the
moment formula for computing moments of degree k of S, i.e.

E[Sk
t ] = E[〈g1, Xt〉k1 · · · 〈gd, Xt〉kd ] = E[〈g⊗k1

1 ⊗ g⊗k2

2 · · · ⊗ g⊗kdd , Xk
t 〉]

amounts

(i) to solving a k-dimensional PIDE as given in (1.1) with initial condition

g := g⊗
k1

1 ⊗ g⊗k2

2 · · · ⊗ g⊗kdd ,

(ii) and computing a k-fold integral with respect to the initial measure X0.

In order to implement these two steps numerically, the most basic approach
is to consider a space discretization into n points such that the PIDE becomes
an ODE in Rnk and the integral a sum with nk summands.

For comparison consider now a classical d-dimensional polynomial diffusion
for S. Then computing E[Sk

t ] means

(i) solving the following linear ODE

∂ut = Gu,

with initial condition corresponding to the nonzero coefficients in the poly-
nomial Sk

t . Here, G is the N ×N matrix representation of the polynomial
operator associated with S with N =

(
k+d−1
k

)
∼ dk.

(ii) computing a scalar product with two vectors of length N (i.e. a sum with
N summands).

From this comparison it is now obvious that the competition lies in space
discretization versus dimension of the underlying process. While the first can
be chosen according to the accuracy we want to achieve when computing mo-
ments, the dimension of the underlying objects that we are interested in cannot
be altered. Clearly the second approach gives exact results, however at the ex-
pense of a curse of dimensionality. At the loss of exact results, this curse of
dimensionality can be broken within the first approach when fixing the space dis-
cretization n and increasing the dimension d. The key additional structure that
is exploited here is the regularity in space, coming from the coefficients gi.
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Finally, linear factor models based on probability measure-valued diffusions
are more flexible not only in view of computational aspects, but also when it
comes to modeling. Indeed, as projections of an infinite dimensional process they
constitute a much richer class than polynomial models on subsets of Rd.

The second aim of this chapter is to illustrate how the technology presen-
ted in Chapter III can be applied in other fields of research in mathematical
finance. We will in particular focus on finite and infinite particle systems with
mean fields interaction and common noise (continuous and purely discontinuous),
on the corresponding (weighted) empirical measure, and on their connection with
McKean–Vlaslov equations. In the last part we also take a quick look at empirical
measures of branching processes, providing some intuition about the asymptotic
situation. During this exploration, the effects of the different parameters of a
polynomial operator, or of a Lévy type operator, on the corresponding (polyno-
mial) jump-diffusion will be clarified.

Recall that Section III.2 summarizes some notation and provide the mathem-
atical background needed throughout this chapter. The chapter is then organized
as follows. Section 2 concerns polynomial operators and their dual operators. In
Section 3 we introduce the moment formula, its link with uniqueness of solutions
to the martingale problem, and finally we explore some conditions under which
existence for each initial condition and well–posedness holds. Section 4 focuses
on the analysis of the results of the previous section in the context of finite or
real underlying state spaces. Section 5 collects many different examples whose
goal is two-fold: explain how the different parameters influence the corresponding
probability measure-valued jump-diffusion (Sections 5.1–5.2), illustrate how the
proposed machinery is very flexible and can be used in other fields (Sections 5.3–
5.4). Some of the proofs are gathered in appendices.

2 Polynomial operators

Let E be a locally compact Polish space. We now define polynomial operators,
which constitute a class of possibly unbounded linear operators acting on poly-
nomials. They are not defined on all of P in general, but only on the subspace
PD for some dense subspace D ⊆ C∆(E); see Section III.2.4.

Definition 2.1. Fix S ⊆ M(E). A linear operator L : PD → P is called S-
polynomial if for every p ∈ PD there is some q ∈ P such that q|S = Lp|S and

deg(q) ≤ deg(p).

For a finite dimensional diffusion it is known that its generator is polynomial
if and only if the drift and diffusion coefficients are polynomial of first and second
degree, respectively; see Cuchiero et al. (2012) and Filipović and Larsson (2016).
Theorem 2.2 is the generalization of this fact to the probability measure-valued
setting. This connection becomes clear from the perspective of Section III.3.3.
In particular, recall that Lemma III.3.11 relates path continuity of solutions to
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the martingale problem to the carré-du-champ operator being a derivation. The
proof is given in Section A.

Theorem 2.2. Let L : PD → P be a linear operator. Then L is M1(E)-polyno-
mial and its carré-du-champ operator Γ is an M1(E)-derivation if and only if

Lp(ν) =
〈
B(∂p(ν)), ν

〉
+

1

2

〈
Q(∂2p(ν)), ν2

〉
, ν ∈M1(E),

for some linear operators B : D → C∆(E) and
Q : D ⊗D → Ĉ∆(E2).

(2.1)

In this case, B and Q are uniquely determined by L.

An analogue of Theorem 2.2 holds for L being S-polynomial, where S is an
arbitrary subset of M(E); see Theorem A.1.

Remark 2.3. It is important to note that the operators B and Q described in
Theorem 2.2 do not coincides with B and Q given in Section III.4. With the nota-
tion of that section, B(g, ν) is given by 〈Bg, ν〉 and Q(g, ν) is given by 〈Qg, ν2〉.
Since, because of Theorem 2.2, in the framework of polynomial diffusions we are
always be interested in operators L satisfying (2.1), we decided to accept this
change in order to lighten the notation and emphasize the polynomial structure
of the operators.

As in the previous chapter, we will use the operator Ψ, which maps any
function g : E × E → Rk to the function Ψ(g) : E × E → Rk given by

Ψ(g)(x, y) =
1

2
(g(x, x) + g(y, y)− 2g(x, y)) . (2.2)

Example 2.4 (The Fleming–Viot process). Let E = R and D = C2
∆(R). We

already quickly presented the Fleming–Viot process in the discussion before Ex-
ample III.3.9. This process takes values in M1(R), and its generator L acts on
polynomials p ∈ PD by

Lp(ν) =

∫
E

B(∂p(ν))(x)ν(dx)+
1

2

∫
E2

∂2
xyp(ν)ν(dx)(δx(dy)−ν(dy)), ν ∈M1(E),

where Bg(x) := 1
2
σ2g′′(x) for some σ > 0. This is an M1(R)-polynomial operator

of the form (2.1), where Q = Ψ. For more details, see Chapter 10.4 of Ethier
and Kurtz (2005).

Because of Corollary III.2.6 we know that any polynomial on M1(E) has a
unique homogeneous representative of the same degree. This implies that an
operator L satisfying (2.1) maps in fact any monomial ν 7→ 〈g, νk〉 to a unique
monomial ν 7→ 〈h, νk〉 on M1(E), for each k ∈ N. This induces an operator Lk
acting on the corresponding coefficients as Lkg := h. The operators L1, L2, . . . are
the key objects for the computation of conditional moments of jump-diffusions
corresponding to L.
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Definition 2.5. Let L : PD → P satisfy (2.1). The k-th dual operator of L is
defined as the unique linear operator Lk : D⊗k → Ĉ∆(Ek) determined by

Lp(ν) = 〈Lkg, νk〉, ν ∈M1(E), (2.3)

for every p(ν) = 〈g, νk〉 with g ∈ D⊗k.
Because of (2.1), the k-th dual operator Lk can be written as

Lk = kB ⊗ id⊗(k−1) +
k(k − 1)

2
Q⊗ id⊗(k−2), (2.4)

where the tensor notation B1 ⊗ . . . ⊗ BN is used to denote the linear operator
from D⊗k to Ĉ∆(Ek) determined by

(B1 ⊗ . . .⊗BN)(g⊗k) := B1(g⊗n1)⊗ . . .⊗BN(g⊗nN )

for given linear operators Bi : D
⊗ni → Ĉ∆(Eni) with n1 + · · · + nN = k. More

explicitly, we have
Lk = Bk +Qk

where Bk and Qk are defined by

Bkg :=
k∑
i=1

B(i)g and Qkg :=
1

2

k∑
i,j=1

Q(ij)g (2.5)

for B(i)g(x) := Bg(. . . , xi−1, · , xi+1, . . .)(xi) and

Q(ij)g(x) := Q
(
g(. . . , xi−1, · , xi+1, . . . , xj−1, · , xj+1, . . .)

)
(xi, xj).

Remark 2.6. Observe that without the existence of a homogeneous representative
(guaranteed by Corollary III.2.6), expression (2.3) would read

Lp(ν) = 〈Lkkg, νk〉+ 〈Lk−1
k g, νk−1〉+ · · ·+ L0

kg, ν ∈M1(E),

and the k-th dual operator would thus consist in a (k + 1)-tuple of operators
Lkk, . . . , L

0
k. In the context of the moment formula later, this would translate in

replacing (3.1) with a system of (k+ 1) PIDE. The implied growth in the amount
of needed notation and the consequent lost in clarity is evident.

If one is interested in studying jump-diffusions taking value in other subspaces
of M(E), as e.g. M+(E), a homogeneous representative can no longer be found.

3 Existence and uniqueness of polynomial diffu-
sions on M1(E)

Let E be a locally compact Polish space, D a dense linear subspace of C∆(E)
containing the constant function 1, and L : PD → P a linear operator. In this
section we study existence and uniqueness ofM1(E)-valued polynomial diffusions,
and derive the moment formula.

Definition 3.1. Let L be M1(E)-polynomial. Any continuous M1(E)-solution to
the martingale problem for L is called a probability measure-valued polynomial
diffusion.
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3.1 Moment formula and uniqueness in law

Polynomial diffusions are of interest in applications because they generally sat-
isfy a moment formula, which allows moments of the process to be computed
tractably. If E is a finite set, the moment formula always holds, but technical
conditions are needed in general.

Theorem 3.2. Suppose L satisfies (2.1) and fix k ∈ N. Assume the k-th dual
operator Lk is closable, and let g be in the domain D(Lk) of its closure Lk.1
Suppose that there is a solution u : R+ × Ek → R of

∂u

∂t
(t, x) = Lku(t, · )(x), (t, x) ∈ R+ × Ek,

u(0, x) = g(x), x ∈ Ek,
(3.1)

and suppose that supt∈[0,T ] ‖Lku(t, · )‖ <∞ for all T ∈ R+. In particular, u(t, · )
is assumed to be in the domain of Lk for all t ≥ 0. Then for any continuous
M1(E)-solution X to the martingale problem for L, one has the moment formula

E
[
〈g,Xk

T 〉 | Ft
]

= 〈u(T − t, ·), Xk
t 〉. (3.2)

Proof. We will follow the proof of Theorem 4.4.11 in Ethier and Kurtz (2005) in
order to obtain a slightly more general result. Fix T ∈ R+, t ∈ [0, T ], A ∈ Ft,
and for all (s1, s2) ∈ [0, T − t] × [0, T − t] set f(s1, s2) := E[〈u(s1, · ), Xk

t+s2
〉1A].

Fix s2 ∈ [0, T − t]. (3.1) and the fundamental theorem of calculus then yield

f(s1, s2)− f(0, s2) = E[〈u(s1, · )− u(0, · ), Xk
t+s2
〉1A]

=

∫ s1

0

E[〈Lku(s, · ), Xk
t+s2
〉1A]ds.

Fix then s1 ∈ [0, T − t]. Since u(t, · ) ∈ D(Lk) for all t ∈ R+, (III.3.1) yields

f(s1, s2)− f(s1, 0) = E[E[〈u(s1, · ), Xk
t+s2
〉 − 〈u(s1, · ), Xk

t 〉|Ft]1A]

=

∫ s2

0

E[〈Lku(s1, · ), Xk
t+s〉1A]ds.

Since sups1,s2∈[0,T−t]
∣∣E[〈Lku(s1, · ), Xk

t+s2
〉1A]

∣∣ ≤ sups1∈[0,T−t] ‖Lku(s1, · )‖ < ∞,
we can then conclude that both f( · , s2) and f(s1, · ) are absolutely continuous
with bounded derivative. Lemma 4.4.10 in Ethier and Kurtz (2005) then yields
f(T − t, 0)− f(0, T − t) = 0 and the result follows.

In order to avoid confusion, for the rest of the section we denote by ug the
solution of (3.1) with initial condition ug(0, · ) = g.

In most cases of interest (see Remark 3.8(iii) later) the operator Lk satisfies
the positive maximum principle on Ek, for each k ∈ N. If this is the case,

1 For more information about concepts related to the field of operator semigroups see
e.g. Ethier and Kurtz (2005).
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the existence of a solution ug of (3.1) satisfying the conditions of Theorem 3.2
for sufficiently many g, is essentially equivalent for Lk to generate a strongly
continuous contrition semigroup on Ĉ∆(Ek). This is then in turn essentially
equivalent for Lk to be the generator of a Markov process. We state this more
precisely in the next remark.

Remark 3.3. Let L satisfy (2.1) and X denote an M1(E)-solution of the corres-
ponding martingale problem with initial condition ν ∈ M1(E). Assume that the
corresponding k-th dual operator Lk satisfies the positive maximum principle on
(E∆)k (which in particular implies that Lk is closable), for each k ∈ N.

Let D0 ⊆ D(Lk) be a dense subset, and suppose that the conditions of The-
orem 3.2 hold true for all g ∈ D0. By Proposition 1.3.4 of Ethier and Kurtz
(2005), if we additionally have that t 7→ Lkug(t) is continuous, then Lk is the
generator of a strongly continuous contraction semigroup {Y k

t }t≥0 on Ĉ∆(Ek)
and Y k

t g = ug(t, · ).
Conversely, if Lk is the generator of a strongly continuous contraction semig-

roup {Y k
t }t≥0 on Ĉ∆(Ek), then for all g ∈ D(Lk) the map ug(t, x) := Y k

t g(x)
satisfies the conditions of Theorem 3.2. By Hille–Yosida theorem, this is for in-
stance the case if the range of λ−Lk is dense in Ĉ∆(Ek) for some λ > 0. In this
case, Corollary 4.2.8 in Ethier and Kurtz (2005) yields a solution Z(k) (without
loss of generality defined on the same probability space as X) to the martingale
problem for Lk with values in (E∆)k and satisfying Y k

t g(x) = E[g(Z
(k)
t )|Z(k)

0 = x].
The moment formula then yields

E[g(Z
(k)
t )|Z(k)

0 ∼ νk] = E[〈g,Xk
t 〉]. (3.3)

As in the finite dimensional case, the moment formula yields well–posedness
of the martingale problem.

Corollary 3.4. Suppose L satisfies (2.1), and let X be an M1(E)-solution to
the martingale problem for L with initial condition ν ∈ M1(E). If the moment
formula (3.2) holds for all g ∈ D⊗k and k ∈ N, then the law of X is uniquely
determined by L and ν.

Proof. By the moment formula (3.2) we have E[〈g,Xk
T 〉] = 〈ug(T, · ), νk〉 for all

k ∈ N and g ∈ D⊗k. Since g 7→ ug is determined by L, Lemma III.2.8(iii) yields
that the one dimensional distributions of X are uniquely determined by L and ν.
The conclusion follows by Theorem 4.4.2 in Ethier and Kurtz (2005).

Remark 3.5. Suppose that Lk is a polynomial operator in sense of Filipović
and Larsson (2016) for all k ∈ N and observe that the corresponding semigroup
{Y k

t }t≥0 can then be explicitly computed by means of a matrix exponential. In this
particular case, the moment formula given above provides explicit representations
of the conditional moments of M1(E)-valued polynomial diffusion.

As the dual operators L1, L2, . . . play a central role for determining uniqueness
of the solution to the martingale problem for L and in particular for the expressing
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the moment formula, we expect that the same is true in the framework of finite
dimensional polynomial diffusions. In the next example, we illustrate that this is
in fact the case. For a more precise description of the connection with the finite
dimensional case, see Section 4.1.

Example 3.6 (Dual operators Lk in the finite dimensional setting). Let A ⊆ Rd

be closed set, fix k ∈ N, and let H : A→ RN be a basis of Polk(A), where

Polk(A) := {p : A→ R | p is a polynomial on A of degree at most k}
and N := dim(Polk(A)). Consider then a polynomial operator A on Pol(A) :=⋃
k Polk(A) in sense of Filipović and Larsson (2016). How are then the cor-

responding dual operators Lk given by? In that setting, see e.g. the proof of
Theorem II.2.3, one usually defines G ∈ RN×N as the unique matrix such that

Ap(x) = H(x)>G~p

for all p ∈ Polk(A), where ~p ∈ RN represents the coefficients vector of p and is
thus uniquely determined by p = ~p>H. In this case Lk : RN → RN is given by
Lk~p := G~p.

3.2 Existence and well–posedness

The first main result of this section gives abstract sufficient conditions for exist-
ence of M1(E)-solutions to the martingale problem. Applications of this result
are discussed in Section 4. Recall that E is throughout a locally compact Polish
space.

For B as in (2.1) we say that B is E-conservative if there exist functions
gn ∈ D ∩ C0(E) such that limn→∞ gn = 1 and limn→∞(Bgn)− = 0 bounded
pointwise on E and E∆, respectively.

Theorem 3.7. Let D ⊆ C∆(E) be a dense linear subspace containing the constant
function 1. Let L : PD → P be a linear operator satisfying (2.1), where

(i) B is E-conservative and satisfies B1 = 0,

(ii) Q is given by

Qg = αΨ(g) +
n∑
i=1

(Ai ⊗ Ai)(g), g ∈ D ⊗D,

where α : E2 → R is a nonnegative symmetric function and, for i = 1, . . . , n,
Ai is the generator of a strongly continuous group of positive isometries of
C∆(E), and the domain of Ai contains both D and Ai(D),

(iii) B − 1
2

∑n
i=1 A

2
i satisfies the positive maximum principle on E∆.

Then L is M1(E)-polynomial and its martingale problem has an M1(E)-solution
with continuous paths for every initial condition ν ∈ M1(E). If in addition the
moment formula (3.2) holds for all g ∈ D⊗k and k ∈ N, then the martingale
problem for L is well–posed.
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Note that (2.1) imposes the implicit condition on α that αΨ(g) must lie in
Ĉ∆(E2) for every g ∈ D ⊗ D. If D = C∆(E), then α is necessarily bounded,
as is seen from Theorem 3.10 below. However, this does not hold for general
D ⊆ C∆(E). For an example in this sense see Example 4.3.

Proof. Theorem 2.2 shows that L is M1(E)-polynomial. By Lemma III.2.4(i) we
know that Lp ∈ C(M1(E∆)) for all p ∈ PD. Moreover, L1 = 0 and the E-
conservativeness of B implies that condition (III.3.2) holds true. Lemma III.3.6
then yields existence of an M1(E)-solution to the martingale problem for any ini-
tial condition (necessarily with continuous paths due to Lemma III.3.11) once we
check that L satisfies the positive maximum principle on M1(E∆). Let therefore
ν∗ ∈M1(E∆) be a maximizer of p ∈ PD overM1(E∆). The optimality conditions
in Theorem III.5.1 yield

∂xp(ν∗) = sup
E
∂p(ν∗) and Ψ

(
∂2p(ν∗)

)
(x, y) ≤ 0, x, y ∈ supp(ν∗).

Therefore, since B− 1
2

∑n
i=1A

2
i satisfies the positive maximum principle and α is

nonnegative, we get

Lp(ν∗) ≤
1

2

n∑
i=1

(
〈A2

i (∂p(ν∗)), ν∗〉+ 〈(Ai ⊗ Ai)(∂2p(ν∗)), ν
2
∗〉
)
.

The optimality condition in Theorem III.5.3 now yields Lp(ν∗) ≤ 0. This proves
the positive maximum principle and thus the existence statement. The assertions
regarding the moment formula and well–posedness follow from Theorem 3.2 and
Corollary 3.4.

Remark 3.8. (i) With regard to item (iii) in Theorem 3.7, note that a linear
operator G : D → C∆(E) satisfies the positive maximum principle on E∆ if
and only if G satisfies the positive maximum principle on E and Gg(∆) ≥ 0
for every nonnegative g ∈ C0(E)∩D. In many cases of interest, for instance
E ⊆ Rd and D ⊆ R+Cc(E) (see Lemma III.3.7(ii)), the positive maximum
principle on E implies the positive maximum principle on E∆.

(ii) Let us also remark, that the k-th dual operator Gk associated to 〈G(∂p(ν)), ν〉
satisfies the positive maximum principle on (E∆)k if it holds for G on
E∆. Indeed, if x∗ ∈ (E∆)k is a maximum of g, then x∗i is a maximum
of g(. . . , x∗i−1, · , x∗i+1, . . .). Hence Gk given by

Gkg = kG ⊗ id⊗(k−1)g =
k∑
j=1

G(j)g,

where we use the same notation as in (2.5), clearly satisfies the positive
maximum principle on (E∆)k.
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(iii) Consider the setting and the assumptions of Theorem 3.7 and define

Gk := k
(
B − 1

2

n∑
i=1

A2
i

)
⊗ id⊗(k−1), Ck :=

k(k − 1)

2
(αΨ)⊗ id⊗(k−2),

Tk := k
(1

2

n∑
i=1

A2
i

)
⊗ id⊗(k−1) +

k(k − 1)

2

( n∑
i=1

(Ai ⊗ Ai)
)
⊗ id⊗(k−2).

Note that by (2.4) we have Lk = Gk + Ck + Tk. We claim that Gk, Ck, Tk,
and hence Lk, satisfy the positive maximum principle on (E∆)k.

By item (iii) in Theorem 3.7, B− 1
2

∑n
i=1 A

2
i satisfies the positive maximum

principle on E∆, whence by (ii) it holds also for Gk on (E∆)k. The form
of Ψ and the nonnegativity of α guarantee that this is also the case for Ck.
Finally, since Tk =

∑n
i=1

1
2
(
∑n

j=1A
(j)
i )2 where

A
(j)
i g(x) = Aig(. . . , xj−1, · , xj+1, . . .)(xj),

Remark III.5.4 yields the positive maximum principle on (E∆)k also for Tk
and thus all together for Lk.

The following result gives a useful condition for uniqueness when all the oper-
ators Ai are zero. Due to Lemma III.5.5 this happens, for instance, ifD = C∆(E).
An example where uniqueness holds when those operators are not all zero is given
in Example 4.4.

Lemma 3.9. Consider setting and assumptions of Theorem 3.7, and assume that
Ai = 0 for all i. Assume additionally that α is bounded and B is closable and its
closure is the generator of a strongly continuous contraction semigroup on C∆(E).
Then the moment formula (3.2) holds for all g ∈ Ĉ∆(Ek) and k ∈ N.

SinceB satisfies the positive maximum principle onE∆ due to Theorem 3.7(iii),
the Hille–Yosida theorem guarantees that the conditions of the lemma are satis-
fied whenever λ−B has dense range in C∆(E) for some λ > 0.

Proof. Let {Y 1
t }t≥0 be the semigroup corresponding to B. Fix any k ∈ N and let

Bk and Qk be as in (2.5). It is straightforward to check that Bk is the restric-
tion to D⊗k of the generator of the strongly continuous contraction semigroup
{(Y 1

t )⊗k}t≥0 on Ĉ∆(Ek). Moreover, one has the estimate

‖Qkg‖ ≤ k(k − 1)‖α‖‖g‖, g ∈ Ĉ∆(Ek),

whence Qk is a bounded operator. It follows as in Theorem 1.7.1 and Corol-
lary 1.7.2 in Ethier and Kurtz (2005) that Lk = Bk+Qk is closable and its closure
is the generator of a strongly continuous contraction semigroup on Ĉ∆(Ek). By
Remark 3.3 and Theorem 3.2 the result follows.
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As in the finite dimensional case (see Filipović and Larsson (2016)), a poly-
nomial operator generating a diffusion whose domain consists of all polynomials
is fully characterized. While Theorem 3.7 only gives sufficient conditions for ex-
istence, the result is sharp. More precisely, the next result states that if D can
be chosen to be C∆(E), no other polynomial specification exists. Note that this
condition is always satisfied if E is a finite set. The proof is given in Section B.

Theorem 3.10. Let D = C∆(E) and let L : PD → P be a linear operator. Then
L is M1(E)-polynomial, its martingale problem is well–posed, and all M1(E)-
solutions have continuous paths, if and only if L satisfies (2.1) with

Bg =

∫
(g(ξ)− g( · )) νB( · , dξ) and Qg = αΨ(g), (3.4)

where νB is a (nonnegative), finite kernel from E to E, and α : (E∆)2 → R is
nonnegative, symmetric, bounded, and continuous on (E∆)2 \ {x = y}. In this
case, the moment formula (3.2) holds for all g ∈ Ĉ∆(Ek) and k ∈ N. Moreover,
B and Q, and hence each Lk, are bounded operators.

As in Theorem 3.7, condition (2.1) imposes implicit conditions on the different
parameters. This is the case for the measure νB, which in particular needs to
satisfy

∫
g(ξ) − g( · )νB( · , dξ) ∈ C∆(E) for all g ∈ C∆(E). This is condition is

clearly satisfied if the map from E toM+(E) given by x 7→ νB(x, · ) is continuous.
However the converse fails to be true as one can see by considering the following
kernel

νB(x, dξ) = δφ(x)1{φ(x)6=x},

for some continuous φ : E → E such that φ 6= id.

Corollary 3.11. Let D ⊆ C∆(E) be a dense linear subspace containing the con-
stant function 1 and let L satisfy (2.1) with B and Q as in Theorem 3.10. Then
L is M1(E)-polynomial, its martingale problem is well–posed, and all M1(E)-
solutions have continuous paths. Moreover, the moment formula (3.2) holds for
all g ∈ D⊗k and k ∈ N.

Proof. Since by Theorem 3.10 each Lk is bounded, the operator L can be uniquely
extended to PC∆(E). The result then follows by the same theorem.

The next technical lemma exposes the key properties of a sequence of polyno-
mials. This sequence turns out to be useful in many different places. We already
used it for the proofs of Theorem II.4.1 and Theorem II.6.1.

Lemma 3.12. Define Fn(z) := n−1
n

(1− z)n + 1
n
for all z ∈ [0, 1]. Then

Fn(z) ∈ [0, 1], Fn(z)zn ≤ 1, and Fn(z)
√
zn ≤ 1,

for all z ∈ [0, 1].

The last main result of this section characterizes probability measure-valued
polynomial martingales, in sense of Definition III.3.3. Note that, unlike The-
orem 3.7, the conditions are both necessary and sufficient, regardless of the choice
of D.
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Theorem 3.13. Let D ⊆ C∆(E) be a dense linear subspace containing the con-
stant function 1. Let L : PD → P be a linear operator. Then L is M1(E)-
polynomial, its martingale problem has an M1(E)-solution for any initial condi-
tion, and every solution is a martingale with continuous paths, if and only if L
satisfies (2.1) with

B = 0 and Q = αΨ

for some nonnegative symmetric function α : E2 → R. In this case, if in addition
α is also bounded, the martingale problem is well–posed.

Proof. To prove the forward implication, first note that Lemma III.3.11 and The-
orem 2.2 imply that L satisfies (2.1). To see that B = 0, pick any g ∈ D
and x ∈ E, and let X be an M1(E)-solution to the martingale problem with
initial condition δx. Since 〈g,X〉 is a martingale, we have 〈Bg,X〉 = 0 and
hence Bg(x) = 〈Bg,X0〉 = 0. The form of Q will follow from Lemma C.2.
To verify its hypotheses, fix g ∈ D and ν ∈ M1(E), and define p ∈ PD by
p(µ) := −(〈g, ν〉 − 〈g, µ〉)2. Then ∂2p(ν) = −2g ⊗ g, p ≤ 0, and p(ν) = 0, so the
positive maximum principle yields

−〈Q(g ⊗ g), ν2〉 = Lp(ν) ≤ 0.

Next, fix g ∈ D and ν ∈ M1(E) such that g is constant on the support of ν.
Define p ∈ PD by p(µ) := 〈g, µ〉2 − 〈g2, µ〉. Then, again, ∂2p(ν) = 2g ⊗ g, and
Jensen’s inequality yields p ≤ 0 and p(ν) = 0. Consequently,

〈Q(g ⊗ g), ν2〉 = Lp(ν) ≤ 0.

The form of Q thus follows from Lemma C.2.
To prove the reverse implication, observe that existence ofM1(E)-solutions of

the martingale problem, along with path continuity, follows from Corollary 3.11,
as does well–posedness if in addition α is bounded. Since B = 0, it is clear
that 〈g,X〉 is a martingale for every g ∈ D and every M1(E)-solution X of the
martingale problem. This implies that X is a martingale.

4 Applications of probability measure-valued poly-
nomial diffusions

4.1 The unit simplex

Set E = {1, . . . , d} and D ⊆ C(E) be a dense linear subspace containing the
constant function 1. Note that since C(E) is finite dimensional, the only possible
choice for D is given by C(E).

As we already saw many times, the similarity between the structure on the unit
simplex ∆d and that on M1(E) is very high. Example III.2.2 and Remark III.5.2
already formulate some aspects of this resemblance explicitly. In this section we
analyze some other aspects of this correspondence, showing in particular that the
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classical moment formula for polynomial jump-diffusions on the unit simplex (see
e.g. Filipović and Larsson (2016)) can be deduced from Theorem 3.10.

Let νB be a finite kernel from E to E, α ∈ Ĉ(E2) be nonnegative, and let L
satisfy (2.1) with

Bg =

∫
(g(ξ)− g( · )) νB( · , dξ) and Qg = αΨ(g).

Recall that by Theorem 3.10 the corresponding martingale problem is well–posed.
Consider the linear operator on Pol(∆d) given by

Ag(z) =
d∑

i,j=1

νB(i, {j})zi
(
d

dzj
g(z)− d

dzi
g(z)

)

+
1

2

d∑
i,j=1

α(i, j)zizj

(
d2

dz2
i

g(z) +
d2

dz2
j

g(z)− 2
d2

dzidzj
g(z)

)
.

(4.1)

Observe that it can be alternatively be written as Ag = b>∇g+ 1
2
Tr
(
a∇2g

)
where

bk(z) :=
∑d

i=1

(
νB(i, {k})zi − νB(k, {i})zk

)
and

akk(z) :=
∑
` 6=k

1

2
α(k, `)zkz`, ak`(z) := −1

2
α(k, `)zkz`, for all k 6= `.

Since this operator is of Type 0 (see Section II.6 for more details), the corres-
ponding martingale problem is well–posed. We can thus define Z := (Z1, . . . , Zd)
as the unique ∆d-valued solution to the martingale problem for A with initial
value z0 ∈ ∆d. We claim that

Xt :=
d∑
i=1

Zi
tδi, for all t ≥ 0,

is the unique M1(E)-solution to the martingale problem for L with initial condi-
tion z0

1δ1 + . . .+ z0
dδd.

Set p(ν) := 〈g, ν〉k and pd(z) := p(z1δ1 + . . .+ zdδd) for z ∈ ∆d. For Np as in
(III.3.1) we can then compute

Np
t =

( d∑
i=1

Zi
tg(i)

)k
−
( d∑
i=1

z0
i g(i)

)k
− k

∫ t

0

d∑
i=1

( d∑
j=1

(
g(j)− g(i)

)( d∑
`=1

Z`
sg(`)

)k−1

νB(i, {j})
)
Zi
sds

− k(k − 1)

2

∫ t

0

d∑
i,j=1

α(i, j)
(
g(i)2 + g(j)2 − 2g(i)g(j)

)
( d∑
`=1

Z`
sg(`)

)k−2

Zi
sZ

j
sds

= pd(Zt)− pd(z0)−
∫ t

0

Apd(Zs)ds.
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Using that Z is a solution to the martingale problem for A we can thus conclude
that Np is a martingale and the claim follows.

4.1.1 The classical moment formula

Fix k ∈ N. Let then H : Ek → RN be a basis of C(E)⊗k = Ĉ(Ek), which is now
a finite dimensional vector space, and let H : ∆d → RN be the basis of Polk(∆

d)
given by

H(z) = 〈H, (z1δ1 + . . .+ zdδd)
k〉 for z ∈ ∆d,

where N = dim(Ĉ(Ek)) = dim(Polk(∆
d)). From this prospective, the dual op-

erator Lk is a linear transformation of RN and can thus be seen as an element
of RN×N . The corresponding semigroup (in sense of Remark 3.3) is given by
Y k
t g = H

>
etLk~g, where ~g ∈ RN denotes the coefficients vector of g ∈ Ĉ(Ek) and

is thus uniquely determined by g = H
>
~g. By Theorem 3.10 the moment formula

holds and we can then conclude that for any p ∈ Polk(∆
d) and ~p ∈ RN such that

p = H>~p we have

E[p(Zt+s)|Fs] = E[H(Zt+s)
>~p|Fs] = E[〈H>~p,Xk

t+s〉|Fs] = 〈Y k
t (H

>
~p), Xk

s 〉
= 〈H>etLk~p,Xk

s 〉 = H(Zs)
>etLk~p,

which coincides with the classical moment formula (II.2.2) for polynomial diffu-
sions on the unit simplex ∆d.

4.1.2 Approximation by diffusions on unit simplexes of increasing di-
mension

Let E be a locally compact Polish space and D ⊆ C∆(E) be a dense linear
subspace containing the constant function 1. Suppose that L : PD → P satisfies
(2.1) for B and Q as in Theorem 3.10. Our goal is to approximate L by a sequence
of polynomial operators generating diffusions on the unit simplexes of increasing
dimension.

Fix a partition (Adk)
d
k=1 of E, some points ydk ∈ Adk and let Ed := {yd1 , . . . , ydd}.

The idea is to approximate polynomials on M1(E) with polynomials on M1(Ed)
and then, following the discussion at the beginning of Section 4.1, to identify
those polynomials with polynomials on the unit simplex. Consider the operator
Ld : PD → P (where now PD and P are subspaces of the space of polynomials
on M(Ed)) satisfying (2.1) with

Bg =

∫
(g(ξ)− g( · )) νdB( · , dξ) and Qg = αdΨ(g),

for νdB(ydi , {ydj }) := νB(ydi , A
d
k) and αd := α|Ed×Ed . Note that Ld corresponds to
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the following generator of a polynomial diffusion on the unit simplex

Adg(z) =
d∑

i,j=1

νB(ydi , {Adj})zi
(
d

dzj
g(z)− d

dzi
g(z)

)

+
1

2

d∑
i,j=1

α(ydi , y
d
j )zizj

(
d2

dz2
i

g(z) +
d2

dz2
j

g(z)− 2
d2

dzidzj
g(z)

)
.

(4.2)

As explained before, the corresponding martingale problem is well–posed. Moreover,
it is now easy to see that (Ad)d∈N approximates L in the following sense

Lp(ν) = lim
d→∞

Ld(p|M1(Ed))
(
ν(Ad1)δyd1 + · · ·+ ν(Add)δydd

)
= lim

d→∞
Ad
(
pd
)(
ν(Ad1), . . . , ν(Add)

)
,

where pd is again the polynomial on ∆d corresponding to p|M1(Ed), i.e. pd(z) :=
p(z1δyd1 + . . .+ zdδydd) for z ∈ ∆d.

Lemma 1.6.1 of Ethier and Kurtz (2005) then allows us to deduce that any
M1(E)-solution to the martingale problem for L can be approximated by polyno-
mial diffusions on unit simplexes of increasing dimension. More precisely, setting
ydν := (ν(Ad1), . . . , ν(Add)) and letting (Zd

1 , . . . , Z
d
d) denote the unique solution to

the martingale problem for Ad we get

Eydν

[
p

(
d∑

k=1

Zd
k,t δydk

)]
d→∞−−−→ Eν [p(Xt)], p ∈ PD.

4.2 The underlying space E ⊆ Rd

The goal of this section is to analyze Theorem 3.7 for E ⊆ Rd being a closed
subset and D ⊆ C2

∆(E) dense linear subspace containing the constant function 1.
Recall that Ψ is given by (2.2) and Σd(E) denotes the set of suitable diffusion
matrices for a process on E, precisely defined by (III.5.8).

Theorem 4.1. Let L : PD → P be a linear operator satisfying (2.1), where

(i) B is E-conservative and B1 = 0,

(ii) Q is given by

Q(g ⊗ g) = αΨ(g ⊗ g) + Tr
(
(τ>∇g)⊗ (τ>∇g)>

)
g ∈ D,

for α : E2 → R being nonnegative and symmetric and τ ∈ Σd(E)

(iii) B −∑d
j=1(τ>j ∇)2 satisfies the positive maximum principle on E∆.

Then conditions (i)- (iii) of Theorem 3.7 hold true.

Proof. The result follows from Lemma III.5.6.
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As explained after Corollary III.5.7, the operators defined in the theorem
are well–defined, which means that (τ>j ∇)2g and Tr

(
(τ>∇g) ⊗ (τ>∇g)>

)
only

depends on g through its values on E. This consideration permits us to use
the expressions given in (ii) and (iii) without specifying with respect to which
representative of τj and g the appearing derivatives are computed.

The rest of the section is dedicated to the case d = 1 and E = R. For
simplicity, we also assume that D ⊆ R + C2

c (R). Because of the third condition
of Theorem 4.1 and Remark III.5.4 we already know to be interested in drift
operators B : D → C∆(R) satisfying the positive maximum principle on R∆.
As in Lemma III.3.7(ii), one can show that the choice D guarantees that this
condition is implied by the positive maximum principle on R. It is well–known,
see e.g. Courrège (1965) or Hoh (1998), that under this condition B is a Lévy
type operator, i.e.

Bg = bg′ +
1

2
ag′′ +

∫
g( · + ξ)− g − χ(ξ)g′ F ( · , dξ), g ∈ D (4.3)

for some continuous functions b : E → R, a : E → R+, a truncation function χ,
and a jump kernel F ( · , dξ) from E to E such that

∥∥ ∫ |ξ|2∧1F ( · , dξ)
∥∥ <∞. Ob-

serve that every operator of this form satisfies B1 = 0 and the positive maximum
principle on R.

The first result is a reformulation of Theorem 4.1 in this setting.

Corollary 4.2. Let L : PD → P be a linear operator satisfying (2.1), where B is
as in (4.3) for a := σ2 + τ 2 and

Q(g ⊗ g)(x, y) =
1

2
α(x, y)(g(x)− g(y))2 + τ(x)τ(y)g′(x)g′(y), g ∈ D,

where α ∈ Ĉ∆(R2) is nonnegative, σ ∈ C(R), and τ ∈ C1
∆(R). Assume also that

B is R-conservative. Then conditions (i)-(iii) of Theorem 3.7 hold true.

In the next example we illustrate a possible interplay between α and τ .

Example 4.3. Noting that for all g ∈ D ⊗D

lim
y→x

(g(x)− g(y))2

|x− y|2 = g′(x)2 for all x ∈ R

one can see that an interplay between τ and α leads to an extension of the class of
specifications listed above, in the sense that α is not necessarily bounded. Indeed,
fix α ∈ C((R∆)2 \ {x = y}) and τα ∈ C1

∆(R) such that

α(x, x+ y) = τα(x)2|y|−2 + o(|y|−2) (4.4)

and observe that setting

Q(g ⊗ g)(x, y) = α(x, y)(g(x)− g(y))2 + τα(x)τα(y)g′(x)g′(y)1{x=y}
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the condition Q(g ⊗ g) ∈ Ĉ∆(R2) is guaranteed for all g ∈ D. Setting then again
B is as in (4.3) for a := σ2 + τ 2

α and assuming that it is R-conservative, one can
prove that the results of Corollary 4.2 still hold true. From a technical point of
view, the only change in the proof is due to the application of Theorem III.5.3 for
µ = ν∗(y)δy for every atom y ∈ E∆ of ν∗.

Finally, it is interesting to note that those observations allow for a relaxation
the conditions on α even in the case where τ = 0, i.e. Q = αΨ. Indeed, whenever

α ∈ C((R∆)2 \ {x = y}) and α(x, y) = o(|x− y|−2),

condition (4.4) is satisfied for τα = 0.

In the following example Lk, Gk, Ck, and Tk are as in Remark 3.8(iii).

Example 4.4 (Well–posedness for τ 6= 0 ). Consider the setting of Corollary 4.2
for D = R + C∞c (R). Let then B be as in (4.3) for F = 0, a := σ2 + τ 2

for τ ∈ C1
∆(R) and σ2 being bounded away from 0. Assume that the paramet-

ers b and σ2 are Lipschitz continuous and bounded. Then, by Theorem 8.1.6 of
Ethier and Kurtz (2005), B is R-conservative and the closure of Gk + Tk gen-
erates a strongly continuous semigroup on Ĉ∆(Ek) for each k ∈ N. Since Ck is
bounded, Lk generates a strongly continuous contraction semigroup on Ĉ∆(Ek) as
well (for more details see e.g. Theorem 1.7.1 in Ethier and Kurtz (2005)). Since
by Remark 3.8(iii) Lk satisfies the positive maximum principle, Remark 3.3 and
Theorem 3.2 then yield the moment formula for all g ∈ D⊗k and well–posedness
follows by Theorem 3.7.

Suppose now that R + C∞c (R) ⊆ D. The next result can easily be extended
to general closed statespace E ⊆ Rd.

Lemma 4.5. Let L : PD → P be a linear operator satisfying (2.1) for B is as in
(4.3). Suppose that L satisfies the positive maximum principle on R. Then, for
all λ ∈ [0, 1], g ∈ D, and x, y ∈ R such that g(x) = g(y) we have that〈

Q(g ⊗ g), ν2
λ

〉
≤
〈
(ag′)2, νλ

〉
, νλ = λδx + (1− λ)δy. (4.5)

On the one hand, this lemma illustrates that the form of Q given in Corol-
lary 4.2 is very general. Indeed, if in that setting we set σ = 0 (and thus a = τ)
and α = 0 we get

Q(g ⊗ g)(x, y) = τ(x)τ(y)g′(x)g′(y)

showing that condition (4.5) is tight for λ ∈ {0, 1}. To the other hand, it provides
a useful tool in terms of interpretation, that we will present in the next corollary.

Proof. Fix g ∈ D such that g(x) = g(y). Since, by Lemma C.1, B1 = 0 and
Q(g ⊗ 1) = 0 it is enough to consider the case g(x) = g(y) = 1. The result will
follow from Lemma C.3. Indeed, if we let (pn)n∈N and (fn)n∈N be the sequences
described there, by the positive maximum principle of L on R we get

0 ≥ Lpn(νλ) =
〈
Bfn, νλ

〉
+

1

2

〈
Q(g ⊗ g), ν2

λ

〉
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and letting n go to ∞ we can conclude the proof.
To verify the hypotheses of Lemma C.3, observe that Lemma C.1 yields

〈Q(g ⊗ g), ν2
λ〉 ≥ 0 for all λ ∈ [0, 1].

Fix some g ∈ D and x, y ∈ R such that g(z) = g′(z) = 0 for z ∈ {x, y}, and
suppose that ‖g‖ = 1. Let Fn : [0, 1]→ R be the function defined in Lemma 3.12.
Consider then the sequence of polynomials given by

pn(ν) = 〈g, ν〉2Fn
(
〈H, ν〉

)
− 1

n
〈H, ν〉,

where, for some compactly supported function ρ ∈ C∞∆ (R) such that ρ = 1 on
some neighborhood of x and y and ρ(R) ⊆ [0, 1],

H(z) = C|z − x|2|z − y|2ρ(z) + (1− ρ(z)).

Observe that the conditions on g guarantee that for C big enough |g| ≤ H and
thus |〈g, ν〉| ≤ 〈H, ν〉 for all ν ∈ M1(R). For supp(ρ) small enough we also
have that ‖H‖ ≤ 1. Lemma 3.12 then yields 〈g, ν〉2Fn

(
〈H, ν〉

)
≤ 1

n
〈H, ν〉 for all

ν ∈ M1(R), and therefore pn ≤ 0 on M1(R). This automatically implies that pn
has a maximum at νλ for all λ ∈ [0, 1]. Proceeding as in the proof of Theorem 3.10
we then obtain that 〈Q(g ⊗ g), ν2

λ〉 = 0 for any g ∈ D such that g(x) = g(y) = 1
and g′(x) = g′(y) = 0. Choosing λ = 0, 1, 1/2 we get the result.

Corollary 4.6. Let B admit representation (4.3). If a = 0, i.e. if B does not
have a diffusion coefficient, then Q = αΨ for some nonnegative α : R2 → R such
that αΨg ∈ Ĉ∆(R2) for all g ∈ D.

Proof. Lemma C.1 and condition (4.5) for λ = 0, 1, 1/2 yield the conditions of
Lemma C.2(i) and the result follows.

This corollary illustrates that if the process generated by B is not diffusive,
then the diffusion operator Q cannot include a term involving derivatives of its
arguments. By Section 5.1.4, this in particular implies that the corresponding
measure valued diffusion cannot present a spatial-type diffusive behavior.

5 Examples

The goal of this section is two-fold. On the one hand, we explain which effects
the parameters used for describing both polynomial operators and Lévy type op-
erators have on the M1(E)-solutions to the corresponding martingale problem.
To the other hand, we illustrate how the approach exposed in this thesis is very
flexible, and its technology can be used in many different contexts. It is par-
ticularly interesting to observe that empirical measures of particle systems fall
very naturally within the framework described in this thesis. This constitutes an
important motivation for our results and, as for the results about the Lévy type
representation of operators presented in Section III.4, it strongly supports the
choice to work with the notion of derivative introduced in Section III.2.2.
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5.1 The role of the parameters of a polynomial operators

For the whole section, we let E be a locally compact Polish space, D be a dense
linear subspace containing the constant function 1, and L : PD → P be a linear
operator satisfying the conditions of Theorem 3.7.

5.1.1 The role of B

Suppose that for each k ∈ N the closure of the dual operator Lk is the generator
of a strongly continuous contraction semigroup {Y k

t }t≥0 on Ĉ∆(Ek). Then, by
Remark 3.3 and Corollary 3.4 the martingale problem for L is well–posed and we
can denote by X be the corresponding unique M1(E)-solution with initial condi-
tion µ ∈ M1(E) defined on some filtered probability space (Ω,F , (Ft)t≥0,F ,P).
Following Remark 3.3, denote by Z(1) the solution to the martingale problem for
L1 = B with initial condition Z(1)

0 ∼ µ. Without loss of generalities assume that
it is defined on the same filtered probability space. Note that E-conservativity of
B guarantees that P(Z

(1)
t ∈ E) = 1. The moment formula then yields

E[〈g,Xt〉] = 〈Y 1
t g, µ〉 = E[g(Z

(1)
t )|Z(1)

0 ∼ µ],

showing that the “expected solution” E[Xt( · )] coincides with the distribution
P(Z

(1)
t ∈ · |Z(1)

0 ∼ µ) of the spatial motion Z(1)
t , for each t ≥ 0. From this we also

infer that
X

(1)
t := P(Z

(1)
t ∈ · |Z(1)

0 ∼ µ), t ≥ 0,

is the unique M1(E)-solution to the martingale problem for L : PD → P given
by Lp(ν) = 〈B(∂p(ν)), ν〉. Observe that, as any pure drift process, X(1) is de-
terministic.

5.1.2 The role of the jumps term in B

As we saw in Section 5.1.1, the operator B can often be seen as the generator of a
jump-diffusion on E. This in particular does not exclude the possibility that the
corresponding E-valued jump-diffusion presents some discontinuities. At a first
glance this observation can be surprising, in particular since by Theorem 2.2 we
know that any M1(E)-solution to the martingale problem for L has continuous
paths. The next example illustrates the role of the jumps in the drift term B,
and how they do not compromise the continuity of the corresponding M1(E)-
solutions. In order to enrich the example, we do not assume that the coefficient
α is trivial.

Set E := {0} ∪ A where A = [1
2
, 1] and suppose that Ai = 0 for each i,

Bg(x) = g(0) − g(x), and fix α ∈ Ĉ∆(E2) such that α( · , 0) = α(0, · ) = 0.
Observe that B is the generator of a jump-diffusion which is constant for an
exp(1)-distributed random time and then performs a jump to 0.

Since the martingale problem for L is well–posed by Corollary 3.11, we can
denote by X the corresponding unique M1(E)-solution with initial condition ν
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for some ν ∈ M1(E) such that supp(ν) ⊆ A. Choosing g ∈ C∆(E) such that
g|A = 1 and g(0) = 0, we can then compute

E[Xt(A)k] = E
[
〈g,Xt〉k

]
= E

[
〈g, ν〉k

]
+

∫ t

0

E
[
〈−kg,Xs〉〈g,Xs〉k−1

]
ds

= 1 +

∫ t

0

−kE
[
Xs(A)k

]
ds.

As a result E[Xt(A)k] = e−kt for all k ∈ N and thus

Xt({0}) = 1−Xt(A) = 1− e−t P-a.s.

This example consists thus in a probability measure-valued polynomial diffusion
whose mass is progressively (more precisely, weakly continuously) moved from
the set A, where a diffusion is taking place, to the isolated point {0}.

5.1.3 The role of α

Fix now B = 0, Ai = 0 for each i, and α ∈ Ĉ∆(E2). Moreover, for some fixed
points z1, . . . , zd ∈ E let Y := (Y 1, . . . , Y d) be the unique ∆d-valued solution to
the martingale problem for

Ag(z) =
1

2

d∑
i,j=1

α(zi, zj)

(
d2

dy2
i

g(y) +
d2

dy2
j

g(y)− 2
d2

dyidyj
g(y)

)
, (5.1)

and initial value y0 ∈ ∆d. As explained in Section 4.1, the uniqueM1(E)-solution
X of the martingale problem for L with initial condition y0

1δz1 +. . .+y0
dδzd is given

by Xt :=
∑d

i=1 Y
i
t δzi .

For instance, for d = 2, X is a probability measure-valued martingale, whose
mass oscillates between two atoms following a Jacobi diffusion until one of the
two reaches mass 0. Also, more generally, the value α(x, y) can be interpreted as
kind of volatility coefficient driving the mass exchange between point x and y.

5.1.4 The role of τ

What we report here is the most prominent example of a jump-diffusion whose
generator involves a τ -term. This in particular ensures the importance of in-
cluding the Ai’s terms in the description of the linear operator L considered in
Theorem 3.7.

Let E = R, D = C2
∆(R), and W denote a brownian motion on some filtered

probability space (Ω,F , (Ft)t≥0,F ,P). In the setting of Corollary 4.2 set α = 0,
Bg = 1

2
g′′, and τ = 1. The resulting operator Q is then given by Q(g⊗g) = g′⊗g′,

respectively. Then
X := δW

is an M1(R)-solution to the martingale for L with initial condition δ0. One can
prove it by checking condition (III.3.1) with a simple application of the Itô formula
to 〈g,Xt〉k = g(Wt)

k for all g ∈ D and k ∈ N0.
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As explained in Section III.5.2, the optimality condition concerning τ is ob-
tained by slightly changing an optimizer ν∗ via shifting its support. This example
enforce the intuition that τ has an impact on the dynamics of support and not
the on weights, as was the case for α. Indeed, one can easily see that Xt coincide
with the initial condition up to a support’s shift. This concept will be explained
with more examples in Section 5.2.3.

Finally, it is interesting to observe that by Section 5.1.1 we know that setting
τ = 0 (and thus Q = 0) the corresponding M1(E)-solution to the martingale
problem would be

X
(1)
t := P(W

(1)
t ∈ · ) = N (0, t),

where N (0, t) denotes the centered normal distribution with variance t. This in
particular implies that supp(X

(1)
t ) = R for all t > 0. Comparing X(1) with X

we can conclude that the operator Q given by Q(g ⊗ g) = g′ ⊗ g′ provides the
exact amount of diffusion needed to maintain the support of Xt concentrate in
one single point P-a.s. for all t ≥ 0.

5.1.5 When α and τ appear together

The goal of this example is to explicitly construct an M1(E)-solution to the mar-
tingale problem for an operator L as in Corollary 4.2, where both the coefficients
α and τ are assumed to be nonzero. It will have the form of a weighted empir-
ical measure, where the weights follow a diffusion on the unit simplex, and the
particles a diffusion on R with common noise.

Let E = R and D ⊆ C2
∆(R). Then set B is as in (4.3) for b ∈ C1

c (R), a := τ 2

for τ ∈ C1
c (R), and F = 0, and

Q(g ⊗ g)(x, y) = α(x, y)Ψ(g ⊗ g)(x, y) + τ(x)τ(y)g′(x)g′(y), g ∈ D,

where α ∈ Ĉ∆(R2) is nonnegative. The conditions on b and τ already guarantee
that B is R-conservative. Let then (Zi)i∈N be a solution of the SDE

dZi
t = b(Zi

t)dt+ τ(Zi
t)dW

0
t

with initial value Zi
0 = zi0 ∈ R, where W 0 is a brownian motion. Observe that

the generator of each Zi is given by B. Let then Y d be the polynomial diffusion
on the unit simplex given by

dY d
t = ad(Y d

t , Z
1
t , . . . , Z

d
t )1/2dWt

with initial value Y d
0 = yd0 ∈ ∆d, where W denotes a d dimensional brownian

motion independent of W 0 and

adkk(y, z1, . . . , zd) :=
∑
` 6=k

1

2
α(zk, z`)yky`, adk`(y, z1, . . . , zd) := −1

2
α(zk, z`)yky`.

The choice of ad becomes clear if one compares it with the construction provided
in the initial discussion of Section 4.1.
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Lemma 5.1. The process Xd :=
∑d

i=1 Y
d
i δZi is an M1(R)-solution to the mar-

tingale problem for L with initial condition
∑d

i=1 y
d
0δzi0.

Proof. Setting p(ν) = 〈g, ν〉k, by Itô formula we can compute

p(Xd
t )− p(Xd

0 ) = (martingale) +

∫ t

0

k〈g,Xd
s 〉k−1〈Bg,Xd

s 〉

+
k(k − 1)

2
〈g,Xd

s 〉k−2
(
〈τg′, Xd

s 〉2 +
〈
αΨ(g ⊗ g), (Xd

s )2
〉)
ds

= (martingale) +

∫ t

0

〈B(∂p(Xd
s )), Xd

s 〉+
1

2

〈
Q(∂2p(Xd

s )), (Xd
s )2
〉
ds,

and the result follows.

5.2 The role of the parameters Q and N of Lévy type op-
erators

We now turn to the setting of Lévy type operators, in order to understand the
role of the parameters appearing there. The role of B and of Γ have already been
explained in Section 5.1.1 and in Lemma III.4.5(i), respectively. Lemma III.4.6
gives an intuition about the interpretation of Q.

In the first section, we focus our attention to the parameter Q, which without
the assumption for L to be polynomial can have a much simpler form. We then use
the intuition behind ∆d-valued polynomial jump-diffusions of Type 1 to construct
an M1(E)-valued polynomial jump-diffusion. Finally, we investigate a possible
interaction between Q and N , and B, in the spirit of Section 5.1.4.

5.2.1 Probability measure-valued martingale

The example presented in this section has been suggested to us by Sigrid Källblad.
Fix h ∈ Cc(R) and let L : P∞c (R)→ C(M v

≤1(R)) be a Lévy type operator for
Γ = 0, B = 0, N = 0, and

Q(g⊗g, µ) =
(
〈gh, µ〉−〈g, µ〉〈h, µ〉

)2

= 〈g⊗g, µ2
h〉, µ ∈M≤1(R), g ∈ C∞c (R),

for µh(dx) = h(x)µ(dx)−〈h, µ〉µ(dx). Observe that Lmaps P∞c (R) to C(M v
≤1(R))

and by Theorem III.5.1(ii) it satisfies the positive maximum principle on M1(R).
By Remark III.4.7, Lemma III.3.6 guarantees the existence of an M1(R)-solution
to the martingale problem for L. In order to have a better intuition about such
a solution, observe that a simple application of the Itô formula proves that every
M1(R)-valued process X with càdlàg paths satisfying

d〈g,Xt〉 =
(
〈gh,Xt〉 − 〈h,Xt〉〈g,Xt〉

)
dWt, 〈g,X0〉 = 〈g, µ〉, ∀g ∈ C∞c (R),

where W denotes a brownian motion, is an M1(R)-solution with initial condition
µ. More explicitly, one can for instance let Xt =

∑n
i=1 Y

i
t δxi for some x1, . . . , xn ∈
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R, where Y solves

dY i
t =

(
h(xi)−

n∑
j=1

h(xj)Y
j
t

)
Y i
t dWt, Y i

0 = yi,

and µ =
∑n

i=1 yiδxi ∈M1(R).
Heuristically, this martingale consists of a flow of probability measures, whose

mass performs an oscillation between the region where the value of h is over its
mean with respect to the measure, and the the region where it is below the mean.
Choosing for instance h(x) = x, we get an oscillation between the right and the
left tails of the distribution.

This construction does not depend on the choice of R as state space, indeed
L satisfies the positive maximum principle on M1(E) for every closed E ⊆ R.

5.2.2 Polynomial jump-diffusions

Let L be a Lévy type operator for Γ = 0, Q = 0,

N(µ, dξ) = γ(µ, y)∗F (dy), and B(g, µ) =

∫
〈g, ξ − µ〉N(µ, dξ) (5.2)

for all g ∈ C∞c (R) and µ ∈M≤1(R), where γ(µ, y) = 〈ν( · , y), µ〉 for some continu-
ous map ν( · , y) : R → M1(R), and F is a finite measure on R. More explicitly,
L is given by

Lp(µ) =

∫
p
(
γ(µ, y)

)
− p(µ)F (dy), µ ∈M≤1(R).

With this specification, if a jump occurs the moments of the process would jump
from 〈g, µ〉 to 〈g, γ(µ, y)〉 =

∫
〈g, ν(x, y)〉µ(dx), where y is F -distributed.

Observe that L clearly satisfies the positive maximum principle on M1(R)
and condition (III.3.2). However, in order to apply Lemma III.3.6, one needs to
check case by case if L maps P∞c (R) to C(M v

≤1(R)). We now propose some basic
examples satisfying this condition. It is straightforward to show that all of the
are M1(R)-polynomial in sense of Definition 2.1.

(i) Let ν(x, y) = N (y, 1). If a jump occurs, the probability measure-valued
jump-diffusion jumps to N (y, 1) where y is F -distributed. The resulting
operator is given by

Lp(µ) =

∫
p
(
N (y, 1)

)
− p(µ)F (dy).

(ii) Let F = 1
2
(δ0 + δ1) and

ν(x, 0) = δ−x and ν(x, 1) = δ0.

If a jump occurs, with probability 1/2 the support of µ is reflected with
respect to 0, and with probability 1/2 the process jumps to 0. The resulting
operator is given by L

(
〈g, · 〉k

)
(µ) = 1

2

(
〈g, µ〉k + g(0)k

)
− 〈g, µ〉k, where

g(x) = g(−x).
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(iii) Let ν(x, y) = U([x, x + y]). If a jump occurs, the measure valued process
jumps from µ to γ(µ, y)(dz) = 1

y
µ([z − y, z])dz where y is F -distributed.

The resulting operator is given by

L
(
〈g, · 〉k

)
(µ) =

∫ 〈1

y

∫
g(z)1[ · , ·+y](z)dz − g, µ

〉k
F (dy).

It is important to note that with this specification B cannot be chosen to be
0, or equivalently, the operator L cannot be the generator of an M1(E)-valued
martingale. Indeed, by Lemma III.4.4 we know that if L satisfies the positive
maximum principle on M1(R), the operator B needs to be greater or equal the
quantity specified in (5.2) for all g ∈ C∞c (R) such that 〈g, µ〉 = supR g. For
those g, the expression

∫
〈g, γ(µ, y) − µ〉F (dy) is nonpositive with equality only

if g(x) = supR g for all x ∈ supp(γ(µ, y)). But this automatically implies that
supp(γ(δx, y)) ⊆ {x} for each x and the form of γ implies then that γ(µ, y) = µ
for F -a.e. y ∈ R, which is not possible.

5.2.3 Spatial jump-diffusions

In this sections we illustrate a possible interplay between B, and Q and H,
respectively. The corresponding solution to the martingale problem will be a flow
of probability which are all identical to their initial condition, up to a support’s
shift. This class of jump-diffusions ispirate the third condition for optimality
of Theorem III.5.1, and in particular of Corollary III.5.7. The corresponding
generators satisfy the second condition of Lemma III.4.4 in a nontrivial way,
meaning that the expression Q(g ⊗ g, µ) +

∫
〈g, ξ − µ〉2N(µ, dξ) does not vanish

for all test functions g and probabilities µ such that 〈g2, µ〉 = 0, as it is the case
for generators of diffusions of Fleming–Viot type.

The most illustrative example is probably given by δWt where W represents a
brownian motion and has been already explained in details in Section 5.1.4.

For any x ∈ R, let Zx be a strong solution to the SDE

dZx
t = b(Zx

t )dt+ τ(Zx
t )dW 0

t +

∫
`(Zx

t−, y)
(
P0(dt, dy)− F (dy)dt

)
, Zx

0 = x

where b, τ ∈ C∞∆ (R), ` ∈ C∞∆ (R2), W 0 is a brownian motion, and P0 is a poisson
random measure on R+×R with compensator F (dy)dt. Define L as a Lévy type
operator for Γ = 0,

B(g, µ) = 〈Gg, µ〉, Q(g ⊗ g, µ) =
〈
τg′, µ

〉2
, and N(µ, dξ) = γ(µ, y)∗F (dy),

for all g ∈ C∞c (R) and µ ∈M≤1(R), where

Gg = bg′ +
1

2
τ 2g′′ +

∫
g( · + `(·, y))− g − g′`( · , y)F (dy)

denotes the generator of each Zx and γ(µ, y) = 〈δ ·+`( · ,y), µ〉 =
(
· + `( · , y)

)
∗µ.

Observe that L maps P∞c (R) to C(M v
≤1(R)) and by Theorem III.5.1(i) and The-

orem III.5.3 it satisfies the positive maximum principle on M≤1(R). Intuitively,
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we expect the corresponding M1(R)-solution to be driven by W 0 and P0. The
next lemma illustrates how this is in fact the case.

Lemma 5.2. Xt = (Z ·t )∗µ is an M1(R)-solution to the martingale problem for
L with initial condition µ. For example, choosing µ = U(a, b) we get Xt =
U(Za

t , Z
b
t ).

Proof. Let Xt and Z · be as in the lemma and fix µ ∈M1(R). In order to simplify
the notation set also µ(dx) = µ(dx1) · · ·µ(dxk) and Zx

t = (Zx1
t , . . . , Z

xk
t ) for each

x ∈ Rk. Then by Itô formula we can compute

〈g,Xt〉k =

∫ k∏
i=1

g(Zxi
t )µ(dx) = 〈g, µ〉k +

∫ ∫ t

0

Lkg(Zx
s )ds µ(dx) + (martingale)

(5.3)
where

Lkg(Zx
s ) =

k∑
i=1

Gg(Zxi
s )
∏
j 6=i

g(Zxj
s ) +

∑
j 6=i

τ(Zxi
s )τ(Zxj

s )g′(Zxi
s )g′(Zxj

s )
∏
`6=i,j

g(Zx`
s )

+

∫ k∏
i=1

g
(
Zxi
s + `(Zxi

s , y)
)
−

k∏
i=1

g(Zxi
s )

−
k∑
i=1

(
g
(
Zxi
s + `(Zxi

s , y)
)
− g(Zxi

s )
)∏
j 6=i

g(Zxj
s ) F (dy).

Since
∫
Lkg(Zx

s )µ(dx) = L
(
〈g, · 〉k

)
(Xs), this concludes the proof.

Let us now analyze this result for some particular choices of the parameters.
Setting b = τ = 0, `( · , y) = y, and F = δ1 we get Q = 0,

B(g, µ) =
〈
g( · + 1)− g − g′, µ

〉
, and N(µ, dξ) = δ( ·+1)∗µ.

The processes Zx is then given by Zx
t = x + Nt − t, where N is a homogen-

eous Poisson process with intensity 1. The M1(R)-solution to the corresponding
martingale problem is then given by

Xt = ( · +Nt − t)∗µ.

For example, choosing µ = U(a, b) we get Xt = U(a+Nt − t, b+Nt − t).
This behavior is similar to the case where b = 0, τ = 1, and F = 0, and hence

N = 0, B(g, µ) =
〈1

2
g′′, µ

〉
, and Q(g ⊗ g, µ) =

〈
g′, µ

〉2
,

and the M1(R)-solution to the corresponding martingale problem is given by

Xt = ( · +Wt)∗µ.

Again, choosing µ = U(a, b) we get Xt = U(a+Wt, b+Wt).
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5.3 Particle systems with mean fields interaction

Starting by the work of McKean (1967) limits of empirical measure processes
for systems of interacting particles have been studied by several authors (among
many others, Dawson, Ethier, Kotolenez, Kurtz, Sznitman, Xiong, ...). Those
processes fit very nicely also in the framework presented in this thesis. In partic-
ular, they can be described using the technology of the martingale problem and
their properties can be understood by studying the corresponding generator.

In the setting of Lévy type operators, consider three continuous maps b, σ, τ :
M v
≤1(R) → C(R) given by µ 7→ bµ, µ 7→ σµ, and µ 7→ τµ. This in particular

means that bµn converges to bµ uniformly on compact sets whenever µn goes to
µ vaguely, and the same is true for σ and τ . For g ∈ C∞c (R) set then

Bµg = bµg
′ +

1

2

(
σ2
µ + τ 2

µ

)
g′′, Σµg = τµg

′,

for all µ ∈M v
≤1(R). Let L be a Lévy type operator for Γ = 0, N = 0,

B(g, µ) =
〈
Bµg, µ

〉
, and Q(g ⊗ g, µ) =

〈
Σµg, µ

〉2
, µ ∈M≤1(R), g ∈ C∞c (R).

By Theorem III.5.1(i) and Theorem III.5.3 L satisfies the positive maximum
principle on M≤1(R).

By means of the next two lemmas, we will now verify that all the conditions of
Lemma III.3.6 are satisfied. This will let us conclude that the martingale problem
for L has an M1(R)-solution for each initial condition µ ∈M1(R).

Lemma 5.3. L maps P∞c (R) to C(M v
≤1(R)).

Proof. Fix p(µ) := 〈g, µ〉k for some g ∈ C∞c (R) and k ∈ N and note that

∂p(µ) = k〈g, µ〉k−1g and ∂2p(µ) = k(k − 1)〈g, µ〉k−1g ⊗ g.

Fix now (µn)n ⊆ M≤1(R) and µ ∈ M≤1(R) such that µn converges vaguely to µ.
Then, the properties of b, σ and τ guarantee that

εn := ‖Bµn∂p(µn)−Bµ∂p(µ)‖ = k|〈g, µ〉|k−1‖Bµng −Bµg‖

converges to 0 for n going to infinity. Since the same properties guarantee that
Bµg ∈ Cc(R), we get

|B(g, µn)−B(g, µ)| ≤ εn + k|〈g, µ〉|k−1|〈Bµg, µn − µ〉| n→∞−−−→ 0.

Proceeding similarly for Q and using that C(M v
≤1(R)) is a Polish space and thus

a sequential space, we can conclude that L maps P∞c (R) to C(M v
≤1(R)).

Lemma 5.4. Assume that for some K ≥ 0

xbµ(x), σµ(x)2 + τµ(x)2 ≤ K(1 + x2) (5.4)

for all x ∈ R and µ ∈M≤1(R). Then condition (III.3.2) holds true.
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Proof. Fix h ∈ C∞c (R) such that 1[−1,1] ≤ h ≤ 1[−2,2] and h′(x)x ≤ 0 for all
x ∈ R. Then set gn(x) := h(x/n) and note that supn ‖gn‖ = 1 and gn(x)→ 1 for
all x ∈ R. Moreover

Bµgn(x) =
1

n2

(
− bµ(x)x

|h′(x/n)|
|x|/n +

1

2

(
σµ(x)2 + τµ(x)2

)
h′′(x/n)

)
≥ −K(1 + (2n)2)

n2
sup
x∈R

( |h′(x)|
|x| +

1

2

(
h′′(x)

)−) ≥ −C
for some C ∈ R+, proving that L

(
〈gn, · 〉

)
(µ) is bounded from below with respect

to µ and n. Finally, for all µ ∈M≤1(R) by Fatou lemma we can compute

lim inf
n→∞

L
(
〈gn, · 〉

)
(µ) = lim inf

n→∞
〈Bµgn, µ〉 ≥ 〈 lim

n→∞
Bµgn, µ〉 = 0.

5.3.1 Dynamics of the first order moments

Let now X be an M1(R)-solution to the martingale problem corresponding to L.
By (III.3.1) and Lemma III.4.6, we know that for all g, h ∈ C∞c (R)

〈g,Xt〉 − 〈g,X0〉 −
∫ t

0

〈BXsg,Xs〉ds is a martingale

PQC(〈g,X〉, 〈h,X〉) =

∫
Q(g ⊗ h,Xs)ds =

∫ 〈
ΣXsg,Xs

〉〈
ΣXsh,Xs

〉
ds.

Moreover, since Γ = 0 and N = 0 we also know that X is conservative and
continuous (see Lemma III.4.5(ii)). Combining those observations we can see
that the dynamics of X are compatible with the following system of SDEs

d〈g,Xt〉 = 〈BXtg,Xt〉dt+ 〈ΣXtg,Xt〉dW 0
t ∀g ∈ C∞c (R),

where W 0 denotes a brownian motion.

5.3.2 Particle systems and McKean-Vlasov equations

Consider a probability space (Ω,F , (Ft)t≥0,P) and let (X, (Zi)i∈N) be a solution
of the system

Xt = lim
n→∞

1

n

n∑
i=1

δZit and dZ
i
t = bXt(Z

i
t)dt+ σXt(Z

i
t)dW

i
t + τXt(Z

i
t)dW

0
t , (5.5)

with initial value Zi
0 = x ∈ R, where W 0,W 1, . . . are independent brownian

motions. Assume that Z1, Z2, . . . are exchangeable. By De Finetti theorem (see
e.g. Theorem 4.1 in Kotelenez and Kurtz (2008) or, for a general overview, also
Section 12.3 in Klenke (2013)) we get that (Zi

t)i∈N are conditionally i.i.d. with
respect to the invariant σ-algebra F∞t = σ(Xs, s ≤ t) and Xt = P(Z1

t ∈ · |F∞t ).
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Lemma 5.5. X is anM1(R)-solution to the martingale problem for L with initial
condition δx.

Proof. Set Z := Z1 and note that for all g1, . . . , gk ∈ C∞c (R)

E[g1(Z1
t ) · · · gk(Zk

t )|F∞t ] = E[g1(Zt)|F∞t ] · · ·E[gk(Zt)|F∞t ].

For all g ∈ C∞c (R) setting Z := (Z1, . . . , Zk) we then get that

N g,k
t := g(Z1

t ) · · · g(Zk
t )− g(x)k −

∫ t

0

Lkg(Zs, Xs)ds

is a bounded (Ft)t≥0-martingale, where

Lkg(Zs, Xs) =
k∑
i=1

(
bXs(Z

i
s)g
′(Zi

s) +
1

2

(
σXs(Z

i
s) + τXs(Z

i
s)
)
g′′(Zi

s)

)∏
j 6=i

g(Zj
s)

+
k∑
i=1

∑
j 6=i

τXs(Z
i
s)τXs(Z

j
s)g
′(Zi

s)g
′(Zj

s)
∏
` 6=i,j

g(Z`
s).

Since F∞t ⊆ Ft this implies that E[N g,k
t |F∞t ] is an (F∞t )t≥0-martingale and hence

E[〈g,Xt〉k|F∞s ]− 〈g,Xs〉k = E
[ ∫ t

s

Lkg(Zu, Xu)du

∣∣∣∣F∞s ]
= E

[ ∫ t

s

E[Lkg(Zu, Xu)|F∞u ]du

∣∣∣∣F∞s ]
= E

[ ∫ t

s

L
(
〈g, · 〉k

)
(Xu)du

∣∣∣∣F∞s ]
proving that X is an M1(R)-solution to the martingale problem for L.

We now propose an interesting remark based on Theorem 2.3 in Kurtz and
Xiong (1999) and its proof.

Remark 5.6. Under the additional assumption of pathwise uniqueness for the
solution of (5.5), we get that

Xt = P(Z1
t ∈ · |F0

t ), where F0
t = σ(W 0

s , s ≤ t).

In fact, as a characterization of X, the particle system (5.5) is essentially equi-
valent to the following McKean–Vlasov equation

Xt = P(Zt ∈ · |F0
t ) and dZt = bXt(Zt)dt+ σXt(Zt)dW

1
t + τXt(Zt)dW

0
t , (5.6)

where we require Z to be compatible with (W 1,W 0) in the sense that, for each t ≥
0, the increments of W 1 and W 0 after t are independent of σ(Zs,Ws,W

0
s , s ≤ t).

More precisely, the existence of a solution (X,Z,W 1,W 0) of (5.6) yields the
existence of a solution

(X̃, (Z̃i)i∈N, (W̃
i)i∈N, W̃

0)

of (5.5) such that (X̃, Z̃1, W̃ 1, W̃ 0) has the same distribution as (X,Z,W 1,W 0).
Conversely, if (X, (Zi)i∈N, (W

i)i∈N,W
0) is a pathwise unique solution of (5.5),

then (X,Z1,W 1,W 0) is a solution of (5.6).
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5.3.3 A jump-diffusion with mean fields interactions

Consider now a probability measure F on R, and a continuous map ` : M≤1(R)→
Cc(R× R) given by µ 7→ `µ. For g ∈ C∞c (R) set then

Bµg = bµg
′+

1

2

(
σ2
µ+τ 2

µ

)
g′′+

∫
g( ·+`µ( · , y))−g−g′`µ( · , y)F (dy), Σµg = τµg

′,

for all µ ∈M v
≤1(R). Let then L be a Lévy type operator for Γ = 0,

B(g, µ) =
〈
Bµg, µ

〉
, Q(g ⊗ g, µ) =

〈
Σµg, µ

〉2 and N(µ, dξ) = γ(µ, y)∗F (dy),

where γ(µ, y) =
(
· + `µ( · , y)

)
∗µ, for all µ ∈ M≤1(R), g ∈ C∞c (R). Note that L

is explicitly given by

Lp(µ) =
〈
Bµ∂p(µ), µ

〉
+

1

2

〈
Σµ ⊗ Σµ∂

2p(µ), µ2
〉

(5.7)

+

∫
p(γ(µ, y))− p(µ)− 〈∂p(µ), γ(µ, y)− µ〉F (dy).

Consider then a filtered probability space (Ω,F , (Ft)t≥0,P) and consider a solu-
tion (X, (Zi)i∈N) of the system given by Xt = limn→∞

1
n

∑n
i=1 δZit and

dZi
t = bXt(Z

i
t)dt+σXt(Z

i
t)dW

i
t+τXt(Z

i
t)dW

0
t +

∫
`Xt(Z

i
t−, y)

(
P0(dt, dy)−F (dy)dt

)
with initial value Zi

0 = x ∈ R, where W 0,W 1, . . . are independent brownian
motions and P0 is a poisson random measure with compensator F (dy)dt. Again,
assume that Z1, Z2, . . . are exchangeable.

Lemma 5.7. X is anM1(R)-solution to the martingale problem for L with initial
condition δx.

Proof. By De Finetti theorem we get that (Zi
t)i∈N are conditionally i.i.d. with

respect to the invariant σ-algebra F∞t = σ(Xs, s ≤ t) and Xt = P(Z1
t ∈ · |F∞t ).

The proof follows the proof of Lemma 5.5.

5.3.4 Interactions through weighted empirical measures

Kurtz and Xiong (1999) provides a representation of the unique solution of a class
of nonlinear stochastic differential equations by means of a wighted empirical
measure. Since we are interested in probability measure-valued processes, we
restrict our attention to those cases where sum of the weights is equal to 1.

We approach this framework following the cited article. Consider a continuous
map υ : M≤1(R) → Cc(R) given by µ 7→ υµ. Consider then a probability space
(Ω,F , (Ft)t≥0,P) and consider a solution (X, (Zi)i∈N, (Y

i)i∈N) of the system given
by

Xt = lim
n→∞

1

n

n∑
i=1

Y i
t δZit (5.8)

dZi
t = bXt(Z

i
t)dt+ σXt(Z

i
t)dW

i
t + τXt(Z

i
t)dW

0
t and dY i

t = Y i
t υXt(Z

i
t)dW

i
t ,
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with initial value Zi
0 = x ∈ R, Y i

0 = 1, where W 0,W 1, . . . are independent
brownian motions. Assume also that (Z1, Y 1), (Z2, Y 2), . . . are exchangeable.
Observe that, differently from Section 5.1.5, each weight 1

n
Y i is correlated with

the corresponding particle Zi but it is uncorrelated to the other weights 1
n
Y j, for

j 6= i.
Proceeding as in the proof of Proposition 2.1 of Kurtz and Xiong (1999) we

can show that E[sup0≤s≤t(Y
i
s )2] < ∞ and following the proof of Theorem 3.1

of the same paper, we can then show that by exchangeability of (Y i)i∈N and
boundedness of (µ, z) 7→ υµ(z)

Xt(R) = lim
n→∞

1

n

n∑
i=1

Y i
t = lim

n→∞

1

n

n∑
i=1

(
1 +

∫ t

0

Y i
s υXs(Z

i
s)dW

i
s

)
= 1.

We can thus conclude that Xt ∈ M1(R), for all t ≥ 0. It is also interesting to
note that by the De Finetti theorem and integrability of sup0≤s≤t(Y

1
s )2 we know

that
Xt = E[Y 1

t 1{Z1
t ∈ · }|F

∞
t ],

where F∞t = σ(Xs, s ≤ t) for X t = limn→∞
1
n

∑n
i=1 δ(Zit ,Y

i
t ).

For g ∈ C∞c (R) and µ ∈M≤1(R) set then

Bµg =
(
bµ + σµυµ

)
g′ +

1

2

(
σ2
µ + τ 2

µ

)
g′′, Σµg = τµg

′,

and define L as a Lévy type operator for Γ = 0, N = 0

B(g, µ) =
〈
Bµg, µ

〉
and Q(g ⊗ g, µ) =

〈
Σµg, µ

〉2
.

Lemma 5.8. X is anM1(R)-solution to the martingale problem for L with initial
condition δx.

Proof. Set Z := Z1 and Y := Y 1. By De Finetti theorem we get that (Zi
t , Y

i
t )i∈N

are conditionally i.i.d. with respect to (F∞t )t≥0. For all g ∈ C∞c (R), setting
Z := (Z1, . . . , Zk) and Y := (Y 1, . . . , Y k) we then we have that

N g,k
t := Y 1

t g(Z1
t ) · · ·Y k

t g(Zk
t )− g(x)k −

∫ t

0

Lkg(Zs, Y s, Xs)ds

is a bounded (Ft)t≥0-martingale, where

Lkg(z, y, µ) =
k∑
i=1

yiBµg(zi)
∏
j 6=i

yjg(zj)

+
∑
j 6=i

τµ(zi)τµ(zj)yig
′(zi)yjg

′(zj)
∏
`6=i,j

y`g(z`).

Since F∞t ⊆ Ft this implies that E[N g,k
t |F∞t ] is an (F∞t )t≥0-martingale and hence

proceeding as in the proof of Lemma 5.5 we can conclude that X is an M1(R)-
solution to the martingale problem for L.
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It is interesting to note that as in Remark 5.6 if we additionally assume path-
wise uniqueness of the solution of the particle system (5.8) we get that

Xt = E[Y 1
t 1{Z1

t ∈ · }|F
0
t ],

for F0
t = σ(W 0

s , s ≤ t).
Observe that by Section 5.3.2 we know that L is the generator of

X̃t := P(Z̃t ∈ · |F0
t ),

where the dynamics of Z̃ coincides with those of Z up to a correction term σµυµ
in the drift.

5.4 M1(E)-solutions taking values in a subset of M1(E)

Consider again the setting of Lévy type operators. There are cases, where we are
interested in M1(E)-solutions taking values in some subset M of M1(E) being
closed in a suitable sense.2 One can show that in order to prove the existence of
such a solution one does not need to check the positive maximum principle on M
instead of M1(E). This conclusion is reasonable, since it is intuitively clear that
the behavior of a potential solution outside M should not affect the behavior of
a solution starting in M and living in M .

We provide here two examples in this sense. In the first one, M is given by
Mn := {ν ∈M1(R) : ν = 1

n

∑n
i=1 δzi , zi ∈ R} and in the second one

MN :=

{
ν ∈M1(N× R) : ν = δn ×

1

n

n∑
i=1

δzi , zi ∈ R, n ∈ N
}
.

Observe that, in the second example the killing parameter Γ will not assumed to
be 0.

5.4.1 Systems of finitely many particles

Fix n ∈ N and consider b, σ, τ ∈ C(R). For g ∈ C∞c (R) set then

Gg = bg′ +
1

2

(
σ2 + τ 2

)
g′′ and Στg = τg′,

and define L as a Lévy type operator for Γ = 0, N = 0,

B(g, ν) =
〈
Gg, ν

〉
and Q(g ⊗ g, ν) =

1

n
〈(Σσg)2, ν〉+

〈
Στg, ν

〉2
.

Consider a probability space (Ω,F , (Ft)t≥0,P) and a solution Z := (Z1, . . . , Zn)
of

dZi
t = b(Zi

t)dt+ σ(Zi
t)dW

i
t + τ(Zi

t)dW
0
t ,

with initial value Zi
0 = x ∈ R, where W 0,W 1, . . . ,W n are (n + 1) independent

brownian motions.
2 Since the procedure for checking existence always start with an embedding in M≤1(E), we

need to guarantee that M = {ν ∈M : ν(E) = 1} for some closed subset M of Mv
≤1(E).
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Lemma 5.9. X = 1
n

∑n
i=1 δZi is an M1(R)-solution to the martingale problem

for L with initial condition δx.

Proof. The result follows by an application of the Itô lemma to 〈g,Xt〉k =
1
nk

(
∑n

i=1 δZi)
k for all g ∈ C∞c (R).

Even if one cannot guarantee that the positive maximum principle onM≤1(R)
holds true, it holds onMn. Observe also that for n→∞ the operator L converges
to the operator described at the beginning of Section 5.3 (without mean fields
interactions).

5.4.2 Empirical measures of branching processes

This last example belongs to the frameworks of mean field games with branching.
It is inspired by the work of Claisse, Ren, and Tan presented during the workshop
Advances in Stochastic Analysis for Risk Modeling, taking place from 13 to 17
November 2017 at the CIRM in Luminy. Also in this case, the technology of the
martingale problem can be used to understand some properties of the process,
for instance when the population is assumed to be asymptotically large.

Consider a population whose branching dynamics are given by the following
characteristics. Each individual Zi follows a diffusion which is independent to
the other individuals and whose generator is given by

Gf(z) = −λ(z)f(z) + b(z)f ′(z) +
1

2
f ′′(z).

This in particular implies that the deathtime τi of the i-th individual is given by

P(τi ≥ t|Zi
s, s ≤ t) = exp

(
−
∫ t

0

λ(Zi
s)ds

)
.

While the i-th individual vanishes, she gives birth to new individuals. We de-
note by F the distribution on N0 of the number of offsprings and we assume for
simplicity that the offsprings inherit the position of their parent. Define then
Vt := {i : Zi is alive at time t} and consider the M1(N× R)-valued process

Xt = δ|Vt| ×
1

|Vt|
∑
i∈Vt

δZit ,

where |Vt| denote the number of elements in Vt. Our goal is now to provide
a Lévy type operator L such that X is a possibly killed M1(R)-solution to the
martingale problem for L. Before to start with the construction, a small comment
about the choice of the state space is due. In fact, we are just interested in the
empirical measure 1

|Vt|
∑

i∈Vt δZit but this process unfortunately not Markov and
our theory can thus not be applied. This observation became clear if one notes
that the distribution of Xt given Xs = δ0 depends on |Vs| as well and |Vs| is
σ(Xu, u ≤ s)-measurable.

Observe that if a branch occurs, the process X performs a jump. More
precisely, suppose that at time t an individual dies in the position z ∈ R and
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gives birth to y ∈ N0 new individuals. Then if Xt− = µ1 × µ2 we get Xt =
µ1(y, z)× µ2(y, z) =: µ(y, z) for

µ1(y, z) := δ〈w,µ1〉−1+y and µ2(y, z) :=
1

〈w, µ1〉 − 1 + y

(
〈w, µ1〉µ2 +(−1+y)δz

)
where w(v) := v. If 〈w, µ1〉 − 1 + y = 0, the dying individual is the last living
one (〈w, µ1〉=1) and she does not give birth to any offspring (y = 0). In this case
extinction occurs and we write Xt = µ†, where µ† denotes the cemetery state.

This reasoning provides the intuition behind the following choice of the killing
and jump parameters.

Γ(µ) := −
∫ ∫

1{y=0}F (dy)λ(z)µ2(dz)〈h1, µ1〉 = −F (0)〈λ, µ2〉〈h1, µ1〉

N(µ, dξ) := µ(y, z)∗

(
Fµ(dy)× λ(z)〈w, µ1〉µ2(dz)

)
where for h1 ∈ C∞c (N) such that h1(1) = 1 and h1(v) = 0 for all v ∈ N \ {1},
Fµ = F for µ1 6= δ1, and Fµ(dy) = 1{y>0}F (dy) if µ1 = δ1. Since between two
jumps the process X is just an empirical measure, the intuition behind the choice
of B and Q follows from Section 5.4.1:

B((g1, g2), µ) :=

∫
〈(g1, g2), ξ − µ〉N(µ, dξ) + 〈g1, µ1〉〈Gg2, µ2〉,

Q((g1, g2)⊗ (g1, g2), µ) :=
1

〈w, µ1〉
〈g1, µ1〉2〈(g′2)2, µ2〉.

where Gf(z) = b(z)f ′(z) + 1
2
f ′′(z) is the generator of an individual’s diffusion,

assuming that no killing can occur.
We now (heuristically) analyze the situation where the number of particles is

infinite. Fix g1 ≡ 1 and set g2 = g. For µv = δv × µv such that µv = 1
v

∑v
i=1 δzi

and µv
v→∞−−−→ µ we get that

L
(〈

(1, g), ·
〉)

(µv) = −F (0)〈λ, µv〉1{v=1} + 〈Gg, µv〉

+

∫
v(y − 1)

v + y − 1
Fµv(dy)

(
〈gλ, µv〉 − 〈g, µv〉〈λ, µv〉

)
which for v going to ∞ converges to

L∞
(〈

(1, g), ·
〉)

(µ) := F1

(
〈gλ, µ〉 − 〈g, µ〉〈λ, µ〉

)
+ 〈Gg, µ

〉
,

for F1 =
∫
yF (dy) − 1 being the expected change of size of the population after

a death.
The interpretation of the (possibly killed) M1(E)-solution of the correspond-

ing martingale problem depends on the sign of F1. If it is positive, i.e. if the
population tends to increase after a death of an individual, we can note that

L∞
(〈

(1, g), ·
〉)

(µ) =
〈 ∫

(g(ξ)− g)F+
µ (dξ) + Gg, µ

〉
,
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where F+
µ (dξ) = F1λ(ξ)µ(dξ). Following the intuition of Section 5.1.1 we can see

that the possibly killed M1(E)-solution to the corresponding martingale problem
is given by P(Z+

t ∈ · ) where the dynamics of Z+ are generated by

G+g :=

∫
(g(ξ)− g)F+

µ (dξ) + Gg.

An individual whose dynamics are given by Z+ moves like the original ones before
their death till when a jump occurs. Its jump rate is given by F1〈λ, µ〉, which
in particular does not depend on the position of the individual. The jumps
distribution is then given by F+, which in particular is more concentrated to
regions with a high mortality rate (λ large) and where more particles are present
(i.e. where µ is more concentrated).

If F1 is negative, i.e. if the population tends to decrease after a death, we can
note that

L∞
(〈

(1, g), ·
〉)

(µ) =
〈 ∫

(g(ξ)− g)F−µ ( · , dξ) + Gg, µ
〉
,

where F−µ (x, dξ) = −F1λ(x)µ(dξ). Again, the (possibly killed) M1(E)-solution to
the corresponding martingale problem is given by P(Z−t ∈ · ) where the dynamics
of Z− are generated by

G−g :=

∫
(g(ξ)− g)F−µ (dξ) + Gg.

Also in this case, an individual whose dynamics are given by Z− moves like the
original ones before their dead. Its jump rate is given by−F1λ, which in particular
depends on the position of the individual. Finally, the jumps distribution is then
given by F−µ , which in particular is more concentrated to regions where more
particles are present (i.e. where µ is more concentrated).

A Proof of Theorem 2.2 and a generalization

We first prove Theorem 2.2. Assume that L is of the stated form. Then for
monomials p(ν) = 〈g, ν〉k with g ∈ D, k ∈ N and ν ∈M1(E) one has

Lp(ν) =
〈
B
(
∂p(ν)

)
, ν
〉

+
1

2

〈
Q
(
∂2p(ν)

)
, ν2
〉

= k〈g, ν〉k−1〈B(g), ν〉+
1

2
k(k − 1)〈g, ν〉k−2〈Q(g ⊗ g), ν2〉,

which is a polynomial in ν of degree at most k. Moreover, L1 = 0. By linearity,
this shows that L is M1(E)-polynomial. Next, a direct calculation yields

Γ(p, q)(ν) =
〈
Q
(
∂p(ν)⊗ ∂q(ν)

)
, ν2
〉

for all ν ∈M1(E),

which is easily seen to be an M1(E)-derivation due to the product rule given in
Lemma III.2.4(v) for differentiating polynomials.
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Conversely, assume L is M1(E)-polynomial and Γ is an M1(E)-derivation.
Consider arbitrary first degree monomials q(ν) = 〈g, ν〉 and r(ν) = 〈h, ν〉, g, h ∈
D. The M1(E)-polynomial property and Corollary III.2.6 yield

Lq(ν) = 〈Bg, ν〉 for all ν ∈M1(E),

for some map B : D → C∆(E) that are easily seen to be linear due to the linearity
of L. Furthermore, the M1(E)-polynomial property, definition (III.3.3) of Γ, and
Corollary III.2.6 imply that

Γ(q, r)(ν) = 〈Q(g ⊗ h), ν2〉 for all ν ∈M1(E),

where Q inherits symmetry and linearity from Γ and take values in Ĉ∆(E2).
Thus, by taking linear combinations, we can and do extend them to operators on
D ⊗D.

Explicit calculation now shows that Lp is of the form (2.1) for p = q and
p = q2. Furthermore, since Γ is an M1(E)-derivation we have Γ(1, 1) = 2Γ(1, 1),
hence Γ(1, 1) = 0, and therefore L1 = L(12) = 0+2L1. Thus L1 = 0, so that (2.1)
holds also for p = 1.

We now make more substantial use of the fact that Γ is an M1(E)-derivation
in order to extend (2.1) to higher degree monomials. We proceed by induction
on k, and assume Lp is of the form (2.1) for all p = ql, l ≤ k. So far we have
proved this for k = 2. The definition (III.3.3) of Γ and the fact that it is an
M1(E)-derivation give the identity on M1(E)

L(qk+1) = 2qL(qk)− q2L(qk−1) + qk−1Γ(q, q)

for k ≥ 2. Due to the induction assumption, the right-hand side can be computed
explicitly using (2.1). The result is

(k + 1)q(ν)k〈Bg, ν〉+
1

2
(k + 1)kq(ν)k−1〈Q(g ⊗ g), ν2〉,

which is equal to 〈B(∂p(ν)), ν〉 + 1
2
〈Q(∂2p(ν)), ν2〉 with p = qk+1, for all ν ∈

M1(E). This concludes the induction step. It follows by induction that (2.1)
holds for all monomials 〈g, ν〉k, and by linearity for all p ∈ PD. Finally, the
uniqueness assertion is immediate from the way B and Q were obtained above.
This completes the proof of Theorem 2.2.

We now state a generalization of Theorem 2.2, where M1(E) is replaced by a
general state space. We let E be a locally compact Polish space, D ⊆ C∆(E) be
a dense linear subspace, and fix S ⊆M(E).

Theorem A.1. Let L : PD → P be a linear operator. Then L is S-polynomial
and its carré-du-champs operator Γ is anM1(E)-derivation if and only if L admits
a representation

Lp(ν) =B0(∂p(ν)) +
〈
B1(∂p(ν)), ν

〉
+

1

2

(
Q0(∂2p(ν)) +

〈
Q1(∂2p(ν)), ν

〉
+
〈
Q2(∂2p(ν)), ν2

〉)
, ν ∈ S
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for some linear operators B0 : D → R, B1 : D → C∆(E), Q0 : D ⊗ D → R,
Q1 : D ⊗D → C∆(E), Q2 : D ⊗D → Ĉ∆(E2). If S contains an open subset of
M(E), these operators are uniquely determined by L.

Proof. The proof of this result follows the proof of Theorem 2.2.

B Proof of Theorem 3.10

Assume L satisfies (2.1) with B and Q as in (3.4), where νB is a (nonnegat-
ive, finite) kernel from E to E, and α : (E∆)2 → R is nonnegative, symmetric,
bounded, and continuous on (E∆)2\{x = y}. Clearly Q is bounded with operator
norm 2‖α‖. Identifying C∆(E) and C(E∆), we infer from Lemma III.B.1 that B
is bounded, satisfies B1 = 0 as well as the positive maximum principle on E∆,
and that {etB}t≥0 is a strongly continuous contraction semigroup. By considering
any sequence of functions gn ∈ C0(E) with 0 ≤ gn(x) ↑ 1 for all x ∈ E, and
using that νB(x, {∆}) = 0 for all x ∈ E, one sees that B is E-conservative. The-
orem 3.7 then yields that L is M1(E)-polynomial and its martingale problem has
an M1(E)-solution with continuous paths for every initial condition ν ∈ M1(E).
Well–posedness follows by Theorem 3.9.

We now prove the opposite implication. Assume L is M1(E)-polynomial, its
martingale problem is well–posed, and allM1(E)-solutions have continuous paths.
Theorem 2.2 and Lemma III.3.11 imply that L satisfies (2.1), and then also the
positive maximum principle on M1(E) due to Lemma III.3.5.

By Lemma C.1, the operator B satisfies the positive maximum principle on E
and Lemma III.B.1 thus shows that B has the form in (3.4) for some (nonnegative,
finite) kernel νB from E∆ to E∆. Additionally, B is bounded, satisfies the positive
maximum principle on E∆, and is the generator of the strongly continuous con-
traction semigroup {etB}t≥0. We must prove that νB(x, {∆}) = 0 for all x ∈ E;
this will allow us to view νB as a kernel from E to E. Fix a sequence of functions
hn ∈ C0(E) with 0 ≤ hn ↑ 1. By Theorem 1.2.1 in Ethier and Kurtz (2005), the
inverse (id− B)−1 exists and is a bounded operator, whence there are functions
gn ∈ C(E∆) with gn − Bgn = hn and supn ‖gn‖ < ∞. Fix any x ∈ E and let X
be an M1(E)-solution to the martingale problem for L with initial condition δx.
Then 〈gn, Xt〉 −

∫ t
0
〈Bgn, Xs〉ds defines a martingale for each n. By Lemma 4.3.2

in Ethier and Kurtz (2005), so does e−t〈gn, Xt〉+
∫ t

0
e−s〈gn−Bgn, Xs〉ds. Taking

expectation and sending t to infinity yields

gn(x) = 〈gn, X0〉 = E
[∫ ∞

0

e−s〈gn −Bgn, Xs〉ds
]

= E
[∫ ∞

0

e−s〈hn, Xs〉ds
]
.

Sending n to infinity and using that Xt(E) = 1 for all t ≥ 0, we infer that
gn(x) → 1 for all x ∈ E. After passing to subsequence we also have gn(∆) → c
for some c ∈ R. We may therefore send n to infinity in the identity∫

E∆

(gn(ξ)− gn(x))νB(x, dξ) = Bgn(x) = gn(x)− hn(x)
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to get (c− 1)νB(x, {∆}) = 0. On the other hand,

gn(∆) = gn(∆)− hn(∆) = Bgn(∆) =

∫
E

(gn(ξ)− gn(∆))νB(∆, dξ),

which in the limit yields c = (1 − c)νB(∆, E), forcing c 6= 1. It follows that
νB(x, {∆}) = 0 as required. This proves that B is of the stated form.

The form of Q will follow from Lemma C.2. To verify its hypotheses, note
that by Lemma C.1 〈Q(g ⊗ g), ν2〉 ≥ 0. Next, fix some g ∈ D and ν ∈ M1(E)
such that g = 0 on the support of ν, and suppose that ‖g‖ = 1. For each n ∈ N,
define the polynomial

pn(µ) = 〈g, µ〉2Fn (〈|g|, µ〉)− 1

n
〈|g|, µ〉,

where Fn is as in Lemma 3.12. Since D = C∆(E), we have pn ∈ PD. Moreover,
since Fn(z)zn ≤ 1 for all z ∈ [0, 1], we get

〈g, µ〉2Fn (〈|g|, µ〉) ≤ 1

n
〈|g|, µ〉, µ ∈M1(E),

and therefore pn ≤ 0 on M1(E). Since g = 0 on the support of ν, pn(ν) = 0.
Applying the positive maximum principle and using the form (2.1) of L, as well
as 〈g, ν〉 = 〈|g|, ν〉 = 0 and Fn(0) = 1 we obtain

0 ≥ Lpn(ν) = − 1

n
〈B(|g|), ν〉+ 〈Q(g ⊗ g), ν2〉

for all n, whence 〈Q(g⊗g), ν2〉 ≤ 0. By scaling, this actually holds for any g ∈ D
and ν ∈ M1(E) such that g = 0 on the support of ν. If g equals some other
constant c ∈ R on the support of ν, we still get

〈Q(g ⊗ g), ν2〉 = 〈Q((g − c)⊗ (g − c)), ν2〉 ≤ 0

using that Q(g ⊗ 1) = 0 by Lemma C.1. Thus Lemma C.2(ii) holds, and we
conclude that Q = αΨ for some nonnegative symmetric function α : E2 → R. It
remains to use that αΨ(g) ∈ Ĉ∆(E2) to show that this function can be extended
to a bounded continuous function on (E∆)2 \ {x = y}.

Continuity is clear. For proving boundedness, choose a sequence of pairs
(xn, yn) ∈ (E∆)2 \ {x = y} such that α(xn, yn)

n→∞−−−→ ∞. Since we can assume
without loss of generalities that α(xi, yi) > 0, xi 6= xj, xi 6= yj, and yi 6= yj for all
i, j ∈ N, we can construct g ∈ C∆(E) such that

(g(xn)− g(yn))4 = α(xn, yn)−1.

This yields α(xn, yn)Ψ(g ⊗ g)(xn, yn) = α(xn, yn)1/2 proving that αΨ(g ⊗ g) is
unbounded and providing the necessary contradiction.
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C Auxiliary Lemmas

Let E be a locally compact Polish space.

Lemma C.1. Let D ⊆ C∆(E) be a dense linear subspace containing the constant
function 1, and let L : PD → P be a linear operator satisfying (2.1) and the
positive maximum principle on M1(E). Then B satisfies the positive maximum
principle on E, B1 = 0, 〈Q(g ⊗ g), ν2〉 ≥ 0, and Q(g ⊗ 1) = 0 for all g ∈ D and
ν ∈M1(E).

Proof. Note that L1 = 0 since L satisfies (2.1). For any g ∈ D and x ∈ E such
that g(x) = maxE g ≥ 0, the polynomial p(ν) = 〈g, ν〉 lies in PD and satisfies
p(δx) = maxM1(E) p ≥ 0. Thus Bg(x) = Lp(δx) ≤ 0. Furthermore, taking
p(ν) = 〈1, ν〉 ≡ 1 we get B1(x) = Lp(δx) = 0 for all x ∈ E. Fix then g and ν as in
the lemma and define p ∈ PD by p(µ) = −(〈g, ν〉−〈g, µ〉)2. Then p ≤ 0, p(ν) = 0,
∂p(ν) = 0, and ∂2p(ν) = −2g ⊗ g, so the positive maximum principle yields
−〈Q(g ⊗ g), ν2〉 = Lp(ν) ≤ 0. Furthermore, taking p(ν) = 〈g ⊗ 1, ν〉 − 〈g, ν〉 ≡ 0
we get 0 = 〈g, ν〉〈B1, ν〉 + 1

2
〈Q(g ⊗ 1), ν2〉 = 1

2
〈Q(g ⊗ 1), ν2〉 for all ν ∈ M1(E),

proving the claim.

Lemma C.2. Let D ⊆ C∆(E) be a dense linear subspace containing the constant
function 1, and let Q : D ⊗ D → Ĉ∆(E2) be a linear operator. The following
conditions are equivalent:

(i) Q(g ⊗ g)(x, y) ≥ 0 for all g ∈ D and x, y ∈ E, with equality if g(x) = g(y).

(ii) 〈Q(g ⊗ g), ν2〉 ≥ 0 for all g ∈ D and ν ∈ M1(E), with equality if g is
constant on the support of ν.

If either condition is satisfied, then Q is of the form Q = αΨ for some nonnegative
symmetric function α : E2 → R.

Proof. It is clear that (i) implies (ii). For the converse, first note that for any
x ∈ E and g ∈ D, trivially g is constant on the support of δx. Thus Q(g ⊗
g)(x, x) = 〈Q(g ⊗ g), δ2

x〉 = 0. Taking ν = 1
2
(δx + δy) for any x, y ∈ E then yields

Q(g ⊗ g)(x, y) = 〈Q(g ⊗ g), ν2〉 ≥ 0, with equality if g(x) = g(y) since g is then
constant on the support of ν. This proves that (ii) implies (i).

It remains to obtain the stated form of Q under the assumption that (i) holds.
If E is a singleton then Q = 0, so we may assume that E contains at least two
points. Fix x, y ∈ E with x 6= y. Due to (i), the map (g, h) 7→ Q(g ⊗ h)(x, y)
is bilinear and positive semidefinite, and therefore satisfies the Cauchy–Schwarz
inequality

|Q(g ⊗ h)(x, y)| ≤
√
Q(g ⊗ g)(x, y)

√
Q(h⊗ h)(x, y).

Along with (i) this implies that Q(g ⊗ h)(x, y) depends on g and h only through
their values at x and y. Moreover, since D is dense in C∆(E), for every a ∈ R2
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there exists g ∈ D such that a = (g(x), g(y)). Thus there is a unique map
T : R2 × R2 → R such that

Q(g ⊗ h)(x, y) = T (a, b) where a =

(
g(x)
g(y)

)
, b =

(
h(x)
h(y)

)
.

The map T inherits bilinearity and positive semidefiniteness from Q. Since Q(g⊗
1)(x, y) = 0 due to the Cauchy–Schwarz inequality and (i), we also have T (a, b) =
0 for b = (1, 1). This implies that T (a, b) = 1

2
α(x, y)(a1 − a2)(b1 − b2) for some

α(x, y) ∈ R+. Thus,

Q(g ⊗ h)(x, y) =
1

2
α(x, y)(g(x)− g(y))(h(x)− h(y)) = α(x, y)Ψ(g ⊗ h)(x, y).

Defining α(x, x) arbitrarily, we obtain the map α : E2 → R, which is symmetric
due to the symmetry of Q(g ⊗ h).

For the next lemma we consider the setting of Lemma 4.5, i.e. E = R and

R + C∞c (R) ⊆ D ⊆ R + C2
c (R).

Lemma C.3. Consider two operators B : D → C∆(R) and Q : D⊗D → Ĉ∆(R2)
such that B is as in (4.3) and Q satisfies

Q(h⊗ h)(x, y) ≥ 0 for all h ∈ D,
with equality if h(x) = h(y) and h′(x) = h′(y) = 0.

Then, for each g ∈ D and x, y ∈ R such that g(x) = g(y) = 1 there exists a
sequence (pn)n∈N ⊆ PD such that

pn(νλ) = max
M1(R)

pn, ∂pn(νλ) = fn, and
〈
Q(∂2pn(νλ)), ν

2
λ

〉
=
〈
Q(g ⊗ g), ν2

λ

〉
for all n ∈ N and λ ∈ [0, 1], where νλ = λδx + (1− λ)δy and (fn)n∈N satisfies

lim
n→∞

−2Bfn(z) =
(
a(z)g′(z)

)2
,

for all z ∈ {x, y}.

Proof. Fix g ∈ D such that g(x) = g(y) = 1. Let Fn : [0, 1]→ R as in Lemma 3.12
and fix a compactly supported function ρ ∈ C∞c (R) such that ρ = 1 on some
neighborhoods of x and y and ρ(R) ⊆ [0, 1]. Set then

gn(z) = 1 + g′(x)(z − x)
(z − y)2

(x− y)2
Fn4

( |z − x|2
Cx

)
+ g′(y)(z − y)

(z − x)2

(x− y)2
Fn4

( |z − y|2
Cy

)
,
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where Cx = 2 supz∈supp(ρ)(z − x)2. Setting gn = 1 + (gn − 1)ρ we get gn ∈
R + C∞c (R) ⊆ D. For n even, define now the polynomial

pn(ν) =
1

n(n− 1)

(
〈gn, ν〉n − 〈gnn, ν〉

)
.

Since pn(νλ) = 0 and by Jensen inequality pn ≤ 0, we can conclude that νλ
maximizes pn for all n even and λ ∈ [0, 1]. Observe that

∂pn(νλ) =
1

n− 1

(
gn −

1

n
gnn

)
=: fn and ∂2pn(νλ) = gn ⊗ gn.

Proceeding as in the proof of Lemma C.2, we can use the assumptions on Q to
prove that Q(g ⊗ h)(x, y) depends on g and h only through their values and the
values of their derivatives at x and y. Since gn(z) = g(z) = 1 and g′n(z) = g′(z)
for all n even and z ∈ {x, y}, this implies that

〈
Q(gn⊗ gn), ν2

λ

〉
=
〈
Q(g⊗ g), ν2

λ

〉
.

Finally, the representation of B given by (4.3) yields

−2Bfn(z) =
(
a(z)g′(z)

)2 − 2

∫
1

n− 1

(
gn(z + ξ)− 1

n
gn(z + ξ)n

)
− 1

n
F (z, dξ),

for all z ∈ {x, y}. Since by the dominated convergence theorem the integral term
converges to 0 for n going to ∞, this concludes the proof.
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