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Transverse Contraction-based Stability Analysis for Periodic
Trajectories of Controlled Power Kites with Model Uncertainty

Eva Ahbe, Tony A. Wood, Roy S. Smith

Abstract— In this paper we propose a procedure for esti-
mating the region in which a controller robustly stabilizes
a system which is subject to affine parametric uncertainty
by applying transverse contraction-based stability tools. The
method consists of an optimization problem in which trans-
verse contraction conditions are verified via sum-of-squares
programs. The optimization approach can be used either to
maximize the bounds on the allowable parameter uncertainty
or to maximize the size of the region of contraction (ROC)
given a fixed level of uncertainty. In a case study we apply
the procedure to an Airborne Wind Energy system where the
flight path of a power generating kite is controlled by a linear
quadratic regulator based on a model which is prone to large
parametric uncertainties. We consider periodic trajectories of
the stabilized kite system and transform the dynamics into
transversal coordinates for simplification of the controller
design and reduction of the computational cost. The numerical
results of the proposed optimization show that uncertainty in
the steering gain parameter decreases the size of the ROC while
uncertainty in wind speed or line length within the considered
range of operating conditions does not affect the size of the
robust ROC.

I. INTRODUCTION

Airborne Wind Energy (AWE) denotes the research field
around technologies aiming at extracting power from high-
altitude winds with tethered aircrafts. The majority of con-
cepts focus on energy generation via tethered rigid or flexible
wing kites flying in crosswind conditions. For an overview
of the field see [1]. One of the challenges the technology still
faces lies in being able to guarantee a reliable operation of
the system within a specified range of operating conditions.
This particularly affects the development of the controllers
enabling the autonomous operation of the kites. While there
have been successfully tested control designs for kites in the
past [2]–[5], the question of their reliability remains open.

Typically while generating power the motion pattern of the
kite can be considered periodic, allowing for the application
of limit cycle stability analysis tools. In a first approach,
such tools were used in [6] to investigate guarantees for the
stability of a path-tracking feedback control design for a kite
flying periodic trajectories. Therein, the stabilizing region
of a periodic path-stabilizing Linear Quadratic Regulator
(LQR) was investigated via Lyapunov methods for a nominal
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system model. However, in model-based approaches for the
control of kites parametric uncertainty is usually significant
as simplified models for complex interaction of kite, tether
and actuator dynamics are used. Furthermore, the model pa-
rameters are typically hard to identify and/or slowly change
over time [7].

The aim of this paper is to investigate how the stabiliz-
ing region of an LQR feedback design for path-tracking
is affected by parametric uncertainty. As the uncertainty
affects the location of the limit cycle Lyapunov tools are
not applicable for this case and instead approaches based on
contraction theory are employed.

Contraction methods analyze stability of nonlinear systems
by considering the rate of change of an incremental distance
between any two neighboring trajectories. If this distance is
decreasing in a region of the state space then all trajectories
in this region will eventually converge to a single trajectory.
We further refer to this region as the region of contraction
(ROC). Due to the periodic nature of the problem, we focus
on transverse contraction introduced in [8]. Transverse con-
traction is a weaker form of contraction as it only analyses
contraction in a transversal subspace of the systems.

In [9], a method for efficiently computing contraction
metrics was introduced which employs methods based on
sums-of-squares programs proposed in [10] for the efficient
computational verification of polynomial positivity. This
computational approach was extended in [11] and [12] to
compute contraction metrics to verify local ROCs of systems
with limit cycles. We apply this approach to a commonly
used model for kite controller design, and extend it by
both maximizing for larger estimates of ROCs as well as
by considering parametric affine uncertainty in the system
dynamics. For the latter we propose a verification algorithm
where the uncertainty does not increase the number of
indeterminants in the problem.

Further, we consider transverse contraction for the system
in transverse coordinates. The transformation to transverse
coordinates adds an initial computation cost, however, it
offers several significant advantages. Firstly, the transforma-
tion to transverse coordinates reduces the systems dimension
by one and reduces the number of the constraints, which
both significantly decrease the computational costs of the
numerical verification of the ROC. Secondly, the resulting
feedback controller gains for the originally time-varying
system will be static, i.e. associated to states and independent
of time. Thirdly, the issue appearing in practice of selecting a
suitable reference point on the trajectory is avoided, as there
is a unique reference for the path-controller for any state
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inside the ROC, for which we propose a recovering strategy.

A. Notation

We use R[x] to denote polynomials with real coefficients
in the indeterminants [x1, ..., xn]. A polynomial is a sum-of-
squares (SOS) if it can be written as p(x) =

∑
i q

2
i , qi ∈

R[x] and the set of all SOS polynomials is indicated by
Σ[x]. A symmetric matrix with polynomial entries F (x) ∈
R[x]n×n is a SOS matrix if for a vector of indeterminants
y = [y1, ..., yn]

T the scalar polynomial yTF (x)y is SOS in
R[x, y]. The set of SOS matrices is denoted by Σ[x]n×n.

II. TRANSVERSE CONTRACTION

We consider autonomous nonlinear systems,

ẋ = f(x), (1)

with state x(t) ∈ Rn, initial state x(0) = x0 and the solution
denoted by φ(x0, t) for t > 0. In particular, we are interested
in systems whose solutions exhibit periodic behavior. We call
a solution x̃(t) = φ(x̃0, t) of the system (1) a periodic orbit
if x̃(0) = x̃(T ) with a minimum period T > 0 and denote all
points on the orbit by Γ = {x ∈ Rn|x = x̃(t), t ∈ [0, T ]}.

A. Transverse Contraction Criteria

The aim of this paper is to obtain estimates of the region
of stability for an autonomous system with a stable limit
cycle. We hereby define stability of a region in the sense
of a region in which the system is transverse contracting, a
concept derived from Zhukovsky stability [13]. We follow the
definition of transverse contraction as presented in, e.g., [11]
and [14]. Throughout this paper we consider a Riemannian
distance metric function of the form V (x, δx) = δxM(x)δx,
where δx denotes a virtual displacement, i.e. a linear tangent
differential form representing an incremental displacement of
x(t) at a fixed time. Further, M(x) is a Riemannian metric,
thus positive-definite for all x. Transverse contraction can
then be defined by the following theorem (as in [11]).

Theorem 1: Consider the system (1) on a subset K ⊂ Rn.
Let K be compact, smoothly path-connected, and strictly
forward invariant. If there exists a metric function V (x, δx)
satisfying

∂V

∂x
f(x) +

∂V

∂δx

∂f

∂x
δx ≤ −λV (x, δx) (2)

for all δx 6= 0 such that the orthogonality condition
∂V
∂δx

f(x) = 0 is satisfied, then the system (1) is called
transverse contracting in K. For every two solutions x1
and x2 with initial conditions in K there then exists a
time reparametrizations ν(t) such that x1(t) → x2(ν(t)) as
t→∞. Further, any solution starting in x(0) ∈ K converges
to x̃(t), the unique limit cycle of the system, as t→∞.
A proof of this theorem can be found in [11]. We call a region
K ∈ Rn in which the transverse contraction criteria stated
in the theorem are satisfied an ROC and the corresponding
metric M a contraction metric. For V (x, δx) = δxM(x)δx
the orthogonality condition becomes δxMf(x) = 0.

B. Contraction in the Transverse Subspace
In order to obtain an estimate of the ROC of the system

given in (1) we can employ SOS relaxations of polynomial
positivity problems, as in [11], [12], [15], for finding con-
traction metrics. The computational cost thereby strongly
depends on the state dimension. It is thus favorable to reduce
the state dimension which is made possible by exploiting the
orthogonality condition. We then obtain a (n−1)-dimensional
subspace defined by all δx satisfying the orthogonality
condition, i.e., the subspace defined by the hyperplanes
orthogonal to the system flow. We call this subspace the
transverse subspace for which we obtain the associated
system dynamics by a transformation of the system into
transverse coordinates. This transformation was introduced
in [16] and [17] and employed for stability analysis of limit
cycles in [18], and [6]. We briefly restate the transformation
law for completeness. For derivations see [16] and [18].

S(τ)

x
┴

x(t)

x*(τ)eS
1

eS
2

z(τ)

Fig. 1. Illustration of the transversal coordinates. The hyperplanes S(τ)
are defined by a (n−1)-dimensional coordinate system {eSi }

n−1
i=1 . The vector

z(τ) is normal to the hyperplane S(τ).

Transversal coordinates are obtained from a smooth and
locally well-defined transformation of any x ∈ Rn in a
sufficiently close neighborhood of the orbit Γ into a pair
of coordinates (τ, x⊥) ∈ S × Rn−1. For every t ∈ [0, T ) we
can then define an (n−1)-dimensional periodic time-varying
hyperplane S with S(0) = S(T ) which is transversal to Γ
at x̃(t), i.e., f(x̃(t)) /∈ S(t). Given any x in a sufficiently
close neighborhood of x̃(t), τ specifies the corresponding
transversal hyperplane and x⊥ is the position on that hyper-
plane such that x⊥ = 0 ⇔ x = x̃(τ). For a visualization see
Fig. 1. The transversal hyperplanes S(τ) are defined by

S(τ) = {x ∈ Rn|z(τ)T (x− x̃(τ)) = 0}, (3)

where z(τ) : [0, T ) → Rn is a smooth, periodic vector
function chosen to lie tangential to the system flow, i.e.

z(τ) = f(x̃(τ))
||f(x̃(τ))||2 . With this, a projection operator Π(τ) can

be constructed that maps any point x in the neighborhood
of Γ into its transversal coordinates on the respective hyper-
plane, x⊥ = Π(τ) (x − x̃(τ)). The dynamics in transversal
coordinates then follow as

ẋ⊥ =

[
d

dτ
Π(τ)

]
τ̇Π(τ)Tx⊥+Π(τ)f(x̃(τ)+ Π(τ)Tx⊥), (4)

τ̇ =
zT f(x̃(τ) + Π(τ)Tx⊥)

z(τ)T f(x̃(τ))− ∂z(τ)
∂τ

T
Π(τ)Tx⊥

. (5)

 



In order for the dynamics of τ to be well-defined the
denominator of (5) has to be non-zero and is thus positive,

d(x⊥,τ) := z(τ)T f(x̃(τ))− ∂z(τ)

∂τ

T

Π(τ)Tx⊥ > 0. (6)

We now consider the transverse differential coordinates
(δτ , δ⊥), i.e. virtual displacements in τ and x⊥. Let[

δτ
δ⊥

]
= Θ(x, t)δx, (7)

where Θ is the transformation to transverse differential coor-
dinates obtained from the Jacobian of Π. By construction, δ⊥
lies in the subspace defined by all δx for which we can find
a Riemannian metric M†(x) such that δTxM

†(x)f(x) = 0.
We now aim to find a M†(x) which is also a contraction

metric for the transversal system. To this end, consider the
time derivative of the differential forms ([11], [17])

d

dt

[
δτ
δ⊥

]
=

[
0 ∗
0 A⊥(x)

] [
δτ
δ⊥

]
, (8)

where A⊥(x) is the Jacobian of the transverse dynamics in
(4), defined as

A⊥=
∂f⊥(x)

∂x⊥
=

[
d

dt
Π(τ)

]
Π(τ)T+Π(τ)

∂f(x)

∂x
Π(τ)T, (9)

where f⊥(x) = ẋ⊥. Following Lyapunov stability argu-
ments, the differential system (8) is stable if there exists a
positive symmetric matrix M⊥ ∈ Rn−1×n−1 satisfying

AT⊥(x)M⊥(x) +M⊥(x)A⊥(x) + Ṁ⊥(x) < −βI (10)

for some 0 < β and for all x ∈ K. Here,

Ṁ⊥ij(x) =
∂M⊥ij

∂x⊥
f⊥(x) +

∂M⊥ij

∂τ
τ̇ , (11)

where i, j denote the row and column of the matrix M⊥.
Let xp = [τ, x⊥]

T and δp = [δτ , δ⊥]
T , then with the metric

found in (10) we can define a distance function metric

V (xp, δp) = δTpM(xp)δp. (12)

Imposing δτM(xp)δ⊥=0and dropping thexp notation we get

V (xp, δp) =

[
δτ
δ⊥

]T[
Mτ 0
0 M⊥

][
δτ
δ⊥

]
= δ2τ +δ

T
⊥M⊥δ⊥, (13)

where we assume w.l.o.g Mτ = 1. This metric satisfies
the transverse contraction criteria stated in Theorem 1 and
represents thus the desired contraction metric M†.

III. AFFINE PARAMETRIC UNCERTAINTY

We now consider dynamical systems in polynomial form
with additive parametric uncertainty

ẋ = fψ(x) = f(x) + ψ(x), (14)

where f, ψ : Rn → R[x]n, f(x) are the known nominal dy-
namics and ψ ∈ Dσ with Dσ := {ψ : ψ(x) = σΨ(x) ∀x ∈
Rn, σ ≤ σ ≤ σ}. Here, σ, σ, σ ∈ Rn, σ, σ denote the
lower and upper bound of the parametric uncertainty σ, and
Ψ(x) ∈ R[x]n×n is known. Note that we allow for the
uncertainty to change the location of the equilibrium state

of (14). We define Aψ⊥(x) :=
∂fψ⊥(x)

∂x = ∂(f(x)+ψ(x))⊥
∂x . The

condition of (10) for the contracting region of (14) is then

Aψ⊥(x)
TM⊥(x) +M⊥(x)A

ψ
⊥(x) + Ṁψ

⊥(x) < −βI, (15)

for some β > 0, for all x ∈ K and all ψ ∈ Dσ . In (15)
Ṁψ

⊥(x) comes from replacing f⊥(x) with fψ⊥(x) in (11).
Note that condition (15) represents sufficient conditions for
the stability of (14). Therefore, in general, the metric M⊥(x)
can also be dependent on σ. In numerical implementations
this leads to potentially less conservative results at the
exchange of (significantly) increased computational costs.

Since Dσ has infinitely many elements, for each x ∈ K
condition (15) poses infinitely many constraints. We define

Z := {ψ : ψ(x) = σΨ(x), with σi ∈ {σi, σi},∀i} (16)

where Z is a finite subset of Dσ . Thus containing only a
finite number of elements, Z can now be used to express
(15) as a finite number of constraints in σ. The outline of
the following Proposition is similar to [19].

Proposition 1: If

Aζ⊥(x)
TM⊥(x) +M⊥(x)A

ζ
⊥(x) + Ṁζ

⊥(x) < −βI (17)

holds with β > 0 for all x ∈ K and for all ζ ∈ Z , then (15)
holds for all ψ ∈ Dσ .
The proof is similar to [19] and omitted for brevity.

IV. ALGORITHM FOR COMPUTING THE ROBUST ROC

We present an algorithm to efficiently compute an estimate
of the ROC for polynomial systems with limit cycles. Similar
to the computational approach in [6] we employ a numerical
method proposed in [10], in which semidefinite relaxations
of the Positivstellensatz [20] are used to formulate SOS-
programs to test polynomial positivity as semidefinite pro-
gram efficiently. Non-polynomial systems can be considered
by a Taylor series approximation.

A. Nominal ROC

We first present the algorithm to test for a region B̂ =
{x⊥ : xT⊥M⊥(x⊥,τ)x⊥ ≤ ρ̂} to be an ROC of the nominal
dynamics, i.e., assuming zero uncertainty, σ = 0 in (14).
Defined as such, this region represents a ball centered
around the reference trajectory and includes all points whose
distance to the reference trajectory with respect to the metric
M⊥ is less than the radius ρ̂.

A region B̂ is an ROC of a nominal system if it satisfies
condition (10). We define Ĉ := AT⊥(x⊥,τ)M⊥(x⊥,τ) +
M⊥(x⊥,τ)A⊥(x⊥,τ) + Ṁ⊥(x⊥,τ). Additionally, we obtain
a constraint for the ROC from condition (6), as we require
the transformation to transversal coordinates to be well-
defined. Note that the term d(x⊥,τ) in (6) also appears in the
denominator of Ṁ⊥(x⊥,τ). However, since (6) is constraint
to be positive Ĉ can be multiplied by it without changing
the outcome of condition (10), such that all terms result in
the required polynomial form.

We aim at enlarging the estimate of the ROC B̂ by optimiz-
ing over the metric M⊥ satisfying these two conditions. We
fix the radius ρ̂ of B̂ to a positive constant as an optimization

 



over both ρ̂ and M⊥ would not lead to larger ROCs but to
a mere rescaling of the coefficients of M⊥. In order to still
have a measure to increase the ROC we need to include an
additional constraint in which we are optimizing over the
radius of a ball B2 = {x⊥ : xT⊥ x⊥ ≤ ρ2} such that B2 ⊂ B̂,
similar to an approach employed in [6]. This encourages the
algorithm to find metrics which increase the size of the ROC
during the optimization over M⊥. The optimization problem
is expressed as follows.

max
M⊥,s1,s2,s3

ρ2 (18a)

subject to M⊥(x⊥,τ) ∈ Σ[x⊥,τ ]
n−1×n−1, (18b)

− Ĉ(x⊥,τ)− (ρ̂− B̂)s1(x⊥,τ) ∈ Σ[x⊥,τ ]
n−1×n−1, (18c)

d(x⊥,τ)− (ρ̂− B̂)s2(x⊥,τ) ∈ Σ[x⊥,τ ], (18d)

−(ρ2 − B2)s3(x⊥,τ) + (ρ̂− B̂) ∈ Σ[x⊥,τ ], (18e)

s1(x⊥,τ) ∈ Σ[x⊥,τ ]
n−1×n−1, (18f)

s2(x⊥,τ), s3(x⊥,τ) ∈ Σ[x⊥,τ ]. (18g)

The multipliers s1, s2 and s3 result from the application
of the Positivstellensatz and are constrained to be SOS
polynomials and SOS matrices, respectively. All multipliers
as well as the metric M⊥ are variables used to test sufficient
conditions and can thus be chosen to be of any (even)
polynomial degree. Choosing larger degrees can potentially
lead to larger verified ROC, however the computational costs
increase polynomially. To demonstrate the structure of M⊥
let n = 3 and m be the degree of M⊥, then

M⊥(x⊥,τ) =

[ ∑m
i,j aij(τ)x⊥

i
1x⊥

j
2

∑m
i,j bij(τ)x⊥

i
1x⊥

j
2∑m

i,j bij(τ)x⊥
i
1x⊥

j
2

∑m
i,j dij(τ)x⊥

i
1x⊥

j
2

]
.

The algorithm (18) is bilinear in the coefficients of the
multipliers and the metric M⊥. As proposed in, e.g. [19],
[21] and others, this can efficiently, although potentially
suboptimally, be solved by fixing either one of the variables
while optimizing over the other. This turns the bilinear
problem into two convex problems solved alternatingly in
two steps. For the initialization of the alternation we use
the (zero degree) metric resulting from solving (10) as a
periodic Lyapunov equation [17]. For this initial metric we
then need sufficiently small radii ρ2 and ρ̂ for the first step
to be feasible, which we can find by bisection.

The algorithm (18) is dependent on the time-
parametrization τ . We efficiently treat this dependency
in a similar way as employed in [6] by solving the
optimization (18) for N fixed and equally spaced values
of τ over the whole period. For the metric M⊥ we can
translate this discretization of τ by casting the entries of
M⊥ as piecewise linear in τ as described in [6].

B. Robust ROC

We are now interested in searching for ROCs in the pres-
ence of additive parametric uncertainty, referred to as robust
ROCs. A general uncertainty structure would introduce a
set constraint on an additional indeterminant. This would
result in an increased dimension of the problem as well as

additional multipliers in the algorithm (18), and a significant
increase of computational costs. However, when considering
affine uncertainty in the dynamics, the results of Proposition
1 can be used to allow for the uncertainty to enter the
problem without increasing the number of indeterminants
and thereby the complexity of the problem.

Algorithm (18) can now be extended to estimate the robust
ROC of an uncertain system. Hereby we can either set a
fixed uncertainty level and then optimize for the largest ROC
given this choice. An other possibility is to prescribe a fixed
region and then maximize the uncertainty for which this
region is a ROC. Since in general maximizing the size of
ROC and the magnitude of uncertainty at the same time
represents a trade-off, i.e. the larger the ROC the smaller the
maximum uncertainty and vice versa, we are not considering
an optimization over both at the same time.

In order to formulate an optimization similar to (18) for
estimating robust ROC an adjustment of constraint (18c) is
required such that it now tests for condition (17). Let Ĉζ =
Aζ⊥(x)

TM⊥(x) + M⊥(x)A
ζ
⊥(x) + Ṁζ

⊥(x) for an element
ζ ∈ Z , then for each ζ ∈ Z we obtain a condition

−Ĉζ(x⊥,τ)− (ρ̂− B̂)sζ(x⊥,τ) ∈ Σ[x⊥,τ ]
n−1×n−1 (19)

with sζ ∈ Σ[x⊥,τ ]
n−1×n−1 being the associated multiplier.

A procedure for estimating the robust ROC then follows
from iterating over the following steps.

Step 1: Finding multipliers

find: sζ , s2, s3

subject to (19), (18d), (18e), (18f), (18g)
with fixed M⊥, ρ2, σ̃

Step 2 - Choice 1: Maximizing robust ROC

max
ρ2,M⊥

ρ2

subject to (19), (18b), (18d), (18e)
with fixed sζ , s2, s3, σ̃

Step 2 - Choice 2: Maximizing uncertainty bounds

max
σ̃,M⊥

1
σ̃

subject to (19), (18b)1, (18d)1, (18e)1

with fixed sζ , s2, s3, ρ2,M⊥
1

where σ̃ = {σ, σ}. With this algorithm either a maximum
estimate for the size of ROC for a fixed amount of uncer-
tainty can be obtained from alternating between Step 1 and
Choice 1, or a maximum amount of uncertainty for a fixed
minimum size of ROC can be obtained by alternating over
Step 1 and Choice 2. The results from (18) can hereby be
used for initialization.

1Note that in Choice 2, optimizing over M⊥ is optional; it can lead
to larger estimates however M⊥ and σ̃ then appear bilinearly such that a
subiteration leading to an additional iteration step is required. Thereby, σ̃
is first maximized for a fixed M⊥ and then a feasibility problem is solved
for M⊥ with fixed σ̃.

 



V. CASE STUDY: KITE MODEL WITH UNCERTAINTY

We apply the computation of robust ROCs to a numerical
case study of an autonomous kite system that is feedback-
stabilized in order to follow a desired trajectory.

A. Kite Dynamics and Reference Trajectory

The kite dynamics are described as a first order kinematic
model of the states x = (θ, φ, γ), where θ denotes the
elevation angle, φ the azimuth angle, and γ the orientation
angle of the kite (γ = 0 when pointing towards the Zenith),

θ̇ =
vk
L

cos(γ), (23a)

φ̇ =
vk
L

cos(θ)−1 sin(γ), (23b)

γ̇ = vkGu, (23c)

where vk = vwE cos(θ) cos(φ), E = CL/CD is the glide
ratio with CL denoting the lift coefficient and CD the drag
coefficient. L is the line length, vw is the wind speed, G is
the steering gain and u is the input. This model is similar to
the models employed for guidance control design in [3], [7].

We consider an additive uncertainty for the following
parameters:

1) Uncertainty in wind speed: vw = vw0 + σvw
2) Uncertainty in steering gain: G = G0 + σG
3) Uncertainty in line length: L = L0 + σL

Here, vw0, G0, L0 denote the nominal values and σvw , σG,
σL the respective uncertainties.

Desired periodic trajectories for the kite system to follow
are obtained from an optimization problem which is solved
with ACADO [22]. Therein, the tether force F (x(t),u(t)) in
an aerodynamic equilibrium is maximized over one period
T ,

max
x(·),u(·),x0,T

1

T

∫ T

0

F (x(t), u(t))dt (24)

subject to ẋ = f(x(t), u(t))

∀t ∈ [0, T ] c ≤ x(t) ≤ c

b ≤ u(t) ≤ b

x(0) = x(T ) = x0

where f(x(t), u(t)) are the dynamics (23a). The state con-
straints (c, c) ∈ R3 ensure that the kite stays in crosswind
flight conditions, prevent looping and enforce figure-eight
trajectories in an upward direction. The input constraints (b,
b) ∈ R restrict the turning rate to comply with physical
limits. By solving (24) we obtain the trajectory x∗(t) and
open-loop inputs u∗(t) of a desired reference orbit Γ∗.

B. Feedback Controller Implementation

We can now compute feedback-stabilizing gains for the
system (23a) to follow the reference trajectory Γ∗. For the
controller design we use gains obtained from solving a
periodic time-varying Riccati equation for a Linear Quadratic
Regulator. For this we first linearize the transverse dynamics
of (23a) around Γ∗ such that they appear in the form
ẋ⊥ ≈ A⊥(τ)x⊥ + B⊥(τ)u⊥, where u⊥ = KLQR(τ)x⊥

is the transverse component of the input resulting from
the feedback control, A⊥(τ) is the transverse Jacobian (9)
evaluated around Γ∗ and B⊥(τ) is obtained from B⊥(τ) =

Π(τ)∂f(x̃(τ),ũ(τ))∂u . Note, that by using this approach we
obtain a feedback-law which is independent of time and only
depends on the location of the kite with respect to S(τ).

C. Finding the Hyperplane Corresponding to a Given x

For any given value of τ , the corresponding hyperplane
and coordinates of any state x on that hyperplane can be
analytically computed by the equations in Section II-B.
However, in practice, when we want to apply the feedback
gains computed from transversal coordinates we need to be
able to reverse this mapping, i.e. given a state x of the
system, we need to know which hyperplane it corresponds to.
Since the control gains are parametrized by τ the information
of the corresponding hyperplane to a given state x is crucial
and can be obtained numerically. Let

Tτ := {τ ∈ [0, T ) : z(τ)T (x− x̃(τ)) = 0} (25)

be the set containing all τ for which the given x lies on
the S(τ) as by condition (3). For each τ ∈ Tτ the state
can then be transformed into transversal coordinates x⊥ via
the corresponding projection operator Π(τ). From solving
the ROC algorithm offline, we have the information of the
size of the ROC and the corresponding metric. For each pair
(τ, x⊥) obtained from Tτ the condition

xT⊥M⊥(x⊥,τ)x⊥ < ρ̂ (26)

can then be checked. If the given state x is inside the ROC,
condition (26) will return a unique pair (τ, x⊥) satisfying
it. The uniqueness is hereby guaranteed by condition (18d),
which can thus be understood as a non-intersecting constraint
for the ROC on the hyperplanes. If the state is outside of the
well-defined region then there is no uniquely corresponding
hyperplane and thus no guaranteed unique stabilizing gain.
For this case a control strategy could, e.g., consist in a set
of desirable trajectories with their respective ROCs covering
the state space, similar to an idea proposed in [23].

D. Results

We compute estimates of the robust ROCs for the
feedback-stabilized transverse kite dynamics with nominal
parameter values: vw0 = 6 m/s, G0 = 1.25, L0 = 60 m.

The closed loop system is approximated by a third order
Taylor series around the reference trajectory. We estimate the
robust ROC for each of the three cases of uncertainty listed in
Section V-A, where we applied Choice 1 for the uncertainty
in the steering gain and Choice 2 for the uncertainty in wind
speed. For the uncertainty in the line length both Choice 1
and Choice 2 were tested.

We choose N = 50 discrete values for τ over the period
T . In both the nominal and robust implementation we limit
the degree of the metrics to 2, of the multipliers s1 and
sζ to 6, and of multipliers s2 and s3 to 2. Note that
since sufficient conditions are tested any results shown here

 



represent lower bounds on the true robust ROC and true
maximum uncertainty.

The verification algorithms are implemented using the
SOS-module of YALMIP [24] and the resulting semidefinite
programs were solved with MOSEK version 8.0.

Fig. 2 presents the nominal ROC as well as the robust
ROCs obtained for uncertainty levels of ±20% and ±40% in
the steering gain. As the figure illustrates, the verified robust
ROC of the system shrinks with increasing uncertainty. Fig.
3 shows a rotated view of the ROC for the nominal case.

For uncertainty in wind speed the minimum size of the
robust ROC was fixed to ρ2 = 0.75 · ρnom

2 , where ρnom
2 is

the maximum radius obtained from the nominal calculations
(18). The maximum for the lower and upper uncertainty
returned by the optimization via Choice 2 hits the limits
of typical operating conditions of 4-10 m/s which were set
as stopping criteria of the algorithm. Simulations of the
dynamics show that uncertainty in the wind speed in this
range does not affect the location of the trajectories of the
system but only affects how fast they evolve.

We obtain a similar result for the uncertainty in line
length as for the wind speed when computing the maximum
uncertainty by Choice 2. Here, the operating condition was
set to 40-100 m and both limits were reached by the
optimization. The results from Choice 1, where the robust
ROC was maximized for a fixed uncertainty in line length
confirms this result: for each fixed uncertainty level the
stopping criterion consisting of the size of the nominal ROA
was reached. Simulations of the system with uncertainty in
line length show that, in contrary to the case of uncertainty
in wind speed, for this case the trajectories including the
location of the limit cycle are affected.
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Fig. 2. The nominal ROC (blue lines) and the robust ROC for an uncertainty
level of ±20% (red lines) and of ±40% (green lines) in the steering gain
are shown on each hyperplane S(τ).
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