ETH zürich

Surrogating the response PDF of stochastic simulators using parametric & semi-parametric representations

Conference Poster

Author(s): Zhu, Xujia; <u>Sudret, Bruno</u>

Publication date: 2018-03-21

Permanent link: https://doi.org/10.3929/ethz-b-000309591

Rights / license: In Copyright - Non-Commercial Use Permitted

Elizurich

SURROGATING THE RESPONSE PDF OF STOCHASTIC SIMULATORS USING PARAMETRIC & SEMI-PARAMETRIC REPRESENTATIONS

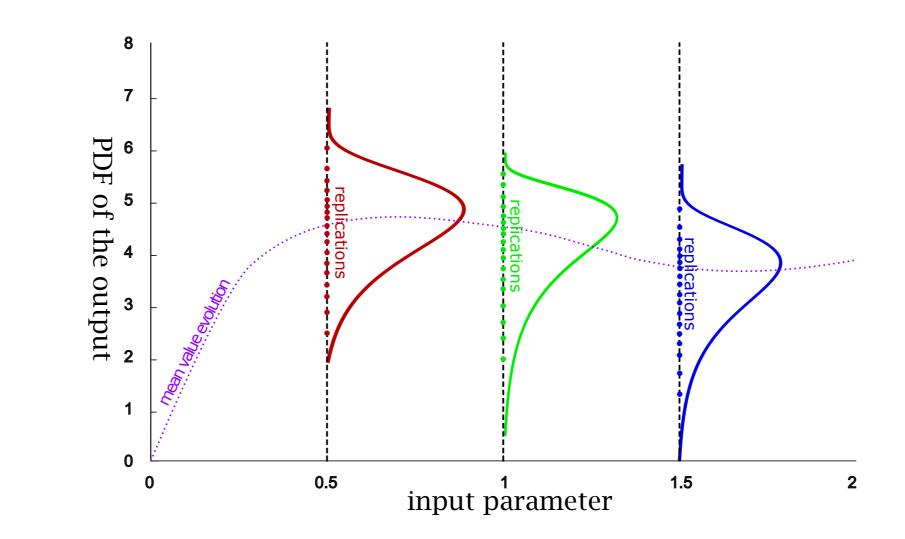
X. Zhu, B. Sudret

ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, zhu@ibk.baug.ethz.ch

STOCHASTIC SIMULATORS & EMULATORS

Stochastic simulators

• Stochastic simulators provide different results when run with the same input several times. Therefore, they are in nature random processes with the input parameters as in-



Goal of the stochastic emulator

• Based on the data at design points, predict the PDF with a new set of input parameters.

General methodology

dex (assume second order process).

 $\mathcal{M}: \mathcal{D}_{\boldsymbol{x}} \subset \mathbb{R}^M \to L^2(\Omega, \mathcal{F}, \mathbb{P}): \boldsymbol{x} \mapsto Y(\boldsymbol{x})$

Source of the randomness

• The stochastic simulator can be considered as a deterministic mapping $(\boldsymbol{x}, \boldsymbol{z}) \mapsto \mathcal{M}_{det}(\boldsymbol{x}, \boldsymbol{z})$, where $\boldsymbol{z} \in \mathcal{D}_{\boldsymbol{z}}$ are hidden variables.

- Estimation of the PDF at x_i from *replications*.
- Parametrization of the PDF.
- Prediction of the PDF for a new x using Gaussian process modelling.

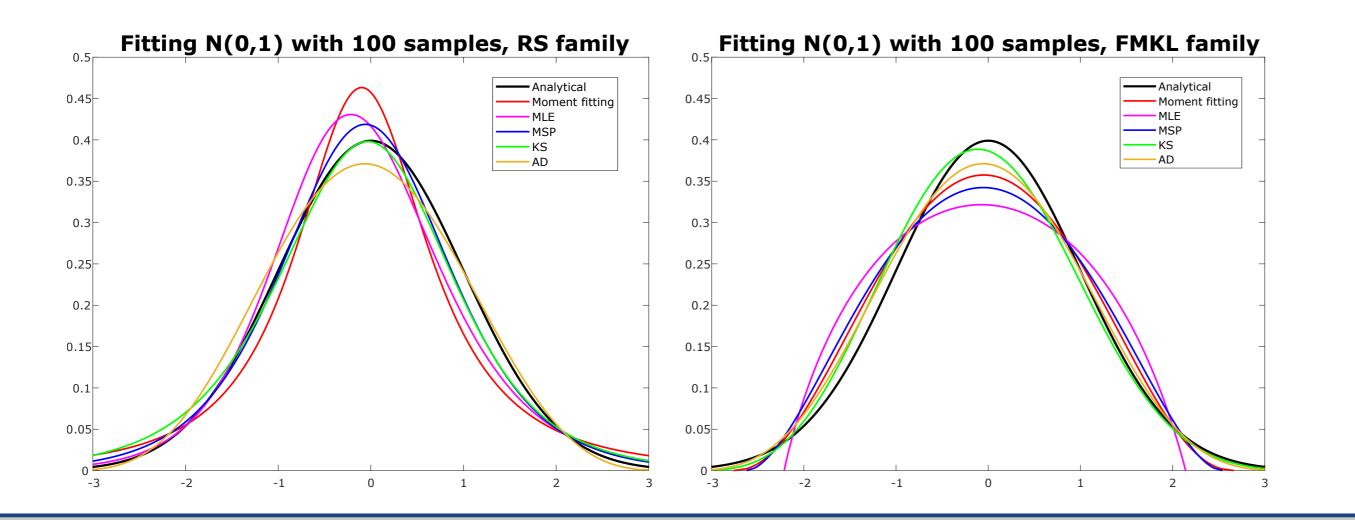
Marrel, A. et al. (2012). *Global sensitivity analysis of stochastic computer models* with joint metamodels. Stat. Comput. 22, 833-847. Moutoussamy, V. et al. (2015). *Emulators for stochastic simulation codes*. ESAIM: Mathematical Modelling and Numerical Analysis 48, 116-155.

• The model response distributions belong to a parametric family. • $Y(x) = \mathcal{M}_{det}(x, \mathbf{Z}) = \sin(x) \cdot (Z_1 \cdot Z_2)^{\cos(x)}$				
• The model response distributions belong to a parametric family. • $Y(x) = \mathcal{M}_{det}(x, \mathbf{Z}) = \sin(x) \cdot (Z_1 \cdot Z_2)^{\cos(x)}$	PARAMETRIC APPROACH	Toy example		
Generalized Lambda distribution • The <i>GLD</i> can approximate many well-known distribution families such as normal, exponential, lognormal, Weibull, Student's t, beta, gamma, chi-square, etc. • The <i>quantile function</i> is parametrized. There are two widely used families: – The Ramberg and Schmeiser (<i>RS</i>) family $Q(u) = \lambda_1 + \frac{1}{V} (u^{\lambda_3} - (1-u)^{\lambda_1})$ mal random variables • The output with each given x follows also a log- normal distribution • At each design point (10 points on a regular grid from 0.05 to 0.95), 100 independent runs	 The model response distributions belong to a parametric family. Distribution parameters vary smoothly with respect to <i>x</i>. Generalized Lambda distribution The <i>GLD</i> can approximate many well-known distribution families such as normal, exponential, lognormal, Weibull, Student's t, beta, gamma, chi-square, etc. The <i>quantile function</i> is parametrized. There are two widely used families: The Ramberg and Schmeiser (<i>RS</i>) family Q(u) = λ₁ + ¹/_{λ₂} (u^{λ₃} - (1 - u)^{λ₄}) The Freimer, Mudholkar, Kollia, and Lin (<i>FMKL</i>) family 	• $Y(x) = \mathcal{M}_{det}(x, \mathbb{Z}) = \sin(x) \cdot (\mathbb{Z}_1 \cdot \mathbb{Z}_2)^{\cos(x)}$ • $\mathcal{D}_x = [0, 1]$ and $\mathbb{Z}_1, \mathbb{Z}_2$ are independent lognormal random variables • The output with each given x follows also a lognormal distribution Data generation • At each design point (10 points on a regular grid from 0.05 to 0.95), 100 independent runs of the function. Prediction of the PDF at new points		

• The RS family has a complicated feasible domain for λ (6 zones), while that of the *FMKL* family is simple (only one single zone).

Estimation methods

- Moment fitting
- Maximum likelhood estimation (*MLE*) or spacing estimation (*MSP*)
- Minimization of the Kolmogorov-Smirnov (KS) or the Anderson–Darling (AD) statistics.



GAUSSIAN PROCESS MODELLING

Gaussian process modelling (a.k.a Kriging) is an interpolation algorithm assuming that the data is a realization of a Gaussian process.

- Estimate the PDF at each design point using *GLD*. Note that the initial values of λ at x_i are set to be the results $\lambda(x_{i-1})$.
- Predict *independently* the 4 parameters $\lambda(x)$ applying Kriging.

Average	e relative	error	of c	quantil	es

	0		•		
Quantile	Q5	Q10	Q50	Q90	Q95
10 design points	11.59%	8.39%	3.38%	7.28%	10.66%
80 new points	9.19%	7.14%	3.34%	8.14%	11.84%

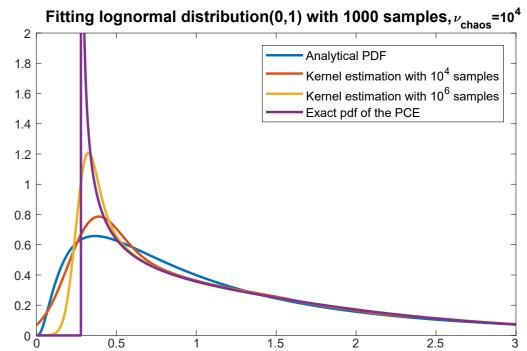
THE PCE-BASED SEMI-PARAMETRIC PDF ESTIMATION

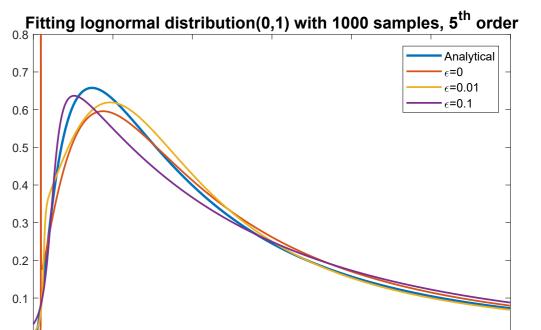
Overview of the method

- $Y \stackrel{d}{=} g(\Xi) = \sum_{i=1}^{N_P} a_i h_i(\Xi)$ where Ξ follows the standard normal distribution and $h_i(\Xi)$ are Hermite polynomials.
- Potential problems:
- -There exists infinite number of $(a_i)_{i=1,...,N_P}$ that can lead the likelihood to infinity. -Different $(a_i)_{i=1,\dots,N_P}$ can result in exactly the same distribution.

Improvement and discussion

- Restriction to strictly increasing polynomials g with $g'(x) > \epsilon$ over $(-\infty, +\infty)$.
- According to some tests, the estimated PDF is very sensitive to the choice of ϵ . Its optimal value depends strongly on the data, especially





- Choose the trend functions f(x) and the type of covariance function corresponding to the Gaussian process $Z(x, \omega)$.
- Estimate the hyperparameters θ associated to the covariance function via MLE/RMLE(restricted maximum likelihood) or cross-validation (leave-one-out error).
- Compute the Kriging parameters β and σ^2 resorting to MLE/RMLE.
- Calculate the conditional probability with a new set of parameters and use the mean value as the predicted value.

when the amount of data is small.

CONCLUSION AND OUTLOOK

- The PDF estimation error is dominant in most cases because of the limited number of *replications*.
- Generalized lambda distribution gives quite convincing results according to the toy example.
- More robust techniques are needed to improve the PCE-based semi-parametric PDF estimation.

CHAIR OF RISK, SAFETY AND UNCERTAINTY QUANTIFICATION STEFANO-FRANSCINI-PLATZ 5 CH-8093 ZÜRICH

