
ETH Library

NU-Spidercam: A large-scale,
cable-driven, integrated sensing
and robotic system for advanced
phenotyping, remote sensing, and
agronomic research

Journal Article

Author(s):
Bai, Geng; Ge, Yufeng; Scoby, David; Leavitt, Bryan; Stoerger, Vincent; Kirchgessner, Norbert; Irmak, Suat; Graef, George;
Schnable, James; Awada, Tala

Publication date:
2019-05

Permanent link:
https://doi.org/10.3929/ethz-b-000332520

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Computers and Electronics in Agriculture 160, https://doi.org/10.1016/j.compag.2019.03.009

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000332520
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.compag.2019.03.009
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

NU-Spidercam: A large-scale, cable-driven, integrated sensing and robotic
system for advanced phenotyping, remote sensing, and agronomic research

Geng Baia, Yufeng Gea,⁎, David Scobyb, Bryan Leavittc, Vincent Stoergerd, Norbert Kirchgessnere,
Suat Irmaka, George Graefb, James Schnableb,d, Tala Awadac,f

a Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
bDepartment of Agronomy & Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
c School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
d Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
e Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland
fAgricultural Research Division, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

A R T I C L E I N F O

Keywords:
Image analysis
Multispectral imagery
Thermal infrared imagery
LiDAR
Reflectance spectra

A B S T R A C T

Field-based high throughput plant phenotyping has recently gained increased interest in the efforts to bridge the
genotyping and phenotyping gap and accelerate plant breeding for crop improvement. In this paper, we in-
troduce a large-scale, integrated robotic cable-driven sensing system developed at University of Nebraska for
field phenotyping research. It is constructed to collect data from a 0.4 ha field. The system has a sensor payload
of 30 kg and offers the flexibility to integrate user defined sensing modules. Currently it integrates a four-band
multispectral camera, a thermal infrared camera, a 3D scanning LiDAR, and a portable visible near-infrared
spectrometer for plant measurements. Software is designed and developed for instrument control, task planning,
and motion control, which enables precise and flexible phenotypic data collection at the plot level. The system
also includes a variable-rate subsurface drip irrigation to control water application rates, and an automated
weather station to log environmental variables. The system has been in operation for the 2017 and 2018 growing
seasons. We demonstrate that the system is reliable and robust, and that fully automated data collection is
feasible. Sensor and image data are of high quality in comparison to the ground truth measurements, and capture
various aspects of plant traits such as height, ground cover and spectral reflectance. We present two novel
datasets enabled by the system, including a plot-level thermal infrared image time-series during a day, and the
signal of solar induced chlorophyll fluorescence from canopy reflectance. It is anticipated that the availability of
this automated phenotyping system will benefit research in field phenotyping, remote sensing, agronomy, and
related disciplines.

1. Introduction

High throughput field-based plant phenotyping has recently at-
tracted substantial interest because of its importance in: (1) closing the
gap between plant genotyping and phenotyping, (2) accelerating the
cycle of breeding for crop improvement, and (3) meeting the global
demands of food, fiber and fuel that can be produced from agricultural
sectors (Furbank and Tester, 2011; White et al., 2012). It is anticipated
that appropriately deployed field phenotyping technologies will enable
us the collection of high volume, multifaceted plant phenotypic data.
These field measured data, together with the co-measured environ-
mental variables, will enable an accelerated pace of scientific discovery,
from understanding complex interactions between genotype and

environment to identifying the best performers among thousands of
candidate genotypes as part of crop improvement efforts (Araus and
Cairns, 2013).

Field-based plant phenotyping platforms include manually operated
carts (White and Conley, 2013; Bai et al., 2016), tractor-based vehicles
(Andrade-Sanchez et al., 2014; Jiang et al., 2018) and field robotics
(Underwood et al., 2017), and unmanned aerial vehicles (UAV)
(Sankaran et al., 2015; Shi et al., 2016). Each platform has its own
merits and limitations. For example, manually operated carts are light
weight and flexible, but have lower measurement throughput and have
difficulty scaling to the mature height of some crops (e.g., maize).
Tractor-based platforms can be heavy and create undesired compaction
in soil. Ground-based platforms could also cause mechanical damage to
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crops particularly in late growing season. UAVs, on the other hand, are
suitable for tall crops, but have limited sensor payload capacity and
measurement duration.

A fixed framework (such as a sensor platform supported by a gantry
or cable-suspension system) over a large-sized field for high throughput
plant phenotyping combines the merits of both vehicle-based and UAV-
based platforms. It could easily measure tall crops and would not be
limited by the sensor payload or battery capacity (meaning long mea-
surement hours with multiple sensing modalities are possible). It would
support measurements under the conditions of wet soil (not possible
with vehicle-type) and mild to strong winds (not possible with UAV).
Furthermore, the system can position and orient sensors to a particular
plot with high accuracy and repeatability, which enhance the quality of
field data for precision phenotyping.

Virlet et al. (2017) reported an overhead gantry system (Field Sca-
nalyzer) for plant phenotyping research developed at Rothamsted Re-
search, U.K. This system has a rectangular sensing area of 0.12 ha
(116×11m) and a height of 4.1m. It has a sensor payload capacity of
500 kg. Sensors employed on this system comprise high-resolution
visible, chlorophyll fluorescence and thermal infrared cameras, two
hyperspectral imagers and dual 3D laser scanners. However, it was
highlighted in this publication that processing of images from hyper-
spectral imagers and laser scanners was still challenging. Kirchgessner
et al. (2017) reported a cable-suspended field phenotyping system at
ETH Zurich. It covered 1 ha of experimental field with a maximum
sensor height of 6m. The control system could be programmed to move
the sensor platform to locations by inputting XYZ coordinates. The
system was more compact and the cables minimized the shadow pro-
blem that could bias the measurement and increase the complexity of
image processing. The authors demonstrated the use of multiple sensor
modules to measure various crop traits, including ground cover, plant
height, canopy temperature and spectral reflectance.

In this paper, we reported a large-scale, cable-driven, integrated
sensing and robotic platform for high-precision, field-based plant phe-
notyping research developed at University of Nebraska, U.S. (NU-
Spidercam). We described the design and development of the system in
terms of: (1) hardware integration of various imaging, ranging and
spectroscopic sensors, and (2) software development for task planning,
motion control, and automated measurements. The system was tested
in 2017 and 2018 growing season. We also reported the system per-
formance and provided examples of novel phenotypic data enabled by
the system.

2. Design and development of NU-Spidercam facility

2.1. Facility overview

The NU-Spidercam facility is located at Eastern Nebraska Research
and Extension Center of the University of Nebraska, Mead, NE, U.S.
(41°08′44.4″ N, 96°26′20.6″ W, 369m above sea level). The field is
approximately 2.0 ha, with a core imaging area of∼ 0.4 ha (60× 67m,
Fig. 1A and B). The two soil types are Yutan silty clay loam and Filbert
silt loam. The core imaging area is divided into 128 zones. Each zone is
4.6× 6.1 m (Fig. 1B) and contains six crop rows with a row spacing of
0.76m. A variable-rate, subsurface drip irrigation (SDI) system was
installed 0.25m below the surface, which can apply different amounts
of irrigation water to each zone (Fig. 1C). A two-story observation and
control building was built on the site to house main electric, electronic,
communication, monitoring and control devices for the facility
(Fig. 1D).

The sensor platform (Fig. 1E) is suspended and driven by eight
Kelvar cables from four poles at the corners of the core imaging area.
The cables are pulled by four winches to position the sensor platform in
the imaging area via a proprietary algorithm (Spidercam GmbH, Aus-
tria). The positioning accuracy is ± 5 cm in XYZ directions. The poles
are 27m high; and the designed height range of the sensor platform is

0–9m (from the ground). This allows researchers to collect phenotypic
data on tall crops such as maize and biomass sorghum throughout the
growing season. The sensor platform can move at a maximum speed of
2m/s. This means it can move between any two plots in the imaging
area within 45 s. The sensor platform has a payload capacity of 30 kg
(in addition to the mass of the battery and the controlling computer).
Other major components that support the operation of the facility in-
clude an SDI control room, an electric building, and four winch houses
where the winches are operated. Fig. 1 provides an overview of the NU-
Spidercam facility, the field layout, and its major components.

2.2. Integration of plant sensors onto the sensor platform

A number of plant sensors are integrated on the sensor platform to
capture multi-modal plant traits. The plant sensors include a four-band
RGB-NIR (multispectral) camera, a thermal IR camera, a 3D scanning
LiDAR, and a VNIR portable spectrometer. A fanless embedded com-
puter (NDiS B535, Nexcom) which controls all sensor modules, takes
sensor readings, and stores the measurements is integrated into the
sensor platform. Table 1 provides detailed information regarding the
sensors, their connection and communication with the computer, and
the plant parameters measured.

The portable VNIR spectrometer is connected to two optical fibers
via a bifurcated optical fiber and two electronic shutters (INLINE-TTL,
OceanOptics). One optical fiber is aimed down to measure reflected
solar energy from crop canopy (upwelling), and the other fiber (to
which a cosine corrector is attached) is pointed to the sky to measure
incoming solar irradiance (downwelling). The shutters are triggered by
TTL (Transistor-Transistor-Logic) signals from the computer to activate
the two optical fibers sequentially. Each measurement therefore is
consisted of two sets of spectrometer readings: one set corresponding to
when the upwelling (again looking at the surface) fiber is activated and
the other set the downwelling (again looking at the sky) fiber activated.
This dual optical fiber design effectively accounts for varying sky con-
dition due to solar elevation and clouds and allows accurate measure-
ments of crop canopy reflectance.

The RGB-NIR camera, thermal IR camera, LiDAR and upwelling
optical fiber are mounted on a pan/tilt unit at the bottom of the sensor
platform (Fig. 2A). They are placed such that they share a common field
of view on the ground, which ensures the measurements from different
sensors cover the same area and can be related. Fig. 2B illustrates the
field of view of each sensor when the sensor platform is approximately
5m above the ground (or canopy). Although all measurements reported
in this paper were from a nadir view, the pan/tilt unit does allow the
sensors and cameras to take measurements at slanted angles
(Supplemental Fig. 1), which can be of great value for multi-angle
imaging and remote sensing research.

An anemometer, a GPS receiver, and the downwelling optical fiber
are mounted on the upper part of the sensor platform (Fig. 3). GPS was
currently not used for positioning, because NU-Spidercam itself has a
positioning system that is more precise. The controlling computer,
spectrometer, batteries, and all supporting components (such as
Ethernet cable switches, wires, voltage converter, etc.) are also
mounted on the upper part of the platform and are protected by a cover
from rain and direct sun light during operation.

The sensor platform is powered by two batteries supplying un-
regulated 48 VDC. A power conversion block is used to convert 48 V to
regulated 12 and 24 V to power the computer and various sensor
modules (Table 1). When fully charged, the battery can support 6–8 h of
operation.

2.3. Software development

The program for the sensor platform task planning, motion control
and data collection was developed using LabVIEW (Version 2016,
National Instruments, Austin, Texas, U.S.). Fig. 4 shows the
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initialization Graphic User Interface (GUI) of the program. During in-
itialization, the program checks the current status of the sensor plat-
form and ensures it is ready for motion. Sensor modules can be in-
dividually selected or de-selected to meet the need of each
measurement campaign. The option of “hyperspectral camera” is re-
served for future integration.

For task planning, researchers upload a ‘Way-Point Map’, which is a
TXT file with a set of predefined locations (for example, the center of
each zone or plot) in the core imaging area. Each line of the TXT file

contains the XYZ coordinates of a location and Pan/Tilt angles of sensor
orientation, and a desired driving speed for the sensor platform
(Supplemental Fig. 2). The program will also check to ensure the lo-
cations are in acceptable ranges, and display them in “Graph Display of
Map File” of the GUI (Fig. 4A). The program then generates a custom
XML-based command for each line of the TXT file (Supplemental
Fig. 3), and sends them sequentially to a computer that is dedicated for
winch control and cable feeding.

There are two modes of motion control for the sensor platform in

Fig. 1. NU-Spidercam field phenotyping facility. A – Bird view of the facility; B – the 128 zones in the core imaging area; C – the control valves of the variable-rate
subsurface drip irrigation system; D – the control and observation building; E – a close-up view of the sensor platform.

Table 1
Plant sensors onboard NU-Spidercam’s sensor platform.

Sensor Description Connection, power, and driver Parameters

Multispectral camera AD080GE, JAI
Spectral window: 400–650 nm (RGB) and
760–1000 nm (NIR)
Resolution: 1024x768 pixel
Field of View: 44.9° (H) and 34.0° (V)

Ethernet
12 VDC
LabVIEW IMAQdx

Vegetation coverage
Soil fraction
Canopy NDVI
Soil NDVI

Thermal IR camera A655sc, FLIR
Spectral window: 7.5–14 µm
Resolution: 640x480 pixel
Field of View: 24.8° (H) and 18.8° (V)

Ethernet
12 VDC
LabVIEW IMAQdx

Canopy temperature
Soil temperature

Spectrometer HR2000+, OceanOptics
Spectral window: 450–880 nm; spectral sampling: 1/5 nm
Field of View: 25°

USB
Powered also by USB
OceanOptics LabVIEW Driver

Canopy reflectance spectra
Vegetation indices

3D LiDAR VLP-16 Puck, Velodyne
Field of view:± 15° cross track

UDP via Ethernet
12 VDC
No special driver needed

Canopy height
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the program. The first one is “stop-measure-go”. In this mode, the
sensor platform is driven to a location, stopped to stabilize and take
measurements, and then driven to the next location. Because the plat-
form is operated only a few meters above crop canopy, this pattern
ensures best image quality with minimum image blurring caused by the
relative motion between the imaging sensors and plants. The second
mode is “continuous”, where the sensor platform traverses through

target locations without stopping. The program uses a separate control
loop to trigger the sensors continuously. In this mode, images are
captured with significant overlap that allow the mosaic of the entire
imaging area (similar to UAV imaging). This mode is also necessary for
push-broom type hyperspectral imaging system. Fig. 5 provides a high-
level flow chart diagram for automated measurement using the “stop-
measure-go” mode.

Fig. 2. A – The physical layout of the plant sensors at the bottom of the sensor platform; B – Field of view of the multispectral camera, thermal IR camera, upwelling
optical fiber cable (red dashed line circle) and LiDAR scanning swath (green dashed line rectangular area). (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 3. Upper part of the sensor platform with the anemometer, downwelling optical fiber cable, GPS, spectrometer, electronic shutters, computer, battery, and other
supporting electronics.
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The program provides a live update of the multispectral image,
thermal IR image, and downwelling and upwelling spectra of the cur-
rent plot being measured (Fig. 4B).

Measurement data and experimental metadata are stored in the
controlling computer with a two-level file directory system. At the first
level, data are organized by “Date”. Within a “Date” folder, measure-
ments from each location is stored in a subfolder (second level) and the
subfolder name is “Location ID_Serpentine number_Genotype_Irrigation
level_Time stamp_XYZ”. In this manner each measurement is un-
ambiguously linked to a location (or plot) and measurement time.
Inside the second level folders, measurement data including the mul-
tispectral image, thermal IR image, spectral data, and LiDAR point
cloud are saved. The metadata including the XYZ coordinates, pan-tilt
angles, and speed of the sensor platform are also saved in the folder.

Fig. 4. Graphic User Interface (GUI) of the NU-Spidercam program developed with LabVIEW: (A) the initialization page for sensor selection and mission planning;
and (B) the measurement page providing real time update of sensor data and images being captured.

Fig. 5. High-level flow chart diagram for automated measurement using the
“stop-measure-go” mode.
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2.4. Variable rate SDI and onsite weather station

The variable rate SDI for the NU-Spidercam facility is unique in the
sense that it controls the 128 zones (Fig. 1B and C) which can be irri-
gated and fertigated independently with high water application uni-
formity (Christiansen Uniformity Coefficient of> 98%). Water can be
applied with a precision of 0.04 L each zone, enabled by state-of-the-art
pressure compensating emitters which compensate changes in oper-
ating pressure and provide constant (and targeted) flow rate. The irri-
gation events can be automatically triggered based on predetermined
soil moisture threshold in the crop root zone or crop water use. This
level of precision, uniformity, and automation with the SDI is highly
desirable for studying plant traits related to irrigation response, sto-
matal conductance, water use, and nitrogen use.

An automated weather station was emplaced approximately 30m
west of the NU-Spidercam facility. The weather station collects weather
and environmental parameters, including air temperature (Ta) and re-
lative humidity (2 m above the ground), precipitation, wind speed and
direction (3m above the ground), photosynthetically active radiation
(PAR), and total shortwave radiation. These variables are recorded at
one minute interval. These data are used together with plant mea-
surements from NU-Spidercam to help elucidate the interaction be-
tween genotypes and environment.

3. Field experiment to test the NU-Spidercam facility

The NU-Spidercam facility was tested for two years during the 2017
and 2018 growing season. In 2017, soybean with different genotypes
was planted on the east half of the field while maize was planted on the
west half of the field. The 180 two-row maize plots included 162 maize
hybrids constructed from crossing maize inbreds developed by major
seed companies and released following the expiration of plant variety
patents, plus a repeated modern check line. The expired plant variety
patent maize hybrids were selected to match those being grown and
phenotyped at several dozen locations across the U.S. and Canada as
part of the Genomes to Fields project (Gage et al., 2017). The experi-
ment in 2018 was similar, except that soybean was planted on the west
half and maize on the east half to mimic a maize-soybean rotation
commonly employed in the region.

In 2017, the sensor platform was operated at 9m above the ground.
At this height, the multispectral camera covered 10 rows of crop and
thermal IR camera covered 6 rows. In 2018, the sensor platform was
operated at 5m above the ground. At this height, the multispectral

camera covered 4 rows of crop and thermal IR camera covered 2 rows.
Primary motion control mode was “stop-measure-go”. Continuous mo-
tion mode was conducted a number of times to evaluate the perfor-
mance of image mosaicking like UAV.

The purposes of the experiment were three fold. Firstly, we eval-
uated the functionalities and robustness of hardware and software
components of the system during actual field operations. Secondly, we
validated the sensor measurements with the ground truth measure-
ments. In particular, we validated the LiDAR measurements against
manual measurement (using a yardstick) of plot heights, and crop
thermal IR images against canopy temperature measured by a handheld
IR radiometer (Omega Engineering, Norwalk, Connecticut, U.S.). More
information regarding ground truth measurement is in Supplemental
Fig. 4. Thirdly, we demonstrated the usefulness of the facility for high-
precision plant phenotyping research by collecting relevant plot-level
plant trait data from genotypes for which extensive conventional field
phenotyping data exists.

We extracted crop coverage from four-band RGB-NIR multispectral
images. An NDVI image was calculated using NIR and R bands of the
image: (NIR-R)/(NIR+R). The NDVI image was effective to segment
crop pixels from soil background by setting a single threshold. Crop
coverage was calculated as the number of crop pixels divided by the
total number of pixels.

An affine transformation was developed that allowed the overlay of
the thermal IR image to the RGB-NIR image. Because the relative po-
sition of the thermal camera and the multispectral camera was fixed,
one affine transformation could apply to all the image sets captured by
the system. After the overlay, we used the binary image (derived from
the NDVI image) as a mask to segment the thermal IR image into crop
and soil fractions. This procedure was more accurate than a direct
segmentation of the thermal IR image using an automatic threshold
method (such as Otsu method). Average crop canopy temperature (Tc)
was calculated by averaging the temperature of all plant pixels.
Similarly, average soil temperature (Ts) was calculated by averaging
the temperature of all soil pixels (Fig. 6).

Crop height at the plot level was extracted from LiDAR data. Raw
LiDAR points were filtered to remove points that fell outside the tar-
geted plot. The distance between the soil and the LiDAR sensor (D1)
was determined using data from the earliest date of the year (when soil
exposure was the greatest) and the maximum distance (or 100 per-
centile) was used. The distance between plot canopy and the LiDAR
sensor (D2) was determined using the 10 percentile distance of the
filtered LiDAR points. Average canopy height was then calculated by

Fig. 6. Joint analysis of multispectral image and thermal IR image to extract plot-level canopy cover, canopy temperature, and soil temperature.
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subtracting D2 from D1. Note this method assumed D1 was constant
over the time. This assumption was realistic because the sensor plat-
form could be driven to the same location with high precision.

Eq. (1) was used to convert the raw spectral readings to canopy
reflectance.

= ×
−

−

R λ CF λ DN λ Dark
DN λ Dark

( ) ( ) ( )
( )

UW UW

DW DW (1)

where R is canopy reflectance. DNUW is the digital number output of the
spectrometer when the upwelling fiber is activated. DNDW is the digital
number output of the spectrometer when the downwelling fiber is ac-
tivated. DarkUW and DarkDW are the dark pixel values measured by
closing the shutters after the upwelling and downwelling measure-
ments. λ indicates the variables are wavelength dependent. CF is the
correction factor (also wavelength dependent), which is derived by
scanning three reflectance tarps of known spectral reflectance. The
tarps are 1.62× 1.62m in dimension (nominal reflectance values of 5,
45, and 75%) and set up inside the imaging area during the operation
for spectral calibration (Supplemental Fig. 5).

4. Results and discussion

4.1. Functionality and robustness of NU-Spidercam

In 2017, operations were carried out on 13 days between 7/12 and
9/28. Each day the system was run 5–6 h on average. There were two
problems in 2017. Firstly, the motion control and sensor trigger part of
the program were not well integrated, and in several occasions, the
sensor platform was driven to measurement locations manually via a
joystick. Secondly, frequent exceptions occurred for one winch that fed
the Kelvar cables. Both problems reduced the measurement throughput
significantly and were addressed after 2017 growing season.

In 2018, operations were carried out on 20 days between 7/9 and 9/
14. In most of these days, the system was set to take plot-level mea-
surement with full automation (without operator’s intervention). All
desired functions of the system regarding task planning, motion control,
and automated data collection were realized. The system also exhibited
outstanding robustness in the weather conditions of no rain nor strong
wind (> 10m s−1). For most days, the system was run continuously
without hardware or software errors. It took ∼4 h to cover the entire
360 two-row plots with the “stop-measure-go” mode. Note that this
measurement throughput can be improved by: (1) increasing the
moving speed of the sensor platform, and (2) shortening the waiting
time to allow the sensor platform to stabilize. It is feasible to go over the
entire field twice (720 two-row plots) in a day. A time-lapse video
showing the operation of NU-Spidercam in a typical day is provided in
the Supplemental Material.

4.2. Quality of sensor data in comparison to ground truth data

Fig. 7 compares crop canopy temperature and height measured by
the sensor platform vs. the ground truth measurements in selected
soybean plots. For canopy temperature, the two sets exhibited strong
linear correlation (R2= 0.931). Root mean squared error (RMSE) was
1.84 °C. The temperature measured by the sensor platform was con-
sistently higher, as indicated by a unity slope but non-zero intercept of
1.67 °C. Because the thermal IR camera and the handheld IR radiometer
were not cross-calibrated, this systematic bias could be due to the dis-
crepancy in calibration between the two devices. Another factor that
would introduce random error was the fact that the thermal IR camera
and the IR radiometer measured the same canopy at slightly different
time (roughly two minutes difference). Canopy temperature is a dy-
namic trait that can change rapidly in a short time, especially under
varying clouds and intermittent winds. This random error therefore
could indicate the real canopy temperature differences measured at
slightly different times.

Canopy height measured by the LiDAR and yardstick exhibited
strong linear correlation (R2=0.965) and RMSE was 0.03m in selected
soybean plots (Fig. 8). The slope of the regression line was close to 1
and the intercept was close to 0, indicating LiDAR measurements were
not biased. With this ground truth validation, LiDAR appeared be a
reliable method for canopy height measurements. This level of perfor-
mance was also consistent with other studies that used LiDAR as a high
throughput tool for plant height measurements (Madec et al., 2017;
Jimenez-Berni et al., 2018).

4.3. Examples of measurement data enabled by NU-Spidercam

Fig. 9 shows canopy height and vegetation cover of the soybean
crop (180 plots) in 2018 between Jul/10 and Aug/15. The average
height increased steadily from 0.4m to over 1.0 m on 8/10. On 8/15
overall height decreased slightly. This is because a portion of the plots
started to lodge when entering late reproductive stage. Average canopy
cover also showed a steady increase from ∼35% to 80% on 7/26.
Thereafter, the increase slowed down and average canopy cover ap-
proached∼100% around 8/07. This kind of information is desirable for
high throughput phenotyping platform, because it allows the mea-
surement of key growth parameters multiple times along the growing
season. Further processing can be done to fit the functional growth
curves and analyze growth patterns.

Although the stop-measure-go motion mode was predominantly

Fig. 7. Validation of canopy temperature measured from the NU-Spidercam
sensor platform against the ground truth measurements.

Fig. 8. Validation of the canopy height measured from the NU-Spidercam
sensor platform against the ground truth measurements.
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used, we did collect images with continuous motion mode to demon-
strate the feasibility of image mosaicking similar to UAV. The sensor
platform was driven from the left side of Fig. 10A to the right side with
a constant speed of 0.5m/s. The multispectral camera was set to cap-
ture images at 0.25 s interval. The two consecutive images had an offset
of 0.125m, equivalent to a ∼96% image overlap. There was a total of
214 images in this pass (covering 18 2-row soybean plots), and they
were successfully mosaicked using Pix4D software (Lausanne, Swit-
zerland). Contrasting canopy characteristics caused by the different

maturation in the soybean genotypes (again in 2-row plots) can be
clearly identified in Fig. 10A. In addition, we also derived a maize ca-
nopy image (Fig. 10B) with the same imaging setting but the images
were mosaicked manually using the photo merge function in Photo-
shop. Similarly, large phenotypic variation among the maize genotypes
can be clearly seen from the mosaicked image.

NU-Spidercam enables us to collect plant data that are not easy to
obtain with other phenotyping platforms. For instance, Fig. 11 shows
the thermal IR images (pseudo color-coded to enhance contrast) of a
two-row soybean plot (imaged repeatedly 12 times in a day between
12:00 and 6:00 PM local time). This time-series images shows a number
of interesting patterns regarding the temperature dynamics of crop
canopy versus soil. First, soil exhibited higher temperature than crop
canopy. Second, at some time points the canopy had a more uniform
temperature distribution (e.g., T2 and T3 in Fig. 11) while other times it
was quite heterogeneous. Sun lit part of the canopy had higher tem-
perature than the shaded part.

We further processed the time-series thermal IR images to segment
crop from soil and extracted the average temperatures of crop vs. soil.
In addition, we also extracted air temperature and PAR radiation from
the weather station at the time when each plot was measured. Fig. 12
shows the result from this analysis for all 36 plots we tracked that day
(7/19/2018). It can be seen that temperature of crop and soil increased

Fig. 9. Time series of plant height (extracted from LiDAR) and canopy cover (extracted from multispectral images) of soybean (180 two-row plots) in 2018.

Fig. 10. Mosaicked RGB images of plant canopies from the continuous motion
mode of NU-Spidercam A: The soybean canopy image mosaicked automatically
with Pix4D; B: The maize canopy image mosaicked manually with Photoshop.
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and peaked at ∼3:00 and ∼2:00 PM respectively local time, and then
decreased in late afternoon. The maximum temperature difference of
soil vs. crop was about 8.35 °C at 13:38PM. Interestingly, air tempera-
ture continued to rise till the end of measurement (∼5:30 PM). The
local solar noon was around 1:30 PM; which coincided with peak PAR.
There was large variation of canopy and soil temperature among the
different plots (scatters around the fitting line). This is likely caused by
genetic factor and the differences in vegetation cover among the plots.

Figs. 11 and 12 revealed complex spatial and temporal patterns of
crop canopy vs. soil temperature within a day. To the best of our
knowledge, this type of information has not been reported in the lit-
erature. Although thermal imaging is common in satellite and aerial
remote sensing, thermal images from these platforms are coarse in
spatial resolution and not able to provide this level of spatial granu-
larity. Capturing the temporal dynamics of canopy temperature for
different plots as shown in Fig. 12 is even more challenging for the
conventional phenotyping platforms including UAVs and ground-based
phenocarts, as it may not be practical to go over the field multiple times
in a day using these platforms.

Canopy temperature is a critical variable and is widely used to relate
leaf stomatal conductance or water stress (Li et al., 2014) and for de-
termining the irrigation timing and yield vs. crop water stress re-
lationships (Irmak et al., 2000; Payero and Irmak, 2006). Non-imaging
infrared radiometers are often employed in the field for this purpose.
One of the potential problems with the non-imaging sensor is the mix of

canopy and soil within sensor’s field of view, which would bias the
measurement. Furthermore, the degree of bias depends on: (1) the
percent of vegetation cover and (2) the time of measurement during a
day. It would be challenging to decouple these two confounding factors
for the non-imaging sensor. Another important challenge with using
non-imaging infrared thermometers is that multiple measurements
from E-W and N-S directions must be taken into account for sun angle
impact on canopy temperature, which also requires additional time.
Since the measurements are taken directly above the crop canopy with
the Spidercam thermal IR imagery, this challenge is minimized.
Therefore, we expect this type of measurements from NU-Spidercam
will allow us to better utilize thermal IR images as a tool for drought
and water use related phenotyping.

Fig. 13 shows canopy reflectance of selected soybean and maize
plots at 7/21, 7/26, 8/10, and 9/11 in 2018 with corresponding RGB
images. The RGB images below the spectral reflectance figures indicate
the canopy development in the FOV of the spectral measurement. The
increase of the spectral reflectance in NIR was found in the soybean plot
until 8/10, clearly due to the canopy development. Soybean leaves
started yellowing on 9/11 and the reflectance at the NIR region de-
creased. For the maize plot, canopy growth was not noticeable from
RGB images and the tassels were already established on 7/21. On 9/11,
most of the maize plant leaves were yellow with few green leaves left.
The spectral reflectance showed distinctive pattern comparing to that
from green vegetation.

Fig. 11. Visualization of thermal IR image time-series of a soybean plot captured during a day.

Fig. 12. Temporal dynamics of plot-level canopy temperature (Tc) and soil temperature (Ts) in contrast to air temperature (Ta) and photosynthetically active
radiation (PAR).
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From the spectral data, we could calculate a number of vegetation
indices from the canopy reflectance spectra in the future study, in-
cluding NDVI (Normalized Difference Vegetation Index), NDRE
(Normalized Difference Red Edge Index), PRI (Photochemical
Reflectance Index), and CCI (Canopy Chlorophyll Index). These vege-
tation indices are commonly used as proxies to infer structural and
biochemical properties of crops in both remote sensing and field phe-
notyping.

One application with great potential of the spectral data from our
NU-Spidercam system is the measurement of solar induced fluorescence
(SIF) signals from chlorophyll. SIF could be manifested as a small bump
riding on the reflectance signal at ∼760 nm (O2-A band) (Meroni et al.,
2009). ‘Spectral bump’ near 760 nm could be observed in the insets of
Fig. 13. For the spectral reflectance of the corn plot on 9/11, ‘spectral
bump’ disappeared as there was low leaf chlorophyll content for se-
nescent maize. SIF has been reported in the remote sensing literature
for broad-scale vegetation monitoring (Guanter et al., 2014), and
shown to be correlated with photosynthesis and primary productivity
(Sun et al., 2017). Radiometric calibration has not been carried out in
this study but we will work on the retrieval of SIF signals from the
spectral measurement which might lead to novel means of SIF for plant
phenotyping research.

4.4. Future development

Although the NU-Spidercam has been successfully developed and
tested, there are still many aspects regarding hardware, software, and
operation that need to be improved. In the near term, we will in-
corporate a push-broom hyperspectral camera into the sensor platform
and develop a continuous motion mode suitable for hyperspectral
image acquisition along with all other sensor modules. We will also

look into the control of the pan/tilt unit of the sensor platform which
will make non-nadir measurement (i.e., multi-angle imaging) possible.
In the long run, we also aim at developing a data infrastructure that will
store the phenotyping data into a database and send the data into
University of Nebraska’s High Performance Computing Center in a real
time fashion.

5. Concluding remarks

NU-Spidercam is one of three key investments in advanced pheno-
typing infrastructure at the University of Nebraska for phenotyping and
transformational plant biology research. The other two systems are a
Lab Scanalyzer HTS (LemnaTec GmbH) for Arabidopsis and a
Greenhouse Scanalyzer for plants of agriculture importance (maize,
sorghum, soybean, etc., Ge et al., 2016; Pandey et al., 2017; Liang et al,
2018). It is envisioned that these three research facilities will comple-
ment and amplify each other for plant genomics-phenomics discovery
pipelines. Forward phenomics can be performed where potential new
genotypes can first be fully characterized in the lab or greenhouse and
then tested under NU-Spidercam for their field relevance. Alternatively,
backward phenomics can be performed where a large number of can-
didate genotypes can go to the field first, and a few lines exhibiting
superiority in targeted traits can be imaged in greater details in the lab
or greenhouse to dissect their genetic basis. In either case, NU-Spi-
dercam will play a critical role to provide high precision field pheno-
typing and relevant environmental data for the transformational plant
biology research.

Although NU-Spidercam has a number of advantages (such as large
instrument payload, high measurement resolution and flexibility, and
less weather dependent), it is capital-intensive. The cost for developing
such a facility is high and may not be affordable to individual research

Fig. 13. Spectral reflectance of the selected soybean and maize plot on 7/21, 7/26, 8/10 and 9/11. The insets are the reflectance around the O2-A band (760 nm)
showing potential of retrieving solar induced chlorophyll fluorescence (SIF) signals from spectral data.
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group. On the other hand, technologies like UAVs and phenocarts are
low in deployment cost and widely adopted in field phenotyping re-
search. The intention of NU-Spidercam is not to replace other field
phenotyping devices such as phenocarts or UAVs. Rather, these systems
can work synergistically to increase the overall efficiency of plant
phenotyping and the overall rate of trait discovery. NU-Spidercam is
flexible and can position the sensor platform over crop plots precisely.
Phenotyping data from NU-Spidercam is therefore of better quality and
with greater spatial and temporal resolution. Knowledge gained from
NU-Spidercam can inform the implementation of other phenotyping
systems. For example, high quality hyperspectral imagery can be ob-
tained with NU-Spidercam to determine the best three or four spectral
bands to measure certain traits (e.g., chlorophyll content or water
content) of a crop. Then a lower-cost, light weight multispectral camera
dedicated to image those bands can be developed and launched on
UAVs to measure these traits in different environments and broader
areas.

NU-Spidercam is more than an advanced field phenotyping tool.
Due to its motion flexibility and sensor positioning/orientation accu-
racy, it can measure bidirectional reflectance distribution function of
plant canopy, which is fundamental but notoriously difficult to measure
in vegetation remote sensing. Combination of multispectral and thermal
IR images along with the weather station data potentially allows in-
ference of energy balance at the plot scale, and enables the calculation
of evapotranspiration of different genetic lines to be tested. Finally, by
varying agronomic inputs such as fertilizer or planting density, their
relationships with plant growth, structural, and spectral characteristics
can be rigorously quantified for various crops by NU-Spidercam. These
are fundamental knowledge that have broad implications in agronomy
and crop modeling research.
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