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1 Introduction

String theory in AdS3 backgrounds exhibits a variety of rich and interesting features. In

type IIB string theory, AdS3 can be supported by either pure NS-NS flux, pure R-R flux,

or a mixture thereof. Because of this, AdS3 backgrounds have typically a large number of

moduli and surprising phenomena occur at various places in the moduli space of the theory.

In this paper, we will mostly discuss the backgrounds AdS3 × S3 ×M4 where M4 = T
4 or

K3. These backgrounds are realised in string theory as the near-horizon limit of the D1-D5

brane system compactified on the manifold M4 [1–3]. As such, the system is characterised

by the values of the fluxes of D1-D5, F1-NS5 and D3-branes, which can wrap various cycles

of M4. The fluxes transform under the U-duality group, so that different backgrounds are

classified by the norm of a charge vector.1

It was first discussed by Seiberg and Witten [3] that there is a codimension four locus

in the moduli space in which the background becomes ‘singular’. This means that the

1Provided that the charge vector is primitive, see the discussion in section 2.1.

– 1 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
8

brane system can separate at no cost of energy. In other words, this locus is a wall of

marginal stability of the system. The singularity manifests itself in a variety of ways,

with some drastic consequences for the theory. In particular, the string spectrum changes

discontinuously as we move through the singular locus in the moduli space. The most

extreme changes in the spectrum on the singular locus are the following:

1. The string spectrum develops a continuum of states on the singular locus, due to

the fact that a finite amount of energy suffices for a string to reach the boundary

of AdS3. These so-called long strings can have arbitrary radial momentum above a

certain threshold.2

2. The spectrum of BPS operators is discontinuous on the singular locus. In particular,

there are less BPS operators on the singular locus than outside of it. Since chiral

primaries are 1
2 -BPS operators, we will refer to this phenomenon as ‘missing chiral

primaries’.

These predictions can be understood by considering the worldvolume CFT description of

the D1-D5 system as follows. The theory on the intersection of the D1- and D5-branes

flows to a two-dimensional CFT in the IR limit, which is identified with the sigma-model

on the Higgs branch of the worldvolume gauge theory. On the other hand, the Coulomb

branch describes the emission of branes from the system. On the singular locus these two

branches meet classically in the small instanton limit, but are otherwise disconnected. As

we shall review in this paper, this statement is corrected quantum mechanically. In the

quantum theory, the two branches are connected via an infinitely long tube. A Liouville

field associated with this tube is responsible for the continuum part of the spectrum. In

the same vein, chiral primaries can get swallowed in the tube and disappear from the Higgs

branch, leading to the missing chiral primaries.

These expectations are hard to confirm explicitly from the string theory side. The case

of pure NS-NS flux lies on the singular locus of the theory, and one indeed observes the

existence of a continuum of long strings and missing chiral primaries in the spectrum. Nev-

ertheless, while there is an exact description of string theory on pure NS-NS backgrounds

via WZW-models [4–10], there is currently no exactly solvable description of string theory

with mixed flux, which would allow us to move away from the singular locus.

We should mention that while integrability techniques give some insight into the string

theory spectrum on AdS3 backgrounds [11], they are not (yet) able to reproduce the quali-

tative behaviour described above. A recent study [12] in this context shows that the string

theory spectrum depends essentially only on the directions normal to the singular locus.

In this paper, we confirm the expectations above using the hybrid formalism of

Berkovits, Vafa and Witten [13] to describe string theory on AdS3 × S3 ×M4 with mixed

flux. This formalism consists of a sigma-model on the supergroup PSU(1, 1|2) and a sigma-

model on M4, coupled together by ghosts. This is an exact worldsheet description of the

theory, but it is exceedingly hard to solve exactly. However, one might hope to understand

this theory just enough to observe the qualitative features we described above. It is natural

2In [4] these long strings were associated with divergences of the free energy of the string.
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to expect that the emergence of these features is largely attributable to the PSU(1, 1|2)

part of the hybrid formalism. With this in mind, we take a closer look at the spectrum

of the sigma-model CFT on the supergroup PSU(1, 1|2). This supergroup has the special

property of having vanishing dual Coxeter number, which guarantees the conformal sym-

metry of the worldsheet theory even away from the pure NS-NS case. We use the algebraic

methods of [14–16] to analyse the spectrum of the supergroup sigma-model. In [16] these

methods were used to derive the full BMN spectrum of in a background with mixed flux

from a large-charge limit of the worldsheet theory. In general, at the WZW-point (pure

NS-NS flux) the spectrum of the theory is constrained by enhanced worldsheet symmetries.

However, this constraint is absent in the case of mixed flux, which results in the appearance

of new representations of the worldsheet CFT. These will allow us to retrieve the missing

chiral primaries as soon as an infinitesimal amount of R-R flux is turned on, i.e. as soon as

we leave the singular locus in the moduli space. On the other hand, we will explicitly show

that the conformal weight of excited states in the continuous representations describing

long strings acquire a non-vanishing imaginary part. This forbids these representations

from appearing in a unitary string theory.

As a byproduct of our analysis, we fill a small gap in the literature on the SL(2,R)-

WZW model. Remarkably, there are two different bounds on the allowed SL(2,R)-spins

in the literature. One is the unitarity bound of the no-ghost theorem [17, 18], and the

other is the Maldacena-Ooguri bound [7], which arises from demanding square integrability

of the respective harmonic functions in the quantum mechanical limit. The Maldacena-

Ooguri bound is stronger, and it is somewhat puzzling that it should not be derivable

from unitarity alone. We discover that the Maldacena-Ooguri bound arises in fact from

considering the R-sector no-ghost theorem, in the literature only the NS-sector no-ghost

theorem was discussed. Hence at least in the superstring, the Maldacena-Ooguri bound

arises purely from unitarity.

This paper is organised as follows. In section 2 we review the arguments that lead to the

prediction of long strings, their disappearance and the missing chiral primaries. After this,

we set the stage for our computations by reviewing the algebraic treatment of supergroup

sigma-models in section 3 and explaining its application to the case of PSU(1, 1|2). With

these preparations at hand, we analyse their implications for the long strings and missing

chiral primaries in section 4. This involves in particular the computation of conformal

weights of single-sided excitations in the supergroup CFT. We discuss our findings in

section 5. Three appendices with background on the affine Lie superalgebra psu(1, 1|2), on

the level n spectrum of the supergroup sigma-model and the R-sector no-ghost theorem

complement the discussion.

2 The sigma-model description

This section is mostly a review of the material appearing in [3, 19, 20].

– 3 –
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2.1 The D-brane setup

We consider the D1-D5 system on compactified on M4, where M4 = T
4 or K3. The

D-branes are wrapped as follows:

0 1 2 3 4 5 6 7 8 9

Q5 D5-branes × × × × × ×

Q1 D1-branes × × ∼ ∼ ∼ ∼

(2.1)

The manifold M4 is located in the directions 6789, × denotes directions in which the

brane extends, ∼ denotes directions in which the brane is smeared. We can also consider

the inclusion of F1-strings and NS5-branes, and moreover D3-branes can wrap any of

the n + 6 two-cycles of M4, where n = 0 for T
4 and n = 16 for K3. The charge vector

parametrising different configurations of the system takes values in the even self-dual lattice

Γ5,5+n. The U-duality group is the orthogonal group O(Γ5,5+n), under which the charge

vector transforms in the fundamental representation. In the following we will assume that

this charge vector is primitive, i.e. not a non-trivial multiple of another charge vector. If

this is not so, the brane system can break into subsystems at no cost of energy at any point

in the moduli space, which renders the dual CFT singular. Note that the U-duality group

acts transitively on the set of primitive charge vectors of a fixed norm. Therefore we can

always apply a U-duality transformation to bring the charge vector into the standard form

Q′
1 = N = Q1Q5 and Q′

5 = 1, with all other charges vanishing [21].

The moduli space is provided by the scalars of the compactification. Locally, they

parametrise the homogeneous space

O(5, 5 + n)

O(5)×O(5 + n)
, (2.2)

on which U-duality acts and which leads to global identifications. In the near-horizon limit

some of the moduli freeze out and the charge vector becomes fixed. The remaining scalars

parametrise locally the moduli space

O(4, 5 + n)

O(4)×O(5 + n)
, (2.3)

and U-duality is reduced to the little group fixing the charge vector [21, 22].

Seiberg and Witten studied under what circumstances the system can break apart at

no cost of energy [3, 23]. For a primitive charge vector, this happens on a codimension 4

subspace of the moduli space. On this sublocus, the instability should be reflected as a

singularity in the dual CFT. In particular, the pure NS-NS flux background lies on this

locus and is hence a singular region in the moduli space. In this way, for pure NS-NS

flux fundamental strings can leave the system and can reach the boundary of AdS3 at a

finite cost of energy. These are the so-called long strings. These considerations predict the

existence of a continuum of states above a certain threshold for pure NS-NS flux. Such

states indeed exist in the worldsheet description of string theory, and are associated with

continuous representations of the sl(2,R)k-current algebra [7].

– 4 –
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2.2 The gauge theory description

In this part we review the gauge theory worldvolume description of the D1-D5 system. For

simplicity, we work in the case in which neither D3-branes, F1-strings nor NS5-branes are

present. The worldvolume theory of the D5-branes is given by a U(Q5) gauge theory cou-

pling to the two-dimensional defects given by the D1-branes. In the low-energy limit, the

dynamics becomes essentially a two-dimensional gauge theory which lives on the intersec-

tion of the D1-D5 branes [2], and which flows to an N = (4, 4) superconformal field theory

in the IR. In fact, the IR fixed-point is described by two superconformal field theories —

one corresponding to the Coulomb branch and one to the Higgs branch of the theory.3

There are a number of ways of justifying this, the simplest being the comparison of central

charges and R-symmetries [19]. Indeed, these two SCFTs have different sets of massless

fields, and hence different central charges. Furthermore, since the scalars transform non-

trivially under the various su(2) R-symmetries and obtain non-trivial vacuum expectation

values, the R-symmetry is generically broken down to different su(2)’s.

Let us have a closer look at the different central charges. On the Coulomb branch,

the gauge group is generically broken to U(1)Q5 , while all other fields are massive. The

central charge is then given by the Q5 massless gauge vector multiplets, that is c = 6Q5.

On the other hand, on the Higgs branch only nH − nV hypermultiplets remain massless,

while all other fields become massive. The central charge is then c = 6(nH − nV), where

nH is the number of hypermultiplets and nV the number of vector multiplets. Evaluating

this number gives

c =

{

6Q1Q5 , M4 = T
4 ,

6(Q1Q5 + 1) , M4 = K3 .
(2.4)

We hence conclude that the central charges on the Higgs and Coulomb branches are gener-

ically different, and therefore the IR fixed-point is described by two decoupled SCFTs.4

These two branches meet classically at the small instanton singularity of the gauge

theory. In the quantum theory, the Coulomb branch metric is corrected and develops a

tube near the small instanton singularity [3]. Hence the Coulomb branch moves infinitely

far away from the Higgs branch. For the Higgs branch the story is more subtle: since it

is hyperkähler, it is not renormalised at the quantum level. Nevertheless, the description

of the Higgs branch SCFT as a sigma-model on the classical Higgs branch breaks down

near the singularities of the moduli space, and one has to use a different set of variables.

In those variables, the small instanton singularity exhibits also a tube-like behaviour on

the Higgs branch [3].5 This implies that an instanton can travel through the tube and

come out on the Coulomb branch. This is the gauge theory description of the emission of a

D1-brane, i.e. of the long strings. In this process the central charge does not change since,

3There can of course be also mixed branches.
4The same result can be obtained semi-classically by using the Brown-Henneaux central charge [24],

which yields c = 6Q1Q5. The correction in the K3 case is a supergravity one-loop effect [25].
5This tube can be described by a Liouville field in the gauge theory, and the energy gaps can be seen to

match [3, 20].
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chiral primary

emission of

a D1-brane

perturbation away from

the singular locus

chiral primary

Coulomb branch Coulomb branch

Higgs branch

Higgs branch

Figure 1. The structure of the moduli space on the singular locus and when slightly perturbed

away from it. On the singular locus (left-hand picture), chiral primaries can escape to the Coulomb

branch and are emitted as D1-branes from the system. The Higgs branch and the Coulomb branch

are connected by an infinitely long tube, with the string coupling constant blowing up in the middle.

Associated with the tube are long strings, which give rise to a continuum in the spectrum. When

slightly perturbing the system away from the singular locus (right-hand picture), the moduli space

approximation becomes good and the non-renormalization theorem makes the Higgs branch flat.

The tube disappears and all chiral primaries are confined to the Higgs branch.

for example for M4 = T
4,

ctot = 6Q1Q5 = 6(Q1 − 1)Q5 + 6Q5 , (2.5)

where we have used the central charge for the Coulomb and Higgs branch.

Let us slowly move away from the singular locus in the moduli space of the theory.

From the gauge theory picture we learn that the tube disappears from the moduli space,

since the sigma-model description is always a good description. Note that this happens

immediately at the slightest perturbation away from the singular locus. This means that

when perturbing the theory slightly, the continuum provided by the long strings should

completely disappear. The situation is depicted schematically in figure 1.

There is one related phenomenon occurring. Starting at a non-singular point in the

moduli space, as we slowly approach the singular locus the small instanton singularity will

form at some places on the Higgs branch. The support of the cohomology cycles associated

with the instanton shrinks to zero size in this process and, as the tube forms, these cycles

will move down the tube and disappear from the Higgs branch, see figure 1. As cohomology

classes correspond to chiral primaries in the CFT description, this means that these chiral

primaries are missing on the singular locus. In this way, all cohomology classes which are

obtained by multiplication in the chiral ring vanish from the spectrum. From a string

theory point of view, this means that all multi-particle chiral primary states obtained from

a given chiral primary are missing.6 It is hard to say which cycles are these from a gauge

6Furthermore, since the chiral primaries always come in Hodge diamonds of M4, the whole diamond

will be missing.
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theory perspective, since there is no good explicit description of the instanton moduli space

on T
4 or K3. In [3, 26] it was argued that the first missing chiral primary should have

degree (Q5 − 1, Q5 − 1), i.e. conformal weights h = h̄ = 1
2(Q5 − 1). However, more chiral

primaries are expected to be missing from the spectrum. We will argue in the worldsheet

description that all cohomology classes of degrees

((w + 1)Q5 − 1, (w + 1)Q5 − 1) (2.6)

are in fact missing, where w ∈ {0, 1, . . . , Q1} corresponds to the spectral flow parameter on

the worldsheet.7 It would be interesting to confirm this directly from the instanton moduli

space side.

3 The worldsheet description

In this section we introduce the worldsheet description of string theory in AdS3×S3×M4

with mixed NS-NS and R-R fluxes, where M4 = T
4 or K3. We start by briefly describing

the hybrid formalism, and then concentrate our attention on its main constituent: the

PSU(1, 1|2) sigma-model.

3.1 The hybrid formalism

The hybrid formalism [13] gives a covariant formalism describing string theory on AdS3 ×

S3 ×M4 and has the following ingredients:

1. A sigma-model on the supergroup PSU(1, 1|2).

2. A topologically twisted c = 6 N = (4, 4) CFT. This can be a sigma-model on either

T
4 or K3.

3. Two additional ghost fields ρ and σ coupled to the remaining fields of the theory.

The hybrid formalism makes half of the spacetime supersymmetries manifest, but the ex-

istence of ghost couplings makes the theory much more complicated. However, we are

only interested in the emergence of the qualitative features outlined in the previous sec-

tion. We expect these features to be already present at the level of the sigma-model on

PSU(1, 1|2), and we will see that this is indeed the case. We will henceforth only focus on

the sigma-model on the supergroup PSU(1, 1|2).

The sigma-model is characterised by two parameters k and f , see the action (3.2)

below. In the hybrid formalism, these parameters are related to the background fluxes as

follows. The amount of NS-NS flux is given by k, i.e. QNS
5 ≡ k. Since the hybrid formalism

is a perturbative string theory description, we expect k to be quantised. In the sigma-

model, this follows from the usual topological argument for WZW models. Furthermore,

7The importance of spectral flow in the worldsheet description of AdS3 was not yet realised when [3]

was published, which explains the differences between our statement and the one in [3, 26]. Note also that

our statements are true for Q5 ≥ 2, since only for these values a complete worldsheet description exists.

See however [27, 28] for a recent proposal on how to make sense of the Q5 = 1 theory, and in which the

missing chiral primaries are present.

– 7 –



J
H
E
P
0
2
(
2
0
1
9
)
0
9
8

f−2 is equal to the radius of AdS3 (in units of string length). Solving the supergravity

equations of motion, this is related to the background fluxes as

4π2R2
AdS

α′
=

1

f2
=

√

(

QNS
5

)2
+ g2

(

QRR
5

)2
, (3.1)

where g is the string coupling constant. Since g ≪ 1 in the perturbative treatment, f

effectively becomes a continuous parameter of the theory. The pure NS-NS background is

characterised by QRR
5 = 0, that is kf2 = 1.8 This corresponds to the WZW-point for the

sigma-model.

3.2 The sigma-model on PSU(1, 1|2)

In this section, we review the formalism developed in [14, 15] for sigma-models on super-

groups G with vanishing dual Coxeter number. This formalism was further studied and

extended in [16], where it was used to compute the plane-wave spectrum of string theory

in AdS3 backgrounds with mixed flux.

In [15, 16] the two-parameter family of sigma-models on a supergroup G — which for

our purposes is taken to be PSU(1, 1|2) — with action

S[g] = −
1

4πf2

∫

d2zTr
(

∂gg−1 ∂̄gg−1
)

+ k SWZ[g] , (3.2)

was analysed. Here, SWZ[g] denotes the standard WZW-term, and g the embedding co-

ordinate on the supergroup. The model possesses G × G symmetry, acting by left- and

right-multiplication on g. We denote by j(z), j̄(z) the conserved currents associated with

this G×G symmetry, whose components are

jz = −
1 + kf2

2f2
∂gg−1 , jz̄ = −

1− kf2

2f2
∂̄gg−1

j̄z = −
1− kf2

2f2
g−1∂g , j̄z̄ = −

1 + kf2

2f2
g−1∂̄g .

(3.3)

Importantly, the currents are in general neither holomorphic, nor anti-holomorphic, except

at the WZW-point kf2 = 1. From these currents we can define modes Qa
n, P

a
n , Q̄

ā
n, P̄

ā
n

(see (3.5) and (3.6) below) whose (anti)commutation relations are [14–16, 29]9

[Qa
m, Qb

n] = kmκabδm+n,0 + ifab
cQ

c
m+n , [Qa

m, P̄ b̄
n] = kmAab̄

m+n ,

[Qa
m, P b

n] = kmκabδm+n,0 + ifab
cP

c
m+n , [Q̄ā

m, Abb̄
n ] = if āb̄

c̄A
bc̄
m+n ,

[Q̄ā
m, Q̄b̄

n] = −kmκabδm+n,0 + if āb̄
c̄Q

c̄
m+n , [Qa

m, Abb̄
n ] = ifab

cA
cb̄
m+n ,

[Q̄ā
m, P̄ b̄

n] = −kmκāb̄δm+n,0 + if āb̄
c̄ P̄

c̄
m+n , [Q̄b̄

m, P a
n ] = −kmAab̄

m+n ,

(3.4)

with all other commutation relations vanishing. Here and in the following, the indices

a, b, . . . and ā, b̄, . . . denote adjoint g-indices. We will refer to this algebra as the mode

8In the following we restrict to QNS
5 > 0, and therefore to kf2 > 0. For QNS

5 < 0, we would have

kf2 = −1.
9We will always write commutators. These are understood to be anticommutators for two fermionic

generators.
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algebra. This algebra replaces the usual Kač-Moody algebra gk × gk present at the WZW-

point. In fact, the Kač-Moody algebra gk × gk is still present in the form of the subalgebra

spanned by the modes Qa
m and Q̄ā

m. The modes Qa
n, P

a
n , P̄

a
n , Q̄

a
n are defined as

Qa
n = Xa

n + Y a
n , P a

n = 2kf2

(

Xa
n

1 + kf2
−

Y a
n

1− kf2

)

,

Q̄ā
n = X̄ ā

n + Ȳ ā
n , P̄ ā

n = −2kf2

(

X̄ ā
n

1− kf2
−

Ȳ ā
n

1 + kf2

)

,

(3.5)

where

Xa
n ≡

∮

|z|=R

dz

R
znjaz (z) , Y a

n ≡

∮

|z|=R

dz

R
zn−1z̄ jaz̄ (z) , (3.6)

and analogously for the right-currents j̄a(z), which give rise to the operators X̄a
n, Ȳ a

n .

Finally, Aaā
n are the modes of a bi-adjoint field defined as

Aaā = STr
(

g−1tag tā
)

, (3.7)

where ta, tā are the generators of each of the two copies of g in the adjoint representation.

This field has vanishing conformal dimension in the quantum theory, and hence can mix

with the other operators. Since the currents are neither holomorphic nor anti-holomorphic,

there is no sense in which they are left- or right-moving. This motivates our (slightly

unusual) uniform conventions in (3.6).

The sigma-model (3.2) has quantum conformal symmetry for any values of k and f .

The energy-momentum tensor is given by

T (z) =
2f2

(1 + kf2)2
κab(j

a
z j

b
z)(z) =

2f2

(1− kf2)2
κāb̄(j̄

ā
z j̄

b̄
z)(z) , (3.8)

and the modes of T (z) will be denoted Ln as usual. It was shown in [15] that this energy-

momentum tensor is indeed holomorphic. One can use (3.8) to express the Virasoro modes

in terms of bilinears in the mode algebra, and then use the relations of the mode algebra

to derive the following commutation relations:

[Lm, Qa
n] = −

1 + kf2

2
nQa

n+m −
1− k2f4

4kf2
nP a

m+n ,

[Lm, P a
n ] = −kf2nQa

n+m −
1− kf2

2
nP a

n+m − if2fa
bc

(

QbP c
)

n+m
,

[Lm, Q̄ā
n] = −

1− kf2

2
nQ̄ā

n+m +
1− k2f4

4kf2
nP̄ ā

m+n ,

[Lm, P̄ ā
n ] = kf2nQ̄ā

n+m −
1 + kf2

2
nP̄ ā

n+m − if2f ā
b̄c̄

(

Q̄b̄P̄ c̄
)

n+m
.

(3.9)

Evidently the Virasoro tensor does not act diagonally on the Hilbert space spanned by

the modes. Furthermore, the left-algebra (i.e. the unbarred modes) does not commute

with the right-algebra (the barred modes), which makes it difficult to impose a highest

weight condition for both the left- and right-algebra. This fact prevents us from computing
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conformal weights of excitations with both barred and unbarred oscillators. In [16] these

problems were solved in a BMN-like limit in which the algebra contracts and the action of

the Virasoro modes can be diagonalised.

Despite this, it is still possible to access part of the worldsheet spectrum for any values

of k and f , by looking only at one half of the mode algebra, namely the subalgebra generated

by Qa
m and P a

m. For this subalgebra, we can define lowest weight representations as usual:

affine primary states |Φ〉 in a representation R0 of psu(1, 1|2) are defined as [15, 16]

Qa
m|Φ〉 = 0 , m > 0 , Qa

0|Φ〉 = ta|Φ〉 , P a
m|Φ〉 = 0 , m ≥ 0 . (3.10)

where taR0
are the generators of g in the representation R0. It then follows that their

conformal weight is [15, 16]

h(|Φ〉) =
1

2
f2C(R0) , (3.11)

where C(R0) denotes the quadratic Casimir of g in R0. The associated lowest weight

representation can then be constructed by acting with the negative modes of Qa
m<0 and

P a
m<0 on |Φ〉. These ‘chiral’ representations will be sufficient for our purposes in this paper.

It is useful to recall the possible representations R0 arising in the spectrum of the

model. For large values of k, these can be derived by a mini-superspace analysis [30], which

essentially gives the spectrum proposed by Maldacena and Ooguri [7]. More precisely, repre-

sentations of psu(1, 1|2) are induced from representations of its bosonic subalgebra sl(2,R)⊕

su(2) [30]. The relevant representations of su(2) are the finite-dimensional ones, and are

labelled by their spin ℓ. The relevant representations of sl(2,R) fall in two categories:

1. Discrete representations. These are lowest weight representations of the sl(2,R) zero-

mode algebra, and they are labelled by the spin j of the lowest weight state. These

representations give rise to the so-called short string excitations. These are important

to understand the phenomenon of the missing chiral primaries.

2. Continuous representations. These are neither lowest nor highest weight representa-

tions. They can be viewed as representations of spin j = 1
2 +ip, where the parameter

p determines the quadratic Casimir as C = −2j(j − 1) = 1
2 + 2p2.10 Since these

representations depend on a continuous parameter p, they are commonly referred to

as continuous representations. In the string theory setting, they give rise to long

strings states with radial momentum p.

Additionally, the spectrally flowed images of these representations may appear in the

spectrum. In this paper we will be mostly concerned with the unflowed representations.

4 The spectrum of the sigma-model

In general we would like to determine the conformal weight of states obtained by the action

of normal-ordered products on a primary state |Φ〉, such as for example Qa
n|Φ〉, (Q

aP b)n|Φ〉,

(QaQ̄ā)n|Φ〉, (Aaā)n|Φ〉, and others. In the following we will be able to compute the

10Note the additional factor of two in our conventions for the Casimir.
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conformal weight of a state containing either solely unbarred oscillators or solely barred

oscillators, and no Aaā
m . The reason for this is that L0 mixes only finitely many states

constructed using solely unbarred oscillators, say, and in this way its eigenvalues can be

computed. In this case, we will be able to make use of the definition of affine primary

states (3.10) associated with the ‘chiral’ lowest weight representations introduced in the

previous section. When including also barred oscillators or the Aaā-field, infinitely many

states get mixed under the action of L0, and its eigenvalues cannot be extracted with a

finite amount of calculation. This is a difficulty which we have not been able to overcome.

We are then interested in the conformal weights of the single-sided states of the type

∞
∏

n=1

( Nn
∏

in=1

Q
ain
−n

Mn
∏

in=1

P
bin
−n

)

|Φ〉 or
∞
∏

n=1

( Nn
∏

in=1

Q̄
āin
n

Mn
∏

in=1

P̄
b̄in
n

)

|Φ〉 . (4.1)

For simplicity, in the following we illustrate the computation of the conformal weights of

such states using single-oscillator excitations, i.e. using states of the type

Qa
−n|Φ〉 , P a

−n|Φ〉 . (4.2)

The multi-oscillator states can be treated using the same methods, but we have not man-

aged to find a closed form solution. Nevertheless, we will be able to derive strong results

concerning the expected qualitative behaviour of the spectrum described in section 2 using

only (4.2). In particular, in subsection 4.2 we will derive a unitarity bound on the values

that kf2 can take, in subsection 4.3 we will argue that the continuous representations can-

not be part of the CFT spectrum, and in subsection 4.4 we will retrieve the chiral primaries

that are missing at the pure NS-NS point.

4.1 The spectrum at the first level

The states in the spectrum at the first level are

Qa
−1|Φ〉 , P a

−1|Φ〉 . (4.3)

They mix under the application of L0 as follows:

L0Q
a
−1|Φ〉 =

(

h(Φ) +
1

2
(1 + kf2)Qa

−1 +
1− k2f4

4kf2
P a
−1

)

|Φ〉 , (4.4)

L0P
a
−1|Φ〉 =

(

h(Φ) + kf2Qa
−1 +

1

2
(1− kf2)P a

−1 − if2fa
bc

(

QbP c
)

−1

)

|Φ〉

=

(

h(Φ) + kf2Qa
−1 +

1

2
(1− kf2)P a

−1 − if2fa
bcP

c
−1t

b

)

|Φ〉 . (4.5)

We have used the definition of affine primary (3.10) and the commutation relations (3.9).

Note that the structure constants if bc
a = (tb

ad
)ac are the generators in the adjoint repre-

sentation and hence

ifa
bc t

b = −κbd(t
d
ad)

a
ct

c . (4.6)
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This can be expressed as a difference of Casimirs:

κbdt
b
adt

d =
1

2

(

κbd(t
b
ad + tb)(tdad + td)− κbdt

b
adt

d
ad − κbdt

btd
)

=
1

2

(

C
(

R0 ⊗ ad
)

− C
(

R0

)

)

, (4.7)

where we have used that the Casimir of the adjoint representation vanishes C
(

ad
)

= 0.

Note that the states (4.3) transform in the (reducible) representation R0⊗ad. Restricting

to an irreducible subrepresentation R1 ⊂ R0 ⊗ ad we find

if2fa
bc t

b = −
1

2
f2

(

C(R1)− C(R0)
)

δac = −
1

2
f2∆Cδac , (4.8)

where we denoted by ∆C the difference of Casimirs.11 Thus L0 mixes only Qa
−1|Φ〉 and

P a
−1|Φ〉, and in this basis L0 takes the form

L0 = h(|Φ〉)1+

(

1
2(1 + kf2) kf2

1−k2f4

4kf2
1
2(1− kf2) + 1

2f
2∆C

)

, (4.9)

where we used (3.11). The associated eigenvalues are

h±
(

Qa
−1|Φ〉, P a

−1|Φ〉
)

= h
(

|Φ〉
)

+
1

4

(

f2∆C + 2±
√

4− 4kf4∆C + f4(∆C)2
)

. (4.10)

Notice that this result is similar to the large-charge formula found in [16], except that 2(a·ℓ)

has been replaced by ∆C. It is easy to confirm that in the large-charge limit ∆C indeed

becomes 2(a · ℓ), and the exact formula (4.10) is therefore consistent with the one found

in the large-charge limit. Furthermore, it was argued in [16] that only the solution h+ is

physical. In fact, due to the identifications between the modes of the algebra, the solution

h− can be interpreted as the application of a barred oscillator with the wrong mode number.

On the other hand, only the solution h+ reduces to the correct result h+ = h(|Φ〉) + 1 at

the WZW-point kf2 = 1. Hence we will discard the state with eigenvalue h− from the

physical spectrum. It is not clear at this point if this should be the only effect of the

physical constraints on the one-sided worldsheet spectrum.

A similar analysis can be performed for the spectrum at n-th level (4.2). We do not

make use of it in the following analysis, but we have included it for the sake of completeness

in appendix B.

4.2 A unitarity bound

There is one very interesting consequence of (4.10). Classically, we know from (3.1) that

−1 ≤ kf2 ≤ 1, and we will see that also holds at the quantum level, assuming that k ≥ 2.12

11The pertinence of the difference of Casimirs to the computation of conformal weights was already

noticed in [15].
12The k = 1 theory behaves quite differently. Since su(2)1 ⊂ psu(1, 1|2)1 has no affine representation

based on the adjoint representation of su(2), the theory cannot have a field in the adjoint representation. In

particular, the biadjoint field Aaā does not transform in a valid representation of psu(1, 1|2)1 × psu(1, 1|2)1
at the WZW-point. Hence it is not clear whether we can deform the model away from the WZW-point.

The k = 1 theory at the WZW-point is discussed in [27, 28, 31].
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According to [30, eq. (6.3)], for k ≥ 2 the spectrum of the sigma-model on psu(1, 1|2) should

contain the representation R0 =
(

j, ℓ = k
2−1

)

, where j is the sl(2,R)-spin and ℓ = k
2−1 the

su(2)-spin, see also appendix A for the conventions of psu(1, 1|2). In this way, we can choose

R1 =

(

j,
k

2

)

⊂

(

j,
k

2
− 1

)

⊗ ad . (4.11)

This choice of representations yields ∆C = 2k, and inserting this into (4.10) we obtain the

following conformal weight of the excited state:

h =
1

2

(

kf2 + 1 +
√

1− k2f4
)

. (4.12)

An obvious requirement of any CFT is that the conformal weights are real. We see that

this is only the case provided that

− 1 ≤ kf2 ≤ 1 . (4.13)

4.3 Continuous representations

We found that the conformal weight of states constructed with a single oscillator depend

on the difference of Casimirs ∆C between the ground state representation and the repre-

sentation of the state. Consider then a ground state representation with su(2)-spin ℓ and

sl(2,R) spin j = 1
2 +ip, i.e. the sl(2,R) part transforms in a continuous representation. Its

Casimir is then C = −2j(j − 1) + 2ℓ(ℓ+ 1) = 1
2 + 2p2 + 2ℓ(ℓ+ 1). At first excitation level,

we have states in the representations with spin j − 1, j and j + 1 of sl(2,R) appearing.

The respective differences of Casimirs are

∆C = 2− 4ip , 0 , and 2 + 4ip . (4.14)

Plugging this result into the formula for the conformal weight at level one (4.10), we realise

that the conformal weights for p 6= 0 generated by charged oscillators become generically

complex.

Since the appearance of complex conformal weights implies that the energy momen-

tum tensor is not self-adjoint in these representations, these representations are forbidden

and hence cannot be part of the spectrum. The only exception to this statement is the

WZW-point, where the conformal dimensions do not depend explicitly on the difference of

Casimirs ∆C. This result should continue to hold once we consider complete representations

of the mode algebra, and not just of its ‘chiral‘ version. Since already the ‘chiral’ contin-

uous representations contain complex conformal weights, the full representations must be

ruled out. Hence we confirm the fact that long strings disappear from the spectrum in a

mixed-flux background.

4.4 Missing chiral primaries

We are also in the position to retrieve the chiral primaries that are missing from the

spectrum at the WZW-point. In the following we review this phenomenon in the world-

sheet description. For simplicity, we focus on the background AdS3 × S3 × T
4. The
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psu(1, 1|2)k WZW-model has [30] discrete representations (j, ℓ, w) with 1
2 < j < k+1

2 and

ℓ ∈ {0, 12 , . . . ,
k−2
2 }, where w ∈ Z is the spectral flow number. Every discrete represen-

tation of the form (ℓ + 1, ℓ, w) yields four chiral primary states [3, 32–34]. These are the

four sl(2,R)⊕ su(2) representations in (A.8) for which j − ℓ is minimal.13 They have the

followings su(2)-spins:

(

ℓ+ kw
)

, 2×

(

ℓ+
1

2
+ kw

)

,
(

ℓ+ 1 + kw
)

. (4.15)

Combining with the right-movers, we obtain the complete Hodge-diamond of T4, with the

lowest state having left- and right-moving su(2) spin ℓ+ kw. It has the following form:

(1, 1)

2× (12 , 1) 2× (1, 12)

(0, 1) 4× (12 ,
1
2) (1, 0)

2× (0, 12) 2× (12 , 0)

(0, 0)

(4.16)

where (δ, δ̄) denotes an su(2)⊕su(2) representation with spin (ℓ+kw+δ, ℓ+kw+ δ̄). Note

that because of the restriction ℓ ∈ {0, 12 , . . . ,
k−2
2 }, ℓ + kw takes values in 1

2Z \
(

k
2Z − 1

2

)

and thus every k-th Hodge diamond is missing. This was alluded to in section 2.2 and is

what we mean by ‘missing chiral primary’.

The absence of the chiral primaries on the worldsheet is caused by the unitarity bounds

constraining the worldsheet theory. The main bounds are the restriction to j < k+1
2 and

ℓ ≤ k−2
2 , whose origin we will briefly review in the following. We will only treat the

unflowed sector w = 0, for comments on the spectrally flowed sectors see the Discussion 5.

Consider the state J−
−1S

−++
0 |j, ℓ〉, whose norm at the WZW-point is (see appendix A):

〈j, ℓ|S+−−
0 J+

1 J−
−1S

−++
0 |j, ℓ〉 =

(

− 2

(

j −
1

2

)

+ k

)

〈j −
1

2
, ℓ|j −

1

2
, ℓ〉 . (4.17)

This norm is non-negative if

j ≤
k + 1

2
, (4.18)

which is the Maldacena-Ooguri bound. For this to be a unitarity restriction, the state

J−
−1S

−++
0 |j〉 has to be physical in string theory, which is in fact the case. This can be

seen from the fact that there is no state at level zero with the same quantum numbers.14

Hence all positive modes of uncharged operators have to annihilate the state and so it lies

in particular in the BRST-cohomology of physical states. This is then the most stringent

bound possible. In the RNS formalism, it arises from considering the no-ghost theorem in

13In fact, these representations saturate the psu(1, 1|2) BPS bound and are therefore atypical represen-

tations. Thus the representation splits up into four atypical representations, each of which yielding one

BPS state.
14This would not be true for the state J−

−1|j〉, since at level zero there is a state with the same quantum

numbers, namely S−++
0 S−−+

0 |j〉.
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the R-sector. The fact that the R-sector no-ghost theorem yields a stronger bound than the

NS-sector version was to our knowledge not considered before in the literature. Thus, to fill

this gap, we review the proof of the no-ghost theorem in appendix C at the WZW-point. We

explain the very small difference which occurs in the proof of the theorem in the R-sector.

Similarly, the unitarity constraint for su(2) representations can be obtained by requir-

ing the norm of the state K+
−1S

−++
0 S+++

0 |j, ℓ〉 to be non-negative. This yields

ℓ ≤
k − 2

2
, (4.19)

which is the familiar bound from the RNS formalism. The considered state is again physical.

These are the bounds we mentioned above.

Let us move away from the WZW-point and see how these bounds change. For this

we first find the eigenvectors of L0 at the first level, which are (Qa
−1 + b±P

a
−1)|Φ〉, where

b± =
∆Cf2 − 2kf2 ±

√

4− 4∆Ckf4 + (∆C)2f4

4kf2
. (4.20)

These have L0 eigenvalues h± as in (4.10), respectively. As noted before, only the state

with conformal weight h+ is part of the physical spectrum. The analogue of the state

J−
−1S

−++
0 |j, ℓ〉 in the mixed flux case is

(JQ,−
−1 + b±J

P,−
−1 )SQ,−++

0 |j, ℓ〉 , (4.21)

where we use the notation JQ for the J-currents of the Q-modes and JP for the J-currents

of the P -modes. Using the algebra (3.4) and the explicit form of b± with ∆C = 4j − 4,

the norm of this state can be computed. Requiring this norm to be non-negative gives the

constraint

j ≤
k + 1

2
+

1

2
−

√

f4 + k2f4 − 1

2f2
<

k + 2

2
, (4.22)

which is less constraining than the usual bound (4.18), and reduces to it at kf2 = 1. We

see that the bound changes slightly when going away from the WZW-point, but nothing

spectacular happens.

The situation is entirely different when looking at the corresponding state for the

su(2)-spin bound

|Ψ〉 ≡ (KQ,+
−1 + b±K

P,+
−1 )SQ,−++

0 SQ,+++
0 |j, ℓ〉 . (4.23)

Asking for |Ψ〉 to have positive norm led at the WZW-point to the constraint ℓ ≤ k−2
2 ,

which in turn excluded the missing chiral primary at ℓ = k−1
2 from the spectrum. Now we

find that the norm of this state is in general15

〈Ψ|Ψ〉 = ±
√

f−4 − 4(ℓ+ 1)(k − ℓ− 1)
WZW-point
−−−−−−−→ ±

√

(

k − 2ℓ− 2
)2

= ±
(

k − 2ℓ− 2
)

.

(4.24)

15Notice the state with conformal weight h
−

has negative norm and is therefore unphysical, as argued

before.
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su(2)-spin ℓ
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Figure 2. The two branches of the norm of |Ψ〉. At the WZW-point, the two branches intersect at

ℓ = k−2

2
. For a slight perturbation away from the WZW-point, we have an ‘avoided crossing’ and

the first branch has always positive norm.

As indicated, the term under the square root becomes a perfect square at the WZW-

point. From this description it is not clear which sign should be chosen in the last equality,

but from the WZW-description we know that we should take the positive sign. The two

branches for the norm of are plotted in figure 2. We see that away from the WZW-point,

the two branches no longer cross. In particular, the first branch has always positive norm

and there is no unitarity bound on ℓ!

In summary, away from the pure NS-NS point we found that the upper bound on j is

slightly shifted upwards, but always strictly less than k+2
2 . On the other hand, the bound

on ℓ completely disappears. This has the following consequences for the chiral primaries.

As we discussed above, chiral primaries come from representations with ℓ = j − 1 ∈ 1
2N0.

While there is no longer an upper bound on ℓ, there is such a bound on j, which now allows

the values ℓ ∈ {0, 12 , . . . ,
k−1
2 }. Thus, we see that there is one new chiral primary compared

to the WZW-point, namely ℓ = k−1
2 . Combining this with spectral flow, it precisely fills

the gaps (2.6) in the BPS spectrum. We conclude that the missing chiral primaries are

indeed reinstated by any perturbation away from the WZW-point.
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5 Discussion

In this paper we proposed an explicit argument for the expected qualitative behaviour of the

spectrum at the singular locus of the moduli space of string theory in AdS3 backgrounds.

To perform our computations we relied on the hybrid formalism, and more precisely on the

algebraic structure of the PSU(1, 1|2) sigma-model. We found that continuous representa-

tions are only allowed to exist at the WZW-point. On the other hand, unitarity of the CFT

at the WZW-point introduces bounds on the allowed su(2)-spins. Once perturbing slightly

away from the WZW-point, the upper bound on the su(2)-spin disappears completely and

additional chiral primaries appear in the string theory spectrum. These relatively simple

computations give a mechanism explaining the change in the representation content as the

singular locus of the moduli space is crossed. However, there are several intriguing open

questions and interesting future directions.

While we have explained the change in the representation content of the supergroup

WZW-model, we have not presented a convincing argument that the same conclusions hold

in the complete worldsheet theory consisting of the supergroup CFT, a sigma-model on

M4, and the ghost couplings of the two constituents. Nevertheless, we believe this to be

true for the following reasons.

The complete worldsheet CFT (including the ghosts) still has a left and right

PSU(1, 1|2) symmetry, which is all one needs for the mode algebra (3.4) to exist. However,

the construction of the Virasoro tensor is then more complicated and involves also the

additional fields. While this may correct the conformal weights slightly, it will not modify

their analytical structure. In particular, under a generic perturbation the phenomenon of

imaginary conformal weights of continuous representations, and of avoided crossing as in

figure 2, will not disappear. Thus, we believe that the same mechanisms continue to hold

in the full model.

Our arguments were limited in that they involved only single-sided excitations. Clearly,

a single-sided excitation is not level-matched and hence is not a physical state of the full

string theory. However, due to the mode algebra (3.4) the existence of a single non-unitary

state in one representation excludes the whole representation from the physical spectrum.

Our computations were performed in the unflowed w = 0 sector of the worldsheet

CFT. Spectral flow of the mode algebra was discussed in [16], and it is far more complicated

than at the WZW-point. In particular, it mixes barred and unbarred oscillators, so that in

order to understand spectral flow one first has to understand states which are excited both

on the left and right. This is a difficulty which we have not managed to surmount in this

paper. An exception to this statement is given by the affine primary states, which behave

in a simple manner under spectral flow. For this reason, spectrally flowing the retrieved

w = 0 missing chiral primary will fill the other gaps in the chiral primary spectrum, and all

the missing chiral primaries are retrieved. Furthermore, spectrally flowed continuous repre-

sentations are not allowed in the spectrum for any w, since the unflowed w = 0 continuous

representation can be obtained from these by applying a negative amount of spectral flow.

We have explained the two most drastic changes in the spectrum of string theory on

AdS3 × S3 ×M4 when leaving the singular locus. It would be very interesting to extend
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these results to obtain the complete string theory partition function infinitesimally far away

from the singular locus. This would entail the understanding of the (dis)appearance of all

states in the theory, not just the special ones we considered. Having this at hand, one

could compute protected quantities which remain constant away from the singular locus.

Obviously, since the chiral primary spectrum is discontinuous at the singular locus, the

same should be true for the elliptic genus (or the modified elliptic genus of [35]). Therefore,

one should be able to quantify this discontinuity in the form of a wall-crossing formula.

Finally, it would be interesting to repeat our analysis for the background AdS3 × S3 ×

S3 × S1, whose spectrum exhibits similar features [34]. There is no hybrid formalism for

the background, but one expects that the superalgebra d(2, 1;α) can be used to describe

the string propagation in a background with mixed flux. One easily confirms that the

calculations presented in section 4 continue to hold true for this superalgebra and hence the

mechanism for the disappearance of long strings and appearance of chiral primaries seems

to be the same. The structure of the chiral primary spectrum is however far more intricate,

and in particular not every BPS state in the twisted sector is related to a BPS state in the

unflowed sector by spectral flow. It would be interesting to understand this better.
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A The (affine) Lie superalgebra psu(1, 1|2)

The algebra psu(1, 1|2) plays a major rôle when applying the algebraic formalism to string

theory, so we recall here the relevant commutation relations. We use these commutation

relations explicitly in section 4.4. We display here the commutation relations for the affine

algebra psu(1, 1|2)k. The commutation relations for the global algebra follow by looking at

the zero-modes only. We use a spinor notation for the algebra. In particular, the indices

α, β, γ denote spinor indices and take values {±}. The bosonic subalgebra of psu(1, 1|2)k
consists of sl(2,R)k ⊕ su(2)k, whose modes we denote by Ja

m and Ka
m, respectively. The
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fermionic generators are denoted Sαβγ
n . They satisfy the commutation relations [30, 36]:16

[J3
m, J3

n] = −
1

2
kmδm+n,0 , [K3

m,K3
n] =

1

2
kmδm+n,0 ,

[J3
m, J±

n ] = ±J±
m+n , [K3

m,K±
n ] = ±K±

m+n ,

[J+
m, J−

n ] = kmδm+n,0 − 2J3
m+n , [K+

m,K−
n ] = kmδm+n,0 + 2K3

m+n ,

[Ja
m, Sαβγ

n ] =
1

2
ca(σ

a)αµS
µβγ
m+n , [Ka

m, Sαβγ
n ] =

1

2
(σa)βνS

ανγ
m+n ,

{Sαβγ
m , Sµνρ

n } = kmǫαµǫβνǫγρδm+n,0 − ǫβνǫγρca(σa)
αµJa

m+n + ǫαµǫγρ(σa)
βνKa

m+n .

(A.1)

Here a ∈ {±, 3} denote adjoint indices of su(2) or sl(2,R). We have chosen the signature

such that J3 is timelike, but J+ and J− are spacelike. This is important in the main

text, where we compute the norm of states. The constant ca equals −1 for a = − and 1

otherwise. The sigma-matrices read explicitly

(σ−)+− = 2 , (σ3)−− = −1 , (σ3)++ = 1 , (σ+)−+ = 2 , (A.2)

(σ−)
−− = 1 , (σ3)

−+ = 1 , (σ3)
+− = 1 , (σ+)

++ = −1 , (A.3)

and all other components are vanishing. The two Cartan generators are chosen to be J3
0

and K3
0 , and we denote their eigenvalues throughout the text as j and ℓ, respectively.

Furthermore, there is a unique (up to rescaling) invariant form on psu(1, 1|2), which can

be read off from the central terms:

κ(J3, J3) = −
1

2
, κ(J±, J∓) = 1 , κ(K3,K3) =

1

2
, κ(K±,K∓) = 1 ,

κ(Sαβγ , Sµνρ) = ǫαµǫβνǫγρ , κ(Sαβγ , Ja) = 0 , κ(Sαβγ ,Ka) = 0 . (A.4)

We consider two kinds of representations for string theory applications. The discrete

representations are lowest weight for the sl(2,R)-oscillators, and half-infinite. For su(2),

they are finite dimensional. Hence they are characterised by

J3
0 |j, ℓ〉 = j|j, ℓ〉 , K3

0 |j, ℓ〉 = ℓ|j, ℓ〉 ,

J−
0 |j, ℓ〉 = 0 , K+

0 |j, ℓ〉 = 0 ,

Ja
m|j, ℓ〉 = 0 , m > 0 , Ka

m|j, ℓ〉 = 0 , m > 0 .

(A.5)

Furthermore, the highest weight state is annihilated by half of the supercurrents:

Sαβ−
0 |j, ℓ〉 = 0 for α, β ∈ {±} . (A.6)

Requiring that the zero-mode representation has no negative-norm states imposes ℓ ∈
1
2Z≥0. j is not quantised. The Casimir of such a representation reads

C(j, ℓ) = −2j(j − 1) + 2ℓ(ℓ+ 1) . (A.7)

The other important class of representations describing long strings are continuous rep-

resentations which are still finite-dimensional for the su(2)-part, but are neither highest,

16We changed our conventions slightly with respect to [16] to accommodate the fact that one direction is

timelike and the others are spacelike.
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nor lowest weight representations for the sl(2,R)-part. The sl(2,R)-representation is then

specified by an element α ∈ R/Z together with its Casimir. The Casimir is commonly

parametrised by C = 1
2 + 2p2 for p ∈ R≥0. α enters the representation by imposing that

the sl(2,R)-spins take values in Z+ α.

A representation |j, ℓ〉 is atypical if the BPS bound j ≥ ℓ + 1 is saturated, and it is

otherwise typical. A typical representation |j, ℓ〉 consists of the following 16 sl(2,R)⊕su(2)-

multiplets:

4(j, ℓ) , (j ± 1, ℓ) , (j, ℓ± 1) , 2

(

j ±
1

2
, ℓ±

1

2

)

. (A.8)

B The spectrum at the n-th level

In this section we generalise the analysis of section 4.1 to level n excitations of the form

Qa
−n|Φ〉 , P a

−n|Φ〉 . (B.1)

As we will see, under the action of L0 these states mix with multi-oscillator states such as

fa
bcQ

b
−n+1P

c
−1|Φ〉. However, L0 behaves as follows: under the action of L0 the number of

oscillators either increases or stays the same, but never decreases.

To prove this assertion, we start with a state of the form

gab1···bmJb1
−n1

· · · Jbm
−nm

|Φ〉 . (B.2)

Here gab1···bm is an invariant tensor of g of the form

gab1···bm = fa
b1a1

fa1
b2a2

· · · f
am−2

bm−1bm
, (B.3)

up to possible permutations of the free indices. In the expression (B.2), each Jbi
−ni

can

stand either for Qbi
−ni

or P bi
−ni

. Moreover, we require that the state is at level n,

m
∑

i=1

ni = n . (B.4)

The invariant tensor (B.3) has the property

gab1···bmκbibj = 0 , gab1···bmf
bibj

c = 0 , (B.5)

thanks to the vanishing of all Casimirs of the adjoint representation, see [29]. This implies

that normal ordering in (B.2) is not relevant: the oscillators can freely be reordered, since

the commutator produces structure constants. They vanish because of the second relation

in (B.5). We compute L0 on the state (B.2). There will be two types of terms appearing,

corresponding to the two types of terms in the commutation relations (3.9). The first type

of terms are linear in the modes and obviously preserve the number of modes. The second

type of terms yields the following expression:

gab1···bmf bi
cdJ

b1
−n1

· · · J
bi−1

−ni−1
(QcP d)−ni

J
bi+1

−ni+1
· · · Jbm

−nm
|Φ〉 . (B.6)
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The invariant tensor gab1···bmf bi
cd still has the same property as (B.5), so we may still freely

reorder the oscillators. In the normal-ordered product term (QcP d)−ni
in (B.6), either both

oscillators have negative modes or one is a zero-mode (a term with positive mode vanishes,

since we can commute it through to the right, where it then annihilates |Φ〉). In the former

case, we obtain a term with m+1 oscillators, whereas in the latter case, the zero mode on

|Φ〉 gives a generator tc or td and hence the number of oscillators remains the same. Also,

we note that the action of L0 closes on the set (B.2), we do not have to consider other

invariant tensors. This proves the above assertion that the number of oscillators can never

be decreased by the action of L0.

When computing the matrix-representation of L0 on all level n states which can be

mixed by the action of L0, we hence get the following block structure:

1 oscillator

2 oscillators

3 oscillators
...

n− 1 oscillators

n oscillators



























⋆ 0 0 · · · 0 0 0

⋆ ⋆ 0 · · · 0 0 0

0 ⋆ ⋆ · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · ⋆ ⋆ 0

0 0 0 · · · 0 ⋆ ⋆



























. (B.7)

Thus for the purpose of computing the spectrum of L0 on single-oscillator excitations, we

can simply ignore multi-oscillator excitations, since they do not contribute to the eigen-

value. They do however contribute to the precise eigenvector.

With this at hand, the computation is completely analogous to the computation

in (4.1): L0 acts on Qa
−n|Φ〉 and P a

−n|Φ〉 as follows:

L0 = h(|Φ〉)1+

(

1
2(1 + kf2)n kf2n

1−k2f4

4kf2 n 1
2(1− kf2)n+ 1

2f
2∆C

)

, (B.8)

where we ignored all multi-oscillator terms. The correction to the eigenvalues with respect

to the ground state is given by

δh±
(

Qa
−n|Φ〉, P a

−n|Φ〉
)

=
1

4

(

f2∆C + 2n±
√

4n2 − 4kf4n∆C + f4(∆C)2
)

. (B.9)

We again expect only the positive sign eigenvalue to be part of the physical spectrum. This

reduces again to the BMN-like limit of [16] for values of the charges. Furthermore, at the

pure NS-NS point kf2 = 1 we retrieve the WZW result.

This result makes it seem as if the structure is always so simple. However, once one tries

to compute the conformal weight of multioscillator excitations, the computations become

quickly very complicated.

C Proof of the R-sector no-ghost theorem

We consider the following CFT as a worldsheet theory:

sl(2,R)
(1)
k ⊕ CFTint , (C.1)
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as usual the level of the bosonic sl(2,R) is k + 2. CFTint is some internal N = 1 SCFT,

which has the correct central charge to give the total central charge c = 15. In [17, 18], a no-

ghost theorem for these theories was proven in the NS-sector. Here, we want to fill the gap

and prove the no-ghost theorem in the R-sector. This will actually yield a different bound

and explains the somewhat mysterious appearance of the Maldacena-Ooguri bound [7] in

the literature.

Since the proof is almost identical to the NS-sector version, we will only explain the

strategy and point out the small, but important difference in the end.

We denote in the following the worldsheet N = 1 superconformal algebra by Ln and

Gr. Since we focus on the R-sector, n, r ∈ Z. The complete Hilbert space of the worldsheet

theory will be denoted by H. It enjoys as usual a natural grading by the eigenvalue of L0.

H(N) denotes the subspace of H with grade less or equal to N . We define a state φ ∈ H to

be physical if it satisfies the physical state conditions

Lnφ = Grφ = 0 , n, r > 0 . (C.2)

In string theory, a physical state has to satisfy in addition

L0φ = G0φ = 0 , (C.3)

and the GSO-projection.

We define furthermore the subspace F ⊂ H by the requirements

Lnφ = Grφ = J3
nφ = ψ3

rφ = 0 , n, r > 0 . (C.4)

Here, J3
n is the Cartan-generator of the bosonic sl(2,R)-algebra, ψ3

n the corresponding

fermion. See [37] for our conventions. Then analogously to [18], one finds the following

basis for H(N):

Lemma. For c = 15 and 0 < j < k+2
2 , the states

|{ε, λ, δ, µ}, f〉 := Gε1
−1 · · ·G

εa
−aL

λ1

−1 · · ·L
λm

−m(ψ3
−1)

δ1 · · · (ψ3
−a)

δa(J3
−1)

µ1 · · · (J3
−m)µm |f〉 ,

(C.5)

where f ∈ F is at grade L, εb, δb ∈ {0, 1} and

∑

b

εbb+
∑

c

δcc+
∑

r

δrr +
∑

s

µss+ L ≤ N , (C.6)

form a basis for H(N).

We call a state spurious, if it is a linear combination of states of the form (C.5) with

λ 6= 0 or ε 6= 0. By the Lemma, every physical states φ, can be written as a spurious states

φs plus a linear combination of states of the form (C.5) with λ = 0 and ε = 0, i.e.

φ = φs + χ . (C.7)

For c = 15, φs and χ are separately physical states and φs is therefore null [38]. In parallel

to [18], we have then
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Lemma. For 0 < j < k+2
2 , if χ is a physical state of the form (C.5) with λ = 0 and ε = 0,

then χ ∈ F .

So far, everything is exactly the same as in the NS-sector version proof. The only small

difference appears in the final step, where we use that the coset sl(2,R)/u(1) is unitary in

the R-sector. This obviously follows from the N = 2 spectral flow, but under the spectral

flow, the sl(2,R)-spin gets shifted by 1
2 unit. Indeed, when spectrally flowing the formulas

given in [39], one sees that the bounds on j get shifted by 1
2 . Thus, we have:

Theorem. For c = 15 and 1
2 < j < k+1

2 , every physical state φ differs by a spurious

physical state from a state in F . Consequently, the norm of every physical state is non-

negative.

Proof. By the previous two lemmas, the proof boils down to showing that the R-moded

coset sl(2,R)/u(1) is unitary. The NS-moded version of this coset was analysed in detail

in [39], it was found that in that case it is unitary provided that 0 < j < k+2
2 . As explained

above the bound gets shifted by half a unit upon spectrally flowing this bound to the

R-sector. This concludes the proof of the no-ghost theorem.

Strictly speaking, we have demonstrated the sufficiency of this bound. Let us also

demonstrate that it is necessary by constructing the relevant state. This state is exactly

identified with the one we used in section 4.4 in the supergroup language. For this, we look

at the sl(2,R)-representation of spin j. The fermionic zero-modes in the R-sector construct

a representation on top of this ground state, where some states have J3
0 eigenvalue j + 1

2

and some have J3
0 eigenvalue j − 1

2 .
17 We pick a state with J3

0 eigenvalue j − 1
2 , and apply

the oscillator J−
−1. The resulting state is denoted |Φj〉 ≡ J−

−1|j,m = j − 1
2〉. This state is

clearly annihilated by positive N = 1 Virasoro modes, since there is no state at level zero

with the same J3
0 -eigenvalue. Hence it is physical and its norm is

〈Φj |Φj〉 = −2

(

j −
1

2

)

+ k . (C.8)

Demanding positivity yields indeed the Maldacena-Ooguri bound j ≤ k+1
2 .
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