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Abstract

English

This thesis contributes to the study of eigenvalue and scattering resonance per-

turbations caused by domain variations. We derive asymptotic formulae with layer

potential techniques, and use them to image small particles.

We present several new results. We compute higher-order terms in the asymp-

totic expansions of eigenvalues, study their simplicity, and derive a variational char-

acterization in the case of multiplicity higher than one. We report the results of

different numerical experiments which validate and illustrate our findings, and pro-

pose computational techniques to reconstruct small domain variations from eigen-

value perturbations. We also study the asymptotic behavior of scattering resonances,

first formally, via the method of matched expansions, and then rigorously, using the

spectral properties of the Newtonian potential. We focus in particular on the ana-

lysis of plasmonic and highly refractive nanoparticles. Our formulae can be applied

to the analysis and design of resonant structures.

Italiano

Questa tesi contribuisce allo studio di perturbazioni di autovalori e risonanze di

scattering causate da variazioni di dominio. Deriviamo formule asintotiche con i

potenziali di superficie, e le utilizziamo per ricostruire la forma di piccole particelle.

Presentiamo diversi risultati nuovi. Calcoliamo termini di grado superiore negli

sviluppi asintotici degli autovalori, studiamo la loro semplicità, e deriviamo una

caratterizzazione variazionale nel caso di molteplicità superiore a uno. Riferiamo

i risultati di diversi esperimenti numerici che validano e illustrano le nostre con-

clusioni, e proponiamo tecniche computazionali per ricostruire piccole variazioni di

domini da perturbazioni di autovalori. Studiamo anche il comportamento asintotico

di risonanze di scattering, prima formalmente, attraverso il metodo delle espansioni
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abbinate, e poi rigorosamente, utilizzando le proprietà spettrali del potenziale New-

toniano. In particolare ci focalizziamo sull’analisi di nano-particelle plasmoniche

e altamente rifrangenti. Le nostre formule si possono applicare all’analisi e alla

progettazione di strutture risonanti.
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Introduction

In this thesis, we study the asymptotic behavior of eigenvalues and scattering res-

onances with respect to different types of domain perturbations. Our purpose is

to develop some procedures to quickly estimate quantities of interest, and provide

asymptotic error bounds.

The dependence of the spectrum of a differential operator on its domain of defin-

ition has been a thoroughly studied topic since the seminal work of Hadamard in

the early 20th century. Probably even a larger literature has been devoted to the

development of a perturbation theory for eigenvalues of linear operators, first from

the quantum physics community, and then from the point of view of mathematical

analysis. The foundational results of this area can be found in the works of Rellich

and Kato from the mid 20th century. However, there is much interest in this line of

research still today. For instance, the shift of eigenvalues caused by singular domain

perturbations is a problem recently examined, with techniques from layer potential

theory, by Ammari and collaborators. One of the goals of this thesis is an exten-

sion of these results. In fact, in Chapter 2, we show how the generalized argument

principle of Gohberg and Sigal can be used to derive new higher-order terms in the

asymptotic expansion of Neumann eigenvalues of the Laplacian.

A related issue, which has also been examined extensively in the literature, con-

cerns the behavior of repeated eigenvalues. However, we believe that the study of

repeated eigenvalues, for some particular operators, has not been thoroughly pur-

sued, mainly due to the results of Uhlenbeck and Micheletti in the 60s and 70s,

which state that, generically, eigenvalues are simple. We report these results in

Chapter 3, where we also provide some generalizations to non-smooth domains and

Neumann boundary conditions. One of the highlights of this thesis is a new vari-

ational characterization for multiple eigenvalues of self-adjoint, elliptic differential

operators, presented in Chapter 4. We also discuss in Chapter 5 its applications to
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domain variations, which are of interest in applications.

A natural extension to the setting examined so far is to consider scattering res-

onances on unbounded domains. This is another area of research, rooted in the

work on scattering theory by Lax and Phillips in the ‘60s, which is still active today,

with recent results from Popov, Vodev, Zworski, and collaborators. Scattering res-

onances are of great importance in physics and technology, and new results in this

setting are of great interest in applications, especially due to recent advancements

in nano-optics and micro-biology. The mathematical models in these areas, how-

ever, often differ among communities and use fundamentally diverse assumptions

and terminology. In this thesis, we provide a mathematical framework to analyze

perturbations of scattering resonances, focusing our attention on scalar waves. We

show how a modification of the scatterers influences the resonances, and derive new

asymptotic expansions, first formally in Chapter 6 with the method of matching

asymptotic expansions, and then rigorously in Chapter 7, using the spectral prop-

erties of the Newtonian potential and pole-pencil decompositions of the involved

operator-valued functionals. We focus our attention on analyzing some situations

which are currently of great interest in nano-opitcs: whispering gallery resonators,

plasmonic nanoparticles, and finally, in Chapter 8, highly refractive particles. In

all of these cases, we derive new asymptotic formulae, which can be used for the

analysis and design of nano-structures with given resonance requirements.

We move on to present more in detail the topics of each chapter.

Structure of the thesis. The thesis is divided into eight chapters.

In Chapter 1, we fix the notation which will be used through the rest of the thesis

and recall some useful results from the literature, mainly regarding Bessel functions,

fundamental solutions, layer potentials and Gohberg-Sigal theory. We also describe

the tools used to numerically validate the theoretical results.

In Chapter 2, we derive some terms in the small-volume asymptotic expansion of

the shift of Neumann eigenvalues of the Laplacian caused by a grounded inclusion of

area ε2. We present a new higher-order explicit formula to compute them from the

capacity, the eigenvalues and the eigenfunctions of the unperturbed domain, and the

size and the position of the inclusion. The key step in the derivation is the filtering

of the spectral decomposition of the Neumann function with the residue theorem.

As a consequence of the formula, when a bifurcation of a double eigenvalue occurs
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Introduction

(as for example in the case of a generic inclusion inside a disk) one eigenvalue decays

like O(1/ log ε), the other like O(ε2). The results of this chapter have been published

in [38].

In Chapter 3, we construct an arbitrarily small and localized perturbation of any

Lipschitz domain, which splits the Dirichlet, Neumann, or Robin repeated eigenval-

ues of the Laplacian into simple ones. We showcase two different approaches. The

first one consists in the excision of a hole inside the domain and the perturbation

of its boundary, and is based on a Hadamard’s formula and sharp spectral stabil-

ity estimates. The second one consists in the deformation of the boundary of the

domain itself, and requires further properties of the bilinear form of the variational

problem. The results of this chapter are the subject of [39].

In Chapter 4, we derive a new variational characterization for the shift of eigen-

values caused by a general type of perturbation for self-adjoint elliptic differential

operators. This result allows the direct extension of asymptotic formulae from simple

eigenvalues to repeated ones. It generalizes the results from Chapter 2 to higher

multiplicity eigenvalues. Some interesting examples for the Laplacian are presented

theoretically and numerically for the following domain perturbations: excision of a

small hole, local change of conductivity, small boundary deformation. The results

of this chapter are the subject of [40].

In Chapter 5, we present some techniques to reconstruct features of domain

perturbations from the shift of eigenvalues they cause in a closed resonator. For

this purpose, we use asymptotic formulae, under the assumption of smallness of

the perturbations considered. The main appeal of the methods introduced is that

they provide a very quick estimate of particles’ features of any shape and in any di-

mension. We provide also many practical numerical examples, considering different

types of perturbations. The results of this chapter are the subject of [44].

In Chapter 6, we derive formally a small-volume expansion for the scattering

resonances of an open cavity perturbed by a small particle. We derive an asymptotic

expression for the induced shift of the scattering frequencies, without neglecting the

radiation effect. We consider also the case of plasmonic particles and show that they

cause a stronger enhancement in the frequency shift. The derived formula can be

used to image small particles located near the boundary of an open resonator which

admits whispering-gallery modes. Numerical examples of interest for applications

are also presented. The results of this chapter are the subject of [5].
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In Chapter 7, we consider the transverse electric polarization case, and derive a

small-volume formula for the shifts in the scattering resonances of a radiating dielec-

tric cavity perturbed by small particles. We show that again a strong enhancement

in the frequency shift appears in the case of plasmonic particles. We also consider

exceptional scattering resonances and characterize their asymptotic behavior for a

specific form of the Green’s function. Our approach relies on pole-pencil decompos-

itions of volume integral operators. The results of this chapter are the subject of

[6].

In Chapter 8, we analyze the subwavelength resonances of dielectric particles

with high refractive indices. We show that for an arbitrary shaped particle, these

subwavelength resonances can be expressed in terms of the eigenvalues of the New-

tonian potential associated with its shape. We derive an asymptotic estimate for the

enhancement of the scattered field at the resonant frequencies. We also characterize

the hybridization of the subwavelength resonances of a dimer of highly refractive

dielectric nanoparticles. The results of this chapter are the subject of [7].
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Chapter 1

Fundamental notation and results

In this chapter, we fix the notation and recall some results from the literature which

will be extensively used through the rest of the thesis.

Reference space. We will mostly work with domains, which we define as subsets

of Rd which are open, bounded, connected, and have Lipschitz boundaries. We

reserve since now the symbol Ω to indicate such an arbitrary domain.

Basic notation. We collect here some notation and assumptions which will be

used often.

• We assume any function and any set we work with to be Lebesgue measurable.

We indicate with |x| the modulus, the norm, or the Lebesgue measure of x,

depending on x being a number, a vector, or a set.

• We indicate as ν the outward normal to a boundary ∂Ω, as
∂

∂ν
or

∂

∂ν

∣∣∣
+

the

normal derivative from the exterior of Ω, and as
∂

∂ν

∣∣∣
−

the normal derivative

from the interior.

• We indicate as I the identity map or, when working on a finite dimensional

vector space with a fixed basis, the identity matrix.

Function spaces. The spaces of functions we will encounter most often are:

Ck,α(Ω), the space of functions with α-Hölderian kth derivative in Ω; Ck(Ω) the

space of functions with continuous kth derivative; Lp(Ω), the space of p-integrable

functions on Ω; Hs(Ω), the subset of L2(Ω) whose distributional derivatives up to

order s are also in L2(Ω); H1
0(Ω), the subset of H1(Ω) with trace zero.
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Bessel functions. Let α, z ∈ C. Let us recall here some fundamental results

on the canonical solutions to Bessel differential equation z2f ′′(z) + zf ′(z) + (z2 −

α2)f(z) = 0. The Bessel function Jα of the first kind and order α can be defined,

when α is not a negative integer, as

Jα(z) =
(z

2

)α ∞∑
k=0

(−1)k

k!Γ(k + α + 1)

(z
2

)2k

, (1.1)

where Γ indicates the Gamma function, that is Γ(z) =
´∞

0
tz−1e−tdt. The series in

(1.1) converges on the whole C. When α is a negative integer we define Jα = −J−α.

The Bessel function Yα of the second kind and order α can be defined, when α

is not an integer, as

Yα(z) =
Jα(z) cos(πα)− J−α(z)

sin(πα)
,

and, when α is an integer, as the limit of Yβ as β → α. Both Jα and Yα are analytic

on C \ (−∞, 0]. For the particular case of α = 0, we have that

Y0(t) =
2

π

∞∑
n=0

(−1)n
(

tn

2nn!

)2

log(ηnt),

with log ηn = Euler-Mascheroni constant− log 2 +
∑n

k=1(1/k).

The Hankel function H
(1)
α of the first kind and order α can be defined as

H(1)
α (z) = Jα(z) + iYα(z).

We refer to [2, Chapter 9] for further details.

Fundamental solutions. Let L be a linear differential operator on Rd. A funda-

mental solution, or Green function, of L is a distribution Γ such that

LΓ(·, z) = δz,

where δz is the Dirac mass function concentrated in z and the equality is intended

in the distributional sense (see, for instance, [91]).

When L is the Helmholtz operator, that is L = ∆ + ω2, we have an explicit

expression for the fundamental solution via the Hankel function. For any ω ∈

C \ (−∞, 0], r > 0, we define

Γω(r) = − i

4

( ω

2πr

) d
2
−1

H
(1)
d
2
−1

(ωr), (1.2)
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1. Fundamental notation and results

and

Γ0(r) =



r

2
if d = 1,

1

2π
log r if d = 2,

1

d(2− d)|Sd−1|rd−2
if d ≥ 3,

(1.3)

where Sd−1 is the (d−1)-dimensional unit sphere. We remark that our sign conven-

tion is the same as [48] but the opposite of [41].

When dealing with x, z ∈ Rd, we define Γω(x, z) = Γω(|x−z|). As a consequence

of the definitions, Γω is a fundamental solution for the operator ∆ + ω2 on Rd for

any ω ∈ C \ (−∞, 0), that is

(∆x + ω2)Γω(|x− z|) = δz(x).

We remark that there is no guarantee of uniqueness for fundamental solutions. In

fact, whenever working on a bounded domain, for simplicity we will substitute Γω(r)

with its real part, that is

1

4

( ω

2πr

) d
2
−1

Y d
2
−1(ωr). (1.4)

This simplifies the numerical computations and allows us to restrict the whole ana-

lysis to real numbers, since for bounded domains we will consider exclusively ω ∈ R.

On unbounded domains, on the contrary, we must use Γω(r) as defined in (1.2), due

to the requirement of a radiation condition, which we now specify.

Sommerfeld radiation condition. A function u : Rd → C, which is a solution

to Helmholtz equation (∆ + ω2)u = 0, satisfies the Sommerfeld radiation condition

if
∂u

∂ν
− iωu→ 0 in L2(Br) as r →∞, (1.5)

where Br is the ball of radius r centered at the origin.

The physical meaning of the condition is to select the outgoing waves among

all possible solutions to the Helmholtz problem. We remark that Γω, as defined in

(1.2), can be characterized as the unique fundamental solution which satisfies the

Sommerfeld radiation when ω ∈ C \ (−∞, 0], and when ω = 0, as the unique limit

of Γω′ as ω′ → 0.
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Layer potentials. A fundamental tool which we will use extensively is that of

boundary layer potentials, which we now introduce.

Definition 1.1. The single layer potential, the double layer potential, and the

Neumann-Poincaré operator of Ω at frequency ω ∈ C \ (−∞, 0) are defined re-

spectively as the operators SωΩ, DωΩ, KωΩ such that for every φ ∈ L2(∂Ω) it holds

SωΩ[φ](x) =

ˆ
∂Ω

Γω(|x− y|)φ(y) dσ(y), for x ∈ Rd, (1.6)

DωΩ[φ](x) =

ˆ
∂Ω

∂Γω(|x− y|)
∂ν(y)

φ(y) dσ(y), for x ∈ Rd \ ∂Ω, (1.7)

KωΩ[φ](x) =

ˆ
∂Ω

∂Γω(|x− y|)
∂ν(y)

φ(y) dσ(y), for x ∈ ∂Ω, (1.8)

where the integral in (1.8) is intended to be in the principal value sense.

In the following propositions, we recall some properties of the layer potentials

which we will need later.

Proposition 1.2. The L2-adjoint of K−ωΩ , which we indicate as (KωΩ)∗, satisfies

(KωΩ)∗[φ](x) =

ˆ
∂Ω

∂Γω(|x− y|)
∂ν(x)

φ(y) dσ(y), for x ∈ ∂Ω.

Moreover KωΩ is bounded from L2(∂Ω) to H1(∂Ω).

Proposition 1.3. The single layer potential, SΩ, and the normal derivative of the

double layer potential, ∂DΩ/∂ν, are both continuous across ∂Ω. The normal derivat-

ive of the single layer potential and the double layer potential are both discontinuous

across ∂Ω and

∂SωΩ
∂ν

∣∣∣
±

= ±I/2 + (KωΩ)∗, (1.9)

DωΩ|± = ∓I/2 +KωΩ. (1.10)

For an in-depth study of the properties of layer potentials and their extensive

applications in the theory of boundary value problems we refer to [35, 97].

Capacity of a set. The single layer potential can be used to define the capacity

of a set, a useful quantity related to its geometry, as follows. It can be shown that

there exists a unique non-zero couple (ϕcap, a) ∈ L2(∂Ω)× R which solvesS
0
Ω[ϕcap](x) ≡ a ∀x ∈ ∂Ω,

´
∂Ω
ϕcap = 1.

14



1. Fundamental notation and results

Then the capacity of ∂Ω is defined as

cap ∂Ω =

e
2πa if d = 2,

1/a if d ≥ 2.

For further details on the capacity see [59, Section 16.4] and [25].

Polarization tensors. The polarization tensor M(k,Ω) of a domain Ω with coef-

ficient k ∈ C, is a d× d matrix which (i, j)-th entry is

ˆ
∂Ω

(
k + 1

2(k − 1)
I − (K0

Ω)∗
)−1

(νj)yi dσ(y), (1.11)

where νj, yi indicate respectively the jth and ith components of ν and y.

The polarization tensor encodes different geometric properties of the underlying

domain Ω. For the discussion of this result and many other properties we refer to

[12]. We recall here only the fact that if Ω is a two dimensional ellipse with semi-

axes a and b, rotated counter-clockwise by a degree α with respect to the coordinate

axes, we can explicitly compute

M(k,Ω) = (k − 1)Rα

 a+ b

a+ kb
0

0
a+ b

a+ kb

RT
α , with Rα =

cosα − sinα

sinα cosα

 .

(1.12)

Gohberg-Sigal theory. Recall that if f : C → C is meromorphic, then the

argument principle states that for any subset V ⊆ C with smooth boundary ∂V on

which f has no poles and no zeros, it holds

1

2πi

ˆ
∂V

f ′(z)

f(z)
dz = N − P,

where N and P are respectively the number of zeros and poles of f inside V , counted

with their multiplicity. An analogous result can be formulated for infinite dimen-

sional operators. Its formulation however requires the introduction of some technical

definitions, which we briefly summarize hereafter.

Let A be a functional from C to the space L of linear operators between two

arbitrary Banach spaces. A point z0 ∈ C is a characteristic value of A, if there

exists a function φ(z) holomorphic and non-zero at z0, and such that A(z)φ(z) is

holomorphic and zero at z0.
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We say that A is finitely meromorphic at a point z0 ∈ C which is a pole for A,

if it can be written as

A(z) =
∑
j≥−s

(z − z0)jAj,

for some natural number s, and if A−1, . . . , A−s are finite dimensional operators. It

is easy to show that if A is finitely meromorphic at z0 then
´
∂V
A(z)dz is a finite-

dimensional operator for any V which contains no other poles than z0.

Recall that an operator is called Fredholm if its kernel and cokernel are both

finite dimensional. With these notions we can formulate a generalization of the

argument principle as follows.

Theorem 1.4. Let A be an operator-valued functional which is finitely meromorphic

and Fredholm in V , continuous and invertible on ∂V . Then

1

2πi
tr

(ˆ
∂V

A−1(z)∂zA(z) dz

)
= N − P,

where N and P are respectively the number of characteristic values and of poles of

A(z) in V , counted with their multiplicities.

For the proof of this result and further details we refer to [49, 14].

Tools used for numerical validation. Various numerical experiments have been

performed to validate the theoretical formulae obtained in this thesis. Finite element

simulations for eigenvalue system have been performed with the pdeeig function

from MATLAB. The predefined triangular mesh has been used, varying the number

of recursive refinements until convergence of the required significant digits for each

experiment.

The multipole expansion method has been implemented in MATLAB following the

exposition of [73]. Although this method converges much faster than the finite

element approach, it relies on summation formulae of elliptic functions, and is thus

limited to problems where the shapes involved are ellipsoids.

Calculations of the terms appearing in the derived asymptotic formulae have

been performed in Mathematica. To evaluate numerically the oscillatory integ-

rals involved in the higher-order terms of some asymptotic formulae, the function

NIntegrate with adaptive sampling has been used.
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Chapter 2

Higher-order terms in a small

volume expansion

Consider a planar bounded domain Ω and let ω2 be an eigenvalue of the negative

Laplacian on Ω with homogeneous Neumann boundary conditions. Suppose a small

inclusion D = z + εB (where z ∈ Ω, |B| = |Ω|, and ε is small) is inserted inside Ω.

This may cause the eigenvalue ω2
ε of the perturbed domain Ω \ D (with Neumann

condition on ∂Ω and Dirichlet on ∂D) to vary in value or in multiplicity with respect

to ω2. Asymptotic formulae of the perturbation with respect to the size of the

inclusion have been derived in the ‘80s in [86, 30]. In particular, it has been shown

that if ω2 is simple and u is the associated L2-normalized eigenfunction, then the

perturbation is singular and

ω2
ε − ω2 = −2π|u(z)|2

log ε
+ o (1/ log(ε)) . (2.1)

More recently, Gohberg-Sigal theory for meromorphic operators applied to the in-

tegral equation formulation of the eigenvalue problem has led to new results (see

[15, 22]). In this chapter we elaborate on these results to further improve (2.1), by

calculating explicitly the terms up to O(ε2) and by generalizing it to the case of mul-

tiplicity 2. As a consequence of our derivation, for perturbed eigenvalues ω2
ε,1 < ω2

ε,2

splitted from a double eigenvalue ω2 of the original domain Ω, it holds

ωε,2 − ω = − C1

log(ε) + C2

+O(ε2),

ωε,1 − ω = O(ε2),

where C1 and C2 do not depend on ε and can be explicitly calculated from the

capacity, the eigenvalues, and the value at z of the eigenfunctions of Ω.

17



2.1. Preliminaries

This chapter is organized as follows. After introducing in Section 2.1 the precise

setting of the problem and the notation, in Section 2.1.1 we recall the equivalent

formulation of the Laplacian eigenvalues as characteristic values of an appropriate

integral operator. An asymptotic expansion of this integral operator can be obtained

by expanding in Taylor series the free space fundamental solution. Gohberg-Sigal

theory then provides a link between eigenvalues’ shifts and the traces of these in-

tegral operators through power sum polynomials. In Section 2.2, explicit terms for

the small volume expansion of these power sum polynomials are derived by using

properties of layer potentials. The key step in this derivation is the filtering of the

spectral decomposition of the Neumann function using the residue theorem to ob-

tain geometric-like series which can be summed. A proposal for formal automated

computation of higher-order coefficients is given in Section 2.2.3. Finally in Section

2.3 some interesting consequences for special cases and a validation with numerical

experiments are provided.

2.1 Preliminaries

The eigenvalue problem. Let Ω be an open, bounded and connected subset of

R2 with C1-boundary. It is well known that the eigenvalues of the negative Laplacian

on Ω with Neumann boundary condition are non-negative, have finite multiplicity

and can be arranged in an increasing divergent sequence

0 = ω2
0 < ω2

1 < ω2
2 < · · · < ω2

k →∞.

For each index i, let mi be the multiplicity of ω2
i . We choose the associated eigen-

functions ui,1, . . . , ui,mi to be orthonormal in L2. Thus, for any i, j, we have
(∆ + ω2

i )ui,j = 0 in Ω,

∂ui,j
∂ν

= 0 on ∂Ω,

and
ˆ

Ω

ui,juk,l =

1 if i = k and j = l,

0 otherwise.

We will often use the vector notation

Ui := (ui,1, . . . , ui,mi). (2.2)
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2. Higher-order terms in a small volume expansion

Invertibility of the single layer potential. Consider the special case when Ω

is the unit disk. Writing t for the angle in the usual polar parametrization of the

boundary, one can calculate that

S0
Ω[eint](τ) =


0 if n = 0,

− 1

2n
einτ otherwise.

Thus, we have an explicit expression of S0
Ω in the Fourier basis of L2(∂Ω). Notice

however that the fact that S0
Ω[1] = 0 causes the non-invertibilty of S0

Ω. Nonetheless,

if we consider

φ 7→ S0
Ω[φ] + λ

ˆ
∂Ω

φ, (2.3)

we see that, for a constant λ 6= a, this operator is always invertible from L2(∂Ω) to

H1(∂Ω). This is still true for a more general domain Ω as in our assumptions (see

[97, Theorem 4.11] for more details).

Fundamental solution for a bounded domain. The Neumann function Nω
Ω is

defined as the solution of
(∆x + ω2)Nω

Ω(x, z) = δz(x) for x ∈ Ω,

∂Nω
Ω(x, z)

∂ν(x)
= 0 for x ∈ ∂Ω,

where ω ∈ C is not one of ωi and z ∈ Ω. It has the spectral representation

Nω
Ω(x, z) =

∞∑
j=1

Uj(x) · Uj(z)

ω2 − ω2
j

,

where the convergence of the series to Nω
Ω in general is only in L2 (see [37, expansion

theorems ]). Here, Uj is defined by (2.2).

By integrating Nω
Ω against test functions in L2(∂Ω) and using the properties of

layer potentials one can show that

(I/2−KωΩ)−1 [Γω( · , z)](x) = Nω
Ω(x, z). (2.4)

We also recall that the Neumann function has a logarithmic singularity. In fact,

Nω
Ω(x, z) =

1

2π
log |x− z|+Rω

Ω(x, z) ∀x 6= z, (2.5)

with Rω
Ω being continuous on Ω×Ω (for more details on the last two results, see [14,

Section 2.3.5] and the references therein).
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2.1. Preliminaries

The perturbed eigenvalue problem. Let B be a bounded domain with piece-

wise smooth boundary, with area |B| = |Ω|, and centered at the origin in the sense

that ˆ
∂B

y1 dσ(y1, y2) =

ˆ
∂B

y2 dσ(y1, y2) = 0.

We fix for the rest of the chapter a point z ∈ Ω, a scaling factor 0 < ε� 1 and an

index θ ∈ N. Suppose then that the domain Ω is perturbed by inserting a grounded

inclusion D = z + εB inside Ω. This causes the eigenvalue ω2
θ to split into mθ

(possibly distinct) eigenvalues ω2
ε,1 ≤ · · · ≤ ω2

ε,mθ
with associated eigenfunctions

uε,1, . . . , uε,mθ . This means that for j = 1, . . . ,mθ,
(∆ + ω2

ε,j)uε,j = 0 in Ω \D,

uε,j = 0 on ∂D,

∂uε,j
∂ν

= 0 on ∂Ω.

It has been shown in [89] that under our assumptions ω2
ε,j → ω2

θ as ε → 0. The

problem we will consider is the following:

to find an asymptotic expansion of ω2
ε,j − ω2

θ in terms of ε, for all j ∈ {1, . . . ,mθ} .

With this purpose, we will transform the eigenvalue problem into an equivalent

integral formulation.

Nonstandard notation. In this chapter we will use the following notation:

• we indicate as

˛
the normalized complex path integral

1

2πi

ˆ
;

• for clarity, we adopt the symbol � to indicate the function variable of an

operator evaluated at a point, e.g. DωΩ[�](z) indicates the function L2(∂Ω) 3

ϕ 7→ DωΩ[ϕ](z) ∈ R;

• given a multi-index α = (α1, . . . , αd) ∈ Nd we indicate as ∂α the normalized

differential operator
1

α1! . . . αn!

∂

∂xα1
1 . . . ∂xαdd

.

2.1.1 Integral formulation

Define Aε(ω) as
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2. Higher-order terms in a small volume expansion

C 3 ω 7→ Aε(ω) =

I/2−KωΩ −SωD

DωΩ SωD

 ,

meaning that for any fixed ω ∈ C,Aε(ω) is the operator which takes φ ∈ L2(∂Ω), ψ ∈

L2(∂D) to (I/2−KωΩ)[φ]− SωD[ψ]

DωΩ[φ] + SωD[ψ]

 ∈
L2(∂Ω)
×

L2(∂D).

By expanding the fundamental solution in Taylor series in ε, one can show that Aε
has the same characteristic values as the operator

∑∞
n=0 ε

nHn (the series converges

in operator norm), where

H0 =

I/2−KωΩ −Γω(x, z)
´
∂B
�(y) dσ(y)

DωΩ[�](z) S̃ωB

 ,

Hn =

 0 (−1)n+1
∑
|α|=n(∂αΓω)(x, z)

´
∂B
yα � (y) dσ(y)

∑
|α|=n(∂αDωΩ[�])(z)xα Xn

 ,

with

Xn =


ωn

2n+1n!π

ˆ
∂B

log(ηn
2
ωε|x− y|)|x− y|n � (y) dσ(y) n even,

0 n odd,

S̃ωB =
1

2π

ˆ
∂B

log(η0ωε|x− y|) � (y) dσ(y). (2.6)

A study of the properties of Aε can be found in [14, Chapter 1 and Section

3.1]). In the next proposition we collect only the properties which will be used in

the following discussion. Recall that ω ∈ C is a characteristic value of Aε if the

null-space of Aε(ω) contains some non-zero function.

Proposition 2.1. The following results hold:

(i) ω 7→ Aε(ω) is analytic on C \ (−∞, 0) and ω 7→ Aε(ω)−1 is meromorphic in

C;

(ii) ωθ is a characteristic value of I/2−KωΩ and a simple pole of (I/2−KωΩ)−1;

(iii) (ωε,j)j=1,...,mθ
are characteristic values of Aε;
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2.1. Preliminaries

(iv) There is an open neighbourhood V (which we fix for the rest of the chapter) of

ωθ such that ωε,j ∈ V for j = 1, . . . ,mθ, and no other characteristic values of

Aε are in V .

Consider now the power sum polynomials

pl =

mθ∑
j=1

(ωε,j − ωθ)l.

By properties of symmetric polynomials we can express ωε,1 − ωθ, . . . , ωε,mθ − ωθ

as roots of a polynomial zmθ + c1z
mθ−1 + · · · + cmθ , where the coefficients ck are

themselves polynomials in pj; in particular, the coefficients ck can be recovered from

the recurrence relations

pl+mθ + c1pl+mθ−1 + · · ·+ cmθpl for l = 0, . . . ,mθ − 1.

Example 2.2. If mθ = 1, we have

ωε,1 − ωθ = p1,

while if mθ = 2, then

ωε,2 − ωθ =
p1 +

√
2p2 − p2

1

2
, ωε,1 − ωθ =

p1 −
√

2p2 − p2
1

2
.

Hence, we have reduced the problem of finding an asymptotic expansion of ω2
ε,j−

ω2
θ to finding an asymptotic expansion of pl. Before computing the explicit terms in

the expansion of pl we recall some crucial concepts from Gohberg-Sigal theory.

If A is a finite range operator on a Banach space, its trace trA can be defined

as the trace of A restricted to the finite dimensional space where A is non zero. In

the next proposition we recall some properties of the trace which will be extensively

used in the subsequent computations.

Proposition 2.3. The following results hold:

(i) Suppose A1, A2, A3, A4 are finite dimensional operators on a Banach space.

Then

tr

A1 A2

A3 A4

 = trA1 + trA4.

(ii) Suppose B,C are operator valued maps defined on U , a neighborhood of a

common singularity ν ∈ C. If B,C are analytic in U \ ν and have only finite
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2. Higher-order terms in a small volume expansion

dimensional operators in the negative terms of their Laurent expansion in ν,

then
´
∂U
B(ω)C(ω) dω is finite dimensional and

tr

˛
∂U

B(ω)C(ω) dω = tr

˛
∂U

C(ω)B(ω) dω.

(iii) If Pω is a projection from L2 to C and fω ∈ L2, then

tr

˛
∂V

fωPω dω =

˛
∂V

Pω[fω] dω.

An application of the argument principle for operator valued maps (Theorem 1.4)

leads to the following crucial representation.

Theorem 2.4. We can rewrite pl as

pl = tr

˛
∂V

(ω − ωθ)lH0(ω)−1∂ωH0(ω) dω

+ l
∞∑
n=1

εn
n∑
j=1

(−1)j

j
tr

˛
∂V

(ω − ωθ)l−1

 ∑
n1+···+nj=n

ni∈Z+

j∏
k=1

H0(ω)−1Hnk(ω)

 dω.

The previous expression can be obtained by following the same algebraic manip-

ulations as those in the proof of [14, Theorem 3.9].

2.2 Computations for explicit formulae

First we highlight the quantities playing a key role in the expansion of pl in the

following definition.

Definition 2.5. Let α, β be multi-indices in N2. The generalized capacity of B of

order (α, β), at frequency ω is

cα,β(ω) = −
ˆ
∂B

(S̃ωB)−1[ξα](y) yβ dσ(y),

where S̃ωB is defined in (2.6). We also introduce

t(ω) =
Uθ(z) · DωΩ[Uθ](z)

ω + ωθ
, r(ω) =

∞∑
j=1
j 6=θ

Uj(z) · DωΩ[Uj](z)

ω2 − ω2
j

, (2.7)

where Uj is the vector of eigenfunctions associated to ω2
j , as defined in (2.2).

In the subsequent discussion, we will often indicate the generalized capacity of

order (α, 0) as cα instead of cα,0.
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2.2. Computations for explicit formulae

Remark 2.6. We collect some useful properties of the quantities introduced in the

previous definition:

(i) The generalized capacity of order zero can be rewritten as

c0(ω) = −
ˆ
∂B

(S̃ωB)−1[1] = − 2π

log(η0ωε cap ∂B)
.

(ii) It holds cα,β = 0 if |α|+ |β| is odd. This is a consequence of the fact that ϕ is

even/odd if and only if S0
B[ϕ] is even/odd (as functions parametrized on ∂B).

(iii) Although the series defining r in (2.7) does not converge absolutely, Weyl’s law

(which states that ω2
j ∼ j) and the oscillatory nature of the eigenfunctions of

Ω evaluated at z suggest that the series converges conditionally.

(iv) By exploiting the spectral expansion of the Neumann function (2.5), we have

that

DωΩ[Nω
Ω(·, z)](z) =

t(ω)

ω − ωθ
+ r(ω). (2.8)

In the subsequent calculations, this identity will enable us to rewrite the ex-

pansion in Theorem 2.4 in terms of t(ωθ) and r(ωθ).

(v) By Green’s identity and the defining property of Γωθ and Uθ, we can compute

the special value

t(ωθ) =
|Uθ(z)|2

2ωθ
. (2.9)

2.2.1 Zero-order term

Lemma 2.7. The zero-order term in the expansion in powers of ε of pl is(
t(ωθ)

1/c0(ωθ)− r(ωθ)

)l
. (2.10)

Proof. By Theorem 2.4, our problem reduces to compute explicitly

tr

˛
∂V

(ω − ωθ)lH0(ω)−1∂ωH0(ω) dω.

To make further computations clearer and more concise, we rename

A = I/2−KωΩ[�](x), Γ = Γω(x, z),

N = Nω
Ω(x, z), D = DωΩ[�](z),

s = ω − ωθ.

(2.11)
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2. Higher-order terms in a small volume expansion

The characteristic values of H0 are the ω ∈ C for which there exist φ ∈ L2(Ω), ψ ∈

L2(B), at least one of them non-zero, such that
Aφ− Γ

´
∂B
ψ = 0,

Dφ+ S̃ωBψ = 0.

By recalling from (2.3) that S̃ωB is invertible, applying (S̃ωB)−1 and integrating the

second equation of the system, we obtain
ˆ
∂B

ψ = c0Dφ.

Substituting this back into the first equation, we have that the characteristic values

of the system correspond to the characteristic values of the operator

H = A− c0ΓD.

Therefore, the coefficient we are looking for will be given by

E = tr

˛
∂V

slH−1H ′ dω,

where ′ denotes differentiation with respect to ω. A straightforward calculation

shows that

H−1 = (I − c0ND)−1A−1 =
∞∑
m=0

(c0ND)mA−1,

(where the m exponent indicates m times the composition of c0ND) and

H ′ = A′ − Γ′c0D − Γ(c0D)′.

Then

H−1H ′ = A−1A′ +
∞∑
m=1

(c0ND)mA−1A′ − (c0ND)m−1A−1Γ′c0D − (c0ND)m−1N(c0D)′.

Since A is analytic in V , A−1 has a simple pole at ωθ, and we are only interested in

the case l ≥ 1. Hence, we have
˛
∂V

slA−1A′ = 0.

Then, by Item iii of Proposition 2.3,

E =
∞∑
m=1

tr

˛
∂V

sl
(
(c0ND)mA−1A′ −Nm−1(c0D)mA−1Γ′ −Nm(c0D)m−1(c0D)′

)
=

∞∑
m=1

˛
∂V

sl
(
cm0 (DN)m−1DA−1A′A−1Γ− cm0 (DN)m−1DA−1Γ′ − (c0DN)m−1(c0D)′N

)
.
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Since (A−1)′ = −A−1A′A−1, by applying multiple times the chain rule, we arrive at

E = −
∞∑
m=1

1

m

˛
∂V

sl ((c0DN)m)′ .

Then, by an integration by parts followed by a binomial expansion of (DN)m, we

have that

E =
∞∑
m=1

l

m

˛
∂V

sl−1(c0DN)m

=
∞∑
m=1

l

m

˛
∂V

sl−1cm0

( t
s

+ r
)m

(2.12)

=
∞∑
m=1

l

m

m∑
k=0

(
m

k

) ˛
∂V

1

sk−l+1
cm0 t

krm−k.

Since the only pole in V of the integrand is ωθ, by applying the residue theorem we

can cancel each addend of the sum on k except the one corresponding to a pole of

order 1, obtaining

E = lt(ωθ)
lr(ωθ)

−l
∞∑
m=l

1

m

(
m

l

)
(c0(ωθ)r(ωθ))

m.

A final application of the identity

∞∑
m=l

1

m

(
m

l

)
xm =

1

l

(
x

1− x

)l
,

leads to (2.10).

2.2.2 First-order term

Lemma 2.8. The coefficient of the ε term in the expansion of pl is zero.

Proof. With the notation introduced in (2.11),

H1 =
∑
|α|=1

 0 (∂αΓ)
´
∂B
yα�

(∂αD)xα 0

 .

By applying the blockwise inversion formula,W X

Y Z


−1

=

 (W −XZ−1Y )−1 −W−1X(Z − YW−1X)−1

−Z−1Y (W −XZ−1Y )−1 (Z − YW−1X)−1

 ,
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2. Higher-order terms in a small volume expansion

to calculate H−1
0 , and rewriting the inverses of sums of operators in a Neumann

series, we obtain

H−1
0 =

 (Nc0D)mA−1 N
´
∂B

(−(S̃ωB)−1[1]DN
´
∂B

)m(S̃ωB)−1

−(S̃ωB)−1[1]D(Nc0D)mA−1 (−(S̃ωB)−1[1]DN
´
∂B

)m(S̃ωB)−1

 .

A straightforward computation leads to

H−1
0 H1 =

∞∑
m=0

∑
|α|=1

cα(...) (...)

(...) −(S̃ωB)−1[1](...)
´
∂B
yα�

 ,

where we omit most of the terms by writing (...) instead. They indeed do not count

towards our calculations, since from the fact that cα = 0 for |α| = 1, we have that

the coefficient of ε is

tr

˛
∂V

sl−1H−1
0 H1 = tr

˛
∂V

sl−1
(
(H−1

0 H1)11 + (H−1
0 H1)22

)
= cα(. . . ) = 0.

2.2.3 On higher-order terms

In this subsection we propose a method to calculate explicitly any coefficient of the

expansion of pl. To the shorthand notation introduced in (2.11) we add a = DN ,

S = S̃ωB, φ = −S−1[1]. Then, we can rewrite

H−1
0 =

 A−1 N
´
∂B
S−1

φDA−1 S−1

+
∞∑
m=1

Ncm0 a
m−1DA−1 N(c0a)m

´
∂B
S−1

φ(c0a)mDA−1 φcm−1
0 am

´
∂B
S−1

 ,

and

Hn =
∑
|α|=n

 0 (−1)n+1(∂αΓ)
´
∂B
yα � (y) dσ(y)

(∂αD)xα Xn

 .

An explicit computation leads to

−H−1
0 Hn =

∑
|α|=n

Ncα∂αD (−1)nA−1∂αΓ
´
∂B
yα � −N

´
∂B
S−1Xn

cα∂
αD (−1)nφDA−1∂αΓ

´
∂B
yα � −S−1Xn



+
∞∑
m=1

N(c0a)mcα∂
αD (−1)nNcm0 a

m−1DA−1(∂αΓ)
´
∂B
yα � −N(c0a)m

´
∂B
S−1Xn

φcm−1
0 amcα∂

αD (−1)nφ(c0a)mDA−1(∂αΓ)
´
∂B
yα � −φcm−1

0 am
´
∂B
S−1Xn

 .
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Since all elements of the matrix are one-dimensional projection operators on either

N , φ or 1, the operator −H−1
0 Hn has the same characteristic values of the projection

operator on 1 given by

∑
|α|=n

cα(∂αD)N (−1)n
´
∂B
yαA−1∂αΓ−

´
∂B
S−1XnN

cα(∂αD)[1] (−1)nc0,αDA
−1∂αΓ− S−1Xn[1]



+
∞∑
m=1

(c0a)mcα(∂αD)N (−1)ncm0 a
m−1DA−1(∂αΓ)

´
∂B
yαN − (c0a)m

´
∂B
S−1XnN

cm−1
0 amcα(∂αD)φ (−1)n(c0a)mDA−1(∂αΓ)c0,α − cm−1

0 am
´
∂B
S−1Xnφ

 .

(2.13)

Suppose that the elements of the matrices in (2.13) can be rewritten explicitly in

terms of sums of powers of the singularity s. The same approach used to derive the

zero-order term in the previous section could then be applied to compute explicitly

tr

˛
∂V

sl−1H−1
0 Hn1 . . .H−1

0 Hnj .

Substituting this value back in the expression for pl in Theorem 2.4, we could com-

pute, for example with the aid of a computer algebra system, any of the coefficients

of the expansion in ε.

However, the task of rewriting explicitly the singularity s in (2.13) for α ≥ 1 is

not trivial, as identities similar to (2.4) and (2.8), but involving the terms (∂αD)N ,

A−1∂αΓ and S−1XnN would need to be determined.

2.3 Results for special cases

We collect in this final section some interesting results which follow directly, or with

minor algebraic manipulations, from Lemmas 2.7, 2.8, and Example 2.2.

Proposition 2.9. Suppose that ωθ is simple.

(i) We have

ωε,1 − ωθ =
t(ωθ)

1/c0 − r(ωθ)
+O(ε2),

where, recalling Definition 2.5 and (2.9),

1/c0 = − log(η0ωθε cap ∂B)

2π
, t(ωθ) =

|Uθ(z)|2

2ωθ
, r(ωθ) =

∞∑
j=1
j 6=θ

Uj(z) · DωθΩ [Uj](z)

ω2
θ − ω2

j

;
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2. Higher-order terms in a small volume expansion

(ii) For ε small enough, we can deduce that ωε,1 ≥ ωθ.

Proposition 2.10. If ωθ has double multiplicity then

ωε,2 − ωθ =
t(ωθ)

1/c0 − r(ωθ)
+O(ε2),

ωε,1 − ωθ = O(ε2).

We notice that by considering an expansion in powers of 1/ log(ε), we obtain

t(ωθ)

1/c0 − r(ωθ)
+O(ε2) = − 1

log ε

π|Uθ(z)|2

ωθ
+O

(
1

log(ε)2

)
.

In particular, substituting 2ωθ ' ωε + ωθ gives back (2.1).

We also notice that if z is on a nodal set of Uθ (i.e. uθ,1, . . . , uθ,mθ are all zero at

z) then t(ωθ) = 0, and thus in both the cases of a simple or a double eigenvalue, the

splitting order will be O(ε2).

Numerical validation for a disk domain and a disk inclusion

Let Ω be the unit disk and let ω2
θ be its first non-zero eigenvalue. It is known that ωθ

is given by the first root of the derivative of the Bessel function J1 and has double

multiplicity. Suppose that also the rescaled inclusion B is a unit disk.

In Figure 2.1, we compare results obtained through the multipole expansion

method with the ε2 error given by the formula for ωε,1−ωθ. The multipole expansion

is implemented by setting two polar coordinate systems, one centered in the center

of Ω and one in z, and exploiting Graf’s summation formula for Bessel functions to

rewrite the eigenvalue problem as a root search for the determinant of the coordinate

transformation matrix.

In Figures 2.2 and 2.3, we compare asymptotic formulae for ωε,2−ωθ with results

obtained with the multipole expansion method. The asymptotic formula is imple-

mented numerically by truncating at a finite value the series in the definition of r(ωθ)

in (2.7), and approximating the boundary layer integrals in r(ωθ) by quadrature.

We remark that the improved resolution of the inclusion size and position opens

the possibility of the development of accurate inclusion reconstruction algorithms

using the asymptotic formulae from Propositions 2.9 and 2.10. Of particular interest,

also in applications, would be the development of an efficient reconstruction method

for locating and characterizing small inclusions based only on the knowledge of

eigenvalues shift. The implementation of such a method and its applications are

studied in Chapter 5.
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Figure 2.1: A log2-log2 plot of ωε,1 − ωθ as the size of the inclusion varies and the

center is fixed (at |z| = .5).

Figure 2.2: A log2-log2 plot of the shift ωε,2 − ωθ as the size of the inclusion varies

and its center remains constant (left at |z| = .3, right at |z| = .8).

Figure 2.3: A plot of the shift ωε,2 − ωθ as the distance from the origin of the

center of the inclusion varies and its size remains constant (left at ε = 10−2, right

at ε = 10−4).
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Chapter 3

Arbitrarily small domain

perturbations which split the

spectrum of the Laplacian

In the seminal works [79] and [96], respectively Micheletti and Uhlenbeck showed

that the eigenvalues of the Dirichlet Laplacian are generically simple in the space

of smooth manifolds equipped with the Ck-topology (for subsequent works see also

[80], the survey papers [33, Section 4.3], [52, Section 1.3] and references therein). In

this chapter, we prove that a localized version of this result holds as follows, even

for non-smooth domains.

Theorem 3.1. For any Lipschitz domain Ω and for any open set U whose intersec-

tion with Ω is not empty, there exists a domain Ω̃ whose symmetric difference with

Ω is contained in U and whose Dirichlet/Neumann/Robin Laplacian eigenvalues are

all simple. Moreover if U ∩ ∂Ω is not empty, then Ω̃ can be taken to be bi-Lipschitz

homeomorphic to Ω.

More in detail, the structure of the chapter is the following. In Section 3.1,

we review some preliminary material, in particular regarding spectral stability. In

Section 3.2, we recall a Hadamard’s formula and study independence properties of

some expressions involving eigenfunctions and their gradients at the boundary. More

specifically, Hadamard’s formula provides us with a first-order estimate on the shift

of an eigenvalue λ, and which depends on the quantity

|∇u|2 − hu2 (3.1)
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3.1. Preliminaries

at the boundary of the domain considered, where u is an eigenfunction associated

to λ and h is a function which depends on the choice of boundary conditions. By

showing that for two orthogonal eigenfunctions, the corresponding values of (3.1)

must differ at least at a point, we are able to construct a localized perturbation

which splits any non-simple eigenvalue. However, even when small, this perturba-

tion might cause the shift and the overlap of other eigenvalues. This possibility is

ruled out in Section 3.3, where uniform bounds for the whole spectrum are adap-

ted to our case from sharp stability estimates from [32]. These bounds allow the

construction of a localized perturbation, which consists in a sequence of successive

smaller “bumps” at the boundary of a part cut out from Ω, which proves the first

statement of Theorem 3.1. We prove its second statement in Section 3.4, where we

use an additional result from [81] which allows us to deform appropriately directly

the boundary of ∂Ω, without requiring any topological change of Ω.

We remark that under homogeneous Dirichlet boundary conditions, the splitting

of an eigenvalue by the application of Holmgren’s uniqueness Theorem and Hadam-

ard’s formula is a well-known technique (see for instance [57, Lemma 2.5.9]); also in

the case of homogeneous Robin boundary conditions with a never-vanishing imped-

ance coefficient the arguments of [81] can be easily adapted for the same purpose

(see the proof of Proposition 3.10). Thus, our efforts will be devoted mainly to the

analysis of the novel cases of homogeneous Neumann boundary conditions and of

localized domain perturbations.

3.1 Preliminaries

We collect here some definitions which will be used extensively in the chapter.

(i) We say that λ is an eigenvalue of a domain Ω with associated eigenfunction u

if

∆u+ λu = 0 (3.2)

in Ω, u is not constant zero, and either one of the following homogeneous

boundary conditions is satisfied on ∂Ω:
u = 0 (Dirichlet),

αu+
∂u

∂ν
= 0 (Neumann/Robin),

(3.3)
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3. Small domain perturbations which split the spectrum

where α is a constant (α = 0 for the Neumann condition, α > 0 for the Robin

condition), and ν indicates the outward unit normal vector.

(ii) We say that (φt)t∈[0,t0) is a deformation if φt is a diffeomorphism of RN , φt

is analytic in t, and |φt − I|C2(RN ) ≤ Ct for a certain constant C, for every

t ∈ [0, t0). We say that (φt)t is localized in U if φt is the identity outside U for

all t.

We actually require (3.2) and (3.3) to be satisfied only in a weak sense, that

is: λ is an eigenvalue of Ω with associated eigenfunction u, if u is an element of a

function space V (Ω) and

QΩ(u, v) = λ

ˆ
Ω

uv, for every v ∈ V (Ω),

where, depending on the choice of boundary conditions, we define

Boundary conditions QΩ(u, v) V (Ω)

Dirichlet
´

Ω
∇u · ∇v H1

0(Ω)

Neumann/Robin
´

Ω
∇u · ∇v +

´
∂Ω
αuv H1(Ω)

(3.4)

where H1 is the space of square integrable functions with square integrable distribu-

tional gradient and H1
0 its subspace of trace zero functions. However, from elliptic

regularity theory, we know that Laplacian eigenfunctions are analytic inside any

open domain; thus (3.2) is satisfied also in the classical sense. Moreover, if Σ is

a smooth part of ∂Ω, u is also smooth on Σ (see for example [41, Section 6.3] for

proofs of these facts).

Recall that from spectral theory, the eigenvalues of Ω have finite multiplicity and

can be arranged in a non-decreasing sequence which tends to infinity, and which we

will denote as

0 ≤ λ1 ≤ λ2 ≤ . . . ,

where each eigenvalue is repeated as many times as its multiplicity.

For future reference, we record the following uniqueness result.

Theorem 3.2. Let u be such that ∆u + λu = 0 in Ω. If u = 0 and ∂u/∂ν = 0 on

Σ, an open and smooth subset of ∂Ω, then u is identically zero in the whole Ω.

We briefly outline the classic argument to prove this fact from Holmgren’s unique-

ness theorem. Let B be an open ball such that B ∩ ∂Ω ⊆ Σ. Extending u to 0 in
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3.1. Preliminaries

B \ Ω, it is easy to check that −∆u = λu in the distributional sense in B. By [60,

Theorem 5.3.1], u must be zero also in an open set inside Ω. But then u = 0 on the

whole Ω by analytic continuation.

3.1.1 Stability of eigenvalues of the Laplacian

In this section, we review some results that show that the spectrum of the Lapla-

cian is continuous under domain perturbations, and give some useful quantitative

estimates on the eigenvalues’ shifts.

We recall a result of analyticity of eigenvalues and eigenfunctions with respect

to a perturbation parameter, which is a consequence of the classic Rellich-Nagy

Theorem [90, Theorem 1 at p. 33] (see also [33, Section 4.2] and references therein).

Theorem 3.3. Let (φt)t be a deformation and let λ be an eigenvalue of Ω of mul-

tiplicity m. Then, there exist λ1
t ≤ · · · ≤ λmt and functions u1

t , . . . , u
m
t such that for

j = 1, . . . ,m,

(i) for any t, λjt is an eigenvalue of φt(Ω) with associated eigenfunction ujt ;

(ii) for any t,
´
φt(Ω)

uitu
j
t is 1 if i = j and is 0 for every i 6= j;

(iii) λjt and ujt are analytic in t;

(iv) λj0 = λ and uj0 is an eigenfunction associated to λ.

Moreover, for any δ > 0 small enough, there is a T such that for any t < T the only

eigenvalues of φt(Ω) in (λ− δ, λ+ δ) are λ1
t , . . . , λ

m
t .

For our purposes, we will also need a finer estimate on the variation of eigenval-

ues, as expressed in the following lemma.

Lemma 3.4. Let φ be a diffeomorphism of RN , let λn be the n-th eigenvalue of

Ω and λ̃n be the n-th eigenvalue of φ(Ω). Then there exists a constant C, which

depends only on the Lipschitz constant of ∂Ω, such that

|λ̃n − λn| ≤ C max{λ̃n, λn}(|φ− I|C1(RN )).

The proof of this estimate can be obtained by repeating the same argument

from the proof of [32, Lemma 6.1], only substituting appropriately the bilinear form

and the function space with the ones defined in (3.4), depending on the boundary

conditions considered.
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3. Small domain perturbations which split the spectrum

3.2 Hadamard’s formula and boundary proper-

ties of eigenfunctions

In this section, we study some independence properties of Laplacian eigenfunctions

and of their gradients at the boundary. We first recall a Hadamard’s formula for

the variation of eigenvalues under a deformation. The dot superscript will indicate

differentiation in t.

Lemma 3.5. Let (φt)t be a deformation. Let λt, ut be an eigenvalue-eigenfunction

pair of φt(Ω), and suppose both are differentiable in t. Then

λ̇0 =

ˆ
∂Ω

(
|∇u|2 − λu2 + (∂u/ν0)(Hu− 2∂u/ν0)

)
ν0 · ė0, (3.5)

where λ = λ0, u = u0, νt indicates the outward unit normal vector, et the identity

on φt(∂Ω), and H the mean curvature of ∂Ω.

Hereafter, we briefly prove this fact in the case of Dirichlet or Neumann boundary

conditions. The case of Robin conditions requires a finer analysis of the dependence

on t of the surfaces φt(∂Ω), for which we refer to [51, Identity (9)] or [28, Identities

(69) and (57)].

Proof. Let Ωt = φt(Ω) for every t. By the divergence theorem, the distributional

gradient of the measure 1ΩtLN is given by νtΣ
N−1
t , where 1Ωt is the characteristic

function of Ωt, LN is the N -dimensional Lebesgue measure, and ΣN−1
t is the surface

measure on ∂Ωt. Therefore, by the chain rule,

d

dt
(1Ωt LN) = νt · ėt ΣN−1

t ,

so we have the following Leibniz’ formula:

d

dt

(ˆ
Ωt

ft

)
=

ˆ
Ωt

ḟt +

ˆ
∂Ωt

ftνt · ėt. (3.6)

Consider now the identity

λt = −
ˆ

Ωt

ut∆ut =

ˆ
Ωt

|∇ut|2. (3.7)

Differentiating in t the first equality in (3.7) and using (3.6), we obtain

2λt

ˆ
Ωt

u̇tut = −λt
ˆ
∂Ωt

u2
tνt · ėt. (3.8)
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3.2. Hadamard’s formula and boundary properties of eigenfunctions

In the case of Neumann boundary conditions, differentiating in t the last term in

(3.7), using (3.6), integrating by parts, and substituting (3.8), we have that

λ̇t =

ˆ
∂Ωt

(|∇ut|2 − λtu2
t )νt · ėt + 2

ˆ
∂Ωt

u̇t
∂ut
∂νt

,

which gives (3.5) since ∂u0/∂ν0 = 0 on ∂Ω0. Proceeding in the same way for Dirichlet

boundary conditions, only exchanging the roles of the functions in the integration

by parts step, we obtain

λ̇t =

ˆ
∂Ωt

(|∇ut|2 − λtu2
t )νt · ėt + 2

ˆ
∂Ωt

ut
∂u̇t
∂νt

+ 2λ̇t,

which gives (3.5), since u0 = 0 on ∂Ω0.

We notice that considering

h =


0 if u = 0 on ∂Ω,

λ+ αH + 2α2 if αu+ ∂u/ν = 0 on ∂Ω,

(3.9)

the integrand in parentheses in (3.5) can be rewritten as |∇u|2−hu2. In the following

lemma we study such a quantity, in particular the behavior of its zeros.

Lemma 3.6. Let E be a smooth domain and let S be a connected component of its

boundary. Let u and v be two orthonormal eigenfunctions of E, associated to the

same eigenvalue λ. Let H be the mean curvature of S and let h be as in (3.9). Then,

under Dirichlet or Neumann boundary conditions, neither of the quantities

|∇u|2 − hu2, (3.10)

|∇u|2 − hu2 − (|∇v|2 − hv2), (3.11)

can be identically zero on S. The same statement holds in the case of Robin bound-

ary conditions under the additional requirement that the mean curvature satisfies

−αH < α2 + λ.

Proof. Suppose that (3.10) is zero on S. If the Dirichlet condition holds, then

∂u/∂ν = u = 0 on S. Thus, by Theorem 3.2 we have that u = 0 in E, which is a

contradiction.

If the Neumann condition holds, then from the assumption that (3.10) is zero,

we have

|∇Su|2 = λu2, (3.12)
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3. Small domain perturbations which split the spectrum

where ∇S is the surface gradient on S. By Theorem 3.2, the eigenfunction u cannot

be constant zero on S, so there exists a point x0 ∈ S such that u(x0) 6= 0. The

approach we follow hereafter is inspired by [58, Chapter 6]. Let γ : (−∞,+∞)→ S

be a solution of the Cauchy problemγ0 = x0,

γ̇t = (∇Su)(γt).

Existence and uniqueness of such a γ for every t is guaranteed by standard results

in the theory of ordinary differential equations on surfaces, since by assumption S

is a compact, maximally connected, smooth hypersurface and ∇u is smooth on S.

Then, by the chain rule and (3.12), we have the differential equation

du(γt)

dt
= |∇Su|2(γt) = λu(γt)

2, (3.13)

which is solved, once imposed the initial condition u0 = u(γ0), by

u(γt) =
1

1/u0 − λt
.

But this would lead to the blow up of u for t → 1/(λu0), which contradicts the

boundedness of u on S.

If the Robin condition holds, with the same reasoning we can obtain (3.13) only

with λ substituted by h − α2. By the assumption on the mean curvature, we have

that h − α2 > 0, and therefore du(γt)/dt ≥ cu(γt)
2 for some positive constant c.

Thus u would need to blow up in finite time, which is impossible.

The proof that (3.11) is not constant zero on S employs similar considerations.

Suppose that (3.11) is zero on S. In the case the Dirichlet condition holds, this

implies that (∂u/ν)2 = (∂v/ν0)2. Then Theorem 3.2 implies that u = ±v in E.

This contradicts the orthogonality assumption of u and v.

In the case the Neumann condition holds, the assumption that (3.11) is zero

implies that

|∇Su|2 − |∇Sv|2 = λ(u2 − v2) on S. (3.14)

By Theorem 3.2 and continuity of u, v, there exists a point x0 ∈ S such that u(x0)

and v(x0) are different and non-zero. By eventually switching them or changing the

sign of u, v, we can suppose that u(x0) > v(x0) > 0. Let k = u(x0) + v(x0) > 0 and

let γ : (−∞,∞)→ S be a solution ofγ0 = x0,

γ̇t = (∇Su+∇Sv)(γt).
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3.3. Splitting by a perturbation of the boundary of a hole

Let ft = u(γt), gt = v(γt). Then, by the chain rule, it holds

d(ft + gt)

dt
= |∇Su+∇Sv|2(γt) ≥ 0, (3.15)

so ft + gt > k for every t > 0. Then

d(ft − gt)
dt

= (|∇Su|2 − |∇Sv|2)(γt) = λ(ft − gt)(ft + gt) ≥ λk(ft − gt), (3.16)

which, since f0 − g0 > 0, would lead to ft − gt → ∞ as t → ∞, which contradicts

the boundedness of u and v.

If the Robin condition holds, then by reasoning as before, we obtain the same

chain of equalities as in (3.16) only with λ substituted by h− α2, that is

d(ft − gt)
dt

= (h− α2)(ft − gt)(ft + gt).

Since ft+gt > k ≥ 0 for t > 0 by (3.15), and the mean curvature bound assumption

−αH < α2 + λ implies that h− α2 > 0, then there exists a positive constant c such

that
d(ft − gt)

dt
≥ c(ft − gt),

which, since f0 − g0 > 0, would lead again to the unboundedness of ft − gt =

u(γt)− v(γt) as t→∞, which is impossible.

3.3 Splitting by a perturbation of the boundary

of a hole

In this section, we cut a circular hole inside Ω and deform its boundary to split the

spectrum of the perturbed domain. We start by constructing a deformation of Ω

minus a part which splits a single eigenvalue as follows.

Proposition 3.7. Let G be a smooth domain whose closure is contained in Ω. Let λ

be an eigenvalue of Ω \G of multiplicity m. In the case of Robin conditions suppose

that H, the mean curvature of ∂G, satisfies αH < α2 + λ. Then for any open set U

containing G, and any choice of different indices i, j among 1, . . . ,m, there exists a

deformation (φt)t localized in U such that (with the notation of Theorem 3.3 with Ω

replaced by Ω \G) the eigenvalues λ1
t , . . . , λ

m
t of φt(Ω \G) are such that λit 6= λjt for

all t ∈ (0, t0).

38



3. Small domain perturbations which split the spectrum

Proof. Let h be as in (3.9) and let S = ∂G. Let u1
t , . . . , u

m
t be the eigenfunctions

associated to the eigenvalues λ1
t , . . . , λ

m
t as in Theorem 3.3. By Lemma 3.6, there

exists y on S such that

(|∇ui0|2 − h(ui0)2)(y) 6= (|∇uj0|2 − h(uj0)2)(y). (3.17)

Then, by choosing a deformation (φt)t which is the identity outside an appropriately

small neighborhood of y, we have

ˆ
S

(|∇ui0|2 − h(ui0)2) ν · φ̇0 6=
ˆ
S

(|∇uj0|2 − h(uj0)2) ν · φ̇0. (3.18)

Such a deformation can be constructed in many ways (for the sake of completeness,

we give an explicit example hereafter). By Lemma 3.5, (3.18) implies that λ̇i0 6= λ̇j0.

Since λit and λjt are both analytic in t, we conclude that there exists t0 such that

λit 6= λjt for t ∈ (0, t0).

We show how to build a deformation such that (3.18) holds. Let ψ be a diffeo-

morphism so that

ψ(B1 ∩ {xN < 0}) = V ∩ Ω,

whereB1 is the unit ball and V a small neighborhood of y. Let ẑ indicate (z1, . . . , zN−1)

and let

ρc(ẑ) =


c3

8
exp

(
1

|ẑ/c|2 − 1

)
if |ẑ| < c,

0 otherwise.

Notice that by construction |ρc|C2(RN−1) ≤ c for any c ≤ 1. Let ϕt(z) be the extension

of the map z 7→ (ẑ, tρc(ẑ)) from {xN = 0} to a diffeomorphism which is the identity

outside B1 and such that |ϕt − I|C2(RN ) ≤ ct. Let φt = ψ ◦ ϕt ◦ ψ−1. Then by taking

c ≤ |ψ|C2|ψ−1|C2 , we have

|φt − I|C2 ≤ t. (3.19)

By eventually considering a smaller c, the continuity of u on S together with (3.17)

imply that (3.18) holds.

Although Proposition 3.7 shows how to split an eigenvalue, the perturbation

chosen might cause two other eigenvalues to overlap, creating a new repeated one.

To avoid this potential issue, we need a finer control on the behavior of the whole

spectrum. This is what is achieved in the following lemma.
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3.3. Splitting by a perturbation of the boundary of a hole

Lemma 3.8. Let G be a smooth domain whose closure is contained in Ω. We

indicate as λ1 ≤ λ2 ≤ . . . the eigenvalues of Ω \ G, and as r the first index such

that λr has multiplicity m ≥ 2. In the case of Robin conditions, suppose that H,

the mean curvature of G, satisfies αH < α2 + λ. Then, for any open set U which

contains G and any ε > 0, there exists (φt)t a deformation localized in U such that,

indicating as λt1 ≤ λt2 ≤ . . . the eigenvalues of φt(Ω \G), for all t ≤ t0 we have that

(i) for all i ≤ r +m+ 1 it holds

|λti − λi| ≤ εdr,

where dr is the minimum positive number of {λj+1 − λj : j = 1, . . . , r +m} ;

(ii) the multiplicity of λtr is strictly smaller than the multiplicity of λr;

(iii) for all i > r +m, it holds λti > λr.

Proof. Let (φt)t be a deformation as given by Proposition 3.7. Let ut1, u
t
2, . . . be the

eigenfunctions of Ω \ G associated respectively to λt1, λ
t
2, . . . . By Theorem 3.3, we

can assume that λti, u
t
i are analytic in t, that λ0

i = λi, and that u0
r, . . . , u

0
r+m is an

orthonormal basis for the eigenspace of λr. Then, there are two distinct indices i

and j among {r, . . . , r +m}, such that for t0 small enough,

λti 6= λtj, for t ∈ (0, t0]. (3.20)

By the eigenvalue stability estimate of Lemma 3.4, there is a t0 small enough such

that

|λti − λi| ≤ εdr, ∀t ≤ t0,∀i ∈ {1, . . . , r +m+ 1} . (3.21)

Let C,C ′ indicate two constants which depend only on the dimensionN , the Lipschitz

constant of ∂(Ω \ G) and the area of Ω. By Weyl’s asymptotic law, λn = Cn2/N +

o(n2/N) for any n. Then, from the uniform estimate of Lemma 3.4, it follows that,

for i > r +m,

λti − λr ≥ (λti − λi) + λi − λr ≥ C ′(−Cci2/N + i2/N − r2/N),

where c > 0 is a bound on the deformation magnitude which we can make arbitrarily

small by taking a smaller t0. Therefore, for t0 and c small enough,

λti − λr > 0, ∀t ≤ t0,∀i > r +m. (3.22)

In conclusion, Items i-ii-iii are consequences of (3.21)-(3.20)-(3.22).
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3. Small domain perturbations which split the spectrum

The construction in the previous proof gives us a method to split the first non-

simple eigenvalue without altering the simplicity of smaller eigenvalues. In fact, by

taking ε < 1/2, from Items i and iii of Lemma 3.8, we have that the eigenvalues λti

perturbed from λi:

• lie in disjoint neighborhoods of λi, for i < r;

• are not further than dr/2 from λi, for r ≤ i ≤ r +m;

• are larger than λr, for i > r +m.

We can iterate this procedure to split the whole spectrum as in the following proof.

Some additional care must be taken in the case of Robin boundary conditions.

Proof of the first statement of Theorem 3.1. Let G0 be a ball of radius R contained

in U . We consider the following recursive construction: let Gn = φntn(Gn−1) where

the deformation φnt is the one obtained by Lemma 3.8 with G, ε substituted re-

spectively by Gn−1, εn. By choosing εn small enough at each step, we have that

∂Gn → ∂E in C2-norm, where E is a smooth domain contained in U . In the

case of Robin boundary conditions, notice that the mean curvature H0 of G0 is

−(N − 1)/R and satisfies αH0 < α2 + λ for any eigenvalue λ > 0, since we assumed

α ≥ 0. Moreover, by eventually choosing a smaller εn for each n, thanks to (3.19)

we can assume the mean curvature of Gn is still negative, so that the assumptions

of Lemma 3.8 hold at every step for any boundary condition. Let Ω̃ = Ω \ E.

Let rn be the index of the first non-simple eigenvalue of Ω \Gn. By Items i and

iii of Lemma 3.8 we have that all eigenvalues with index smaller than rn are simple

for every n. Moreover, (rn)n is a non-decreasing sequence of integers which can not

be definitely constant; in fact by Item ii of Lemma 3.8, rn+j can be equal to rn for

at most j ∈ {1, . . . , rn}. Therefore, rn → ∞ as n → ∞, and thus Ω̃ can have only

simple eigenvalues.

We remark that our previous construction involves cutting out a part of Ω which

causes Ω̃ to be not homeomorphic to Ω. However, this can be avoided by deforming

appropriately the boundary of Ω, instead of the boundary of the hole, as shown in

the following section.
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3.4 Splitting by a perturbation of the boundary

In this section, we show how to deform directly a part of the boundary of Ω to split

its spectrum.

Let U be an arbitrary open set whose intersection with ∂Ω is non-empty. By

eventually applying a bi-Lipschitz transformation which modifies Ω only in U , we

can assume, and will do so, that there is an open set V ⊆ U such that Σ = V ∩ ∂Ω

is contained in a hyperplane.

We recall now a result proved in [81, Lemma 6 and calculations leading to (20)],

which relies on the explicit computation of the Fréchet derivative of the bilinear

form Qψ(Ω) with respect to ψ and on properties of Fredholm operators.

Lemma 3.9. Let (φt)t be a deformation localized in V . Under the same notation of

Theorem 3.3, if for every t ≤ t0 we have that λ1
t = · · · = λmt , then the matrix with

element ˆ
Σ

(∇uk0 · ∇ul0)φt · ν − αfuk0ul0 ν · ∇φtν (3.23)

in position (k, l), where f is a positive continuous function, is a multiple of the

identity matrix for every t ≤ t0.

With the aid of the previous lemma, we can construct a deformation which splits

a single eigenvalue as follows.

Proposition 3.10. Let λ be an eigenvalue of Ω of multiplicity m ≥ 2. Then, with

the notation of Theorem 3.3, there are two indices i, j and there exists a deformation

(φt)t localized in V such that λiε 6= λjε for a certain ε < t0.

Proof. In the case of Dirichlet conditions, the construction is the same as the one

considered in Section 3.3, only with the deformation applied directly to the boundary

of ∂Ω. In fact, in this case the existence of a point y ∈ Σ such that (3.17) holds

is guaranteed directly by Theorem 3.2. Then the claim in the conclusion can be

obtained by constructing a deformation in a small neighborhood of y exactly as in

Proposition 3.7.

In the case of Neumann conditions, if there exists a point y ∈ Σ such that (3.17)

holds, we can again build a local deformation of the boundary which fulfils our

thesis. If instead

|∇uk0|2 − λ(uk0)2 = |∇ul0|2 − λ(ul0)2 (3.24)
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3. Small domain perturbations which split the spectrum

on Σ for every k, l, we show that we can find anyway indices i, j and a deformation

(φt)t such that λiε 6= λjε for some ε. In fact, if we suppose by contradiction that this

is not the case, then by taking ν · ∇φtν = 0 and by the arbitrariness of φt · ν in

(3.23), Lemma 3.9 would lead to |∇uk|2 = |∇ul|2 on Σ for every k, l. If λ = 0 then

it has already multiplicity 1. If λ 6= 0 then (3.24) would become (uk0)2 = (ul0)2 on

Σ, which by Theorem 3.2 would lead to uk0 = ±ul0 in Ω, which is a contradiction.

The case of Robin boundary conditions can be proven from Lemma 3.9 alone.

If there was no deformation (φt)t localized in V which splits the eigenvalue λ, by

choosing φt ·ν = 0 and ν ·∇φtν arbitrarily, making use of Lemma 3.9 we would have

uk0u
l
0 = 0 for k 6= l, (uk0)2 = (ul0)2 for every k, l,

which would lead to uk0 = −α(∂uk0/∂ν) = 0 on Σ, which is prohibited by The-

orem 3.2.

Finally we can easily adapt the arguments from Section 3.3 to construct a local-

ized boundary perturbation which splits the spectrum.

Proof of the second statement of Theorem 3.1. Let (Bn)n be a sequence of mutually

disjoint balls contained in V such that Bn ∩ ∂Ω is non-empty for every n. By

Proposition 3.10 and by the same reasoning as in the proof of Lemma 3.8, we can

build a deformation φ1
t localized in B1 such that for a certain t = t1, Items i-ii-iii of

Lemma 3.8 hold. Letting Ω1 = φ1
t1

(Ω), we can repeat again the same construction

to build a deformation φ2
t localized in B2 and obtain a new domain Ω2 = φ2

t2
(Ω1).

Iterating this construction, we obtain a sequence of domains Ωn which coincide with

Ω outside V and whose boundaries converge in C1-norm inside V . The limit domain

is thus bi-Lipschitz equivalent to Ω and, by the same concluding argument of the

proof of the first statement of Theorem 3.1, has a simple spectrum.
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Chapter 4

Extending asymptotic formulae

from simple to repeated

eigenvalues

Many asymptotic formulae for the shift of eigenvalues of elliptic differential operators

caused by small singular perturbations have been obtained in the case of multipli-

city one (see for instance [77, Chapter 9], [14] and references therein, [86], [87], [47]).

The generalization of such expressions to higher multiplicities often requires non-

trivial calculations and is restricted to specific cases (see for example [76], [22], [57,

Theorem 2.5.8]). Moreover, such an effort is usually considered unnecessary due to

genericity results of simple eigenvalues (see [79], [80], [96], [95]). Nonetheless, higher

multiplicities appear in many natural situations; for instance the Laplacian has non-

simple spectrum whenever the domain presents some symmetries. In this chapter,

we derive a new tool to study the behaviour and properties of repeated eigenvalues

for general types of perturbations. Namely, the main result is a variational charac-

terization (Theorem 4.7) which allows the direct extension of asymptotic formulae

which are valid for simple eigenvalues to non-simple ones. We then apply this result

to study different domain perturbations of interest in applications.

The chapter is organized as follows. In Section 4.1.1, we recall some results

regarding the spectral stability and generic simplicity for second-order elliptic oper-

ators. In Section 4.2, we derive the main variational characterization by a technique

which involves a double perturbation at asymptotically different speeds. Finally in

Section 4.3, we consider some domain perturbations of particular interest in applic-
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ations: grounded inclusions, conductivity inclusions, and boundary deformations.

We show how the general variational asymptotic formula applies in each of these

cases and derive new interesting properties for the Dirichlet and Neumann Laplacian

eigenvalues. We refer to Section 4.3.4 for a more specific summary of the results

obtained for these two cases.

4.1 Preliminaries

We briefly recall three types of convergence of domains. We say that Ωε converges

to Ω as ε→ 0 in:

• Hausdorff distance, if dH(Ωε,Ω)→ 0, where

dH(A,B) = max{sup
a∈A

inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|};

• measure, if |Ωε M Ω| → 0, where M indicates symmetric difference and | · | the

Lebesgue measure;

• Ck-topology, if there is a family (φε)ε of functions in Ck(Rd,Rd) such that

Ω + φε(Ω) = Ωε and |φε|Ck
ε→0−−→ 0. (4.1)

We collect hereafter some relationships between these types of convergence which

are relevant to us. Ck-convergence implies Hausdorff convergence, since if (4.1)

holds then dH(Ωε,Ω) ≤ |φε(Ω)|C0
ε→0−−→ 0. If the sets considered have Lipschitz and

connected boundaries, Hausdorff convergence implies measure convergence, since

in this case |Ωε M Ω| ≤ dH(Ωε,Ω) min {|Ωε|, |Ω|}. Although the converse result

fails in general, if the converging sequence’s boundaries have uniformly bounded

Lipschitz constants, then, by a local patching argument, it can be easily shown that

also measure convergence implies Hausdorff convergence. Therefore, although we

will state all our results referring to Hausdorff convergence, they can be adapted to

other types of convergence whenever the domains under consideration have enough

regularity.
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4. Extending asymptotic formulae from simple to repeated eigenvalues

4.1.1 Stability and simplicity of the spectrum of second-

order elliptic operators

Let L(Ω) be a second-order, self-adjoint, elliptic differential operator defined on Ω

and let a be its associated coercive, continuous, and bounded bilinear form. We say

that λ is an eigenvalue of L(Ω) with associated eigenfunction u ∈ V (Ω) if

a(u, v) = λ

ˆ
Ω

uv, ∀v ∈ V,

where V (Ω) = H1
0(Ω) in the case of homogeneous Dirichlet boundary conditions,

or V (Ω) = H1(Ω)/R in the case of homogeneous Neumann boundary conditions.

From standard results in spectral theory, we know that the eigenvalues of an elliptic

operator defined on a Lipschitz domain have finite multiplicity and can be arranged

in a non-decreasing sequence. We also assume that the associated eigenfunctions are

orthonormal in L2(Ω). With these conventions, we can state the following stability

result.

Theorem 4.1. For every ε > 0, let L be an elliptic operator and let ρε be a smooth

function with support contained in Ω such that its C2-norm is smaller than ε. For

any n ∈ N, let λ be the n-th eigenvalue of L and λε be the n-th eigenvalue of L+ ρε,

and let uε be an associated eigenfunction. Then there exists a constant C such that

for every ε small enough

|λε − λ| ≤ Cε,

and there exists u, an eigenfunction of λ, such that

|uε − u|H1(Ω) ≤ Cε.

The proof is a consequence of standard results in perturbation theory (see for

instance [90, Theorem 1 at p.57]). We are interested not only in stability with

respect to smooth perturbations of coefficients but also in singular perturbations of

domains. In particular, we will need the following result.

Theorem 4.2. Let Ω and Ωε be two Lipschitz domains whose Hausdorff distance

one from another is ε. Let L(Ω) and L(Ωε) be second-order elliptic operators with

homogeneous Dirichlet or Neumann boundary conditions imposed on ∂Ω and ∂Ωε.

Let M be an upper bound to the Lipschitz constants of ∂Ω and ∂Ωε, and to the

coercivity, continuity and boundedness constants of a. For any n ∈ N, let λ be the
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4.1. Preliminaries

n-th eigenvalue of L(Ω) and λε be the n-th eigenvalue of L(Ωε). Then there exists a

constant C which depends only on M , n, and the dimension d such that

|λε − λ| ≤ Cε. (4.2)

A proof of this result can be obtained as a consequence of the theory of transition

operators and its applications (see [33] for a survey of this technique). In what

follows, we outline another approach which relies on stability results for boundary

value problems.

Outline of the proof. We adapt the argument in [69, Section 4.4] to our case. Let

E be an arbitrary Lipschitz domain containing Ωε ∪ Ω and consider uε extended to

the whole E. Let u be the orthogonal projection of uε from V (E) onto V (Ω). Let

u be the unique solution in V (Ω) of

a(u, v) = λ

ˆ
uv, ∀v ∈ V (Ω).

From [93, Inequality (3.2)], we have that

|u− u|H1(E) ≤ C|λu|L2(E)|λu|V (E)′dH(Ω,Ωε),

where C is a constant which depends only on the Lipschitz constant of Ω, and the

constants involved in the continuity, boundedness and coercivity assumptions on a.

Since |u|V (E)′ ≤ |u|L2(E), and by Weyl’s law, there is a constant C̃ which depends

only on the area of Ω and the dimension d such that λ ≤ C̃nd/2. Then, it follows

that

|u− u|H1(E) ≤ CC̃n2/d|u|2L2(E)dH(Ω,Ωε).

Hence, by (4.31) and Lemma 14 of [69], we obtain estimate (4.2).

The following result concerning stability of eigenfunctions is a particular case of

[43, Theorem 1.2 and subsequent discussion].

Theorem 4.3. Let Ωε be a family of Lipschitz domains converging to Ω in Hausdorff

distance as ε→ 0. Suppose that at least one of the following hypotheses holds:

• Ωε ⊆ Ω for every ε;

• the Lipschitz constants of ∂Ωε are uniformly bounded.
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4. Extending asymptotic formulae from simple to repeated eigenvalues

Let λ and λε be as in the hypothesis of Theorem 4.2 and let uε,1, . . . , uε,m be an or-

thonormal basis of the eigenspace of λε. Then there exists u1, . . . , um an orthonormal

basis of λ such that as ε→ 0 it holds

uε,j → uj in H1(Ω), ∀j ∈ {1, . . . ,m} .

We move on to the issue of genericity of simple eigenvalues.

Theorem 4.4. For every ε > 0 and every open set U ⊆ Ω there exists a smooth

function ρ with support contained in U such that its C2-norm is smaller than ε and

L+ ρ has simple spectrum.

This result is an immediate consequence of [96, Theorem 7]. We remark that in

Chapter 3 we proved genericity of simple eigenvalues by domain deformation, instead

of coefficient perturbations. The results which follow could indeed be proved using

only domain deformations, but the arguments would require some more attention

due to the variation of the underlying domain.

4.2 Variational asymptotic formula

Recall that the eigenvalues and eigenfunctions of L can be characterized respectively

as minima and minimizers of a quadratic functional F . More explicitly, if we indicate

as λ1 ≤ λ2 ≤ . . . the eigenvalues of L and u1, u2, . . . some associated orthonormal

eigenfunctions, we have that for Fu = 〈Lu, u〉V it holds

un ∈ argim
u∈Un

Fu, λn = Fun, (4.3)

where Un =
{
u ∈ V : u ⊥ {u1, . . . , un−1} , |u|V = 1

}
. However, there is an

ambiguity in the choice of eigenfunctions which is particularly relevant to us: if λn =

· · · = λn+m, any choice of orthonormal eigenfunctions in the linear space spanned by

{un, . . . , un+m} is still a basis of the eigenspace. Our variational characterization will

select the right basis for the problem considered up to a predetermined asymptotic

error. More precisely, we make the following assumptions.

Assumption 4.5. We suppose that there is a family of self-adjoint, elliptic, second-

order differential operators Lε which converges spectrally to L as ε→ 0, that is the

n-th eigenvalue of Lε and any of its associated eigenfunctions converge respectively

to the n-th eigenvalue of L and to a function in its eigenspace. Moreover, we suppose
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4.2. Variational asymptotic formula

that there exists an open set on which the differential operators L and Lε coincide

for every ε.

Assumption 4.6. We suppose that we already know an asymptotic expansion for

simple eigenvalues. In particular, we assume that if λ is a simple eigenvalue of L

with associated eigenfunction u, and if λε is an eigenvalue of Lε which converges to

λ as ε→ 0, then

λε − λ = f(ε, u) + r(ε),

where f is a known function and by r(ε) we indicate a function which is of order

o(f(ε, u)) as ε→ 0. We also require f to be continuous.

Under these assumptions, we can derive the following result.

Theorem 4.7 (Variational characterization). Let λ be an eigenvalue of L of multi-

plicity m, and let λε,1 ≤ · · · ≤ λε,m be the eigenvalues of Lε which converge to λ as

ε→ 0. Then, for any j ∈ {1, . . . ,m}, it holds

λε,j − λ = f(ε, vj) + r(ε),

where

vj ∈ argim
v∈Uλ,j

f(ε, v), Uλ,j =
{
v ∈ V : Lv = λv, v ⊥ {v1, . . . , vj−1} , |v|V = 1

}
.

(4.4)

Proof. Step 1. By Assumption 4.5, there exists an open ball B ⊆ Rd on which

L ≡ Lε. For every δ > 0, by Theorem 4.4 there exists ρδ ∈ C∞c (B) such that

|ρδ|C2 < δ and L+ ρδ has simple spectrum. Let λδ,1 < · · · < λδ,m be the eigenvalues

of L + ρδ which converge to λ as δ → 0, and let vδ,1, . . . , vδ,m be the associated

eigenfunctions. Let λε,δ,j be the eigenvalues of Lε + ρδ which converge to λδ,j as

ε → 0. By standard elliptic estimates (Theorem 4.1), we have that there is a

constant C such that |λδ,j − λ| ≤ Cδ, |λε,δ,j − λε,j| ≤ Cδ and vδ,j → vj as δ → 0,

where vj is a certain function in the eigenspace of λ. For every ε > 0, let us now

choose the parameter δ as a function of ε, small enough so that δ(ε) = r(ε). Then,

by the continuity of f , we have

λε,j − λ = (λε,j − λε,δ(ε),j) + (λε,δ(ε),j − λδ(ε),j) + (λδ(ε),j − λ) = f(ε, vj) + r(ε). (4.5)

Step 2. To retrieve the variational characterization of vj, recall that we assumed

the ordering λε,1 ≤ · · · ≤ λε,m for every ε. Therefore, for λε,1 to be the smallest
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4. Extending asymptotic formulae from simple to repeated eigenvalues

eigenvalue, v1 must be a minimizer of the right hand side of (4.5) among all eigen-

functions of λ of norm 1. Notice that if vε,j → vj for every j, then v1, . . . , vm must

be linearly independent (since by assumption the multiplicity of λ is m). Therefore,

v2 must be the minimizer of the right hand side of (4.5) among all eigenfunctions

orthonormal to v1. Repeating the same reasoning for λε,3, . . . , λε,m, we have that

(4.4) must hold for every j.

4.2.1 Asymptotic formulae involving a bilinear function

It is useful to consider more carefully the case where the expression in the asymptotic

formula admits a separation of variables as

f(ε, u) = E(ε)b(u, u), (4.6)

with b : V × V → R being a symmetric bilinear form. This happens for many

useful types of domain perturbations (see Section 4.3). The advantage of this case

is twofold: the minimizer of (4.4) is unique and can be easily computed as follows.

Choosing u1, . . . , um an arbitrary orthonormal basis of the eigenspace of λ, condition

(4.4) can be rewritten as

vn = E(ε) argim
{
a ·Ba : a ∈ Rm, |a| = 1, a1u1 + · · ·+ amum ⊥ {v1, . . . , vn−1}

}
,

(4.7)

where B is a symmetric matrix with elements

Bj
i = b(ui, uj). (4.8)

Then, by diagonalizing B, we obtain the following result.

Corollary 4.8. If f can be rewritten as in (4.6), then the minimum and minimizer

of (4.4) are respectively the n-th eigenvalue of B and a1,nu1 + · · · + am,num, where

(a1,n, . . . , am,n) is the normalized eigenfunction of B associated to its n-th eigenvalue.

Notice that if the bilinear form b has the further decomposition

b(ui, uj) = l(ui)l(uj) ∀i, j, (4.9)

where l : V → R is linear, an easy computation shows that the first m−1 eigenvalues

of B are zero and the m-th one is l(u1)2 + · · · + l(um)2. Therefore, we have the

following result.
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Corollary 4.9. If the bilinear form b can be rewritten as in (4.9), then

λε,n − λ =


E(ε)

m∑
n=1

l(un)2 + r(ε) if n = m,

r(ε) if n < m.

Moreover, the eigenfunction in the eigenspace of λ to which the eigenfunction of

λε,m converges is given by ∑m
n=1 l(un)un√∑m
n=1 l(un)2

.

4.3 Applications to eigenvalues of the Laplacian

In this section we consider some domain perturbations of particular interest in ap-

plications, and derive explicit asymptotic formulae for repeated eigenvalues of the

Laplacian. Different numerical experiments are provided to validate these formulae.

4.3.1 Perturbation by a grounded inclusion

Let B be a Lipschitz domain in Rd with connected boundary, with volume |B| = |Ω|,

and centered at the origin in the sense that
´
∂B
y1 dσ(y1, y2) =

´
∂B
y2 dσ(y1, y2) = 0.

Fix a point z ∈ Ω and consider a scaling coefficient ε > 0. Suppose then that the

domain Ω is perturbed into Ωε = Ω \D, by inserting an inclusion D = z + εB and

requiring homogeneous Dirichlet conditions to hold on ∂D.

Let λ be an eigenvalue of Ω with associated eigenfunction u. Then λε is an

eigenvalue of Ωε perturbed from λ with associated eigenfunction uε if λε → λ as

ε→ 0 and

∆u+ λu = 0 in Ω,

u = 0 or ∂u/∂ν = 0 on ∂Ω,


∆uε + λεuε = 0 in Ω \D,

uε = 0 on ∂D,

uε = 0 or ∂uε/ν = 0 on ∂Ω.

In [14, Chapter 3], the leading-order term for the perturbation of a simple eigen-

value is obtained in the case of dimensions 2 and 3. However, these computations

can be repeated exactly in the same way for d ≥ 4, and the resulting asymptotic

formula can be restated as follows.
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Lemma 4.10. Given λ a simple eigenvalue of Ω with associated eigenfunction u,

and λε the eigenvalue of Ωε perturbed from λ, then

λε − λ =
u(z)2

Γ0(ε)
+ o (1/Γ0(ε)) . (4.10)

We seek to apply the variational characterization of Theorem 4.7 to our case.

Assumption 4.5 holds thanks to Theorems 4.2 and 4.3, and the fact the perturbation

considered is restricted to a small part of the domain. Although the expression in

(4.10) is not continuous under L2 convergence of u, we can easily rewrite it so that

Assumption 4.6 holds. In fact, supposing un → u in L2, we can exploit the regularity

properties of solutions to elliptic equations to rewrite

un(z)2 + o (1/Γ0(ε)) =

ˆ
Brε

u2
n −−−→

n→∞

ˆ
Brε

u2 = u(z)2 + o (1/Γ0(ε)) , (4.11)

where Brε is a small enough ball centered at z. By Corollary 4.9, we immediately

obtain the following result.

Proposition 4.11. Let λ be an eigenvalue of multiplicity m of the negative Lapla-

cian on Ω and u1, . . . , um some associated eigenfunctions orthonormal in L2(Ω).

Then, the largest perturbed eigenvalue behaves like

λε,m − λ =

∑
j uj(z)2

Γ0(ε)
+ o (1/Γ0(ε)) , (4.12)

while all the other eigenvalues behave like

λε,n − λ = o(1/Γ0(ε)), for n < m.

Remark 4.12. We collect some interesting consequences of Proposition 4.11.

(i) For ε small enough, the largest perturbed eigenvalue λε,m will always be simple

as long as at least one of the eigenfunctions u1, . . . , um is not zero in z.

(ii) The eigenfunction associated to λε,m converges to

u1(z)u1 + · · ·+ um(z)um√
u1(z)2 + · · ·+ um(z)2

.

(iii) It can be shown that in two dimensions the higher-order terms in formula

(4.10) can be further computed as

λε − λ =
u(z)2

log(ε) +R(z)
+O

(
ε2
)
, (4.13)
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where R is a function of z which does not depend on u (see Proposition 2.9).

Therefore, from Corollary 4.9, we have the better approximation

λε,n − λ =


|U(z)|2

log(ε) +R(z)
+O

(
ε2
)

if n = m,

O (ε2) if n < m.

Example 4.13. Let Ω be the unit square (0, 1)2 and consider the Dirichlet eigenvalue

λ = 50π2 with associated orthonormal eigenfunctions u1, u2, u3 defined as
u1(x, y) = 2 sin(πx) sin(7πy),

u2(x, y) = 2 sin(7πx) sin(πy),

u3(x, y) = 2 sin(5πx) sin(5πy).

Since for any point z in Ω there is at least one eigenfunction which is non-zero at z,

the insertion at z of a small grounded inclusion will cause an eigenvalue bifurcation

of λ. In particular, one perturbed eigenvalue will shift from λ as 1/ log(ε) while the

other two will shift like O(ε2). The result of a numerical simulation is presented in

Figure 4.1.
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103ϵ
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λϵ,3-λ

Figure 4.1: A log2-log2 plot of the behaviour of an eigenvalue bifurcation from 50π2

as the size coefficient ε of the inclusion decreases. The original domain is the unit

square (0, 1)2 and the inclusion is a disk of radius ε centered at (1/4, 1/4).

4.3.2 Perturbation by a conductivity inclusion

In this section, we consider a perturbation of Ω obtained by the insertion of a small

inclusion with a conductivity coefficient different from the background.

Let B, z, ε,D be defined as in Section 4.3.1. Suppose that −∆ is perturbed into

−∆ε by inserting inside Ω a small inclusion D of conductivity k. This causes the
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eigenvalue λ to split into m (possibly distinct) eigenvalues λε,1 ≤ · · · ≤ λε,m such

that the following system holds:

(∆ + λε,n)uε,n = 0 in Ω \D,

(k∆ + λε,n)uε,n = 0 in D,

uε,n continuous along ∂D,

∂uε,n
∂ν

∣∣∣
+

= k
∂uε,n
∂ν

∣∣∣
−

on ∂D,

uε,n = 0 or ∂uε,n/∂ν = 0 on ∂Ω,

(4.14)

where n = 1, . . . ,m and uε,n are eigenfunctions associated to λε,n.

It has been shown in [19] that if λ is a simple eigenvalue with associated eigen-

function u, and λε is a perturbation of λ, then

λε − λ = εd〈∇u(z),∇u(z)〉M +O(εd+1),

where 〈x, y〉M = x ·M(k,B)y for any x, y ∈ Rd, and M(k,B) is a d × d matrix

known as polarization tensor, which can be defined by

(M(k,B))i,j =

ˆ
∂B

(
k + 1

2(k − 1)
I − (K0

B)∗
)−1

(νj)yi dσ(y).

Therefore, in this case Corollary 4.8 specifies to the following result.

Proposition 4.14. Let λ be an eigenvalue of multiplicity m of −∆ and let u1, . . . , um

be some associated eigenfunctions orthonormal in L2(Ω). Let λε,1 ≤ · · · ≤ λε,m be

the eigenvalues perturbed from λ which are solutions to (4.14). Then, for every

n ∈ {1, . . . ,m}, the O(εd+1) approximation of λε,n − λ is given by the n-th eigen-

value of the matrix with element

εd〈∇ui(z),∇uj(z)〉M

in position (i, j).

Remark 4.15. We consider some extremal cases of Proposition 4.14 that are of par-

ticular interest.

(i) If 〈∇ui(z),∇uj(z)〉M = 0 for all i 6= j, then it is enough to reorder u1, . . . , um

according to the magnitude of 〈∇u1(z),∇u1(z)〉M , . . . , 〈∇um(z),∇um(z)〉M , to

obtain that for any n it holds

λε,n − λ = εd〈∇un(z),∇un(z)〉M +O(εd+1).
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We also remark that if the multiplicity m is larger than the dimension d, only

d vectors can be linearly independent, and thus we will have that λε,n − λ =

O(εd+1) for n ≤ m− d.

(ii) If ∇ui(z),∇uj(z) are parallel with respect to 〈·, ·〉M , then, by Corollary 4.9,

we will have

λε,n − λ =


εd
∑m

n=1〈∇un(z),∇un(z)〉M +O
(
εd+1

)
if n = m,

O
(
εd+1

)
if n < m.

Example 4.16. Let Ω be the unit square (0, 1)2 and consider the Neumann eigenvalue

λ = 100π2 with associated eigenfunctions u1, u2, u3, u4 defined as

u1(x, y) =
√

2 cos(10πy),

u2(x, y) =
√

2 cos(10πx),

u3(x, y) = 2 cos(6πx) cos(8πy),

u4(x, y) = 2 cos(8πx) cos(6πy).

Let B be the disk of radius 1/π2 centered at 0. In this case, it can be explicitly

computed that M(k,B) = 2(k−1)I/(π2(k+1)). We can easily determine, reasoning

as in Remark 4.15, whether the first term in the asymptotic expansion of λε,n−λ is

zero; such behaviour will depend on the choice of z. For example:

• for z = (1/2, 1/2), it holds ∇un(z) = 0 for any n, and therefore λε,n − λ =

O(ε3);

• for z = (1/3, 1/2), ∇u1(z) = ∇u3(z) = 0 while ∇u2(z),∇u4(z) are all parallel

and non-zero, thus from Item ii of Remark 4.15 we have λε,n − λ = O(ε3) for

n = 1, 2, 3 while λε,4 − λ = Θ(ε2);

• for z = (1/7, 1/7) computations of the gradient of the eigenfunctions at z show

that λε,n − λ = O(ε3) for n = 1, 2 and λε,n − λ = Θ(ε2) for n = 3, 4;

• by Item i of Remark 4.15 there is no z ∈ Ω such that λε,n − λ = Θ(ε2) for

more than two different indices n.
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Example 4.17. Let Ω be the unit square (0, 1)2 and consider the Neumann eigenvalue

λ = 4π2 with associated eigenfunctions u1, u2 defined asu1(x, y) =
√

2 cos(2πy),

u2(x, y) =
√

2 cos(2πx).

Let B be the disk of radius 1/π2 centered at 0. Recall that in this case we have

M(k,B) = 2(k−1)I/(π2(k+1)). Although the first term in the asymptotic formula

for λε,n − λ can be easily computed in this case, here we focus our attention only

on the asymptotic order. We can easily determine, reasoning as in Remark 4.15,

whether the first term in the asymptotic expansion of λε,n−λ is zero; such behaviour

will depend on the choice of z. For example:

• for z = (1/2, 1/2), we have that both eigenfunctions u1, u2 have zero gradient

at 0, and thus both eigenvalues shift from λ as O(ε3);

• for z = (1/4, 1/2), one of the eigenfunctions has zero gradient while the other

has a non-zero entry, thus one eigenvalue shift behaves like ε2, the other like

O(ε3);

• for z = (1/4, 1/4), the gradients of the two eigenfunctions are orthogonal and

non-zero, thus both eigenvalues shift from λ as ε2.

Numerical results are presented in Figure 4.2.
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Figure 4.2: A log2-log2 plot of the behaviour of an eigenvalue bifurcation as the size

coefficient ε of the conductivity inclusion decreases. The original domain is the unit

square (0, 1)2, the inclusion a disk of conductivity k = 2, centered respectively at

(1/2, 1/2) (left graph), at (1/4, 1/2) (center graph), at (1/4, 1/4) (right graph).
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4.3. Applications to eigenvalues of the Laplacian

4.3.3 Perturbation by boundary deformation

In this section, we consider Ωε obtained from Ω by a boundary deformation. For

simplicity, we suppose that Ω is globally the epigraph of a Lipschitz function ϕ, that

is Ω =
{
x ∈ Rd : ϕ(x) ≤ 0

}
. Given w ∈ C2(∂Ω), we also suppose that the boundary

perturbation is such that Ωε = {x ∈ Rd : ϕ(x) + εw(x)ν(x) ≤ 0}. Recall that if

λ is a simple eigenvalue of Ω with associated eigenfunction u, and λε → λ, then

Hadamard’s formula reads

∂λε
∂ε

∣∣∣
ε=0

=

ˆ
∂Ω

(
|∇u|2 − λu2 − 2(∂u/∂ν)2

)
w, (4.15)

for Dirichlet or Neumann conditions on ∂Ω (for its proof see [28] or [51]). There-

fore, if λ has multiplicity m, an application of Theorem 4.7 provides us with the

variational formula

λε,n − λ = ε argim
v∈Sn

ˆ
∂Ω

(
|∇v|2 − λv2 − 2(∂v/∂ν)2

)
w +O(ε2). (4.16)

Example 4.18. Let Ω = (0, 1)2 and consider the Dirichlet eigenvalue λ = 10π2

with associated orthonormal eigenfunctions u1(x, y) = 2 sin(πx) sin(3πy), u2(x, y) =

2 sin(3πx) sin(πy). Suppose that the boundary of Ω is perturbed on the upper

side of the square Ω with w(x, y) = sin(πx), that is ∂Ω ∩ {y = 1} is deformed

into {(x, y) : 0 ≤ x ≤ 1, y = 1 + ε sin(πx)}. In this case, the integral in (4.15) is

analytically computable as

−
ˆ
∂Ω

(a1∂u1/∂ν + a2∂u2/∂ν)2w =
16π

35
(−105a2

1 + 14a1a2 − 9a2
2).

Thus, by (4.16), we can calculate explicitly

uε,1 → c1u1 + c2u2, λε,1 − λ = C1ε+O(ε2),

uε,2 → c2u1 − c1u2, λε,2 − λ = C2ε+O(ε2),
(4.17)

where c1 ' 0.997, c2 ' −0.0724, C1 ' −152, C2 ' −12.2. Numerical results are

presented in Figures 4.3 and 4.4.

Notice that in general, minimizing the expression in (4.16) is a computationally

expensive task. However, we can still obtain some cheaper, qualitative information

if we approximate to a more treatable form the considered domain perturbation.

We showcase such an heuristic in the following example, where a local perturbation

is “singularized” to obtain an asymptotic formula easier to analyze.
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4. Extending asymptotic formulae from simple to repeated eigenvalues
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Figure 4.3: Behaviour of an eigenvalue bifurcation as the scaling parameter ε of the

boundary deformation decreases. The original domain is the unit square (0, 1)2 and

the boundary deformation is given by ε sin(πx)ν(x, 1) on the upper side.

Figure 4.4: Eigenfunctions associated to the eigenvalues perturbed from 10π2. The

perturbation consists in a boundary deformation ε sin(πx)ν(x, 1) of the upper side

for ε = 1/10. Numerical computations obtained with the finite element method of

the eigenfunctions are plotted in the left column, their limiting functions as ε → 0

in the two-dimensional eigenspace of 4π2 given by (4.17) in the right column.
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4.3. Applications to eigenvalues of the Laplacian

Example 4.19. Suppose a small dent is present on the surface ∂Ω at the point z,

shaped as a cone with circular base of radius δ and height ε. Let at first λ be a

simple Dirichlet eigenvalue with associated eigenfunction u. If we approximate

ˆ
∂Ω

(∂u/∂ν)2w ' δ2π(∂u(z)/∂ν)2,

then for eigenvalues low enough we can estimate

λε − λ ' −εδ2π(∂u(z)/∂ν)2. (4.18)

The right hand side in (4.18) is bilinear in u therefore, if we adopt such an approx-

imation for λε− λ, by Corollary 4.9 we have that for any non-simple eigenvalue the

largest perturbed eigenvalue will shift like O(ε) while all the smaller ones will shift

like O(ε2).

4.3.4 Summary of results

We summarize hereafter the main results obtained for each of the perturbations

considered. For this purpose, we recall that Ω indicates an arbitrary Lipschitz

domain in Rd, λ an eigenvalue of the negative (Dirichlet or Neumann) Laplacian on

Ω, u1, . . . , um an arbitrary orthonormal basis in L2(Ω) of the eigenspace of λ, and

λε,1 ≤ · · · ≤ λε,m the eigenvalues perturbed from λ.

• When a hole D of volume εd and centered at z is cut out from Ω and homo-

geneous Dirichlet boundary conditions are imposed on ∂D, we have

λε,m − λ = Cεd−1

m∑
i=1

ui(z)2 +O(εd),

λε,n − λ = O(εd) for n < m,

in the case where d ≥ 3 (see (4.13) for the case d = 2), where C is a constant

which depends only on the dimension d. Therefore, we have that the largest

eigenvalue splits at a higher asymptotic order than all the others eigenvalues,

as long as one among the quantities u1(z), . . . , um(z) is non-zero.

• In the case of a conductivity inclusion, we do not have such an explicit formula,

but we can still easily recover a first-order approximation by computing the

eigenvalues of a finite matrix. More precisely, if we suppose to change the
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4. Extending asymptotic formulae from simple to repeated eigenvalues

conductivity coefficient from 1 to k only in D, a small disk of radius ε centered

at a point z, then for any n ∈ {1, . . . ,m},

λε,n − λ = 2
k − 1

k + 1
εdµn +O(εd+1),

where µn is the n-th eigenvalue of the matrix with element ∇ui(z) · ∇uj(z) in

position (i, j).

• In the case of a normal boundary deformation of Ω with shape w ∈ C2(∂Ω),

that is the perturbed domain boundary is given locally by ∂Ω + εwν, to find

λε,n − λ for any n ∈ {1, . . . ,m}, one has to find the minimizer vn of

J(v) =

ˆ
∂Ω

(
|∇v|2 − λv2 − 2(∂v/∂ν)2

)
w,

among all v’s of unit L2-norm in the eigenspace of λ and perpendicular to

v1, . . . , vn−1. Then

λε,n − λ = εJ(vn).

As a final remark, let us point out that similar formulae can be derived for many

other types of domain perturbations or other differential operators. For example,

with the same approach of Section 4.3.3, it is immediate to generalize the asymptotic

expansion of eigenvalues in the case of shape deformation of conductivity inclusions

(see [3, Theorem 2.1]); or, with the same approach of Section 4.3.2, to generalize the

asymptotic formulae for eigenvalues of the Lamé operator in the context of linear

elasticity (see [4, Theorem 2.1]).
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Chapter 5

Reconstruction of small

perturbations from eigenvalues’

shifts

A foundational question in spectral geometry is whether the eigenvalues of a differen-

tial operator characterize the shape of the domain on which it is defined. Although

in general the answer is negative, in many special cases of interest the answer is

affirmative (for instance, a square is uniquely characterized by its first Dirichlet or

Neumann Laplacian eigenvalue). In this chapter we try to devise some practical

procedures to reconstruct a domain from its eigenvalues under some restricting as-

sumptions. More precisely, we suppose that our unknown domain is given by a small

perturbation from a known domain, that the perturbation is completely character-

ized by some parameters, and that we intend to estimate these parameters from the

knowledge of the eigenvalues of both the known and the unknown domain.

More formally, let Ω be a domain and let (λj)j∈N be the sequence of eigenvalues

of the negative Laplacian on Ω with Dirichlet or Neumann boundary conditions.

Consider the first N different eigenvalues of Ω,

λ1 = · · · = λM1 < λM1+1 = · · · = λM2 < · · · < λMn−1+1 = · · · = λMN
,

where Mj = m1 + · · · + mj and mj is the multiplicity of λj. Let uj indicate an

eigenfunction associated to λj, and suppose that u1, . . . , uMN
are orthonormal in

L2(Ω).

Suppose now that Ω is perturbed into another domain Ωε. We write down the
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5.1. Grounded inclusion

perturbed eigenvalues of Ωε as

λε,1 ≤ · · · ≤ λε,M1 < λε,M1+1 ≤ · · · ≤ λε,M2 < · · · < λε,Mn−1+1 ≤ · · · ≤ λε,MN
,

and suppose that the perturbation is small enough so that there is no eigenvalue

crossing, i.e., λε,j → λj as ε→ 0 for j = 1, . . . ,MN . In this chapter, we show how to

reconstruct some features of Ωε, via the asymptotic formulae derived in the previous

chapters, from the knowledge of Ω, of λ1, . . . , λN and of λε,1, . . . , λε,N . We consider

three types of domain perturbations: grounded inclusions, conductivity inclusions,

and boundary deformations.

5.1 Grounded inclusion

In this section we assume that the perturbation is caused by a grounded inclusion,

that is Ωε = Ω\D whereD = z+εB and homogeneous Dirichlet boundary conditions

are imposed on ∂D.

Direct problem. Let

Uj(z) =

(uMk−1+1(z), . . . , uMk
(z)) if j = Mk for some k,

0 otherwise.

(5.1)

From (4.13), we know that

λε,j − λj = c(B)
|Uj(z)|2

Γ0(ε)
+ o(1/Γ0(ε)), (5.2)

where

c(B) =

cap(∂B) d ≥ 3,

1 d = 2.

(5.3)

In two dimensions, this approximation is sometimes too poor for our purposes

due to the slow convergence to 0 of 1/ log(ε) as ε→ 0. In this case, we can use the

more accurate, although more computationally expensive, asymptotic expression

λε,j − λj =
|Uj(z)|2

Γ0(ε
√
λj cap(∂B)η0) + r(z)

+O(ε2), (5.4)

where r is defined in (2.7).
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5. Reconstruction of small perturbations from eigenvalues’ shifts

Inverse problem. Our inverse problem is to reconstruct ε, z and the capacity

cap(∂B) from the knowledge of λε,Mk
and λMk

for k = 1, . . . ,MN . We will proceed

in several steps, assuming the knowledge of some of these quantities to recover the

others.

Notice that in the case of an eigenvalue with multiplicity mk > 1, only the

largest perturbation is of order O(1/Γ0(ε)) while all the others are of higher order;

so only the eigenvalues λε,Mk
and λMk

will be used for the purposes of inclusion

reconstruction.

Size reconstruction. Assume at first that c(B) is known. If homogeneous Neu-

mann conditions are imposed on ∂Ω, an estimate on the size of the inclusion can

be obtained immediately from the first eigenvalue shift; in fact in this case we know

that λ1 = 0 is simple and u2
1 ≡ 1/|Ω|. Thus, from (5.2), we immediately have the

approximation

ε ' Γ−1
0

(
c(B)/(|Ω|λε,1)

)
. (5.5)

This estimate is sometimes not accurate enough, especially in two dimensions.

Let us assume that the position z is also known. Then we can obtain an improved

approximation by considering multiple eigenvalues and looking for a minimizer of

the discrepancy function (obtained from (5.2))

δ 7→
N∑
j=1

(
λε,j − λj − c(B)|Uj(z)|2/Γ0(δ)

)2
, (5.6)

or, in two dimensions, for a minimizer of

δ 7→
N∑
j=1

(
λε,j − λj −

|Uj(z)|2

Γ0(δ
√
λj cap(∂B)η0) +Rj(z)

)2

. (5.7)

We remark that both the last two approaches are viable also under homogeneous

Dirichlet boundary conditions on ∂Ω.

Example 5.1. Consider the case where Ω = B ⊆ R2 is the unit disk and Neumann

boundary conditions are imposed on ∂Ω. We want to reconstruct the size coefficient

ε from the knowledge of some eigenvalues’ shifts and the position z. A reconstruction

based only on the shift of the first eigenvalue through formula (5.5) is presented in

Figure 5.1. The values obtained from the asymptotic formulae are confronted with

the accurate estimates given by the multipole expansion method. A reconstruction
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5.1. Grounded inclusion

of ε via the minimization of (5.6) and (5.7), known the perturbation of the first

five eigenvalues, are presented respectivelty in Figures 5.2 and 5.3. Notice how

the reconstruction via the more computationally expensive formula (5.7) is more

accurate, especially when the center z of the perturbation is near the boundary of

Ω, compared to the reconstruction via (5.6) or (5.5).
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Figure 5.1: A log-log plot of ε as a function of λε,1 for different choices of z (from

left to right, |z| = .3, .6, .9).

-10 -9 -8 -7 -6 -5 -4 -3
Log2ϵ0

1

2

3

4

-10 -9 -8 -7 -6 -5 -4 -3
Log2ϵ0

1

2

3

4

-10 -9 -8 -7 -6 -5 -4 -3
Log2ϵ0

1

2

3

4

Discrepancy function

Actual size

Minimum of discrepancy function

Figure 5.2: A plot of the the discrepancy function (5.6) with N = 5 and |ε| = 2−6

for different choices of z (from left to right |z| = .3, .6, .9).

Position reconstruction. Suppose that the size ε and the capacity cap(∂B) are

known. A position estimate can be obtained by searching for a z which satisfies

(5.2). An important warning in this case is that there is no guarantee of uniqueness.

In fact, from a single eigenvalue shift one can obtain at most all the points which lie

on the same level set of |Uj|2. A possible solution to this problem would be to take

many eigenvalue shifts, thus restricting significantly the possible values which z can

take. More specifically, one hopes that the intersection of the level sets of different

eigenfunctions becomes a point if we consider enough eigenfunctions. Although
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Figure 5.3: A plot of the the discrepancy function (5.7) with N = 5 and |ε| = 2−6

for different choices of z (from left to right, |z| = .3, .6, .9).

this might be true for some non-symmetric domains, it is false for domains which

present some symmetries. However, as is shown in the following examples, we can

still recover some useful information even in the case of a symmetric domain.

Example 5.2 (Ball or spherical shell domain). Let Ω ⊆ Rd be a ball or a spherical shell

(that is the set difference of two concentric balls of different radii). In this case, the

Neumann eigenfunctions of Ω can be written by separation of variables as a product

of a radial and an angular part. Then, although we can not recover z univocally,

we can recover its distance from the origin |z| from the shift of the first non-zero

eigenvalue of Ω. In fact, the first non-zero Neumann eigenvalue of the ball has

associated eigenfunctions u2, . . . , ud+1 such that |U2(x)|2 = u2(x)2 + · · ·+ud+1(x)2 =

CR(|x|), where C is a constant and R a bijective function. Therefore, from (5.2)

we can recover a first-order approximation of |z|. Notice that the dependence on

only the distance from the center of the squared eigenfunction actually holds for any

eigenfunction, that is, for any j, a constant Cj and a function Rj can be found such

that |Uj(x)|2 = CjRj(|x|). Therefore, the knowledge of more eigenvalues’ shifts does

not give us any additional information on z. This can be seen also as an immediate

consequence of the fact that a ball with a hole at z is isometric to a ball with the

same hole at x for any |x| = |z|.

Example 5.3 (Cubic domain). Let Ω = (0, π)d be a d-dimensional cube. It is well

known that the Neumann eigenfunctions and eigenvalues of Ω are given respectively

by cos(n1x1) . . . cos(ndxd) and n2
1 + · · · + n2

d for n1, . . . , nd non-negative integers.

Therefore, if we know the shift of the first non-zero eigenvalue, that is 1, we can

recover from (5.2) the quantity f(z) = cos(z1)2 + · · ·+ cos(zd)
2. If we also know the
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5.1. Grounded inclusion

shift of the second non-zero eigenvalue, that is 4, we can recover g(z) = cos(2z1)2 +

· · · + cos(2zd)
2. It can be shown that any two level sets of f and g intersect at

most at d2d points, where each point is the image through a reflection along a

symmetry hyperplane of the cube (some of these points might coincide when z lies

on a symmetry hyperplane of Ω); see Figure 5.4 for a plot of the level sets of squared

eigenfunctions in the two dimensional case. Since we know that such domains are
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Figure 5.4: Level sets of squared eigenfunctions.

isometric, using more eigenvalues won’t give us any additional information on the

position z.

Capacity and shape reconstruction. If the size coefficient ε and position z

are known, then the capacity cap(∂B) can be recovered by inverting (5.2). The

capacity can be useful to determine the shape of an inclusion, if we know a priori

that it belongs to a certain class of shapes, like for instance in the following example.

Example 5.4. Let B ⊆ R2 be an ellipse of semi-axes a1, a2 such that a1a2 = 1. Then

cap ∂B = (a1 + 1/a1)/2. From the knowledge of ε and z, an estimate of a1 can then

be obtained by using (5.2). A numerical computation of a1 as a function of λε,1−λ1

in the case of Ω a disk of radius 1 and Dirichlet boundary conditions on ∂Ω is given
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5. Reconstruction of small perturbations from eigenvalues’ shifts

in Figure 5.5.

FEM simulation

Asymptotic formula
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Figure 5.5: Semi-axis length of an elliptic inclusion as a function of an eigenvalue

shift.

Even if in most cases we can not determine univocally the shape of the inclusion

from its capacity, we can at least reduce the dimension of the parameter space which

describes its shape.

Example 5.5. LetB ⊆ R3 be an ellipsoid of semi-axes a1, a2, a3 such that 4/3πa1a2a3 =

1. Then by [56, p. 156],

1

cap ∂B
= 2π

ˆ ∞
0

dx√
a2

1 + x
√
a2

2 + x
√

(3/(4πa1a2))2 + x
. (5.8)

Therefore, level curves (see Figure 5.6) of the integral in the previous equation seen

as a function of a1, a2 will represent the continuous class of ellipsoids with area 1

which cause a given eigenvalue perturbation.

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

Figure 5.6: level curves of the integral in (5.8)
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5.2. Conductivity inhomogeneity

General reconstruction. If the capacity is known, the size and position can be

estimated from the knowledge of only two eigenvalues as follows. By considering the

ratio of the perturbations, one can estimate the position looking for the level sets

of the ratio of squared eigenfunction. Then, ε can be found by backsubstituting the

value of the eigenfunction estimated at z.

The case where the size, position and capacity are unknown and have to be

reconstructed from the eigenvalue perturbation is much more delicate. There may

be multiple classes of inclusions with different size, position and shape which cause

a certain eigenvalue perturbation. If some a priori information on these features is

known, the search in the parameter space can be limited, as has been done in the

previously considered cases, but a general approach does not appear to be viable.

5.2 Conductivity inhomogeneity

In this section, we suppose that the perturbation is caused by a conductivity inclu-

sion, that is, Ωε = Ω \ D with D = z + εB and k 6= 1 being the conductivity of

D.

Direct problem. In this case, the perturbed eigenvalues satisfy the system



(∆ + λε,n)uε,n = 0 in Ω \D,

(k∆ + λε,n)uε,n = 0 in D,

uε,n continuous along ∂D,

∂uε,n
∂ν

∣∣∣
+

= k
∂uε,n
∂ν

∣∣∣
−

on ∂D,

uε,n = 0 or ∂uε,n/∂ν = 0 on ∂Ω.

(5.9)

From Proposition 4.14, we have the asymptotic expansion

λε,j − λj = εdµj +O(εd+1), (5.10)

where µj is the j-th eigenvalue of the matrix(
∇up(z) ·M(k,B)∇uq(z)

)q=Mj−1+1, ...,Mj

p=Mj−1+1, ...,Mj

, (5.11)

with M(k,B) being the polarization tensor matrix (see (1.12)). We consider here-

after the reconstruction of different features of the conductivity inclusion.
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5. Reconstruction of small perturbations from eigenvalues’ shifts

Size reconstruction. Suppose that the position and the polarization tensor of

B are known. Then the problem of reconstructing the size coefficient ε, as in Sec-

tion 5.1, can be solved directly by inverting (5.10). In the same way, a finer estimate

can be obtained by minimizing a discrepancy functional which takes into account

the perturbation of more than one eigenvalue.

Position reconstruction. Suppose that the size coefficient ε and the polarization

tensor of B are known. Then, we can reconstruct the position z by looking at the

level sets of ∇U ·M∇U .

Example 5.6. Let Ω = B ⊆ R2 be the unit disk. It is known that the polarization

tensor is M = 2(k − 1)I/(k + 1). Therefore, in this case we need to look for

intersections of levels sets of the squared norm of the gradient of the eigenfunctions.

Since they are radially symmetric, we can reconstruct the distance of the particle

from the center.

Polarization tensor, conductivity and shape reconstructions. We can re-

construct the polarization tensor using formula (5.10) for different frequencies λε,1, . . . ,

λε,MN
and looking for a d× d matrix which minimizes the discrepancy.

If we know a priori the shape of the inclusion B, we can directly reconstruct its

conductivity, as is done in the following simple example.

Example 5.7. Suppose that Ω = B ⊆ R2 is the unit disk and suppose that we are

interested in reconstructing the conductivity k of B. Fix the size coefficient ε = 0.1

and the center of B in (0.3, 0). A plot of k as a function of the eigenvalue shift is

given in Figure 5.7.

Figure 5.7: Conductivity as a function of the first eigenvalue shift.
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5.3. Boundary deformation

5.3 Boundary deformation

In this final section, we suppose only the boundary of the domain is deformed, and

try to reconstruct some characterizing features.

Direct problem. Let φ(t, x) : [0, T ]× Rd → Rd be such that φ(0, x) = x for any

x ∈ Rd and let φ(t,Ω) be diffeomorphic to Ω for any t. Let λ(t) be a simple Dirichlet

eigenvalue of φ(t,Ω). Then, from (3.5), we have that

λ̇(t) = −
ˆ
φ(t,∂Ω)

(∂u(t, y)/∂ν(t, y))2ė(t, y) · ν(t, y) dσ(y), (5.12)

where u(t, ·) is the L2-normalized eigenfunction of φ(t,Ω) associated to λ(t), ν(t, ·)

is the outward normal to the surface φ(t, ∂Ω), e(t, ·) is the identity on φ(t, ∂Ω). By

a change of variable,

λ̇(t) = −
ˆ
∂Ω

(∂u(t, φ(t, x))/∂η(t, x))2φ̇(t, x) · η(t, x)G(t, x), (5.13)

where G is the absolute value of the determinant of the Gramian of φ and η(t, x) =

ν(t, φ(t, x)).

If w is a smooth function defined on ∂Ω such that

φ(t, x) = x+ tw(x)ν(0, x) ∀x ∈ ∂Ω, (5.14)

then (5.13) simplifies to

λ̇(0) = −
ˆ
∂Ω

(∂u/∂η)2w dσ(x), (5.15)

where u, η, η̇, G are assumed to be functions of (0, x), and w to be function of x.

We are interested in using this first-order asymptotic formula to reconstruct the

magnitude of the boundary deformation.

Inverse problem. We consider two simple examples of boundary deformation

reconstruction which are of interest in applications.

Example 5.8 (Deformation of a side of a rectangle). Consider the rectangle Ω =

[0, 1]× [−l, 0]. Suppose for now that l is irrational, so that all eigenvalues of Ω are

simple. More precisely, we have that the L2-normalized Dirichlet eigenfunctions of

Ω are given by

un,m(x, y) =
1

4
sin(nπx) sin(mπy/l),
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5. Reconstruction of small perturbations from eigenvalues’ shifts

and the associated eigenvalues by λn,m(0) = (nπ)2 + (mπ/l)2, for n,m positive

integers.

Fix k and let w(s) = sin(kπs) in (5.14). By explicit computations, we have that

(5.15) becomes

λ̇n,m(0) = −
(mπ

4l

)2
ˆ 1

0

sin2(nπs) sin(kπs) ds.

Thus,

λ̇n,m(0) =


0 k even,

(nm)2π

4kl2(k2 − 4n2)
k odd.

Therefore, if k is odd,

λn,m(t)− λn,m(0) = t
(nm)2π

4kl2(k2 − 4n2)
+O(t2), (5.16)

and so we can recover a first-order approximation of t from the knowledge of a single

arbitrary eigenvalue shift. To find an approximation of t when k is even, we would

need higher-order terms.

Suppose now that we want to determine the shape of the internal cavity inside

a hollow cylinder, knowing that it is a small perturbation of a concentric cylinder.

For simplicity, we reduce our analysis to a two dimensional section, but the same

technique used for this case can be adapted to the higher dimensions.

Example 5.9 (Internal deformation of an annulus). Let Ω be an annulus of external

radius 2 and internal radius 1. Let Γe,Γi indicate respectively the circle of radius

2 and the circle of radius 1. By separation of variables, it can be shown that the

Dirichlet eigenfunctions of Ω associated to an eigenvalue λn,k, with n ∈ N and

k ∈ Z+, can be written in polar coordinates as

un,k(r, t) = Rn,k(r) cos(nt), (5.17)

vn,k(r, t) = Rn,k(r) sin(nt), (5.18)

where

Rn,k(r) = αn
(
Jn(
√
λn,kr) + cn,kYn(

√
λn,kr)

)
, (5.19)

and the constants λn,k and cn,k are determined by the boundary conditions on Γe

and Γi, and αn is a normalization constant so that the eigenfunctions have L2-norm

equal to 1.
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5.3. Boundary deformation

Let Ωε be given by a constant speed deformation of the internal circle Γi with

shape w ∈ C2(Γi); that is, ∂Ωε is given by two disconnected sets Γeε,Γ
i
ε such that

Γeε = Γe and Γiε = Γi + εw(Γi)ν. The geometry of the problem allows us to expand

w in a Fourier series

w(t) =
∞∑
j=1

bj sin(jt), (5.20)

with bj ≥ 0. We can also explicitly compute that the O(ε2) approximation of

λ1
ε,n,k − λn,k is given by

− ε min
A,B:A2+B2=1

ˆ
Γi

(
∂(Aun,k +Bvn,k)/∂ν

)2
w (5.21)

= εR′n,k(1) min
ϕ∈[0,2π]

ˆ 2π

0

1 + sin(2ϕ) sin(2nt) + cos(2ϕ) cos(2nt)

2
w(t) dt (5.22)

=
επ

2
R′n,k(1) min

ϕ∈[0,2π]
b2n sin(2ϕ). (5.23)

Therefore

λ1
ε,n,k − λn,k = −επ

2
R′n,k(1)|b2n|+O(ε2), (5.24)

λ2
ε,n,k − λn,k = O(ε2). (5.25)

Thus, we can recover the 2n-th coefficient of the Fourier series of w directly from

the shift of the smallest eigenvalue perturbed from λn,k, for an arbitrary choice of k.
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Chapter 6

Perturbation of scattering

resonances - transverse magnetic

polarization case

The influence of a small particle on a cavity mode plays an important role in fields

such as optical sensing, cavity quantum electrodynamics, and cavity optomechanics

[53, 92, 82]. In this chapter, we consider the transverse magnetic polarization case

and provide a formal derivation of the perturbations of scattering resonances of an

open cavity due to a small-volume particle without neglecting the radiation effect.

Note that the radiation effect has been omitted in the physics literature (see, for

instance, [45]). Indeed, the Bethe-Schwinger closed cavity perturbation formula [23,

31] has been widely employed for radiating cavities. The small-volume asymptotic

formula in this chapter generalizes to the open cavity case those derived in [14, 16,

78, 23]. It is valid for arbitrary-shaped particles. It shows that the perturbations of

the scattering resonances can be expressed in terms of the polarization tensor of the

small particle. Two cases are considered: the one-dimensional case and the multi-

dimensional case. Its applicability to the perturbations of whispering-gallery modes

by external arbitrary-shaped particles is also discussed. Finally, we characterize the

effect that a plasmonic nanoparticle, of arbitrary geometry and which is bound to

the surface of the cavity, has on the whispering-gallery modes of the cavity. Since the

shift of the scattering frequencies is proportional to the polarization of the plasmonic

nanoparticles [8, 17, 18, 21], which blows-up at the plasmonic resonances, the effect

of a plasmonic particle on the cavity modes can be significant.
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6.1. One dimensional case

For the analysis of the transverse electric case we refer to Chapter 7. Note

that in the one-dimensional case, the scattering resonances are simple while in the

multi-dimensional case, they can be degenerate or even exceptional. The analysis

of exceptional points is a challenging problem, and the situation is much simpler

in the transverse electric case than in the transverse magnetic one. The reader is

also referred to [54, 55, 63] for small amplitude sensitivity analyses of the scattering

resonances. Numerical computation of resonances has been addressed, for instance,

in [50, 64, 70, 71, 85, 100].

The chapter is organized as follows. In Section 6.1, using the method of matched

asymptotic expansions, we derive the leading-order term in the shifts of scattering

resonances of a one-dimensional open cavity and characterize the effect of radiation.

Section 6.2 generalizes the method to the multi-dimensional case. In Section 6.3,

we consider the perturbation of whispering-gallery modes by small particles. The

formula obtained for the shifting of the frequencies shows a strong enhancement

in the frequency shift in the case of plasmonic particles, which allows for their

recognition in spite of their small size. The splitting of scattering frequencies of the

open cavity of multiplicity greater than one due to small particles is also discussed.

In Section 6.4, we present some numerical examples to illustrate the accuracy of the

formulas derived in this chapter and their use in the sensing of small particles. The

chapter ends with some concluding remarks.

6.1 One dimensional case

We first consider a one dimensional cavity. We let the magnetic permeability µδ be

µm in (a, b) \ (−δ/2, δ/2) and µc in (−δ/2, δ/2) and the electric permittivity εδ be

εm in (a, b) \ (−δ/2, δ/2) and εc in (−δ/2, δ/2). Here, 0 < δ < 1/2 and µm, µc, εm,

and εc are positive constants.

Let ω0 be a scattering resonance of the unperturbed cavity and let u0 denote the

corresponding eigenfunction, that is,
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∂x ((1/εm)∂xu0) + ω2
0µmu0 = 0 in (a, b),

(1/εm)∂xu0 + iω0u0 = 0 at a,

(1/εm)∂xu0 − iω0u0 = 0 at b,

´ b
a
|u0|2 dx = 1.

We now consider the perturbed problem: for δ small, we seek a solution uδ, for

which ωδ → ω0 as δ → 0 of the following equation:

∂x ((1/εδ)∂xuδ) + ω2
δµδuδ = 0 in (a, b),

(1/εm)∂xuδ + iωδuδ = 0 at a,

(1/εm)∂xuδ − iωδuδ = 0 at b,

´ b
a
|uδ|2 dx = 1.

(6.1)

Remark 6.1. The above one-dimensional scattering resonance problems govern scat-

tering resonances of slab-type structures. They are a consequence of Maxwell’s

equations, under the assumption of time-harmonic solutions. They correspond to

the transverse magnetic polarization; see [55]. The scattering resonances ω0 and

ωδ lie in the lower-half of the complex plane. The eigenfunctions u0 and uδ satisfy

the outgoing radiation conditions at a and b and, consequently, grow exponentially

at large distances from the cavity. To give a physical interpretation of scattering

resonances see, for instance, [50, 55].

Proposition 6.2. Assuming that

ωδ = ω0 + δω1 + . . . ,

we have

ω1 =
α(∂xu0(0))2 + ω2

0εm(µc − µm)(u0(0))2

2ω0µmεm + iεm((u0(a))2 + (u0(b))2)
, (6.2)

where the polarization α is defined by

α = 1− εc
εm
. (6.3)

Proof. Using the method of matched asymptotic expansions for δ small, see [16], we

construct asymptotic expansions of ωδ and uδ.

To reveal the nature of the perturbations in uδ, we introduce the local variable

ξ = x/δ and set eδ(ξ) = uδ(x). We expect that uδ(x) will differ appreciably from
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6.1. One dimensional case

u0(x) for x near 0, but it will differ little from u0(x) for x far from 0. Therefore, in

the spirit of matched asymptotic expansions, we shall represent uδ by two different

expansions, an inner expansion for x near 0, and an outer expansion for x far from

0. We write the outer and inner expansions:

uδ(x) = u0(x) + δu1(x) + . . . for |x| � δ,

and

uδ(x) = e0(ξ) + δe1(ξ) + . . . for |x| = O(δ).

The asymptotic expansion of ωδ must begin with ω0, so we write

ωδ = ω0 + δω1 + . . . .

In order to determine the functions ui(x) and ei(ξ), we have to equate the inner and

the outer expansions in some “overlap” domain within which the stretched variable

ξ is large and x is small. In this domain the matching conditions are:

u0(x) + δu1(x) + · · · ∼ e0(ξ) + δe1(ξ) + . . . .

Now, if we substitute the inner expansion into (6.1) and formally set to zero the

coefficients of δ−2 and δ−1, then we obtain

∂ξ((1/ε̃)∂ξei) = 0, for i = 0, 1,

where the stretched coefficient ε̃ is equal to εc in (−1/2, 1/2) and to εm in (−∞,−1/2)∪

(1/2,+∞). From the first matching condition, it follows that e0(ξ) = u0(0) for all

ξ. Similarly, we have

e1(ξ) ∼ ξ∂xu0(0) as |ξ| → +∞. (6.4)

Let v(1)(ξ) be such that∂ξ((1/ε̃(ξ))∂ξv
(1)(ξ)) = 0,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

Although v(1) can be trivially rewritten as a piecewise affine function, let us take an

approach which generalizes easily to the multi-dimensional case. Let γ = (εm/εc)−1.

By how v(1) is defined, we have

v(1)(ξ) = ξ − γ∂ξv(1)(−1/2)|+Γ0(ξ + 1/2) + γ∂ξv
(1)(1/2)|−Γ0(ξ − 1/2),
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where the subscripts + and − indicate respectively the limits at 1/2 from the left

and from the right. Moreover,

ˆ 1/2

−1/2

∂2
ξv

(1) dξ = 0,

yields

∂ξv
(1)(−1/2)|+ = ∂ξv

(1)(1/2)|−.

Hence,

v(1)(ξ) = ξ + γ∂ξv
(1)(1/2)|−G(ξ + 1/2)− γ∂ξv(1)(1/2)|−G(ξ − 1/2).

On the other hand,

G(ξ ± 1/2) ∼ |ξ| ± ξ/(2|ξ|) + . . . as |ξ| → +∞.

Therefore,

v(1)(ξ) ∼ ξ − ((εm/εc)− 1)∂ξv
(1)(1/2)|− ξ/|ξ|+ . . . .

From [16, (4.11)], we have that e1(ξ) = (∂xu0)(0)v(1)(ξ). By matching the first-order

terms in the inner and outer expansion we obtain u1(x) ∼ e1(ξ)− ξ(∂xu0)(0). Then,

the second matching condition (6.4) yields

u1(x) ∼ −γ(∂xu0(0))(∂ξv
(1)(1/2)|−)(ξ/|ξ|) for x near 0.

Assume first that µm = µc. To find the first correction ω1, we multiply

∂x((1/εm)∂xu1) + ω2
0µmu1 = −2ω1ω0µmu0

by u0 and integrate over (a,−ρ/2) and (ρ/2, b) for ρ ≥ δ. Upon using the radiation

conditions, integration by parts, and the asymptotics of u1 previously derived, we

obtain that as ρ and δ go to zero,

iω1((u0(a))2 + (u0(b))2)− 1

εm
α(∂xu0(0))2 = −2ω1ω0µm,

where the polarization α is given by

α = γ∂ξv
(1)(1/2)|− = 1− εc

εm
. (6.5)

Therefore, we arrive at

ω1 =
α(∂xu0(0))2

2ω0µmεm + iεm((u0(a))2 + (u0(b))2)
. (6.6)
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6.2. Multi-dimensional case

The term iεm((u0(a))2 + (u0(b))2) accounts for the effect of radiation on the shift of

the scattering resonance ω0.

Now, if µc 6= µm, we need to compute the second-order corrector e2. We have

∂ξ((1/ε̃)∂ξe2) + ω2
0µ̃e0 = 0,

and

e2(ξ) ∼ ξ2∂2
xu0(0)/2 as |ξ| → +∞.

here, the stretched coefficient µ̃ is equal to µc in (−1/2, 1/2) and to µm in (−∞,−1/2)∪

(1/2,+∞).

From the equation satisfied by u0, we obtain

∂2
xu0(0) = −ω2

0µmεmu0(0).

Recall that e0(ξ) = u0(0) and let v(2) be such that∂ξ((1/ε̃(ξ))∂ξv
(2)(ξ)) = (1/(εmµm))µ̃(ξ),

v(2)(ξ) ∼ ξ2/2 as |ξ| → +∞.

It is easy to see that ∂ξ((1/ε̃(ξ))∂ξ(v
(2)(ξ) − ξ2/2)) is (1/εm)((µc/µm) − 1) for ξ ∈

(−1/2, 1/2) and is 0 for |ξ| > 1/2. Therefore,

v(2)(ξ)− ξ2/2 ∼ ((µc/µm)− 1)|ξ| as |ξ| → +∞.

Then, by matching the singularities in the inner and outer expansion as in [16,

Section 4.1], we obtain

u1(x) ∼ ∂xu0(0)(ξ−((εm/εc)−1)∂ξv
(1)(1/2)ξ/|ξ|+. . . )+∂2

xu0(0)((µc/µm)−1)|ξ|+. . . ,

and so, proceeding as before,

iω1((u0(a))2 + (u0(b))2)− 1

εm
α(∂xu0(0))2 +

1

εm
∂2
xu0(0)((µc/µm)− 1)u0(0)

= −2ω1ω0µm,

which yields the result.

6.2 Multi-dimensional case

In this section, we generalize (6.2) to the multi-dimensional case. In dimension two,

the obtained formula corresponds, as in the one-dimensional case, to an open cavity
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6. Perturbation of scattering resonances - TM case

with the transverse magnetic polarization [63]. We use the same notation as in

Section 6.2.

Let Ω be a bounded domain in Rd for d = 2, 3, with smooth boundary ∂Ω. We

assume ω0 is a simple scattering resonance of the unperturbed open cavity, that is

there exists a unique non trivial solution u0 to
∇ · ((1/ε)∇u) + ω2

0µu = 0 in Rd,ˆ
Ω

|u|2 dx = 1,

u satisfies the Sommerfeld radiation condition,

(6.7)

where µ = 1+(µm−1)χΩ and ε = 1+(εm−1)χΩ. Here, χΩ denotes the characteristic

function of the domain Ω.

For simplicity, we assume that Ω is the ball of radius R centered at the origin,

and introduce the capacity operator Tω, which is given by [20]

Tω : φ =



∑
m∈Z

φme
imθ if d = 2,

+∞∑
m=0

m∑
l=−m

φlmY
l
m if d = 3,

7→



∑
m∈Z

zm(ω,R)φme
imθ if d = 2,

+∞∑
m=0

zm(ω,R)
m∑

l=−m

φlmY
l
m if d = 3,

where

zm(ω,R) =


ω(H

(1)
m )′(ωR)

H
(1)
m (ωR)

if d = 2,

ω(h
(1)
m )′(ωR)

h
(1)
m (ωR)

if d = 3.

Here, θ is the angular variable, Y l
m is a spherical harmonic, and H

(1)
m (respectively,

h
(1)
m ) is the Hankel function of integer order (respectively, half-integer order). This

explicit version of the capacity operator will be used in Section 6.4 to test the validity

of our formula. Then, (6.7) is equivalent to


(1/εm)∆u0 + ω2

0µu0 = 0 in Ω,

(1/εm)
∂u0

∂ν
= Tω0 [u0] on ∂Ω,

´
Ω
|u0|2 = 1,

(6.8)

where ν denotes the normal to ∂Ω. As in the one-dimensional case, the scattering

resonances lie in the lower-half of the complex plane and the associated eigenfunc-

tions grow exponentially at large distances from the cavity since they satisfy the

outgoing radiation condition. We also remark that from Green’s identity we haveˆ
∂Ω

Tω[f ]g dσ =

ˆ
∂Ω

fTω[g] dσ for all f, g ∈ H1/2(∂Ω), (6.9)
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6.2. Multi-dimensional case

for d = 2, 3.

Let D b Ω be a small particle of the form D = z+δB, where δ is its characteristic

size, z its location, and B is a smooth bounded domain containing the origin. Denote

respectively by εc and µc the electric permittivity and the magnetic permeability of

the particle D. The eigenvalue problem is to find ωδ such that there is a non-trivial

couple (ωδ, uδ) satisfying

(1/εm)∆uδ + ω2
δµmuδ = 0 in Ω \ D̄,

(1/εc)∆uδ + ω2
δµcuδ = 0 in D,

(1/εm)
∂uδ
∂ν

∣∣
+

= (1/εc)
∂uδ
∂ν

∣∣
− on ∂D,

(1/εm)
∂uδ
∂ν

= Tωδ [uδ] on ∂Ω,

(6.10)

where the subscripts + and − indicate the limits from outside and inside D, re-

spectively.

Proposition 6.3. Assuming ωδ = ω0 + δdω1 + . . . , we have

ω1 =
M(εm/εc, B)∇u0(z) · ∇u0(z) + ω2

0|B|εm(µc − µm)(u0(z))2

2ω0µmεm
´

Ω
u2

0 dx+
´
∂Ω
∂ωTω|ω=ω0 [u0]u0 dσ

, (6.11)

where M is the polarization tensor defined in (1.11).

Proof. Assume, for now, that µc = µm. Let λ0 = ω2
0, λδ = ω2

δ . We expand

ωδ = ω0 + δdω1 + . . . and λδ = λ0 + δdλ1 + . . . .

Let the outer expansion of uδ be

uδ(y) = u0(y) + δdu1(y) + . . . ,

and the inner one, eδ(ξ) = uδ((x− z)/δ), be

eδ(ξ) = e0(ξ) + δe1(ξ) + . . . .

Therefore, formally we have

Tωδ ' Tω0+δdω1
' Tω0 + δdω1∂ωTω|ω0 + . . . .

Moreover, we obtain
((1/εm)∆ + λ0µm)u1(y) = −λ1µmu0(y) for |y − z| � O(δ),

(1/εm)
∂u1

∂ν
= Tω0 [u1] + ω1∂ωTω|ω=ω0 [u0] on ∂Ω,

(6.12)
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and, by setting to zero the coefficients of 1/δ2 and 1/δ in eδ in (6.10),
∆ξej = 0 in Rd \ (∂B),

∂ej
∂ν
|+ = (εm/εc)

∂ej
∂ν
|− on ∂B,

for j = 0, 1. Imposing the matching conditions

u0(y) + δdu1(y) + · · · ∼ e0(ξ) + δe1(ξ) + . . . as |ξ| → +∞,

and y → z, we arrive at e0(ξ) → u0(z) and e1(ξ) ∼ ∇u0(z) · ξ. So, we have

e0(ξ) = u0(z) for every ξ and e1(ξ) = ∇u0(z) · v(1)(ξ), where v(1) is such that (see

[16, (4.11)]) 
∆ξv

(1) = 0 in Rd \ (∂B),

∂v(1)

∂ν
|+ = (εm/εc)

∂v(1)

∂ν
|− on ∂B,

v(1)(ξ) ∼ ξ as |ξ| → +∞.

(6.13)

Let M(εm/εc, B) be the polarization tensor associated with the domain B and the

contrast εm/εc. Then, by the same arguments as in [16, Section 4.1], it follows that

u1(y) ∼ −M(εm/εc, B)∇Γ(y − z) · ∇u0(z) as y → z. (6.14)

Multiplying (6.12) by u0 and integrating by parts over Ω \ B̄δ, we obtain from (6.9),

the identity (−1/εm)∆u0 = λ0µmu0, that

−λ1µm

ˆ
Ω\Bδ

(u0)2 dx =

ˆ
∂Ω

(
Tω0 [u1]u0 − Tω0 [u0]u1

)
dσ︸ ︷︷ ︸

=0

+ω1

ˆ
∂Ω

∂ωTω|ω=ω0 [u0]u0 dσ

+
1

εm

ˆ
∂Bδ

(u0
∂u1

∂ν
− u1

∂u0

∂ν
) dσ.

From (6.14), we have

ˆ
∂Bδ

(u0
∂u1

∂ν
− u1

∂u0

∂ν
) dσ −−→

δ→0
−M(εm/εc, B)∇u0(z) · ∇u0(z).

Therefore, since λ1 = 2ω0ω1,

−λ1µmεm

ˆ
Ω

u2
0 dx−

λ1

2ω0

ˆ
∂Ω

∂ωTω|ω=ω0 [u0]u0 dσ = −M(εm/εc, B)∇u0(z) · ∇u0(z),

and finally, we arrive at

λ1 =
M(εm/εc, B)∇u0(z) · ∇u0(z)

εmµm
´

Ω
u2

0 dx+ (1/(2ω0))
´
∂Ω
∂ωTω|ω=ω0 [u0]u0 dσ

, (6.15)
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or equivalently,

ω1 =
M(εm/εc, B)∇u0(z) · ∇u0(z)

2ω0µmεm
´

Ω
u2

0 dx+
´
∂Ω
∂ωTω|ω=ω0 [u0]u0 dσ

. (6.16)

If one relaxes the assumption µc = µm, one can generalize formula (6.16) by

computing, as in [16] and in Section 6.1, the second-order corrector e2. We then get

the desired result.

The expression derived in Proposition 6.3 tells us that in the multi-dimensional

case, the effect of radiation on the shift of the scattering resonance ω0 is given by´
∂Ω
∂ωTω|ω=ω0 [u0]u0 dσ. Note also that (6.16) reduces to (6.6) in the one-dimensional

case. In fact, the polarization tensor M reduces to α defined by (6.5) and the

operator Tω corresponds to the multiplication by −iωεm at a and +iωεm at b.

6.3 Perturbation of whispering-gallery modes by

an external particle

Whispering-gallery modes are modes which are confined near the boundary of the

cavity. Their existence for spherical resonators can be proved analytically or by a

boundary layer approach based on WKB (high frequency) asymptotics [82, 68, 72,

75, 45, 84, 1]. Whispering-gallery modes can be exploited to probe the local sur-

roundings of the resonator [65, 66, 83]. Biosensors based on the shift of whispering-

gallery modes in open cavities by small particles have been also described by use

of Bethe-Schwinger type formulas, where the effect of radiation is neglected [26, 45,

98, 99]. In this section, we provide a generalization of the formula derived in the

previous section and discuss its validity for whispering-gallery modes.

Assume that ω0 is a whispering-gallery mode of the open cavity Ω. Let Ωρ

be a small neighborhood of Ω. Suppose that the particle D is in Ωρ \ Ω. If the

characteristic size δ of D is much smaller than ρ, which is in turn much smaller than

2π/(
√
εmµmω0), then by the same arguments as those in the previous section, the

leading-order term in the shift of the resonant frequency ω0 is given by

ω1 '
M(1/εc, B)∇v0(z) · ∇v0(z) + ω2

0|B|(µc − 1)(v0(z))2

2ω0µmεm
´

Ω
u2

0 dx+
´
∂Ω
∂ωTω|ω=ω0 [u0]u0 dσ

.

Here, the polarization tensor M(εm/εc, B) in (6.15) is replaced by M(1/εc, B) since

84



6. Perturbation of scattering resonances - TM case

ε in the medium surrounding the particle is equal to 1 and v0 is defined in Rd by

v0(x) = −ω2
0(µm−1)

ˆ
Ω

Γ(x−y;ω0)u0(y) dy+(
1

εm
−1)

ˆ
Ω

∇yΓ(x−y;ω0) ·∇u0(y) dy,

(6.17)

where Γ(·;ω0) is the fundamental solution of ∆ + ω2
0, which satisfies the outgoing

radiation condition. We remark that v0 = u0 in Ω. Moreover, the assumption that

ω0 is a whispering-gallery mode is needed in order to have the gradient of v0 at the

location of the particle to have a significant magnitude.

Now, assume that the particle D is plasmonic, i.e., εc depends on the frequency

ω and can take negative values. In this case, there is a discrete set of frequencies,

called plasmonic resonant frequencies, such that at these frequencies problem (6.13)

is nearly singular, and therefore the polarization tensor associated with the particle

D blows up at those frequencies, see [8, 18, 21]. Assume that the plasmonic particle

is coupled to the cavity, i.e., there is a whispering-gallery cavity mode ω0 such that

<ω0 is a plasmonic resonance of the particle.

Then when the particle D is illuminated at the frequency <ω0, its effect on the

cavity mode ω0 is given by

ω1 '
M((1/εc)(<ω0), B)∇v0(z) · ∇v0(z) + ω2

0|B|(µc − 1)(v0(z))2

2ω0µmεm
´

Ω
u2

0 dx+
´
∂Ω
∂ωTω|ω=ω0 [u0]u0 dσ

, (6.18)

where v0 is defined by (6.17). Thus, despite their small size, plasmonic particles can

significantly change the cavity modes when their plasmonic resonances are close to

the cavity modes.

Finally, let us briefly consider the case when there are multiple linear independent

solutions to (6.7). This situation has been studied in Chapter 4 for closed cavities,

under the much simpler setting of a self-adjoint operator. Although the extension of

the formulae derived in this simpler setting to open resonators would require a finer

analysis, we believe that similar expressions still hold. In fact, in the next section

we provide numerical evidence to the fact that, if there are two orthogonal solutions

u1, u2 to (6.7), then the largest and smallest resonance perturbations are indeed

proportional respectively to the largest and smallest eigenvalues of the matrix

(
M((1/εc)(<ω0), B)∇ui(z) · ∇uj(z)

)
i,j∈{1,2}

. (6.19)
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6.4 Numerical illustrations

In two dimensions, when the cavity and the small-volume particle are disks we can

use the multipole expansion method to efficiently compute the perturbations of the

whispering-gallery modes [74]. Our approach is as follows. We first use a projective

eigensolver [29] to obtain a coarse estimate of the locations of the resonances of a two

disk system. We then focus on the particular resonances in this set that correspond

to the whispering-gallery modes of the open cavity and obtain a refined estimate of

their locations using the multipole method.

Throughout this section, Ω is a disk of radius 1 centered at the origin and ω0 is

the frequency of a whispering-gallery mode. Let D be a disk of radius δ centered

at (1 + 2δ, 0). Suppose that εm = εc = 1/5. The behavior of ωδ,1, ωδ,2 as δ → 0 is

plotted in Figure 6.1. The characterization of multiple resonances given in (6.19)

matches the first resonance shift, as can be seen in Figure 6.2. On the other hand,

we can easily reconstruct δ from a single scattering resonance shift.
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Figure 6.1: As the size of the small disk δ → 0, the perturbed whispering-gallery modes ωδ,1 and

ωδ,2 converge towards the unperturbed mode ω0.

Next, consider a disk Dδ of radius δ = 0.1 centered at (z, 0). A plot of |ω2
δ,j−ω2

0|

as z varies between 1.2 and 6 is presented in Figure 6.3. We remark that the again
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6. Perturbation of scattering resonances - TM case

Multipole expansion method

Asymptotic formula
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Figure 6.2: Comparison between the asymptotic formula for the perturbation |ω2
δ,1 − ω2

0 | of the

whispering-gallery mode and the perturbation computed numerically as the size of the small disk

δ → 0.

characterization of multiple resonances given in (6.19) matches closely the numerical

experiments.

Multipole expansion method

Asymptotic formula
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Figure 6.3: Comparison between the asymptotic formula for the perturbation |ω2
δ,j − ω2

0 | of

the whispering-gallery mode and the perturbation computed numerically as the position of the

inclusion (z, 0) varies. The plot on the left corresponds to the perturbed resonance ωδ,1 and the

plot on the right corresponds to the perturbed resonance ωδ,2.

We highlight now the case of plasmonic particles. In this case we have a strong

enhancement in the frequency shift, which allows for the recognition of much smaller

particles. Consider a disk D of radius 0.1 centered at (1.2, 0). Suppose εm = 1/5.

A plot of numerical experiments for the shift |ω2
δ,1 − ω0

2| as 1/εc varies is presented

in Figure 6.4. Notice the high peak in the perturbation as εc approaches the value

−1.

Finally, let us remark that our formulae also allow quick estimates of the polar-

ization tensor of the small particle. Thus the orientation of the perturbing particle

can be inferred, which affords the possibility of orientational binding studies in

biosensing. We also believe that, based on [23, 13], the derived formulae can be

generalized to open electromagnetic and elastic cavities.
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6.4. Numerical illustrations

Figure 6.4: Resonance perturbation |ω2
δ,1 − ω2

0 | as a function of 1/εc, here allowed to also take

negative values.
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Chapter 7

Perturbation of scattering

resonances - transverse electric

polarization case

In this chapter we consider dielectric radiating open cavities [27, 34, 94] and rig-

orously obtain asymptotic formulae for the shift in the scattering resonances that

is caused by a small particle of arbitrary shape. Our formula shows that the per-

turbation of the scattering resonances can be expressed in terms of the polarization

tensor of the small particle. The scattering resonances can be degenerate or even

exceptional and the small particle can be plasmonic. Our method is based on pole-

pencil decompositions of the volume integral operator associated with the radiating

dielectric cavity problem. The new techniques introduced in this chapter can not

be easily extended to the transverse magnetic case considered in Chapter 6, mainly

due to the hyper-singular character of the associated volume-integral operator.

The chapter is organized as follows. In Section 7.1, we characterize the scatter-

ing resonances of dielectric cavities in terms of the spectrum of a volume integral

operator. In Section 7.2, using the method of pole-pencil decompositions (see, for

instance, [9, 14]), we derive the leading-order term in the shift of the scattering res-

onances of an open dielectric cavity due to presence of internal particles. In Section

7.3, using a Lippmann-Schwinger representation formula for the Green’s function

associated with the open cavity, we generalize the formula obtained in Section 7.2

to the case of external particles. In Section 7.4, we consider the perturbation of

an open dielectric cavity by plasmonic nanoparticles. The formula obtained for the
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7.1. Scattering resonances of a dielectric cavity

perturbation of the frequencies shows a strong enhancement in the frequency shift

in the case of plasmonic nanoparticles. In Section 7.5, we examine the case of ex-

ceptional points and reformulate the search for scattering resonances as a search for

the roots of a polynomial.

7.1 Scattering resonances of a dielectric cavity

Let Ω be a domain in Rd for d = 2, 3, with smooth boundary ∂Ω. Consider the

operator ∆+εµmω
2 where ω ∈ C is the frequency, ε ≡ τεc+εm inside Ω and ε ≡ εm

outside Ω. Here, εc, εm, µm and τ are positive constants.

Let Γm be the outgoing (i.e., subject to the Sommerfeld radiation condition

(1.5)) fundamental solution of ∆ + εmµmω
2 in free space, and let G be the outgoing

fundamental solution of ∆ + εµmω
2 in free space. Let

Kω
Ω : u ∈ L2(Ω) 7→ −

ˆ
Ω

u(y)Γm( · , y;ω)dy ∈ L2(Ω).

The operator Kω
Ω : L2(Ω) → L2(Ω) is of Hilbert-Schmidt type, and thus compact.

Therefore, its spectrum is

σ(Kω
Ω) = {0, λ1(ω), λ2(ω), . . . , λj(ω), . . .} ,

where |λj(ω)| ≥ |λj+1(ω)|, λj(ω) → 0 as j → +∞ and {0} = σ(Kω
Ω) \ σp(Kω

Ω)

with σp(K
ω
Ω) being the point spectrum. Note that, due to the uniqueness of the

exterior Helmholtz problem, the imaginary part =λj(ω) must be non-zero for all j

and ω ∈ R. Let Hj be the generalized eigenspace associated with λj(ω). Then, from

[24, Lemma 3.5], we have that L2(Ω) is the closure of the union of all generalized

eigenspaces Hj in L2-norm.

Let ω0 and τ be such that there exists a j0 such that

1− ω2
0τεcµmλj0(ω0) = 0. (7.1)

We call such an ω0 ∈ C (with =ω0 6= 0) a scattering resonance of the open dielectric

cavity Ω. Moreover, for τ large enough, (7.1) has solutions. Furthermore, assume

that for ω in a complex neighborhood of ω0, the following assumptions hold:

(i) We have

1− ω2τεcµmλj0(ω) = R(ω)(ω − ω0),

where R(ω0) 6= 0 and ω 7→ R(ω) is analytic;
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7. Perturbation of scattering resonances - TE case

(ii) The generalized eigenspace Hj0(ω) is of dimension 1.

If both of these assumptions are satisfied, then we say that the scattering resonance

ω0 is non-exceptional.

Assume that ω0 is a non-exceptional scattering resonance. As a consequence of

classic expansion theorems for fundamental solutions (see [37, expansion theorems ])

we have that there exists a complex neighborhood V (ω0) of ω0 such that for ω in

V (ω0) \ {ω0},

G(x, y;ω) = Γm(x, y;ω) + cj0(ω)
ej0(x;ω)ej0(y;ω)

ω − ω0

+ some function that is smooth in x, y and analytic in ω,

(7.2)

where ej0 spans Hj0 , ‖ej0‖L2(Ω) = 1, and ω 7→ ej0( ·, ω) and ω 7→ cj0(ω) are analytic

in V (ω0). Note that ej0(y;ω0) is the restriction to Ω of the eigenmode associated

with the scattering resonance ω0.

7.2 Shift of resonances by internal particles

Let D be a domain compactly contained in Ω, such that D = z + δB, where δ is

the characteristic size of D, z is its location, and B is a smooth bounded domain

containing the origin. We suppose that D has a different magnetic permeability

from µm, and consider the operator

∇ · 1

µ
∇+ εω2,

where µ = µc in D and µ = µm outside D.

As δ → 0, we seek an ωδ in a neighborhood of ω0 such that there exists a

non-trivial solution to (
∇ · 1

µ
∇+ εω2

δ

)
u = 0,

subject to the Sommerfeld radiation condition. Integrating by parts and using the

radiation condition, it is easy to show that the solution to the above problem admits

the following Lippmann-Schwinger representation formula:

u(x) = γ

ˆ
D

∇u(y) · ∇G(x, y;ωδ) dy for all x ∈ Rd,

where γ = (1/µc)− (1/µm). Consider the volume integral operator

T ωD : v 7→ ∇x

ˆ
D

v(y) · ∇G(x, y;ω) dy,
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7.2. Shift of resonances by internal particles

where the integral on the right hand side is intended in the principal value sense.

Then the operator T ωD : L2(D)d → L2(D)d is well-defined (see, for instance, [17,

Appendix B] and references therein).

We seek ωδ such that there is a non-trivial v ∈ L2(D)d satisfying

(
I − γT ωδD

)
[v] = 0, (7.3)

where I denotes the identity operator. Hence, as the characteristic size δ of D goes

to zero, we seek ωδ in a neighborhood of ω0 such that 1/γ is an eigenvalue of T ωδD .

From the pole-pencil decomposition (7.2) of G, we have

∇
ˆ
D

v · ∇G = ∇
ˆ
D

v · ∇Γm +
cj0(ω)

ω − ω0

( ˆ
D

v · ∇ej0 dy
)
∇ej0(x;ω) +R[v],

where R : L2(D)d → L2(D)d is an operator with smooth kernel that is analytic in

ω ∈ V (ω0). Let

Nω
D : v 7→ ∇x

ˆ
D

v(y) · ∇Γm(x, y;ω)dy.

Then, it follows that

(I/γ − T ωD)[v] = (I/γ −Nω
D)[v]− cj0(ω)

ω − ω0

(v,∇ej0)∇ej0 +R[v],

where ( · , · ) denotes the L2 real scalar product on D and I is the identity operator.

From [36, 46], it is known that Nω
D|W : W −→ W is a compact operator, where

W is the space of gradients of harmonic functions in D. Moreover, the spectrum of

Nω
D|W is discrete and the associated eigenfunctions form a basis of W .

Let L = I/γ −Nω=0
D . Then, (7.3) can be rewritten as

L[v]− cj0(ω)

ω − ω0

(v,∇ej0)∇ej0 + R̃[v] = 0,

where R̃ : L2(D)d → L2(D)d is an operator with smooth kernel that is analytic in

ω ∈ V (ω0). Therefore, since for µc large enough L is invertible,

v − cj0(ω)

ω − ω0

(v,∇ej0)L−1[∇ej0 ] + L−1R̃[v] = 0.

So, since

||L−1R̃||L(L2(D)d,L2(D)d) = o(1) as δ → 0,

(see [17, Lemma 4.2] and [14]), the term L−1R̃[v] can be neglected, and we have the

leading-order asymptotic approximation

ωδ − ω0 ∼ cj0(ω0)(L−1[∇ej0 ],∇ej0).

92



7. Perturbation of scattering resonances - TE case

Moreover, from [17, Proposition 3.1], it follows that

(L−1[∇ej0 ],∇ej0) ∼ δdM(µm/µc, B)∇ej0(z;ω0) · ∇ej0(z;ω0),

where M is the polarization tensor given by (1.11).

In conclusion, the following proposition holds.

Proposition 7.1. As δ → 0, we have

ωδ − ω0 ∼ δdcj0(ω0)M(µm/µc, B)∇ej0(z;ω0) · ∇ej0(z;ω0). (7.4)

7.3 Shift of resonances by external particles

Now consider the case where the particle is outside Ω. Again by integration by

parts and the radiation conditions, we obtain the following Lippmann-Schwinger

representation formula for G:

G(x, z;ω) = Γm(x, z;ω)− ω2τεcµm

ˆ
Ω

G(z, z′;ω)Γm(z′, x;ω) dz′, (7.5)

for x, z ∈ Rd, x 6= z. On the other hand, for x outside Ω and z inside Ω, using (7.2)

we obtain,

G(x, z;ω) = Γm(x, z;ω)− ω2τεcµmcj0(ω)

ω − ω0

ej0(z;ω)

(ˆ
Ω

ej0(z
′;ω)Γm(z′, x;ω) dz′

)

+ a function that is smooth in x, z, and analytic in ω.

(7.6)

For x, z both outside Ω, x 6= z, plugging (7.6) back into (7.5), we arrive at

G(x, z;ω) = Γm(x, z;ω) +
cj0(ω)

ω − ω0

gj0(z;ω)gj0(x;ω)

+ a function that is smooth in x, z, and analytic in ω,

where we defined

gj0( · ;ω) = ω2τεcµm

ˆ
Ω

ej0(z
′;ω)Γm(z′, · ;ω) dz′.

Note that gj0 , defined by the above formula for all x ∈ Rd, is the eigenmode associ-

ated with the scattering resonance ω0, and it coincides with ej0(x;ω0) on Ω.

Analogously to the calculations in the previous section, we have

v − cj0(ω)

ω − ω0

(v,∇gj0)L−1[∇gj0 ] + L−1R[v] = 0,

for some operator R with smooth kernel that is analytic in ω in V (ω0). Therefore,

analogously to (7.4), the following asymptotic expansion holds.

93



7.4. Shift of resonances by plasmonic particles

Proposition 7.2. As δ → 0, we have

ωδ − ω0 ∼ δdcj0(ω0)M(µm/µc, B)∇gj0(z;ω0) · ∇gj0(z;ω0). (7.7)

7.4 Shift of resonances by plasmonic particles

Suppose now that D is a plasmonic particle, i.e., µc depends on ω and for a discrete

set of frequencies ω, called plasmonic resonances, the polarization tensor is singular,

see [8, 18, 21]. In this case, the scattering resonance problem consists in finding ω

such that there is a non-trivial solution v to

L(ω)[v]− cj0(ω)

ω − ω0

(v,∇ej0)∇ej0 +R[v] = 0,

where L(ω) = I/γ(ω)−Nω=0
D . The operator L is not invertible at plasmonic reson-

ances. Using the Drude model for the permeability, we have µc(ω) = µm(1−ω2
p/ω

2),

where ωp is the volume plasma frequency. Let (λj, ϕj) be an eigenvalue-eigenfunction

pair of L. Then

v − cj0(ω)

ω − ω0

(v,∇ej0)(∇ej0 , ϕj)ϕj
λ(ω)− λj

= 0,

and thus,

1− cj0(ω0)

ω − ω0

(∇ej0 , ϕj)2

λ(ω)− λj
= 0.

So, we arrive at the following proposition.

Proposition 7.3. As δ → 0, we have

(ωδ − ω0)(λ(ωδ)− λj) ∼ cj0(ω0)(∇ej0 , ϕj)2.

Note that if λ(ω)− λj = O(ω − ω0) for ω close to ω0, then we obtain

(ωδ − ω0)2 ∼ cj0(ω0)(∇ej0(·;ω0), ϕj)
2,

Hence, we have a significant shift in the scattering resonances if the particle D is

plasmonic and resonant near or at the frequency ω0. This anomalous effect has been

observed in [92].

7.5 Asymptotic analysis near exceptional points

In this section, we examine the asymptotic behavior of an exceptional scattering

resonance for a particular form of the Green function. These exceptional resonances
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7. Perturbation of scattering resonances - TE case

are due to the non-Hermitian character of the operator T ωD, see [24, 88]. For simpli-

city and in view of the Jordan-type decomposition of the operator T ωD established in

[24], we assume that, for ω near ω0, G(x, y;ω) behaves like

G(x, y;ω) = Γm(x, y;ω)+c1(ω)
h(1)(x;ω)h(1)(y;ω)

ω − ω0

+c2(ω)
h(2)(x;ω)h(2)(y;ω)

(ω − ω0)2
+R(ω),

(7.8)

for two functions h(1) and h(2) in L2(D). In this simple case, we characterize the

shift of the scattering resonance ω0 due to the small particle D, which is assumed

for simplicity to be non-plasmonic.

Following the same arguments as those in the previous sections, we seek a non-

trivial v such that

L[v]− c1(ω)
(v,∇h(1))

ω − ω0

∇h(1) − c2(ω)
(v,∇h(2))

(ω − ω0)2
∇h(2) = 0,

or equivalently,

v − c1(ω)
(v,∇h(1))

ω − ω0

L−1[∇h(1)]− c2(ω)
(v,∇h(2))

(ω − ω0)2
L−1[∇h(2)] = 0.

By multiplying the above equation by ∇h(1) and ∇h(2), respectively, and integrating

by parts over D, we obtain the following system of equations:
(v,∇h(1))

(
1− c1(ω)

(L−1[∇h(1)],∇h(1))

ω − ω0

)
= c2(ω)(v,∇h(2))

(L−1[∇h(2)],∇h(1))

(ω − ω0)2
,

(v,∇h(2))

(
1− c2(ω)

(L−1[∇h(2)],∇h(2))

(ω − ω0)2

)
= c1(ω)(v,∇h(1))

(L−1[∇h(1)],∇h(2))

ω − ω0

.

Therefore, the following result holds.

Proposition 7.4. Assume that the decomposition (7.8) holds for ω near ω0. Then

the perturbed scattering resonance problem (due to the particle D) can be reformu-

lated as a search for ω near ω0 such that the matrix1− c1(ω)
(L−1[∇h(1)],∇h(1))

ω − ω0

−c2(ω)
(L−1[∇h(2)],∇h(1))

(ω − ω0)2

c1(ω)
(L−1[∇h(1)],∇h(2))

ω − ω0

1− c2(ω)
(L−1[∇h(2)],∇h(2))

(ω − ω0)2


is singular.

In conclusion, in this chapter we derived the leading-order term in the shift of

scattering resonances of a radiating dielectric cavity due to the presence of small

particles. We were able also to give a characterization of the shift due to small

particles near an exceptional scattering resonance in a specific case. However, de-

veloping a general theory near exceptional frequencies remains a challenging open

problem.
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Chapter 8

Scattering of highly refractive

particles

Nanoscale optics is usually associated with plasmonic resonant structures made of

metals such as gold or silver. Plasmonic resonances of nanoparticles can be treated

as an eigenvalue problem for the Neumann-Poincaré operator, see [8, 17, 18, 21].

However, plasmonic structures suffer from the high losses inherent in metals and

dissipation due to heating. Recent developments in nanoscale optical physics have

led to a new branch of nanophotonics focused on the manipulation of optically in-

duced subwavelength resonances in dielectric nanoparticles with high refractive in-

dices [67, 102, 103]. Resonant high-index dielectric nano-structures form new build-

ing blocks which can be used to realize unique functionalities and novel photonic

devices [67]. Their study has been established as a new research direction in nano-

photonics. Nevertheless, despite strong experimental efforts, mathematical modeling

of resonant high-index nanoparticles remains limited.

In this chapter, we consider a dielectric high-index nanoparticle of arbitrary

shape and characterize its subwavelength resonances in terms of the eigenvalues of

the Newtonian potential associated with its shape. Our formula is closely related

to the one established in [78]. Then, we provide an asymptotic formula for the field

scattered by a dielectric nanoparticle and estimate the scattering enhancement near

its resonant frequencies. We also consider the hybridization phenomenon of a dimer

consisting of high refractive index dielectric nanoparticles.

Our results in this chapter provide a new mathematical framework for the ana-

lysis of resonant dielectric nanoparticles. They allow quick computations of estim-
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ates of resonant frequencies and the design of dielectric nanoparticles that resonate

at specified frequencies. They can also be applied in the design of dielectric metama-

terials [61, 102, 103].

8.1 Derivation of asymptotic estimates

Let D be a domain contained in Rd, for d = 2 or 3, such that D = z+δB, where δ is

its characteristic size, z its location, and B is a smooth bounded domain containing

the origin. Let ω denote the frequency, let ε ≡ τεc+εm inside D and ε ≡ εm outside

D. Here, εc, εm, and τ are positive constants. Let Ein be an incident plane wave

with frequency ω.

Consider the Helmholtz equation
(∆ + ω2ε)E = 0 in Rd,

E − Ein satisfies the Sommerfeld radiation condition.

From

(∆ + ω2εm)(E − Ein) = −ω2τεcEχD in Rd,

where χD is the characteristic function of D, it follows that the following Lippman-

Schwinger representation formula holds:

(E − Ein)(x) = −ω2τεc

ˆ
D

E(y)Γm(x, y;ω)dy for x ∈ Rd, (8.1)

where Γm is the outgoing (i.e., subject to the Sommerfeld radiation condition) fun-

damental solution of ∆ + εmω
2 in free space.

Let the volume integral operator Kω
D be defined by

Kω
D : E ∈ L2(D) 7→ −

ˆ
D

E(y)Γm(x, y;ω)dy ∈ L2(D).

It is well known that, due to the weak singularity of the fundamental solution, Kω
D

is compact. When |τω2εcK
ω
D| < 1, then I − τω2εcK

ω
D is invertible, so (8.1) can be

rewritten as

E(x) = (I − τω2εcK
ω
D)−1[Ein](x) for all x ∈ D, (8.2)

where I denotes the identity operator.

Assume that the characteristic size δ of the particle D is much smaller than the

wavelength 2π/(ω
√
εm), and let ω → 0. The subwavelength resonance problem is

98



8. Scattering of highly refractive particles

then to find an ω ∈ C close to 0 such that (I − τω2εcK
ω
D)−1 is singular, see [24].

Such an ω would be a subwalength resonance for the high refractive index dielectric

particle D.

By expanding in Taylor series the fundamental solution we obtain the following

result.

Lemma 8.1. Let d = 3. Let K
(0)
D be the Newtonian potential on D, i.e., the operator

defined by

K
(0)
D [E](x) = −

ˆ
D

E(y)Γ0(|x− y|) dy for x ∈ D.

The operator Kω
D can be rewritten as

Kω
D =

∞∑
i=0

ωiK
(i)
D , (8.3)

where the series converges in operator norm if ω is small enough.

Let Ai = τω2εcK
(i)
D . By expanding in Neumann series, we have(

I − A0 −
∞∑
i=1

ωiAi

)−1

=
(
I − (I − A0)−1

∞∑
i=1

ωiAi

)−1

(I − A0)−1

=
∞∑
k=0

(
(I − A0)−1

∞∑
i=1

ωiAi

)k
(I − A0)−1

= (I − A0)−1 + (I − A0)−1ωA1(I − A0)−1 +O(ω3). (8.4)

Recall that K
(0)
D : L2(D) → L2(D) is a compact, self-adjoint operator. Let λ0

be an eigenvalue of K
(0)
D associated with the eigenfunction φ0. We remark that the

eigenvalues of K
(0)
D are positive. For the analysis of the spectrum of the Newtonian

potential, we refer the reader, for instance, to [62].

Let ω0 be a frequency at which I − A0 becomes singular. In particular, let

ω0 = 1/
√
τεcλ0. (8.5)

Note that ω0 is small only for τ large enough. This shows that subwavelength

resonances occur only for particles with high refractive indices.

For ω near ω0, we have, by a pole-pencil operator decomposition, that

(I − A0)−1[ψ] =
(ψ, φ0)φ0

1− τω2εcλ0

.

Therefore considering only the first two terms in the expansion (8.4), we obtain from

(8.2) that an approximation of the resonance must satisfy

(Ein, φ0)φ0

1− τω2εcλ0

+ τω3εc
(K

(1)
D [φ0], φ0)

(1− τω2εcλ0)2
(Ein, φ0)φ0 = 0,
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8.1. Derivation of asymptotic estimates

where ( ·, · ) denotes the scalar product on L2(D).

Therefore we have the following approximation for the subwavelength resonance.

Proposition 8.2. Let d = 3. Then, the O(ω4)-approximation of the subwavelength

resonant frequency ωres of the dielectric particle D satisfies

1− τω2
resεcλ0 = −τω3

resεc(K
(1)
D [φ0], φ0).

Note that, in three dimensions,

K
(1)
D [φ] = −i

√
εm

4π

ˆ
D

φ dy for all φ ∈ L2(D).

Therefore, ωres satisfies

1− τω2
resεcλ0 =

iτ

4π
ω3

res

√
εmεc

(ˆ
D

φ0 dy
)2

.

Since ωres is close to ω0, by approximating ω3
res ' ω3

0, and since by definition τεcλ0 =

1/ω2
0, we obtain

1− ω2
res

ω2
0

=
iτ

4π
ω3

0

√
εmεc

( ˆ
D

φ0 dy
)2

.

Proposition 8.3. Let d = 3. Let ω0 be defined by (8.5), where λ0 is an eigenvalue

of the Newtonian potential K
(0)
D . Assume that ω0 � 1. Then, an approximation of

the subwavelength resonant frequency of the dielectric particle D can be computed as

ωres = ω0 −
i

8π

ω2
0

λ0

√
εm

( ˆ
D

φ0 dy
)2

.

By using the Lippman-Schwinger representation formula (8.1), we can also re-

write

E(x)− Ein(x) ' − ω2τεcΓm(x− z;ω)
(Ein, φ0)(

´
D
φ0)

1− τω2εcλ0

+ τω3εc
(K

(1)
D [φ0], φ0)(Ein, φ0)(

´
D
φ0)

(1− τω2εcλ0)2
.

By plugging the expression for ωres from Proposition 8.2 we obtain the following

approximation.

Proposition 8.4. For ω near the resonant frequency ωres, the following monopole

approximation of the dielectric nanoparticle D holds:

E(x)−Ein(x) ' −
λ0

(ω2
res

ω2
− 1
)
− i

√
εm

4π
(
´
D
φ0)2

(
ω − ω3

res

ω2

)
(
λ0

(ω2
res

ω2
− 1
)
− i

√
εm

4π
(
´
D
φ0)2

ω3
res

ω2

)2
(Ein, φ0)L2(D)Γm(x−z;ω),

(8.6)

for |x− z| � 2π/(ω
√
εm).
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8. Scattering of highly refractive particles

Now, we consider the two-dimensional case. From the asymptotic expansion of

the Hankel function H
(1)
0 of the first kind of order zero:

H
(1)
0 (s) =

2i

π

∞∑
m=0

(−1)m
s2m

22m(m!)2

(
log(γs)−

m∑
j=1

1

j

)
,

where 2γ = exp(γ̃ − iπ/2) with γ̃ being the Euler-Mascheroni constant (see, for

instance, [20]), it follows that

Kω
D[E] = − 1

2π
(log(ωγ))

ˆ
D

E(y) dy +K
(0)
D +O(ω2 logω) as ω → 0, (8.7)

where K
(0)
D is the Newtonian potential in dimension two, that is, the operator defined

on L2(D) by

K
(0)
D [E](x) =

ˆ
D

E(y)Γ(x− y) dy for x ∈ D,

with Γ being the fundamental solution of the Laplacian in R2.

Expanding Kω
D as in (8.4) and following the same calculations, we obtain the fol-

lowing characterization of subwavelength resonant frequencies in the two-dimensional

case.

Proposition 8.5. Let d = 2. Then, the o(ω4)-approximation of the subwavelength

resonant frequencies ωres of the dielectric particle D satisfies

1− τω2
resεcλ0 −

τεc
2π

ω2
res log(γωres)

( ˆ
D

φ0 dy
)2

= O(ω4 logω).

8.2 Hybridization of subwavelength resonances for

a dimer of dielectric nanoparticles

Consider a dimer of two identical particles D1 and D2 with the same dielectric

parameter as in the above section. Then the field E − Ein scattered by the two

particles has the following representation formula:

(E−Ein)(x) = −ω2τεc

(ˆ
D1

E(y)Γm(x−y;ω)dy+

ˆ
D2

E(y)Γm(x−y;ω)dy
)
. (8.8)

Define the operators Kω
Di

and Rω
Di,Dj

for i, j = 1, 2, by

Kω
Di

: E|Di ∈ L2(Di) 7→ −
ˆ
Di

E(y)Γm(x− y;ω)dy
∣∣
Di
∈ L2(Di),

and

Rω
Di,Dj

: E|Di ∈ L2(Di) 7→ −
ˆ
Di

E(y)Γm(x− y;ω)dy
∣∣
Dj
∈ L2(Dj).
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8.2. Hybridization of subwavelength resonances for a dimer

Then, from (8.8) we obtain the following system of operator equations:1− τω2εcK
ω
D1
−τω2εcR

ω
D2,D1

−τω2εcR
ω
D1,D2

1− τω2εcK
ω
D2

E|D1

E|D2

 =

Ein|D1

Ein|D2 .

 (8.9)

The scattering resonance problem is to find ω such that the operator in (8.9) is

singular. Note that here we have a coupled system of subwavelength resonators.

As in [9, 10], the subwavelength resonant frequency ωres is hybridized into two sub-

wavelength resonant frequencies ω±res approximately given by

ω±res = ω0 ±
1

2
τω3

0εc

√
(Rωres

D1,D2
[φ

(1)
0 ], φ

(2)
0 )(Rωres

D2,D1
[φ

(2)
0 ], φ

(1)
0 ), (8.10)

where φ
(i)
0 , for i = 1, 2, is the eigenfunction associated to the eigenvalue λ0 of the

Newtonian potential of Di. Moreover, in the far-field, the dimer of dielectric particles

behaves as the sum of a monopole and a dipole.

In conclusion, in this chapter we provided a mathematical model of resonant

high-index nanoparticles. Our results can be used for the analysis, design, and

manipulation of resonant dielectric nano-structures and their use as metamaterials.

Following [11], we believe that formula (8.6) can be generalized to the time-domain,

in order to characterize the temporal response of resonant dielectric nanoparticles

and accelerate the computations of the responses of subwavelength dielectric reson-

ators [42, 101].
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