
ETH Library

Parallel likelihood calculation for
phylogenetic comparative models:
The SPLITT C++ library

Journal Article

Author(s):
Mitov, Venelin; Stadler, Tanja

Publication date:
2019-04

Permanent link:
https://doi.org/10.3929/ethz-b-000336648

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Methods in Ecology and Evolution 10(4), https://doi.org/10.1111/2041-210X.13136

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-6431-535X
https://doi.org/10.3929/ethz-b-000336648
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/2041-210X.13136
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Methods Ecol Evol. 2019;10:493–506.	 	 wileyonlinelibrary.com/journal/mee3	 | 	493

Received:	4	May	2018  |  Accepted:	23	November	2018
DOI: 10.1111/2041-210X.13136

R E S E A R C H A R T I C L E

Parallel likelihood calculation for phylogenetic comparative
models: The SPLITT C++ library

Venelin Mitov1,2  | Tanja Stadler1,2

1Department	of	Biosystems	Science	and	
Engineering,	ETH	Zürich,	Basel,	Switzerland
2Swiss	Institute	of	Bioinformatics,	Lausanne,	
Switzerland

Correspondence
Venelin	Mitov
Email:	vmitov@gmail.com	
and
Tanja	Stadler
Email:	tanja.stadler@bsse.ethz.ch

Funding information
V.M.	and	T.S.	thank	ETH	Zürich	for	funding.	
T.S.	is	supported	in	part	by	the	European	
Research	Council	under	the	7th	Framework	
Programme	of	the	European	Commission	
(PhyPD:	Grant	Agreement	Number	335529).

Handling	Editor:	Tamara	Münkemüller

Abstract
1.	 Phylogenetic	comparative	models	(PCMs)	have	been	used	to	study	macroevolution-
ary	patterns,	to	characterize	adaptive	phenotypic	 landscapes,	to	quantify	rates	of	
evolution,	to	measure	trait	heritability,	and	to	test	various	evolutionary	hypotheses.	
A	major	obstacle	to	applying	these	models	has	been	the	complexity	of	evaluating	
their	likelihood	function.	Recent	works	have	shown	that	for	many	PCMs,	the	likeli-
hood	can	be	obtained	in	time	proportional	to	the	size	of	the	tree	based	on	post-order	
tree	traversal,	also	known	as	pruning.	Despite	this	progress,	inferring	complex	multi-
trait	PCMs	on	large	trees	remains	a	time-intensive	task.	Here,	we	study	parallelizing	
the	pruning	algorithm	as	a	generic	technique	for	speeding-up	PCM-inference.

2.	 We	implement	several	parallel	traversal	algorithms	in	the	form	of	a	generic	C++	
library	for	Serial	and	Parallel	LIneage	Traversal	of	Trees	(SPLITT).	Based	on	SPLITT,	
we	provide	examples	of	parallel	likelihood	evaluation	for	several	popular	PCMs,	
ranging	from	a	single-trait	Brownian	motion	model	to	complex	multi-trait	Ornstein-
Uhlenbeck	and	mixed	Gaussian	phylogenetic	models.

3.	 Using	the	phylogenetic	Ornstein–Uhlenbeck	mixed	model	(POUMM)	as	a	show-
case,	we	run	benchmarks	on	up	to	24	CPU	cores,	reporting	up	to	an	order	of	mag-
nitude	parallel	speed-up	for	the	likelihood	calculation	on	simulated	balanced	and	
unbalanced	trees	of	up	to	100,000	tips	with	up	to	16	traits.	Noticing	that	the	paral-
lel	speed-up	depends	on	multiple	factors,	the	SPLITT	library	 is	capable	to	auto-
matically	select	the	fastest	traversal	strategy	for	a	given	hardware,	tree-topology,	
and	data.	Combining	SPLITT	likelihood	calculation	with	adaptive	Metropolis	sam-
pling	on	real	data,	we	show	that	the	time	for	Bayesian	POUMM	inference	on	a	tree	
of	10,000	tips	can	be	reduced	from	several	days	to	less	than	an	hour.

4.	 We	conclude	that	parallel	pruning	effectively	accelerates	the	likelihood	calcula-
tion	and,	thus,	the	statistical	inference	of	Gaussian	phylogenetic	models.	For	time-
intensive	 Bayesian	 inferences,	 we	 recommend	 combining	 this	 technique	 with	
adaptive	Metropolis	sampling.	Beyond	Gaussian	models,	the	parallel	tree	traversal	
can	be	applied	to	numerous	other	models,	including	discrete	trait	and	birth–death	
population	dynamics	models.	Currently,	SPLITT	supports	multi-core	shared	mem-
ory	architectures,	but	can	be	extended	 to	distributed	memory	architectures	as	
well	as	graphical	processing	units.

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2018	The	Authors.	Methods in Ecology and Evolution	published	by	John	Wiley	&	Sons	Ltd	on	behalf	of	British	Ecological	Society.

www.wileyonlinelibrary.com/journal/mee3
https://orcid.org/0000-0002-5227-5191
https://orcid.org/0000-0001-6431-535X
mailto:vmitov@gmail.com
mailto:tanja.stadler@bsse.ethz.ch
http://creativecommons.org/licenses/by/4.0/

494  |    Methods in Ecology and Evoluon MITOV and STadLER

1  | INTRODUC TION

Phylogenetic	comparative	models	(PCMs)	have	been	used	for	study-
ing	the	evolution	of	various	biological	species,	ranging	from	micro-	
organisms	to	animals	and	plants.	Ultimately,	these	statistical	models	
aim	to	understand	the	intricate	connections	between	the	macroevo-
lutionary	patterns	observable	 in	phenotype	data	from	phylogenet-
ically	linked	species	and	the	fundamental	mechanisms	of	evolution	
operating	on	the	microevolutionary	timescale,	such	as	natural	selec-
tion	and	random	genetic	drift	(Felsenstein,	1985;	Hansen	&	Martins,	
1996;	Harmon,	2018;	Lande,	1976;	Losos,	2011;	Uyeda	&	Harmon,	
2014;	Uyeda,	Zenil-	Ferguson,	&	Pennell,	2018).	This	quest	has	led	to	
the	 recent	 development	 of	 complex	multi-	trait	multi-	regime	mod-
els	of	evolution	(Bastide,	An′e,	Robin,	&	Mariadassou,	2018;	Clavel,	
Escarguel,	&	Merceron,	2015;	Manceau,	Lambert,	&	Morlon,	2016;	
Uyeda	&	Harmon,	2014).	The	inherent	complexity	of	these	models	
is	posing	new	challenges	in	terms	of	parameter	inference	and	model	
selection.

In	 their	 effort	 to	 speed-	up	 PCM	 inference,	 recent	works	 have	
shown	 that,	 for	 a	 broad	 family	 of	 PCMs,	 the	 likelihood	 of	 an	 ob-
served	 phylogenetic	 tree	 and	 data	 conditioned	 on	 the	 model	 pa-
rameters	 can	be	 computed	 in	 time	proportional	 to	 the	 size	of	 the	
tree	(FitzJohn,	2012;	Goolsby,	Bruggeman,	&	An′e,	2016;	Ho	&	Ané,	
2014;	Mitov,	 Bartoszek,	 Asimomitis,	 &	 Stadler,	 2018).	 This	 family	
includes	Gaussian	models	like	Brownian	motion	(BM)	and	Ornstein-	
Uhlenbeck	(OU)	phylogenetic	models	as	well	as	some	non-	Gaussian	
models	 like	phylogenetic	 logistic	 regression	 (Ho	&	Ané,	2014;	 Ives	
&	Garland,	2010;	Mitov	et	al.,	2018;	Paradis	&	Claude,	2002).	All	of	
these	likelihood	calculation	techniques	rely	on	post-	order	tree	tra-
versal	also	known	as	pruning	(Felsenstein,	1973,	1981,	1983).

For	moderate	numbers	of	 traits,	 combining	pruning	algorithms	
for	likelihood	calculation	with	gradient-	based	optimization	(Boyd	&	
Vandenberghe,	2004)	enables	maximum	likelihood	model	inference	
within	seconds	on	contemporary	computers,	even	for	phylogenies	
of	many	thousands	of	tips	(Ho	&	Ané,	2014).	Despite	its	simple	in-
terpretation	and	several	useful	statistical	properties,	the	maximum	
likelihood	estimator	has	often	been	criticised	for	being	a	point	es-
timator,	uninformative	about	the	likelihood	surface,	often	prone	to	
be	a	local	optimum,	and	failing	to	quantify	the	uncertainty	of	a	pri-
ori	 assumed	models	 for	 comparative	data	 (Bishop,	2007;	Uyeda	&	
Harmon,	2014).

As	an	elegant	alternative,	Bayesian	approaches	such	as	Markov	
chain	 Monte	 Carlo	 (MCMC)	 allow	 incorporating	 prior	 biological	
knowledge	 in	 the	model	 inference,	 provide	 posterior	 samples	 and	
high	posterior	density	intervals	for	the	model	parameters	and,	in	the	
case	of	multi-	regime	models,	integrate	the	inference	of	shifts	in	the	
evolutionary	regimes	driven	by	the	dynamics	of	 the	adaptive	phe-
notypic	landscape	(FitzJohn,	2012;	Slater,	Harmon,	&	Alfaro,	2012;	

Uyeda	 &	 Harmon,	 2014).	 In	 contrast	 with	 ML	 inference,	 though,	
Bayesian	inference	methods	require	many	orders	of	magnitude	more	
likelihood	evaluations.	This	presents	a	bottleneck	in	Bayesian	analy-
sis,	in	particular,	for	complex	models	of	many	unknown	parameters	
or	when	 faced	with	 large	 phylogenies	 of	many	 thousands	 of	 tips,	
such	as	transmission	trees	from	large-	scale	epidemiological	studies,	
for	example,	Alizon	et	al.	(2010);	Shirreff	et	al.	(2013);	Hodcroft	et	al.	
(2014);	Bertels	et	al.	(2017);	Mitov	and	Stadler	(2018).	While	big	data	
should	provide	the	needed	statistical	power	to	fit	a	complex	model,	
the	time	needed	to	perform	a	full	scale	Bayesian	fit	often	limits	the	
choice	to	a	faster	but	 less	 informative	ML-	inference,	or	a	Bayesian	
inference	of	a	simplified	model.

Speeding-	up	Bayesian	inference	is	an	active	topic	in	applied	sta-
tistics	with	recent	advances	that	can	be	classified	in	several	groups.	
One	 group	 of	methods	 are	 adaptive	 variants	 of	 the	 random	walk	
Metropolis	algorithm	(Metropolis,	Rosenbluth,	Rosenbluth,	Teller,	&	
Teller,	1953)	that	aim	to	decrease	the	number	of	MCMC	iterations	by	
performing	“on-	the-	fly”	changes	of	the	jump	distribution,	based	on	
what	has	been	“learned”	about	the	parameter	space	from	past	iter-
ations	(Haario,	Saksman,	&	Tamminen,	2001;	Vihola,	2012).	A	major	
advantage	of	these	methods	is	that	they	are	generic	with	respect	to	
the	models	and	can	be	implemented	as	general	purpose	Metropolis	
samplers	 (e.g.	 adaptMCMC;	 Scheidegger,	 2017).	 A	 second	 group	
are	 “pre-	fetching”	methods	which	modify	 the	Metropolis-	Hastings	
algorithm	so	that	 it	speculatively	executes	sequences	of	 individual	
likelihood	 calls	 in	 parallel,	 “hoping”	 that	 these	 sequences	 tend	 to	
match	 the	actual	accepted	states	of	 the	MCMC	 (Angelino,	Kohler,	
Waterland,	Seltzer,	&	Adams,	2014;	Brockwell,	2006).	Another	pos-
sibility	to	use	multiple	processor	power,	which	could	potentially	be	
combined	with	the	above	methods,	is	to	delegate	the	parallelization	
problem	to	a	low	level	linear	algebra	library,	for	example,	OpenBLAS	
(Wang,	Zhang,	Zhang,	&	Yi,	2013).

This	article	contributes	to	a	separate	body	of	work,	namely,	the	
ensemble	of	model-	specific	approaches	that	parallelize	the	 likeli-
hood	calculation	by	using	specific	features	of	the	likelihood	func-
tion.	These	include	factorizations	of	the	likelihood	into	a	product	
of	components	associated	with	conditionally	independent	subsets	
of	the	model	parameters	 (Goudie,	Turner,	De	Angelis,	&	Thomas,	
2017;	Whiley	 &	Wilson,	 2004)	 or	 the	 observed	 variables	 (Ayres	
et	al.,	 2012).	Often,	 this	 factorization	 relies	 on	 strong	model	 as-
sumptions,	 such	 as	 a	 hierarchical	 structure	 of	 the	model	 param-
eters	 or	 independence	 of	 the	 observed	 variables.	 A	 common	
approach	used	in	software	packages	like	BEAST	(Bouckaert	et	al.,	
2014;	Drummond,	Suchard,	Xie,	&	Rambaut,	2012)	 is	 to	combine	
the	 factorization	with	 caching	 and	 reusing	of	 some	of	 the	previ-
ously	calculated	 likelihood	components	 in	consecutive	MCMC	it-
erations,	as	long	as	these	are	not	affected	by	the	proposed	jump	in	
parameter	space.

K E Y W O R D S

continuous	time	Markov	process,	continuous	trait,	discrete	character,	pre-order	traversal

     |  495Methods in Ecology and EvoluonMITOV and STadLER

For	 a	 phylogenetic	 comparative	 model,	 though,	 the	 likelihood	
cannot	(in	general)	be	factorized	across	parameter	groups,	trait	inde-
pendence	is	acceptable	only	as	a	null	hypothesis	and,	with	a	moder-
ate	number	of	traits	and	pruning	likelihood	calculation,	parallelizing	
algebraic	operations	(on	low-	dimensional	vectors	and	matrices)	is	in-
efficient.	Hence,	we	explore	the	parallelization	of	the	likelihood	cal-
culation	at	the	level	of	traversing	the	phylogenetic	tree,	that	is,	the	
pruning	 itself.	Parallel	 tree	traversal	has	been	studied	 in	computer	
science,	mostly	 for	 the	purposes	of	parallel	 tree	 contraction	 (Reif,	
1989),	 automated	 task	 scheduling	 (Qamnieh,	2015)	 and	 for	phylo-
genetic	 inference	from	multiple	sequence	alignment	data	 (Ayres	&	
Cummings,	2017;	Ayres	et	al.,	2012).	Capitalizing	on	the	same	ideas,	
we	developed	SPLITT:	a	shared-	memory	C++	library	for	Serial	and	
Parallel	LIneage	Traversal	of	Trees.	While	we	focus	on	Gaussian	phy-
logenetic	models	as	the	main	application	of	the	library,	we	designed	
the	SPLITT	programming	interface	to	be	generic	with	respect	to	the	
node-	traversal	operations,	hoping	that	the	library	could	potentially	
find	use	in	different	models,	including	birth-	death	population	mod-
els	and	discrete	trait	models.	We	tested	SPLITT	on	 large	trees	 (up	
to	N	=	100,000)	and	on	different	topologies,	including	balanced	and	
highly	unbalanced	trees.	These	tests	proved	a	nice	property	of	the	
parallel	pruning	algorithm,	namely	the	fact	that	its	parallel	efficiency	
increases	with	the	tree	size	as	well	as	the	complexity	of	the	node-	
traversal	operations.	Thus,	for	large	trees	and	complex	models,	the	
parallel	speed-	up	is	limited	either	by	the	number	of	available	proces-
sors	or	by	another	limited	resource	such	as	the	memory	bandwidth.	
Finally,	 we	 showcase	 that	 our	 parallel	 pruning	 algorithm	 coupled	
with	adaptive	Metropolis	samplers	dramatically	reduces	the	time	for	
Bayesian	analysis	of	trees	with	thousands	of	tips.

2  | MATERIAL S AND METHODS

In	this	section,	we	introduce	SPLITT	and	show	through	an	example	how	
it	is	used	to	parallelize	a	pruning	algorithm	over	a	given	phylogenetic	
tree	and	data.	Further	technical	details	and	examples	are	provided	in	
Sections	2	and	3	of	the	Supporting	Information	and	the	SPLITT	online	
documentation	(https://venelin.github.io/SPLITT/index.html).

2.1 | A general framework for parallel tree traversal

SPLITT	implements	a	general	framework	for	specifying	the	type	
of	 trait	 data,	 the	 model	 parameters	 and	 the	 “node-	traversal”	
operations,	 which	 are	 executed	 in	 a	 pre-	order	 or	 a	 post-	order	
traversal	 of	 the	 tree	 (Section	1,	 Supporting	 Information).	 The	
node-	traversal	 operations	 represent	 user-	defined	 rules	 specify-
ing	 how	 a	 set	 of	 variables	 associated	 with	 each	 node,	 called	 a	
“node-	state,”	is	initialized	and	updated	in	the	computer	memory,	
based	on	the	input	tree	and	data,	the	model	parameters,	and	the	
node-	states	 of	 the	 previously	 visited	 nodes.	 At	 the	 end	 of	 the	
traversal,	 the	final	node-	state	values	are	accessible	for	calculat-
ing	a	quantity	of	 interest,	such	as	the	likelihood	of	model,	given	
the	tree	and	the	data.

The	node-	states	 can	be	 calculated	 in	 parallel	 for	 any	 group	of	
siblings	or	more	remote	cousins	on	the	tree.	Formally,	SPLITT	makes	
the	following	key	assumption:

Assumption 1 Calculating	the	state	of	a	node	j can be done
independently	from	the	calculation	of	the	state	of	any	other	
node k,	provided	that	neither	j	is	an	ancestor	of	k, nor k	is	an	
ancestor	of	j.

To	maximize	the	potential	for	parallel	execution,	the	life	cycle	of	
a	node	during	traversal	is	divided	into	three	operations	(Figure	1c,d):

1. InitNode	 :	 initializes	 the	 node-state	 based	 on	 the	 input	 data	 and	
model	 parameters	 only.	 This	 operation	 does	 not	 depend	 on	 the	
states	 of	 other	 nodes.	 Hence,	 it	 is	 fully	 parallelizable.

2. VisitNode	:	“updates”	the	state	of	its	operand	node	based	on	the	
state	of	either	the	node's	parent	if	in	pre-order	traversal,	or	the	
node's	daughters	if	in	post-order	traversal.	This	operation	can	be	
executed	in	parallel	for	any	group	of	nodes	satisfying	Assumption	
1	and	having	their	parents	“Visit”-ed	(if	a	pre-order	traversal)	or	
their	 daughters	 “Prune”-ed	 (if	 a	 post-order	 traversal,	 see	
PruneNode	 below).	 To	 prevent	 a	 possible	 race-condition,	 in	 a	
post-order	traversal,	this	operation	should	not	modify	the	state	
of	the	parent	or	any	ancestor	of	the	operand	node.	Executing	this	
operation	on	the	root	node	is	optional	and	not	done	by	default.

3. PruneNode	(post-order	traversal	only):	“communicates”	the	state	
of	a	node	to	its	parent	node.	SPLITT	ensures	that	this	operation	
is	synchronized	between	siblings,	that	is,	daughters	of	the	same	
parent	node.	Hence,	this	operation	is	convenient	for	accumula-
tion	(e.g.	summation)	of	state-variables	of	the	daughters	into	the	
state	of	their	parent	(Figure	1c).	This	operation	is	not	defined	for	
the	root	of	the	tree.

The	parallel	speed-	up	can	depend	on	multiple	factors,	including	the	
balancedness	of	the	tree,	and	the	computing	and	memory	complexity	of	
the	traversal	operations,	which	can	be	different	between	nodes	in	the	
tree.	Noticing	that	there	is	no	one-size-fit-all	parallel	traversal	strategy	
that	guarantees	fastest	execution,	previous	works	have	studied	queue-	
based	and	range-	based	parallelization	strategies	(Ayres	&	Cummings,	
2017;	Qamnieh,	2015;	Reif,	1989).	SPLITT	implements	such	algorithms	
called	“orders”	(Section	1.1,	Supporting	Information).	As	a	default	set-
ting,	SPLITT	implements	a	mode	“auto,”	in	which	it	compares	the	exe-
cution	time	of	different	parallel	orders	during	the	first	several	calls	on	
a	given	tree	and	data,	choosing	the	fastest	one	for	all	subsequent	calls.

2.2 | A showcase: the phylogenetic (Ornstein-
Uhlenbeck) mixed model

To	 illustrate	 the	 use	 and	 to	 test	 the	 SPLITT	 library,	 we	 devel-
oped	 two	 variants	 of	 the	 so	 called	 phylogenetic	 mixed	 model	
(PMM)—the	 original	 PMM	 assuming	 a	 Brownian	motion	 process	
(Housworth,	Martins,	&	Lynch,	2004;	Lynch,	1991),	and	its	recent	
extension	to	an	Ornstein-	Uhlenbeck	process,	the	POUMM,	which	

https://venelin.github.io/SPLITT/index.html

496  |    Methods in Ecology and Evoluon MITOV and STadLER

F IGURE 1 Parallel	pruning	for	calculating	the	log-	likelihood	of	the	phylogenetic	mixed	model

(c)

(a)

(d)

(e)

(b)

     |  497Methods in Ecology and EvoluonMITOV and STadLER

we	and	other	authors	have	used	previously	to	analyse	the	evolu-
tion	of	set-	point	viral	load	in	HIV	patients	(Mitov	&	Stadler,	2018	
and	references	therein).

Figure	1b	shows	the	mathematical	formulation	of	the	PMM	(see	
Section	2.2,	Supporting	Information	for	a	more	general	mathemati-
cal	formulation	of	the	P(OU)MM	model	and	a	biological	interpreta-
tion	of	its	parameters).

The	key	assumption	enabling	a	pruning	algorithm	to	evaluate	the	
P(OU)MM	likelihood	is	that	the	trait	evolves	independently	in	each	
lineage	descending	from	a	branching	point	in	 .	This	allows	to	fac-
torize	 the	 likelihood	 function	over	 the	 sub-	trees	 in	 ,	 treating	 the	
values	of	g	at	the	branching	points	as	unknown	variables	which	are	
integrated	over	their	distributions	expected	under	the	model	param-
eters,	Θ.	This	integration	leads	to	a	simple	formulation	of	the	P(OU)
MM	 log-	likelihood	 as	 a	 quadratic	 polynomial	 of	 gM	 (Theorem	S1,	
Section	2.2,	Supporting	Information):

where	the	coefficients	aM, bM and cM	are	functions	of	the	tree	topol-
ogy,	branch	lengths,	the	observed	trait	values	and	the	model	param-
eters.	Denoting	by	Desc(j)	the	set	of	direct	descendants	(daughters)	
of	node	j,	for	the	PMM,	these	functions	are	given	by	the	following	re-
cursive	formulas	(Theorem	S1,	Section	2.2,	Supporting	Information):

Based	 on	 Equation	2,	 we	 define	 the	 node-	traversal	 opera-
tions	(InitNode,	VisitNode	and	PruneNode)	as	shown	on	Figure	1c.	
Figure	1d	shows	how	the	node-	states	are	initialized	and	updated	in	
parallel	“prune-	ranges”	for	an	example	tree	and	trait	data	and	model	
parameters	 (Figure	1a,d).	After	the	traversal	 the	values	aM, bM and
cM	from	the	root-	state	are	plugged	in	Equation	1	to	obtain	the	log-	
likelihood	value	(Figure	1e).

2.3 | Generalization to multi- trait Ornstein-
Uhlenbeck and mixed Gaussian phylogenetic models

The	quadratic	polynomial	representation	of	the	log-	likelihood	func-
tion	(Equation	1)	can	be	generalized	to	a	broader	family	of	models.	
In	 Section	2.2,	 Supporting	 Information,	 we	 show	 how	 the	 coeffi-
cients	aM, bM and cM	can	be	calculated	for	the	single-	trait	Ornstein-	
Uhlenbeck	mixed	model.	In	a	separate	work	(Mitov	et	al.,	2018),	we	
extend	this	integration	technique	to	evaluate	the	likelihood	of	multi-	
trait	Ornstein-	Uhlenbeck	and	mixed	Gaussian	phylogenetic	models,	
that	 is,	models	 in	which	different	 types	of	models	are	assigned	 to	

different	lineages	of	the	tree.	These	models	have	been	implemented	
in	several	r-	packages	summarized	in	the	following	sub-	section.

2.4 | Software

We	provide	SPLITT	as	a	C++	 library	 licensed	under	version	3.0	of	
the	GNU	 Lesser	General	 Public	 License	 (LGPL	 v3.0)	 and	 available	
at	 https://github.com/venelin/SPLITT.git.	 In	 its	 current	 implemen-
tation,	the	library	uses	the	C++11	language	standard,	the	standard	
template	library	and	the	OpenMP	standard	for	parallel	processing.

The	single-	trait	POUMM	has	been	implemented	in	the	r-	package	
POUMM,	 available	 at	 https://github.com/venelin/POUMM.git.	
Section	3,	Supporting	Information	provides	details	on	the	model	in-
ference	procedure	 implemented	within	 the	package	and	 reports	 a	
test	of	technical	correctness.

The	generalization	to	a	multi-	trait	mixed	Gaussian	phylogenetic	
model	(MGPM)	has	been	implemented	in	the	r-	package	PCMBase	(Mitov	
et	al.,	 2018)	 available	 at	 https://github.com/venelin/PCMBase.git.	
An	 accompanying	 package	 called	 PCMBaseCpp,	 which	 is	 based	
on	 SPLITT,	 provides	 a	 parallel	 C++	 implementation	 of	 the	 likeli-
hood		calculation	for	the	MGPM	model.	This	package	is	available	at	
https://github.com/venelin/PCMBaseCpp.git.

2.5 | Technical correctness

To	test	the	technical	correctness	of	the	SPLITT	library	and	the	higher	
level	POUMM,	PCMBase	and	PCMBaseCpp	packages,	we	used	the	
method	of	posterior	quantiles	 (Cook,	Gelman,	&	Rubin,	2006).	For	
the	 single-	trait	POUMM	 implementation	 (POUMM	 r-	package),	we	
report	 the	 technical	 correctness	 test	 in	 Section	3.2,	 Supporting	
Information.	 For	 the	 multi-	trait	 implementation	 (PCMBase	 and	
PCMBaseCpp	 r-	packages),	 the	 technical	 validation	 is	 reported	 in	
Mitov	et	al.	(2018).

2.6 | Simulations

We	evaluated	the	performance	of	the	SPLITT	library	using	the	single-	
trait	and	multi-	trait	phylogenetic	Ornstein-	Uhlenbeck	mixed	model	
(POUMM)	as	a	showcase.	The	single-	trait	POUMM	was	implemented	
in	the	r-	package	POUMM	 (Section	3,	Supporting	Information),	based	
on	 the	 quadratic	 polynomial	 representation	 of	 the	 log-	likelihood	
(Section	2.2,	 Supporting	 Information).	 The	 multi-	trait	 POUMM	
version	was	 implemented	 in	 the	 r-	package,	PCMBaseCpp,	 using	 a	
multi-	trait	generalization	of	the	quadratic	polynomial	representation	
described	in	Mitov	et	al.	(2018).	The	POUMM	is	a	suitable	model	for	
a	comparative	benchmark,	because	a	number	of	r-	packages	provide	
similar	OU-	based	phylogenetic	models,	using	C++	for	the	likelihood	
implementation.	 These	 include,	 among	 others,	 geiger (Pennell
et	al.,	2014)	and	diversitree	(FitzJohn,	2012)	for	the	single-	trait	
case	and	Rphylopars	(Goolsby	et	al.,	2016)	for	the	multi-	trait	case.

We	 used	 the	 r-	package	 apTreeshape	 (Bortolussi,	 Durand,	
Blum,	&	Francois,	2012)	to	generate	tree	topologies	of	sizes	N ∈ {100;
1,000;	10,000;	100,000}.	 To	 generate	 the	 random	 trees,	we	used	

(1)��(Θ)=aMg
2

M
+bMgM+cM,

https://github.com/venelin/SPLITT.git
https://github.com/venelin/POUMM.git
https://github.com/venelin/PCMBase.git
https://github.com/venelin/PCMBaseCpp.git

498  |    Methods in Ecology and Evoluon MITOV and STadLER

the	function	rtreeshape()	with	a	biased	model.	A	parameter	p in
this	model	controls	the	disproportion	of	branching	rates	for	the	left	
and	right	lineages	starting	from	a	given	parent	node.	For	each	N, we
used	four	settings	for	p	as	follows:

1. p = 0.5	 corresponding	 to	 equal	 left	 and	 right	 branching	 rates	
and	 resulting	 in	 balanced	 trees;

2. p = 0.1	 corresponding	 to	 unbalanced	 trees	 in	which	 one	 of	 any	
two	sibling	branches	(sharing	the	same	parent	node)	splits	at	rate	
p = 0.1,	while	the	other	splits	at	rate	p′ = 1 − p = 0.9	(time	units	are	
arbitrary,	so	we	can	assume	that	the	rates	correspond	to	splitting	
probabilities	per	unit	time).

3. p = 0.01	corresponding	to	very	unbalanced	trees	(splitting	rates	of	
p = 0.01 and p′ = 0.99	for	any	couple	of	sibling	branches);

4. p = 0.01/N	corresponding	to	a	ladder-like	tree	(see	Figure	2).

This	 resulted	 in	 a	 total	 of	 16	 topologies	 (trees	 for	N = 1, 000
shown	 on	 Figure	2).	 For	 each	 topology,	 random	 branch	 lengths	
were	assigned	overwriting	the	default	branch	lengths	of	1	assigned	
by rtreeshape().	 Since	 the	 OU-	implementations	 in	 the	 current	
diversitree and Rphylopars	 versions	 do	 not	 support	 non-	
ultrametric	 trees,	 each	 tree	 was	 ultrametrized	 (adjusting	 branch	
lengths	 so	 that	 all	 tips	 have	 the	 same	 root-	tip	 distance).	 For	 each	
tree,	we	generated	random	trait-	values	by	simulating	the	POUMM	
model	using	random	parameters.

2.7 | Other pruning algorithm examples

In	Sections	2.1	and	2.2.2,	Supporting	Information,	we	describe	an-
other	pruning	algorithm	for	calculating	the	POUMM	log-	likelihood,	
which	is	based	on	the	generalized	3-	point	structure	algorithm	(Ho	&	
Ané,	2014).	 In	Section	2.3,	Supporting	 Information,	we	give	an	ex-
ample	of	a	pruning	algorithm	for	calculating	the	likelihood	of	a	dis-
crete	(binary)	trait	observed	at	the	tips	of	a	phylogenetic	tree.

3  | RESULTS

3.1 | Time for preprocessing the tree

Each	of	the	tested	packages	implements	a	preprocessing	step	ini-
tializing	cached	data-	structures	that	are	re-	used	during	likelihood	
calculation.	In	the	case	of	SPLITT,	this	is	the	constructor-	function	
of	the	internal	Tree	structure;	in	the	case	of	diversitree,	this	
is	the	function	make.ou;	in	the	case	of	geiger,	this	is	the	internal	
function	bm.lik.	We	 note	 that	 the	 time	 for	 creating	 the	 cache	
structure	 is	not	 important	 in	scenarios	of	fitting	Gaussian	phylo-
genetic	models	to	a	fixed	tree	and	data	(created	once,	at	the	be-
ginning	of	 the	 inference	process).	However,	 these	 times	become	
important	in	the	case	when	the	tree	topology	is	inferred	together	
with	 the	 model	 parameters	 from	 trait	 and	 sequence	 alignment	
data.

F IGURE 2 Test	tree	topologies	for	N = 1,000.	For	visualization	purpose,	all	branch	lengths	have	been	set	to	1,	whereas	the	random	
branch	lengths	were	used	in	the	benchmarks.	Note	that	the	tree	for	p = 0.5	is	nearly	but	not	perfectly	balanced	due	to	the	random	nature	of	
the	tree	generation	process,	as	well	as	N	not	being	an	exact	degree	of	2

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)

     |  499Methods in Ecology and EvoluonMITOV and STadLER

We	measured	the	preprocessing	time	on	the	16	trees	(Table	1).	
The	 times	 scaled	 linearly	 with	 the	 size	 of	 the	 tree	 for	 the	 pack-
ages	 using	 the	 SPLITT	 library	 (POUMM and PCMBaseCpp)	 and	 for
diversitree.	 For	 these	 packages	 the	 time	was	 not	 affected	 by	
the	 unbalancedness	 of	 the	 tree.	 For	geiger,	we	 observed	 longer	
times,	both	for	bigger	N	as	well	as	for	more	unbalanced	trees.	For	
N = 100,000 and p = 0.01/N,	 both,	 diversitree and geiger
failed	with	a	stack-overflow	error.	The	relatively	short	times	for	
the	SPLITT-	based	POUMM and PCMBaseCpp	packages	indicate	that	
SPLITT	could	potentially	be	used	for	phylogenetic	inference.

3.2 | Time for POUMM likelihood calculation

To	 measure	 the	 likelihood	 calculation	 time,	 we	 ran	 performance	
benchmarks	on	a	personal	computer	(PC)	running	OS	X	on	an	Intel(R)	
Core(TM)	i7-	4850HQ	CPU	@	2.30	GHz	with	4	CPU	cores,	and	on	the	
“Euler”	 scientific	 cluster	 (https://scicomp.ethz.ch/wiki/Euler)	 run-
ning	Linux	OS	on	an	Intel(R)	Xeon(R)	CPU	E5-	2680	v3	@	2.50	GHz	
running	 24	 physical	 cores.	 Here,	 we	 comment	 on	 the	 calculation	
times	on	the	PC,	noting	that	the	times	on	Euler	for	up	to	4	CPU	cores	
were	nearly	equal	(Supporting	Information	Figures	S2–S6).

We	distinguish	 the	different	 implementations	according	 to	 the	
following	criteria:

•	 Number	of	traits:	we	distinguish	between	single-trait	implemen-
tations,	 that	 is,	geiger, diversitree and POUMM,	 and	multi-
trait	 implementations,	 that	 is,	 Rphylopars and PCMBaseCpp.
For	the	multi-trait	implementations,	we	measured	the	time	for	1,	
4,	8	and	16	traits.

•	 Mode:	 denotes	 whether	 the	 implementation	 is	 single	 threaded	
using	 one	 physical	 core	 of	 the	 CPU—serial,	 or	 multi-threaded,	
running	as	many	threads	as	there	are	physical	CPU	cores—parallel;

•	 Order:	 denotes	 the	 order	 in	 which	 the	 prune-able	 nodes	 are	
processed.	 We	 tested	 three	 possible	 orders:	 postorder—the	
nodes	 are	 processed	 sequentially;	 queue-based—the	 nodes	 are	
processed	 in	 parallel	 as	 they	 enter	 the	 queue	 (Algorithm	 S1,	

Section	2,	 Supporting	 Information),	 synchronized	 thread	 access	
to	 the	 queue;	 range-based—the	 nodes	 in	 each	 pruning	 genera-
tion	are	processed	in	order	of	their	allocation	in	memory,	no	need	
for	 a	 synchronized	 access	 to	 a	 queue	 (Algorithm	 S2,	 Section	2,	
Supporting	Information).

•	 Implementation:	the	r-package	and	the	back-end	used	(R	or	C++).

The	 likelihood	 calculation	 time	 was	 measured	 using	 the	 R-	
function	“sys.time”	calling	the	specific	likelihood	implementation	on	
a	fixed	set	of	parameters	n = 100	times,	then,	dividing	the	cumula-
tive	time	by	n.	To	avoid	influence	from	other	processes	running	on	
the	same	PC,	the	benchmark	was	run	after	a	restart	of	the	operating	
system	(OS).	The	resulting	times	for	the	single-	trait	implementations	
running	on	the	PC	are	shown	on	Figure	3.

On	small	trees	of	100	tips,	the	fastest	single-	trait	POUMM	imple-
mentations	were	 the	serial	C++	 implementations	 from	the	packages	
POUMM and diversitree	 (about	0.03	ms);	 the	 range-	based	parallel	
implementation	was	nearly	as	fast	on	balanced	trees	(p = 0.5)	but	was	
progressively	slower	on	unbalanced	trees.	The	geiger	implementation	
was	nearly	an	order	of	magnitude	slower	(0.2	ms).	The	POUMM	queue-	
based	 parallel	 implementation	 was	 nearly	 100	 times	 slower	 (nearly	
2	ms),	 presumably	 due	 to	 the	 excessive	 synchronization	 overhead.	
The	serial	R	implementation	from	the	diversitree	package	was	the	
slowest	 (above	2	ms),	which	was	expected,	since	the	R	 interpreter	 is	
notorious	for	its	slow	speed	compared	to	compiled	languages	like	C++.	
On	bigger	balanced	 trees	 (N > 100, p = 0.5),	 the	 range-	based	parallel	
implementation	took	over,	reaching	up	to	4×	speed-	up	with	respect	to	
the	range-	based	serial	implementation,	up	to	5×	speed-	up	with	respect	
to	the	post-	order	serial	implementation	and	up	to	10×	speed-	up	with	
respect	to	the	diversitree	serial	C++	implementation.	This	reveals	
a	consistent	speed-	up	for	all	trees	except	the	ladder	tree,	where	paral-
lelization	of	the	internal	nodes	is	not	possible	(see	Figure	2).	The	time	
for	 the	other	 serial	 implementations	and	 the	POUMM	queue-	based	
parallel	implementation	scaled	up	linearly	with	N.

The	times	for	the	multi-	trait	 implementations	running	on	the	PC	
are	 shown	 on	 Figure	4.	 For	 these	 implementations,	 the	 likelihood	

N Implementation p = 0.5 (ms) p = 0.1 (ms) p = 0.01 (ms)
p = 0.01/N
(ms)

100 geiger 5 6 9 9

100 diversitree 4 4 4 4

100 SPLITT 2 2 2 1

1,000 geiger 18 26 78 414

1,000 diversitree 20 20 22 30

1,000 SPLITT 3 2 3 3

10,000 geiger 358 449 1,345 355,396

10,000 diversitree 207 211 227 1,338

10,000 SPLITT 14 13 13 15

100,000 geiger 20,215 21,629 36,349 —

100,000 diversitree 2,421 2,619 2,883 —

100,000 SPLITT 130 131 131 140

TABLE 1 Times	for	tree-	preprocessing

https://scicomp.ethz.ch/wiki/Euler

500  |    Methods in Ecology and Evoluon MITOV and STadLER

calculation	 times	were	 about	 two	orders	 of	magnitude	 higher	 com-
pared	to	the	single-	trait	implementations.	This	is	due	to	slow	algebraic	
operations,	for	example,	arithmetic	division	in	the	single-	trait	case	as	
opposed	to	matrix	inversion	in	the	multi-	trait	case.

3.3 | Parallel speedup

The	parallel	 speed-	ups	 for	 the	Euler	cluster	benchmark	 for	 single-	
trait	 implementations	 and	 for	multi-	trait	 implementations	with	 16	
traits	are	shown	on	Figures	5	and	6	(see	also	Figures	S7–S9,	for	multi-	
trait	implementations	with	1,	4	and	8	traits).

For	single-	trait	 implementations,	 the	parallel	speed-	up	 is	negligi-
ble	for	trees	of	<1,000	tips	and	for	highly	unbalanced	trees	(Figure	5).	

The	 parallel	 speed-	up	 becomes	 noticeable	 for	 large	 balanced	 trees,	
peaking	 at	 10×	 for	 a	 balanced	 tree	 of	 100,000	 tips,	 running	 on	 20	
CPU	 cores	 (Figure	5).	The	 above	 behaviour	 is	 explained	 by	 the	 fact	
that	the	InitNode	and	VisitNode	operations	in	the	single-	trait	case	are	
very	 fast	 relative	 to	 the	 thread-	management	 operations.	Also	 note-
worthy	 is	 the	 fact	 that	even	on	balanced	 trees	above	100,000	 tips,	
the	 parallel	 efficiency,	 that	 is,the	 ratio	 of	 the	 parallel	 speed-	up	 and	
the	number	of	parallel	cores,	drops	below	50%	when	running	on	more	
than	20	CPU	cores.	This	suggests	a	possible	competition	between	the	
CPU	cores	for	a	limited	resource	such	as	the	processor	cache	or	the	
memory	bandwidth.

For	 the	multi-	trait	 implementations,	 the	 InitNode	 and	VisitNode	
operations	are	computationally	more	intensive.	This	is	why	we	observe	

F IGURE 3 Likelihood	calculation	times	for	single-	trait	R	and	C++	implementations	of	the	POUMM	model	on	a	PC	(processor	Intel(R)	
Core(TM)	i7-	4850HQ	CPU	@	2.30GHz	with	four	physical	cores).	Both,	the	x-axis	denoting	the	number	of	tips	in	the	tree	and	the	y-axis	
denoting	the	calculation	time	in	milliseconds	are	on	a	log-	10	scale.	Panels	from	left	to	right	correspond	to	different	tree	topologies	with	left-	
most	panel	corresponding	to	a	balanced	tree	and	right-	most	panel	corresponding	to	a	ladder	tree,	see	also	Figure	2

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)

100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000

0.02

0.06

0.10

0.20

0.60

1.00

2.00

6.00

10.00

20.00

60.00

100.00

200.00

600.00

1,000.00

2,000.00

6,000.00

N

Ti
m

e
[m

s]

Mode
serial

parallel

Order
postorder

queue−based

range−based

Implementation
POUMM (C++)

diversitree (R)

diversitree (C++)

geiger (C++)

     |  501Methods in Ecology and EvoluonMITOV and STadLER

F IGURE 4 Likelihood	calculation	times	for	multi-	trait	C++	implementations	of	the	POUMM	model	on	a	personal	computer	(processor	
Intel(R)	Core(TM)	i7-	4850HQ	CPU	@	2.30GHz	with	four	physical	cores).	For	simplicity,	only	serial	and	parallel	range	modes	are	shown,	
noting	that	the	parallel	queue	mode	had	slightly	slower	times	compared	to	the	parallel	range	mode

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)
k = 1 traits

k = 4 traits
k = 8 traits

k = 16 traits

100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

N

Ti
m

e
[m

s]

Mode
serial parallel range

Implementation
PCMBaseCpp (C++) Rphylopars (C++)

502  |    Methods in Ecology and Evoluon MITOV and STadLER

substantial	parallel	speed-	up	on	the	smallest	as	well	as	the	most	unbal-
anced	trees	(Figure	6).	However,	for	all	multi-	trait	cases,	we	observe	a	
decline	in	parallel	speed-	up	with	more	than	12	CPU	cores	(Figure	6).	
The	most	reasonable	explanation	for	this	is	competition	between	the	
CPU	cores	for	a	limited	hardware	resource.

3.4 | Combined parallel likelihood calculation with
adaptive Metropolis sampling

In	Bayesian	MCMC	inference,	the	parallel	likelihood	calculation	
can	be	combined	with	an	adaptive	MCMC	sampler.	The	POUMM	

F IGURE 5 Parallel	speed-	up	for	the	single-	trait	POUMM	implementation	on	the	Euler	cluster	(package	POUMM).	The	grey	and	red	lines	
denote	the	expected	speed-	up	at	100%	and	50%	parallel	efficiency,	respectively.	Horizontally,	the	panels	correspond	to	the	different	tree	
topologies,	see	also	Figure	2.	Vertically,	the	panels	correspond	to	the	different	tree-	sizes

N = 1e+05

p = 0.5 (balanced)

N = 1e+05

p = 0.1

N = 1e+05

p = 0.01

N = 1e+05

p = 0.01/N (ladder)

N = 10000

p = 0.5 (balanced)

N = 10000

p = 0.1

N = 10000

p = 0.01

N = 10000

p = 0.01/N (ladder)

N = 1000

p = 0.5 (balanced)

N = 1000

p = 0.1

N = 1000

p = 0.01

N = 1000

p = 0.01/N (ladder)

N = 100

p = 0.5 (balanced)

N = 100

p = 0.1

N = 100

p = 0.01

N = 100

p = 0.01/N (ladder)

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

Number of CPU cores

Pa
ra

lle
l s

pe
ed

up
 [x

]

Mode serial parallel queue parallel range

     |  503Methods in Ecology and EvoluonMITOV and STadLER

r-	package	 implements	 this	 approach	by	 embedding	 the	 SPLIT-	
based	 likelihood	 calculation	 in	 a	 Metropolis	 sampler	 with	 co-
erced	acceptance	rate	available	from	the	adaptMCMC r-	package	
(Scheidegger,	 2017)	 (Section	3.1,	 Supporting	 Information).	We	
tested	this	approach	during	a	POUMM	analysis	of	a	transmission	

tree	 from	 the	 HIV	 epidemic	 in	 UK	 (N	=	8,483)	 reported	 else-
where	 (Mitov	 &	 Stadler,	 2018).	 This	 showed	 faster	 MCMC	
convergence	 (Figure	 S10,	 Section	5,	 Supporting	 Information)	
and	overall	 <30	min	 for	 the	MCMC	 run	 (Section	5,	 Supporting	
Information).

F IGURE 6 Parallel	speed-	up	for	the	multi-	trait	(k = 16	traits)	POUMM	implementation	(package	PCMBaseCpp)	on	the	Euler	cluster.	The	
grey	and	red	lines	denote	the	expected	speed-	up	at	100%	and	50%	parallel	efficiency,	respectively.	Horizontally,	the	panels	correspond	to	
the	different	tree	topologies,	see	also	Figure	2.	Vertically,	the	panels	correspond	to	the	different	tree-	sizes

N = 1e + 05

p = 0.5 (balanced)

N = 1e + 05

p = 0.1

N = 1e + 05

p = 0.01

N = 1e + 05

p = 0.01/N (ladder)

N = 10000

p = 0.5 (balanced)

N = 10000

p = 0.1

N = 10000

p = 0.01

N = 10000

p = 0.01/N (ladder)

N = 1000

p = 0.5 (balanced)

N = 1000

p = 0.1

N = 1000

p = 0.01

N = 1000

p = 0.01/N (ladder)

N = 100

p = 0.5 (balanced)

N = 100

p = 0.1

N = 100

p = 0.01

N = 100

p = 0.01/N (ladder)

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

Number of CPU cores

Pa
ra

lle
l s

pe
ed

up
 [x

]

Mode serial parallel queue parallel range

504  |    Methods in Ecology and Evoluon MITOV and STadLER

4  | DISCUSSION

The	examples	in	this	article	focused	on	Gaussian	models	of	continuous	
trait	evolution	(see	Section	2	and	Section	2,	Supporting	Information).	
Yet,	SPLITT	can	in	principle	be	used	for	any	algorithm	that	runs	a	pre-	
order	or	post-	order	tree	traversal.	For	example,	another	family	of	mod-
els	where	SPLITT	could	be	used	are	models	of	structured	populations.	
When	calculating	the	likelihood	for	a	phylogenetic	tree	under	a	struc-
tured	birth-	death	model,	the	calculations	proceed	in	a	pruning	fashion	
(Kühnert,	Stadler,	Vaughan,	&	Drummond,	2016)	and	may	be	improved	
with	 respect	 to	 speed	using	our	approach.	However,	 the	 structured	
coalescent	likelihood	for	a	tree	is	a	function	of	all	co-	existing	lineages	
even	for	approximate	methods	(Müller,	Rasmussen,	&	Stadler,	2017),	
and	thus	a	pruning	formulation	is	not	available.

We	did	not	develop	examples	of	pre-	order	traversal.	One	such	
example	 is	 the	 simulation	 of	 traits	 evolving	 along	 the	 tree,	which	
can	be	used	 for	 validation	 and	 approximate	 inference	of	 phyloge-
netic	models.	 In	complex	phylogenetic	comparative	models,	where	
an	exact	calculation	of	 the	 likelihood	 is	elusive	or	computationally	
intractable,	it	is	possible	to	use	simulations	of	trait	evolution	along	
the	tree	for	approximate	likelihood	calculation	(Kutsukake	&	Innan,	
2013)	or	approximate	Bayesian	computation	(ABC)	(Slater,	Harmon,	
Wegmann,	et	al.,	2012).	Both	approaches	are	computationally	inten-
sive	and	could	benefit	from	parallel	execution	using	SPLITT.

We	 should	 not	 omit	 mentioning	 other	 software	 libraries	 imple-
menting	 parallel	 likelihood	 computation	 of	 different	Markov	 models	
of	 sequence	 evolution.	 Several	 high-	level	 tools	 for	ML	 and	Bayesian	
tree	inference,	for	example,	Drummond	et	al.	 (2012);	Bouckaert	et	al.	
(2014);	 Ronquist	 and	 Huelsenbeck	 (2003),	 use	 the	 library	 BEAGLE	
which	 distributes	 the	 computation	 for	 the	 independent	 sites	 of	 the	
sequence	alignment	among	multiple	CPU	or	GPU	cores	 (Ayres	et	al.,	
2012,	but	see	also	Ayres	&	Cummings,	2017)).	SPLITT	operates	on	a	
different	level,	namely,	it	parallelizes	the	computation	for	independent	
lineages	in	the	tree.	Both	approaches	are	interesting	because	they	fit	
well	to	different	sizes	of	the	input	data—while	BEAGLE	achieves	signif-
icant	parallel	speed-	ups	in	long	alignments	comprising	many	thousands	
nucleotide	or	codon	columns	(Ayres	et	al.,	2012,	SPLITT	is	better	suited	
to	shorter	alignments	of	potentially	many	thousands	of	species.

Based	 on	 the	 performance	 benchmarks,	 we	 conclude	 that	
with	the	current	 implementation	of	SPLITT,	running	on	the	above-	
mentioned	 hardware,	 the	 parallel	 speed-	up	 from	parallel	 tree	 tra-
versal	is	up	to	one	order	of	magnitude	using	up	to	20	CPU	cores.	A	
future	GPU-	based	extension	of	SPLITT	would	show	if	 it	can	reach	
higher	 levels	 of	 parallel	 speed-	up	 and	 efficiency.	 Reaching	 higher	
speed-	up	of	the	Bayesian	inference,	though,	is	possible	if	the	parallel	
traversal	 likelihood	calculation	is	combined	with	a	general	purpose	
adaptive	Metropolis	sample.

4.1 | Outlook

The	 past	 decade	 has	 seen	 a	 rapid	 advance	 in	 the	 production	 of	
multi-	core	processors.	At	the	same	time,	it	appears	that	the	maxi-
mum	clock	frequency	of	a	single	processing	unit	is	approaching	the	

maximum	 achievable	 for	 semi-	conductor-	based	 architectures.	 In	
parallel	with	 this	development	on	 the	hardware	 side,	 the	volume	
of	sequence	data	and	the	size	of	phylogenetic	trees	is	growing	ex-
ponentially.	For	instance,	in	<5	years	the	size	of	phylogenetic	trees	
used	for	calculating	the	heritability	of	HIV	virulence	has	increased	
from	 a	 few	 hundreds	 to	 several	 thousand	 patients	 (Alizon	 et	al.,	
2010;	 Hodcroft	 et	al.,	 2014).	 This	motivates	 the	 development	 of	
novel	parallel	algorithms	capitalizing	on	the	multi-	core	technology.	
The	parallel	tree	traversal	library,	SPLITT,	enables	parallel	compu-
tation	for	a	vast	set	of	phylogenetic	models,	facing	the	challenges	
of	 increasing	model	 complexity	 and	 volumes	 of	 data	 in	 phyloge-
netic	analysis.

ACKNOWLEDG EMENTS

We	 thank	 Dr.	 Krzysztof	 Bartoszek	 for	 valuable	 insights	 on	 the	
Ornstein–Uhlenbeck	process.

AUTHORS’ CONTRIBUTIONS

V.M.	conceived	the	ideas	and	designed	the	methodology;	V.M.	im-
plemented	 the	 software;	 V.M.	 and	 T.S.	 planned	 the	 performance	
benchmarks	and	the	technical	correctness	tests;	V.M.	led	the	writing	
of	the	manuscript.	Both	authors	contributed	critically	to	the	drafts	
and	gave	final	approval	for	publication.

DATA ACCE SSIBILIT Y

Data	from	the	performance	benchmarks	and	simulations	for	technical	cor-
rectness	is	accessible	from	the	SPLITT	github	page	https://github.com/
venelin/SPLITT.git	 (https://doi.org/10.5281/zenodo.2003522).	 The	
POUMM	 package	 and	 user	 guide	 is	 available	 at	 https://github.com/
venelin/POUMM.git	 (https://doi.org/10.5281/zenodo.1972161).	The	
PCMBaseCpp	package	is	available	at	https://github.com/venelin/PCM
BaseCpp.git	(https://doi.org/10.5281/zenodo.1977061).	This	package	
depends	on	the	PCMBase r-	package,	which	is	available	at	https://github.
com/venelin/PCMBase.git	 (https://doi.org/10.5281/zenodo.19754
53,	see	also	Mitov	et	al.,	2018).	The	PMM	likelihood	calculation	ex-
ample	illustrated	on	Figure	1	has	been	implemented	in	the	form	of	an	
r-	package	available	at	https://github.com/venelin/PMMUsingSPLITT.
git	 (https://doi.org/10.5281/zenodo.1977117,	 see	 also	 Section	2.2,	
Supporting	Information).	Additional	examples,	discussed	in	Section	2,	
Supporting	 Information,	 have	 been	 implemented	 as	 r-	packages,	
available	 at	 https://github.com/venelin/ThreePointUsingSPLITT.git	
(https://doi.org/10.5281/zenodo.1977135,	 see	 also	 Section	2.1,	
Supporting	Information)	and	at	https://github.com/venelin/BinaryPois
sonUsingSPLITT.git	 (https://doi.org/10.5281/zenodo.1977127,	 see	
also	Section	2.3,	Supporting	Information).

ORCID

Venelin Mitov https://orcid.org/0000-0002-5227-5191

Tanja Stadler https://orcid.org/0000-0001-6431-535X

https://github.com/venelin/SPLITT.git
https://github.com/venelin/SPLITT.git
https://doi.org/10.5281/zenodo.2003522
https://github.com/venelin/POUMM.git
https://github.com/venelin/POUMM.git
https://doi.org/10.5281/zenodo.1972161
https://github.com/venelin/PCMBaseCpp.git
https://github.com/venelin/PCMBaseCpp.git
https://doi.org/10.5281/zenodo.1977061
https://github.com/venelin/PCMBase.git
https://github.com/venelin/PCMBase.git
https://doi.org/10.5281/zenodo.1975453
https://doi.org/10.5281/zenodo.1975453
https://github.com/venelin/PMMUsingSPLITT.git
https://github.com/venelin/PMMUsingSPLITT.git
https://doi.org/10.5281/zenodo.1977117
https://github.com/venelin/ThreePointUsingSPLITT.git
https://doi.org/10.5281/zenodo.1977135
https://github.com/venelin/BinaryPoissonUsingSPLITT.git
https://github.com/venelin/BinaryPoissonUsingSPLITT.git
https://doi.org/10.5281/zenodo.1977127
https://orcid.org/0000-0002-5227-5191
https://orcid.org/0000-0002-5227-5191
https://orcid.org/0000-0001-6431-535X
https://orcid.org/0000-0001-6431-535X

     |  505Methods in Ecology and EvoluonMITOV and STadLER

R E FE R E N C E S

Alizon,	S.,	von	Wyl,	V.,	Stadler,	T.,	Kouyos,	R.	D.,	Yerly,	S.,	Hirschel,	B.,	
…	Bonhoeffer,	S.;	Swiss	HIV	Cohort	Study	(2010).	Phylogenetic	ap-
proach	reveals	that	virus	genotype	largely	determines	HIV	set-	point	
viral load. PLoS Pathogens, 6,	 e1001123.	 https://doi.org/10.1371/
journal.ppat.1001123

Angelino,	E.,	Kohler,	E.,	Waterland,	A.,	Seltzer,	M.,	&	Adams,	R.	P.	(2014).	
Accelerating	MCMC	via	parallel	predictive	prefetching.	UAI, Stat.ML,
arXiv:1403.7265.

Ayres,	D.	L.,	&	Cummings,	M.	P.	(2017).	Configuring	concurrent	computa-
tion	of	phylogenetic	partial	likelihoods—Accelerating	analyses	using	
the	BEAGLE	library.	ICA3PP, 10393,	533–547.

Ayres,	D.	L.,	Darling,	A.,	Zwickl,	D.	J.,	Beerli,	P.,	Holder,	M.	T.,	Lewis,	P.	O.,	…	
Suchard,	M.	A.	(2012).	BEAGLE:	An	application	programming	interface	
and	high-	performance	computing	 library	 for	 statistical	 phylogenetics.	
Systematic Biology, 61,	170–173.	https://doi.org/10.1093/sysbio/syr100

Bastide,	P.,	An′e,	C.,	Robin,	S.,	&	Mariadassou,	M.	 (2018).	 Inference	of	
adaptive	shifts	for	multivariate	correlated	traits.	Systematic Biology,
113, 2158–2680.

Bertels,	F.,	Marzel,	A.,	Leventhal,	G.,	Mitov,	V.,	Fellay,	J.,	Günthard,	H.	F.,	
…	Regoes,	R.	R.;	Swiss	HIV	Cohort	Study	(2017).	Dissecting	HIV	viru-
lence:	Heritability	of	setpoint	viral	load,	CD4+	T	cell	decline	and	per-	
parasite	pathogenicity.	Molecular Biology and Evolution, 35(1),	27–37.

Bishop,	C.	M.	 (2007).	Pattern recognition and machine learning	 (5th	ed.).	
Information	science	and	statistics.	New	York,	NY:	Springer.

Bortolussi,	 N.,	 Durand,	 E.,	 Blum,	M.,	 &	 Francois,	 O.	 (2012).	 apTree-
shape:	Analyses	of	phylogenetic	treeshape.	r	package.

Bouckaert,	R.	R.,	Heled,	J.,	Kühnert,	D.,	Vaughan,	T.	G.,	Wu,	C.	H.,	Xie,	
D.,	 …	Drummond,	 A.	 J.	 (2014).	 BEAST	 2—A	 software	 platform	 for	
Bayesian	evolutionary	analysis.	PLoS Computational Biology (PLOSCB),
10	(4),	e1003537.	https://doi.org/10.1371/journal.pcbi.1003537

Boyd,	S.	P.,	&	Vandenberghe,	L.	(2004).	Convex optimization.	New	York,	NY:	
Cambridge	University	Press.

Brockwell,	A.	E.	 (2006).	Parallel	Markov	chain	Monte	Carlo	 simulation	
by	pre-	fetching.	Journal of Computational and Graphical Statistics, 15,
246–261.	https://doi.org/10.1198/106186006X100579

Clavel,	 J.,	 Escarguel,	G.,	&	Merceron,	G.	 (2015).	mvmorph:	 An	 r	 pack-
age	 for	 fitting	 multivariate	 evolutionary	 models	 to	 morphometric	
data.	Methods in Ecology and Evolution, 6,	 1311–1319.	 https://doi.
org/10.1111/2041-210X.12420

Cook,	 S.	 R.,	 Gelman,	 A.,	 &	 Rubin,	 D.	 B.	 (2006).	 Validation	 of	 soft-
ware	 for	 bayesian	 models	 using	 posterior	 quantiles.	 Journal of
Computational and Graphical Statistics, 15,	 675–692.	 https://doi.
org/10.1198/106186006X136976

Drummond,	A.	J.,	Suchard,	M.	A.,	Xie,	D.,	&	Rambaut,	A.	(2012).	Bayesian	
phylogenetics	with	BEAUti	and	the	BEAST	1.7.	Molecular Biology and
Evolution, 29,	1969–1973.	https://doi.org/10.1093/molbev/mss075

Felsenstein,	 J.	 (1973).	 Maximum-	likelihood	 estimation	 of	 evolution-
ary	 trees	 from	 continuous	 characters.	 American Journal of Human
Genetics, 25,	471–492.

Felsenstein,	J.	(1981).	Evolutionary	trees	from	DNA	sequences:	A	maxi-
mum	likelihood	approach.	Journal of Molecular Evolution, 17,	368–376.	
https://doi.org/10.1007/BF01734359

Felsenstein,	 J.	 (1983).	 Statistical	 inference	 of	 phylogenies.	 Journal of
the Royal Statistical Society Series A (General), 146,	 246.	 https://doi.
org/10.2307/2981654

Felsenstein,	 J.	 (1985).	 Phylogenies	 and	 the	 comparative	 method.	 The
American Naturalist, 125,	1–15.	https://doi.org/10.1086/284325

FitzJohn,	R.	G.	(2012).	diversitree:	Comparative	phylogenetic	analy-
ses	of	diversification	in	R.	Methods in Ecology and Evolution, 3, 1084–
1092.	https://doi.org/10.1111/j.2041-210X.2012.00234.x

Goolsby,	E.	W.,	Bruggeman,	J.,	&	An′e,	C.	(2016).	Rphylopars:	Fast	mul-
tivariate	 phylogenetic	 comparative	 methods	 for	 missing	 data	 and	
within-	species	variation.	Methods in Ecology and Evolution, 8,	22–27.

Goudie,	 R.	 J.	 B.,	 Turner,	 R.	 M.,	 De	 Angelis,	 D.,	 &	 Thomas,	 A.	 (2017).	
MultiBUGS:	 Massively	 parallel	 MCMC	 for	 Bayesian	 hierarchical	
models.	arXivorg,	arXiv:1704.03216.

Haario,	 H.,	 Saksman,	 E.,	 &	 Tamminen,	 J.	 (2001).	 An	 adaptive	metrop-
olis	 algorithm.	 Bernoulli Official Journal of the Bernoulli Society for
Mathematical Statistics and Probability, 7, 223–242.

Hansen,	T.	F.,	&	Martins,	E.	P.	 (1996).	Translating	between	microevolu-
tionary	 process	 and	 macroevolutionary	 patterns:	 The	 correlation	
structure	 of	 interspecific	 data.	 Evolution, 50,	 1404.	 https://doi.
org/10.1111/j.1558-5646.1996.tb03914.x

Harmon,	 L.	 J.	 (2018).	 Phylogenetic comparative methods: Learning from
trees.	CreateSpace	Independent	Publishing	Platform.	Retreived	from		
https://lukejharmon.github.io/pcm/

Ho,	 L.	 S.	 T.,	 &	 Ané,	 C.	 (2014).	 A	 linear-	time	 algorithm	 for	 Gaussian	
and	 non-	Gaussian	 trait	 evolution	 models.	 Systematic Biology, 63,
397–408.

Hodcroft,	E.,	Hadfield,	J.	D.,	Fearnhill,	E.,	Phillips,	A.,	Dunn,	D.,	O‘Shea,	S.,	
…	Brown,	A.	J.	L.	(2014).	The	contribution	of	viral	genotype	to	plasma	
viral	 set-	point	 in	 HIV	 infection.	 PLoS Pathogens, 10, e1004112.
https://doi.org/10.1371/journal.ppat.1004112

Housworth,	E.	A.,	Martins,	E.	P.,	&	Lynch,	M.	 (2004).	The	phylogenetic	
mixed	 model.	 The American Naturalist, 163,	 84–96.	 https://doi.
org/10.1086/380570

Ives,	A.	R.,	&	Garland,	T.	 J.	 (2010).	Phylogenetic	 logistic	 regression	 for	
binary	dependent	variables.	Systematic Biology, 59,	9–26.	https://doi.
org/10.1093/sysbio/syp074

Kühnert,	 D.,	 Stadler,	 T.,	 Vaughan,	 T.	 G.,	 &	 Drummond,	 A.	 J.	 (2016).	
Phylodynamics	with	migration:	A	computational	framework	to	quan-
tify	population	structure	 from	genomic	data.	Molecular Biology and
Evolution, 33,	msw064–2116.

Kutsukake,	N.,	&	Innan,	H.	(2013).	Simulation-	based	likelihood	approach	
for	evolutionary	models	of	phenotypic	traits	on	phylogeny.	Evolution,
67,	355–367.	https://doi.org/10.1111/j.1558-5646.2012.01775.x

Lande,	 R.	 (1976).	 Natural-	selection	 and	 random	 genetic	 drift	 in	
phenotypic	 evolution.	 Evolution, 30,	 314–334.	 https://doi.
org/10.1111/j.1558-5646.1976.tb00911.x

Losos,	J.	B.	(2011).	Seeing	the	forest	for	the	trees:	The	limitations	of	phy-
logenies	 in	 comparative	 biology.	 (American	 Society	 of	 Naturalists	
Address).	 The American Naturalist, 177,	 709–727.	 https://doi.
org/10.1086/660020

Lynch,	 M.	 (1991).	 Methods	 for	 the	 analysis	 of	 comparative	 data	 in	
evolutionary	 biology.	 Evolution, 45,	 1065–1080.	 https://doi.
org/10.1111/j.1558-5646.1991.tb04375.x

Manceau,	M.,	Lambert,	A.,	&	Morlon,	H.	(2016).	A	unifying	comparative	
phylogenetic	framework	including	traits	coevolving	across	interact-
ing	lineages.	Systematic Biology, 66,	syw115–568.

Metropolis,	 N.,	 Rosenbluth,	 A.	W.,	 Rosenbluth,	M.	 N.,	 Teller,	 A.	 H.,	 &	
Teller,	E.	(1953).	Equation	of	state	calculations	by	fast	computing	ma-
chines.	The Journal of Chemical Physics, 21,	1087–1092.	https://doi.
org/10.1063/1.1699114

Mitov,	V.,	Bartoszek,	K.,	Asimomitis,	G.,	&	Stadler,	T.	 (2018)	Fast	 likeli-
hood	evaluation	for	multivariate	phylogenetic	comparative	methods:	
The PCMBase r	package.	arXivorg, arXiv:1809.09014.

Mitov,	V.,	&	Stadler,	T.	 (2018).	A	practical	guide	 to	estimating	 the	her-
itability	 of	 pathogen	 traits.	 Molecular Biology and Evolution, 6,
e1001123–msx328	VL–IS–.

Müller,	N.	F.,	Rasmussen,	D.	A.,	&	Stadler,	T.	(2017).	The	structured	co-
alescent	and	its	approximations.	Molecular Biology and Evolution, 34,
2970–2981.	https://doi.org/10.1093/molbev/msx186

Paradis,	E.,	&	Claude,	J.	(2002).	Analysis	of	comparative	data	using	gen-
eralized	 estimating	 equations.	 Journal of Theoretical Biology, 218,
175–185.	https://doi.org/10.1006/jtbi.2002.3066

Pennell,	 M.	 W.,	 Eastman,	 J.	 M.,	 Slater,	 G.	 J.,	 Brown,	 J.	 W.,	 Uyeda,	 J.	
C.,	 FitzJohn,	 R.	 G.,	 …	 Harmon,	 L.	 J.	 (2014).	 geiger	 v2.0:	 An	 ex-
panded	 suite	 of	 methods	 for	 fitting	 macroevolutionary	 models	

https://doi.org/10.1371/journal.ppat.1001123
https://doi.org/10.1371/journal.ppat.1001123
https://doi.org/10.1093/sysbio/syr100
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1198/106186006X100579
https://doi.org/10.1111/2041-210X.12420
https://doi.org/10.1111/2041-210X.12420
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1093/molbev/mss075
https://doi.org/10.1007/BF01734359
https://doi.org/10.2307/2981654
https://doi.org/10.2307/2981654
https://doi.org/10.1086/284325
https://doi.org/10.1111/j.2041-210X.2012.00234.x
https://doi.org/10.1111/j.1558-5646.1996.tb03914.x
https://doi.org/10.1111/j.1558-5646.1996.tb03914.x
https://lukejharmon.github.io/pcm/
https://doi.org/10.1371/journal.ppat.1004112
https://doi.org/10.1086/380570
https://doi.org/10.1086/380570
https://doi.org/10.1093/sysbio/syp074
https://doi.org/10.1093/sysbio/syp074
https://doi.org/10.1111/j.1558-5646.2012.01775.x
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1086/660020
https://doi.org/10.1086/660020
https://doi.org/10.1111/j.1558-5646.1991.tb04375.x
https://doi.org/10.1111/j.1558-5646.1991.tb04375.x
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/molbev/msx186
https://doi.org/10.1006/jtbi.2002.3066

506  |    Methods in Ecology and Evoluon MITOV and STadLER

to	 phylogenetic	 trees.	 Bioinformatics, 30,	 2216–2218.	 https://doi.
org/10.1093/bioinformatics/btu181

Qamnieh,	M.	(2015).	Scheduling	of	parallel	real-time	DAG	tasks	on	multi-
processor	systems.	Ph.D.	thesis,	igm.univ-mlv.fr.

Reif,	 J.	 H.	 (1989).	 Parallel	 algorithms	 derivation.	 Technical	 report,	 US	
Dept	of	the	Navy,	Funding,	Fort	Belvoir,	VA.

Ronquist,	F.,	&	Huelsenbeck,	J.	P.	(2003).	MrBayes	3:	Bayesian	phyloge-
netic	inference	under	mixed	models.	Bioinformatics, 19,	1572–1574.	
https://doi.org/10.1093/bioinformatics/btg180

Scheidegger,	A.	(2017).	adaptMCMC. r	package.
Shirreff,	G.,	Alizon,	S.,	Cori,	A.,	Günthard,	H.	F.,	Laeyendecker,	O.,	van	

Sighem,	A.,	…	Fraser,	C.	(2013).	How	effectively	can	HIV	phylog-
enies	 be	 used	 to	 measure	 heritability?	 Evolution, Medicine, and
Public Health, 2013,	 209–224.	 https://doi.org/10.1093/emph/
eot019

Slater,	G.	J.,	Harmon,	L.	J.,	&	Alfaro,	M.	E.	(2012).	Integrating	fossils	with	mo-
lecular	phylogenies	improves	inference	of	trait	evolution.	Evolution,
66,	3931–3944.	https://doi.org/10.1111/j.1558-5646.2012.01723.
x

Slater,	 G.	 J.,	 Harmon,	 L.	 J.,	 Wegmann,	 D.,	 Joyce,	 P.,	 Revell,	 L.	 J.,	 &	
Alfaro,	 M.	 E.	 (2012).	 Fitting	 models	 of	 continuous	 trait	 evolu-
tion	 to	 incompletely	 sampled	 comparative	 data	 using	 approxi-
mate	 Bayesian	 computation.	 Evolution, 66,	 752–762.	 https://doi.
org/10.1111/j.1558-5646.2011.01474.x

Uyeda,	J.	C.,	&	Harmon,	L.	J.	(2014).	A	novel	Bayesian	method	for	infer-
ring	and	interpreting	the	dynamics	of	adaptive	landscapes	from	phy-
logenetic	comparative	data.	Systematic Biology, 63,	902–918.	https://
doi.org/10.1093/sysbio/syu057

Uyeda,	J.	C.,	Zenil-Ferguson,	R.,	&	Pennell,	M.	W.	(2018).	Rethinking	phy-
logenetic	comparative	methods.	Systematic Biology, 106, 13410.

Vihola,	M.	 (2012).	Robust	 adaptive	Metropolis	 algorithm	with	 coerced	
acceptance	rate.	Statistics and Computing, 22,	997–1008.	https://doi.
org/10.1007/s11222-011-9269-5

Wang,	Q.,	Zhang,	X.,	Zhang,	Y.,	&	Yi,	Q.	(2013).	AUGEM:	Automatically	
generate	 high	 performance	 dense	 linear	 algebra	 kernels	 on	 x86	
CPUs.	 In	 Proceedings of the international conference on high perfor-
mance computing, networking, storage and analysis	 (pp.	 1–25).	 New	
York,	NY:	ACM.

Whiley,	M.,	&	Wilson,	S.	P.	(2004).	Parallel	algorithms	for	Markov	chain	
Monte	 Carlo	 methods	 in	 latent	 spatial	 Gaussian	 models.	 Statistics
and Computing, 14,	 171–179.	 https://doi.org/10.1023/B:STCO.
0000035299.51541.5e

SUPPORTING INFORMATION

Additional	 supporting	 information	 may	 be	 found	 online	 in	 the	
Supporting	Information	section	at	the	end	of	the	article.

How to cite this article:	Mitov	V,	Stadler	T.	Parallel	likelihood	
calculation	for	phylogenetic	comparative	models:	The	SPLITT	
C++	library.	Methods Ecol Evol. 2019;10:493–506.
 https://doi.org/10.1111/2041-210X.13136

https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1093/bioinformatics/btg180
https://doi.org/10.1093/emph/eot019
https://doi.org/10.1093/emph/eot019
https://doi.org/10.1111/j.1558-5646.2012.01723.x
https://doi.org/10.1111/j.1558-5646.2012.01723.x
https://doi.org/10.1111/j.1558-5646.2011.01474.x
https://doi.org/10.1111/j.1558-5646.2011.01474.x
https://doi.org/10.1093/sysbio/syu057
https://doi.org/10.1093/sysbio/syu057
https://doi.org/10.1007/s11222-011-9269-5
https://doi.org/10.1007/s11222-011-9269-5
https://doi.org/10.1023/B:STCO.0000035299.51541.5e
https://doi.org/10.1023/B:STCO.0000035299.51541.5e
https://doi.org/10.1111/2041-210X.13136

