Connected and Automated Technology changing Urban Logistics

NSL Colloquium Current Challenges for Logistics 14th May 2019

Mireia Roca-Riu: Short Bio

Part I: Parking Assignment Problem

Part II: Dynamic Delivery Parking Spots

Part I: Parking Assignment Problem

Part II: Dynamic Delivery Parking Spots

•

Part I: Parking Assignment Problem Part II: Dynamic Delivery Parking Spots

Part I: Parking Assignment Problem Part II: Dynamic Delivery Parking Spots

Part I: Parking Assignment Problem

Part II: Dynamic Delivery Parking Spots

Minimize penalties

Optimize Social Welfare

Need assumptions on carrier's behavior

Valuation from players

Outcome rule

Payment rule

No assumptions are needed

[Roca-Riu, Fernández, and Estrada]. "Parking slot assignment for urban distribution: models and formulations." OMEGA - The International Journal of Management Sciences, 57(B): 157-175, 2015.

[Yang, Roca-Riu, and Menéndez]. "An Auctionbased Approach for Prebooked Urban Logistics Facilities" OMEGA - The International Journal of Management Sciences [In Press]

Minimize penalties

Table 1Comparison of the auction and the penalty formulations for heterogeneous carriers.

	Penalty						
	formulation	formulation					
Information	No		Some	Full			
instance	trapezoid	truncated trapezoid	binary				
1	2547 (-20%)	2843 (-10%)	2834 (-11%)	3120 (-2%)	3189		
2	1739 (-17%)	1774 (-15%)	1758 (-16%)	1932 (-7%)	2097		
3	1645 (-7%)	1671 (-5%)	1646 (-7%)	1755 (0%)	1771		
5	2840 (-14%)	2831 (-14%)	2754 (-17%)	3074 (-7%)	3326		
6	1845 (-19%)	1838 (-19%)	1870 (-17%)	2000 (-12%)	2280		
7	2435 (-9%)	2443 (-9%)	2466 (-8%)	2601 (-3%)	2686		
8	1192 (-4%)	1198 (-4%)	1184 (-5%)	1253 (0%)	1253		
12	1822 (-12%)	1842 (-12%)	1710 (-18%)	1951 (-6%)	2094		
13	1906 (0%)	1912 (0%)	1890 (-1%)	1919 (0%)	1920		
15	687 (-3%)	687 (-3%)	668 (-6%)	714 (0%)	714		
16	2394 (-6%)	2376 (-6%)	2338 (-8%)	2547 (0%)	2552		
17	3008 (-3%)	2999 (-3%)	2984 (-4%)	3110 (0%)	3111		
18	3710 (-11%)	3742 (-11%)	3656 (-13%)	4084 (-3%)	4211		
23	3557 (-10%)	3558 (-10%)	3612 (-9%)	3930 (-1%)	3970		
24	1301 (-15%)	1306 (-15%)	1294 (-16%)	1465 (-5%)	1542		
25	1670 (-1%)	1670 (-1%)	1664 (-1%)	1689 (0%)	1689		
26	2103 (-10%)	2114 (-10%)	1996 (-15%)	2260 (-4%)	2354		
28	1225 (-7%)	1219 (-7%)	1236 (-6%)	1319 (0%)	1319		
29	2900 (-1%)	2892 (-1%)	2876 (-2%)	2935 (0%)	2935		
30	537 (-11%)	575 (-5%)	580 (-4%)	605 (0%)	605		
31	2138 (0%)	2142 (0%)	2138 (0%)	2159 (0%)	2159		
32	2855 (-9%)	2838 (-10%)	2712 (-14%)	3124 (0%)	3156		
33	1331 (-8%)	1349 (-7%)	1280 (-12%)	1437 (-1%)	1457		
35	3361 (-10%)	3369 (-10%)	3376 (-9%)	3714 (0%)	3750		
36	1489 (-15%)	1498 (-14%)	1372 (-21%)	1703 (-3%)	1757		
38	3943 (-2%)	3950 (-2%)	3906 (-3%)	4063 (0%)	4063		
39	2307 (-15%)	2350 (-13%)	2188 (-19%)	2587 (-5%)	2723		
40	3483 (-10%)	3533 (-9%)	3364 (-13%)	3817 (-1%)	3891		
41	1403 (-10%)	1405 (-10%)	1330 (-15%)	1513 (-3%)	1572		
42	4708 (-6%)	4754 (-5%)	4648 (-7%)	5021 (0%)	5025		
43	2841 (-4%)	2824 (-4%)	2800 (-5%)	2968 (0%)	2968		
44	5597 (-11%)	5607 (-11%)	5400 (-14%)	6038 (-4%)	6304		
45	6054 (-11%)	6014 (-11%)	5978 (-12%)	6655 (-2%)	6825		
47	1361 (-1%)	1361 (-1%)	1346 (-2%)	1380 (0%)	1380		
49	668 (0%)	668 (0%)	636 (-5%)	670 (0%)	670		
52	838 (-1%)	835 (-1%)	832 (-2%)	849 (0%)	849		
53	635 (-4%)	635 (-4%)	582 (-12%)	668 (0%)	668		
59	2101 (-2%)	2101 (-2%)	2052 (-5%)	2163 (0%)	2163		
median	` ′	` '	` '	, ,	2222		
median	2102 (-5%)	2108 (-5%)	2024 (-8%)	2161 (-2%)	LLLL		

Optimize Social Welfare

Valuation from players

Outcome rule

Payment rule

Optimal online readjustment with uncertain arrival times

Table 5 Performance of the online readjustment formulation.

Uncertainty	Parking	Valuation	Parking	Without	Online	Offline
Level	Duration		Spot	Readjustment	Readjustment	Optimum
Moderate	10	Uniform	3	640	860 (34%)	860 (0%)
			6	1267	1732 (37%)	1732 (0%)
		Peak	3	620	793 (28%)	793 (0%)
			6	1230	1622 (32%)	1624 (0%)
	20	Uniform	3	632	778 (23%)	781 (0%)
			6	1251	1625 (30%)	1631 (0%)
		Peak	3	489	580 (19%)	583 (0%)
			6	963	1220 (27%)	1226 (0%)
	30	Uniform	3	536	631 (18%)	637 (1%)
			6	1056	1327 (26%)	1339 (1%)
		Peak	3	381	432 (14%)	438 (1%)
			6	750	926 (23%)	934 (1%)

•

Part I: Parking Assignment Problem Part II: Dynamic Delivery Parking Spots

Multi-use lanes

n lanes per direction
L length of the link
L₁, L₂ distance UI/DI
q arrival flow rate (small turn)
c, g cycle, green signal length
green wave coordination
S, K_J saturation flow, jam density
β, merging factor

Minimum distance that guarantees that no traffic spillover is caused to other links

d₁, d₂ minimum distance to UI/DI

Distance to Down/Upstream Intersection (UI/DI)

Validation & evaluation with simulation

- 1. Validate the results of the analytical model in more realistic scenarios
- 2. Evaluate the performance of DDPS through comparison with illegal delivery parking

Data
2 lane-link
120m length of the link
35s, 70s, cycle, green signal length, green wave coordination

Validation & evaluation with simulation

Validation Scenarios

- V1. DDPS according to analytical model
- V2. One lane fully blocked (multi-use lane)

Validation & evaluation with simulation

Evaluation Scenarios

- S0. Random illegal parking (current situation)
- S1. DDPS
- S2. DDPS with pre-booking

Validation & evaluation with simulation

[Roca-Riu, Cao, Dakic, Menendez] Designing Dynamic Delivery Parking Spots in Urban Areas to Reduce Traffic Disruptions. Journal of Advanced Transportation, 2017.

Part I: Parking Assignment Problem Part II: Dynamic Delivery Parking Spots

Swiss Post, 2017. Switzerland. Blood Samples

Siroop, 2017. Zürich. E-commerce

Wing, 2019. Australia. Meals, beverages & others Finland. ??

Flytrex, 2018. Iceland. Food, groceries, e-commerce?

Strengths:

- Very fast connection
- Environmental impact
- Low cost
- Accessibility

Weaknesses:

- Small packages & limited range
- Regulations BVLOS
- Launching/Landing
- Data protection
- Noise

Chauhan, Unnikrishnan, Figliozzi, 2019. "Maximum coverage capacitated facility location problem with range constrained drones" Transportation Research Part C: Emerging Technologies, 99, 1-18.

Cost

D'Andrea, 2014. Guest Editorial Can Drones Deliver?, IEEE Transactions on Automation Science and Engineering, 11 (3) 647-648.

CO₂ Emissions

Goodchild, Toy, 2018. Delivery by drone; An evaluation of unmanned aerial vehicle technology in reducing CO2 emissions in the delivery service industry, Transportation Research Part D: Transport and Environment, 61, 58-67.

Figliozzi, 2017. Lifecycle modeling and assessment of unmanned aerial vehicles CO2 emissions, Transportation Research Part D: Transport and Environment, 57, 251-261

"Cargo that it's, small, light, valuable and timesensitive, where cost is much less of a factor"

Wang, 2016. The economics of Drone Delivery, https::\\spectrum.ieee.org\automation\robotics\drones\the-economics-of-drone-delivery".

Overall View

Parking Slot Assignment Problem

Dynamic Delivery Spots

Automation in Urban Logistics

Mireia Roca-Riu 14th June 2019

Acknowledgements: Hasler Foundation Images from <u>freepik.com</u> & <u>rawpixel.com</u>

