ETH zürich

RISC-V Meets 22FDX: an Open Source Ultra-low Power Microcontroller Platform for Advanced FDSOI Technologies

Presentation

Author(s): Schiavone, Pasquale; Charagulla, Sanjay; Teepe, Gerd; <u>Benini, Luca</u>; PULP team

Publication date: 2018-05-09

Permanent link: https://doi.org/10.3929/ethz-b-000311769

Rights / license: In Copyright - Non-Commercial Use Permitted

RISC-V Meets 22FDX: an Open Source Ultra-low Power Microcontroller Platform for Advanced FDSOI Techonologies

<u>Pasquale Davide Schiavone¹</u>, <u>Sanjay Charagulla³</u>, Gerd Teepe³, Luca Benini^{1,2} and the PULP team

¹Integrated System laboratory, ETH, Zurich, Switzerland ²Energy Efficient Embedded Systems Laboratory, University Of Bologna, Bologna, Italy ³GLOBALFOUNDRIES

¹Department of Electrical, Electronic and Information Engineering

> ETH zürich ²Integrated Systems Laboratory

09.05.2018

Near Sensor (aka Edge) Processing

PULP is Open-Source & Free

Releases

February 2016

First release of **PULPino**, our single-core microcontroller

May 2016 Toolchain and com

Toolchain and compiler for our RISC-V implementation (**RI5CY**), DSP extensions

3

August 2017 PULPino updates, new cores Zero-riscy and Microriscy, FPU, toolchain updates

Begin February 2018 PULPissimo ARIANE: 64-bit RISC-V core

End February 2018 OPEN-PULP

Community Contributions

June 2017 Porting of Verilator and BEEBS benchmarks to PULPino https://github.com/embecosm/ri5cy September 2017 Porting of ARM CMSIS to PULPino https://github.com/misaleh/CMSIS-DSP-PULPino November 2017 Numerous Bug fixes to RiscV in PULPino https://github.com/pulp-platform/riscv

December 2017

STING: Open-Source Verification Environment for PULPino

http://valtrix.in/programming/running-sting-on-pulpino

Download PULP @ https://github.com/pulp-platform

Davide Schiavone - ETH Zurich

3

4

Quentin: GF22FDX PULPissimo Implementation

- RISC-V based advanced microcontroller
 - 512kB of L2 Memory
 - 16kB of energy efficient latch-based memory (L2 SCM BANK)
- Rich set of peripherals:
 - QSPI (up to 280 Mbps)
 - HyperRam + HyperFlash (up to 100 MB/s)
 - Camera Interface (up to 320x240@60fps)
 - I2C, I2S (up to 4 digital microphones)
 - JTAG (Debug), GPIOs,
 - Interrupt controller, Bootup ROM
- Autonomous IO DMA Subsystem (µDMA)
- Power management
 - 2 low-power FLLs (IO, SoC, ...)

Efficient I/O subsystem: the µDMA

- Transfers bandwidth close to the physical limit of the architecture
- A single channel can saturate the memory port (can work at full BW)
- Bandwidth is not affected by peripherals buffer size

Efficient Interconnect

Interleaving to reduce contention: 4 Banks

2 Banks non interleaved for private data and code

RI5CY Processor

- 4-stage pipeline
 - RV32IMFCXpulp
 - 70K GF22 nand2 equivalent
 gate (GE) + 30KGE for FPU
 - Coremark/MHz 3.19
- Includes various extensions
 - pSIMD
 - Fixed point
 - Bit manipulations
 - HW loops

- Floating Point Unit:
 - IEEE 754 single precision
 - Iterative DIV/SQRT (7 cycles)
 - Pipeline MAC, MUL, ADD, SUB, Cast
 - Single cycle load, store, min, max, cmp etc

Thanks for all the external users bugs report!

Implementation Results

Quentin SoC layout

Estimated Energy Efficiency

Total Power @ 350 MHz, 0.65V = 8,5 mW

<u>1.4x better performance (350MHz vs. 250 MHz)</u> <u>4x better energy efficiency (40 vs. 14 MOPS/mW)</u> Than our previous design in 40nm technology

Execution on Energy-Efficient SCM

Total Power @ 350 MHz, 0.65V = 5,5 mW

<u>1.5x better energy efficiency</u> than execution from SRAM

GF – Global Presence in Semiconductor Manufacturing

TECHNOLOGY NODES

14, 12, 7nm	28, 22,12nm	90–22nm	180-22nm	180-40nm	350–90nm
CAPACITY (WAFERS / MONTH)					
Up to 60k (300mm)	Up to 80k (300mm)	Up to 20k (300mm)	Up to 85k (300mm)	68k (300mm) 93k (200mm)	40k (200mm)

Up to 10M Waters / Year 200mm equivalents

GF Has the Industry's Best Dual-Track Roadmap

22FDX[®] for IoT, Automotive and RF

Compelling

- FinFET-like performance for customer who still want to use planar devices
- Ultra-low voltage (0.4V)
- Ultra-low leakage (1pA/µm)
- MRAM integration for IoT and Auto-MCU
- Automotive grade 2 and 1, mmWave / Radar
- Benchmark RF performance (>400GHz), and PA integration

Relevant

- IoT ARM, RISC-V processors for NB-IoT and AI ML functions
- Automotive ADAS /Vision, Infotainment, Body Electronics MCU, Radar
- RF <6GHz: Connectivity (BLE, Wi-Fi, Zigbee), Cellular (3G, 4G LTE, 5G)</p>
- RF mmWave >26GHz, 5G infrastructure, ADC/DAC integration

FDXcelerator[™] Accelerating RISC-V Developers and Partners

Reduce time to market and facilitate FDX[™] SoC product design

- Enabling Universities driving RISC-V innovations
 - ETH-Zurich / University of Bologna PULP Architecture
 - Berkeley Labs, IIT Chennai
- SiFive Core IP targeting Data Center, ML, Automotive and Embedded applications
 - E31, E51 Configurable RISC-V Cores
- Reduced Energy Microsystems Drones, Robotics, Camera Applications
 - RISC-V IP hardware validated on 22FDX platforms
 - 32bit, 64bit Cores with Neural network IP solutions
- ANDES Cores for IoT, RF Connectivity applications
 - 32bit IP cores for 22FDX platform
 - Power efficient, smaller foot print designs

Conclusion

- Challenges for next generations IoT End-Nodes:

 - Performance → FDX 22nm technology offers HP at low VDD
 - PVT Variations → Body Biasing
- We presented Quentin: FDX 22 Implementation of PULPissimo opensource architecture
 - Optimized IO subsystem for efficient data transfers
 - Processor optimized for energy efficient near-sensor data analytics
 - Up to 500 MOPS @ 0.8V
 - 45 MOPS/mW @350 MOPS, 0.65V
- First step towards silicon-qualified free-open-source RISC-V IPs on GF FDX22 process.

