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SURROGATING THE RESPONSE PDF OF STOCHASTIC SIMULATORS
USING PARAMETRIC & SEMI-PARAMETRIC REPRESENTATIONS

X. Zhu, B. Sudret

ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, zhu@ibk.baug.ethz.ch

STOCHASTIC SIMULATORS & EMULATORS

Stochastic simulators

• Stochastic simulators provide different results when run
with the same input several times. Therefore, they are in
nature random processes with the input parameters as in-
dex (assume second order process).

M : Dx ⊂ RM → L2 (Ω,F ,P) : x 7→ Y (x)

Source of the randomness

• The stochastic simulator can be considered as a determin-
istic mapping (x, z) 7→ Mdet (x, z), where z ∈ Dz are hid-
den variables.
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Goal of the stochastic emulator

• Based on the data at design points, predict
the PDF with a new set of input parameters.

General methodology

• Estimation of the PDF at xi from replications.
• Parametrization of the PDF.

• Prediction of the PDF for a new x using Gaus-
sian process modelling.

–
Marrel, A. et al. (2012). Global sensitivity analysis of stochastic computer models
with joint metamodels. Stat. Comput. 22, 833-847.
Moutoussamy, V. et al. (2015). Emulators for stochastic simulation codes. ESAIM:
Mathematical Modelling and Numerical Analysis 48, 116-155.

PARAMETRIC APPROACH

Assumptions

• The model response distributions belong to a parametric family.

• Distribution parameters vary smoothly with respect to x.

Generalized Lambda distribution

• The GLD can approximate many well-known distribution families such as nor-
mal, exponential, lognormal, Weibull, Student’s t, beta, gamma, chi-square, etc.

• The quantile function is parametrized. There are two widely used families:

– The Ramberg and Schmeiser (RS) family
Q(u) = λ1 + 1

λ2

(
uλ3 − (1− u)λ4

)
– The Freimer, Mudholkar, Kollia, and Lin (FMKL) family

Q(u) = λ1 + 1
λ2

(
uλ3−1
λ3
− (1−u)λ4−1

λ4

)
• The RS family has a complicated feasible domain for λ (6 zones), while that of

the FMKL family is simple (only one single zone).

Estimation methods

• Moment fitting

• Maximum likelhood estimation (MLE) or spacing estimation (MSP)

• Minimization of the Kolmogorov-Smirnov (KS) or the Anderson–Darling (AD)
statistics.
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GAUSSIAN PROCESS MODELLING

Gaussian process modelling (a.k.a Kriging) is an interpolation algorithm assuming
that the data is a realization of a Gaussian process.

MK(x) = βT · f (x) + σ2 · Z(x, ω)

• Choose the trend functions f (x) and the type of covariance function correspond-
ing to the Gaussian process Z(x, ω).

• Estimate the hyperparameters θ associated to the covariance function via
MLE/RMLE(restricted maximum likelihood) or cross-validation (leave-one-out
error).

• Compute the Kriging parameters β and σ2 resorting to MLE/RMLE.

• Calculate the conditional probability with a new set of parameters and use the
mean value as the predicted value.

TOY EXAMPLE

Description of the example

•Y (x) =Mdet(x,Z) = sin(x) · (Z1 · Z2)
cos(x)

•Dx = [0, 1] and Z1, Z2 are independent lognor-
mal random variables

• The output with each given x follows also a log-
normal distribution

Data generation

• At each design point (10 points on a regular
grid from 0.05 to 0.95), 100 independent runs
of the function.

Estimation details

• Estimate the PDF at each design point using
GLD. Note that the initial values of λ at xi are
set to be the results λ (xi−1).

• Predict independently the 4 parameters λ(x) ap-
plying Kriging.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4

6

8

10

12

14

16
PDF at design points

PDF at x=0.05
PDF at x=0.15
PDF at x=0.25
PDF at x=0.35
PDF at x=0.45
PDF at x=0.55
PDF at x=0.65
PDF at x=0.75
PDF at x=0.85
PDF at x=0.95

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

1

2

3

4

5

6

7

8

9

Analytical solution at x=0.1
Prediction at x=0.1
Analytical solution at x=0.4
Prediction at x=0.4
Analytical solution at x=0.7
Prediction at x=0.7

Prediction of the PDF at new points

Quan�le Q5 Q10 Q50 Q90 Q95

10 design points 11.59% 8.39% 3.38% 7.28% 10.66%

80 new points 9.19% 7.14% 3.34% 8.14% 11.84%

Average relative error of quantiles

THE PCE-BASED SEMI-PARAMETRIC PDF ESTIMATION

Overview of the method

•Y d
= g(Ξ) =

∑NP

i=1 aihi(Ξ) where Ξ follows the
standard normal distribution and hi(Ξ) are Her-
mite polynomials.

• Potential problems:

– There exists infinite number of (ai)i=1,...,NP

that can lead the likelihood to infinity.
– Different (ai)i=1,...,NP

can result in exactly the
same distribution.

Improvement and discussion

• Restriction to strictly increasing polynomials g
with g′(x) > ε over (−∞,+∞).

• According to some tests, the estimated PDF is
very sensitive to the choice of ε. Its optimal
value depends strongly on the data, especially
when the amount of data is small.
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CONCLUSION AND OUTLOOK

• The PDF estimation error is dominant in most cases because of the limited num-
ber of replications.

• Generalized lambda distribution gives quite convincing results according to the
toy example.

• More robust techniques are needed to improve the PCE-based semi-parametric
PDF estimation.
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