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Abstract
1.	 Phylogenetic comparative models (PCMs) have been used to study macroevolution-
ary patterns, to characterize adaptive phenotypic landscapes, to quantify rates of 
evolution, to measure trait heritability, and to test various evolutionary hypotheses. 
A major obstacle to applying these models has been the complexity of evaluating 
their likelihood function. Recent works have shown that for many PCMs, the likeli-
hood can be obtained in time proportional to the size of the tree based on post-order 
tree traversal, also known as pruning. Despite this progress, inferring complex multi-
trait PCMs on large trees remains a time-intensive task. Here, we study parallelizing 
the pruning algorithm as a generic technique for speeding-up PCM-inference.

2.	 We implement several parallel traversal algorithms in the form of a generic C++ 
library for Serial and Parallel LIneage Traversal of Trees (SPLITT). Based on SPLITT, 
we provide examples of parallel likelihood evaluation for several popular PCMs, 
ranging from a single-trait Brownian motion model to complex multi-trait Ornstein-
Uhlenbeck and mixed Gaussian phylogenetic models.

3.	 Using the phylogenetic Ornstein–Uhlenbeck mixed model (POUMM) as a show-
case, we run benchmarks on up to 24 CPU cores, reporting up to an order of mag-
nitude parallel speed-up for the likelihood calculation on simulated balanced and 
unbalanced trees of up to 100,000 tips with up to 16 traits. Noticing that the paral-
lel speed-up depends on multiple factors, the SPLITT library is capable to auto-
matically select the fastest traversal strategy for a given hardware, tree-topology, 
and data. Combining SPLITT likelihood calculation with adaptive Metropolis sam-
pling on real data, we show that the time for Bayesian POUMM inference on a tree 
of 10,000 tips can be reduced from several days to less than an hour.

4.	 We conclude that parallel pruning effectively accelerates the likelihood calcula-
tion and, thus, the statistical inference of Gaussian phylogenetic models. For time-
intensive Bayesian inferences, we recommend combining this technique with 
adaptive Metropolis sampling. Beyond Gaussian models, the parallel tree traversal 
can be applied to numerous other models, including discrete trait and birth–death 
population dynamics models. Currently, SPLITT supports multi-core shared mem-
ory architectures, but can be extended to distributed memory architectures as 
well as graphical processing units.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, 
provided the original work is properly cited.
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1  | INTRODUC TION

Phylogenetic comparative models (PCMs) have been used for study-
ing the evolution of various biological species, ranging from micro-
organisms to animals and plants. Ultimately, these statistical models 
aim to understand the intricate connections between the macroevo-
lutionary patterns observable in phenotype data from phylogenet-
ically linked species and the fundamental mechanisms of evolution 
operating on the microevolutionary timescale, such as natural selec-
tion and random genetic drift (Felsenstein, 1985; Hansen & Martins, 
1996; Harmon, 2018; Lande, 1976; Losos, 2011; Uyeda & Harmon, 
2014; Uyeda, Zenil-Ferguson, & Pennell, 2018). This quest has led to 
the recent development of complex multi-trait multi-regime mod-
els of evolution (Bastide, An′e, Robin, & Mariadassou, 2018; Clavel, 
Escarguel, & Merceron, 2015; Manceau, Lambert, & Morlon, 2016; 
Uyeda & Harmon, 2014). The inherent complexity of these models 
is posing new challenges in terms of parameter inference and model 
selection.

In their effort to speed-up PCM inference, recent works have 
shown that, for a broad family of PCMs, the likelihood of an ob-
served phylogenetic tree and data conditioned on the model pa-
rameters can be computed in time proportional to the size of the 
tree (FitzJohn, 2012; Goolsby, Bruggeman, & An′e, 2016; Ho & Ané, 
2014; Mitov, Bartoszek, Asimomitis, & Stadler, 2018). This family 
includes Gaussian models like Brownian motion (BM) and Ornstein-
Uhlenbeck (OU) phylogenetic models as well as some non-Gaussian 
models like phylogenetic logistic regression (Ho & Ané, 2014; Ives 
& Garland, 2010; Mitov et al., 2018; Paradis & Claude, 2002). All of 
these likelihood calculation techniques rely on post-order tree tra-
versal also known as pruning (Felsenstein, 1973, 1981, 1983).

For moderate numbers of traits, combining pruning algorithms 
for likelihood calculation with gradient-based optimization (Boyd & 
Vandenberghe, 2004) enables maximum likelihood model inference 
within seconds on contemporary computers, even for phylogenies 
of many thousands of tips (Ho & Ané, 2014). Despite its simple in-
terpretation and several useful statistical properties, the maximum 
likelihood estimator has often been criticised for being a point es-
timator, uninformative about the likelihood surface, often prone to 
be a local optimum, and failing to quantify the uncertainty of a pri-
ori assumed models for comparative data (Bishop, 2007; Uyeda & 
Harmon, 2014).

As an elegant alternative, Bayesian approaches such as Markov 
chain Monte Carlo (MCMC) allow incorporating prior biological 
knowledge in the model inference, provide posterior samples and 
high posterior density intervals for the model parameters and, in the 
case of multi-regime models, integrate the inference of shifts in the 
evolutionary regimes driven by the dynamics of the adaptive phe-
notypic landscape (FitzJohn, 2012; Slater, Harmon, & Alfaro, 2012; 

Uyeda & Harmon, 2014). In contrast with ML inference, though, 
Bayesian inference methods require many orders of magnitude more 
likelihood evaluations. This presents a bottleneck in Bayesian analy-
sis, in particular, for complex models of many unknown parameters 
or when faced with large phylogenies of many thousands of tips, 
such as transmission trees from large-scale epidemiological studies, 
for example, Alizon et al. (2010); Shirreff et al. (2013); Hodcroft et al. 
(2014); Bertels et al. (2017); Mitov and Stadler (2018). While big data 
should provide the needed statistical power to fit a complex model, 
the time needed to perform a full scale Bayesian fit often limits the 
choice to a faster but less informative ML-inference, or a Bayesian 
inference of a simplified model.

Speeding-up Bayesian inference is an active topic in applied sta-
tistics with recent advances that can be classified in several groups. 
One group of methods are adaptive variants of the random walk 
Metropolis algorithm (Metropolis, Rosenbluth, Rosenbluth, Teller, & 
Teller, 1953) that aim to decrease the number of MCMC iterations by 
performing “on-the-fly” changes of the jump distribution, based on 
what has been “learned” about the parameter space from past iter-
ations (Haario, Saksman, & Tamminen, 2001; Vihola, 2012). A major 
advantage of these methods is that they are generic with respect to 
the models and can be implemented as general purpose Metropolis 
samplers (e.g. adaptMCMC; Scheidegger, 2017). A second group 
are “pre-fetching” methods which modify the Metropolis-Hastings 
algorithm so that it speculatively executes sequences of individual 
likelihood calls in parallel, “hoping” that these sequences tend to 
match the actual accepted states of the MCMC (Angelino, Kohler, 
Waterland, Seltzer, & Adams, 2014; Brockwell, 2006). Another pos-
sibility to use multiple processor power, which could potentially be 
combined with the above methods, is to delegate the parallelization 
problem to a low level linear algebra library, for example, OpenBLAS 
(Wang, Zhang, Zhang, & Yi, 2013).

This article contributes to a separate body of work, namely, the 
ensemble of model-specific approaches that parallelize the likeli-
hood calculation by using specific features of the likelihood func-
tion. These include factorizations of the likelihood into a product 
of components associated with conditionally independent subsets 
of the model parameters (Goudie, Turner, De Angelis, & Thomas, 
2017; Whiley & Wilson, 2004) or the observed variables (Ayres 
et al., 2012). Often, this factorization relies on strong model as-
sumptions, such as a hierarchical structure of the model param-
eters or independence of the observed variables. A common 
approach used in software packages like BEAST (Bouckaert et al., 
2014; Drummond, Suchard, Xie, & Rambaut, 2012) is to combine 
the factorization with caching and reusing of some of the previ-
ously calculated likelihood components in consecutive MCMC it-
erations, as long as these are not affected by the proposed jump in 
parameter space.

K E Y W O R D S

continuous time Markov process, continuous trait, discrete character, pre-order traversal
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For a phylogenetic comparative model, though, the likelihood 
cannot (in general) be factorized across parameter groups, trait inde-
pendence is acceptable only as a null hypothesis and, with a moder-
ate number of traits and pruning likelihood calculation, parallelizing 
algebraic operations (on low-dimensional vectors and matrices) is in-
efficient. Hence, we explore the parallelization of the likelihood cal-
culation at the level of traversing the phylogenetic tree, that is, the 
pruning itself. Parallel tree traversal has been studied in computer 
science, mostly for the purposes of parallel tree contraction (Reif, 
1989), automated task scheduling (Qamnieh, 2015) and for phylo-
genetic inference from multiple sequence alignment data (Ayres & 
Cummings, 2017; Ayres et al., 2012). Capitalizing on the same ideas, 
we developed SPLITT: a shared-memory C++ library for Serial and 
Parallel LIneage Traversal of Trees. While we focus on Gaussian phy-
logenetic models as the main application of the library, we designed 
the SPLITT programming interface to be generic with respect to the 
node-traversal operations, hoping that the library could potentially 
find use in different models, including birth-death population mod-
els and discrete trait models. We tested SPLITT on large trees (up 
to N = 100,000) and on different topologies, including balanced and 
highly unbalanced trees. These tests proved a nice property of the 
parallel pruning algorithm, namely the fact that its parallel efficiency 
increases with the tree size as well as the complexity of the node-
traversal operations. Thus, for large trees and complex models, the 
parallel speed-up is limited either by the number of available proces-
sors or by another limited resource such as the memory bandwidth. 
Finally, we showcase that our parallel pruning algorithm coupled 
with adaptive Metropolis samplers dramatically reduces the time for 
Bayesian analysis of trees with thousands of tips.

2  | MATERIAL S AND METHODS

In this section, we introduce SPLITT and show through an example how 
it is used to parallelize a pruning algorithm over a given phylogenetic 
tree and data. Further technical details and examples are provided in 
Sections 2 and 3 of the Supporting Information and the SPLITT online 
documentation (https://venelin.github.io/SPLITT/index.html).

2.1 | A general framework for parallel tree traversal

SPLITT implements a general framework for specifying the type 
of trait data, the model parameters and the “node-traversal” 
operations, which are executed in a pre-order or a post-order 
traversal of the tree (Section 1, Supporting Information). The 
node-traversal operations represent user-defined rules specify-
ing how a set of variables associated with each node, called a 
“node-state,” is initialized and updated in the computer memory, 
based on the input tree and data, the model parameters, and the 
node-states of the previously visited nodes. At the end of the 
traversal, the final node-state values are accessible for calculat-
ing a quantity of interest, such as the likelihood of model, given 
the tree and the data.

The node-states can be calculated in parallel for any group of 
siblings or more remote cousins on the tree. Formally, SPLITT makes 
the following key assumption:

Assumption 1 Calculating the state of a node j can be done 
independently from the calculation of the state of any other 
node k, provided that neither j is an ancestor of k, nor k is an 
ancestor of j.

To maximize the potential for parallel execution, the life cycle of 
a node during traversal is divided into three operations (Figure 1c,d):

1.	 InitNode : initializes the node-state based on the input data and 
model parameters only. This operation does not depend on the 
states of other nodes. Hence, it is fully parallelizable.

2.	 VisitNode : “updates” the state of its operand node based on the 
state of either the node's parent if in pre-order traversal, or the 
node's daughters if in post-order traversal. This operation can be 
executed in parallel for any group of nodes satisfying Assumption 
1 and having their parents “Visit”-ed (if a pre-order traversal) or 
their daughters “Prune”-ed (if a post-order traversal, see 
PruneNode below). To prevent a possible race-condition, in a 
post-order traversal, this operation should not modify the state 
of the parent or any ancestor of the operand node. Executing this 
operation on the root node is optional and not done by default.

3.	 PruneNode (post-order traversal only): “communicates” the state 
of a node to its parent node. SPLITT ensures that this operation 
is synchronized between siblings, that is, daughters of the same 
parent node. Hence, this operation is convenient for accumula-
tion (e.g. summation) of state-variables of the daughters into the 
state of their parent (Figure 1c). This operation is not defined for 
the root of the tree.

The parallel speed-up can depend on multiple factors, including the 
balancedness of the tree, and the computing and memory complexity of 
the traversal operations, which can be different between nodes in the 
tree. Noticing that there is no one-size-fit-all parallel traversal strategy 
that guarantees fastest execution, previous works have studied queue-
based and range-based parallelization strategies (Ayres & Cummings, 
2017; Qamnieh, 2015; Reif, 1989). SPLITT implements such algorithms 
called “orders” (Section 1.1, Supporting Information). As a default set-
ting, SPLITT implements a mode “auto,” in which it compares the exe-
cution time of different parallel orders during the first several calls on 
a given tree and data, choosing the fastest one for all subsequent calls.

2.2 | A showcase: the phylogenetic (Ornstein-
Uhlenbeck) mixed model

To illustrate the use and to test the SPLITT library, we devel-
oped two variants of the so called phylogenetic mixed model 
(PMM)—the original PMM assuming a Brownian motion process 
(Housworth, Martins, & Lynch, 2004; Lynch, 1991), and its recent 
extension to an Ornstein-Uhlenbeck process, the POUMM, which 

https://venelin.github.io/SPLITT/index.html
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F IGURE  1 Parallel pruning for calculating the log-likelihood of the phylogenetic mixed model

(c)

(a)

(d)
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(b)
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we and other authors have used previously to analyse the evolu-
tion of set-point viral load in HIV patients (Mitov & Stadler, 2018 
and references therein).

Figure 1b shows the mathematical formulation of the PMM (see 
Section 2.2, Supporting Information for a more general mathemati-
cal formulation of the P(OU)MM model and a biological interpreta-
tion of its parameters).

The key assumption enabling a pruning algorithm to evaluate the 
P(OU)MM likelihood is that the trait evolves independently in each 
lineage descending from a branching point in  . This allows to fac-
torize the likelihood function over the sub-trees in  , treating the 
values of g at the branching points as unknown variables which are 
integrated over their distributions expected under the model param-
eters, Θ. This integration leads to a simple formulation of the P(OU)
MM log-likelihood as a quadratic polynomial of gM (Theorem S1, 
Section 2.2, Supporting Information):

where the coefficients aM, bM and cM are functions of the tree topol-
ogy, branch lengths, the observed trait values and the model param-
eters. Denoting by Desc( j) the set of direct descendants (daughters) 
of node j, for the PMM, these functions are given by the following re-
cursive formulas (Theorem S1, Section 2.2, Supporting Information):

Based on Equation 2, we define the node-traversal opera-
tions (InitNode, VisitNode and PruneNode) as shown on Figure 1c. 
Figure 1d shows how the node-states are initialized and updated in 
parallel “prune-ranges” for an example tree and trait data and model 
parameters (Figure 1a,d). After the traversal the values aM, bM and 
cM from the root-state are plugged in Equation 1 to obtain the log-
likelihood value (Figure 1e).

2.3 | Generalization to multi-trait Ornstein-
Uhlenbeck and mixed Gaussian phylogenetic models

The quadratic polynomial representation of the log-likelihood func-
tion (Equation 1) can be generalized to a broader family of models. 
In Section 2.2, Supporting Information, we show how the coeffi-
cients aM, bM and cM can be calculated for the single-trait Ornstein-
Uhlenbeck mixed model. In a separate work (Mitov et al., 2018), we 
extend this integration technique to evaluate the likelihood of multi-
trait Ornstein-Uhlenbeck and mixed Gaussian phylogenetic models, 
that is, models in which different types of models are assigned to 

different lineages of the tree. These models have been implemented 
in several r-packages summarized in the following sub-section.

2.4 | Software

We provide SPLITT as a C++ library licensed under version 3.0 of 
the GNU Lesser General Public License (LGPL v3.0) and available 
at https://github.com/venelin/SPLITT.git. In its current implemen-
tation, the library uses the C++11 language standard, the standard 
template library and the OpenMP standard for parallel processing.

The single-trait POUMM has been implemented in the r-package 
POUMM, available at https://github.com/venelin/POUMM.git. 
Section 3, Supporting Information provides details on the model in-
ference procedure implemented within the package and reports a 
test of technical correctness.

The generalization to a multi-trait mixed Gaussian phylogenetic 
model (MGPM) has been implemented in the r-package PCMBase (Mitov 
et al., 2018) available at https://github.com/venelin/PCMBase.git.  
An accompanying package called PCMBaseCpp, which is based 
on SPLITT, provides a parallel C++ implementation of the likeli-
hood calculation for the MGPM model. This package is available at  
https://github.com/venelin/PCMBaseCpp.git.

2.5 | Technical correctness

To test the technical correctness of the SPLITT library and the higher 
level POUMM, PCMBase and PCMBaseCpp packages, we used the 
method of posterior quantiles (Cook, Gelman, & Rubin, 2006). For 
the single-trait POUMM implementation (POUMM r-package), we 
report the technical correctness test in Section 3.2, Supporting 
Information. For the multi-trait implementation (PCMBase and 
PCMBaseCpp r-packages), the technical validation is reported in 
Mitov et al. (2018).

2.6 | Simulations

We evaluated the performance of the SPLITT library using the single-
trait and multi-trait phylogenetic Ornstein-Uhlenbeck mixed model 
(POUMM) as a showcase. The single-trait POUMM was implemented 
in the r-package POUMM (Section 3, Supporting Information), based 
on the quadratic polynomial representation of the log-likelihood 
(Section 2.2, Supporting Information). The multi-trait POUMM 
version was implemented in the r-package, PCMBaseCpp, using a 
multi-trait generalization of the quadratic polynomial representation 
described in Mitov et al. (2018). The POUMM is a suitable model for 
a comparative benchmark, because a number of r-packages provide 
similar OU-based phylogenetic models, using C++ for the likelihood 
implementation. These include, among others, geiger (Pennell 
et al., 2014) and diversitree (FitzJohn, 2012) for the single-trait 
case and Rphylopars (Goolsby et al., 2016) for the multi-trait case.

We used the r-package apTreeshape (Bortolussi, Durand, 
Blum, & Francois, 2012) to generate tree topologies of sizes N ∈ {100; 
1,000; 10,000; 100,000}. To generate the random trees, we used 

(1)��(Θ)=aMg
2

M
+bMgM+cM,

https://github.com/venelin/SPLITT.git
https://github.com/venelin/POUMM.git
https://github.com/venelin/PCMBase.git
https://github.com/venelin/PCMBaseCpp.git
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the function rtreeshape() with a biased model. A parameter p in 
this model controls the disproportion of branching rates for the left 
and right lineages starting from a given parent node. For each N, we 
used four settings for p as follows:

1.	 p = 0.5 corresponding to equal left and right branching rates 
and resulting in balanced trees;

2.	 p = 0.1 corresponding to unbalanced trees in which one of any 
two sibling branches (sharing the same parent node) splits at rate 
p = 0.1, while the other splits at rate p′ = 1 − p = 0.9 (time units are 
arbitrary, so we can assume that the rates correspond to splitting 
probabilities per unit time).

3.	 p = 0.01 corresponding to very unbalanced trees (splitting rates of 
p = 0.01 and p′ = 0.99 for any couple of sibling branches);

4.	 p = 0.01/N corresponding to a ladder-like tree (see Figure 2).

This resulted in a total of 16 topologies (trees for N = 1, 000 
shown on Figure 2). For each topology, random branch lengths 
were assigned overwriting the default branch lengths of 1 assigned 
by rtreeshape(). Since the OU-implementations in the current 
diversitree and Rphylopars versions do not support non-
ultrametric trees, each tree was ultrametrized (adjusting branch 
lengths so that all tips have the same root-tip distance). For each 
tree, we generated random trait-values by simulating the POUMM 
model using random parameters.

2.7 | Other pruning algorithm examples

In Sections 2.1 and 2.2.2, Supporting Information, we describe an-
other pruning algorithm for calculating the POUMM log-likelihood, 
which is based on the generalized 3-point structure algorithm (Ho & 
Ané, 2014). In Section 2.3, Supporting Information, we give an ex-
ample of a pruning algorithm for calculating the likelihood of a dis-
crete (binary) trait observed at the tips of a phylogenetic tree.

3  | RESULTS

3.1 | Time for preprocessing the tree

Each of the tested packages implements a preprocessing step ini-
tializing cached data-structures that are re-used during likelihood 
calculation. In the case of SPLITT, this is the constructor-function 
of the internal Tree structure; in the case of diversitree, this 
is the function make.ou; in the case of geiger, this is the internal 
function bm.lik. We note that the time for creating the cache 
structure is not important in scenarios of fitting Gaussian phylo-
genetic models to a fixed tree and data (created once, at the be-
ginning of the inference process). However, these times become 
important in the case when the tree topology is inferred together 
with the model parameters from trait and sequence alignment 
data.

F IGURE  2 Test tree topologies for N = 1,000. For visualization purpose, all branch lengths have been set to 1, whereas the random 
branch lengths were used in the benchmarks. Note that the tree for p = 0.5 is nearly but not perfectly balanced due to the random nature of 
the tree generation process, as well as N not being an exact degree of 2

p = 0.5 (balanced) p = 0.1 p = 0.01 p = 0.01/N (ladder)
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We measured the preprocessing time on the 16 trees (Table 1). 
The times scaled linearly with the size of the tree for the pack-
ages using the SPLITT library (POUMM and PCMBaseCpp) and for 
diversitree. For these packages the time was not affected by 
the unbalancedness of the tree. For geiger, we observed longer 
times, both for bigger N as well as for more unbalanced trees. For 
N = 100,000 and p = 0.01/N, both, diversitree and geiger 
failed with a stack-overflow error. The relatively short times for 
the SPLITT-based POUMM and PCMBaseCpp packages indicate that 
SPLITT could potentially be used for phylogenetic inference.

3.2 | Time for POUMM likelihood calculation

To measure the likelihood calculation time, we ran performance 
benchmarks on a personal computer (PC) running OS X on an Intel(R) 
Core(TM) i7-4850HQ CPU @ 2.30 GHz with 4 CPU cores, and on the 
“Euler” scientific cluster (https://scicomp.ethz.ch/wiki/Euler) run-
ning Linux OS on an Intel(R) Xeon(R) CPU E5-2680 v3 @ 2.50 GHz 
running 24 physical cores. Here, we comment on the calculation 
times on the PC, noting that the times on Euler for up to 4 CPU cores 
were nearly equal (Supporting Information Figures S2–S6).

We distinguish the different implementations according to the 
following criteria:

•	 Number of traits: we distinguish between single-trait implemen-
tations, that is, geiger, diversitree and POUMM, and multi-
trait implementations, that is, Rphylopars and PCMBaseCpp. 
For the multi-trait implementations, we measured the time for 1, 
4, 8 and 16 traits.

•	 Mode: denotes whether the implementation is single threaded 
using one physical core of the CPU—serial, or multi-threaded, 
running as many threads as there are physical CPU cores—parallel;

•	 Order: denotes the order in which the prune-able nodes are 
processed. We tested three possible orders: postorder—the 
nodes are processed sequentially; queue-based—the nodes are 
processed in parallel as they enter the queue (Algorithm S1, 

Section 2, Supporting Information), synchronized thread access 
to the queue; range-based—the nodes in each pruning genera-
tion are processed in order of their allocation in memory, no need 
for a synchronized access to a queue (Algorithm S2, Section 2, 
Supporting Information).

•	 Implementation: the r-package and the back-end used (R or C++).

The likelihood calculation time was measured using the R-
function “sys.time” calling the specific likelihood implementation on 
a fixed set of parameters n = 100 times, then, dividing the cumula-
tive time by n. To avoid influence from other processes running on 
the same PC, the benchmark was run after a restart of the operating 
system (OS). The resulting times for the single-trait implementations 
running on the PC are shown on Figure 3.

On small trees of 100 tips, the fastest single-trait POUMM imple-
mentations were the serial C++ implementations from the packages 
POUMM and diversitree (about 0.03 ms); the range-based parallel 
implementation was nearly as fast on balanced trees (p = 0.5) but was 
progressively slower on unbalanced trees. The geiger implementation 
was nearly an order of magnitude slower (0.2 ms). The POUMM queue-
based parallel implementation was nearly 100 times slower (nearly 
2 ms), presumably due to the excessive synchronization overhead. 
The serial R implementation from the diversitree package was the 
slowest (above 2 ms), which was expected, since the R interpreter is 
notorious for its slow speed compared to compiled languages like C++. 
On bigger balanced trees (N > 100, p = 0.5), the range-based parallel 
implementation took over, reaching up to 4× speed-up with respect to 
the range-based serial implementation, up to 5× speed-up with respect 
to the post-order serial implementation and up to 10× speed-up with 
respect to the diversitree serial C++ implementation. This reveals 
a consistent speed-up for all trees except the ladder tree, where paral-
lelization of the internal nodes is not possible (see Figure 2). The time 
for the other serial implementations and the POUMM queue-based 
parallel implementation scaled up linearly with N.

The times for the multi-trait implementations running on the PC 
are shown on Figure 4. For these implementations, the likelihood 

N Implementation p = 0.5 (ms) p = 0.1 (ms) p = 0.01 (ms)
p = 0.01/N 
(ms)

100 geiger 5 6 9 9

100 diversitree 4 4 4 4

100 SPLITT 2 2 2 1

1,000 geiger 18 26 78 414

1,000 diversitree 20 20 22 30

1,000 SPLITT 3 2 3 3

10,000 geiger 358 449 1,345 355,396

10,000 diversitree 207 211 227 1,338

10,000 SPLITT 14 13 13 15

100,000 geiger 20,215 21,629 36,349 —

100,000 diversitree 2,421 2,619 2,883 —

100,000 SPLITT 130 131 131 140

TABLE  1 Times for tree-preprocessing

https://scicomp.ethz.ch/wiki/Euler
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calculation times were about two orders of magnitude higher com-
pared to the single-trait implementations. This is due to slow algebraic 
operations, for example, arithmetic division in the single-trait case as 
opposed to matrix inversion in the multi-trait case.

3.3 | Parallel speedup

The parallel speed-ups for the Euler cluster benchmark for single-
trait implementations and for multi-trait implementations with 16 
traits are shown on Figures 5 and 6 (see also Figures S7–S9, for multi-
trait implementations with 1, 4 and 8 traits).

For single-trait implementations, the parallel speed-up is negligi-
ble for trees of <1,000 tips and for highly unbalanced trees (Figure 5). 

The parallel speed-up becomes noticeable for large balanced trees, 
peaking at 10× for a balanced tree of 100,000 tips, running on 20 
CPU cores (Figure 5). The above behaviour is explained by the fact 
that the InitNode and VisitNode operations in the single-trait case are 
very fast relative to the thread-management operations. Also note-
worthy is the fact that even on balanced trees above 100,000 tips, 
the parallel efficiency, that is,the ratio of the parallel speed-up and 
the number of parallel cores, drops below 50% when running on more 
than 20 CPU cores. This suggests a possible competition between the 
CPU cores for a limited resource such as the processor cache or the 
memory bandwidth.

For the multi-trait implementations, the InitNode and VisitNode 
operations are computationally more intensive. This is why we observe 

F IGURE  3 Likelihood calculation times for single-trait R and C++ implementations of the POUMM model on a PC (processor Intel(R) 
Core(TM) i7-4850HQ CPU @ 2.30GHz with four physical cores). Both, the x-axis denoting the number of tips in the tree and the y-axis 
denoting the calculation time in milliseconds are on a log-10 scale. Panels from left to right correspond to different tree topologies with left-
most panel corresponding to a balanced tree and right-most panel corresponding to a ladder tree, see also Figure 2
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F IGURE  4 Likelihood calculation times for multi-trait C++ implementations of the POUMM model on a personal computer (processor 
Intel(R) Core(TM) i7-4850HQ CPU @ 2.30GHz with four physical cores). For simplicity, only serial and parallel range modes are shown, 
noting that the parallel queue mode had slightly slower times compared to the parallel range mode
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substantial parallel speed-up on the smallest as well as the most unbal-
anced trees (Figure 6). However, for all multi-trait cases, we observe a 
decline in parallel speed-up with more than 12 CPU cores (Figure 6). 
The most reasonable explanation for this is competition between the 
CPU cores for a limited hardware resource.

3.4 | Combined parallel likelihood calculation with 
adaptive Metropolis sampling

In Bayesian MCMC inference, the parallel likelihood calculation 
can be combined with an adaptive MCMC sampler. The POUMM 

F IGURE  5 Parallel speed-up for the single-trait POUMM implementation on the Euler cluster (package POUMM). The grey and red lines 
denote the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels correspond to the different tree 
topologies, see also Figure 2. Vertically, the panels correspond to the different tree-sizes
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r-package implements this approach by embedding the SPLIT-
based likelihood calculation in a Metropolis sampler with co-
erced acceptance rate available from the adaptMCMC r-package 
(Scheidegger, 2017) (Section 3.1, Supporting Information). We 
tested this approach during a POUMM analysis of a transmission 

tree from the HIV epidemic in UK (N = 8,483) reported else-
where (Mitov & Stadler, 2018). This showed faster MCMC 
convergence (Figure S10, Section 5, Supporting Information) 
and overall <30 min for the MCMC run (Section 5, Supporting 
Information).

F IGURE  6 Parallel speed-up for the multi-trait (k = 16 traits) POUMM implementation (package PCMBaseCpp) on the Euler cluster. The 
grey and red lines denote the expected speed-up at 100% and 50% parallel efficiency, respectively. Horizontally, the panels correspond to 
the different tree topologies, see also Figure 2. Vertically, the panels correspond to the different tree-sizes

N = 1e + 05

p = 0.5  (balanced)

N = 1e + 05

p = 0.1

N = 1e + 05

p = 0.01

N = 1e + 05

p = 0.01/N (ladder)

N = 10000

p = 0.5  (balanced)

N = 10000

p = 0.1

N = 10000

p = 0.01

N = 10000

p = 0.01/N (ladder)

N = 1000

p = 0.5  (balanced)

N = 1000

p = 0.1

N = 1000

p = 0.01

N = 1000

p = 0.01/N (ladder)

N = 100

p = 0.5  (balanced)

N = 100

p = 0.1

N = 100

p = 0.01

N = 100

p = 0.01/N (ladder)

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24 12 4 8 12 16 20 24

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

1
2

4

8

12

Number of CPU cores

Pa
ra

lle
l s

pe
ed

up
 [x

]

Mode serial parallel queue parallel range



504  |    Methods in Ecology and Evolu
on MITOV and STADLER

4  | DISCUSSION

The examples in this article focused on Gaussian models of continuous 
trait evolution (see Section 2 and Section 2, Supporting Information). 
Yet, SPLITT can in principle be used for any algorithm that runs a pre-
order or post-order tree traversal. For example, another family of mod-
els where SPLITT could be used are models of structured populations. 
When calculating the likelihood for a phylogenetic tree under a struc-
tured birth-death model, the calculations proceed in a pruning fashion 
(Kühnert, Stadler, Vaughan, & Drummond, 2016) and may be improved 
with respect to speed using our approach. However, the structured 
coalescent likelihood for a tree is a function of all co-existing lineages 
even for approximate methods (Müller, Rasmussen, & Stadler, 2017), 
and thus a pruning formulation is not available.

We did not develop examples of pre-order traversal. One such 
example is the simulation of traits evolving along the tree, which 
can be used for validation and approximate inference of phyloge-
netic models. In complex phylogenetic comparative models, where 
an exact calculation of the likelihood is elusive or computationally 
intractable, it is possible to use simulations of trait evolution along 
the tree for approximate likelihood calculation (Kutsukake & Innan, 
2013) or approximate Bayesian computation (ABC) (Slater, Harmon, 
Wegmann, et al., 2012). Both approaches are computationally inten-
sive and could benefit from parallel execution using SPLITT.

We should not omit mentioning other software libraries imple-
menting parallel likelihood computation of different Markov models 
of sequence evolution. Several high-level tools for ML and Bayesian 
tree inference, for example, Drummond et al. (2012); Bouckaert et al. 
(2014); Ronquist and Huelsenbeck (2003), use the library BEAGLE 
which distributes the computation for the independent sites of the 
sequence alignment among multiple CPU or GPU cores (Ayres et al., 
2012, but see also Ayres & Cummings, 2017)). SPLITT operates on a 
different level, namely, it parallelizes the computation for independent 
lineages in the tree. Both approaches are interesting because they fit 
well to different sizes of the input data—while BEAGLE achieves signif-
icant parallel speed-ups in long alignments comprising many thousands 
nucleotide or codon columns (Ayres et al., 2012, SPLITT is better suited 
to shorter alignments of potentially many thousands of species.

Based on the performance benchmarks, we conclude that 
with the current implementation of SPLITT, running on the above-
mentioned hardware, the parallel speed-up from parallel tree tra-
versal is up to one order of magnitude using up to 20 CPU cores. A 
future GPU-based extension of SPLITT would show if it can reach 
higher levels of parallel speed-up and efficiency. Reaching higher 
speed-up of the Bayesian inference, though, is possible if the parallel 
traversal likelihood calculation is combined with a general purpose 
adaptive Metropolis sample.

4.1 | Outlook

The past decade has seen a rapid advance in the production of 
multi-core processors. At the same time, it appears that the maxi-
mum clock frequency of a single processing unit is approaching the 

maximum achievable for semi-conductor-based architectures. In 
parallel with this development on the hardware side, the volume 
of sequence data and the size of phylogenetic trees is growing ex-
ponentially. For instance, in <5 years the size of phylogenetic trees 
used for calculating the heritability of HIV virulence has increased 
from a few hundreds to several thousand patients (Alizon et al., 
2010; Hodcroft et al., 2014). This motivates the development of 
novel parallel algorithms capitalizing on the multi-core technology. 
The parallel tree traversal library, SPLITT, enables parallel compu-
tation for a vast set of phylogenetic models, facing the challenges 
of increasing model complexity and volumes of data in phyloge-
netic analysis.
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