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Abstract

We consider the problem of tracking n targets in the plane using 2n cameras, where tracking
each target requires two distinct cameras. A single camera (modeled as a point) sees a target
point in a certain direction, ideally with unlimited precision, and thus two cameras (not collinear
with the target) unambiguously determine the position of the target. In reality, due to the
imprecision of the cameras, instead of a single viewing direction a target defines only a viewing
cone, and so two cameras localize a target only within the intersection of two such cones. In
general, the true localization error is a complicated function of the angle subtended by the two
cameras at the target (the tracking angle), but a commonly accepted tenet is that an angle of
90◦ is close to the ideal. In this paper, we consider several algorithmic problems related to this
so-called “focus of attention” problem. In particular, we show that the problem of deciding
whether each of n given targets can be tracked with 90◦ is NP-complete. For the special case
where the cameras are placed along a single line while the targets are located anywhere in
the plane, we show a 2-approximation both for the sum of tracking angles and the bottleneck
tracking angle (i.e., the smallest tracking angle) maximization problems (which is a natural goal
whenever targets and cameras are far from each other). Lastly, for the uniform placement of
cameras along the line, we further improve the result to a PTAS.

1 Introduction

We study the problem of tracking targets by a set of cameras in the plane. The position of a
target can be estimated if two distinct cameras are dedicated to tracking the target. We consider
simple low-resolution cameras with very limited image processing capabilities. The quality of the
estimated position of a target depends mainly on the relative position of the target and the two
cameras [1]. Figure 1 depicts two different tracking situations of target t with two cameras to
illustrate this phenomenon. The field of view of a camera is a cone, a target can be tracked by the
camera if it lies in that cone, and therefore any target to be tracked by two cameras needs to lie in
the intersection of the two respective cones. The geometry of the situation indicates that tracking
accuracy is best if the angle at the target is closest to 90◦.

The cameras in our setting cannot move, but can freely choose their viewing direction. A pair
of cameras can be dedicated to track one target. Thus, tracking n targets requires 2n cameras. We
assume for the moment that not only the cameras, but also the targets are points in the plane in
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Figure 1: Two scenarios of tracking target t with tracking angle θ: less than 90◦ (left), and exactly
90◦ (right)

fixed positions. The Focus of Attention problem (FoA) for n targets and 2n cameras is to find a
pairing of cameras and an assignment of camera pairs to targets that is optimum for some measure
of tracking quality. In such an assignment, where each camera is assigned to exactly one target, and
each target is assigned to two cameras, each target forms a triangle with its two assigned cameras.
We evaluate the quality of the assignment as a function of the tracking angles, i.e., the angles that
the triangles form at the targets. We consider three specific problems which belong to the following
general family of combinatorial optimization problems:

Problem Family: Focus of Attention (FoA).
Input: A set T of n targets and a set C of 2n cameras, given as points in the plane.
Feasible solution: A camera assignment where each target is assigned two cameras, such that

each camera is assigned to exactly one target.
Measure: A tracking angle for every triple consisting of a target and two assigned cameras.

Goal: Find a feasible solution which is optimal for one from a collection of objective functions

defined on the set of tracking angles.

In this paper we consider the following objectives for the Focus of Attention problem. In
the problem SumOfAngleDeviations the objective is to minimize the sum of the deviations of
tracking angles from ninety degrees (90◦); for SumOfAngles it is to maximize the sum of tracking
angles, and for BottleneckAngle it is to maximize the minimum tracking angle. The latter two
problems are interesting whenever targets and cameras tend to form small tracking angles, e.g.
because the targets are far from cameras.

Notice that we assume the algorithms to know the exact position of the targets. In reality this is
not possible for all scenarios. Nonetheless, the assumption is not a severe modeling simplification,
if we assume that the targets are labeled and every camera can recognize the label of the tracked
target. In such a situation every camera can look around (rotate the viewing focus) and for each
target keep track of the angle under which the target is tracked. This information, together with
the known positions of the cameras, allows to compute the tracking angle of any target and two
cameras.

Related Work. Object (or target) tracking is an important task for environment surveillance
and monitoring applications. It is a well established research subject [2] in the field of computer
vision and image processing. Currently, multi-camera systems are being developed, where a certain
depth information of objects needs to be computed for a given scene, ideally at low cost. The
complexity of image processing and pattern recognition systems, and of the hardware is lowered
when the images from cameras are obtained under a good tracking angle.

Isler et al. [3] were the first to consider this task as a combinatorial optimization problem. They
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Figure 2: Illustration for the objective function of Isler et al. [3]

defined the Focus of Attention problem as a theoretical abstraction of the problem of lowering the
computational costs of the depth estimation by assigning cameras to targets in an “optimal” way,
and pointed out that for a very general problem setting (not in the plane) this comprises the
classical NP-hard 3-Dimensional Matching (3DM) problem as a special case. Therefore, the focus
in [3] is on the problem version in which all cameras are restricted to lie on a single line ℓ. The
objective is the aspect ratio zt/d(ci, cj), where zt is the distance of target t from ℓ, and d(ci, cj) is
the distance between the two cameras ci and cj that are assigned to t (see Figure 2 for illustration).
They give a 2-approximation for the problem of minimizing the sum of aspect ratios and for the
problem of minimizing the maximum aspect ratio. Also, if the cameras are placed equidistantly on
the line, they present a PTAS for the problem of maximizing the sum of aspect ratios. They also
consider cameras on a circle and targets inside the circle with tracking cost being 1/ sin θ, where θ
is the tracking angle, and deliver a 1.42-approximation for the problem of minimizing the sum of
tracking costs, and for minimizing the maximum tracking cost.

Naturally, it is the powerful geometric structure that sets the Focus of Attention problems apart
from more general assignment problems and makes it particularly interesting. If we would abandon
the constraints that geometry imposes, Focus of Attention would belong to the class of Multi-Index

Assignment Problems [4], where the well known NP-hard 3-Dimensional Matching problem is a
special problem in this class. Other NP-hard versions of multi-index assignment problems also
focus on geometry, such as those aiming at the circumference or the area of a triangle formed by
three assigned points in the plane [5]. An easy modification of the NP-hardness proof of the latter
problem implies NP-hardness of SumOfAngles and BottleneckAngle [6].

Our Contribution. While aspect ratios of rectangles as in [3] might capture tracking quality
very well in some cases, we believe that it will in general be more useful to optimize the most
influential component of tracking quality directly, namely the tracking angles at the targets, even
though this turns out to be surprisingly complicated.

We first show that the problem of minimizing the sum of the deviations of tracking angles from
90◦ (SumOfAngleDeviations) is NP-hard, and that it admits no (multiplicative) approximation.
We then consider FoA that asks for a camera assignment with maximum sum of tracking angles
(SumOfAngles), and FoA that asks for a camera assignment where the minimum tracking angle
is maximized (BottleneckAngle). For cameras on a line, we present an algorithm that is a
2-approximation for both SumOfAngles and BottleneckAngle at the same time. This is the
first constant approximation for the BottleneckAngle on a line, and for the case on a line, it
also improves upon the previous 2 + 1/t approximation [7] (t is the size of the local neighborhood
in the local-search algorithm) for SumOfAngles. For the special case where the spacing of the
cameras on the line is totally regular, we present a PTAS for SumOfAngles.

2 NP-Hardness of SumOfAngleDeviations

In this section we consider the minimization FoA problem where the objective is the deviation of the
tracking angle from 90◦, and state that the problem is NP-hard, by showing that the corresponding
decision problem OrthogonalAssignment is NP-complete.
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OrthogonalAssignment: For a FoA problem, where every point has integer coordinates,
decide whether there exists a camera assignment where every tracking angle is exactly 90◦.

We reduce the following NP-complete RestrictedThreeDM problem to our Orthogo-

nalAssignment problem.

RestrictedThreeDM: Given three disjoint sets X, Y , and Z, each with q elements, and a
set S ⊆ X × Y ×Z such that every element of X ∪ Y ∪Z appears in at most three triples from S,
decide whether there exists a subset S′ ⊆ S of size q such that each element of X ∪ Y ∪ Z occurs
in precisely one triple from S′.

Our proof is in the tradition of an NP-hardness proof of Spieksma and Woeginger [5] who showed
that the following problem related to OrthogonalAssignment is NP-complete: Given sets of
planar points A1, A2 and A3, does there exist an assignment X ⊂ A1 ×A2 ×A3 such that for every
x ∈ X, the three points of x lie on a line? One can easily see that this result immediately implies
that a “degenerate tracking of targets”, where each target is collinear with the two cameras that
track it (creating an angle of 0◦ or 180◦) is NP-complete. However, the problem of tracking with
90◦ angles that we consider does not follow easily, but requires several new gadgets, constructions,
and proof ideas.

Theorem 1 OrthogonalAssignment is NP-complete.

Proof. It easy to see that OrthogonalAssignment is in NP – guess the right assignment and
check whether all target angles are 90 degrees. To complete the proof, we reduce the NP-complete
problem RestrictedThreeDM to OrthogonalAssignment.

Consider an instance of RestrictedThreeDM, consisting of X,Y,Z and S ⊆ X × Y ×
Z (with |X| = |Y | = |Z| = q and |S| = s). Let us denote the elements of X, Y and Z as
x1, x2, . . ., y1, y2, . . ., and z1, z2, . . .. We construct three point sets C1, C2 and T which constitute
an instance of OrthogonalAssignment with camera positions C := C1∪C2 and target positions
T . This instance will be positive exactly if the RestrictedThreeDM instance is positive. All
the constructed points will have integer coordinates with values between 0 and p(q), where p(·) is
a polynomial (which ensures that the reduction can be done in polynomial time).

Recall that each element in X ∪ Y ∪ Z may occur in at most three triples s ∈ S. For ease
of exposition, we assume in the following that each element occurs in exactly three triples. It is
straightforward to adapt the proof to a situation with elements occurring also once or twice. We
call every assignment of two cameras to a target, for which the tracking angle is 90 degrees, an an
orthogonal triple.

First we construct for each triple (x, y, z) ∈ S three points in the plane – two cameras cx, cz

and one target ty. In our construction, elements from Y will correspond to the constructed targets,
and elements from X and Z will correspond to the constructed cameras. As every triple (x, y, z)
is a candidate for a solution in RestrictedThreeDM, we make our three constructed points a
candidate for a solution in OrthogonalAssignment – we place the points such that ty sees the
points cx and cz at the angle of 90 degrees – cx and ty on a horizontal line, and cz below ty, see
Figure 3 for an illustration.

We call the points (cameras and targets) constructed from each triple (x, y, z) ∈ S the triple

points. Altogether we create 3s triple points (three for each triple). As we assume each element in
X ∪ Y ∪ Z appears exactly three times in S, each element x ∈ X, y ∈ Y and z ∈ Z leads to three
points. We denote the three camera positions corresponding to xj ∈ X by c1

xj
, c2

xj
and c3

xj
. The

three camera positions corresponding to zl ∈ Z are written as c1
zl

, c2
zl

and c3
zl

. The three target
positions for each yk ∈ Y are denoted as t1yk

, t2yk
, and t3yk

. We put the cameras corresponding to
xj ∈ X to set C1, and cameras corresponding to zl ∈ Z to C2.

The main difficulty in the construction is to avoid undesired possible orthogonal triples (i.e.,
(camera, target, camera) triples which do not correspond to any triple in the RestrictedThreeDM

instance but whose triangle has a right angle at the target). We define the positions of the triple
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Figure 3: For each triple (x, y, z) ∈ X ×Y ×Z there are two cameras cx, cz and one target ty. The
figure depicts a possible placement of points for triples (x5, y1, z7) and (x5, y4, z3)

points as follows. For each element xj ∈ X, the points c1
xj

, c2
xj

, and c3
xj

have the same x-coordinate

j. For each element yk ∈ Y , the points t1yk
, t2yk

, and t3yk
have the same x-coordinate q + k. The

y-coordinates and the placement of points corresponding to elements from Z depends on the triples
from S. We process the triples from S one by one, and place the corresponding cameras and tar-
gets as follows. Suppose we have considered i− 1 triples so far and now the ith triple (xj , yk, zl) is
considered. Let us assume that it is the fth occurrence of xj, it is the gth occurrence of yk, and it

is the hth occurrence of zl so far. The x-coordinates of cf
xj

and tgyk
are j and q+k, respectively. The

x-coordinate of ch
zl

is the same as the x-coordinate of tgyk
, i.e., q + k. We place the points cf

xj and
tgyk

on the same horizontal line, i.e., their common y-coordinate is w (which we specify later on).
The y-coordinate of ch

zl
is w′. We choose w to be the smallest integer such that the newly placed

camera cf
xj

does not form an orthogonal triple with any two previously placed points, and such
that the newly placed target tgyk

cannot form an orthogonal triple with any two previously placed
cameras, with the exception of “Z-type” cameras that correspond to an element from Z and that
lie on the same x-coordinate as yg

k
(we will later see that this is not a problem). Similarly, we choose

w′ 6= w to be the smallest integer such that ch
zl

does not form an “unwanted” orthogonal triple, i.e.,
an orthogonal triple with previously assigned points, with the exception of an assignment with a
target with the same x-coordinate.

We can always find suitable w and w′. The reason is that any pair of a camera position c and
a target position t only prevents placing cameras on the excluding line through t and orthogonal
to line ct. Similarly, any pair of cameras c1 and c2 only excludes points on their excluding Thales
circle for placing new targets. The camera cf

xj
is placed on the vertical line x = j and the target tgyk

is placed on the vertical line x = q +k. Thus, the previously placed 2i−2 cameras and i−1 targets
form at most (2i − 2)(i − 1) excluding lines and

(

2i−2
2

)

excluding Thales circles that can together

exclude at most 2
(2i−2

2

)

+ (2i − 2)(i − 1) = 6i2 − 14i + 8 choices for w. So w can be chosen within
the range 1 ≤ w ≤ 6i2 − 14i + 9. Similarly for w′, there are at most (2i − 2)(i − 1) = 2i2 − 4i + 2
excluding lines that block the placement for ch

zl
on the line x = q+k (and each of the lines intersect

the line x = q+k in exactly one point), and thus we can choose w′ in the range 1 ≤ w′ ≤ 2i2−4i+4
(w′ has to be different from w).

Observe now that the constructed instance of OrthogonalAssignment so far admits an
orthogonal triple for every target regardless of the original instance X, Y , Z, and S for Re-

strictedThreeDM. We therefore introduce additional cameras and targets (gadget points with
polynomially bounded integer coordinates) which admit an orthogonal triple for every target if and
only if there is a solution for the corresponding instance of RestrictedThreeDM. The gadget
points assure that each point corresponding to some element in X ∪ Y ∪Z appears in the solution
for OrthogonalAssignment at most once in an orthogonal triple of the form (cf

xi
, tgyk

, ch
zl

). This
is achieved by introducing the gadget points as follows:
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Figure 4: Gadget for the points correspond-
ing to some xj ∈ X.

Figure 5: Gadget for the points correspond-
ing to some yk ∈ Y .

For each triple of points c1
xj

, c2
xj

, c3
xj

corresponding to some element xj ∈ X (which all have the
same x-coordinate j, and only one of the three points can be used in an orthogonal triple formed
by triple points only), we introduce two camera gadget points and two target gadget points as
shown in Figure 4. Thus, we first place the two target points t1 and t2 having x-coordinate j and a
y-coordinate which is not excluded by any Thales circle formed by a pair of already placed cameras.
To make sure the camera positions c1 and c2 introduced on the same y-coordinate as t1 and t2,
respectively, do not lie on a line already forbidden by a previous (camera, target) pair, we choose a
y-coordinate larger than any y-coordinate used so far. Clearly, the y-coordinate can still be chosen
to be an integer within a range polynomial in q. Similarly, the x-coordinates of c1 and c2 can be
chosen in a polynomial range, such that c1 and c2 does not form an unwanted orthogonal triple
(the only wanted triple are those formed by c1, c2, t1, t2, c1

xj
, c2

xj
, and c3

xj
).

Similarly, for each of points t1yk
, t2yk

, t3yk
corresponding to some element yk ∈ Y (which all have

the same x-coordinate q + k), we introduce six camera-gadget points and one target-gadget points
as shown in Figure 5. First, c1, c2 and c3 are placed on the horizontal lines through the element
points, and on a common x-coordinate which is not excluded by any previous points. Then, t4
is placed with the same x-coordinate, and a non-conflicting y-coordinate, not lying on any line
formed by a previous (camera,target) pair, such that c4 can be placed at the same y-coordinate
(with appropriate x-coordinate). To complete the gadget for yk ∈ Y , we add two cameras c5, c6 on
the x-coordinate q + k and with non-conflicting y-coordinates. (By the same arguments as before,
all the x-coordinates and y-coordinates can be found and are bounded in size by a polynomial in
q).

Finally, the three points c1
zj

, c2
zj

, c3
zj

corresponding to some element zj ∈ Z lie on (possibly)
arbitrary integer positions (within polynomial range). Still, we can introduce two camera-gadget
points and two target-gadget points as shown in Figure 6: The first position we try for t1 is−→
c2
zl

+
−−−→
c1
zl

c2
zl

. If this position is excluded, we consider
−→
c2
zl

+ 2 ·
−−−→
c1
zl

c2
zl

. In general, we try
−→
c2
zl

+ i ·
−−−→
c1
zl

c2
zl

for increasing values of i until a position is found which does not cause a conflict. Note that these
positions are all integer. When t1 has been placed, we try positions

−→
t1 + i · −→o for increasing i for

placing c1, where −→o is the vector
−−−→
c1
zl

c2
zl

rotated by 90 degrees. Note that these positions are again
integer. The remaining positions t2 and c2 can be chosen analogously.

It remains to show that the OrthogonalAssignment instance I90 we have described is indeed
equivalent to the RestrictedThreeDM instance IA. By construction, it is clear that if there
exists a perfect matching in IA, then there exists a solution for I90. For the other direction,
assume that there is a solution for I90. In this solution, all gadget points must be part of exactly
one (camera, target, camera) triple with an orthogonal angle at the target, which assures that for
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Figure 6: Gadget for the points corresponding
to some zl ∈ Z.

Figure 7: Forming a tuple corresponding to
some s ∈ S.

each element in X ∪ Y ∪ Z, exactly one corresponding element point is part of a triple of element
points. If all these triples correspond to some triple s ∈ S, then we have found a solution for
IA. Otherwise, there exists a triple (cxj

, tyk
, czl

) in I90 not corresponding to any triple s ∈ S.
As I90 matches all cameras and targets, there must exist a second triple (cxj′ , tyk′ , czl′ ) such that
(cxj

, tyk
, czl′ ) ∈ S (see Figure 7). Hence we can rearrange these two tuples into (cxj

, tyk
, czl′ ) and

(cxj′ , tyk′ , czl
), and obtain a solution where the number of triples not corresponding to some s ∈ S

is smaller than in the original solution. By repeating this process, we finally obtain a solution in
which each (camera, target, camera)-triple corresponds to a triple in S, and thus yields a solution
for IA. �

Theorem 1 implies NP-hardness of all those FoA problems for which the objective function
is optimum when the tracking angles equal 90◦. These include the objectives of minimizing
the sum/maximum of deviations of the tracking angles from 90◦, or the goal of maximizing the
sum/minimum of sin θt over all tracking angles θt. Furthermore, the maximization FoA problem
with the deviation of the tracking angle from 90◦ as the objective cannot be approximated, unless
P = NP. We summarize this discussion:

Corollary 1 Every problem from the family FoA for which the only optimum solution is a camera

assignment with all tracking angles equal 90◦ is NP-hard.

3 Maximizing the Sum/Min of Tracking Angles

In this section we consider the maximization FoA problems, where the objective is to obtain
large tracking angles. In SumOfAngles we ask for a camera assignment such that the sum of
the tracking angles is maximized. We also consider a bottleneck variant of the problem, Bottle-

neckAngle, which asks for a camera assignment where the minimum tracking angle is maximized.

The approach to maximize tracking angles appears unreasonable whenever these angles get
close to 180 degrees. However, it makes sense whenever targets are fairly far from cameras, i.e., for
any assignment the tracking angle is always at most 90◦ (in other words, each target lies outside
the Thales circle formed by any two cameras).

3.1 Cameras on a Line

We consider the scenario where the cameras are positioned on a horizontal line, and the targets are
placed freely in the plane. We may assume, without loss of generality, that all targets lie above the
line with cameras (otherwise we mirror the targets from below to the part above the line, with no
change in the resulting assignment). An example of such a scenario is frontier monitoring, where
the shape of the border can be approximated by a line. We present a 2-approximation algorithm
for both SumOfAngles and BottleneckAngle. Note that the previous best approximation
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ratio for SumOfAngles was (2 + ǫ) which was implied by the result of Arkin and Hassin [7], and
nothing was known about the bottleneck version.

In the following, we denote by ci both the i-th camera on the line, and its position, and assume
that c1 < c2 < . . . < c2n. Note that we assume that no two cameras have the same position. This
avoids complicated special cases, but our results still hold without this assumption.

We call the interval between two paired cameras the baseline of these cameras. Furthermore, we
call a pairing of cameras all-overlapping if the baselines of any two camera pairs (of the chosen pair-
ing) intersect. Observe that there always exists an optimum solution which uses an all-overlapping
pairing – any two non-intersecting pairs can exchange their closest endpoints to create two inter-
secting pairs with larger baselines and thus larger tracking angles.

Lemma 1 For both SumOfAngles and BottleneckAngle with cameras on a line, there exists

an optimal solution with an all-overlapping pairing.

Proof. For the sake of contradiction, consider an optimum solution with a maximum number of
intersecting pairs, with at least two non-intersecting pairs (ci, cj) and (ck, cl), where ci < cj < ck <
cl. By reassigning the target from (ci, cj) to (ci, ck) and the target from (ck, cl) to (cj , cl), a new
solution is obtained in which both baselines are enlarged. Thus, in the new solution at least two
more baselines (ci, ck) and (cj , cl) overlap, at least two angles increase, and no angle decreases, a
contradiction. �

Note that for the objective of maximizing the sum of tracking angles, every optimal solution
must have this property. We will make heavy use of the following consequence:

Corollary 2 For both SumOfAngles and BottleneckAngle on a line, there exists an optimal

solution where every left camera of a camera pair is among the leftmost n cameras, and every right

camera of a camera pair is among the rightmost n cameras. These two groups of cameras can be

separated by some point M on the line, such that c1 < c2 < . . . < cn < M < c1+n < c2+n < . . . <
c2n.

Approximation Algorithm.

Our approximation algorithm uses the structural properties of Lemma 1. We first create a simple
interleaved camera pairing that proved its value in earlier work [3]: For i = 1, . . . , n, pair camera ci

with camera ci+n. Then we assign the interleaved camera pairs to the targets in an optimum way.
For SumOfAngles an optimum assignment of the camera pairs to the targets can be found by

computing a maximum-weight perfect matching in a weighted complete bipartite graph where the
camera pairs and the targets are the two vertex sets, and the weight of an edge between a pair and
a target is the tracking angle of the triangle formed by the target and the pair of cameras. This
matching can be computed in O(|V |(|E| + |V | log |V )) time [8], which is O(n3) in our case, as we
have a complete bipartite graph.

For BottleneckAngle, we can find an optimum assignment by a binary search for the maxi-
mum tracking angle (in the set of at most n2 different tracking angles) for which a perfect matching
exists. This means that for a tracking angle θ considered by binary search, all edges with value less
than θ are discarded from the complete bipartite graph, and a maximum cardinality matching is
computed. If the computed cardinality is less than n, we know that there is no camera assignment
with interleaved cameras where the minimum tracking angle is at least θ, and the binary search
proceeds with an angle smaller than θ, otherwise it proceeds with an angle larger than θ. We now
describe the exact procedure in more details.

Given a weighted complete bipartite graph, we want to find a perfect matching for which
the weight of the lightest matching edge is maximum. This problem is the so-called “bottleneck
matching problem” or “max-min matching problem” described e.g. in [9], where an algorithm with
running time O(n3) is given (for general bipartite graphs – the graph does not need to be complete).
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The following idea however leads to a more efficient algorithm for our special setting: As the
graph is complete, we know that a perfect matching exists. The idea is now to sequentially remove
edges in increasing order of their weights, until the remaining graph does no longer have a perfect
matching. In order to check whether a given graph has a perfect matching, we compute a matching
of maximum cardinality of the graph. Note that for this computation, the weights can actually be
ignored. A maximum cardinality matching on a bipartite graph can be computed in O(m

√
n) time

[8]. In our case m = n2 (n targets and n camera pairs), so we have O(n5/2).
It is easy to see that if we remove edges in this order, until the remaining graph has no perfect

matching anymore, then the last removed edge is the lightest edge in the desired matching.

Lemma 2 Let G = (V1, V2, E) be a weighted complete bipartite graph, and assume the edges in E
are sorted in order of increasing weight, i.e., w(e1) ≤ w(e2) ≤ . . . ≤ w(em). Then, define G′(i) as

the subgraph of G with the same vertices as G, but only with edges ei, ei+1, . . . , em. Let i∗ be the

largest possible value such that G′(i∗) has a perfect matching. Then, the bottleneck matching of G
has objective value w(ei∗).

Proof. For the sake of contradiction, assume that the bottleneck matching of G has an objective
value larger than w(ei∗). Thus, none of the edges e1, e2, . . . , ei∗ is contained in that matching,
and hence in G′(i∗) there must be a perfect matching using only edges from ei∗+1, ei∗+2, . . . , em, a
contradiction. Similarly, if the bottleneck matching of G has an objective value smaller than w(ei∗),
then we get a contradiction because by the definition of i∗ there exists a bottleneck matching in G
which uses only edges from ei∗ , . . . , em. �

This process of removing edges can be accelerated: instead of removing edges one by one, all
below a threshold T are removed in one step (this can be done in constant time if one sorts the
edges first). Initially, T is set to the median weight of the edge weights, and then a binary search
is performed to find the smallest threshold which still permits a perfect matching. As the number
of threshold values is at most m = n2, the binary search requires O(log m) = O(log n) steps. Thus,
with this approach the total time required to find the max-min matching is O(n5/2 log n).

The aforementioned discussion shows that for any given camera pairing, we are able to efficiently
find the best assignment of camera pairs to targets. Our algorithm, which we call Interleave,
uses the interleaved pairing. In the following we analyze its approximation ratio.

Theorem 2 For any solution O using an all-overlapping pairing, there exists a camera assignment

with the interleaved pairing where each tracking angle is at least half of the corresponding tracking

angle of the solution O.

Proof. Let H denote the interleaved pairing, and let O be a target assignment using an all-
overlapping pairing. We will show that any solution which uses an all-overlapping pairing can be
transformed into a solution which uses the interleaved pairing H by a sequence of at most n steps
of a particular nature: In each step, two pairs of cameras are chosen to create two new pairs under
the following constraints: (1) One of the tracking angles may decrease by a factor of at most two,
but from then on it stays the same throughout the rest of the transformation. (2) All other angles
either stay the same or increase. The claim then follows from the constraints of the transformation.
We will now show that for any solution O using an all-overlapping pairing, there exists a solution
T using the interleaved pairing H, such that each tracking angle in T at any target is at least half
of the corresponding tracking angle in O.

As O contains an all-overlapping pairing, there exists a point M on the line which separates
the left ends of all baselines from the right ends of all baselines in O (see Figure 8). We prove
the existence of the transformation by induction on the number k of targets in the instance. If
k = 1, the claim is trivially true because O’s pairing is equal to H (and thus no transformation
is needed). For k ≥ 2, let (c1, ci+n) be the baseline with leftmost starting point in O. If i = 1,
then this camera pair is present in both O’s pairing and in H, and by the induction hypothesis the
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Figure 8: Comparing the camera pairings in O with those in H

desired transformation exists for the k−1 other targets and camera pairs. In the following, assume
that i 6= 1. In H, c1 and ci will be paired with c1+n and ci+n, respectively. Considering O, let cl

be the camera paired with c1+n, and let cj+n be the camera paired with ci.

Let P be the target which O assigns to the pair (c1, ci+n). We now distinguish two cases:

(A) The angle c1, P, c1+n is at least half of the angle c1, P, ci+n. Let Q be the target which O
assigns to the pair (cl, c1+n). We create from O a new camera assignment O′ by transforming
the pairs (c1, ci+n), (cl, c1+n) into pairs (c1, c1+n), (cl, ci+n) and assigning these pairs to targets
P and Q, respectively. Thus, the tracking angle at P in O′ is at most cut in half, and the
tracking angle at Q in O′ increases, as the baseline (cl, ci+n) extends to the right (compared
to (cl, c1+n)).

(B) The angle ci, P, ci+n is at least half of the angle c1, P, ci+n. Let Q be the target which O
assigns to the pair (ci, cj+n). We create from O a new camera assignment O′ by transforming
the pairs (c1, ci+n), (ci, cj+n) into pairs (c1, cj+n), (ci, ci+n), and assigning them to targets Q
and P , respectively. The tracking angle at Q increases (as the baseline lengthens in the new
assignment), and the tracking angle at P is at most cut in half.

As ci and c1+n both lie between c1 and ci+n, and ci is to the left of c1+n, at least one of these cases
applies. In both cases, one angle increased, and one angle decreased by a factor of at most 2, but
this angle uses a pair from the interleaved pairing. Thus, there remain k−1 camera pairs which are
potentially not assigned to a camera pair from the interleaved pairing. By the induction hypothesis
(applied on the k − 1 targets and the cameras assigned to them) these targets can be assigned to
camera pairs from the interleaved pairing such that each of these k − 1 other angles are at most
cut in half during the transformation. �

This theorem directly proves that our algorithm computes a 2-approximation for both the ob-
jective of maximizing the sum of all tracking angles, and the objective of maximizing the minimum
tracking angle.

Corollary 3 The algorithm Interleave computes a 2-approximation for both SumOfAngles

and BottleneckAngle.

It can be showed that the analysis of the approximation ratio of the algorithm is tight as
can be shown by the following two examples. In both examples, there are four cameras placed
symmetrically on a line ℓ. The two targets are placed in the “middle”, t1 above t2. The distance
between the cameras c2 and c3 is a small value ǫ. For SumOfAngles consider the left figure of
Figure 9. Target t1 is placed far from ℓ, such that the tracking angle of t1 is negligible in any
camera assignment. Thus, any solution using interleaved pairing incurs cost which is dominated by
the tracking angle at t2, which approaches (as ǫ → 0) half of the tracking angle of t2 in an optimum
solution which pairs c1 and c4, and assigns this pair to t2. For BottleneckAngle consider the
right figure of Figure 9. Target t2 is placed at distance δ ≪ ǫ from ℓ, such that the angle ∠(c2t2c3)
is bigger than the angle θ := ∠(c1t1c4). In this case, any camera assignment using the interleaved
pairing has the minimum tracking angle arbitrary close to θ/2 (as ǫ → 0), while an optimum camera
assignment (which pairs c1 and c4 together, and assigns this pair to t1) has the minimum tracking
angle equal to θ.
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Figure 9: An example showing that the analysis of the algorithm Interleave is tight (left for
SumOfAngles, right for BottleneckAngle)

3.2 Equidistant Cameras on a Line

We consider the special setting where the cameras lie on a (horizontal) line ℓ and the distance
between any two neighboring cameras on the line is the same. Without loss of generality we
assume unit distance. We consider the problem of maximizing the sum of tracking angles and
present a PTAS for this problem.

We consider the cameras in the order as they appear on the line ℓ (from left to right). According
to Corollary 2 we know that in every optimum camera assignment the first n cameras are paired
with the last n cameras. Let L denote the first n cameras and R the last n cameras. We denote
the cameras as they appear in the order on ℓ as l1, l2, . . . , ln for cameras in L, and r1, r2, . . . , rn for
cameras in R. Hence, the distance between l1 and rn is 2n − 1.

The main idea of the algorithm is to partition L and R into k equally-sized sets L1, L2, . . . , Lk

and R1, R2, . . . , Rk, and to correctly guess what types of paired cameras an optimum solution OPT
contains with respect to the partition, i.e., we want to know for every s and t how many pairs
of OPT have a camera from Ls and a camera from Rt. Camera pair {li, rj} is called a pair of

type (s, t) (with respect to the partition), if li ∈ Ls and rj ∈ Rt. There are k2 different types of
pairs. We can characterize every camera assignment by its types of the camera pairs – for each
type (s, t) we know how many pairs are of this type. Let ms,t denote this number. For these k2

numbers ms,t, each ms,t is in the range {0, . . . , n

k
}. According to this classification, there are at

most (n

k
)k

2

different classes of camera pairings, which we call camera-pairing types. Thus, if k is
a constant, the algorithm can enumerate all camera-pairing types in polynomial time. For each
enumerated type of camera pairing the algorithm constructs some camera pairing of that type (if
that is possible, otherwise it reports that no camera assignment using such a camera pairing type
exists) and optimally assigns the targets to the camera pairs. At the end the algorithm outputs
the best solution among all constructed camera assignments. The algorithm can create a camera
pairing of a type specified by values ms,t in the following way: for every camera-pair type (s, t)
it creates ms,t pairs of type (s, t) by pairing ms,t cameras from Ls with ms,t cameras from Rs.
Clearly, if a camera pairing of the considered camera-pairing type exists, the algorithm finds one,
otherwise the algorithm fails to create one, in which case it continues with the next enumerated
camera-pairing.

In the following, we concentrate on the situation where the algorithm considers the same camera-
pairing type as the OPT solution has. The algorithm creates some camera pairing of that type,
and assigns the camera pairs to the targets in an optimum way by computing a maximum weight
matching between the pairs and the targets. Let A denote the resulting camera assignment. We
show that the sum of the tracking angles of A is a good approximation of the sum of tracking
angles of OPT. We say that a camera pair {li, rj} is a short pair, if the distance between li and
rj is at most n√

k
, otherwise we say it is a long pair. Observe that in any camera assignment there

are a lot more long pairs than short ones, as there are at most n/
√

k short pairs (every short pair
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Figure 10: A long pair of type (i, j) in OPT′, and a long pair of type (i, j) in solution A′

has to have its left camera among the last n
√

k cameras in L), and thus at least n − n/
√

k long
pairs. We show that the algorithm guarantees good tracking angles at long pairs. We further show
that there exists a solution QOPT (quasi-optimum) which incurs most of the tracking profit at the
long pairs, and which is not much worse than the optimum solution OPT. This then implies that
the solution A computed by the algorithm is a good approximation of QOPT, and therefore it is a
good approximation of OPT, too. In the following, if X is a camera assignment, we use X|LONG
to denote the subset of X which consists of long pairs only. By w(X) we denote the weight of X,
i.e., the sum of tracking angles arising in X.

Let OPT′ denote an optimum solution for the problem of assigning all pairs of OPT to targets,
and maximizing the sum of tracking angles at long pairs. Thus, OPT′, OPT, and A use the same
type of camera-pairing. Consider a long pair {lO, rO} of type (i, j) from OPT′. Let t be the target
to which that pair is assigned, and let θOPT′ be the tracking angle of t in OPT′. See Figure 10 for
illustration. Let {lA, rA} be a (long) pair of type (i, j) that is created by the algorithm. In the
camera assignment of A, {lA, rA} is assigned to some target t′. We create a new camera assignment
A′ that uses the pairing of A, and the targets of long pairs of OPT′ in the following way: we match
every long pair {lA, rA} from A of type (i, j) with a long pair {lO, rO} from OPT′ of the same type.
Then, let {lO, rO} be assigned to target t. We create A′ by assigning the matched pair {lA, rA} to
t. Clearly, A′ is a camera assignment of the same type as OPT’ and A. Clearly, as A and A′ are
using the same pairs, the solution of A is at least as good as A′, i.e., w(A) ≥ w(A′). We now show
that A′ is a good approximation for OPT’ on long pairs.

Let θA′ denote the tracking angle of t in A′. We show that θA′ is not much smaller (if at all)
than θOPT′ . Clearly, the worst case for the difference between the two angles is when lO is the
leftmost vertex in Li, rO is the rightmost vertex in Rj, and lA is the rightmost vertex in Li and
rA is the leftmost vertex in Rj. The distance between lO and lA is at most n/k (the size of Li).
Similarly for rO and rA, the distance between these two cameras is at most n/k. On the other
hand, the distance between lA and rA is at least n/

√
k, because {lA, rA} is a long pair. We can

express the ratio θA′/θOPT′ in the following way. Let x express the position of t on the line ℓt

parallel to ℓ through t. We assume that x = 0 when t is exactly above lA. Further, we denote by
ht the distance between ℓ and ℓt and by d the distance between lA and rA (cf. Figure 10). We can
then express the ratio θA′/θOPT as follows:

θA′

θOPT′
=

arctan
(

x

ht

)

+ arctan
(

d−x

ht

)

arctan
(

n/k+x

ht

)

+ arctan
(

d+n/k−x

ht

) (1)

The analysis of the first and second derivative with respect to x of the previous function shows
that θA′/θOPT′ is minimal for x = d/2, i.e., when the target lies in the middle point of the segment
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(lA, rA). Hence, by setting x = d/2 in (1) we get the following lower bound:

θA′

θOPT′
≥

arctan
(

d

2ht

)

arctan
(

n

kht
+ d

2ht

) .

We now distinguish two cases. First, if ht = o(n), then the two arguments inside the arctan
functions of the previous term are unbounded as n grows (remember that d ≥ n/

√
k). As arctan is

a bounded function, θA′/θOPT′ approaches 1 as n gets large. Therefore, given any ǫ and k, we can
find n large enough, such that θA′/θOPT′ ≥ 1 − ǫ, as desired. Second, if ht = Ω(n), the arguments
inside the arctan functions of the previous term are bounded from above and may even approach
zero as n goes to infinity (remember that d ≤ 2n − 1), so we have to examine the behavior of
the term in this case, and, as we will see, we also have to involve k. We denote α := d

2ht
, and

thus obtain θA′/θOPT′ ≥ arctan(α)

arctan
“

n
kht

+α

” . We express the term n

kht
in terms of α (remember that

d ≥ n/
√

k):
n

kht

=
2dn

2dkht

=
2n

dk
α ≤ 2√

k
α.

Thus we have θA′/θOPT′ ≥ arctan(α)

arctan
“

(1+ 2√
k
)α

” . The derivative of the last fraction with respect to α is

positive for any α ≥ 0, and thus the last fraction is minimized when α approaches zero. The limit

of that fraction, when α approaches zero, is 1/(1 + 2√
k
) =

√
k√

k+2
, and thus, for any fixed ǫ, setting

k appropriately, and for n large enough, we get that θA′/θOPT′ ≥ 1 − ǫ.

In the remaining we show that there exists a camera assignment QOPT with the same camera-
pairing type as OPT, which gains most of its profit (i.e., a (1 − δ) fraction of the total profit,
0 < δ < 1) on long pairs, and which is a good approximation to OPT. The optimum solution OPT
has at most n/

√
k short pairs. Let S denote the subset of OPT that contains the short pairs only.

Let us consider those long pairs of OPT, where every long pair, considered as an interval on ℓ,
fully contains every short pair. Let G denote the subset of OPT on such pairs. Observe that there
are at least n − 2n/

√
k pairs in G (there are at least n − n/

√
k long pairs that contain the left

camera of any short pair – the pairs formed by cameras l1, l2, . . . , n− n/
√

k; among those pairs, at
most n/

√
k can be formed by cameras r1, r2, . . . , rn/

√
k
). We split G into subsets of size |S|. Let

G1, G2, . . . , Gz denote these sets, where z = |G|/|S| ≥
√

k − 2. For simplicity we assume that |G|
is divisible by |S|. As one can check, this is not a crucial assumption in our analysis. Let us order
the sets Gi such that w(G1) ≥ w(G2) ≥ . . . w(Gz).

Observe first that if w(Gz) ≥ w(S), we get w(OPT) ≥ ∑

i
w(Gi) ≥ z ·w(S), and thus w(OPT)

z
≥

w(S). As w(OPT|LONG) denotes the contribution of all long pairs to the total weight w(OPT),

we obtain w(OPT|LONG) = w(OPT)−w(S) ≥ w(OPT)− w(OPT)
z

≥ z−1
z

w(OPT) ≥
√

k−3√
k−2

w(OPT).

Hence, setting k appropriately, OPT gains a (1 − δ) fraction of its profit on long pairs, and thus
we can set QOPT := OPT.

Assume now that w(S) > w(Gz). We create a new solution QOPT: we (arbitrarily) assign
the pairs of Gz to targets of S and the pairs of S to targets of Gz. Let S′ and G′

z denote the
new assignments. Clearly, as w(QOPT) ≤ w(OPT), we have w(G′

z) + w(S′) ≤ w(Gz) + w(S),
as only pairs in Gz and S have possibly been assigned to different targets. Observe now that
w(G′

z) > w(S), because in QOPT the pairs of Gz are assigned to the same targets as the pairs of
S in OPT, and every pair from Gz fully contains every pair from S (if imagined as an interval),
which makes every tracking angle of the respective target bigger in QOPT. Thus, using the last
two inequalities, w(S′) < w(Gz). Hence, we also have that w(S′) < w(Gi), i = 1, . . . , z − 1,

and thus w(S′) ≤ w(OPT)
z

. Applying the argumentation from above we get w(QOPT|LONG) =
w(QOPT) − w(S′) ≥ z−1

z
w(QOPT). Observe also that w(QOPT) ≥ w(OPT) − w(Gz). Thus, since
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w(OPT)−w(Gz) ≥ z−2
z−1w(OPT), we obtain w(QOPT) ≥ z−2

z−1w(OPT), and hence w(QOPT|LONG) ≥
z−2

z
w(OPT).
Putting the previously derived inequalities together, we obtain w(A) ≥ w(A′) ≥ (1−ǫ)w(OPT′|LONG) ≥

(1 − ǫ)w(QOPT|LONG) ≥ (1 − ǫ)z−2
z

w(OPT) ≥ (1 − ǫ)
√

k−4√
k−2

w(OPT). Hence, for any given ǫ∗, we

can find ǫ and k such that (1 − ǫ)
√

k−4√
k−2

≥ 1 − ǫ∗, and thus w(A) ≥ (1 − ǫ∗)OPT. This yields:

Theorem 3 There is a PTAS for SumOfAngles with equidistant cameras on a line.

4 Conclusions

We have considered different variants of the “focus of attention” problem, where the objective
function depends on the tracking angles. We have shown that the natural goal of assigning targets
under 90◦ is (in general) an NP-complete problem. It remains an open problem whether the more
restricted instances where the cameras are placed on a line can be solved in polynomial time. The
hardness result shows that there is no approximation algorithm (unless P = NP) for the problem of
minimizing the sum of deviations of tracking angles from 90◦. In this context it would be interesting
to consider different optimization goals which capture the optimality of tracking angles θi being
90◦ and which would allow a good approximation. The first candidate for such an objective could
be sin θi. Any results for this or similar objective function would be interesting. Also for the
objective functions considered in this paper there are unresolved questions. For example, we have
only considered SumOfAngles on a line. For the general case, a simple greedy algorithm achieves
a 3-approximation [4], and it remains open whether one could do better.
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