
ETH Library

Parallel likelihood calculation for
phylogenetic comparative models:
The SPLITT C++ library

Journal Article

Author(s):
Mitov, Venelin; Stadler, Tanja

Publication date:
2019-04

Permanent link:
https://doi.org/10.3929/ethz-b-000336648

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
Methods in Ecology and Evolution 10(4), https://doi.org/10.1111/2041-210X.13136

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-6431-535X
https://doi.org/10.3929/ethz-b-000336648
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1111/2041-210X.13136
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Methods Ecol Evol. 2019;10:493–506.	 	 wileyonlinelibrary.com/journal/mee3  |  493

Received: 4 May 2018  |  Accepted: 23 November 2018
DOI: 10.1111/2041-210X.13136

R E S E A R C H A R T I C L E

Parallel likelihood calculation for phylogenetic comparative
models: The SPLITT C++ library

Venelin Mitov1,2  | Tanja Stadler1,2

1Department of Biosystems Science and
Engineering, ETH Zürich, Basel, Switzerland
2Swiss Institute of Bioinformatics, Lausanne,
Switzerland

Correspondence
Venelin Mitov
Email: vmitov@gmail.com
and
Tanja Stadler
Email: tanja.stadler@bsse.ethz.ch

Funding information
V.M. and T.S. thank ETH Zürich for funding.
T.S. is supported in part by the European
Research Council under the 7th Framework
Programme of the European Commission
(PhyPD: Grant Agreement Number 335529).

Handling Editor: Tamara Münkemüller

Abstract
1.	 Phylogenetic comparative models (PCMs) have been used to study macroevolution-
ary patterns, to characterize adaptive phenotypic landscapes, to quantify rates of
evolution, to measure trait heritability, and to test various evolutionary hypotheses.
A major obstacle to applying these models has been the complexity of evaluating
their likelihood function. Recent works have shown that for many PCMs, the likeli-
hood can be obtained in time proportional to the size of the tree based on post-order
tree traversal, also known as pruning. Despite this progress, inferring complex multi-
trait PCMs on large trees remains a time-intensive task. Here, we study parallelizing
the pruning algorithm as a generic technique for speeding-up PCM-inference.

2.	 We implement several parallel traversal algorithms in the form of a generic C++
library for Serial and Parallel LIneage Traversal of Trees (SPLITT). Based on SPLITT,
we provide examples of parallel likelihood evaluation for several popular PCMs,
ranging from a single-trait Brownian motion model to complex multi-trait Ornstein-
Uhlenbeck and mixed Gaussian phylogenetic models.

3.	 Using the phylogenetic Ornstein–Uhlenbeck mixed model (POUMM) as a show-
case, we run benchmarks on up to 24 CPU cores, reporting up to an order of mag-
nitude parallel speed-up for the likelihood calculation on simulated balanced and
unbalanced trees of up to 100,000 tips with up to 16 traits. Noticing that the paral-
lel speed-up depends on multiple factors, the SPLITT library is capable to auto-
matically select the fastest traversal strategy for a given hardware, tree-topology,
and data. Combining SPLITT likelihood calculation with adaptive Metropolis sam-
pling on real data, we show that the time for Bayesian POUMM inference on a tree
of 10,000 tips can be reduced from several days to less than an hour.

4.	 We conclude that parallel pruning effectively accelerates the likelihood calcula-
tion and, thus, the statistical inference of Gaussian phylogenetic models. For time-
intensive Bayesian inferences, we recommend combining this technique with
adaptive Metropolis sampling. Beyond Gaussian models, the parallel tree traversal
can be applied to numerous other models, including discrete trait and birth–death
population dynamics models. Currently, SPLITT supports multi-core shared mem-
ory architectures, but can be extended to distributed memory architectures as
well as graphical processing units.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2018 The Authors. Methods in Ecology and Evolution published by John Wiley & Sons Ltd on behalf of British Ecological Society.

www.wileyonlinelibrary.com/journal/mee3
https://orcid.org/0000-0002-5227-5191
https://orcid.org/0000-0001-6431-535X
mailto:vmitov@gmail.com
mailto:tanja.stadler@bsse.ethz.ch
http://creativecommons.org/licenses/by/4.0/

494  |    Methods in Ecology and Evolu
on MITOV and STADLER

1  | INTRODUC TION

Phylogenetic comparative models (PCMs) have been used for study-
ing the evolution of various biological species, ranging from micro-
organisms to animals and plants. Ultimately, these statistical models
aim to understand the intricate connections between the macroevo-
lutionary patterns observable in phenotype data from phylogenet-
ically linked species and the fundamental mechanisms of evolution
operating on the microevolutionary timescale, such as natural selec-
tion and random genetic drift (Felsenstein, 1985; Hansen & Martins,
1996; Harmon, 2018; Lande, 1976; Losos, 2011; Uyeda & Harmon,
2014; Uyeda, Zenil-Ferguson, & Pennell, 2018). This quest has led to
the recent development of complex multi-trait multi-regime mod-
els of evolution (Bastide, An′e, Robin, & Mariadassou, 2018; Clavel,
Escarguel, & Merceron, 2015; Manceau, Lambert, & Morlon, 2016;
Uyeda & Harmon, 2014). The inherent complexity of these models
is posing new challenges in terms of parameter inference and model
selection.

In their effort to speed-up PCM inference, recent works have
shown that, for a broad family of PCMs, the likelihood of an ob-
served phylogenetic tree and data conditioned on the model pa-
rameters can be computed in time proportional to the size of the
tree (FitzJohn, 2012; Goolsby, Bruggeman, & An′e, 2016; Ho & Ané,
2014; Mitov, Bartoszek, Asimomitis, & Stadler, 2018). This family
includes Gaussian models like Brownian motion (BM) and Ornstein-
Uhlenbeck (OU) phylogenetic models as well as some non-Gaussian
models like phylogenetic logistic regression (Ho & Ané, 2014; Ives
& Garland, 2010; Mitov et al., 2018; Paradis & Claude, 2002). All of
these likelihood calculation techniques rely on post-order tree tra-
versal also known as pruning (Felsenstein, 1973, 1981, 1983).

For moderate numbers of traits, combining pruning algorithms
for likelihood calculation with gradient-based optimization (Boyd &
Vandenberghe, 2004) enables maximum likelihood model inference
within seconds on contemporary computers, even for phylogenies
of many thousands of tips (Ho & Ané, 2014). Despite its simple in-
terpretation and several useful statistical properties, the maximum
likelihood estimator has often been criticised for being a point es-
timator, uninformative about the likelihood surface, often prone to
be a local optimum, and failing to quantify the uncertainty of a pri-
ori assumed models for comparative data (Bishop, 2007; Uyeda &
Harmon, 2014).

As an elegant alternative, Bayesian approaches such as Markov
chain Monte Carlo (MCMC) allow incorporating prior biological
knowledge in the model inference, provide posterior samples and
high posterior density intervals for the model parameters and, in the
case of multi-regime models, integrate the inference of shifts in the
evolutionary regimes driven by the dynamics of the adaptive phe-
notypic landscape (FitzJohn, 2012; Slater, Harmon, & Alfaro, 2012;

Uyeda & Harmon, 2014). In contrast with ML inference, though,
Bayesian inference methods require many orders of magnitude more
likelihood evaluations. This presents a bottleneck in Bayesian analy-
sis, in particular, for complex models of many unknown parameters
or when faced with large phylogenies of many thousands of tips,
such as transmission trees from large-scale epidemiological studies,
for example, Alizon et al. (2010); Shirreff et al. (2013); Hodcroft et al.
(2014); Bertels et al. (2017); Mitov and Stadler (2018). While big data
should provide the needed statistical power to fit a complex model,
the time needed to perform a full scale Bayesian fit often limits the
choice to a faster but less informative ML-inference, or a Bayesian
inference of a simplified model.

Speeding-up Bayesian inference is an active topic in applied sta-
tistics with recent advances that can be classified in several groups.
One group of methods are adaptive variants of the random walk
Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, &
Teller, 1953) that aim to decrease the number of MCMC iterations by
performing “on-the-fly” changes of the jump distribution, based on
what has been “learned” about the parameter space from past iter-
ations (Haario, Saksman, & Tamminen, 2001; Vihola, 2012). A major
advantage of these methods is that they are generic with respect to
the models and can be implemented as general purpose Metropolis
samplers (e.g. adaptMCMC; Scheidegger, 2017). A second group
are “pre-fetching” methods which modify the Metropolis-Hastings
algorithm so that it speculatively executes sequences of individual
likelihood calls in parallel, “hoping” that these sequences tend to
match the actual accepted states of the MCMC (Angelino, Kohler,
Waterland, Seltzer, & Adams, 2014; Brockwell, 2006). Another pos-
sibility to use multiple processor power, which could potentially be
combined with the above methods, is to delegate the parallelization
problem to a low level linear algebra library, for example, OpenBLAS
(Wang, Zhang, Zhang, & Yi, 2013).

This article contributes to a separate body of work, namely, the
ensemble of model-specific approaches that parallelize the likeli-
hood calculation by using specific features of the likelihood func-
tion. These include factorizations of the likelihood into a product
of components associated with conditionally independent subsets
of the model parameters (Goudie, Turner, De Angelis, & Thomas,
2017; Whiley & Wilson, 2004) or the observed variables (Ayres
et al., 2012). Often, this factorization relies on strong model as-
sumptions, such as a hierarchical structure of the model param-
eters or independence of the observed variables. A common
approach used in software packages like BEAST (Bouckaert et al.,
2014; Drummond, Suchard, Xie, & Rambaut, 2012) is to combine
the factorization with caching and reusing of some of the previ-
ously calculated likelihood components in consecutive MCMC it-
erations, as long as these are not affected by the proposed jump in
parameter space.

K E Y W O R D S

continuous time Markov process, continuous trait, discrete character, pre-order traversal

     |  495Methods in Ecology and Evolu
onMITOV and STADLER

For a phylogenetic comparative model, though, the likelihood
cannot (in general) be factorized across parameter groups, trait inde-
pendence is acceptable only as a null hypothesis and, with a moder-
ate number of traits and pruning likelihood calculation, parallelizing
algebraic operations (on low-dimensional vectors and matrices) is in-
efficient. Hence, we explore the parallelization of the likelihood cal-
culation at the level of traversing the phylogenetic tree, that is, the
pruning itself. Parallel tree traversal has been studied in computer
science, mostly for the purposes of parallel tree contraction (Reif,
1989), automated task scheduling (Qamnieh, 2015) and for phylo-
genetic inference from multiple sequence alignment data (Ayres &
Cummings, 2017; Ayres et al., 2012). Capitalizing on the same ideas,
we developed SPLITT: a shared-memory C++ library for Serial and
Parallel LIneage Traversal of Trees. While we focus on Gaussian phy-
logenetic models as the main application of the library, we designed
the SPLITT programming interface to be generic with respect to the
node-traversal operations, hoping that the library could potentially
find use in different models, including birth-death population mod-
els and discrete trait models. We tested SPLITT on large trees (up
to N = 100,000) and on different topologies, including balanced and
highly unbalanced trees. These tests proved a nice property of the
parallel pruning algorithm, namely the fact that its parallel efficiency
increases with the tree size as well as the complexity of the node-
traversal operations. Thus, for large trees and complex models, the
parallel speed-up is limited either by the number of available proces-
sors or by another limited resource such as the memory bandwidth.
Finally, we showcase that our parallel pruning algorithm coupled
with adaptive Metropolis samplers dramatically reduces the time for
Bayesian analysis of trees with thousands of tips.

2  | MATERIAL S AND METHODS

In this section, we introduce SPLITT and show through an example how
it is used to parallelize a pruning algorithm over a given phylogenetic
tree and data. Further technical details and examples are provided in
Sections 2 and 3 of the Supporting Information and the SPLITT online
documentation (https://venelin.github.io/SPLITT/index.html).

2.1 | A general framework for parallel tree traversal

SPLITT implements a general framework for specifying the type
of trait data, the model parameters and the “node-traversal”
operations, which are executed in a pre-order or a post-order
traversal of the tree (Section 1, Supporting Information). The
node-traversal operations represent user-defined rules specify-
ing how a set of variables associated with each node, called a
“node-state,” is initialized and updated in the computer memory,
based on the input tree and data, the model parameters, and the
node-states of the previously visited nodes. At the end of the
traversal, the final node-state values are accessible for calculat-
ing a quantity of interest, such as the likelihood of model, given
the tree and the data.

The node-states can be calculated in parallel for any group of
siblings or more remote cousins on the tree. Formally, SPLITT makes
the following key assumption:

Assumption 1 Calculating the state of a node j can be done
independently from the calculation of the state of any other
node k, provided that neither j is an ancestor of k, nor k is an
ancestor of j.

To maximize the potential for parallel execution, the life cycle of
a node during traversal is divided into three operations (Figure 1c,d):

1.	 InitNode : initializes the node-state based on the input data and
model parameters only. This operation does not depend on the
states of other nodes. Hence, it is fully parallelizable.

2.	 VisitNode : “updates” the state of its operand node based on the
state of either the node's parent if in pre-order traversal, or the
node's daughters if in post-order traversal. This operation can be
executed in parallel for any group of nodes satisfying Assumption
1 and having their parents “Visit”-ed (if a pre-order traversal) or
their daughters “Prune”-ed (if a post-order traversal, see
PruneNode below). To prevent a possible race-condition, in a
post-order traversal, this operation should not modify the state
of the parent or any ancestor of the operand node. Executing this
operation on the root node is optional and not done by default.

3.	 PruneNode (post-order traversal only): “communicates” the state
of a node to its parent node. SPLITT ensures that this operation
is synchronized between siblings, that is, daughters of the same
parent node. Hence, this operation is convenient for accumula-
tion (e.g. summation) of state-variables of the daughters into the
state of their parent (Figure 1c). This operation is not defined for
the root of the tree.

The parallel speed-up can depend on multiple factors, including the
balancedness of the tree, and the computing and memory complexity of
the traversal operations, which can be different between nodes in the
tree. Noticing that there is no one-size-fit-all parallel traversal strategy
that guarantees fastest execution, previous works have studied queue-
based and range-based parallelization strategies (Ayres & Cummings,
2017; Qamnieh, 2015; Reif, 1989). SPLITT implements such algorithms
called “orders” (Section 1.1, Supporting Information). As a default set-
ting, SPLITT implements a mode “auto,” in which it compares the exe-
cution time of different parallel orders during the first several calls on
a given tree and data, choosing the fastest one for all subsequent calls.

2.2 | A showcase: the phylogenetic (Ornstein-
Uhlenbeck) mixed model

To illustrate the use and to test the SPLITT library, we devel-
oped two variants of the so called phylogenetic mixed model
(PMM)—the original PMM assuming a Brownian motion process
(Housworth, Martins, & Lynch, 2004; Lynch, 1991), and its recent
extension to an Ornstein-Uhlenbeck process, the POUMM, which

https://venelin.github.io/SPLITT/index.html

496  |    Methods in Ecology and Evolu
on MITOV and STADLER

F IGURE 1 Parallel pruning for calculating the log-likelihood of the phylogenetic mixed model

(c)

(a)

(d)

(e)

(b)

     |  497Methods in Ecology and Evolu
onMITOV and STADLER

we and other authors have used previously to analyse the evolu-
tion of set-point viral load in HIV patients (Mitov & Stadler, 2018
and references therein).

Figure 1b shows the mathematical formulation of the PMM (see
Section 2.2, Supporting Information for a more general mathemati-
cal formulation of the P(OU)MM model and a biological interpreta-
tion of its parameters).

The key assumption enabling a pruning algorithm to evaluate the
P(OU)MM likelihood is that the trait evolves independently in each
lineage descending from a branching point in  . This allows to fac-
torize the likelihood function over the sub-trees in  , treating the
values of g at the branching points as unknown variables which are
integrated over their distributions expected under the model param-
eters, Θ. This integration leads to a simple formulation of the P(OU)
MM log-likelihood as a quadratic polynomial of gM (Theorem S1,
Section 2.2, Supporting Information):

where the coefficients aM, bM and cM are functions of the tree topol-
ogy, branch lengths, the observed trait values and the model param-
eters. Denoting by Desc(j) the set of direct descendants (daughters)
of node j, for the PMM, these functions are given by the following re-
cursive formulas (Theorem S1, Section 2.2, Supporting Information):

Based on Equation 2, we define the node-traversal opera-
tions (InitNode, VisitNode and PruneNode) as shown on Figure 1c.
Figure 1d shows how the node-states are initialized and updated in
parallel “prune-ranges” for an example tree and trait data and model
parameters (Figure 1a,d). After the traversal the values aM, bM and
cM from the root-state are plugged in Equation 1 to obtain the log-
likelihood value (Figure 1e).

2.3 | Generalization to multi-trait Ornstein-
Uhlenbeck and mixed Gaussian phylogenetic models

The quadratic polynomial representation of the log-likelihood func-
tion (Equation 1) can be generalized to a broader family of models.
In Section 2.2, Supporting Information, we show how the coeffi-
cients aM, bM and cM can be calculated for the single-trait Ornstein-
Uhlenbeck mixed model. In a separate work (Mitov et al., 2018), we
extend this integration technique to evaluate the likelihood of multi-
trait Ornstein-Uhlenbeck and mixed Gaussian phylogenetic models,
that is, models in which different types of models are assigned to

different lineages of the tree. These models have been implemented
in several r-packages summarized in the following sub-section.

2.4 | Software

We provide SPLITT as a C++ library licensed under version 3.0 of
the GNU Lesser General Public License (LGPL v3.0) and available
at https://github.com/venelin/SPLITT.git. In its current implemen-
tation, the library uses the C++11 language standard, the standard
template library and the OpenMP standard for parallel processing.

The single-trait POUMM has been implemented in the r-package
POUMM, available at https://github.com/venelin/POUMM.git.
Section 3, Supporting Information provides details on the model in-
ference procedure implemented within the package and reports a
test of technical correctness.

The generalization to a multi-trait mixed Gaussian phylogenetic
model (MGPM) has been implemented in the r-package PCMBase (Mitov
et al., 2018) available at https://github.com/venelin/PCMBase.git.
An accompanying package called PCMBaseCpp, which is based
on SPLITT, provides a parallel C++ implementation of the likeli-
hood calculation for the MGPM model. This package is available at
https://github.com/venelin/PCMBaseCpp.git.

2.5 | Technical correctness

To test the technical correctness of the SPLITT library and the higher
level POUMM, PCMBase and PCMBaseCpp packages, we used the
method of posterior quantiles (Cook, Gelman, & Rubin, 2006). For
the single-trait POUMM implementation (POUMM r-package), we
report the technical correctness test in Section 3.2, Supporting
Information. For the multi-trait implementation (PCMBase and
PCMBaseCpp r-packages), the technical validation is reported in
Mitov et al. (2018).

2.6 | Simulations

We evaluated the performance of the SPLITT library using the single-
trait and multi-trait phylogenetic Ornstein-Uhlenbeck mixed model
(POUMM) as a showcase. The single-trait POUMM was implemented
in the r-package POUMM (Section 3, Supporting Information), based
on the quadratic polynomial representation of the log-likelihood
(Section 2.2, Supporting Information). The multi-trait POUMM
version was implemented in the r-package, PCMBaseCpp, using a
multi-trait generalization of the quadratic polynomial representation
described in Mitov et al. (2018). The POUMM is a suitable model for
a comparative benchmark, because a number of r-packages provide
similar OU-based phylogenetic models, using C++ for the likelihood
implementation. These include, among others, geiger (Pennell
et al., 2014) and diversitree (FitzJohn, 2012) for the single-trait
case and Rphylopars (Goolsby et al., 2016) for the multi-trait case.

We used the r-package apTreeshape (Bortolussi, Durand,
Blum, & Francois, 2012) to generate tree topologies of sizes N ∈ {100;
1,000; 10,000; 100,000}. To generate the random trees, we used

(1)��(Θ)=aMg
2

M
+bMgM+cM,

https://github.com/venelin/SPLITT.git
https://github.com/venelin/POUMM.git
https://github.com/venelin/PCMBase.git
https://github.com/venelin/PCMBaseCpp.git

498  |    Methods in Ecology and Evolu
on MITOV and STADLER

the function rtreeshape() with a biased model. A parameter p in
this model controls the disproportion of branching rates for the left
and right lineages starting from a given parent node. For each N, we
used four settings for p as follows:

1.	 p = 0.5 corresponding to equal left and right branching rates
and resulting in balanced trees;

2.	 p = 0.1 corresponding to unbalanced trees in which one of any
two sibling branches (sharing the same parent node) splits at rate
p = 0.1, while the other splits at rate p′ = 1 − p = 0.9 (time units are
arbitrary, so we can assume that the rates correspond to splitting
probabilities per unit time).

3.	 p = 0.01 corresponding to very unbalanced trees (splitting rates of
p = 0.01 and p′ = 0.99 for any couple of sibling branches);

4.	 p = 0.01/N corresponding to a ladder-like tree (see Figure 2).

This resulted in a total of 16 topologies (trees for N = 1, 000
shown on Figure 2). For each topology, random branch lengths
were assigned overwriting the default branch lengths of 1 assigned
by rtreeshape(). Since the OU-implementations in the current
diversitree and Rphylopars versions do not support non-
ultrametric trees, each tree was ultrametrized (adjusting branch
lengths so that all tips have the same root-tip distance). For each
tree, we generated random trait-values by simulating the POUMM
model using random parameters.

2.7 | Other pruning algorithm examples

In Sections 2.1 and 2.2.2, Supporting Information, we describe an-
other pruning algorithm for calculating the POUMM log-likelihood,
which is based on the generalized 3-point structure algorithm (Ho &
Ané, 2014). In Section 2.3, Supporting Information, we give an ex-
ample of a pruning algorithm for calculating the likelihood of a dis-
crete (binary) trait observed at the tips of a phylogenetic tree.

3  | RESULTS

3.1 | Time for preprocessing the tree

Each of the tested packages implements a preprocessing step ini-
tializing cached data-structures that are re-used during likelihood
calculation. In the case of SPLITT, this is the constructor-function
of the internal Tree structure; in the case of diversitree, this
is the function make.ou; in the case of geiger, this is the internal
function bm.lik. We note that the time for creating the cache
structure is not important in scenarios of fitting Gaussian phylo-
genetic models to a fixed tree and data (created once, at the be-
ginning of the inference process). However, these times become
important in the case when the tree topology is inferred together
with the model parameters from trait and sequence alignment
data.

F IGURE 2 Test tree topologies for N = 1,000. For visualization purpose, all branch lengths have been set to 1, whereas the random
branch lengths were used in the benchmarks. Note that the tree for p = 0.5 is nearly but not perfectly balanced due to the random nature of
the tree generation process, as well as N not being an exact degree of 2

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)

     |  499Methods in Ecology and Evolu
onMITOV and STADLER

We measured the preprocessing time on the 16 trees (Table 1).
The times scaled linearly with the size of the tree for the pack-
ages using the SPLITT library (POUMM and PCMBaseCpp) and for
diversitree. For these packages the time was not affected by
the unbalancedness of the tree. For geiger, we observed longer
times, both for bigger N as well as for more unbalanced trees. For
N = 100,000 and p = 0.01/N, both, diversitree and geiger
failed with a stack-overflow error. The relatively short times for
the SPLITT-based POUMM and PCMBaseCpp packages indicate that
SPLITT could potentially be used for phylogenetic inference.

3.2 | Time for POUMM likelihood calculation

To measure the likelihood calculation time, we ran performance
benchmarks on a personal computer (PC) running OS X on an Intel(R)
Core(TM) i7-4850HQ CPU @ 2.30 GHz with 4 CPU cores, and on the
“Euler” scientific cluster (https://scicomp.ethz.ch/wiki/Euler) run-
ning Linux OS on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz
running 24 physical cores. Here, we comment on the calculation
times on the PC, noting that the times on Euler for up to 4 CPU cores
were nearly equal (Supporting Information Figures S2–S6).

We distinguish the different implementations according to the
following criteria:

•	 Number of traits: we distinguish between single-trait implemen-
tations, that is, geiger, diversitree and POUMM, and multi-
trait implementations, that is, Rphylopars and PCMBaseCpp.
For the multi-trait implementations, we measured the time for 1,
4, 8 and 16 traits.

•	 Mode: denotes whether the implementation is single threaded
using one physical core of the CPU—serial, or multi-threaded,
running as many threads as there are physical CPU cores—parallel;

•	 Order: denotes the order in which the prune-able nodes are
processed. We tested three possible orders: postorder—the
nodes are processed sequentially; queue-based—the nodes are
processed in parallel as they enter the queue (Algorithm S1,

Section 2, Supporting Information), synchronized thread access
to the queue; range-based—the nodes in each pruning genera-
tion are processed in order of their allocation in memory, no need
for a synchronized access to a queue (Algorithm S2, Section 2,
Supporting Information).

•	 Implementation: the r-package and the back-end used (R or C++).

The likelihood calculation time was measured using the R-
function “sys.time” calling the specific likelihood implementation on
a fixed set of parameters n = 100 times, then, dividing the cumula-
tive time by n. To avoid influence from other processes running on
the same PC, the benchmark was run after a restart of the operating
system (OS). The resulting times for the single-trait implementations
running on the PC are shown on Figure 3.

On small trees of 100 tips, the fastest single-trait POUMM imple-
mentations were the serial C++ implementations from the packages
POUMM and diversitree (about 0.03 ms); the range-based parallel
implementation was nearly as fast on balanced trees (p = 0.5) but was
progressively slower on unbalanced trees. The geiger implementation
was nearly an order of magnitude slower (0.2 ms). The POUMM queue-
based parallel implementation was nearly 100 times slower (nearly
2 ms), presumably due to the excessive synchronization overhead.
The serial R implementation from the diversitree package was the
slowest (above 2 ms), which was expected, since the R interpreter is
notorious for its slow speed compared to compiled languages like C++.
On bigger balanced trees (N > 100, p = 0.5), the range-based parallel
implementation took over, reaching up to 4× speed-up with respect to
the range-based serial implementation, up to 5× speed-up with respect
to the post-order serial implementation and up to 10× speed-up with
respect to the diversitree serial C++ implementation. This reveals
a consistent speed-up for all trees except the ladder tree, where paral-
lelization of the internal nodes is not possible (see Figure 2). The time
for the other serial implementations and the POUMM queue-based
parallel implementation scaled up linearly with N.

The times for the multi-trait implementations running on the PC
are shown on Figure 4. For these implementations, the likelihood

N Implementation p = 0.5 (ms) p = 0.1 (ms) p = 0.01 (ms)
p = 0.01/N
(ms)

100 geiger 5 6 9 9

100 diversitree 4 4 4 4

100 SPLITT 2 2 2 1

1,000 geiger 18 26 78 414

1,000 diversitree 20 20 22 30

1,000 SPLITT 3 2 3 3

10,000 geiger 358 449 1,345 355,396

10,000 diversitree 207 211 227 1,338

10,000 SPLITT 14 13 13 15

100,000 geiger 20,215 21,629 36,349 —

100,000 diversitree 2,421 2,619 2,883 —

100,000 SPLITT 130 131 131 140

TABLE 1 Times for tree-preprocessing

https://scicomp.ethz.ch/wiki/Euler

500  |    Methods in Ecology and Evolu
on MITOV and STADLER

calculation times were about two orders of magnitude higher com-
pared to the single-trait implementations. This is due to slow algebraic
operations, for example, arithmetic division in the single-trait case as
opposed to matrix inversion in the multi-trait case.

3.3 | Parallel speedup

The parallel speed-ups for the Euler cluster benchmark for single-
trait implementations and for multi-trait implementations with 16
traits are shown on Figures 5 and 6 (see also Figures S7–S9, for multi-
trait implementations with 1, 4 and 8 traits).

For single-trait implementations, the parallel speed-up is negligi-
ble for trees of <1,000 tips and for highly unbalanced trees (Figure 5).

The parallel speed-up becomes noticeable for large balanced trees,
peaking at 10× for a balanced tree of 100,000 tips, running on 20
CPU cores (Figure 5). The above behaviour is explained by the fact
that the InitNode and VisitNode operations in the single-trait case are
very fast relative to the thread-management operations. Also note-
worthy is the fact that even on balanced trees above 100,000 tips,
the parallel efficiency, that is,the ratio of the parallel speed-up and
the number of parallel cores, drops below 50% when running on more
than 20 CPU cores. This suggests a possible competition between the
CPU cores for a limited resource such as the processor cache or the
memory bandwidth.

For the multi-trait implementations, the InitNode and VisitNode
operations are computationally more intensive. This is why we observe

F IGURE 3 Likelihood calculation times for single-trait R and C++ implementations of the POUMM model on a PC (processor Intel(R)
Core(TM) i7-4850HQ CPU @ 2.30GHz with four physical cores). Both, the x-axis denoting the number of tips in the tree and the y-axis
denoting the calculation time in milliseconds are on a log-10 scale. Panels from left to right correspond to different tree topologies with left-
most panel corresponding to a balanced tree and right-most panel corresponding to a ladder tree, see also Figure 2

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)

100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000

0.02

0.06

0.10

0.20

0.60

1.00

2.00

6.00

10.00

20.00

60.00

100.00

200.00

600.00

1,000.00

2,000.00

6,000.00

N

Ti
m

e
[m

s]

Mode
serial

parallel

Order
postorder

queue−based

range−based

Implementation
POUMM (C++)

diversitree (R)

diversitree (C++)

geiger (C++)

     |  501Methods in Ecology and Evolu
onMITOV and STADLER

F IGURE 4 Likelihood calculation times for multi-trait C++ implementations of the POUMM model on a personal computer (processor
Intel(R) Core(TM) i7-4850HQ CPU @ 2.30GHz with four physical cores). For simplicity, only serial and parallel range modes are shown,
noting that the parallel queue mode had slightly slower times compared to the parallel range mode

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)
k = 1 traits

k = 4 traits
k = 8 traits

k = 16 traits

100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000 100 1,000 10,000 100,000

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

0.6
1.0
2.0

6.0
10.0
20.0

60.0
100.0
200.0

600.0
1,000.0
2,000.0

6,000.0
10,000.0
20,000.0

60,000.0

N

Ti
m

e
[m

s]

Mode
serial parallel range

Implementation
PCMBaseCpp (C++) Rphylopars (C++)

502  |    Methods in Ecology and Evolu
on MITOV and STADLER

substantial parallel speed-up on the smallest as well as the most unbal-
anced trees (Figure 6). However, for all multi-trait cases, we observe a
decline in parallel speed-up with more than 12 CPU cores (Figure 6).
The most reasonable explanation for this is competition between the
CPU cores for a limited hardware resource.

3.4 | Combined parallel likelihood calculation with
adaptive Metropolis sampling

In Bayesian MCMC inference, the parallel likelihood calculation
can be combined with an adaptive MCMC sampler. The POUMM

F IGURE 5 Parallel speed-up for the single-trait POUMM implementation on the Euler cluster (package POUMM). The grey and red lines
denote the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels correspond to the different tree
topologies, see also Figure 2. Vertically, the panels correspond to the different tree-sizes

N = 1e+05

p = 0.5 (balanced)

N = 1e+05

p = 0.1

N = 1e+05

p = 0.01

N = 1e+05

p = 0.01/N (ladder)

N = 10000

p = 0.5 (balanced)

N = 10000

p = 0.1

N = 10000

p = 0.01

N = 10000

p = 0.01/N (ladder)

N = 1000

p = 0.5 (balanced)

N = 1000

p = 0.1

N = 1000

p = 0.01

N = 1000

p = 0.01/N (ladder)

N = 100

p = 0.5 (balanced)

N = 100

p = 0.1

N = 100

p = 0.01

N = 100

p = 0.01/N (ladder)

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

Number of CPU cores

Pa
ra

lle
l s

pe
ed

up
 [x

]

Mode serial parallel queue parallel range

     |  503Methods in Ecology and Evolu
onMITOV and STADLER

r-package implements this approach by embedding the SPLIT-
based likelihood calculation in a Metropolis sampler with co-
erced acceptance rate available from the adaptMCMC r-package
(Scheidegger, 2017) (Section 3.1, Supporting Information). We
tested this approach during a POUMM analysis of a transmission

tree from the HIV epidemic in UK (N = 8,483) reported else-
where (Mitov & Stadler, 2018). This showed faster MCMC
convergence (Figure S10, Section 5, Supporting Information)
and overall <30 min for the MCMC run (Section 5, Supporting
Information).

F IGURE 6 Parallel speed-up for the multi-trait (k = 16 traits) POUMM implementation (package PCMBaseCpp) on the Euler cluster. The
grey and red lines denote the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels correspond to
the different tree topologies, see also Figure 2. Vertically, the panels correspond to the different tree-sizes

N = 1e + 05

p = 0.5 (balanced)

N = 1e + 05

p = 0.1

N = 1e + 05

p = 0.01

N = 1e + 05

p = 0.01/N (ladder)

N = 10000

p = 0.5 (balanced)

N = 10000

p = 0.1

N = 10000

p = 0.01

N = 10000

p = 0.01/N (ladder)

N = 1000

p = 0.5 (balanced)

N = 1000

p = 0.1

N = 1000

p = 0.01

N = 1000

p = 0.01/N (ladder)

N = 100

p = 0.5 (balanced)

N = 100

p = 0.1

N = 100

p = 0.01

N = 100

p = 0.01/N (ladder)

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

Number of CPU cores

Pa
ra

lle
l s

pe
ed

up
 [x

]

Mode serial parallel queue parallel range

504  |    Methods in Ecology and Evolu
on MITOV and STADLER

4  | DISCUSSION

The examples in this article focused on Gaussian models of continuous
trait evolution (see Section 2 and Section 2, Supporting Information).
Yet, SPLITT can in principle be used for any algorithm that runs a pre-
order or post-order tree traversal. For example, another family of mod-
els where SPLITT could be used are models of structured populations.
When calculating the likelihood for a phylogenetic tree under a struc-
tured birth-death model, the calculations proceed in a pruning fashion
(Kühnert, Stadler, Vaughan, & Drummond, 2016) and may be improved
with respect to speed using our approach. However, the structured
coalescent likelihood for a tree is a function of all co-existing lineages
even for approximate methods (Müller, Rasmussen, & Stadler, 2017),
and thus a pruning formulation is not available.

We did not develop examples of pre-order traversal. One such
example is the simulation of traits evolving along the tree, which
can be used for validation and approximate inference of phyloge-
netic models. In complex phylogenetic comparative models, where
an exact calculation of the likelihood is elusive or computationally
intractable, it is possible to use simulations of trait evolution along
the tree for approximate likelihood calculation (Kutsukake & Innan,
2013) or approximate Bayesian computation (ABC) (Slater, Harmon,
Wegmann, et al., 2012). Both approaches are computationally inten-
sive and could benefit from parallel execution using SPLITT.

We should not omit mentioning other software libraries imple-
menting parallel likelihood computation of different Markov models
of sequence evolution. Several high-level tools for ML and Bayesian
tree inference, for example, Drummond et al. (2012); Bouckaert et al.
(2014); Ronquist and Huelsenbeck (2003), use the library BEAGLE
which distributes the computation for the independent sites of the
sequence alignment among multiple CPU or GPU cores (Ayres et al.,
2012, but see also Ayres & Cummings, 2017)). SPLITT operates on a
different level, namely, it parallelizes the computation for independent
lineages in the tree. Both approaches are interesting because they fit
well to different sizes of the input data—while BEAGLE achieves signif-
icant parallel speed-ups in long alignments comprising many thousands
nucleotide or codon columns (Ayres et al., 2012, SPLITT is better suited
to shorter alignments of potentially many thousands of species.

Based on the performance benchmarks, we conclude that
with the current implementation of SPLITT, running on the above-
mentioned hardware, the parallel speed-up from parallel tree tra-
versal is up to one order of magnitude using up to 20 CPU cores. A
future GPU-based extension of SPLITT would show if it can reach
higher levels of parallel speed-up and efficiency. Reaching higher
speed-up of the Bayesian inference, though, is possible if the parallel
traversal likelihood calculation is combined with a general purpose
adaptive Metropolis sample.

4.1 | Outlook

The past decade has seen a rapid advance in the production of
multi-core processors. At the same time, it appears that the maxi-
mum clock frequency of a single processing unit is approaching the

maximum achievable for semi-conductor-based architectures. In
parallel with this development on the hardware side, the volume
of sequence data and the size of phylogenetic trees is growing ex-
ponentially. For instance, in <5 years the size of phylogenetic trees
used for calculating the heritability of HIV virulence has increased
from a few hundreds to several thousand patients (Alizon et al.,
2010; Hodcroft et al., 2014). This motivates the development of
novel parallel algorithms capitalizing on the multi-core technology.
The parallel tree traversal library, SPLITT, enables parallel compu-
tation for a vast set of phylogenetic models, facing the challenges
of increasing model complexity and volumes of data in phyloge-
netic analysis.

ACKNOWLEDG EMENTS

We thank Dr. Krzysztof Bartoszek for valuable insights on the
Ornstein–Uhlenbeck process.

AUTHORS’ CONTRIBUTIONS

V.M. conceived the ideas and designed the methodology; V.M. im-
plemented the software; V.M. and T.S. planned the performance
benchmarks and the technical correctness tests; V.M. led the writing
of the manuscript. Both authors contributed critically to the drafts
and gave final approval for publication.

DATA ACCE SSIBILIT Y

Data from the performance benchmarks and simulations for technical cor-
rectness is accessible from the SPLITT github page https://github.com/
venelin/SPLITT.git (https://doi.org/10.5281/zenodo.2003522). The
POUMM package and user guide is available at https://github.com/
venelin/POUMM.git (https://doi.org/10.5281/zenodo.1972161). The
PCMBaseCpp package is available at https://github.com/venelin/PCM
BaseCpp.git (https://doi.org/10.5281/zenodo.1977061). This package
depends on the PCMBase r-package, which is available at https://github.
com/venelin/PCMBase.git (https://doi.org/10.5281/zenodo.19754
53, see also Mitov et al., 2018). The PMM likelihood calculation ex-
ample illustrated on Figure 1 has been implemented in the form of an
r-package available at https://github.com/venelin/PMMUsingSPLITT.
git (https://doi.org/10.5281/zenodo.1977117, see also Section 2.2,
Supporting Information). Additional examples, discussed in Section 2,
Supporting Information, have been implemented as r-packages,
available at https://github.com/venelin/ThreePointUsingSPLITT.git
(https://doi.org/10.5281/zenodo.1977135, see also Section 2.1,
Supporting Information) and at https://github.com/venelin/BinaryPois
sonUsingSPLITT.git (https://doi.org/10.5281/zenodo.1977127, see
also Section 2.3, Supporting Information).

ORCID

Venelin Mitov https://orcid.org/0000-0002-5227-5191

Tanja Stadler https://orcid.org/0000-0001-6431-535X

https://github.com/venelin/SPLITT.git
https://github.com/venelin/SPLITT.git
https://doi.org/10.5281/zenodo.2003522
https://github.com/venelin/POUMM.git
https://github.com/venelin/POUMM.git
https://doi.org/10.5281/zenodo.1972161
https://github.com/venelin/PCMBaseCpp.git
https://github.com/venelin/PCMBaseCpp.git
https://doi.org/10.5281/zenodo.1977061
https://github.com/venelin/PCMBase.git
https://github.com/venelin/PCMBase.git
https://doi.org/10.5281/zenodo.1975453
https://doi.org/10.5281/zenodo.1975453
https://github.com/venelin/PMMUsingSPLITT.git
https://github.com/venelin/PMMUsingSPLITT.git
https://doi.org/10.5281/zenodo.1977117
https://github.com/venelin/ThreePointUsingSPLITT.git
https://doi.org/10.5281/zenodo.1977135
https://github.com/venelin/BinaryPoissonUsingSPLITT.git
https://github.com/venelin/BinaryPoissonUsingSPLITT.git
https://doi.org/10.5281/zenodo.1977127
https://orcid.org/0000-0002-5227-5191
https://orcid.org/0000-0002-5227-5191
https://orcid.org/0000-0001-6431-535X
https://orcid.org/0000-0001-6431-535X

     |  505Methods in Ecology and Evolu
onMITOV and STADLER

R E FE R E N C E S

Alizon, S., von Wyl, V., Stadler, T., Kouyos, R. D., Yerly, S., Hirschel, B.,
… Bonhoeffer, S.; Swiss HIV Cohort Study (2010). Phylogenetic ap-
proach reveals that virus genotype largely determines HIV set-point
viral load. PLoS Pathogens, 6, e1001123. https://doi.org/10.1371/
journal.ppat.1001123

Angelino, E., Kohler, E., Waterland, A., Seltzer, M., & Adams, R. P. (2014).
Accelerating MCMC via parallel predictive prefetching. UAI, Stat.ML,
arXiv:1403.7265.

Ayres, D. L., & Cummings, M. P. (2017). Configuring concurrent computa-
tion of phylogenetic partial likelihoods—Accelerating analyses using
the BEAGLE library. ICA3PP, 10393, 533–547.

Ayres, D. L., Darling, A., Zwickl, D. J., Beerli, P., Holder, M. T., Lewis, P. O., …
Suchard, M. A. (2012). BEAGLE: An application programming interface
and high-performance computing library for statistical phylogenetics.
Systematic Biology, 61, 170–173. https://doi.org/10.1093/sysbio/syr100

Bastide, P., An′e, C., Robin, S., & Mariadassou, M. (2018). Inference of
adaptive shifts for multivariate correlated traits. Systematic Biology,
113, 2158–2680.

Bertels, F., Marzel, A., Leventhal, G., Mitov, V., Fellay, J., Günthard, H. F.,
… Regoes, R. R.; Swiss HIV Cohort Study (2017). Dissecting HIV viru-
lence: Heritability of setpoint viral load, CD4+ T cell decline and per-
parasite pathogenicity. Molecular Biology and Evolution, 35(1), 27–37.

Bishop, C. M. (2007). Pattern recognition and machine learning (5th ed.).
Information science and statistics. New York, NY: Springer.

Bortolussi, N., Durand, E., Blum, M., & Francois, O. (2012). apTree-
shape: Analyses of phylogenetic treeshape. r package.

Bouckaert, R. R., Heled, J., Kühnert, D., Vaughan, T. G., Wu, C. H., Xie,
D., … Drummond, A. J. (2014). BEAST 2—A software platform for
Bayesian evolutionary analysis. PLoS Computational Biology (PLOSCB),
10 (4), e1003537. https://doi.org/10.1371/journal.pcbi.1003537

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. New York, NY:
Cambridge University Press.

Brockwell, A. E. (2006). Parallel Markov chain Monte Carlo simulation
by pre-fetching. Journal of Computational and Graphical Statistics, 15,
246–261. https://doi.org/10.1198/106186006X100579

Clavel, J., Escarguel, G., & Merceron, G. (2015). mvmorph: An r pack-
age for fitting multivariate evolutionary models to morphometric
data. Methods in Ecology and Evolution, 6, 1311–1319. https://doi.
org/10.1111/2041-210X.12420

Cook, S. R., Gelman, A., & Rubin, D. B. (2006). Validation of soft-
ware for bayesian models using posterior quantiles. Journal of
Computational and Graphical Statistics, 15, 675–692. https://doi.
org/10.1198/106186006X136976

Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian
phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and
Evolution, 29, 1969–1973. https://doi.org/10.1093/molbev/mss075

Felsenstein, J. (1973). Maximum-likelihood estimation of evolution-
ary trees from continuous characters. American Journal of Human
Genetics, 25, 471–492.

Felsenstein, J. (1981). Evolutionary trees from DNA sequences: A maxi-
mum likelihood approach. Journal of Molecular Evolution, 17, 368–376.
https://doi.org/10.1007/BF01734359

Felsenstein, J. (1983). Statistical inference of phylogenies. Journal of
the Royal Statistical Society Series A (General), 146, 246. https://doi.
org/10.2307/2981654

Felsenstein, J. (1985). Phylogenies and the comparative method. The
American Naturalist, 125, 1–15. https://doi.org/10.1086/284325

FitzJohn, R. G. (2012). diversitree: Comparative phylogenetic analy-
ses of diversification in R. Methods in Ecology and Evolution, 3, 1084–
1092. https://doi.org/10.1111/j.2041-210X.2012.00234.x

Goolsby, E. W., Bruggeman, J., & An′e, C. (2016). Rphylopars: Fast mul-
tivariate phylogenetic comparative methods for missing data and
within-species variation. Methods in Ecology and Evolution, 8, 22–27.

Goudie, R. J. B., Turner, R. M., De Angelis, D., & Thomas, A. (2017).
MultiBUGS: Massively parallel MCMC for Bayesian hierarchical
models. arXivorg, arXiv:1704.03216.

Haario, H., Saksman, E., & Tamminen, J. (2001). An adaptive metrop-
olis algorithm. Bernoulli Official Journal of the Bernoulli Society for
Mathematical Statistics and Probability, 7, 223–242.

Hansen, T. F., & Martins, E. P. (1996). Translating between microevolu-
tionary process and macroevolutionary patterns: The correlation
structure of interspecific data. Evolution, 50, 1404. https://doi.
org/10.1111/j.1558-5646.1996.tb03914.x

Harmon, L. J. (2018). Phylogenetic comparative methods: Learning from
trees. CreateSpace Independent Publishing Platform. Retreived from
https://lukejharmon.github.io/pcm/

Ho, L. S. T., & Ané, C. (2014). A linear-time algorithm for Gaussian
and non-Gaussian trait evolution models. Systematic Biology, 63,
397–408.

Hodcroft, E., Hadfield, J. D., Fearnhill, E., Phillips, A., Dunn, D., O‘Shea, S.,
… Brown, A. J. L. (2014). The contribution of viral genotype to plasma
viral set-point in HIV infection. PLoS Pathogens, 10, e1004112.
https://doi.org/10.1371/journal.ppat.1004112

Housworth, E. A., Martins, E. P., & Lynch, M. (2004). The phylogenetic
mixed model. The American Naturalist, 163, 84–96. https://doi.
org/10.1086/380570

Ives, A. R., & Garland, T. J. (2010). Phylogenetic logistic regression for
binary dependent variables. Systematic Biology, 59, 9–26. https://doi.
org/10.1093/sysbio/syp074

Kühnert, D., Stadler, T., Vaughan, T. G., & Drummond, A. J. (2016).
Phylodynamics with migration: A computational framework to quan-
tify population structure from genomic data. Molecular Biology and
Evolution, 33, msw064–2116.

Kutsukake, N., & Innan, H. (2013). Simulation-based likelihood approach
for evolutionary models of phenotypic traits on phylogeny. Evolution,
67, 355–367. https://doi.org/10.1111/j.1558-5646.2012.01775.x

Lande, R. (1976). Natural-selection and random genetic drift in
phenotypic evolution. Evolution, 30, 314–334. https://doi.
org/10.1111/j.1558-5646.1976.tb00911.x

Losos, J. B. (2011). Seeing the forest for the trees: The limitations of phy-
logenies in comparative biology. (American Society of Naturalists
Address). The American Naturalist, 177, 709–727. https://doi.
org/10.1086/660020

Lynch, M. (1991). Methods for the analysis of comparative data in
evolutionary biology. Evolution, 45, 1065–1080. https://doi.
org/10.1111/j.1558-5646.1991.tb04375.x

Manceau, M., Lambert, A., & Morlon, H. (2016). A unifying comparative
phylogenetic framework including traits coevolving across interact-
ing lineages. Systematic Biology, 66, syw115–568.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., &
Teller, E. (1953). Equation of state calculations by fast computing ma-
chines. The Journal of Chemical Physics, 21, 1087–1092. https://doi.
org/10.1063/1.1699114

Mitov, V., Bartoszek, K., Asimomitis, G., & Stadler, T. (2018) Fast likeli-
hood evaluation for multivariate phylogenetic comparative methods:
The PCMBase r package. arXivorg, arXiv:1809.09014.

Mitov, V., & Stadler, T. (2018). A practical guide to estimating the her-
itability of pathogen traits. Molecular Biology and Evolution, 6,
e1001123–msx328 VL–IS–.

Müller, N. F., Rasmussen, D. A., & Stadler, T. (2017). The structured co-
alescent and its approximations. Molecular Biology and Evolution, 34,
2970–2981. https://doi.org/10.1093/molbev/msx186

Paradis, E., & Claude, J. (2002). Analysis of comparative data using gen-
eralized estimating equations. Journal of Theoretical Biology, 218,
175–185. https://doi.org/10.1006/jtbi.2002.3066

Pennell, M. W., Eastman, J. M., Slater, G. J., Brown, J. W., Uyeda, J.
C., FitzJohn, R. G., … Harmon, L. J. (2014). geiger v2.0: An ex-
panded suite of methods for fitting macroevolutionary models

https://doi.org/10.1371/journal.ppat.1001123
https://doi.org/10.1371/journal.ppat.1001123
https://doi.org/10.1093/sysbio/syr100
https://doi.org/10.1371/journal.pcbi.1003537
https://doi.org/10.1198/106186006X100579
https://doi.org/10.1111/2041-210X.12420
https://doi.org/10.1111/2041-210X.12420
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1198/106186006X136976
https://doi.org/10.1093/molbev/mss075
https://doi.org/10.1007/BF01734359
https://doi.org/10.2307/2981654
https://doi.org/10.2307/2981654
https://doi.org/10.1086/284325
https://doi.org/10.1111/j.2041-210X.2012.00234.x
https://doi.org/10.1111/j.1558-5646.1996.tb03914.x
https://doi.org/10.1111/j.1558-5646.1996.tb03914.x
https://lukejharmon.github.io/pcm/
https://doi.org/10.1371/journal.ppat.1004112
https://doi.org/10.1086/380570
https://doi.org/10.1086/380570
https://doi.org/10.1093/sysbio/syp074
https://doi.org/10.1093/sysbio/syp074
https://doi.org/10.1111/j.1558-5646.2012.01775.x
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1111/j.1558-5646.1976.tb00911.x
https://doi.org/10.1086/660020
https://doi.org/10.1086/660020
https://doi.org/10.1111/j.1558-5646.1991.tb04375.x
https://doi.org/10.1111/j.1558-5646.1991.tb04375.x
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1093/molbev/msx186
https://doi.org/10.1006/jtbi.2002.3066

506  |    Methods in Ecology and Evolu
on MITOV and STADLER

to phylogenetic trees. Bioinformatics, 30, 2216–2218. https://doi.
org/10.1093/bioinformatics/btu181

Qamnieh, M. (2015). Scheduling of parallel real-time DAG tasks on multi-
processor systems. Ph.D. thesis, igm.univ-mlv.fr.

Reif, J. H. (1989). Parallel algorithms derivation. Technical report, US
Dept of the Navy, Funding, Fort Belvoir, VA.

Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phyloge-
netic inference under mixed models. Bioinformatics, 19, 1572–1574.
https://doi.org/10.1093/bioinformatics/btg180

Scheidegger, A. (2017). adaptMCMC. r package.
Shirreff, G., Alizon, S., Cori, A., Günthard, H. F., Laeyendecker, O., van

Sighem, A., … Fraser, C. (2013). How effectively can HIV phylog-
enies be used to measure heritability? Evolution, Medicine, and
Public Health, 2013, 209–224. https://doi.org/10.1093/emph/
eot019

Slater, G. J., Harmon, L. J., & Alfaro, M. E. (2012). Integrating fossils with mo-
lecular phylogenies improves inference of trait evolution. Evolution,
66, 3931–3944. https://doi.org/10.1111/j.1558-5646.2012.01723.
x

Slater, G. J., Harmon, L. J., Wegmann, D., Joyce, P., Revell, L. J., &
Alfaro, M. E. (2012). Fitting models of continuous trait evolu-
tion to incompletely sampled comparative data using approxi-
mate Bayesian computation. Evolution, 66, 752–762. https://doi.
org/10.1111/j.1558-5646.2011.01474.x

Uyeda, J. C., & Harmon, L. J. (2014). A novel Bayesian method for infer-
ring and interpreting the dynamics of adaptive landscapes from phy-
logenetic comparative data. Systematic Biology, 63, 902–918. https://
doi.org/10.1093/sysbio/syu057

Uyeda, J. C., Zenil-Ferguson, R., & Pennell, M. W. (2018). Rethinking phy-
logenetic comparative methods. Systematic Biology, 106, 13410.

Vihola, M. (2012). Robust adaptive Metropolis algorithm with coerced
acceptance rate. Statistics and Computing, 22, 997–1008. https://doi.
org/10.1007/s11222-011-9269-5

Wang, Q., Zhang, X., Zhang, Y., & Yi, Q. (2013). AUGEM: Automatically
generate high performance dense linear algebra kernels on x86
CPUs. In Proceedings of the international conference on high perfor-
mance computing, networking, storage and analysis (pp. 1–25). New
York, NY: ACM.

Whiley, M., & Wilson, S. P. (2004). Parallel algorithms for Markov chain
Monte Carlo methods in latent spatial Gaussian models. Statistics
and Computing, 14, 171–179. https://doi.org/10.1023/B:STCO.
0000035299.51541.5e

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

How to cite this article: Mitov V, Stadler T. Parallel likelihood
calculation for phylogenetic comparative models: The SPLITT
C++ library. Methods Ecol Evol. 2019;10:493–506.
 https://doi.org/10.1111/2041-210X.13136

https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1093/bioinformatics/btu181
https://doi.org/10.1093/bioinformatics/btg180
https://doi.org/10.1093/emph/eot019
https://doi.org/10.1093/emph/eot019
https://doi.org/10.1111/j.1558-5646.2012.01723.x
https://doi.org/10.1111/j.1558-5646.2012.01723.x
https://doi.org/10.1111/j.1558-5646.2011.01474.x
https://doi.org/10.1111/j.1558-5646.2011.01474.x
https://doi.org/10.1093/sysbio/syu057
https://doi.org/10.1093/sysbio/syu057
https://doi.org/10.1007/s11222-011-9269-5
https://doi.org/10.1007/s11222-011-9269-5
https://doi.org/10.1023/B:STCO.0000035299.51541.5e
https://doi.org/10.1023/B:STCO.0000035299.51541.5e
https://doi.org/10.1111/2041-210X.13136

