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Abstract: We establish existence and uniqueness results for conical geodesic bicombings on subsets of
normed vector spaces. Concerning existence, we give a first example of a convex geodesic bicombing that
is not consistent. Furthermore, we show that under a mild geometric assumption on the norm a conical
geodesic bicombing on an open subset of a normed vector space locally consists of linear geodesics. As an
application, we obtain by the use of a Cartan–Hadamard type result that if a closed convex subset of a Banach
space has non-empty interior, then it admits a unique consistent conical geodesic bicombing, namely the
one given by the linear segments.
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1 Introduction
Let (X, d) denote a metric space. A map σ : X × X × [0, 1] → X is said to be a geodesic bicombing if the path
σpq( ⋅ ) := σ(p, q, ⋅ ) is a constant speed geodesic from p to q for all points p, q in X, that is, we have

σpq(0) = p, σpq(1) = q and d(σpq(t), σpq(s)) = |t − s| d(p, q)

for all real numbers s, t ∈ [0, 1]. Essentially, a geodesic bicombing distinguishes a class of geodesics of a
metric space. The study of metric spaces with distinguished geodesics traces back to the influential work
of Busemann, cf. [4]. In this article we consider metric spaces with distinguished geodesics that satisfy the
following weak, but non-coarse, global non-positive curvature condition: A geodesic bicombing σ : X × X ×
[0, 1]→ X is called conical if it satisfies the conical property

d(σpq(t), σpq (t)) ≤ (1 − t)d(p, p) + td(q, q) (1.1)

for all points p, q, p, q ∈ X and all real numbers t ∈ [0, 1]. Note that (1.1) does not imply convexity of the
distance function t → d(σpq(t), σpq (t)) aswewill see below. The notion of a conical geodesic bicombingwas
coined by Lang in connection with injective metric spaces (also called hyperconvex metric spaces), where
conical geodesic bicombings are obtained naturally, cf. [14, Proposition 3.8]. Readily verified examples of
metric spaces that admit conical geodesic bicombings also include convex subsets of normed vector spaces
and Busemann spaces. The class of metric spaces that admit conical geodesic bicombings is by no means
limited to these examples, as it follows from first principles that it is closed under ultralimits and 1-Lipschitz
retractions.

Recently, classical results from the theory of CAT(0) spaces have been transferred to metric spaces that
admit conical geodesic bicombings, cf. [3; 5; 7; 16] and [12]. In the past century, notions related to conical
geodesic bicombings have also been considered in metric fixed point theory, most notable W-convexity map-
pings, cf. [18], and hyperbolic spaces in the sense of Reich and Shafrir, cf. [17]. It is worth to point out that
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the study of metric spaces that admit conical geodesic bicombing may also lead to new results about word
hyperbolic groups, as every word hyperbolic group acts geometrically on a proper, finite-dimensional metric
spacewith a unique consistent conical geodesic bicombing (the definitions are given below), cf. [6]. Themain
results of this article show that the several definitions from [6] lead to different classes.

Our first result deals with convex geodesic bicombings. Fromnowon,we abbreviateD(X) := X×X×[0, 1].
A geodesic bicombing σ : D(X)→ X is convex if themap t → d(σpq(t), σpq (t)) is convexon [0, 1] for all points
p, q, p, q in X. Note that if the underlying metric space is not uniquely geodesic, then a conical geodesic
bicombing is not necessarily convex. Examples of conical geodesic bicombings that are not convex are ubiq-
uitous; for instance, non-convex conical geodesic bicombings may be obtained via 1-Lipschitz retractions of
linear geodesics, see [6, Example 2.2] or Lemma 3.1. In [6], it is shown that metric spaces of finite combinato-
rial dimension in the sense of Dress, cf. [8], possess at most one convex geodesic bicombing. If it exists, this
unique convex geodesic bicombing, say σ : D(X) → X, has the property that it is consistent, that is, we have
for all points p, q in X that im(σpq ) ⊂ im(σpq) whenever p = σpq(s) and q = σpq(t) with 0 ≤ s ≤ t ≤ 1.
Clearly, every consistent conical geodesic bicombing is convex. In Section 2, we show that the converse does
not hold by proving the subsequent theorem.

Theorem 1.1. There is a compactmetric space that admits a convex geodesic bicombingwhich is not consistent.

Although there is a non-consistent convex geodesic bicombing on the space considered in Section 2, this
space also admits a consistent convex geodesic bicombing. We suspect that this is a general phenomenon.

Question 1.2. Let (X, d) be a proper metric space with a convex geodesic bicombing. Does X also admit a con-
sistent convex geodesic bicombing?

The seemingly more general question if every proper metric space with a conical geodesic bicombing
admits a consistent conical geodesic bicombing is in fact equivalent to Question 1.2, as every proper metric
space with a conical geodesic bicombing also admits a convex geodesic bicombing, cf. [6, Theorem 1.1].

A geodesic bicombing σ : D(X)→ X is called reversible if σpq(t) = σqp(1− t) for all points p, q in X and all
t ∈ [0, 1]. It is possible to modify our non-consistent convex geodesic bicombing from Theorem 1.1 in order
to obtain an example of a non-reversible convex geodesic bicombing, see Proposition 2.5.

In [3], a barycentric construction has been employed to obtain fixed point results for metric spaces
that admit conical geodesic bicombings. This barycentric construction motivated the following definition:
A geodesic bicombing σ : D(X) → X has the midpoint property if σpq(12 ) = σqp(

1
2 ) for all points p, q in X. It

seems natural to ask if every conical geodesic bicombing that has the midpoint property is automatically
reversible. We show that this is not the case, as we construct in Section 3 a non-reversible conical geodesic
bicombing which has the midpoint property. We conclude Section 3 with the following proposition.

Proposition 1.3. Let (X, d) be a completemetric spacewith a conical geodesic bicombing σ. Then X also admits
a reversible conical geodesic bicombing.

This generalizes the result for proper metric spaces established in [5, Proposition 1.2].
It is a direct consequence of a result of Gähler and Murphy that the only conical geodesic bicombing on a

normed vector space is the one that consists of the linear geodesics, cf. [9, Theorem 1]. With a mild geometric
assumption on the norm, we show in Section 4 that already a conical geodesic bicombing on an open subset
of a normed vector space locally consists of linear geodesics. More generally, we get the following result:

Theorem 1.4. Let (V, ‖ ⋅ ‖) be a normed vector space such that its closed unit ball is the closed convex hull of its
extreme points. Suppose that A ⊂ V is a subset of V that admits a conical geodesic bicombing σ : D(A) → A
and let p0 ∈ A be a point. If r ≥ 0 is a real number such that the closed ball B2r(p0) is contained in A, then we
have that σ(p, q, t) = (1 − t)p + tq for all points p, q ∈ Br(p0) and all real numbers t ∈ [0, 1].

Wedonot know if Theorem 1.4 remains true if we drop the assumption of the normed vector space (V, ‖ ⋅ ‖)
having the property that its closed unit ball is the closed convex hull of its extreme points. But how common
is this property?
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By invoking the Banach–Alaoğlu theorem and the Kreı̆n–Mil’man theorem it is possible to show that the
closed unit ball of a dual Banach space is the closed convex hull of its extreme points. Consequently, we
obtain in particular that Theorem 1.4 is valid in every reflexive Banach space. Moreover, using a classification
result due to Nachbin, Goodner, and Kelley, cf. [13], and a result of Goodner, cf. [10, Theorem 6.4], it is readily
verified that Theorem 1.4 also holds for every injective Banach space.

Note that the classical Mazur–Ulam Theorem is a direct consequence of Theorem 1.4, as every isometric
isomorphism between two normed vector spaces extends to an isometric isomorphism between their linear
injective hulls, which by the above satisfy the assumptions of Theorem 1.4.

In [16], the second named author generalized the classical Cartan–Hadamard Theorem to metric spaces
that locally admit a consistent convex geodesic bicombing.With Theorem 1.4 at hand, it is possible to use this
generalized Cartan–Hadamard Theorem to obtain the following uniqueness result.

Theorem 1.5. Let (E, ‖ ⋅ ‖) be aBanach space such that its closed unit ball is the closed convex hull of its extreme
points. Suppose that C ⊂ E is a closed convex subset of E with non-empty interior. If σ : D(C)→ C is a consistent
conical geodesic bicombing, then σ(p, q, t) = (1− t)p+ tq for all points p, q in C and all real numbers t ∈ [0, 1].

The proof of Theorem 1.5 is given in Section 5. In Example 4.4 we construct two distinct consistent conical
geodesic bicombings on a closed convex subset B ⊂ L1([0, 1])with empty interior. As it is possible to consider
B as a subset of the injective hull of L1([0, 1]), it follows that the assumption in Theorem 1.5 of C having non-
empty interior is necessary.

Due to Theorems 1.4 and 1.5 it appears that the geometry of a convex subset C with non-empty interior is
very restricted in the sense that it is difficult to construct a conical geodesic bicombing on C that is not given
by the linear geodesics. In this perspective, we deem that a negative answer to the following question would
result in an interesting geometric construction.

Question 1.6. Let C ⊂ E be a convex subset of a Banach space (E, ‖ ⋅ ‖). Suppose that C has non-empty interior.
Is it true that C admits only one conical geodesic bicombing?

2 A non-consistent convex geodesic bicombing
In this section we construct a convex geodesic bicombing that is not consistent and therefore establish The-
orem 1.1. To this end, we consider the following norm onℝ2:

‖(x, y)‖ := max{|x|, √22 ‖(x, y)‖2},
where ‖(x, y)‖2 = √x2 + y2 is the Euclidean norm. Observe that ‖(x, y)‖ = |x| if and only if |y| ≤ |x|. Nowdefine

X := {(x, y) ∈ ℝ2 : −3 ≤ x ≤ 3, 0 ≤ y ≤ 1
32 max{0, 1 − x2}}

and equip X with the metric d induced by ‖ ⋅ ‖, see Figure 1.

-3 -2 -1 0 1 2 3

p q
σδpq

Figure 1: The metric space X with a geodesic σδpq.

The space X naturally splits into three pieces, namely X = X− ∪ X0 ∪ X+ with
X− := [−3, −1] × {0}, X0 := {(x, y) ∈ ℝ2 : −1 < x < 1, 0 ≤ y ≤ 1

32 (1 − x
2)}, X+ := [1, 3] × {0}.

Definition 2.1. For δ ∈ [0, 1
64 ] we define a geodesic bicombing σδ : D(X) → X as follows. Generally, we take

σδpq to be the geodesic from p to q which is linear inside X0, but if both endpoints lie on the antennas X−, X+
we slightly modify it, see Figure 1. In more detail, σδ is defined as follows:
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For p = (px , py), q = (qx , qy) ∈ X with px ≤ qx let σδpq(t) := (xpq(t), ypq(t)) with xpq(t) := px + t(qx − px)
and

ypq(t) :=

{{{{{{{{{
{{{{{{{{{
{

δmax{qx − px − 4, 0}max{0, (1 − xpq(t)2)}, for p ∈ X−, q ∈ X+,
max{0, qy

qx+1 (xpq(t) + 1)}, for p ∈ X−, q ∈ X0,
max{0, py

px−1 (xpq(t) − 1)}, for p ∈ X0, q ∈ X+,
py + t(qy − py), for p, q ∈ X0,
0, otherwise,

and let σδqp(t) := σδpq(1 − t).

Proposition 2.2. For δ ∈ (0, 1
64 ] the map σ

δ is a reversible convex geodesic bicombing which is not consistent.

Remark 2.3. For δ = 0 the geodesic bicombing σδ coincides with the piecewise linear bicombingwhich is the
unique consistent conical geodesic bicombing on X by Theorem 1.5. Hencewe have a family of non-consistent
convex geodesic bicombings σδ converging to the unique consistent convex geodesic bicombing σ0.

Alternatively, we can modify the geodesics leading from X− to X+ so that we lose the reversibility.
Definition 2.4. Define σ̃δ : D(X)→ X by σ̃δpq(t) = σδpq(t), except for p ∈ X+, q ∈ X− let σ̃δpq = (xpq(t), 0).
Proposition 2.5. For δ ∈ (0, 1

64 ] the map σ̃δ is a convex geodesic bicombing which is neither reversible nor
consistent.

Propositions 2.2 and 2.5 are proved in the appendix.

Lemma 2.6. For δ ∈ [0, 1
64 ] the maps σ

δ and σ̃δ are geodesic bicombings.

Proof. The linear case is clear. For the piecewise linear case observe that if p ∈ X−, q ∈ X0 (and similarly in
all other cases), then the slope m of σδpq satisfies

m = qy/(qx + 1) ≤ 1
32 (1 − q

2
x)/(1 + qx) = 1

32 (1 − qx) ≤
1
16 ≤ 1

and therefore d(σδpq(s), σδpq(t)) = |xpq(s) − xpq(t)| = |s − t||qx − px| = |s − t|d(p, q). Finally, let p ∈ X−, q ∈ X+.
For x, x ∈ [−1, 1] we have

|δ(qx − px − 4)(1 − x2) − δ(qx − px − 4)(1 − x2)| ≤ δ|qx − px − 4| ⋅ |x + x| ⋅ |x − x| ≤ 1
16 |x − x

|
and hence d(σδpq(s), σδpq(t)) = |xpq(s) − xpq(t)| as before. 2

It is immediate that both geodesic bicombings are non-consistent. Furthermore, σδ is reversible and
σ̃δ is not. It remains to prove convexity. Given p, q, p, q ∈ X we need to show that the function f(t) :=
d(σδpq(t), σδpq (t)) is convex on [0, 1]. To this end, we use the following characterization of convexity; see
Lemma 3.5 in [15].

Lemma 2.7. A continuous function f : [0, 1]→ ℝ is convex if and only if for every t ∈ (0, 1) there is some τ0 > 0
such that for all τ ∈ [0, τ0] we have 2f(t) ≤ f(t − τ) + f(t + τ).

Now let t ∈ (0, 1). In the situation when d(σδpq(t), σδpq (t)) = |xpq(t) − xpq (t)|, we have
2d(σδpq(t), σδpq (t)) = 2|xpq(t) − xpq (t)| ≤ |xpq(t − τ) − xpq (t − τ)| + |xpq(t + τ) − xpq (t + τ)|

≤ d(σδpq(t − τ), σδpq (t − τ)) + d(σδpq(t + τ), σδpq (t + τ)),
as t → |xpq(t) − xpq (t)| is convex. Therefore, it remains to check that

2‖σδpq(t) − σδpq (t)‖2 ≤ ‖σδpq(t − τ) − σδpq (t − τ)‖2 + ‖σδpq(t + τ) − σδpq (t + τ)‖2 (2.1)

if τ > 0 is small and d(σδpq(t), σδpq (t)) = √22 ‖σδpq(t) − σδpq (t)‖2, that is, |xpq(t) − xpq (t)| ≤ |ypq(t) − ypq (t)|.
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In this case, the main reason for convexity is that the modification in the y-direction is controlled by the
speed difference in the x-direction. To illustrate this, we consider σδpq and σδpq for p = (−3, 0), q = (3, 0), p =
(−2, 0), q = (2, 0). Note that for t ∈ [13 , 23 ], σδpq(t) lies on the (concave) parabola 2δ(1 − x2) while σδpq
describes a linear segment on the x-axis. However, e.g. for t = 1

2 we have

‖σpq(12 ± τ) − σpq (12 ± τ)‖22 = (3τ − 2τ)2 + 4δ2(1 − 9τ2)2 = 4δ2 + (1 − 72δ2)τ2 + 324δ2τ4
≥ 4δ2 = ‖(σpq(12 ) − σpq (12 )‖22

for δ ∈ (0, 1√72 ] and consequently, (2.1) follows.
-3 -2 -1 0 1 2 3

p p q q

Figure 2: The function t → d(σδpq(t), σδpq (t)) is convex.
A similar calculation can also be carried out for all other pairings of geodesics of the bicombing. To this

end, we distinguish several cases; this is done in the appendix.

3 Reversibility of conical geodesic bicombings
In the first part of this sectionwe construct a non-reversible conical geodesic bicombing. Thenwemodify this
non-reversible conical geodesic bicombing to satisfy themidpoint property. Finally, we prove Proposition 1.3.

Consider ℝ2 equipped with the maximum norm ‖ ⋅ ‖∞ and let s : ℝ2 → ℝ2 denote the map given by
(x, y) → (x, −y). We define

X1 := {(x, y) ∈ ℝ2 : x ∈ [−2, 1] and |x| − 1 ≤ y ≤ ||x| − 1|}, A1 := {(x, y) ∈ ℝ2 : |x + 1| ≤ y ≤ 1}

and X2 := s(X1), A2 := s(A1). The set X1 ∪ X2 is depicted in Figure 3. It is readily verified that the map
f : X2 → X1 given by

(x, y) →
{
{
{

(x, y), if x ∈ [−1, 1],
s(x, y), if x ∈ [−2, −1]

is an isometry. Let ̄f : X1 ∪ X2 → X1 be the map that is equal to IdX1 on X1 and equal to f on X2. Observe that
the map ̄f is 1-Lipschitz. We set Yk := Xk ∪ Ak for k ∈ {1, 2}.

Further, we define the map π : Y1 ∪ Y2 → X1 ∪ X2 through the assignment

(x, y) → (x, sgn(y)min{|y| , ||x| − 1|}).

Observe that π is a 1-Lipschitz retraction that maps Yk to Xk for each k ∈ {1, 2}. Let λ : D(ℝ2) → ℝ2 be the
conical geodesic bicombing onℝ2 that is given by the linear geodesics.

Lemma 3.1. The map σ : D(X1)→ X1 given by

(p, q, t) →
{
{
{

π ∘ λ(p, q, t), if px ≤ qx ,
f ∘ π ∘ λ(f−1(p), f−1(q), t), if qx ≤ px .

is a non-reversible conical geodesic bicombing on (X1, ‖ ⋅ ‖∞).
Proof. Observe that both maps σ(1) := π ∘ λ and σ(2) := f ∘ π ∘ λ ∘ (f−1 × f−1 × Id[0,1]) define conical geodesic
bicombings on X1. Thus σ : D(X1)→ X1 is a geodesic bicombing.
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−2.5 −2. −1.5 −1. −0.5 0.5 1.

−1.5
−1.
−0.5
0.5

1.p

q

p

Figure 3: The blue line corresponds to σpq and the red line corresponds to the image of σqp under the isometry f −1.
In the following we show that σ is conical. Let p, q, p, q ∈ X1 be points. As both maps σ(1) and σ(2)

are conical geodesic bicombings on X1 with σ(1)pq = σ(2)pq if px , qx ≤ −1 or px , qx ≥ −1, it remains to check
inequality (1.1) if (px , qx ≤ −1 and qx , px ≥ −1) or (px , qx ≤ −1 and qx , px ≥ −1).

Suppose that px , qx ≤ −1 and qx , px ≥ −1. The other case is treated analogously. Since the map ̄f ∘ π is
1-Lipschitz, we compute

σpq(t) − σpq (t)∞ =  ̄f ∘ π ∘ λ(p, q, t) − ̄f ∘ π ∘ λ(f−1(p), f−1(q), t)∞
≤ (1 − t) p − f

−1(p)∞ + t q − f−1(q)∞
for all t ∈ [0, 1]. By our assumptions on the points p, q, p, q, it follows that

p − f
−1(p)∞ = p − p∞ and q − f

−1(q)∞ = f−1(q) − f−1(q)∞ = q − q∞ .

Putting everything together, we obtain that σ is a conical geodesic bicombing on X1. By construction, σ is
non-reversible; see Figure 3. 2

Now we use the conical geodesic bicombing from Lemma 3.1 to construct a non-reversible conical
geodesic bicombing that has the midpoint property.

Lemma 3.2. Let σ : D(X1)→ X1 denote the map from Lemma 3.1. The map τ : D(X1)→ X1 given by

(p, q, t) →
{
{
{

σ(p, 12 (σ(p, q,
1
2 ) + σ(q, p,

1
2 )), 2t), if t ∈ [0, 12 ],

σ(12 (σ(p, q,
1
2 ) + σ(q, p,

1
2 )), q, 2t − 1), if t ∈ [12 , 1],

is a conical geodesic bicombing on (X1, ‖ ⋅ ‖∞) that has the midpoint property but is not reversible.
Proof. It is readily verified that τ is a conical geodesic bicombing with the midpoint property. To see that τ is
non-reversible, take for instance p := (−32 ,

1
2 ), q := (0,

1
2 ) and observe that τ(p, q,

5
12 ) = (−

7
8 ,

1
8 ) ̸= (−

7
8 ,

1
48 ) =

τ(q, p, 7
12 ); compare Figure 4. 2

To prove Proposition 1.3 we need the following midpoint construction:

Lemma 3.3. Let (X, d) be a complete metric space. If σ : D(X)→ X is a conical geodesic bicombing, then there
is a midpoint map m : X × X → X with the following properties: for all points x, y, x̄, ȳ ∈ X we have

(i) m(x, y) = m(y, x),
(ii) d(x,m(x, y)) = d(y,m(x, y)) = 1

2d(x, y),
(iii) d(m(x, y),m(x̄, ȳ)) ≤ 1

2d(x, x̄) +
1
2d(y, ȳ).
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−2.5 −2. −1.5 −1. −0.5 0.5 1.

−1.5
−1.
−0.5
0.5

1.

p q

p
m

Figure 4: The blue line corresponds to τpq |[0, 12 ] and the red line corresponds to the image of τqp |[ 12 ,1] under the isometry f −1.
The point m is equal to 1

2 (σpq( 12 ) + σqp( 12 )).
Proof. Let x, y ∈ X. Set x0 := x, y0 := y and define recursively xn+1 := σ(xn , yn , 12 ), yn+1 := σ(yn , xn , 12 ). We
have

d(xn+1, yn+1) = d(σ(xn , yn , 12 ), yn+1) ≤ 1
2d(xn , yn+1) + 1

2d(yn , yn+1) = 1
2d(xn , yn),

and therefore d(xn , yn) ≤ 1
2n d(x, y), d(xn , xn−1) ≤ 1

2n d(x, y). Hence (xn)n≥0 and (yn)n≥0 are Cauchy sequences
and converge to some common limit point m(x, y).

By the construction, we clearly have (i). To prove (ii) we claim that d(x, xn), d(x, yn), d(y, xn), d(y, yn) ≤
1
2d(x, y) for all n ≥ 1. This follows by induction since d(x, xn+1) ≤ 1

2d(x, xn) +
1
2d(x, yn) ≤

1
2d(x, y) and

similar for all other distances. It remains to show (iii). If we repeat the construction for x̄, ȳ ∈ X we get some
sequences (x̄n)n≥0, (ȳn)n≥0 with limit point m(x̄, ȳ). We now prove by induction that d(xn , x̄n), d(yn , ȳn) ≤
1
2d(x, x̄) +

1
2d(y, ȳ) for all n ≥ 1. Indeed, we have

d(xn+1, x̄n+1) = d(σ(xn , yn , 12 ), σ(x̄n , ȳn , 12 )) ≤ 1
2d(xn , x̄n) +

1
2d(yn , ȳn) ≤

1
2d(x, x̄) +

1
2d(y, ȳ),

and similarly d(yn+1, ȳn+1) ≤ 1
2d(x, x̄) +

1
2d(y, ȳ). Hence (iii) follows by taking the limit n → +∞. 2

Proof of Proposition 1.3.. We define a new bicombing τ : D(X) → X by τ(x, y, t) := m(σ(x, y, t), σ(y, x, 1 − t)).
For two points x, y ∈ X this defines a geodesic from x to y, since for s, t ∈ [0, 1] we have

d(τ(x, y, t), τ(x, y, s)) = d(m(σ(x, y, t), σ(y, x, 1 − t)),m(σ(x, y, s), σ(y, x, 1 − s))
≤ 1

2d(σ(x, y, t), σ(x, y, s)) +
1
2d(σ(y, x, 1 − t), σ(y, x, 1 − s)) = |s − t|d(x, y).

Moreover, the conical inequality holds, as we have

d(τ(x, y, t), τ(x̄, ȳ, t)) = d(m(σ(x, y, t), σ(y, x, 1 − t)),m(σ(x̄, ȳ, t), σ(ȳ, x̄, 1 − t)))
≤ 1

2d(σ(x, y, t), σ(x̄, ȳ, t)) +
1
2d(σ(y, x, 1 − t), σ(ȳ, x̄, 1 − t)) ≤ (1 − t)d(x, x̄) + td(y, ȳ)

for all x, y, x̄, ȳ ∈ X and t ∈ [0, 1]. 2

4 Local behavior of conical geodesic bicombings
Let (V, ‖ ⋅ ‖) be a normed vector space, let p0 ∈ V be a point and let r ≥ 0 be a real number. We set

Ur(p0) := {z ∈ V : ‖p0 − z‖ < r}, Br(p0) := {z ∈ V : ‖p0 − z‖ ≤ r}, Sr(p0) := {z ∈ V : ‖p0 − z‖ = r},

and we abbreviate Br := Br(0) and Sr := Sr(0). In this section we establish the following rigidity result.
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Theorem 4.1. Let (V, ‖ ⋅ ‖) be a normed vector space. Suppose that A ⊂ V is a subset of V that admits a conical
geodesic bicombing σ : D(A)→ A and let p, q be points ofA. If there are points e1, . . . , en ∈ B1 that are extreme
points of B1 and a tuple (λ1, . . . , λn) ∈ [0, 1]n with∑nk=1 λk = 1 such that

p − q
2
=
‖p − q‖

2

n
∑
k=1 λkek and (4.1)

p + q
2
+
‖p − q‖

2 {
n
∑
k=1(−1)εk λkek : (ε1, . . . , εn) ∈ {0, 1}n} ⊂ A, (4.2)

then it follows that σ(p, q, t) = (1 − t)p + tq for all t ∈ [0, 1].

Theorem 1.4 then is a direct consequence.

Proof of Theorem 1.4.. Let p, q ∈ Br(p0) be two points. As p+q
2 ∈ Br(p0) and ‖p−q‖2 ≤ r, the ball B ‖p−q‖

2
( p+q2 ) is

contained in A. Hence, since the unit ball of V is the closed convex hull of its extreme points, it follows that
σ(p, q, t) = (1 − t)p + tq for all t ∈ [0, 1] by Theorem 4.1 and a simple limit argument. 2

We will derive Theorem 4.1 via induction on the number of extreme points. For this induction, we need
some preparatory lemmas and definitions.

We define the map λ : D(V)→ V via the assignment (p, q, t) → (1 − t)p + tq. It is readily verified that λ is
a conical geodesic bicombing. Let t ∈ [0, 1] be a real number and let p, q be points in V. We define

M(t)(p, q) := {z ∈ V : ‖z − p‖ = t ‖p − q‖ , ‖z − q‖ = (1 − t) ‖p − q‖}.

Clearly, σ(p, q, t) ∈ M(t)(p, q) for every geodesic bicombing σ. Thus, if the set M(t)(p, q) is a singleton, then
σ(p, q, t) = λ(p, q, t). The following lemma gives a sufficient condition for M(t)(p, q) to be a singleton.
Lemma 4.2. Let (V, ‖ ⋅ ‖) be a normed vector space and let p ∈ V be a point. If p is an extreme point of B‖p‖,
then M(t)(p, −p) = {(1 − 2t)p} for all t ∈ [0, 1].
Proof. By construction, we have M(t)(p, −p) = (S2t‖p‖ + p) ∩ (S(1−t)2‖p‖ − p); hence,

1
2t
(p −M(t)(p, −p)) = S‖p‖ ∩ (1t p − 1 − tt S‖p‖), (4.3)

provided that t ∈ (0, 1]. For each t ∈ (0, 1] we define the map E(t) : V → P(V) via the assignment

p → S‖p‖ ∩ (1t p − 1 − tt S‖p‖).
Note thatP(V)denotes the power set of V. By identity (4.3),M(t)(p, −p) = {(1−2t)p} if and only if E(t)(p) = {p}.
Thus, it is left to show that if p is an extreme point of B‖p‖, then E(t)(p) = {p} for all t ∈ (0, 1). We argue by
contraposition. Suppose that there is a real number t ∈ (0, 1) and a point p ∈ E(t)(p) with p ̸= p. As
p ∈ E(t)(p), it follows that p ∈ S‖p‖ and that there is a point q ∈ S‖p‖ such that p = 1

t p −
1−t
t q. Observe that

q ̸= p and
(1 − t)q + tp = (1 − t)q + t(1t p − 1 − tt q) = p.

Hence the point p is not extreme in B‖p‖, as desired. By putting everything together, the lemma follows. 2

Lemma 4.2 will serve as base case for the induction in the proof of Theorem 4.1. The subsequent lemma
is the key component for the inductive step in the proof of Theorem 4.1.

Lemma 4.3. Let (V, ‖ ⋅ ‖) be a normed vector space and let A ⊂ V be a subset that admits a conical geodesic
bicombing σ : D(A)→ A. Let p be a point inAwith−p ∈ A. If there is a point z inV such that the points2z−p and
p−2z are contained in A and such that σ(p, p−2z, ⋅ ) = λ(p, p−2z, ⋅ ) and σ(2z−p, −p, ⋅ ) = λ(2z−p, −p, ⋅ ),
then

σ(p, −p, t) ∈ ((1 − 2t)z +M(t)(p − z, z − p)).
for all real numbers t ∈ [0, 1].
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Proof. Let t ∈ [0, 1] be a real number. Using that σ is conical, we compute

‖σ(p, −p, t) − λ(p, p − 2z, t)‖ ≤ 2t ‖p − z‖ and ‖σ(p, −p, t) − λ(2z − p, −p, t)‖ ≤ 2(1 − t) ‖p − z‖ .

Note that we have ‖λ(p, p − 2z, t) − λ(2z − p, −p, t)‖ = 2 ‖p − z‖. Therefore, it follows that σ(p, −p, t) ∈
M(t)(λ(p, p−2z, t), λ(2z−p, −p, t)). It is readily verified thatM(t)(u+ h, v+ h) = h+M(t)(u, v) for all t in [0, 1]
and u, v, h ∈ V. Consequently, we obtain thatM(t)(λ(p, p−2z, t), λ(2z−p, −p, t)) = (1−2t)z+M(t)(p−z, z−p).
Thus, the lemma follows. 2

Suppose that A is a subset of a normed vector space (V, ‖ ⋅ ‖) and assume that A admits a conical geodesic
bicombing σ : D(A) → A. The translation Tz : A → Tz(A) about the vector z ∈ V given by the assignment
x → x + z is an isometry and the map (Tz)∗σ : D(Tz(A))→ Tz(A) given by

(x, y, t) → Tz(σ(T−z(x), T−z(y), t)) (4.4)

is a conical geodesic bicombing on Tz(A). Now, we have everything on hand to prove Theorem 4.1.

Proof of Theorem 4.1. We proceed by induction on n ≥ 1. If n = 1, then (T− p+q2 )∗σ( p−q2 , − p−q2 , t) = (1 − 2t) p−q2
for all t ∈ [0, 1] by Lemma 4.2. Thus we obtain σ(p, q, t) = (1 − t)p + tq for all t ∈ [0, 1].

Suppose now that n > 1 and that the statement holds for n−1. Wemay assume that λ1 ∈ (0, 1). We define
(λ1, . . . , λn−1) := 1

1−λ1 (λ2, . . . , λn) and (e1, . . . , en−1) := (e2, . . . , en). Observe that
n
∑
k=1 λkek = λ1e1 + (1 − λ1) n−1∑k=1 λkek . (4.5)

Further, note that


n−1
∑
k=1 λkek


= 1, as otherwise (4.5) implies



n
∑
k=1 λkek


< 1, (4.6)

which is not possible due to (4.1). We abbreviate r := ‖p−q‖2 and we set

z := r(1 − λ1)
n−1
∑
k=1 λkek , p := p − q

2
, q := p − 2z.

Note that p−q
2 = r(1 − λ1)∑

n−1
k=1 λkek. Hence, by (4.6) it follows that

p
 − q
2
= r(1 − λ1). (4.7)

We have that
p + q

2
=
p − q
2
− z (4.1)
= r

n
∑
k=1 λkek − r(1 − λ1) n−1∑k=1 λkek (4.5)

= rλ1e1

and therefore

p + q
2 +
p
 − q
2 {

n−1
∑
k=1(−1)εk λkek : (ε1, . . . , εn−1) ∈ {0, 1}n−1}

(4.7)
= r{λ1e1 +

n
∑
k=2(−1)εk λkek : (ε2, . . . , εn) ∈ {0, 1}n−1} (4.2)⊂ T− p+q2 (A).

Thus, we can apply the induction hypothesis to p, q ∈ T− p+q2 (A) and obtain that
(T− p+q2 )∗σ(p, p − 2z, ⋅ ) = λ(p, p − 2z, ⋅ ).

Similarly, we obtain (T− p+q2 )∗σ(2z − p, −p, ⋅ ) = λ(2z − p, −p, ⋅ ). By Lemma 4.3 it follows that

(T− p+q2 )∗σ(p, −p, t) ∈ ((1 − 2t)z +M(t)(p − z, z − p))
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for all real numbers t ∈ [0, 1]; consequently, we get

(T− p+q2 )∗σ(p, −p, t) = (1 − 2t)p,
since p−z = rλ1e1 is an extreme point in Brλ1 . Thuswe can use Lemma 4.2 to deduce thatM(t)(p−z, z−p) =
{(1 − 2t)(p − z)}. Hence we have σ(p, q, t) = (T− p+q2 )∗σ(p, −p, t) + p+q

2 = (1 − t)p + tq, as desired. 2

We conclude this section with an example of a closed convex subset of a Banach space that admits two
distinct consistent conical geodesic bicombings.

Example 4.4. Let A := {f : [0, 1] → [0, 1] : f(0) = 0, f(1) = 1, f is continuous and strictly increasing}. We
claim that the metric space (A, ‖ ⋅ ‖1) admits two distinct consistent conical geodesic bicombings. Clearly, as
A is convex, the map λ : D(A)→ A given by (f, g, t) → (1− t)f + tg is a consistent conical geodesic bicombing
on (A, ‖ ⋅ ‖1). Let φ : A → A denote the map given by f → f−1. The map φ is an isometry of (A, ‖ ⋅ ‖1). This is
a simple consequence of the identity

‖f − g‖1 = vol2({(x, y) ∈ [0, 1]2 : min{f(x), g(x)} ≤ y ≤ max{f(x), g(x)}})

which holds true for all f, g ∈ A and where vol2 denotes the two dimensional Lebesgue measure.
Let τ : D(A) → A be the map where each map τfg( ⋅ ) is given by the horizontal interpolation of the

functions f, g ∈ A, that is, the map τ is given by the assignment (f, g, t) → φ((1 − t)φ(f) + tφ(g)). As the
map φ is an isometry, it follows that τ is a consistent conical geodesic bicombing. Indeed, it holds that τ =
φ∗λ, where we use the notation introduced in (4.4). Furthermore, if f(x) := √x and g(x) := x, then the map
τ(f, g, t) : [0, 1]→ [0, 1] is given by

x → −t +
√4(1 − t)x + t2
2(1 − t)

for all t ∈ [0, 1], which is distinct from λ(f, g, t) = (1−t)f+tg for all t ∈ (0, 1). Hence, themetric space (A, ‖ ⋅ ‖1)
admits two distinct consistent conical geodesic bicombings. Let B denote the closure of A ⊂ L1([0, 1]). Note
that λ and τ extend naturally to consistent conical geodesic bicombings on B. Hence we have found a closed
convex subset of a Banach space that admits two distinct consistent conical geodesic bicombings. It is readily
verified that B has empty interior.

5 Proof of Theorem 1.5
Before we start with the proof of Theorem 1.5, we recall some notions from [16]. Let (X, d) be a metric space,
let p ∈ X be a point and let r > 0 be a real number. We set Ur(p) := {q ∈ X : d(p, q) < r}. Let U ⊂ D(X) be a
subset. A map σ : U → X is a convex local geodesic bicombing if for every point p ∈ X there is a real number
rp > 0 such that

U = ⋃
p∈X D(Urp (p))

and such that the restriction σ|D(Urp (p)) : D(Urp (p)) → X is a consistent conical geodesic bicombing for each
point p ∈ X. Furthermore, we say that a geodesic c : [0, 1] → X is consistent with the convex local geodesic
bicombing σ if for each choice of real numbers 0 ≤ s1 ≤ s2 ≤ 1 with (c(s1), c(s2)) ∈ Urp (p) × Urp (p) for some
point p ∈ X, we have c((1 − t)s1 + ts2) = σ(c(s1), c(s2), t) for all t ∈ [0, 1].

Consistent geodesics are uniquely determinedby the local geodesic bicombing, compare [16, Theorem1.1]
and the proof thereof:

Theorem 5.1. Let X be a complete, simply-connected metric space with a convex local geodesic bicombing σ.
If we equip X with the length metric, then for every two points p, q ∈ X there is a unique geodesic from p to q
which is consistent with σ and the collection of all such geodesics is a convex geodesic bicombing.

With Theorem 5.1 on hand it is possible to derive Theorem 1.5 by the use of Theorem 1.4.
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Proof of Theorem 1.5. Let int (C) denote the interior of C and let p, q be two points in int (C). We abbreviate
[p, q] := {(1 − t)p + tq : t ∈ [0, 1]}. As int (C) is convex, we have [p, q] ⊂ int (C). For each point z ∈ C we set

rz :=
{
{
{

min{‖z − w‖ : w ∈ [p, q]} if z ∈ C \ int (C)
1
2 inf{‖z − w‖ : w ∈ C \ int (C)} if z ∈ int (C).

Note that rz > 0 for all points z ∈ C and we have that Urz (z) ∩ [p, q] = ⌀ if z ∈ C \ int (C). Further, for every
point z ∈ int (C) it follows that B2rz (z) ⊂ C; thus, wemay invoke Theorem 1.4 to deduce that if z ∈ int (C), then
σz1z2 (t) = (1 − t)z1 + tz2 for all points z1, z2 ∈ Brz (z) and all real numbers t ∈ [0, 1]. We define

U := ⋃
z∈CD(Urz (z)).

Themap σloc := σ|U defines a convex local bicombing on C. The geodesic σpq( ⋅ ) and the linear geodesic from
p to q are both consistent with the local bicombing σloc. Hence, by Theorem 5.1, we conclude that σpq( ⋅ ) is
equal to the linear geodesic from p to q, that is, we have σpq(t) = (1 − t)p + tq for all real numbers t ∈ [0, 1].

Now, suppose that p, q ∈ C. As C is convex, it is well-known that C = int (C), cf. [1, Lemma 5.28]. Let
(pk)k≥1, (qk)k≥1 ⊂ int (C) be two sequences such that pk → p and qk → q with k → +∞. It is readily verified
that σpkqk ( ⋅ )→ σpq( ⋅ )with k → +∞, since σ is a conical geodesic bicombing. As a result, the geodesic σpq( ⋅ )
is equal to the linear geodesic from p to q, as desired. 2

A Proofs of Propositions 2.2 and 2.5
For the sake of completeness, we add here the remaining, quite technical details in the proofs of Proposi-
tions 2.2 and 2.5 which were stated in Section 2.

Proof of Proposition 2.2. As mentioned in Section 2, the geodesic bicombing σδ is non-consistent and re-
versible. Moreover, in the situation when d(σδpq(t), σδpq (t)) = |xpq(t) − xpq (t)| we have

2d(σδpq(t), σδpq (t)) ≤ d(σδpq(t − τ), σδpq (t − τ)) + d(σδpq(t + τ), σδpq (t + τ)).
Therefore, let us check that

2‖σδpq(t) − σδpq (t)‖2 ≤ ‖σδpq(t − τ) − σδpq (t − τ)‖2 + ‖σδpq(t + τ) − σδpq (t + τ)‖2
if τ > 0 is small and d(σδpq(t), σδpq (t)) = √22 ‖σδpq(t) − σδpq (t)‖2, that is, |xpq(t) − xpq (t)| ≤ |ypq(t) − ypq (t)|.
For x ∈ [−3, −1] ∪ [1, 3] and (x, y) ∈ X we have d((x, 0), (x, y)) = |x − x| and therefore we always have
d(σδpq(t), σδpq (t)) = |xpq(t) − xpq (t)| if xpq(t) ∉ (−1, 1). Hence we need to consider only points that satisfy
xpq(t), xpq (t) ∈ (−1, 1).

First, if both σδpq , σδpq are (piece-wise) linear, then locally they are linear geodesics inside a normed
vector space and hence d(σpq(t), σpq (t)) = ‖σpq(t) − σpq (t)‖ is locally convex, thus convex.

Assume that σδpq is not linear, i.e. p ∈ X−, q ∈ X+, l := d(p, q) ≥ 4. We look at the different options for
σδpq separately, but first we define p0 := σpq(t), p± := σpq(t ± τ), p∗ = (x∗, y∗) for ∗ ∈ {0, +, −}, D := δ(l − 4),
ε := τl and accordingly for σδpq . We then get y0 = D(1 − x20), x± = x0 ± ε and y± = D(1 − (x0 ± ε)2).

In each case, we need to consider the situation where x0, x0 ∈ (−1, 1) and |x0 − x0| ≤ |y0 − y0|.
Case 1: p ∈ X∓, q ∈ X± and l := d(p, q) ∈ [4, l].

As above we have y0 = D(1 − x20 ), x± = x0 ± ε, y± = D(1 − (x0 ± ε)2) and with λ := l
l we get ε

 = λε.
We claim that 2‖p0 − p0‖2 ≤ ‖p− − p−‖2 + ‖p+ − p+‖2 if ε > 0 (i.e. τ > 0) is small enough. First note that

‖p− − p−‖22 = ‖p0 − p0‖22 − 2(x0 − x0)(1 − λ)ε + (1 − λ)2ε2 + 2(y0 − y0)aε + a2ε2,
‖p+ − p+‖22 = ‖p0 − p0‖22 + 2(x0 − x0)(1 − λ)ε + (1 − λ)2ε2 + 2(y0 − y0)bε + b2ε2,
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for a := 2(x0D − λx0D) − (D − λ2D)ε and b := −2(x0D − λx0D) − (D − λ2D)ε, with a + b = −2(D − λ2D)ε,
a − b = 4(x0D − λx0D) and either ab = (D − λ2D)2ε2 or ab < 0 for ε small. In the following, we assume that
ab < 0. The other case is similar. Moreover, we have

‖p− − p−‖22 ⋅ ‖p+ − p+‖22 = ‖p0 − p0‖42 + (4ab(y − y)2 − 4(x0 − x0)2(1 − λ)2 + 4(x0 − x0)(1 − λ)(y0 − y0)(a − b)
+ (2(1 − λ)2 + a2 + b2 − 4(y0 − y0)(D − λ2D)) ⋅ ‖p0 − p0‖22)ε2 + O(ε3)

and with√u + t = √u + t
2√u + O(t2) and u = ‖p0 − p0‖42 it follows that

2√‖p− − p−‖22 ⋅ ‖p+ − p+‖22 ≥ 2‖p0 − p0‖22 + (2(1 − λ)2 + a2 + b2 + 4ab − 4(y0 − y0)(D − λ2D)
+
4(x0 − x0)(y0 − y0)(1 − λ)(a − b) − 4(x0 − x0)2(1 − λ)2

(x0 − x0)2 + (y0 − y0)2 )ε2 + O(ε3).

We therefore get

(‖p− − p−‖2 + ‖p+ − p+‖2)2 = ‖p− − p−‖22 + ‖p+ − p+‖22 + 2√‖p− − p−‖22 ⋅ ‖p+ − p+‖22
≥ 4‖p0 − p0‖22 + (4(1 − λ)2 + 2(a + b)2 − 8(y0 − y0)(D − λ2D)
+
4(x0 − x0)(y0 − y0)(1 − λ)(a − b) − 4(x0 − x0)2(1 − λ)2

(x0 − x0)2 + (y0 − y0)2 )ε2 + O(ε3)

= 4‖p0 − p0‖22 + Cε2 + O(ε3) ≥ 4‖p0 − p0‖22,
for ε > 0 small enough, provided that

C = 4(1 − λ)2 − 8(y0 − y0)(D − λ2D) + 16(x0 − x0)(y0 − y0)(1 − λ)(x0D − λx0D) − 4(x0 − x0)2(1 − λ)2(x0 − x0)2 + (y0 − y0)2 > 0.

Observe that a + b = O(ε). Thus, it is left to show that C > 0. Assuming y0 > y0, we have
y0 − y0 = D(1 − x20) − D(1 − x20) = (D − D)(1 − x20) + D(x20 − x20)

≤ δ(l − l) + δ(l − 4)(x0 + x0)(x0 − x0) ≤ δ(l − l) + 4δ(y0 − y0)
and therefore |y0 − y0| ≤ δ

1−4δ (l − l). Moreover,
|D − λ2D|l2 = δ(l3 − 4l − l3 + 4l) = δ(l − l)(l2 + ll + l2 − 4(l + l)) ≤ 60δ(l − l),
|x0D − λx0D|l ≤ |x0|(D − λD)l + |x0 − x0|Dl ≤ δ(l − l)(l + l − 4) + 12δ|y0 − y0| ≤ (8δ + 12δ2

1 − 4δ)
(l − l).

Hence, we finally get

Cl2‖p0 − p0‖22 = 4(l − l)2(y0 − y0)2 − 8(y0 − y0)(D − λ2D)l2((x0 − x0)2 + (y0 − y0)2)
+ 16(x0 − x0)(y0 − y0)(l − l)(x0D − λx0D)l
≥ (4 − 960δ

2

1 − 4δ
− 128δ − 192δ

2

1 − 4δ)
(l − l)2(y0 − y0)2 = (4 − 144δ − 640δ21 − 4δ )(l − l)2(y0 − y0)2 > 0

for δ < 1
40 . This is true in particular for δ ≤

1
64 .

Case 2: σpq is piece-wise linear with p ∉ X0 or q ∉ X0.
Let m be the slope of σpq at p0. If p ∈ X− and q ∈ X0, then we have

m = qy/(qx + 1) ≤ 1
32 (1 − q


x
2)/(1 + qx) = 1

32 (1 − q

x) ≤

1
32 (4 − l

) ≤ 1
32 (l − l

),
and similarly we also get in all other cases |m| ≤ 1

32 (l− l
) and especially |m| ≤ 1. Moreover, we have l ∈ [4, 6],

l ∈ [0, 4] and for ε = τl, λ = s
s we get x± = x0 ± ε, y± = y0 ± mε and ε = λε. We can proceed as before

with a = λm + 2Dx0 − Dε and b = −λm − 2Dx0 − Dε, and we finally get the constant

C = 4(1 − λ)2 − 8(y0 − y0)D + 8(x0 − x0)(y0 − y0)(1 − λ)(λm + 2Dx0) − 4(x0 − x0)2(1 − λ)2(x0 − x0)2 + (y0 − y0)2 .
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With D = δ(l − 4) ≤ δ(l − l) and y0 − y0 ≤ D(1 − x20) ≤ D ≤ δ(l − l) it follows that
Cl2‖p0 − p0‖22 = 4(l − l)2(y0 − y0)2 − 8(y0 − y0)Dl2((x0 − x0)2 + (y0 − y0)2)

+ 8(x0 − x0)(y0 − y0)(l − l)(ml + 2Dx0l)
≥ (4 − 576δ2 − 1 − 96δ)(l − l)2(y0 − y0)2 = (3 − 96δ − 576δ2)(l − l)2(y0 − y0)2 > 0

for δ < 0.026.

Case 3: σpq is linear with p, q ∈ X0. Let m again denote the slope of σpq . We distinguish two subcases.
(a) If |m| ≤ 1, we have l ∈ [4, 6], l ∈ [0, 2] and

|ml| = |qy − py|
|qx − px| l = |qy − py| ≤ 1

32 .

Moreover, for ε = τl, λ = s
s we get x± = x0 ± ε, y± = y0 ± mε and ε = λε as before and again we get the

constant

C = 4(1 − λ)2 − 8(y0 − y0)D + 8(x0 − x0)(y0 − y0)(1 − λ)(λm + 2Dx0) − 4(x0 − x0)2(1 − λ)2(x0 − x0)2 + (y0 − y0)2 .

Now, we estimate

Cl2‖p0 − p0‖22 = 4(l − l)2(y0 − y0)2 − 8(y0 − y0)Dl2((x0 − x0)2 + (y0 − y0)2)
+ 8(x0 − x0)(y0 − y0)(l − l)(ml + 2Dx0l)
≥ (4 − 576δ2 − 1

8 − 96δ)(l − l
)2(y0 − y0)2 = (318 − 96δ − 576δ2)(l − l)2(y0 − y0)2 > 0

for δ < 0.033.
(b) If |m| > 1, we have l ∈ [4, 6] and

l = √22 √(qx − px)2 + (qy − py)2 ≤ |qy − py| ≤ 1
32 .

Furthermore, let εx = x+ − x0 and εy = y+ − y0. Then we have εy = mεx and
2(τl)2 = εx2 + (mεx)2 = (1 + m2)εx2.

Thus we get εx = λxε for λx := l
l
√2√1+m2 , ε


y = λyε for λy := mλx = l

l
√2m√1+m2 , x

± = x0 ± εx and y± = y0 ± εy.
We proceed again as before and get the constant

C = 4(1 − λx)2 − 8(y0 − y0)D + 8(x0 − x0)(y0 − y0)(1 − λx)(λy + 2Dx0) − 4(x0 − x0)2(1 − λx)2(x0 − x0)2 + (y0 − y0)2 ,

with D = δ(l − 4) ≤ δ(l − l) ≤ 6δ(1 − λx) and y0 − y0 ≤ D(1 − x20) ≤ D ≤ 6δ(1 − λx) and λy = l
l
√2√m−2+1 ≤ √2128 ≤

1
64 (1 − λx). Now we estimate

C‖p0 − p0‖22 = 4(1 − λx)2(y0 − y0)2 − 8(y0 − y0)D((x0 − x0)2 + (y0 − y0)2)
+ 8(x0 − x0)(y0 − y0)(1 − λx)(λy + 2Dx0)
≥ (4 − 576δ2 − 1

64 − 96δ)(1 − λx)
2(y0 − y0)2 = (25564 − 96δ − 576δ

2)(1 − λx)2(y0 − y0)2 > 0
for δ < 0.034. Hence this is again true for δ ≤ 1

64 .
Observe that for m → +∞ we get λx = 0 and λy = √2 l

l , and the same estimates hold. 2

Proof of Proposition 2.5. The geodesic bicombing σ̃δ is non-consistent and non-reversible, as observed be-
fore. For convexity, the same arguments as in the proof of Proposition 2.2 apply. The only new case is p ∈ X+
and q ∈ X−. With the notions from above with x± = x0 ∓ ε for ε = τl and λ = l

l we obtain the constant

C = 4(1 + λ)2 − 8y0D +
16(x0 − x0)y0(1 + λ)x0D − 4(x0 − x0)2(1 + λ)2

(x0 − x0)2 + y20 .
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With the inequalities D = δ(l − 4) ≤ 2δ and |y0| ≤ 1
32 we get

C‖p0 − p0‖22 = 4(1 + λ)2y20 − 8y0D((x0 − x0)2 + y20) + 16(x0 − x0)y0(1 + λ)x0D
≥ (4 − δ − 32δ)(1 + λ)2y20 ≥ (4 − 33δ)(1 + λ)

2y20 > 0

for δ < 4
33 , hence for all δ ≤

1
64 . 2

Acknowledgements: Wewould like to thank Urs Lang for introducing us to conical geodesic bicombings and
for his helpful remarks and guidance. We are also thankful for helpful suggestions of the anonymous referee.

Funding: The authors gratefully acknowledge support from the Swiss National Science Foundation.

References
[1] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis. Springer 2006. MR2378491 Zbl 1156.46001
[2] J. M. Alonso, M. R. Bridson, Semihyperbolic groups. Proc. London Math. Soc. (3) 70 (1995), 56–114.

MR1300841 Zbl 0823.20035
[3] G. Basso, Fixed point theorems for metric spaces with a conical geodesic bicombing.

Ergodic Theory and Dynamical Systems 38 (2018), 1642–1657. MR3819996
[4] H. Busemann, B. B. Phadke, Spaces with distinguished geodesics. Dekker 1987. MR896903 Zbl 0631.53001
[5] D. Descombes, Asymptotic rank of spaces with bicombings.Math. Z. 284 (2016), 947–960. MR3563261 Zbl 1360.53078
[6] D. Descombes, U. Lang, Convex geodesic bicombings and hyperbolicity. Geom. Dedicata 177 (2015), 367–384.

MR3370039 Zbl 1343.53036
[7] D. Descombes, U. Lang, Flats in spaces with convex geodesic bicombings. Anal. Geom. Metr. Spaces 4 (2016), 68–84.

MR3483604 Zbl 1341.53070
[8] A. W. M. Dress, Trees, tight extensions of metric spaces, and the cohomological dimension of certain groups: a note on

combinatorial properties of metric spaces. Adv. in Math. 53 (1984), 321–402. MR753872 Zbl 0562.54041
[9] S. Gähler, G. Murphy, A metric characterization of normed linear spaces.Math. Nachr. 102 (1981), 297–309.

MR642160 Zbl 0499.46007
[10] D. B. Goodner, Projections in normed linear spaces. Trans. Amer. Math. Soc. 69 (1950), 89–108.

MR0037465 Zbl 0041.23203
[11] J. R. Isbell, Six theorems about injective metric spaces. Comment. Math. Helv. 39 (1964), 65–76.

MR0182949 Zbl 0151.30205
[12] M. Kell, Sectional curvature-type conditions on finsler-like metric spaces. Preprint 2016, arXiv:1601.03363 [math.MG]
[13] J. L. Kelley, Banach spaces with the extension property. Trans. Amer. Math. Soc. 72 (1952), 323–326.

MR0045940 Zbl 0046.12002
[14] U. Lang, Injective hulls of certain discrete metric spaces and groups. J. Topol. Anal. 5 (2013), 297–331.

MR3096307 Zbl 1292.20046
[15] Y.-C. Li, C.-C. Yeh, Some characterizations of convex functions. Comput. Math. Appl. 59 (2010), 327–337.

MR2575519 Zbl 1189.26013
[16] B. Miesch, The Cartan–Hadamard Theorem for Metric Spaces with Local Geodesic Bicombings. Enseign. Math. 63 (2017)

231–245 MR3777137 Zbl 1391.53088
[17] S. Reich, I. Shafrir, Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15 (1990), 537–558.

MR1072312 Zbl 0728.47043
[18] W. Takahashi, A convexity in metric space and nonexpansive mappings. I. Kōdai Math. Sem. Rep. 22 (1970), 142–149.
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