
ETH Library

Low-power network design: work
hard, play hard

Student Paper

Author(s):
Mueller, Jan

Publication date:
2019-01-18

Permanent link:
https://doi.org/10.3929/ethz-b-000324247

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000324247
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Institut für
Technische Informatik und
Kommunikationsnetze

Low-power network design:
work hard, play hard

Semester Thesis

Jan Müller

muelljan@student.ethz.ch

Computer Engineering and Networks Laboratory

Department of Information Technology and Electrical Engineering

ETH Zürich

Supervisors:

Romain Jacob
Reto Da Forno

Prof. Dr. Lothar Thiele

January 18, 2019

mailto:Jan M\unhbox \voidb@x \bgroup \let \unhbox \voidb@x \setbox \@tempboxa \hbox {u\global \mathchardef \accent@spacefactor \spacefactor }\accent 127 u\egroup \spacefactor \accent@spacefactor ller<muelljan@student.ethz.ch>

Acknowledgements

My thanks go to Romain Jacob, who has shown what it can mean to supervise a
project. Your critical thinking and you expertise helped us from the first to the
very last stage of the project. Thanks for giving us the opportunity to do this
project.

Big thanks also to Anna-Brit, my team-mate. It was nice working with you
and discussing the problems that we both struggled with.

Big thanks goes also to the TEC group at ETH for providing a robust testing
infrastructure and the opportunity to represent ETH at the EWSN dependability
challenge.

And last but not least, thanks to my room-mates which endured me wander-
ing through the flat during the late shifts for this project. I hope you could sleep
fine nonetheless.

i

Abstract

Competing in a well-known competition in a field that you have no experience
in can be hard for sure. In this semester thesis, we describe how we managed to
design a low-power wireless protocol for a sensor network in less than 3 months
of part-time work. Baloo is a novel protocol design framework, which offers
an abstraction layer from the underlying hardware and enables fast protocol
prototyping. Using Baloo, our goal was to create a protocol to compete in the
annual EWSN dependability competition by borrowing different design ideas
from various protocols described in literature.

ii

Contents

Acknowledgements i

Abstract ii

1 Introduction 1

2 Background 2

2.1 Design space exploration . 2

2.2 Baloo . 5

3 Protocol Description 6

3.1 Scenario and Design Goals . 6

3.2 Protocol description . 7

3.3 Latency Improvements . 8

3.3.1 Offset compensation . 10

3.3.2 Period correction . 11

3.3.3 Latency upper bound . 12

3.4 Energy Improvements . 12

3.4.1 Clustering . 12

3.4.2 ACK optimisation . 14

3.4.3 Gap time optimisation . 15

3.5 Reliability improvements . 16

3.5.1 Reliable state switching 16

3.5.2 Fighting Interference . 17

3.5.3 Large Period Reduction 17

3.6 Aperiodic case . 18

3.7 Further enhancements . 18

3.7.1 Better Topology Discovery 19

iii

Contents iv

3.7.2 Avoid interference . 19

3.7.3 Allow late joining of the network 19

3.7.4 Asynchronous start, Synchronous schedule 20

4 Evaluation 21

4.1 Metric-wise performance . 21

4.1.1 Latency . 21

4.1.2 Reliability . 22

4.1.3 power consumption . 23

4.1.4 Conclusion . 23

4.2 Clustering . 24

4.3 Evaluation of Baloo . 25

5 Conclusion and future work 27

5.1 Conclusion . 27

5.2 Future work . 27

Bibliography 29

Chapter 1

Introduction

Years of research has so far not produced a one-fits-all protocol for wireless
sensor networks (WSNs). Instead, there are many protocols described in the
literature that are usually designed for a very specific use-case. Often, protocols
are tuned to perform very well for the scenario they were designed for but will
behave unexpectedly if the design-time assumptions don’t hold anymore. One
of the goals of this year’s EWSN dependability competition is to be able to
compare different protocols to each other in various different scenarios. For 4
years, this competition has taken place along with the International Conference
on Embedded Wireless Systems and Networks (EWSN) and attracts various
teams from academia and industry. The competitors have to design a protocol
for a wireless sensor network, which competes with the protocols of other teams
in terms of reliability, latency and power consumption. This year’s edition of the
competition features a wide range of different scenarios that should prevent the
protocol designers from over-optimise their design. Instead, their protocol has
to adapt to an unknown scenario. With this in mind, we think that this year’s
challenge is highly interesting from an academic point of view and it will be
interesting to see if the winning protocol is a step towards a generalised protocol
or if it consists of different sub-protocols that are chosen according to the current
scenario.

1

Chapter 2

Background

In this chapter we give a very brief overview over the protocols and ideas that
already exist in the literature. After that, we give a brief introduction to Baloo,
the framework that was used to design our protocol.

2.1 Design space exploration

Communication protocols in WSNs face various limitations and challenges. The
major problem arises from the nature of the communication media. If multiple
nodes start sending data at around the same time, the probability of a successful
reception of the data is reduced for devices that are in range of more than one
transmitting node. This results in the necessity to have a network wide arbitra-
tion to prevent or reduce the number of data collisions. There are two general
trends to achieve this. There is a more traditional circuit based approach, in
which nodes along a path are woken up and data is transmitted along this path.
The second approach was made popular by Glossy [4]. These protocols rely
on synchronous transmission or the capture effect. Data is forwarded in floods.
This offers native support for one-to-many communication schemes. Because of
the combined transmission power of the different nodes and the introduced re-
dundancy, this approach usually offers a higher degree of reliability. There are
also hybrid approaches, where data is flooded along certain paths. A selection of
different protocols is illustrated in fig. 2.1 along with references to the literature
describing them.
Glossy and Chaos can be regarded as primitives many other protocols rely on.
Glossy uses constructive interference, that allows the radio chip to correctly de-
code a message, even if it was sent by multiple nodes at the same time. The
condition is that all nodes send the same data and that the packets arrive syn-
chronously at the receiver. With Glossy, data is disseminated in floods. Chaos
uses the capture effect and allows fast network aggregation of data that needs
multiple nodes to cooperate, for example, to compute a maximum value of all
current sensor data. Of all protocols mentioned in fig. 2.1, Crystal had the

2

2. Background 3

WSN protocols

Routing
based

TSCH[14]

ORPL[3]

MOR[19]

Hybrid

Splash[2]

Flooding

SCIFS[17]

RedFix-
Hop[8]

Crystal
[5][6]

Codecast
[13]

Less is
More[18]

DeCoT[12]
Sleeping

Beauty[15]

A2[1]

eLWB[16]

Chaos[9]

Glossy[4]

Figure 2.1: This is a collection protocols for wireless sensor networks, grouped
into 3 categories.

most impact on our work. It uses a round-based transmission/acknowledgement
scheme of variable length to increase the reliability and uses a distributed ter-
mination algorithm to let the nodes know when the communication ends. To
tackle interference, Crystal changes the radio channel for each new transmis-
sion/acknowledgement pair. Additionally, it uses a noise detection mechanism
to be able to change its transmission scheme according to the amount of inter-
ference. A2 uses Chaos to have fast network-wide consensus using the capture
effect. Less is More shows how the power consumption can be reduced using
topology discovery and a learning algorithm. The idea is to turn off or reduce
the transmission power of nodes that are redundant for reliable communication.

Common performance metrics for communication protocols in WSNs are la-
tency, power consumption and reliability. Latency describes the delay between
the data generation at a sensor and the delivery of the data at a destination.
Power consumption matters because WSNs are often running from batteries and
deployed in remote locations and should therefore run as long as possible from
their energy storage. Reliability describes how much of the data that is collected

2. Background 4

actually reaches its destination. The problem that a protocol designer faces is
that an improvement of one of these performance criteria often has a negative
impact on one of the others. For example, the power consumption of the network
can be minimised by sending data in batches once a day. This results in a high
latency in the orders of hours. On the other hand, one can have the network
always in a ready state and forward data as soon as it is received. While this
allows a latency in the order of milliseconds or below, this approach would use
a lot of energy. One key task of the designer is therefore to find a sweet spot
in the design space that fulfils some weighted representation of the performance
metrics and additional criteria that he might have.
We have collected ideas from literature to improve the performance criteria in
fig. 2.2. We filtered very specific ideas to have a set of general approaches and
used this as a reference during the design process. Not all the ideas are applica-
ble to our use case. For example, pipelining and coding is often used for large
data transfer, like the dissemination of a new firmware.

WSN protocols

Latency
optimisation

Flooding

Reduce
time

between
slots

Pipelining

Low-
power

listening

exploit
Peri-
odicity
of data

deal with
interference

Channel
hopping

Blacklisting
/

Whitelist-
ing

Energy
optimisation

Coding

Just-
in-time
wakeup

Pipelining

Reduce
number
of con-
current
senders

Data
prediction

Clustering

Figure 2.2: This is an overview of ways to improve certain protocol performance
metrics.

2. Background 5

2.2 Baloo

The implementation of a newly designed protocol often requires a large degree
of low-level programming. This means that even testing small protocol im-
provements can be time-consuming. To facilitate the design of new protocols,
researchers presented different abstraction layers with the goal to create a net-
work stack to isolate the low-level mechanics from the protocol logic. One recent
framework is Baloo[7].

The protocol described in this thesis uses this novel Baloo framework. This
is the first time, it was used outside the initial developing group and by people
inexperienced in protocol design. For this reason, we add a short usability eval-
uation in section 4.3. We focus on the general design principles of Baloo here
and invite the interested reader to read on in the aforementioned paper.
The design of Baloo is a balancing act between ease of use and configurability.
A network has a single Baloo host node, which can be used to distribute state or
scheduling information in the network. This is done using control packets, which
are also used to synchronise the network. To join the network, a node has to
receive one of these packets to get the scheduling information and to be able to
synchronise its local clock to the host. This is important for synchronous trans-
mission to work. After that, the nodes wake up and communicate according to
a configurable schedule that is disseminated by the Baloo host. Communication
takes places in rounds of data slots. The developer can choose from a set of
communication primitives such as Glossy or Chaos for each slot. Baloo adds an
abstraction layer to the underlying hardware and allows protocol designers to
focus on the protocol instead of low-level programming of the radio. Low-level
changes and optimisations can be made through a rich set of parameters without
the need for more than a base understanding of the implementation principles.
The benefit of using Baloo is that it allows an easy integration and combination
of different communication primitives and enforces isolation of these primitives
from the protocol logic. They can be enhanced or changed and new primitives
could be tried out without the need to change the more high-level protocol be-
cause the interface to the protocol would be fixed. Additionally, it facilitates
protocol design because one can immediately start with known-working primi-
tives and a predefined structure for the implementation.

Chapter 3

Protocol Description

In this chapter, we describe the design of our protocol and highlight a part of
the reasoning behind the ideas. This chapter mainly discusses the protocol in
the periodic case. The changes needed to support aperiodic data generation are
described in section 3.6.

3.1 Scenario and Design Goals

The 2019 edition of the EWSN dependability challenge was about designing a
protocol which should be able to adapt to a wide range of parameters. The
challenge was held in a testbed at the TU Graz. Up to 70 independent wireless
nodes were placed over several floors of the institute of technical informatics of
TU Graz in an area of approximately 1440m2. While the exact layout for the
evaluation was not known in advance, the preparation testbed featured a setup
where the network diameter was at least 8 hops on full transmission power on
the Telos B replicas used in the testbed.
There were two independent categories. This thesis is about a protocol for the
use in the second scenario which was about data dissemination. In this scenario,
there are up to 8 nodes generating data packets independently, which have to
be delivered to up to 8 destination nodes per source. The rest of the nodes in
the network act as relays. The challenge is that there is a wide range of possible
input parameters: the payload can be anything between 8 and 64 bytes. There
is a periodic case in which data is generated with a period of at least 5s. There
is an aperiodic case in which one only knows a lower and an upper bound for the
data generation interval. And finally, there can be node failures and different
degrees of jamming in the network. Because of the large number of possible
combinations of these parameters, the protocol needs to be flexible and adapt
itself to the scenario.

As stated by the organisers of the competition, the main performance criteria
in the competition were reliability, power consumption and the latency between

6

3. Protocol Description 7

Slot SlotControl
Slot Slot Slot Slot Slot

Baloo round

Round
t

Baloo round

Control
Slot Slot Slot Slot

Baloo round

Control
Slot

Figure 3.1: Overview of the layers of granularity. A communication round is
composed of different Baloo rounds which in turn consist of a number of slots.

data generation at the source and the delivery at the destinations. In the evalua-
tion, the reliability is weighted most strongly. We mainly focused on the periodic
case and tried to first achieve high reliability and then tried to reduce the la-
tency and power consumption. Our goal was not to optimise for only one of the
metrics, but to achieve a decent, although not the best possible, performance for
all of them.

3.2 Protocol description

One important aspect of the scenario is that the topology is uncertain at any
given time because of two reasons: First, it is assumed that the protocol has no
prior knowledge of the topology at boot. Second, due to interference and the
possibility of node failures, from a connectivity point of view, the topology could
change from one instant to the next. For example, wide-band jamming could ef-
fectively prevent a whole part of the network from communicating and effectively
isolate the nodes in this part of the network. While a topology discovery mech-
anism could be used to resolve the first problem, the uncertainty of the second
problem made us design a flooding based protocol instead of a connection based
routing protocol. Flooding based protocols are less affected by topology changes
as only few assumptions on the underlying topology are made. Additionally, as
the scenario is describing a many-to-many communication pattern, a flooding
based approach seemed reasonable because of the one-to-many characteristics of
network floods.
The task we were given was to use the Baloo framework for developing the pro-
tocol. This allowed us to focus on the protocol and to be able to rely on known-
working implementations of Glossy and Chaos. Additionally, we expected to
achieve a low energy footprint by using Baloo because we would not have to take
care on sleep modes and radio on/off states. Being relatively inexperienced with
embedded software design, this was a big plus.

To start the description of our protocol, we first want to introduce the termi-
nology that we will use in the rest of the chapter. We distinguish different types
of nodes: Source nodes produce data periodically and send it to destination nodes
associated with it. There is a single static Baloo host that is in charge of time

3. Protocol Description 8

synchronisation and maintains network-wide state. Fig. 3.1 shows an overview
of a communication round. The communication round or simply round is the
period of the whole network and matches the period of the data generation in
length. We call the duration of a round a period. During one round, every source
should have the possibility to send its data to its destinations. This is done in
different Baloo rounds, which each have a maximum duration. We call the nodes
communicating in one Baloo round a cluster for reasons that will become clear
when reading on. We will often use the terms Baloo round and cluster inter-
changeably. In a Baloo round, a single source sends data to all its destinations.
This means, that a round consists of maximally 8 Baloo rounds, because there
are at most 8 data sources. If a node is not source or destination in a cluster,
we call it a relay node for this cluster which simply relays packets during floods.
The Baloo rounds themselves consist of different slots in which one communica-
tion primitive is used. In this project, the primitive is either Glossy or Chaos.
In the protocol that we handed in for the competition, only Glossy-slots were
used. For the protocol description, most of the time a slot can be seen as best
effort atomic network operation after which nodes have received the data if the
operation was successful. This will be the lowest level of abstraction used for the
protocol description.

The communication itself uses a regular transmission/acknowledgement pat-
tern. In a Baloo round, the associated source starts a network-wide flood with
the data it has to send. After that, each of its destinations send a positive or neg-
ative acknowledgement indicating if they have received the data or not. These
acknowledgements are also flooded in the network. If the data was not received
by all destinations, the source retransmits it. There is a maximum number of
retransmission slots within the Baloo round to make sure that the time budget
is not exceeded and the Baloo rounds do not overlap in time. If a transmission
could not be completed, the source retries in a later round. It always tries to
deliver the data it generated in the current round first. If this is successful and
if there is still time left dedicated to the current Baloo round, the source tries
to deliver past data that was not successfully transmitted. The behaviour of the
sender/receiver is illustrated in fig. 3.2.

The general protocol was kept simple to limit the overall complexity. In the
next sections, we will highlight some more detailed aspects and enhancements of
the protocol. The idea was to start with something simple and then add more
complex optimisations where it is appropriate.

3.3 Latency Improvements

This section describes how we managed to minimise the latency by adapting the
protocol according to the testbed at runtime.

3. Protocol Description 9

nto_send == 0 ∨
ntrans > ntrans,max

Sleep

Active

Round start |
(ntrans:=0; nto_send += 1) Wait for

ACKs

timeout ∨
ack != ackall |

ntrans += 1
Send

| ack := 0

Retransmit

ack = ackall
∧ nto_send > 0

Response

ack = ackall |
(nto_send -= 1;

ntrans += 1)

ack != ackall

(a) This diagram describes the behaviour of a sender. It sleeps most of the time. If
a round starts, it tries to send the current data first and then waits for feedback from
the receivers. If the data packet or the acknowledgement is lost, the sender tries to
retransmit the data. Otherwise, it tries to send data that it didn’t manage to send in
previous rounds. There is a maximum number of transmissions in each round.

(ack=ackall ∧ !more_to_receive)
∨ nretrans > nretrans,max

Sleep

Active

Round start |
(ntrans:=0; ack:=0)

ack != ackall ∨
more_to_receive |

ack := 0

ACK

timeout |
ntrans += 1

Receive

NACK

Packet received |
(ack |= index; ntrans += 1)

(b) This diagram describes the behaviour of a receiver. It sleeps most of the time. If
a round starts, it listens for incoming data packets and returns a positive or negative
acknowledgement depending on the transmission being successful of not. If not all
nodes have acknowledged the data or if the sender indicated that there are more packets
following, the receiver goes back to the receiving state.

Figure 3.2: StateCharts of the logic of the sender and the receiver. The arrows
use a trigger |effects notation.

3. Protocol Description 10

Time

Latency

Round start

(a) Initial communication scheme.

TimeRound start

Latency

(b) Latency-optimised communication scheme.

Figure 3.3: Illustration of the offset compensation. (a) shows the large latency
for a possible initial situation. The black bars denote the start of a round. The
arrows represent data generation and the blocks are used for the Baloo rounds.
Blocks and arrows of the same colour are used for communication and data
generation of the same source. (b) shows an optimal schedule with minimal
latency.

3.3.1 Offset compensation

To minimise latency, the period of the communication rounds matches the period
of the data generation. This makes sure that there is only communication when
there is data to send and allows us to send the data immediately after it was
generated. For this, the protocol assumes initial knowledge of the period of
the data generation. However, the data generation is not synchronised on the
source nodes, which means that every source has a different initial offset (while
maintaining the fixed data generation period) and that not all sources generate
data at the same time. If we assume the optimal case in which every data packet
can be delivered at the first try, we still get a worst-case mean latency that is
larger than the period if we schedule the clusters randomly. This is the case if the
cluster is scheduled just before the data is generated. By creating an offset-aware
schedule, this worst-case can be highly improved. Figure 4.1 shows a possible
initial situation and how the schedule can be optimised to minimise latency.
As we don’t know the offsets initially, we start with a random schedule. When the
first data arrives at the source nodes, they save the offset between the moment
the data arrived and the moment they read it. During the first few periods, they
piggy-back this offset information on the data packets, effectively disseminating
the information to the whole network. Note that they measure the offset only in
the first round, to make sure that the information is consistent on all nodes after
the first few rounds. This way, every node in the network learns the offset of

3. Protocol Description 11

every source. Because every node has the same information, they can compute
a new schedule locally. We use a distributed approach instead of a local one
because this way, we don’t need to solve the problem of disseminating the new
schedule reliably to every node of the network. The schedule is computed in
earliest release-time first fashion, because it is fast to compute since it only
requires sorting the offsets of the clusters. While this algorithm does not offer
an optimal mean latency, it worked reasonably well in our evaluations.

We show under which conditions our greedy algorithm is guaranteed to find
a schedule. A schedule is valid if it contains all n configured clusters within a
period. We denote the fixed maximum Baloo round duration as tp. In the worst
case, the release times are separated by 2 · tp − ε. This would mean, that we
cannot schedule a cluster between two release times. For this case, the minimum
period Pm is given as

(n− 1)(2 · tp − ε) + tp ≤ (2n− 1)tp ≤ Pm (3.1)

As long as this equation holds, we are guaranteed to find a schedule. As the
period and the number of clusters is given at the start of the program, eq. (3.1)
defines the maximum Baloo round duration and therefore also the maximum
number of retransmissions in a single Baloo round. The maximum number of
retransmissions is computed such that the time needed for a Baloo round does
not exceed its budget.
Latency-wise, the worst case would be when all sources generate packets syn-
chronously. In that case, the best mean latency Lm that we can achieve is
lower-bounded by

Lm ≥
(
n− 1

2

)
· tp (3.2)

However, due to interference and resulting retransmissions, the expected latency
is higher. In the current protocol, we make a trade-off between the probability of
the data to be delivered within a single round and the duration of a Baloo round.
By increasing the number of possible retransmissions, we make the Baloo rounds
longer which leads to longer latencies according to eq. (3.2). On the other hand,
if we reduce the number of retransmissions, the probability of unsuccessful Baloo
round increases which also leads to higher latencies because the data has to be
transmitted in a later round. In the end, our approach was to fix a maximum
Baloo round duration and to set the maximum number of retransmissions such
that this maximum is not exceeded. Note that we also had to take the payload
length into consideration for computing the allowed number of retransmissions,
because slots are longer if there is more data to send.

3.3.2 Period correction

The period of the data generation is known in advance and the protocol period
is set accordingly. However, during testing, we noticed that the actual period

3. Protocol Description 12

differs from the one in the configuration. It seemed that the testbed introduced
a payload dependant delay of more than 20ms during data generation that was
added to the data generation period. For example, if the specified period was
5000ms the period in which the data was generated could be 5021.6ms. With-
out compensation, this would lead to a considerable drift of the data generation
events with respect to the schedule. To overcome this issue, we used a two-
step approach: first, we measured the introduced delay for different payloads.
With the measured data we computed an offline approximation of the shift de-
pending on the payload size. We add this approximation to the period that is
advertised by the testbed at boot. This allowed the reduction of the drift to a
sub-microsecond area. After the offset compensation described in section 3.3.1,
the Baloo host periodically measures the change between the initial (after the
rescheduling) and the current offset and piggy-backs this value on the synchro-
nisation packet. This way, the nodes learn the value of the current drift and can
compensate it.

3.3.3 Latency upper bound

To be able to retransmit data if the transmission was not successful during a
single Baloo round, the source nodes store the data packets. They use a ring-
buffer and store the 8 most recent received/sent packets. We limit the number of
stored packets to 8 to have an upper bound on the latency and guarantee some
degree of freshness of the delivered data. We guarantee an upper limit Lu on the
latency depending on the period P as

Lu ≤ 9 · P (3.3)

This is a trade-off between reliability on one side and latency and power con-
sumption on the other side. More retransmissions would allow to have always
perfect reliability but the energy cost and the latency would eventually become
large. By defining a maximum amount of latency in terms of rounds, we have a
good amount of reliability while not having a too large performance penalty in
terms of power consumption and latency.

3.4 Energy Improvements

In this section we describe different mechanisms that helped to reduce the power
consumption of our protocol.

3.4.1 Clustering

At one point during the preparation for the competition, we learned that during
the first minute of the experiments, there would be no data generated and the

3. Protocol Description 13

s d

n

dsd

ddn
dsn

Figure 3.4: Illustration of the clustering algorithm used. A node is part of a
cluster, if it is on a quasi-direct path between a source s and a destination d. In
the extreme case where the threshold is 0, this would include all nodes that are at
most dsd away from the source s and the destination d. This can be interpreted
graphically as the nodes within the intersections of two circles of radius dsd from
s and d.

power consumed during the first minute would not be taken into account when
evaluating the energy metric. This means that the first minute can be used for
topology discovery. To save energy, one straightforward approach is to turn off
nodes that are most probably not needed for a successful transmission. Examples
for such nodes would be the ones at the edge of the network. Our approach was to
turn off nodes on a per cluster basis. The goal is to create a group of active nodes
per cluster, containing the source and the respective destinations, as well as the
relay nodes on a quasi-direct path between the source and any destination of this
source. By quasi-direct, we mean that we don’t only want the shortest path but
want also to include almost shortest paths up to a threshold of additional length.
By now, it should also be evident why we used the term cluster to describe the
active nodes during a Baloo round.
To create the clusters, we made the nodes detect their relative position to the
source and the destinations. For every source/destination-set, the nodes note
their distance from the source (dsn) and the respective destinations(ddn). We use
the hop count as a measure of distance. The nodes get this information directly
out of the header of the Glossy packets that are exchanged. The destinations
also broadcast their distance from the source (dsd). Every node now knows 3
things: it’s distance to the source and the destination and the distance between
source and destination. With these 3 values and a configurable threshold, the
nodes can decide if they are part of a cluster using the following criteria:

dsn ≤ th+ dsd (3.4)

3. Protocol Description 14

ddn ≤ th+ dsd (3.5)

If eq. (3.4) and eq. (3.5) hold for any of the destinations in the communication
pattern, the node should participate in this pattern. To get some interference
resilience, the nodes default to participate in all communication patterns, and
they only turn off, if they have multiple measurements that come to this con-
clusion. This should prevent the case in which a lot of packets are lost during
the clustering and too many nodes turn off. Note that we assume fixed node
positions for this approach. A graphical explanation of the criteria is depicted
in fig. 3.4. One thing that we observed empirically is that it can be beneficial
to reduce the transmission power during such clustering tasks, because this in-
creases the number of hops in the network which leads to a more fine-grained
clustering.
Besides clustering, in this first phase, we make sure that we have a high proba-
bility that all nodes join the network. In order to join a Baloo network, a node
needs to receive a single control packet. We therefore make sure that we send
control packets at a higher rate than during later stages of the protocol.
Unfortunately, this optimisation was not added to the protocol that we handed
in for the competition. The reason is that we were not sure about its impact
on the reliability of the Glossy floods. With the limited time that we had avail-
able on the evaluation testbed, we could not collect enough data for all possible
scenarios to add this addition confidently. Such an optimisation, when added
prematurely, can lead to an increase in power consumption. If the reliability
of Glossy floods is reduced, there are more retransmissions which lead to more
radio-on time. This means that an optimisation that is designed to reduce the
power consumption may need more energy in the end. However, first evaluations
that are described in section 4.2 would look promising.

3.4.2 ACK optimisation

When implementing the acknowledgement scheme, we had 3 possible candidates.
First, we had a Chaos based system. With this approach, the nodes send packets
which contain 2 flag bytes. One of them is used for the actual acknowledgement
and the other is used as a consensus progress indicator. In the first byte, the
nodes can indicate if they want to acknowledge a packet. In the second byte,
every destination that added its acknowledgement information to the packet sets
its flag to 1. One node now starts the slot by advertising its acknowledgment
information. If one of the other nodes receive the packet, it adds its own ac-
knowledgement information, sets its flag in the progress byte and forwards the
packet. Gradually, the information in the packet increases and when all bits in
the progress flag are set, a final flood ensures that the whole network has the
same information. According to [10], this scheme can complete faster than mul-
tiple floods on large networks.
The second approach is entirely Glossy-based. Each destination is assigned a

3. Protocol Description 15

slot in which it broadcasts its acknowledgement information to the network.
The third approach works exactly as the second one, but there is an additional
slot in which the source broadcasts the information of what acknowledgements it
has received. The intention behind this is to prevent single nodes from going to
sleep too early. If an acknowledgement is lost but a part of the network managed
to receive it, it can happen that a part of the network decides that the round
is over and goes to sleep. The other half of the network tries a retransmission
which is not needed and which will also not be successful because the node, that
did not receive the data according to the information that the source has, has
already turned off its radio.
We first tested the Chaos based approach, because the use case it was designed
for, seemed to match exactly our acknowledgement collection problem. First
tests on flocklab looked fine but we had issues getting it to work on the larger
competition testbed. Chaos offers no completion guarantee. This means that
we are not sure if a Chaos aggregation finishes or will time out. To have some
reliability, we needed to increase the duration of the acknowledgement slot up
to a point where the slot was longer than multiple successive Glossy slots. For
this reason, we decided to use one of the Glossy based approaches because we
wanted to keep the Baloo rounds short.
To decide if we should add the extra acknowledgement slot described in the
third approach, we’ve run experiments on flocklab to check if the extra slot has
a positive impact on the power consumption. We measured the radio-on time
for both approaches on flocklab and came to the conclusion that the extra slot
has a negative impact on the radio-on time. Therefore we settled for the second
approach and used a single Glossy flood per destination.

One way of reducing the power usage is to reduce the number of unneces-
sary retransmissions. One source of unnecessary retransmissions are acknowl-
edgements that don’t reach the source. The source will interpret the missing
acknowledgement as packet loss to maintain reliability and eventually trigger a
retransmission. To reduce this risk, all destinations keep track of who acknowl-
edged a packet. Instead of simply sending a 0 or 1 to signal that they received
a packet, every node has an index and sets the bit at this index in a bit vector
to 0 or 1. With this, if an acknowledgement gets lost between a destination
and a source but is received by other destinations that are scheduled later, an
unnecessary transmission can be avoided.

3.4.3 Gap time optimisation

Between two slots, Baloo reserves time for computational tasks and for preparing
the payload for the next slot. This time is configurable at runtime but is fixed
for the duration of one Baloo round. However, we found this to be inadequate
because we have more time-consuming tasks after certain slots. For example:
after the first slot in which the source sends data, additional time is needed

3. Protocol Description 16

because the destinations have to write the data to a bus to deliver it. This task is
time-consuming compared to simply toggling a bit between the acknowledgement
rounds. We made a small modification to Baloo that allows us to set the gap
time for the next slot during runtime. This gives us more fine-grained control
and allows us to reduce the overall Baloo round time.

3.5 Reliability improvements

In this section, we present our approach for having a network-wide consistent
state and how we deal with interference.

3.5.1 Reliable state switching

With the optimisations described above we have different protocol states in which
we have different schedules (see section 3.3.1 and section 3.4.1). We need a way
to consistently switch between these states in the whole network, otherwise there
would be chaos in the network. The fact that the underlying network is lossy
makes this task more challenging. We cannot use a single Glossy flood to signal
phase transitions because there is no guarantee that the messages are received at
every node. We did not want to use a separate round to get a reliable consensus
as described for example by A2[1], because this would generate larger power
consumption overhead. Instead, we added additional information to regular
control packets and boost reliability with additional state-keeping at the nodes.
The tradeoff for the simpler design is a longer transition phase from one state to
the next.
We use the Baloo host as a network wide controller. Besides the tasks of an
ordinary source node, the Baloo host is responsible for network synchronisation.
The Baloo host sends a control packet at the start of each Baloo round. This
control packet consists of a single byte and contains the current phase, as well
as phase-dependant additional information. In the bootstrap (see section 3.4.1)
and learning (see section 3.3.1) phases, the Baloo host sends a decreasing counter
indicating the number of rounds until the next phase transition. Every node
knows the predefined initial value of this counter and decreases it every round.
If a control packet is received, the nodes compare their value with the value in
the control packet. This mechanism allows to resyncronise nodes that got out
of sync and is especially useful in the bootstrap phase, as not all nodes join the
network at the same time. With this, the Baloo host could also react to different
network conditions and for example signal a shorter or longer synchronisation
phase than the predefined phase duration. With this, the nodes don’t have a
strong dependency on the control packets and only need to receive very few
of them. In a scenario where the phase durations stay as preconfigured, they
only need to receive a single control packet to guarantee state synchronisation.

3. Protocol Description 17

However, due to clock drift, some control packets would still need to be received
in order to maintain the time synchronicity needed for synchronous transmission.

3.5.2 Fighting Interference

To route traffic around interference, we use a system similar to the one used in the
Crystal protocol in [6]. We rely on channel hopping and hop between 4 802.15.4
radio channels and make sure that the respective next frequency is sufficiently
far away from the current one in the sequence. To guarantee synchronisation
between the nodes, we have a deterministic algorithm that runs on every node
to determine the next frequency in the hopping scheme. We switch frequency at
every start of a transmission round and on retransmissions. We stay on the same
frequency for a single transmission and the following acknowledgement slots. The
intention is that if a transmission is successful, the probability is high that an
immediately following ACK slot is also successful on the same frequency.
Due to time constraints, no channel hopping was added for the control packets.
Because of the limited testing time available towards the end of the preparation,
we did not dare to change such an essential part of the protocol towards the
end of the preparation phase. This should not be a problem once synchronised,
because the protocol is designed in a way such that most of the control packets
can be missed without consequences. However, active and heavy interference on
channel 26 will hurt the bootstrapping process of the network. We hope that by
using many retransmissions during the Glossy flood and by having many rounds
with equally many control packets during the first stage of the protocol, at least
one of the floods will be successful. The approach we would have implemented
was the following: The network stays on the same frequency for its control
packet for the duration of a period and switches frequency deterministically.
The Baloo source sends out many control packets during this period during the
bootstrapping phase. Nodes that already joined the network, know the current
frequency and therefore the next frequency in the hopping sequence. Nodes that
have not yet joined the network split the duration of the period into equally
many segments as there are channels in the hopping sequence. They listen to
incoming control packets on one frequency for the duration of this segment and
switch frequency for the next segment. This ensures that during the length of
a segment of one period, the network and the node which wants to join it are
using the same frequency. It would have to be evaluated if the nodes join fast
enough when using 4 channels or if the control packets should use fewer radio
channels.

3.5.3 Large Period Reduction

We don’t know the values used for the period during the evaluation of the pro-
tocol. Due to clock drift, we don’t assume the nodes to be able to maintain

3. Protocol Description 18

synchronicity that is exact enough to allow synchronous transmission if the pe-
riod is above a configurable threshold. If the data generation period is too large,
we artificially split it up and reduce the protocol period accordingly. While there
are periods during which there is no data to send, the control packets are sent
nonetheless. They are used to resynchronise the network. A beneficial side ef-
fect is that this reduces the latency of packets that the sources were not able to
deliver on the first attempt.

3.6 Aperiodic case

We mainly focused on the periodic case. In the aperiodic case, data is gen-
erated aperiodically. The nodes know the lower and the upper bound of the
time between any two data release times on the same source. The exact time
is not known and may change for every packet. To make sure that the proto-
col also works reasonably well in this case we did some minor changes to the
protocol described above. First, we removed the offset compensation described
in section 3.3.1. The data generation is unpredictable and therefore we can’t
compensate the offset. Second, we adapt the structure of the Baloo round. We
add an additional slot in which the source sends one byte indicating if it has data
to send. If a node receives this byte, it can decide if it needs to listen to further
packets from the source or if it can go back to sleep early and can skip the rest
of the Baloo round. Because this is an optimisation, the nodes default to ”on”,
meaning if they don’t receive the flag-message, they assume that the source sent
a flag indicating that it has data to send and listens to further packets from the
source.
The obvious question is how often the nodes should wake up to check for trans-
missions. This is a trade-off between power consumption and achievable latency.
To get the feeling for the expected mean latency we can achieve with a given
period P , we do the following simplified calculation. If we assume that the data
generation takes place at a given moment in time, we can assume the probability
of the start of the next period to be distributed equally in (0, P] leading to an
expected start of the next period of P/2. This expected start of the next pe-
riod can be used as a rough estimate of the mean latency that neglects the time
needed to send the data and the latency introduced due to packet loss.

3.7 Further enhancements

Some short-comings and possible enhancements were already mentioned while
describing the protocol, and we won’t repeat them here. However, there are some
other enhancements that we had in mind but that we have not implemented due
to prioritising other changes first.

3. Protocol Description 19

3.7.1 Better Topology Discovery

We don’t know the final evaluation topology. This means that we don’t know
the total size or the diameter of the network and don’t know about the local
node density. In an enhanced protocol, these values could be learned at runtime
and the configuration could be adapted accordingly. At the moment, we assume
a large network with a diameter of 12 hops in the configuration. The diameter is
an important factor for determining the maximum time needed for Glossy floods
to complete. If we measure the diameter, we can reduce the slot lengths which
would allow us to save energy in case a transmission is not successful.

By learning about the local density of the network, we could use a more
sophisticated forwarder selection mechanism. We could save energy by allowing
a number of nodes to turn off depending on their location. If they are in a dense
part of the network, there might be no decrease in reliability if some of them are
turned off. For example, Zhang et al. show a more sophistic way of forwarder
selection using machine learning in [18] that one could use.

3.7.2 Avoid interference

Our approach to interference is to try retransmissions on different channels to
find a way around the unusable frequencies. This could be taken to the next
level. Instead of per slot frequency hopping, one could think of a scheme in
which the frequency is changed within a single Glossy flood as described in [11].
We expect such an approach to offer more reliable floods as they exploit a larger
frequency diversity within a single flood.

Another approach to avoid interference would be to learn about ”good” or
”bad” channels by measuring the amount of interference on different channels.
Nodes could decide which channels should be used and which ones should be
skipped in the hopping sequence as it is done in Crystal[6].

3.7.3 Allow late joining of the network

If a node is not able to synchronise to the network within some time, we turn
this node off completely. While this allows us to save some energy that would
otherwise be wasted, this is a dangerous approach. If there is strong interference
during the first 2-3 minutes, and too many nodes turn off, no communication is
possible any more. To improve the protocol, one could find an algorithm which
allows a node to join the network at any point in time and learn the currently
used configuration.

3. Protocol Description 20

3.7.4 Asynchronous start, Synchronous schedule

In the periodic case of the protocol, the nodes learn the offset of the data first
and reschedule accordingly. To ensure that every node received the information,
the phase in which the offset is not compensated for can harm the performance
in the competition. For a real world example, it would not be a problem if the
network needs 1 minute at boot until it is able to deliver data at low latency.
However, in the competition, where a protocol only runs for some minutes, this
can make a difference in the final performance evaluation. The latency could
have been improved in this first offset-discovery phase by assuming asynchronous
data generation and using the protocol that we designed for the asynchronous
case. Then, after the offset is learned, we would switch back to our round-based
scheduled algorithm.

Chapter 4

Evaluation

The protocol described in the previous chapter was implemented for the Tmote
B platform using the Contiki OS. The source code will be made publicly available
together with the scripts used for the evaluation. During the implementation,
most evaluation was performed on the testbed at the TU Graz where the compe-
tition will be held, as well. The final performance assessment of the protocol will
be the competition. The results of the competition is not added to this report
because they were not published at the time of writing.
In this chapter, we first analyse the general performance of the protocol with
respect to the competition and then show individual evaluations of ideas used
in the protocol that were performed during the design phase. We dedicate sec-
tion 4.3 to a short evaluation on the usability of Baloo.

4.1 Metric-wise performance

In this section, we evaluate the performance of our protocol according to the
competition metrics. After that, we will discuss the performance in general,
taking all criteria into consideration.

4.1.1 Latency

We tested the offset compensation on the testbed in Graz. We used 5s as period,
payloads of 5B and configured the nodes to perform the compensation after 10
rounds. 3 sources and a total of 13 destinations were configured. The experiment
run for 8 minutes, including the 1 minute available for the setup. To calculate
the latency, the testbed measured the time between the moment data is available
at the source and the moment when a destination delivers the data. The offset
of the experiment is plotted in fig. 4.1. The compensation is clearly visible at
around 50s where the latency drops from around 760ms to around 50ms. There
are multiple reasons why the latency does not drop further: first, the source
reads the data before the start of the round which means that the time needed

21

4. Evaluation 22

0 50 100 150 200 250 300 350 400
Time [s]

0

100

200

300

400

500

600

700

800

La
te

n
cy

 [
m

s]

Latency

Figure 4.1: This figure shows the mean latency over all 3 clusters and the clear
drop of latency after the offset compensation.

for the control packet and reserved to process it adds to the latency. Second, we
added a safety margin to make sure that we don’t check for new data too early
which could result in latency that is roughly equal to the period. Additionally,
late retransmissions would also increase the observed latency.
Note that there is a small increase in latency over time. This is due to the issue
explained in section 3.3.2 and this experiment was run without compensation for
the drift.

We performed the same experiment for the aperiodic case. We used the same
setup as above but this time, the data generation period is aperiodic with higher
and lower bounds of 5s and 30s respectively. We define a period for the protocol
of 3.5s. We achieve a mean latency of 1972ms over the whole experiment. The
smallest latency was 236ms and the maximum observed latency was 3433ms.
These values are not very satisfactory but are in an order of magnitude that
can be expected using the above mentioned period according to the reasoning
in section 3.6. By reducing the period, the latency could greatly be improved at
the cost of a bit of extra energy. However, this claim cannot be tested as the
testbed in Graz is not available any more and it is not in the scope of this thesis
to reproduce the capabilities of the Graz testbed in another testbed.

4.1.2 Reliability

To evaluate the reliability during the preparation for the competition, we did
measurements both on the testbed in Graz and on flocklab. On flocklab, we
took a random topology and measured the packet delivery ratio by comparing
the packets sent by the sources and the packets arriving at the destinations.
Normally, we get a delivery ratio of 100% meaning that all packets sent by the
sources arrived at the destinations. However, there are rare cases where protocol
behaves badly. We see this because single nodes miss packets. We were not able

4. Evaluation 23

to pinpoint the error as it only appears sporadically. However, there is normally
only one node affected, so we assume that the affected node temporarily looses
synchronicity to the other nodes for some reason.
On the testbed in Graz, the packet delivery ratio was slightly worse than on
flocklab. However, in the end we managed to get a ratio of 95-100% consistently
over the last few experiments. This was true even in case of interference.

4.1.3 power consumption

It is hard to have a meaningful evaluation of the power consumption. The power
consumption depends on many factors: the payload length, the data generation
period, the topology, the number of sources and destinations, the degree of in-
terference, to name a few. This means that a complete analysis of the power
consumption of the protocol needs a lot of time and experiments and is clearly
out of scope of this project.
During the design phase of the protocol, we continuously evaluated the power
consumption on the testbed in Graz. There, an external device measured the
power consumption of all nodes. The good thing about this was that we could
directly compare our performance to the performance of other teams. In the
end, our performance was comparable to the one of other teams. We neither had
a much better or a much worse performance energy-wise. One interesting thing
that we observed was that reliability is strongly linked to the power consumption.
If there are many retransmissions, for example when there is heavy interference
or a bug in the code, it can happen that the power consumption increases by a
factor of 2, due to the extra time that the radio needs to be turned on.

4.1.4 Conclusion

During the preparation phase for the competition, there was a leader board which
contained information about the performances of the different teams. While
we cannot say anything about the final ranking and are not sure of the state
of the other protocols during their experiments, it seemed that in general our
protocol was a little above average for most of the metrics. Our goal was to
find a reasonable balance between reliability, power consumption and latency.
This means that we did not push to the limits of what is possible for any of
the criteria and our protocol is therefore not the best performing in any of the
metrics. Other teams might have weighted the criteria differently and may for
example offer a better latency at the cost of a higher power usage. It has to be
seen what weights the organisers give the individual criteria in their evaluation.
In general, we are satisfied with the trade-off that we achieved. We are able
to deliver data reliably with only few tens of milliseconds latency with a low
energy food-print. The only things that we would like to further optimise are

4. Evaluation 24

Experiment Radio Duty Cycle Retransmissions

Random without clustering 2.4% 14
Random with clustering 1.6% 14

Designed without clustering 3.6% 17
Designed with clustering 3.2% 17

Table 4.1: Results of the clustering evaluation

the parameters used for the aperiodic case to be able to offer a lower latency
there as well.

4.2 Clustering

We test the clustering algorithm described in section 3.4.1 on flocklab. We want
to check if the clustering reduces the mean power consumption and if it has an
impact on the reliability. For this, we use two different topologies. The first one
is just a random topology with 3 sources and 8 destinations. For the second
topology, we choose sources and destinations such that they are close to each
other, with the intention that this should enable us to shut down most of the
network and save a lot of energy. We have 3 sources and 10 destinations in the
second topology and we run the protocol once with and once without clustering
with both topologies. For the power consumption, we assume that most of the
power is used by the radio. Therefore, we compare the radio duty cycles of the
different experiments. We measure the duty cycle using the Energest profiler
module of Contiki which is a software module that measures the time the radio
is assumed to run. We mainly need the result to compare the experiment runs,
and therefore this approximation should be good enough. We use the mean
of the duty cycles of all nodes to compare the performance. To measure the
reliability, we count the number of retransmissions. We run each experiment for
15 minutes.
The results are summarised in table 4.1. The packet delivery rate was 100% for
all experiments. From the number of retransmissions, we see that there is no
impact on the reliability of the protocol. For the topology that we designed to
have a small clusters, we see that we can reduce the radio duty cycle by 33%.
As expected, for the random topology we get a smaller reduction in the duty
cycle. We observe a reduction of 11%. In general, we conclude with this short
evaluation that our clustering algorithm can be used to reduce the mean energy
usage of the network.
To give a small glimpse at the clusters that our algorithm creates, we illustrated
one of the clusters that was created in the random cluster in fig. 4.2.

4. Evaluation 25

1

2

4

8

33

3

6

16

15

28

22

32 31

18 27

23

24

10 26

20

19

11

25

17

14

13

7

Figure 4.2: Example of a cluster computed by our algorithm in flocklab. The
circles correspond to nodes in the flocklab testbed. The blue node is the source
and the red nodes are the destinations. Relay nodes that are part of the cluster
are marked green. The white nodes are turned off during transmissions of this
cluster.

4.3 Evaluation of Baloo

We want to dedicate the last part of the evaluation to the Baloo framework.
We were the first people that used Baloo outside the initial developer team. We
had not much prior experience in WSN protocol design. While the result is not
perfect, we managed implement our protocol within 8 weeks of part-time work.
We would not have been able to do that without Baloo.
To get started, the authors provide a collection of example projects that are quite
useful for understanding the framework. The examples range from minimal ones
to reimplementations of known protocols. This allows you to implement you first
toy example without knowledge about Glossy or synchronous transmission. The
callback-based design predefines a certain structure of the communication part
of the protocol. This is good for beginners, as this acts as a structured skeleton
one can build its logic upon. While the first steps are easy, there is a steep
learning curve when working on a more involved project. The authors of Baloo
made sure that it is as versatile as possible, which means that there are a lot of
possible parameters. Currently, the documentation lives mostly within the code,
which makes searching for the right parameter to set harder. Additionally, most
of the parameters have a default value that might make sense for most protocols
but can make your protocol stop working at one point during development if you
start to exceed certain bounds. Currently, we see this as the most limiting factor

4. Evaluation 26

from a usability point of view. To work around this, we suggest adding a default
configuration, that contains all configuration switches and values including a
description for each of them. Additionally, it would be beneficial to have more
error checking during run- and compile-time. For the inexperienced user, if a
tool just stops working without giving an explanation, a lot of time is lost for
debugging.
The good thing about Baloo is that once you got some experience, you can be
quite fast at changing the communication pattern used. For example, at one
point we experimented with a different version of Glossy that does aggressive
channel hopping. As it used the interface defined by Baloo, to test it we just had
to add the sources and tell Baloo to start using it. This also allows orthogonal
development on the communication primitives such as Glossy and the higher
level protocol.
Energy-wise, the performance you get from Baloo is quite good, even without
long parameter optimisation. Furthermore, the middleware normally provides
you with all the information you need for the higher level protocol. The only
thing that we needed to change from the upstream Baloo is that we wanted to
be able to configure some values during runtime. Thanks to the well-structured
codebase, changing the Baloo source was easy.
To conclude, we think that Baloo is a very useful tool for prototyping protocols
and communication primitives and makes this task much easier. We are looking
forward to further development in this direction.

Chapter 5

Conclusion and future work

5.1 Conclusion

In this thesis we designed a protocol to compete in this years EWSN depend-
ability challenge. We used the Baloo framework and created a protocol that was
inspired by different well-known protocols. We relied on a simple round based
approach and optimised it in terms of reliability, latency and power usage while
maintaining a balance between these performance metrics. With this design
principle, it is clear that the protocol is not the best-performing one for any of
the mentioned criteria, but it performs reasonably well for all of them.
Being the first group to design a protocol with Baloo outside the initial develop-
ing team, we added a short usability evaluation of the framework. In our opinion,
it is well suited for the protocol design task. It makes the design and implemen-
tation process faster and manages to find good a middle-ground between ease of
use and configurability.

5.2 Future work

The protocol that we described in this project was designed for the 2019 edition
of the EWSN dependability challenge and is tailored according to the scenarios
that we expect there. Additionally, it uses ideas from other protocols and does
not introduce something fundamentally new. We therefore don’t think that this
protocol should be further developed.

Despite participating in the competition, the goal of this project was to see
how the Baloo framework is suited to create new protocols. We think it is well
suited and should be developed further by adding new communication primitives
such as a version of Glossy that does frequency hopping within a Glossy flood.
Additionally, the error reporting and the documentation should be enhanced.
We think, that Baloo might be an entry-point to interesting research topics.
On one side, such a framework could become a de facto standard. If researchers

27

5. Conclusion and future work 28

would use a common framework to implement their protocols, they could be com-
pared more easily and knowledge transfer could be enhanced. Protocols would
be reproducible by others if they know the parameters that were used. Together
with a testbed that uses configuration files for creating different scenarios, one
could think of a general evaluation framework to assess the overall performance
of a protocol.
One of the great things about Baloo is its modular design. It is easy to ex-
periment with different communication primitives. If we take this approach to
the next level, protocol design could be made easier by having different common
building blocks. For example, if a designer needs a network-wide consensus, he
would be able to pick from different modules which each has a slightly differ-
ent focus on delay, power consumption or reliability. At this point, one could
then try to automate the protocol design. An optimisation algorithm could be
designed that takes a topology and weighted performance metrics as input and
then proposes a new protocol tailored to the specific scenario.

Bibliography

[1] Beshr Al Nahas, Simon Duquennoy, and Olaf Landsiedel. Network-wide
consensus utilizing the capture effect in low-power wireless networks. In
Proceedings of the 15th ACM Conference on Embedded Network Sensor Sys-
tems, page 1. ACM.

[2] Manjunath Doddavenkatappa, Mun Choon Chan, and Ben Leong. Splash:
Fast data dissemination with constructive interference in wireless sensor
networks. In NSDI, pages 269–282.

[3] Simon Duquennoy, Olaf Landsiedel, and Thiemo Voigt. Let the tree bloom:
Scalable opportunistic routing with orpl. In Proceedings of the 11th ACM
Conference on Embedded Networked Sensor Systems, page 2. ACM.

[4] Federico Ferrari, Marco Zimmerling, Lothar Thiele, and Olga Saukh. Effi-
cient network flooding and time synchronization with glossy. In Information
Processing in Sensor Networks (IPSN), 2011 10th International Conference
on, pages 73–84. IEEE.

[5] Timofei Istomin, Amy L Murphy, Gian Pietro Picco, and Usman Raza.
Data prediction+ synchronous transmissions= ultra-low power wireless sen-
sor networks. In Proceedings of the 14th ACM Conference on Embedded
Network Sensor Systems CD-ROM, pages 83–95. ACM.

[6] Timofei Istomin, Matteo Trobinger, Amy L Murphy, and Gian Pietro Picco.
Interference-resilient ultra-low power aperiodic data collection. In Proceed-
ings of the 17th ACM/IEEE International Conference on Information Pro-
cessing in Sensor Networks, pages 84–95. IEEE Press.

[7] Romain Jacob, Jonas Bächli, Reto Da Forno, and Lothar Thiele. Syn-
chronous Transmissions made easy: Design your network stack with Baloo.
2019.

[8] Jirka Klaue, Angel Corona, Martin Kubisch, Javier Garcia-Jimenez, and
Antonio Escobar. Competition: Redfixhop. In EWSN, pages 289–290, 2016.

[9] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile
and efficient all-to-all data sharing and in-network processing at scale. In
Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems, page 1. ACM.

29

Bibliography 30

[10] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. Chaos: Versatile
and efficient all-to-all data sharing and in-network processing at scale. In
Proceedings of the 11th ACM Conference on Embedded Networked Sensor
Systems, page 1. ACM.

[11] Roman Lim, Reto Da Forno, Felix Sutton, and Lothar Thiele. Competi-
tion: Robust flooding using back-to-back synchronous transmissions with
channel-hopping. In Proceedings of the European Conference on Wireless
Sensor Networks (EWSN).

[12] Xiaoyuan Ma, Peilin Zhang, Xin Li, Weisheng Tang, Jianming Wei, and
Oliver Theel. Decot: A dependable concurrent transmission-based protocol
for wireless sensor networks. IEEE Access, 6:73130–73146, 2018.

[13] Mobashir Mohammad and Mun Choon Chan. Codecast: supporting data
driven in-network processing for low-power wireless sensor networks. In Pro-
ceedings of the 17th ACM/IEEE International Conference on Information
Processing in Sensor Networks, pages 72–83. IEEE Press, 2018.

[14] Maria Rita Palattella, Nicola Accettura, Mischa Dohler, Luigi Alfredo
Grieco, and Gennaro Boggia. Traffic aware scheduling algorithm for reli-
able low-power multi-hop ieee 802.15. 4e networks. In Personal Indoor and
Mobile Radio Communications (PIMRC), 2012 IEEE 23rd International
Symposium on, pages 327–332. IEEE.

[15] Chayan Sarkar, R Venkatesha Prasad, Raj Thilak Rajan, and Koen Lan-
gendoen. Sleeping beauty: Efficient communication for node scheduling. In
Mobile Ad Hoc and Sensor Systems (MASS), 2016 IEEE 13th International
Conference on, pages 56–64. IEEE, 2016.

[16] Felix Sutton, Reto Da Forno, David Gschwend, Tonio Gsell, Roman Lim,
Jan Beutel, and Lothar Thiele. The design of a responsive and energy-
efficient event-triggered wireless sensing system. Proc. of ACM EWSN,
pages 144–155, 2017.

[17] Yin Wang, Yuan He, Xufei Mao, Yunhao Liu, and Xiang-Yang Li. Ex-
ploiting constructive interference for scalable flooding in wireless networks.
IEEE/ACM Transactions on Networking (TON), 21(6):1880–1889, 2013.

[18] Peilin Zhang, Alex Yuan Gao, and Oliver Theel. Less is more: Learning more
with concurrent transmissions for energy-efficient flooding. In Proceedings of
the 14th EAI International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, pages 323–332. ACM.

[19] Peilin Zhang, Olaf Landsiedel, and Oliver Theel. Mor: Multichannel oppor-
tunistic routing for wireless sensor networks. In Proc. of EWSN, 2017.

