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Abstract

Molecular systems biology constitutes a holistic approach towards understanding mech-
anisms of the cell functioning. Cell signaling is one of the examples of self regula-
tion mechanisms to perform functional roles such as proliferation, stress or apoptosis.
Aberrant signaling processes can lead to diseases such as cancer, autoimmunity, and
diabetes. Therefore, understanding the mechanisms of signaling in general as well as
specific changes in the context of the disease, is vital for the design of novel treatment
strategies.

Heterogeneity of cancer in terms of genetic mutations is a well known cause of treat-
ment resistance. Recent studies in cancer cell lines have demonstrated a crucial role
of non-genetic origins of cancer heterogeneity, for example fractional killing of sister
cells in TRAIL-induced apoptosis. Various modeling approaches have been proposed to
investigate this phenomenon. However, apoptosis is a process with many components
and non-trivial dynamics, which makes its modeling a particularly challenging task; in
particular, to date no model has provided a satisfactory explanation of fractional killing.

Studying responses that affect only a part of an apparently homogeneous population
- as in the case of fractional killing - requires monitoring cellular properties and charac-
teristics at the single cell level. Recently developed multi-parametric high throughput
technologies for single cell measurements, such as mass cytometry, allow the monitor-
ing of 30+ proteins at the single cell level for up to millions of individual cells in a
single experiment, and thereby enables us to learn detailed descriptions, i.e. models
of this process. However, mass cytometry is a destructive technique, which therefore
doesn’t provide time series information, but rather time dynamics acquired by disjoint
snapshots.

In this thesis we focus on computational approaches towards discovering causal non-
genetic mechanisms of cell-to-cell variability in protein signaling from mass cytometry
snapshots. In particular, we focus on mathematical models of cell variability and compu-
tational methods aimed to overcome two major limitations of mass cytometry to reverse
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Abstract

engineer these models from data: (a) lack of temporal connection between the cells in
different snapshots; (b) partially observed system due to a limited panel of measured
markers.

In Chapter 2 we present Reactionet lasso, a regression-based gradient matching ap-
proach for stochastic reaction networks, that is capable of partial structure learning for
systems of arbitrary size. We assessed the structure learning capabilities of the Reac-
tionet lasso on synthetic data for systems of different size and complexity. Reactionet
lasso achieves structure learning for problem instances hundreds of orders of magnitude
larger than previously reported. This approach opens the prospect of obtaining quan-
titative and predictive reaction models in many areas of biology and medicine, and in
particular areas such as cancer biology, which are characterized by significant system
alterations and many unknown reactions.

Chapter 3 demonstrates application of Reactionet lasso towards understanding molec-
ular mechanisms of fractional killing in TRAIL-induced apoptosis. In this chapter we
address both problems of destructive measurements and partially observed system by
a combination of optimal transport and Reactionet lasso (REALmatch). REALmatch
was applied to a mass cytometry time course study of TRAIL-induced apoptosis and
derived mechanistic insights into fractional killing. The proposed mechanisms were eval-
uated through functional inhibitor experiments that perturb key pathways in identified
network.

While the focus of chapters 2 and 3 is on the discovery of specific mechanisms of protein
signaling, Chapter 4 attempts to address a more general question of modeling of a
signaling system as a whole. In particular, we raise a question of a necessity of acquiring
a precise mechanistic model to answer a question of "why?" and "what if?" in the
context of protein signaling. We propose to model signaling mechanisms with dynamic
Structural Equations Models, and introduce MassCaRA, a simple structure learning
approach to learn the model from single-cell mass cytometry snapshots. We demonstrate
the performance MassCaRA for ab initio reconstruction of signaling pathway in the
presence of latent variables.

To summarize, in this thesis we propose several different computational approaches
towards understanding causal mechanisms of cell variability in protein signaling from
mass cytometry snapshots. The proposed methods are generic and could be in principle
applied to any signaling system. However, we suggest that REALmatch is better suitable
for systems with a bi-modal outcome like TRAIL-induced apoptosis, while MassCaRA
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should give a better performance on the systems with a rather homogeneous behavior.
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Zusammenfassung

Die Molekularsystembiologie stellt einen ganzheitlichen Ansatz zum Verständnis der Me-
chanismen der Zellfunktion dar. Die Zellsignalisierung ist eines der Beispiele für Selbstre-
gulierungsmechanismen zur Erfüllung funktionaler Funktionen wie Proliferation, Stress
oder Apoptose. Unregelmäßige Signalprozesse können zu Krankheiten wie Krebs, Au-
toimmunität und Diabetes führen. Daher ist das Verständnis der Mechanismen der Si-
gnalübertragung im Allgemeinen sowie spezifischer Veränderungen im Zusammenhang
mit der Erkrankung von entscheidender Bedeutung für die Entwicklung neuer Behand-
lungsstrategien.

Die Heterogenität von Krebs im Hinblick auf genetische Mutationen ist eine bekannte
Ursache für die Resistenz gegen die Behandlung von Krebs. Jüngste Studien an Krebs-
zelllinien haben gezeigt, dass die nicht-genetische Herkunft der Krebsheterogenität eine
entscheidende Rolle spielt, z.B. der Log-cell-kill von Schwesterzellen bei der TRAIL-
induzierten Apoptose. Verschiedene Modellierungsansätze wurden vorgeschlagen, um
dieses Phänomen zu untersuchen. Allerdings ist die Apoptose ein Prozess mit vielen
Komponenten und nicht-trivialer Dynamik, was ihre Modellierung zu einer besonders
anspruchsvollen Aufgabe macht; insbesondere hat bisher noch kein Modell eine zufrie-
denstellende Erklärung für den Log-cell-kill geliefert.

Die Untersuchung von Reaktionen, die nur einen Teil einer scheinbar homogenen Popu-
lation betreffen - wie im Falle des Log-cell-kill - erfordert die Überwachung der zellulären
Eigenschaften und Merkmale auf Einzelzellenebene. Neu entwickelte multiparametrische
Hochdurchsatztechnologien für Einzelzellmessungen, wie z.B. die Massenzytometrie, er-
möglichen die Überwachung von 30+ Proteinen auf Einzelzellenebene für bis zu Millionen
von Einzelzellen in einem einzigen Experiment und ermöglichen es uns so, detaillierte
Beschreibungen, d.h. Modelle dieses Prozesses zu erlernen. Die Massenzytometrie ist je-
doch eine zerstörerische Technik, die daher keine Zeitreiheninformationen liefert, sondern
Zeitdynamiken, die durch disjunkte Schnappschüsse gewonnen werden.

In dieser Arbeit konzentrieren wir uns auf computergestützte Ansätze zur Entdeckung

x



Zusammenfassung

kausaler nicht-genetischer Mechanismen der Zell-zu-Zell-Variabilität in der Proteinsigna-
lisierung aus Schnappschüssen der Massenzytometrie. Insbesondere konzentrieren wir
uns auf mathematische Modelle der Zellvariabilität und Berechnungsmethoden, die dar-
auf abzielen, zwei große Einschränkungen der Massenzytometrie zu überwinden, um die-
se Modelle aus Daten zu rekonstruieren: (a) fehlende zeitliche Verbindung zwischen den
Zellen in verschiedenen Momentaufnahmen; (b) teilweise beobachtetes System aufgrund
einer begrenzten Anzahl von gemessenen Markern.

In Kapitel 2 stellen wir Reactionet lasso vor, einen regressionsbasierten Gradienten-
abgleichsansatz für stochastische Reaktionsnetzwerke, der in der Lage ist, strukturiertes
Lernen für Systeme beliebiger Größe durchzuführen. Wir bewerteten die strukturierten
Lernfähigkeiten des Reactionet Lasso an synthetischen Daten für Systeme unterschiedli-
cher Größe und Komplexität. Reactionet lasso erreicht strukturiertes Lernen für Proble-
me, die Hunderte von Größenordnungen größer sind als bisher berichtet. Dieser Ansatz
eröffnet die Möglichkeit, quantitative und prädiktive Reaktionsmodelle in vielen Berei-
chen der Biologie und Medizin zu erhalten, insbesondere in der Krebsbiologie, die sich
durch signifikante Systemänderungen und viele unbekannte Reaktionen auszeichnen.

Kapitel 3 demonstriert die Anwendung von Reactionet lasso zum Verständnis der
molekularen Mechanismen des des Log-cell-kill bei der TRAIL-induzierten Apoptose.
In diesem Kapitel behandeln wir sowohl Probleme zerstörerischer Messungen als auch
teilweise beobachtete Systeme durch eine Kombination aus optimalem Transport und
Reactionet lasso (REALmatch). REALmatch wurde auf eine massenzytometrische Zeit-
verlaufsstudie zur TRAIL-induzierten Apoptose angewendet und daraus mechanistische
Erkenntnisse über den Log-cell-kill abgeleitet. Die vorgeschlagenen Mechanismen wurden
durch funktionelle Inhibitorexperimente evaluiert, die Schlüsselwege im identifizierten
Netzwerk stören.

Während der Schwerpunkt der Kapitel 2 und 3 auf der Entdeckung von spezifischen
Mechanismen der Proteinsignalisierung liegt, versucht Kapitel 4, eine allgemeinere Fra-
ge der Modellierung eines Signalsystems als Ganzes zu behandeln. Insbesondere stellen
wir die Frage nach der Notwendigkeit, ein präzises mechanistisches Modell zu erwerben,
um die Frage nach “Warum?” und “Was, Wäre, Wenn?” im Zusammenhang mit der
Proteinsignalisierung zu beantworten. Wir schlagen vor, Signalmechanismen mit dyna-
mischen Strukturgleichungsmodellen zu modellieren und stellen MassCaRA vor, einen
einfachen strukturierten Lernansatz, um das Modell aus Einzelzell-Massenzytometrie-
Schnappschüssen zu lernen. Wir demonstrieren die Ergebnisse von MassCaRA für die
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Zusammenfassung

ab initio Rekonstruktion des Signalwegs in Gegenwart eines Konstrukts.

Zusammenfassend lässt sich sagen, dass wir in dieser Arbeit mehrere verschiedene
Berechnungsansätze zum Verständnis der kausalen Mechanismen der Zellvariabilität in
der Proteinsignalisierung aus Schnappschüssen der Massenzytometrie vorschlagen. Die
vorgeschlagenen Methoden sind generisch und könnten prinzipiell auf jedes Signalisie-
rungssystem angewendet werden. Wir schlagen jedoch vor, dass REALmatch besser für
Systeme mit einem bimodalen Ergebnis wie TRAIL-induzierte Apoptose geeignet ist,
während MassCaRA eine bessere Leistung auf den Systemen mit einem eher homogenen
Verhalten bieten sollte.

xii







Part I.

Introduction and Background



1 Introduction

We have a large reservoir of engineers (and scientists) with a
vast background of engineering know how. They need to learn
statistical methods that can tap into the knowledge. Statistics used
as a catalyst to engineering creation will, I believe, always result
in the fastest and most economical progress. . .

– George Box, 1992

The relatively young field of Systems Biology emerged from the concept of interpret-
ing a cell as a "complex system". Essentially Systems Biology aims at studying how
relationships between a system’s parts give rise to the collective behaviour of a cell (e.g.
proliferation, apoptosis, etc.). Another important question addressed by Systems Bi-
ology is how changes in the systems components lead to a aberrant behavior such as
disease. In contrast, classical molecular biology is centered around gathering "facts"
about the cell such as genome sequences, protein properties, etc. However, these facts
alone are not enough to understand the complex behavior. The common analogy in
systems biology is with a car: knowing every detail about of the component parts of the
car will not help you to construct a working vehicle, unless you know how they should
be assembled together. Even then, in order to make it drive, you also need to know
which "button to turn on". One of the most important applications of understanding
molecular biology at a systems level is drug discovery and treatment optimization [1, 2],
which in the car analogy is this "button".

State of the art research in systems biology clearly distinguishes two modeling ap-
proaches: (1) knowledge discovery (data-mining) and (2) simulation of the system from
a mechanistic model to predict its behavior and potentially validate the prediction with
experiments [2]. Mechanistic approaches (Section 1.0.1) constitute the most compre-
hensive modeling approach to understand systems behavior. However, typically the
structure of mechanistic models is assumed to be known. When this is not the case,
data-mining approaches can be helpful. Data-mining approaches are typically centered

1



Chapter 1

around statistical methods (Section 1.0.2) and attempt to discover new potential causal
interactions not necessarily connecting them into a unified network. We discuss ad-
vantages and challenges of both approaches, and their role in systems modeling, in the
sections below.

Systems biology research and in particular its computational approaches are largely
driven by data. The majority of methods to quantify components of the cell (e.g. mRNA,
proteins) rely on bulk measurements. Therefore, historically, since the measured data
was dictating the modeling approach, the majority of research efforts were invested into
modeling deterministic dynamics systems, by means of Ordinary Differential Equations
[3]. However, these models could only capture the average behavior of cells in a heteroge-
neous population. Development of single-cell technologies such as flow cytometry allowed
to unlock a new layer of modeling: quantitatively assessing heterogeneity. Stochasticity
was shown to play a crucial role in all types of molecular systems from stochastic gene
expression [4–6] to signaling networks [7].

The development of mass cytometry was one of the significant "break-throughs" in
addressing the problem of modeling cell-to-cell variability [8, 9]. Mass cytometry is a
single cell proteomic technique that expands conventional flow cytometry approaches,
permitting of multi-parametric monitoring of 30+ proteins at the single cell level for up
to millions of individual cells in a single experiment. One drawback of this technology is
that like any cytometry measurement technique it is destructive. Temporal information
about the processes is therefore only partially preserved by measuring snapshots at
different times after stimulation.

From the modeling point of view there are two major sources of cell-to-cell variability:
intrinsic and extrinsic [10]. Intrinsic variability is the noise due to the stochastic nature
of chemical kinetics. In mechanistic modeling this source of noise is modeled with
Chemical Master Equation by means of Stochastic Differential Equations [11]. Extrinsic
noise it typically referred to as heterogeneity in the cell population, such as variations
in total protein concentration, in cell volume and cell cycle stage [12]. In terms of
mechanistic modeling this source of variability could be modeled in two ways: random
initial conditions and variability reaction rates.

2



Chapter 1

1.0.1. Mechanistic modeling

Mechanistic modeling was the state of the art long before the development of single-cell
technologies. It has its roots in Control Systems theory, and provides a comprehensive
toolkit to study systems [13, 14]: their structure, dynamics, control and design.

Systems structure. The first step in mechanistic modeling is defining network struc-
ture, such as gene regulatory networks or signaling pathway diagrams. The development
of a unified language for representing a structure of a biological network (Systems Bi-
ology Markup Language) facilitated a rich collection of gene interaction networks and
biochemical pathways [15], making them easily accessible. Many software were developed
to read out the models into graphical format (diagram), or to simulate the corresponding
dynamic system.

Given a known model one of the main problems in mechanistic modeling is parameter
estimation. While parameter estimation from time-series experiments of deterministic
systems is already a standard procedure [16], efficient modeling of biological stochastic
systems is still a challenge, due to the destructive nature of cytometry experiments
[17, 18]. However, an efficient approach was proposed for single-cell time lapse data [5].
Another challenge in parameter inference in general is practical identifiability, sensitivity
of the parameter with respect to the observed data, which may limit identifiability of
the model from data [19].

In the case when the model structure is not known, one might want to reverse engineer
it from data. Here the state of the art approach is model selection: several plausible
structures are enumerated, fit to data, and the best fit is chosen [20, 21]. Though this
approach is the most widely used among biologists, it is not scalable to large systems
(>20 components) and many unknown interactions.

Systems design. Optimal experiment design has been demonstrated to successfully
address the problem of practical identifiability for deterministic [22, 23] and stochastic
systems [24, 25]. However, topological identifiability of an arbitrary large system still
remains an open question [26].

Systems dynamics. Knowing the structure of the model the next step in the systems
analysis typically includes the study of dynamics. One way to understand the behavior
of the system is to study its sensitivity under changes of parameters [27, 28]. Typically
this problem is addressed by simulations. Simulation of a deterministic biological system
directly from an SBML file is now a part of routine pipeline and incorporated in the

3
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majority of standard software. Simulations of stochastic systems are more complicated
in their nature. The Stochastic Simulations Algorithm [29] is the state of the art algo-
rithm for simulation of a stochastic reaction network. However, its performance might
be too slow for large scale dynamic networks. A number of fast approximations were
recently proposed: tau-leaping [30], finite state projection algorithm [31], linear noise
approximation [32].

Systems control. Modeling drug discovery is largely based on principles from control
theory for deterministic systems. Advances were also made in the control of stochastic
systems: "in silico" feedback control was configured to achieve precise and robust set
point regulation of gene expression [33].

The described properties are highly desirable for systems biology modeling, but are
largely precluded by the complexity of structure learning.

1.0.2. Statistical approaches for hypothesis generation

The second pillar of computational systems biology is data mining: the application of
statistical and machine learning methods to gather facts from data for complex systems.
Development of the aforementioned high-throughput single-cell technologies such as flow
and mass cytometry, opened many opportunities for transferring statistical and machine
learning algorithms to biological applications. In particular, statistical approaches come
in hand for a difficult ill-posed problem of learning topology of a dynamic system: there
were numerous attempts to exploit statistical concepts to generate hypothesis about
chemical reactions. Below we give an overview on causal structure learning from snapshot
data. As we dismissed in Section 1.0.1, one of the caveats of cytometry techniques is
the lack of temporal connection between the snapshots; detailed discussion of causal
discovery from time series [34, 35] is therefore beyond the scope of this thesis.

Probabilistic graphical models [36] constitute a popular choice when attempting to
generate hypothesis about biochemical reactions. Friedman first proposed to analyze
gene expression data from DNA microarrays using Bayesian network[37]. Later Sachs
et al. [38] showed promising results on the application of Bayesian Networks towards
signaling. Bayesian Networks represent conditional dependencies and independencies in
the data. In some cases directions of edges in Bayesian Networks coincide with true
causal directions, however this is not true in a general case [39].

Extension of Bayesian Networks to tackle causality problem was proposed by means of

4



Chapter 1

Causal Bayesian Networks [39]. The notion of causation is defined in terms of interven-
tions: if A is causal to B, intervening on A would lead to an effect on B. Therefore, the
theory of causal networks relies on learning from both observational and interventional
data. In case when only observational data is available, conclusions about directions
are limited to the Markov equivalence class of models: only some edges can be directed
while orientation of the rest remains ambiguous [40]. To resolve the remaining edges,
interventional experiments are needed. In biological settings, such interventions are gene
knockouts for gene regulatory networks [41] inference or molecular inhibitors for signal-
ing systems[42]. Recently, a new type of interventions became available for signaling
systems: interventions by transient transfection [43].

While causal inference in the presence of interventional data demonstrated significant
improvement, it is still limited by the assumption of a network to be a directed acyclic
graph. The Sparse Bayesian algorithm, a Byaesian modeling approach of a steady-
state distribution of a dynamic system, was proposed to overcome this limitation to
infer gene regulatory interactions from gene expression microarrays and gene-knockout
interventions[44].

Sachs et al. [45] first raised the question of the importance of dynamics in statistical
modeling from single-cell cytometry snapshots data. All the models described above as-
sume that the system is at a steady-state. But as Sachs pointed out, a signaling system is
never truly in a steady state. The authors demonstrate how to use Generalized Bayesian
networks (GBNs)[46, 47], a generalization of Bayesian Networks to accommodate cycles,
coupled with small molecular inhibitors.

Recently Triantafillou et al. demonstrated how advances in causal structure learning
methods from interventional data, under the assumption of causal Bayesian Networks,
could be applied to mass cytometry data [48]. Based on the results of their study,
the authors once again stress that noise, confounders and feedback cycles are still open
questions for the successful application of automatic causal discovery towards biology.

Another approach for causal modeling was recently proposed by using Structural
Equation Models (SEMs) [49]. Using large-scale gene deletion experiments in yeast,
the authors aim to predict the effect of a new gene knockout or knockdown on a phe-
notype of interest. Compared to the previously described models, this is already a first
step towards bridging statistical models with comprehensive understanding of system’s
behaviour. Bongers et al. demonstrated relation of steady-state of a dynamic system
and SEMs [50]. Although this theoretical finding did not show practical applications, yet
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we consider it as an important step towards bridging statistical models and mechanistic
ones.

1.0.3. Thesis contributions

Generate	
hypothesis	about	
individual	
reac4ons	

Predict	under	
changing	distr.	or	
interven4on	

Answer	
counterfactual	
ques4ons	

Obtain	biological	
insight	

Learn	from	data	

Mechanis4c	
Model:	
determinis4c	and	
stochas4c	reac4on	
networks	

yes	 yes	 yes	 Yes	
	
	
	
Chapter	3	

?	
	
	
	
Chapter	2	

Structural	Causal	
Model	

yes	 yes	 yes	 ?	
	

?	
	
Chapter	4	

Causal	Bayesian	
Networks	

yes	 yes	 no	 ?	 ?	

Sta4s4cal	Model	
(PPI	networks)	

yes	 no	 no	 no	 yes	

Figure 1.1.: A simple taxonomy of models from Peters et al. in the light of modern
Systems Biology (proteomics) research and contribution of this thesis.

Green boxes represent modeling approaches covered by systems biology applications,
"yes/no/?" correspond to the overall state of the art in modeling complex systems
beyond biology. Light green boxes represent recent progress of these approaches

towards systems biology applications, but without consistently demonstrated impact.

Central questions in systems biology are "Why?", "How?" and "What if?". The
main focus of this thesis is the investigation of mathematical modeling approaches, for
answering these questions for the scenario where the network structure of the systems is
unknown. In particular, we are interested in recovering non-genetic mechanisms of cell-
to-cell variability. Figure 1 depicts a summary table of modern approaches for modeling
complex systems [51] in the light of modern Systems Biology research (in the context of
protein signaling) and the contribution of this thesis. Starting from classical dynamic
systems formulations, the work dives deeper into statistical modeling. Like George Box
we believe that statistical modeling could be invaluable towards understanding of large-
scale complex systems.

Chapter 2 introduces Reactionet lasso, a computational procedure that derives a
step-wise sparse regression approach on the basis of the Chemical Master Equation,
enabling large-scale structure learning for reaction networks by implicitly accounting for
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billions of topology variants. We have assessed the structure learning capabilities of the
Reactionet lasso on synthetic data for the complete TRAIL induced apoptosis signaling
cascade comprising 70 reactions. We find that the Reactionet lasso is able to efficiently
recover the structure of these reaction systems, ab initio, with high sensitivity and
specificity. With only < 1% false discoveries, the Reactionet lasso is able to recover 45%
of all true reactions ab initio among > 6000 possible reactions and over 102000 network
topologies. We provide software to allow for wide applicability of the Reactionet lasso.

Chapter 3 addresses the problem of studying asynchronous processes from mass
cytometry snapshots. One of the limitations of flow and mass cytometry is its destructive
nature, making it difficult to apply to problems when the changes in the systems behavior
appear over time and could happen at different speed for individual cells. Non-genetic
origins of fractional killing during TRAIL-induced apoptosis is a perfect example of
a problem where knowledge of temporal connections between the snapshots is vital:
starting from a seemingly homogeneous population cells show differences in time of
committing death as well as appearance of a resistant population by the end of the
process. We introduce RealMatch, a computational approach based on Reactionet lasso
coupled with optimal transport to generate hypothesis about molecular mechanisms of
fractional killing in TRAIL-induced apoptosis.

Chapter 4 aims at filling in the gap between mechanistic and statistical models.
Structure and parameter learning for dynamic systems still remains a challenging task.
Recently progress has been made in linking statistical concept of distribution and cor-
relation, to a more philosophical notion of "causation". Although everyone knows the
mantra "correlation doesn’t apply causation" a lot of effort in the last decade was intro-
duced towards mathematical formalism of extracting "causal" direction and exploiting
this knowledge [52][51]. We propose Causal Time Series Snapshots model (CTSSM), a
simple statistical model based on causality principles, which extend classical statistical
models towards modeling essential biological concepts as feedback loops. This model
belongs to a Structural Equations Models class and allows to apply all the respective
formalism developed in causal inference and counterfactual analysis. In the context
of biology it means that it could be used to quantitatively answer questions such as
"given a certain intervention on the system (e.g. with a drug), how will it affect the
phenotype?". Compared to mechanistic models, CTSSM avoids tedious computations
of differential equations by approximating them with functional dependencies. We in-
troduce MassCaRA, a simple heuristic based approach to learn the structure of CTTSM
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and demonstrate its performance on several synthetic datasets including one generated
from a mechanistic model. The ability of CTSSM to model feedback loops and the
structure learning capabilities of MassCaRA make CTSSM an attractive modeling tool
for systems biology applications.

References
[1] L. Hood, J. R. Heath, M. E. Phelps, and B. Lin. “Systems biology and new technologies enable predictive and

preventative medicine”. Science 306:5696 (2004), pp. 640–643.
[2] H. Kitano. “Computational systems biology”. Nature 420:6912 (2002), p. 206.
[3] U. Alon. An introduction to systems biology: design principles of biological circuits. Chapman and Hall/CRC, 2006.
[4] M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain. “Stochastic gene expression in a single cell”. Science

297:5584 (2002), pp. 1183–1186.
[5] C. Zechner, M. Unger, S. Pelet, M. Peter, and H. Koeppl. “Scalable inference of heterogeneous reaction kinetics

from pooled single-cell recordings”. Nature methods 11:2 (2014), p. 197.
[6] Z. Fox and B. Munsky. “Stochasticity or Noise in Biochemical Reactions”. arXiv preprint arXiv:1708.09264 (2017).
[7] S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, and P. K. Sorger. “Non-genetic origins of cell-to-cell variability

in TRAIL-induced apoptosis”. Nature 459:7245 (2009), p. 428.
[8] D. R. Bandura, V. I. Baranov, O. I. Ornatsky et al. “Mass cytometry: technique for real time single cell multitarget

immunoassay based on inductively coupled plasma time-of-flight mass spectrometry”. Analytical chemistry 81:16
(2009), pp. 6813–6822.

[9] S. C. Bendall, E. F. Simonds, P. Qiu et al. “Single-cell mass cytometry of differential immune and drug responses
across a human hematopoietic continuum”. Science 332:6030 (2011), pp. 687–696.

[10] H. Koeppl, C. Zechner, A. Ganguly, S. Pelet, and M. Peter. “Accounting for extrinsic variability in the estimation
of stochastic rate constants”. International Journal of Robust and Nonlinear Control 22:10 (2012), pp. 1103–1119.

[11] D. A. McQuarrie. “Stochastic approach to chemical kinetics”. Journal of applied probability 4:3 (1967), pp. 413–478.
[12] A. Colman-Lerner, A. Gordon, E. Serra et al. “Regulated cell-to-cell variation in a cell-fate decision system”. Nature

437:7059 (2005), p. 699.
[13] H. Kitano. “Systems biology: a brief overview”. Science 295:5560 (2002), pp. 1662–1664.
[14] L. Weber, W. Raymond, and B. Munsky. “Identification of gene regulation models from single-cell data”. Physical

biology 15:5 (2018), p. 055001.
[15] N. Le Novere, B. Bornstein, A. Broicher et al. “BioModels Database: a free, centralized database of curated,

published, quantitative kinetic models of biochemical and cellular systems”. Nucleic acids research 34:suppl_1
(2006), pp. D689–D691.

[16] K. McGoff, S. Mukherjee, N. Pillai et al. “Statistical inference for dynamical systems: A review”. Statistics Surveys
9 (2015), pp. 209–252.

[17] B. Munsky, B. Trinh, and M. Khammash. “Listening to the noise: random fluctuations reveal gene network param-
eters”. Molecular systems biology 5:1 (2009), p. 318.

[18] C. Zechner, J. Ruess, P. Krenn et al. “Moment-based inference predicts bimodality in transient gene expression”.
Proceedings of the National Academy of Sciences 109:21 (2012), pp. 8340–8345.

[19] A. Raue, C. Kreutz, T. Maiwald et al. “Structural and practical identifiability analysis of partially observed dy-
namical models by exploiting the profile likelihood”. Bioinformatics 25:15 (2009), pp. 1923–1929.

[20] M. Sunnåker, E. Zamora-Sillero, A. López García de Lomana et al. “Topological augmentation to infer hidden
processes in biological systems”. Bioinformatics 30:2 (2013), pp. 221–227.

[21] M. Sunnåker, E. Zamora-Sillero, R. Dechant et al. “Automatic generation of predictive dynamic models reveals
nuclear phosphorylation as the key Msn2 control mechanism”. Sci. Signal. 6:277 (2013), ra41–ra41.

[22] S. Bandara, J. P. Schlöder, R. Eils, H. G. Bock, and T. Meyer. “Optimal experimental design for parameter
estimation of a cell signaling model”. PLoS computational biology 5:11 (2009), e1000558.

[23] G. Lillacci and M. Khammash. “Parameter estimation and model selection in computational biology”. PLoS com-
putational biology 6:3 (2010), e1000696.

[24] J. Ruess, A. Milias-Argeitis, and J. Lygeros. “Designing experiments to understand the variability in biochemical
reaction networks”. Journal of the Royal Society Interface 10:88 (2013), p. 20130588.

8



Chapter 1

[25] J. Ruess, F. Parise, A. Milias-Argeitis, M. Khammash, and J. Lygeros. “Iterative experiment design guides the
characterization of a light-inducible gene expression circuit”. Proceedings of the National Academy of Sciences
(2015), p. 201423947.

[26] U. Helmke, K. Huper, and M. Khammash. “Global identifiability of a simple linear model for gene expression
analysis”. Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE. 2013, pp. 7149–7154.

[27] A. Gupta and M. Khammash. “Sensitivity analysis for multiscale stochastic reaction networks using hybrid ap-
proximations”. arXiv preprint arXiv:1801.04708 (2018).

[28] A. Gupta, M. Rathinam, and M. Khammash. “Estimation of parameter sensitivities for stochastic reaction networks
using tau-leap simulations”. SIAM Journal on Numerical Analysis 56:2 (2018), pp. 1134–1167.

[29] D. T. Gillespie. “Approximate accelerated stochastic simulation of chemically reacting systems”. The Journal of
Chemical Physics 115:4 (2001), pp. 1716–1733.

[30] Y. Cao, D. T. Gillespie, and L. R. Petzold. “Adaptive explicit-implicit tau-leaping method with automatic tau
selection”. The Journal of chemical physics 126:22 (2007), p. 224101.

[31] B. Munsky and M. Khammash. “The finite state projection algorithm for the solution of the chemical master
equation”. The Journal of chemical physics 124:4 (2006), p. 044104.

[32] J. Feigelman, D. Weindl, F. J. Theis, C. Marr, and J. Hasenauer. “LNA++: Linear Noise Approximation with
First and Second Order Sensitivities”. International Conference on Computational Methods in Systems Biology.
Springer. 2018, pp. 300–306.

[33] M. Khammash and J. Lygeros. “Identification and Control of Cell Populations”. Encyclopedia of Systems and
Control (2015), pp. 547–552.

[34] R. J. Prill, J. Saez-Rodriguez, L. G. Alexopoulos, P. K. Sorger, and G. Stolovitzky. Crowdsourcing network infer-
ence: the DREAM predictive signaling network challenge. 2011.

[35] S. M. Hill, N. K. Nesser, K. Johnson-Camacho et al. “Context specificity in causal signaling networks revealed by
phosphoprotein profiling”. Cell systems 4:1 (2017), pp. 73–83.

[36] D. Koller, N. Friedman, and F. Bach. Probabilistic graphical models: principles and techniques. MIT press, 2009.
[37] N. Friedman, M. Linial, I. Nachman, and D. Pe’er. “Using Bayesian networks to analyze expression data”. Journal

of computational biology 7:3-4 (2000), pp. 601–620.
[38] K. Sachs, D. Gifford, T. Jaakkola, P. Sorger, and D. A. Lauffenburger. “Bayesian network approach to cell signaling

pathway modeling”. Sci. STKE 2002:148 (2002), pe38–pe38.
[39] J. Pearl and T. S. Verma. “A theory of inferred causation”. Studies in Logic and the Foundations of Mathematics.

Vol. 134. Elsevier, 1995, pp. 789–811.
[40] J. Pearl. Causality. Cambridge university press, 2009.
[41] D. Pe’er, A. Regev, G. Elidan, and N. Friedman. “Inferring subnetworks from perturbed expression profiles”.

Bioinformatics 17:suppl_1 (2001), S215–S224.
[42] K. Sachs, O. Perez, D. Pe’er, D. A. Lauffenburger, and G. P. Nolan. “Causal protein-signaling networks derived

from multiparameter single-cell data”. Science 308:5721 (2005), pp. 523–529.
[43] X.-K. Lun, V. R. Zanotelli, J. D. Wade et al. “Influence of node abundance on signaling network state and dynamics

analyzed by mass cytometry”. Nature biotechnology 35:2 (2017), p. 164.
[44] S. Rogers and M. Girolami. “A Bayesian regression approach to the inference of regulatory networks from gene

expression data”. Bioinformatics 21:14 (2005), pp. 3131–3137.
[45] K. Sachs, S. Itani, J. Fitzgerald et al. “Single timepoint models of dynamic systems”. Interface focus 3:4 (2013),

p. 20130019.
[46] S. Itani, M. Ohannessian, K. Sachs, G. P. Nolan, and M. A. Dahleh. “Structure learning in causal cyclic networks”.

Causality: Objectives and Assessment. 2010, pp. 165–176.
[47] K. Sachs, S. Itani, J. Fitzgerald et al. “Learning cyclic signaling pathway structures while minimizing data require-

ments”. Biocomputing 2009. World Scientific, 2009, pp. 63–74.
[48] S. Triantafillou, V. Lagani, C. Heinze-Deml et al. “Predicting causal relationships from biological data: Applying

automated causal discovery on mass cytometry data of human immune cells”. Scientific reports 7:1 (2017), p. 12724.
[49] N. Meinshausen, A. Hauser, J. M. Mooij et al. “Methods for causal inference from gene perturbation experiments

and validation”. Proceedings of the National Academy of Sciences 113:27 (2016), pp. 7361–7368.
[50] S. Bongers and J. M. Mooij. “From Random Differential Equations to Structural Causal Models: the stochastic

case”. arXiv preprint arXiv:1803.08784 (2018).
[51] J. Peters, D. Janzing, and B. Schölkopf. Elements of causal inference: foundations and learning algorithms. MIT

press, 2017.
[52] J. Pearl and D. Mackenzie. The Book of Why: The New Science of Cause and Effect. Basic Books, 2018.

9





Part II.

Scientific Contributions





2 Sparse regression based structure
learning of stochastic reaction
networks from single cell
snapshot time series

Anna Klimovskaia, Stefan Ganscha, Manfred Claassen

Originally published in: PLoS computational biology 2016 Dec 6;12(12):e1005234..
Adapted here with minor modifications.

Contribution by AK: conceived and implemented the methodology, designed and
performed the computational experiments, wrote the manuscript.

13



Chapter 2

2.1. Introduction

Cellular processes are essentially implemented by networks of biochemical reactions. The
topology of such networks is typically only partially known, rendering the identification
of the correct network from experimental data a key challenge. Despite the importance
of this task, only little progress has been made in devising methods to systematically
and comprehensively infer topologies of non-trivial chemical reaction networks. In this
work, we propose a sparse regression approach tailored to the task of large-scale model
selection for chemical reaction networks.

Different model classes have been developed to describe biochemical reaction systems.
In order of increasing level of detail these comprise statistical time series models, such
as autoregressive models and dynamic Bayesian networks, deterministic ordinary differ-
ential equation or stochastic differential equation based kinetic models [1]. The choice
of model class depends on prior information for the system of interest and type of ex-
perimental data. Single cell technologies furnish further statistical information about
component distributions, e.g. variances and covariances, aiding in systems identification
[2] and are expected to become increasingly prevalent in routine biological research [3].

Two main computational tasks arise when learning any of these models from data:
parameter inference, and structure learning. Parameter inference aims at finding model
parameters (e.g. kinetic rate constants). Parameter inference has been performed by
sampling from posterior parameter distributions, or global non-convex or convex opti-
mization methods [4]. Structure learning aims at additionally identifying the reaction
network topology governing the dynamics of the system components.

Parameter inference becomes increasingly computationally intensive for larger sys-
tems with numerous parameters [1]. Structure learning for these systems is an even more
daunting task since parameter inference has to be performed for each of the possibly very
many different system topologies. Therefore, structure learning is typically confined to
comparison of a small, carefully selected set of candidate topologies by means of model
selection criteria, such as information criteria (e.g. AIC, BIC) or Bayes Factors [5–7].
However, this approach requires substantial prior knowledge about the studied system
in order to identify reasonable candidate models. Systematic approaches to enumerate
a subset of sensible topologies have been not reported until recently. These approaches
implement greedy strategies that either iteratively reduce the number of reactions of
an overcomplete system of reactions or add reactions one at a time to a system with a
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minimal set of reactions [8]. However, such greedy approaches do not guarantee finding
globally optimal topologies for non-convex fitting objectives. Furthermore, exploration
of the multitude of local optima in the context of combinatorially many possible topolo-
gies becomes computationally prohibitive due to the requirement to explicitly evaluate
every considered candidate topology. No global approaches have been reported to per-
form structure learning by comprehensively evaluating model candidates for stochastic
chemical reaction networks.

We propose the reactionet lasso, a convex relaxation of the structure learning task.
This approach yields a single best sparse reaction set from all possible reactions by
translating a recent sparse identification approach for nonlinear dynamic systems [9] to
operate on and deal with non-trivial application specific parameter and noise structure
for time series snapshot data acquired for stochastic chemical reaction networks.

2.2. Results

2.2.1. Sparse regression for structure learning of stochastic

reaction networks

Structure learning by the reactionet lasso takes advantage of the formal link between the
chemical reaction model and the observed data that is defined by the Chemical Master
Equation. This differential equation system describes the temporal evolution of the
abundance distributions of species governed by a stochastic chemical reaction network
[10]. The moment generating functions of the Chemical Master Equation give rise to the
moment equations, a system of ordinary differential equations for the temporal evolution
of the central moments Mr of the abundance distributions (see Methods).

Ṁr = ΣlklFrl(t;M), (2.1)

with rate constants kl, time t and set of all central moments of individual species M.
For mass action kinetics the terms Frl(t;M) are polynomials over these moments such
as abundance means and variances of individual species. Frl(t;M) will be referred to as
stoichiometric moment functions herein (see also S1 Text).

The moment equations constitute the formal link between the time series snapshot
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data and the rate constants of the underlying chemical reactions. Rate constant esti-
mation for stochastic mass action kinetics reaction networks in this context therefore
reduces to parameter estimation for the ordinary differential equation system [2.1] with
stoichiometric moment functions determined from the time series data.

Parameter estimation for a mass action kinetics network typically requires the costly
integration of the moment equations for every considered parameter configuration. Im-
putation of the moment gradients by gradient matching procedures (see Methods) cir-
cumvents these type of evaluations and, in conjunction with the empirical moments,
allows for parameter inference by means of a non-negative linear regression task with
the least squares estimate k̂ for rate constants k given by:

k̂ = arg min
k>0
‖b̂− Âk‖2

2, (2.2)

where the response vector elements bj corresponds to the vector of empirical gradient
estimates for Ṁj(t) from the gradient matching procedure (see Methods) and the design
matrix entries Âjl correspond to the estimates of the stoichiometric moment functions
Fjl(t;M):

b =



ˆ̇Mr1(t1)
...

ˆ̇Mr1(tT )
ˆ̇Mr2(t1)

...
ˆ̇Mr2(tT )

...
ˆ̇MrN (t1)

...
ˆ̇MrN (tT )



,A =



F̂r11(t1) F̂r12(t1) . . . F̂r1L(t1)
...

...
...

...
F̂r11(tT ) F̂r12(tT ) . . . F̂r1L(tT )

F̂r21(t1) F̂r22(t1) . . . F̂r2L(t1)
...

...
...

...
F̂r21(tT ) F̂r22(tT ) . . . F̂r2L(tT )

...
...

...
...

F̂rN1(t1) F̂rN2(t1) . . . F̂rNL(t1)
...

...
...

...
F̂rN1(tT ) F̂rN2(tT ) . . . F̂rNL(tT )



.

This linear regression formulation has been applied for parameter inference of deter-
ministic chemical reaction models [6, 11].

Model selection across small sets of model variants has previously been performed
with information criteria [11] or model averaging [6]. The Lasso constitutes another
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approach for efficient and comprehensive model selection in linear regression models
[12]. It introduces an L1 norm (‖ · ‖1) regularization on the parameters k to promote
the identification of sparse solutions, i.e. solutions with many zero-valued parameter
estimates.

k̂ = arg min
k>0
‖b̂− Âk‖2

2 + λ‖k‖1, (2.3)

Various extensions of the Lasso method were introduced in literature to improve its
shrinkage properties in the presence or absence of heteroscedasticity [13].

While the Lasso has been used in recent reports to identify general nonlinear dynamical
systems [9] or to select the mechanism types (mass action or Hill kinetics) of a fixed
reaction set defined by the deterministic Repressilator comprising six components [14],
it still remains to adapt the regression model and regularization concepts to enable more
comprehensive model selection for realistic reaction systems that exhibit stochasticity
and larger amount of components/reactions. The next sections will delineate in detail
the challenges and solutions implemented in the reactionet lasso to achieve this goal.

2.2.2. Reactionet lasso

This section introduces the reactionet lasso (Figure 2.1), a computational method for
learning the structure of chemical reaction networks. The overarching strategy of this
procedure consists of (1) enumerating all (or at least a significant fraction of reasonable)
conceivable unary/binary reactions between the components of a reaction system of
interest and (2) applying an appropriate stepwise sparse regression approach to select
the sparse subset of reactions underlying the observed dynamics in the snapshot time
series data.

The following properties of such structure learning instances preclude the application
of conventional least squares based approaches for parameter estimation and selection:
(1) noise and heteroscedasticity of the observed response b̂ (empirical moment gradient
estimates) as well as in the observed design matrix Â (stoichiometric moment function
evaluations) and (2) different scales of individual parameters ki (rate constants) resulting
from the occurrence of large a spectrum of fast and slow reactions. The reactionet lasso
addresses each of these challenges in as delineated in the following.

The intrinsic variability of stochastic chemical kinetics result induce variability of the
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Figure 2.1.: Schematic representation of reactionet lasso procedure. For details
see section Methods.

empirical estimates of moments and their gradients. Therefore the observed response
vector as well as the stoichiometric moment functions in the design matrix are expected
to deviate from the true latent correspondents. We capture this by defining b = b̂ + εb

andA = Â+εA to be the true latent moment gradients and stoichiometric moment func-
tions, and εA and εb to be their respective intrinsic variability induced deviations from
the estimated/observed quantities. If we knew the true values of the latent variables,
finding the rate constants k would translate to solving the following equation:

b = Ak. (2.4)

By substituting the variables in equation 2.4 with the definitions for our empirical
estimates of the latent variables we obtain:

b̂ = Âk. (2.5)

with ε := εAk− εb.
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Equation 2.5 seems to motivate a straightforward optimization strategy to compute
a maximum likelihood parameter estimate given the observations for moment gradients
and stoichiometric moment functions (e.g. least squares for independent and normally
distributed residuals ε). However, it becomes apparent that this strategy is not valid
due to the residual ε being a function of the parameters k (by virtue of the noise in the
observed design matrix).

The reactionet lasso implements a stepwise strategy to address this dependency. The
first step (Step 1) is a Feasible Generalized Least Squares (FG) estimate. It com-
prises the estimation of the variances of the residuals εb and εA via bootstrapping of
the gradient estimates and stoichiometric moment functions on the basis the single-cell
data. A preliminary least squares fit is then performed to achieve an estimate kLS for
equation 2.5. This estimate is expected to approximate the order of magnitude of the
individual rate constants. In conjunction with the estimates of the variances of the
residuals εb and εA, we use kLS to achieve an estimate of the component-wise variance
Σε = diag{σ2

ε1
, . . . , σ2

εR
} of the residuals ε. To achieve this estimate we use only first

order moments (means), as they are less subjected to noise in the design matrix and
provide a more robust estimate of the covariance matrix Σε. This estimate will allow us
to operate with the rescaled observed response vector b̂S = Σ

−1/2
ε b̂ and design matrix

ÂS = Σ
−1/2
ε Â to adjust for heteroscedasticity and enable effective linear regression [15].

k̂FG = arg min
k>0
‖b̂S − ÂSk‖2

2, (2.6)

The subsequent steps aim at addressing the second challenge introduced above, i.e. the
different scales of individual parameters ki, which render conventional sparse regression
approaches (such as the Lasso) suboptimal due to the uniform penalization strength
of the L1 norm ‖.‖1 across all components ki of the parameter vector k. The adaptive
Lasso [16] constitutes an alternative to the conventional Lasso. It defines a regularization
penalty that is scaled component-wise by the expected order of magnitude k̂i of the
respective component i.

In Step 2 of the reactionet lasso, we apply a combination of the adaptive and relaxed
Lasso, stability selection based prioritization of reactions and an additional stepwise
backward regression to achieve the final set of reported reactions. We use the parameter
estimates from Step 1 (obtained with Moore–Penrose pseudoinverse matrix), i.e. k̃ =

ˆkFG, in order to adapt the regularization penalty.
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To improve shrinkage, the adaptive Lasso is followed by a relaxed Lasso [17] that
recomputes optimal parameter estimates with respect to the objective specified in equa-
tion 2.6, while only considering the set Φ = {l : kFGl 6= 0} of parameters that were not
set to zero in Step 1, for which the optimal solution is

k̂ARL = arg min
k>0
‖b̂S − ÂS,Φk‖2

2 + λΣi|ki/k̃i|, (2.7)

where ÂS,Φ contains only that columns of ÂS, which are in a set Φ.

The adaptive relaxed Lasso solution has been computed by optimizing the respective
Alternating Direction Method of Multipliers (ADMM) formulations [18]. The adaptive
relaxed Lasso is performed with five fold cross validation. We used stability selection
to prioritize reactions according to their frequency of being selected across all cross
validation folds [19]. Bayesian information criterion (BIC) was used as selection criterion
(S2 Text).

In summary, the reactionet lasso procedure constitutes a stepwise sparse regression
approach that addresses the parameter-dependent noise and heteroscedasticity in the
response and design matrix for structure learning of stochastic chemical reaction sys-
tems. See also Figure 2.1 for a schematic overview of its steps. Software implementing
the reactionet lasso can be found at http://www.imsb.ethz.ch/research/claassen/
Software/reactionet_lasso.html.

2.2.3. Ab initio structure learning of chemical reaction networks

We first consider an extreme and yet conceptually simple scenario where we aim at
learning the structure of a reaction network without any prior knowledge about the un-
derlying reactions. While this scenario rarely occurs in a real world application because
typically some prior knowledge of relevant reactions is available, we first investigate this
scenario to demonstrate the structure learning capabilities of the reactionet lasso.

We study two systems varying in number of components and reactions: (1) the en-
zymatic reaction system with four components and three reactions, (2) the receptor
subunit of a recently reported kinetic model of TRAIL induced apoptosis with fourteen
components and thirteen reactions, which can be combined in a total of 2275 possible
unary or binary reactions, giving a total of more than 10600 possible reaction network
candidates. For these systems we simulated 5 replicates each with either 103, 104 or 105
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single cell trajectories with the stochastic simulation algorithm [20]. We then generated
snapshot time series datasets from the single cell trajectories by defining pools of cells
at selected sets of 7, 13, or 28 time points. Moment gradients were estimated either with
the smoothing procedure, cubic splines or the finite difference scheme (see Methods).

The reactionet lasso achieves structure learning of chemical reaction networks via a
two step sparse regression formulation that (1) specifically accounts for heteroscedas-
ticity in the response vector and the design matrix of the regression instances and (2)
assumes a regularizer that encourages sparse reaction sets by suppressing compensatory
reaction sets with small rate constants (Figure 2.1). The first step aims at accounting
for heteroscedasticity and, most importantly at reducing the number of reaction candi-
dates for the second step that both capture the empirical moment gradients and select
for correct reactions (Figure 2.2). The following results are based on moment equations
for all moments up to order two, i.e. means, variances and covariances. Following Step
1 of the reactionet lasso, we achieve a substantial reduction to less than 100 candidate
reactions that, regardless of the moment gradient estimation technique, retains at least
ten of the thirteen true reactions (Figure 2.1A). The vast majority of the empirical mo-
ment gradients are well fit by the set of candidate reactions. The few moment gradients
that are suboptimally captured correspond to higher order moments such as variances
or covariances whose highly dynamic behavior precluded accurate gradient estimation
by either the finite difference or spline fit. (Figure 2.2B). Step 2 of the reactionet lasso
procedure uses a relaxed adaptive Lasso estimator to estimate the rate constants of a
sparse set of candidate reactions following from Step 1. The method recovers ten out
of thirteen reactions correctly with one false positive reaction when assuming no prior
knowledge and selecting a suitable model with BIC (Supplementary Figure A.1A ).
Similar performance is achieved for the enzymatic reaction network (Supplementary
Figure A.1B). These results demonstrate that the stepwise sparse regression strategy
of Step 2 completes the structure learning task from the candidate reactions supplied by
Step 1 with great sensitivity and specificity. In summary, the reactionet lasso is able to
ab initio reconstruct the reaction network structure of typically-sized signaling cascades
such as the fourteen component receptor subunit of TRAIL induced apoptosis [21].

We further evaluated the impact of different gradient estimation approaches on struc-
ture learning performance (Supplementary Figures A.2-A.4). For benchmarking
purposes we used the smoothed empirical moment gradient estimate as a ground truth
which is not available in a real time series snapshot setting. According to these consid-
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Figure 2.2.: Performance assessment of the first reactionet lasso step for 105

single cell trajectories of the apoptotic receptor subunit. (A) Enrichment and
depletion of true and respectively false positive reactions for the reaction rate estimates
k̂LS (red) and k̂FG (blue). Results are reported for gradient estimation procedures
smooth, FDS, splines (see main text for details). (B) Comparison of response (empirical
moment gradients) and prediction with feasible generalized least square estimate for
moments of different order: means (blue), variances (green), covariances (yellow) and
prediction with true rate constants for all moments (red crosses).
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Figure 2.3.: Influence of measurement noise on structure learning capacity.
(A) Example of several single cell trajectories of one of the species (BAR) in apoptotic
receptor subunit: without measurement noise (red), with measurement noise according
to the binomial model with probability of success p = 0.1 (blue), 0.05 (green). Com-
parison of reconstructed means for known p between different noise levels shows how
empirical moments are affected by measurement noise. Black dots represent snapshot
measurements used for the inference procedure. (B) Overlay of five regularization paths
in terms of true/false positive tradeoff for different measurement noise levels as indicated
in the legend in terms of binomial capture efficiency. Structure learning performance for
105 single cell trajectories and thirteen time points of the apoptotic receptor subunit.
Empirical moment gradients estimated with splines.

erations, the cubic spline estimator achieves almost optimal performance for thirteen or
more time points, whereas FDS is consistently inferior. These results indicate that the
cubic spline estimator provides the most favorable structure learning performance for
for empirical moment gradients.

We evaluated how measurement noise affects the ability of reactionet lasso to learn
the reaction network structure. We assume a binomial measurement noise model that
reflects the incomplete capture efficiency inherent to all single cell technologies (see
Methods, S3 Text). While structure learning performance is reduced with increasing
levels of measurement noise, the reactionet lasso still recovers more than 50% of the
reactions for the apoptotic receptor subunit at levels reported for single cell sequencing
and mass cytometry approaches (Figure 2.3, S5 Figure).

To assess the relative importance of the amount of available data, we varied the
amount of time points and single cell recordings used at each time point. Interestingly,
we found that the inclusion of additional measurement time points did not improve
structure learning performance. However, the tradeoff between true and false positive
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Figure 2.4.: Overlay of five regularization paths in terms of true/false posi-
tive tradeoff over different data availability situations. Results for reactionet
lasso application to apoptotic receptor subunit (p = 0.05). Empirical moment gradi-
ents estimated with cubic splines. (A) 105 single cell trajectories evaluated at different
amount of time points: 28 (red), 13 (blue), 7 (green). (B) Different number of single
cell trajectories: 105 (red), 104 (blue), 103 (green) evaluated at thirteen time points.

reaction discoveries worsened considerably with fewer time points (Figure 2.4A). While
we found that decreasing the amount of single cell measurements per time point did
result in noticeable performance losses, this situation does not constitute a limitation
for flow cytometry techniques, that easily are able to generate millions of single cell
snapshots (Figure 2.4B). Cell count related performance losses can be associated with
higher absolute variability and therefore reduced accuracy of empirical moment estimates
(Supplementary Figure A.6). We conclude that careful selection of amount of single
cell measurements and number as well as position of time points (Supplementary
Figure A.7) translate to accurate interpolation and subsequent gradient fitting, thereby
leading to good structure learning performance of the reactionet lasso.

We further investigated the impact of including different moment orders for structure
learning. As expected, precisely estimated higher-order moments contain a substantial
amount of information and therefore enhance the structure learning capability accord-
ingly (Figure 2.5A). However, although this relationship still holds for medium levels
of measurement noise (capture efficiency p = 0.1), (Figure 2.5B), the inclusion of sec-
ond order moments becomes misleading for high levels of measurement noise (capture
efficiency p = 0.05, Figure 2.5C). This observation is likely caused by the limited abil-
ity to accurately estimate higher order moments for high levels of measurement noise.
However, the performance of the reactionet lasso assuming stochastic kinetics modeled
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Figure 2.5.: Overlay of five regularization paths in terms of true/false positive
tradeoff for different moment orders of gradients considered for structure
learning: up to 2nd order (red) Moment Equations, up to 1st order (blue) Moment
Equations and only 1st order moments for deterministic mean ODE model (green).
Structure learning performance for 105 single cell trajectories and thirteen time points
of the apoptotic receptor subunit. Empirical moment gradients estimated with splines.
Results represented for different levels of measurement noise: (A) no noise; (B) p = 0.1;
(C) p = 0.05.

with moment equations (higher order ME) is consistently better than assuming a deter-
ministic kinetics modeled with mean based ordinary equations (1st order ODE). This
observation demonstrates that the incorporation of higher order moment information
induced by the chemical kinetics and accessible by means of single cell measurements
allows for significantly improved structure learning capacity.

In summary, the benchmarks above strongly advocate for the use of an experimental
setup that allows for sufficiently dense sampling across time to ensure accurate empirical
moment gradient estimates, as well as single cell technology, such as flow/mass cytom-
etry, which provide 104 or more single cell measurements, for the accurate estimation
of higher order moments. In these situations the reactionet lasso is capable of ab ini-
tio recovery of almost the complete reaction network structure with more than a dozen
components.
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2.2.4. Structure learning of large chemical reaction networks

with prior knowledge

We now consider a scenario where we aim at learning the structure of a large reac-
tion network with partial knowledge about the underlying reactions. For this situation
we demonstrate how reactionet lasso is capable of recovering a sizable amount of the
unknown reactions, for a reaction network as large as the 70 reaction TRAIL induced
apoptosis cascade [21].

Structure learning tasks for chemical reaction networks typically aim at complement-
ing already available partial knowledge on reaction sets. We assessed the ability of the
reactionet lasso to complement a set of known reactions for the 70 reaction TRAIL
induced apoptosis cascade. Specifically, we defined six modules for this cascade follow-
ing [21], and assumed a limited set of 22 reaction candidates connecting these modules
(Supplementary Figure A.8) and 33 uniformly distributed time points (S1 Dataset).
For step 1 of the reactionet lasso all possible unary and binary reactions between compo-
nents within modules and the module connecting reactions serve as candidate reactions
for structure learning, totaling 6828 reactions.

In the absence of ground truth it is difficult to identify a regularization strength that
achieves a desirable tradeoff between true and false positive reaction discoveries. We eval-
uated the BIC and report solutions that map to large initial improvements of BIC [22].
Structure learning without prior knowledge on the considered set of reactions achieves
32 true positive at the cost of 2 false positive reactions (105 single cell trajectories, 33
time points, capture efficiency 0.05, Figure 2.6A). Prior knowledge on a specific reac-
tion was encoded by a positivity constraint on the corresponding reaction rate during all
regression steps of the reactionet lasso. We considered different prior knowledge settings:
(1) 10% or (2) 50% randomly chosen reactions considered to be known. Settings (1) and
(2) were each evaluated using ten different subsets. For 10% known reactions almost
40 (including 7 known) out of 70 reactions are correctly recovered with five or less false
positive discoveries (Figure 2.6B). For 50% known reactions the total number of true
positive reactions is beyond 50 (including 35 known). The performance doesn’t depend
significantly on the choice of prior reactions. The reactionet lasso enables discovery up
to dozens of novel reactions at the cost of few false positive reactions for a large signaling
cascade comprising 70 reactions.

While published structure learning approaches are only available for problem instances
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Figure 2.6.: Structure learning with prior knowledge for the 70 component
TRAIL induced apoptosis cascade. Structure learning performance for 105 single
cell trajectories and 33 time points and capture efficiency p = 0.05. Empirical mo-
ment gradients estimated with splines. (A) Example of a recovered graph for the setting
above and no prior knowledge. True positive reactions are red, false positive reactions are
blue, false negative reactions are pink. (B) Regularization paths in terms of true/false
positive tradeoff (including prior knowledge reactions, see Results for details) for dif-
ferent prior knowledge situations. Following prior knowledge situations are depicted: no
prior knowledge (green). Additional prior knowledge situations comprise ten instances
of 10%(blue)/ 50%(red) randomly chosen known reactions. Diameter of dots and color
code indicate frequency of solutions with a specific true/false positive tradeoff. Black
dots represent solutions coinciding with large improvements of BIC.
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of sizes hundreds of orders of magnitude smaller, we compared these results to more
simple variants of the reactionet lasso procedure, either exhibiting inferior accuracy or
exceedingly high computational complexity (Supplementary Figure A.9).

The above results demonstrate how single cell snapshot time series data and the
reactionet lasso can be used to complement prior mechanistic knowledge by a sizable set
of candidate reactions that is highly enriched for true positive discoveries, and do so for
systems and structure learning tasks of unprecedented size [23, 24].

2.3. Discussion

In this work we introduce the reactionet lasso for comprehensive structure learning of
stochastic chemical reaction networks.

Chemical reaction networks constitute a highly detailed and mechanistic description
for biological processes and are qualitatively different from other popular network models
in biology. These comprise probabilistic graphical models seeking to discover statisti-
cal dependencies between measured system components. These approaches range from
simple correlation [25] or regression analysis [26], to Bayesian networks [27] or more
structured and robust module networks [28] and extensions thereof [29]. In contrast to
chemical reaction networks, each of these model classes allows for detection of statistical
dependencies without further elucidation of causality relationships and the possibly in-
tricate dependency inducing biochemical mechanism. Physical interaction networks get
closer to this goal and complement the information of reaction networks by summarizing
measurements of static protein interactions [30].

By virtue of formulating the task of structure learning of chemical reaction networks as
a sequence of convex optimization problems, this procedure is able to assess an unprece-
dented number of potential network topologies without need for explicit enumeration
[23, 24]. We demonstrate the utility of the method for ab initio structure learning of
whole signaling cascades such as the apoptotic receptor subunit. The reactionet lasso
originally integrates a moment based description of stochastic reaction networks with
sparse regression approaches via a gradient matching to achieve an efficient and scal-
able structure learning procedure, overcoming the limitations of available methods for
structure learning which either explicitly enumerate a small set of models or greedily
search for locally optimal topologies [8, 31]. Recent generic sparse regression approaches
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for identification of general nonlinear dynamical systems are in principle applicable for
structure learning of biological reaction networks [9]. However, these approaches, in
contrast to the reactionet lasso, do not take into account their (1) foundation in the
Chemical Master Equation, (2) heteroscedastic and parameter dependent noise struc-
ture, as well as (3) parameter ranges varying across many scales, therefore failing to
achieve competitive structure learning performance (Supplementary Figure A.9).

The challenging structure learning task crucially depends on sensible experimental
design yielding informative data. A central design choice concerns the selection of time
points recording the relevant dynamical changes of the process of interest. These are typ-
ically chosen from prior knowledge or preliminary dense snapshot time series experiments
with a cheap readout, such as population based instead of single cell measurements. An-
other important experimental parameter concerns the number of single cell snapshots.
Our benchmarks advocate for having at least thousands of snapshots per time point.
Flow cytometry experiments easily achieve snapshot counts in the order of 105. For sin-
gle cell transcriptomics experiments it seems advisable to resort to novel droplet based
techniques achieving > 104 single cell snapshots per experiment [32, 33].

Structure learning performance of the reactionet lasso depends on the accuracy of
the gradient estimates from the time series snapshots. We find that estimates based on
gradients obtained by rather simple approaches such as finite difference approximations
or spline curve fitting achieve competitive performance. Improvements are conceivable
by resorting to other techniques specifically designed for gradient estimation in differ-
ential equation systems [34, 35]. These approaches jointly fit parameters of the curve
fitting procedure and the differential equation system. The success of this strategy relies
on considering a problem instance where the differentiation equation systems strongly
constrains the state space. However, the problem instances we consider for systematic
structure learning with the reactionet lasso assume a differential equation system defined
by the moment equation for all possible unary and binary reactions. Such a system will
by definition impose little constraints on the state space. Afore gradient matching ap-
proaches would therefore have to be adapted to avoid expected parameter overfitting
resulting from their application to problem instances with such an expressive differential
equation system.

For this proof of principle study, we consider single time series experiments. Reactionet
lasso analysis easily accommodates multiple replicates or perturbation experiments such
as dose responses. Specifically, condition specific response vectors bk and design matrices
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Ak for each condition k are utilized to construct a problem instance by concatenation.
For this problem instance reactionet lasso can be applied as described (see also S4
Text). Additional experiments are expected to enhance structure learning performance.
Indeed, we observe that this is the case for incorporating additional replicate time series
experiments (Supplementary Figure A.10).

The reactionet lasso is able to recover a significant proportion of missing reactions
in various settings. However, integration of the moment equations for the component
means assuming this set is not always able to recover the observed temporal dynamics
of the system. This situation arises for instance when a single pivotal true reaction
is missed and therefore precludes the correct reconstruction of downstream component
dynamics. We frequently encounter this situation in the ab initio structure learning
scenario (Supplementary Figure A.11). This scenario though constitutes an arti-
ficial setting that we only report for a proof of concept of the reactionet lasso. Real
world applications comprise prior knowledge about true reactions, typically comprising
specifically those pivotal reactions. It turns out that we achieve good reconstruction
of integrated trajectories for the structure learning settings assuming prior knowledge
(Supplementary Figure A.11).

Until now we consider reaction systems which obey mass action kinetics. Systems
of this kind can be easily translated into a series of moment equations which depend
linearly upon the reaction rates However, systems with non-mass action kinetics, such
as Michaelis-Menten, can still be addressed with the reactionet lasso. While appropriate
moment closure approximations for certain rational rate law kinetics preserve convexity
of the reactionet lasso objective [36], generally such kinetics might yield non-convex
optimization problems that would have to be dealt with using appropriate optimization
techniques.

The reactionet lasso generates a single point estimate for the optimal, sparse reaction
network that might neglect other reasonable candidate network structures. Thus, it will
be interesting to perform further in-depth analysis of the resulting network structures,
for instance with Markov Chain Monte Carlo sampling techniques.

For our study we assume that all relevant molecular components can be measured.
Many biological applications, however, do not allow monitoring all relevant components,
as for instance antibodies might only be available for a subset of components of a signal-
ing cascade. While the aim of our study was to demonstrate proof of concept for large
scale structure learning of chemical reaction networks, it will be possible to account for
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missing measured components by either augmenting the model by introducing latent
variables or ’lumping’ them into more complex non-mass action reaction mechanisms
[37].

The reactionet lasso can be applied in its current form to systems where a significant
proportion of relevant components can be measured. Considering the steady advance
of single-cell technologies, we expect an increasing number of cellular signaling and
metabolic processes to be assayed at single-cell resolution. While mass cytometry ap-
proaches allow for measurement of more than 30 protein components, sufficient e.g. to
substantially map out the T cell receptor, epidermis growth factor and apoptosis signal-
ing cascades, single-cell RNA sequencing opens the prospect of achieving genome-wide
transcriptomic snapshots of single cells. Thus we anticipate a surge of relevant data
in the near future for which the reactionet lasso can straightforwardly be applied for
systamatic and comprehenisve structure learning of the underlying reaction networks,
with direct implications for systems biology and health by providing quantitative and
predictive models for scientific insight and rational intervention design.

2.4. Methods

2.4.1. Experimental setting: single cell time series snapshot data

We assume time series data with single cell resolved population snapshots obtained at
discrete time points. We denote by C the number of cells measured per experiment, T
the number of time points at which measurements were performed and N the number
of components (e.g. proteins) measured in each cell. For each measurement time point
t = 1, . . . , T for a cell c = 1, . . . , C we denote a vector of measured N protein abundances
xct = {xct,1, . . . , xct,N}. Therefore at each time point t vectors xct,1, . . . , xct,N represent a
sample from a high-dimensional distribution, which evolves according to the Chemical
Master Equation.

2.4.2. Moment equations for the Chemical Master Equation

We assume a biochemical reaction network of N different chemical species with abun-
dances X1, . . . , XN involved in L reactions. Each reaction l is characterized by stoi-
chiometry vector sl and propensity function al(x; kl) with x representing the collection
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of species abundances (system state) and kl the reaction rate. In our work we consider
systems described by mass action kinetics, resulting propensities al(x; kl) = kl ∗ gl(x),
where gl(x) is a known function of the system’s state. The state of the system evolves
probabilistically according to the possible reactions, with probability P (x, t) of occupy-
ing state x at time t. The probabilistic evolution of the system’s state is described by
the Chemical Master Equation:

P (x, t)

dt
= ΣL

l=1P (x− sl, t)al(x− sl)− P (x, t)al(x). (2.8)

We denote byMr = Mr1,...,rN = E(X1−EX1)r1 . . . (XN−EXN)rN the central moment
of order r = (r1, ..., rN). The moment generating function of the probability distribution
P (x, t) can be used for the derivation of moment equations [38]. Assuming mass action
kinetics, we obtain Eq. 2.1 for the time evolution of a central moment (see also S1
Text).

2.4.3. Gradient matching for parameter estimation of ordinary

differential equation systems

Gradient matching approaches avoid costly integration by instead interpolating the dis-
crete snapshot time series data and estimating the empirical moment gradients Mr(t),
rendering the initial ODE system an algebraic equation system with the parameters as
unknowns. This formulation further eliminates the need for moment closure, in contrast
to integration based techniques. Previously, gradients have been estimated with spline
interpolators [34, 39, 40], Gaussian processes [35, 41] or finite difference approximations
[6]. Parameter estimation has been performed by least squares minimization [34, 39, 40]
or by approximation of the parameter posterior [6, 35, 41]. While deterministic chem-
ical reaction networks frequently served as application settings for gradient matching
schemes, only little attention has been paid to networks with stochastic dynamics [6,
11].

We used and compared cubic spline interpolators (spline) and finite difference approx-
imations (FDS) to estimate empirical moment gradients for the Mr(t) of the moment
equations. As a ground truth estimate for simulated data, we use a smoothed finite
difference approximation of the single cell trajectories at the evaluation point of interest
(smooth). Gradient estimates are obtained via a smoothing procedure that relies on
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a sliding window estimate of finite differences on the simulated trajectories using the
smoothing function smooth in Matlab.

2.4.4. Moment estimation for noisy single cell data

Single cell data such as obtained from flow/mass cytometry and single cell sequencing
exhibit measurement noise. These technologies each detect a random fraction of the
total molecular content of every individual cell. This relationship between the measure-
ment signal and cellular analyte abundance has been frequently modeled by a binomial
distribution Bi(X, p) whose success probability p corresponds to the capture efficiency
for the analyte present at amount X [42, 43]. We have devised an estimator to subtract
the misleading measurement noise component to provide the reactionet lasso with the
appropriate noise-correct empirical moment estimates for structure learning.

We assume that measurement noise can be represented by the following binomial
model. Let X represent the true abundance of one species at a given time point. Let
Xobs be the corresponding measured signal, such that Xobs ∼ Bi(X, p), where p is the
capture efficiency. The binomial noise model allows for specifying the following analytical
relationships between the first and second order moments of X and Xobs:

E[Xobs] = pE[X], (2.9)

E[(Xobs)2] = p(1− p)E[X] + p2E[X2], (2.10)

V ar[Xobs] = p(1− p)E[X] + p2V ar[X], (2.11)

cov(Xobs
1 , Xobs

2 ) = p2cov(X1, X2), (2.12)

For a derivation see S3 Text . We assume that the capture efficiency p of the single cell
instrument is known [42, 43] and estimate the empirical moments ofX on the basis of the
empirical moments of Xobs by solving the above equations for the respective moment of
X. The resulting moment estimates are then used in the regression procedure described
above to perform structure learning.
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3.1. Introduction

Many pivotal cellular processes such as TRAIL-induced apoptosis are asynchronous,
i.e. manifest themselves at rates that vary on a cell-by-cell basis. This variability
constitutes a major challenge in learning the asynchrony-inducing mechanisms of these
processes from experimental data. We propose RealMatch, an integrated single-cell
biology and computational approach to address this challenge. We utilize RealMatch to
derive insights into the mechanism for fractional killing in TRAIL-induced apoptosis.

Several tissues in the body are known to produce and secrete TNF-related apoptosis-
inducing ligand (TRAIL), which generally induces apoptosis in tumor cells by binding
to its respective receptors DR4/TRAIL-RI and DR5/TRAIL-RII. Prior work has inves-
tigated TRAIL for use as a anti-cancer therapeutic. However, rampant onset of drug
tolerance in both in vitro and in vivo systems caused this therapy to fall out of favor.
In-depth studies of in vitro systems such as HeLa cells have demonstrated the onset
of non-genetic resistance upon exposure to TRAIL leading to a fraction killing effect.
Even in TRAIL-sensitive cells, heterogeneity can be observed in the as evidenced by the
asynchronous nature of apoptotic induction [1]. Differential responses to TRAIL has be
attributed to multiple mechanisms, including but not limited to: genetic, epigenetic, or
transcriptional alterations leading to changes in the protein levels of associated recep-
tors, i.e. DR5, the death-inducing signaling complex (DISC) components, and apoptotic
regulators like BCL-2 proteins or Inhibitors of apoptosis proteins (IAPs). Moreover, nu-
merous signaling pathways such as NFkB, JNK, p38, and Erk have been implicated
though evidence for their roles, pro-apoptotic or anti-apoptotic, have been contradic-
tory. The precise roles of these many different pathways, especially across numerous
individual cells with different levels of TRAIL sensitivity, still remain to be fully eluci-
dated.

Studying an asynchronous, complex process involving many components is a difficult
task. Capturing changes over time requires monitoring of the process, e.g. by means of
a time course experiment. The asynchrony, i.e. the cell-to-cell variation in the process
requires monitoring at a single-cell resolution. The complexity of the process given its
many levels of regulation additionally requires a high dimensional single-cell approach
that encompasses all important molecular process components, such as different signal-
ing and apoptotic proteins in the case of TRAIL-induced apoptosis. A high dimensional
time-lapse measurement would present the ideal experiment to study an asynchronous
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process. However, time-lapse measurements typically rely on reporter systems allow-
ing tracking of very few components at the same time [2]. High-throughput single-cell
snapshot measurements such as mass cytometry offer a suitable alternative to study
synchronised multi-dimensional processes [3]. However, the destructive nature of the
measurement allows assessment of the proteomic profile of each single cell only once,
and in particular does not allow tracking of that individual cell over time. This situa-
tion leads to a challenge in reconstruction of the mechanisms of the underlying process
from such data [4].

Several mechanistic models have been proposed to model the dynamics of TRAIL-
induced apoptosis [5, 6]. However, these models unfortunately are not able to explain
the fractional killing effect. While a mechanistic model of the fractional killing effect
would be of interest in general, design of such a model for the case of a system with
many unknown interactions and cross-talks between various pathways, is a tedious task.
The state of the art approaches of model selection [7] would be too computationally
expensive due to a vast majority of unknown interactions.

Conventional time series analysis such as Granger causality or Autoregression Mod-
els are not applicable to model single-cell behavior from snapshot measurements [8, 9].
These approaches are used to model the behavior of population averages over time and
implicitly assume a homogeneous cell population at each time point. This assumption
is violated for asynchronous process such as TRAIL-induced apoptosis. Asynchrony
entails the appearance of heterogeneous cell populations at every time point with cells
possibly covering the whole spectrum of states traversed in this process. Pseudotime
ordering approaches address this issue to resolve the state sequence of dynamical pro-
cesses from snapshot measurements of heterogeneous cell populations [10]. However,
these approaches do not take into account time labels from time series experiments. Re-
cently, an optimal transport model has been proposed to model developmental processes
by matching cells between disjoint snapshots at different time points [11]. Any of these
approaches reports a sequence of states, but does not yield the mechanisms governing
the temporal transitions. This step has proven to be difficult and not yet solved satisfac-
torily [12]. In particular this is the case for the intricate task of inferring the mechanisms
of fractional killing that enables a subset of cells to circumvent apoptosis upon external
stimulation by TRAIL.

We propose RealMatch, an integrated experimental and computational approach to re-
construct asynchronous processes and demonstrate its ability to infer mechanisms under-
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lying fractional killing in TRAIL-induced apoptosis. RealMatch operates on single-cell
snapshot time course data and combines optimal transport modeling with approxima-
tive structure learning of dynamic systems to derive asynchrony-inducing mechanisms.
We have carried out a mass cytometry time course study to monitor TRAIL-induced
apoptosis and derive mechanistic insights into fractional killing. Further we validate
this mechanism by evaluating the results through functional inhibitor experiments that
perturb key pathways in our identified network.

3.2. Results

3.2.1. Analysis of TRAIL-induced Apoptosis by Mass Cytometry

We designed and carried out an experiment to inform about dynamics and emergence
of cell subpopulations during TRAIL-induced apoptosis. Specifically, we collected HeLa
cells at 30 minute intervals from baseline through six hours of TRAIL treatment analyzed
by mass cytometry. We utilized an antibody panel including markers for signaling nodes
encoding apoptotic state, apoptotic regulators, cell cycle stage, and signaling pathway
activation (Table 1).

Mass cytometry profiling revealed several expected patterns in the time following
addition of TRAIL, including induction of activated Caspase 3 (aCasp3) and cleavage
of PARP (cPARP), as evidenced by an asinh ratio of nearly 3 in the median values
at 6 hrs relative to baseline (Figure 3.1A). This increase in apoptotic state markers
coincided with loss of full-length Bid caused by cleavage to produce the pro-apoptotic
truncated Bid (tBid). On average, exposure to TRAIL resulted in a slight initial increase
in signaling activation, i.e. an asinh ratio of 0.5 in p-NFkB, p-p38, and pErk median
values, followed by a global downregulation of nearly all signaling pathways by three
hours of TRAIL treatment, as reflected in an average asinh ratio of -1 to -3 in median
expression values relative to baseline (Figure 3.1A).

However, recent work and our data has demonstrated that TRAIL-induced apoptosis
is a highly asynchronous process where cells not only show difference in timing, but
a fraction of cells does not irreversibly commit to programmed cell death. Observing
the distribution of expression of several key markers confirmed this observation, as seen
most strikingly in the bimodal distribution of Cisplatin staining, a reagent used in mass
cytometry to stain dead cells (Figure 3.1B). Several other markers, including apop-
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Figure 3.1.: Mass cytometric profiling of TRAIL-treated HeLa cells reveals bimodal
response across time. (A) HeLa cells treated with TRAIL collected at 30 min. intervals
across six hours were analyzed by mass cytometry. Heatmap shows asinh ratio of median
expression intensities of each protein marker (columns) across all time points measured
(rows), relative to the untreated baseline (first row). (B) Histograms displaying signal
intensities of representative markers displaying emergence of bimodality with exposure
to TRAIL.
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totic regulators and signaling markers similarly revealed the emergence of different cell
subpopulations from an apparently homogenous population at baseline. Of note, several
markers such as IkBα, p-Akt, and p-S6 displayed a decreased median value at later time
points of treatment, but the histograms revealed a subpopulation of cells that main-
tained nearly similar levels to that observed at baseline. This observation prompted
our investigation to use this data to further infer the roles of these markers in driving
persistence of a TRAIL-resistant subpopulation.

3.2.2. Inference of asynchrony inducing mechanisms from

single-cell snapshot time series with RealMatch

Molecular mechanisms of the asynchrony underlying TRAIL-induced apoptosis are dif-
ficult to study and therefore are remain largely elusive. The destructive nature of mass
cytometry results in losing the information about the “past” and the “future” of each indi-
vidual cell in a snapshot. This gap of information constitutes a challenge to reconstruct
the mechanisms of dynamic processes such as apoptosis, in particular those responsible
for fractional killing. This challenge requires a general solution to trace back the ini-
tial cell subsets with future differential cell fate, such as those avoiding commitment to
apoptosis and to infer the signaling network and in particular the driving interactions
defining cell fate.

Snapshot measurements entail the appearance of heterogeneous cell populations at ev-
ery time point with cells covering possibly the whole spectrum of states traversed in this
process. Thus, understanding of this process requires a dedicated modeling approach
to infer the molecular mechanisms of fractional killing. We propose RealMatch, a novel
computational strategy to formulate hypothesis of potential molecular mechanisms of
asynchrony in apoptosis from single cell snapshot time series data. This approach com-
prises three steps (Figure 3.2):

1. Definition of active signaling nodes in cell subsets with differential cell fate.

2. Inference of intracellular signaling network between the signaling nodes.

3. Identification of signaling mechanisms inducing differential cell fate.

For the first step, we reduce inferring the temporal dynamics of cell subsets to an op-
timal transport problem. This approach seeks to optimally “transport” a cell population
state measurement from one time point into the measurement of the consecutive time
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point (Figure 3.2A). Optimality of transport is assessed with respect to a cost function,
typically evaluating the distance of an individual cell from the previous time point to the
state of another cell observed cell at the consecutive time point. This approach assumes
a parsimony hypothesis, i.e. that cells favor changes with the least overall transportation
cost. Therefore, by minimizing the cost function of total transportation cost between
two samples, we can find an optimal “coupling” - a a set of transition matrices, each
defining a probability of every cell at a specific time point to transition into the states
represented by the cell of the consecutive time point. These transition matrices are
subsequently used to reconstruct the maximally likely state trajectories from the start
to the end of the process. These trajectories enable tracing back the initial cell subsets
matching to those committed to apoptosis at a later time point as evaluated by elevated
cell death (Cisplatin) signal. Combining this matching with the available status of a cell
of being alive or dead at a given time, we can assign a label of time-of-death” to each
trajectory and in particular to each cell at the onset of the time series (Figure 3.2B).
Grouping of trajectories allows to evaluate the estimated temporal evolution of markers
with respect to time-of-death and to identify potentially asynchrony-inducing markers
characterized by differential behaviour across these groups (Figure 3.2C). To identify
possibly non-trivial combinations of asynchrony-inducing signaling nodes we performed
feature selection by regularized classification of initial cell states with respect to their
inferred time-to-death (see Methods for details).

The second step consists in reconstructing the signaling network connecting the mon-
itored signaling nodes. To this end we used Reactionet lasso, a structure learning algo-
rithm for stochastic reaction networks monitored by a snapshot time series (see Meth-
ods for details). The outcome of Reactionet lasso procedure is a refined set of directed
edges. Each inferred edge constitutes a potential regulation of an upstream protein to
the downstream one. However, Reactionet lasso does not identify the functional role of
the regulation in terms of an activation or inhibition. To define the functional role we
associated a directed edge from protein A to protein B with an activating role if their
time series are positively correlated, or an inhibiting role in case of negative correlation.

To achieve the third step, we analysed the network provided as an output of Reactionet
lasso together with the “rainbow” plots from optimal transport for inhibition experiments
(Figure 3.2D). This analysis allowed to reason what is the potential functional role
of certain markers distinguishing surviving population and how manipulation on the
abundance of these markers can affect cells’ decision to die.
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3.2.3. Identifying signaling nodes of survivor subpopulation after

TRAIL Treatment

We applied RealMatch to identify key regulators and their role in fractional killing of
TRAIL-induced apoptosis. First, we performed the optimal transport matching and
consecutive marker analysis between different time-of-death groups. The evaluation of
the average trajectory for each time-of-death group showed that for the majority of
markers there is no significant difference between two consequent groups, but for some
of the markers we see a significant monotonical increase in separation with the growth
of time-of-death (Figure 3.3).

To quantitatively support these observations we trained a classifier to select a survival
profile, i.e. significant subset of markers responsible for the classification of alive cells at
the onset of TRAIL stimulation in two different future states: “committing apoptosis”
and “survivors.” The prediction accuracy of the corresponding classification data shows
that there exist a subset of markers that allows to distinguish survival population (pre-
diction accuracy 0.65) (Figure 3.3). Cell death markers like cisplatin do not achieve
significant class separation at the onset of TRAIL stimulation, which agrees with the
downstream role of these markers in apoptosis, i.e. occurring after cytochrome C re-
lease. As the expression of these markers increases over time, we see that the separation
becomes significantly more apparent (Figure 3.3).

We focused on the markers which are detected to be significant at different time points
before and after TRAIL exposure in order to understand the molecular profile of sur-
vivors (Figure 3.3). Markers that were identified as important in baseline, untreated
cells included IkBα, p-BCL-2, pErk, and p-BADS136. IkBα was the most significant
of these features (complement measure of significance). IkBα is a regulator of NFkB, a
transcription factor which was previously reported to play an important role in TRAIL-
induced apoptosis. However, the role of IkBα has not been clearly defined so far. Our
results suggest that the levels of IkBα, rather than NFkB are important for fractional
killing. Other significant markers include phosphorylated BCL-2 (p-BCL-2) and phos-
phorylated BAD (p-BADS136). This finding confirms previous studies reporting these
players as indicators of inhibited cytochrome C release. In contrast to well-characterized
anti-apoptotic markers, we identified active proliferation pathway kinase pErk as an
important feature for cells that would not undergo TRAIL-induced apoptosis. Sev-
eral markers became informative of survival status only after addition of TRAIL. For
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Figure 3.3.: Optimal transport matching identifies distinct trajectories of TRAIL-treated
HeLa cells. The classification score shows steady increase in the classification accuracy
between the apoptotic and survival populations. Feature score shows how significance
of an individual feature changes over time. “Rainbow” plots show Asinh transformed
median expression values of the most significant markers at the beginning of the process
(t-0) in TRAIL-treated HeLa cells with different fates upon treatment with TRAIL.
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example, translational regulator pS6, survival kinase pAkt, and the G2/M phase cell
cycle marker CyclinB1 emerged as important apoptosis predictors closer to one hour
of TRAIL treatment. By the final timepoints, pS6 was the only non-apoptotic marker
(exclusive of Cisplatin) that remained informative. The role of many of these markers in
TRAIL-induced apoptosis has not been previously reported. Though Akt participates
in a well-known survival pathway, many of the other markers (e.g. S6, Erk, IkBα) have
not been attributed a direct role in contributing to survival.

To validate that the survival profile plays a role in survival with TRAIL treatment,
we tested targeted perturbations to assess the expected modulation of fractional killing.
Given that IkBα or NFkB are regulated through degradation and localization mecha-
nisms, robust and specific inhibition of these pathways generally requires genetic alter-
ations not applicable in a clinical setting. Thus, we aimed to validate the rest of the
edges that rely on kinase/phosphorylation dynamics. We used the p38 kinase inhibitor
SB203580, the MEK inhibitor GSK1120212, and the PI3K inhibitor GDC0941. MEK
is a kinase that phosphorylates Erk, leading to increased levels of pErk, while PI3K is
an upstream kinase of pAkt. We tested these inhibitors in combination with TRAIL
stimulation through clonogenic assays to assess their effects on long-term survival and
proliferative recovery in HeLa cells (Figure 3.5B). Pre-treatment of HeLa cells with
these inhibitors increased sensitivity to TRAIL exposure, i.e. with greater fractional
killing demonstrated across all clonogenic assays. Interestingly, the MEKi demonstrated
the greatest reduction (nearly 60% mean decrease in TRAIL survivors relative to DMSO)
in TRAIL resistance of the three single-agent combinations tested.

3.2.4. Identification of potential mechanisms of TRAIL-induced

apoptosis regulated by the identified key nodes

In order to explain the functional role and potential mechanism of action of the sur-
vival profile we performed Reactionet lasso analysis. We investigated potential reactions
involving members of the survival profile, possibly explaining the efficacy of their in-
hibitors. There are several known regulators of cytochrome C release, specifically the
BCL-2 family proteins (e.g. BID, MCL-1, BCL-2, BAD). While evidence suggests that
various kinase pathways may play a role in regulating apoptosis, the relationship is not
direct, suggesting that the markers we identified must interact with known apoptotic
regulators.
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We constructed a set of plausible reactions involving these markers and known reg-
ulators of cytochrome C release. We also added potential interactions between apop-
totic, stress and proliferation pathways, which were not described before. Well-known
interactions from literature we introduce as fixed reactions in the network in order
to avoid structural unidentifiability and improve the performance. From the output
(Supplementary Figure B.1) of Reactionet lasso we selected several potentially in-
teresting reactions to investigate that were largely not explained in previous literature.

As expected, we identified crosstalk between measured BCL-2 family proteins such
as connections between pBCL-2, pBADS112, and MCL-1. The contributions of IkBα
to survival may be partially explained by the relationship between downstream pNFkB
and the pAkt survival pathway or its connection to pro-survival protein MCL-1. Of
interest, Reactionet lasso analysis implicated the p38 MAPK pathway as downstream of
BID and leading to activation of pBCL-2 and pBADS112 via pHSP27. Moreover, our
data suggests that many of these pro-survival BCL-2 family members, i.e. pBADS112,
MCL-1, and pBADS136, feed into the pErk MAPK pathway.

As these reactions discovered by Reactionet lasso had not been reported before, we
performed several additional inhibition experiment coupled with the mass cytometry
measurements in order to validate and refine the proposed reactions. For experimental
validation of the discovered reactions we followed a simple heuristic for causal inference:
if we perturb a node in the network, we expect to see a significant change only in
the downstream nodes. Therefore, based on our network inference we expect to see a
significant change in dynamics (relative to DMSO control) of pErk under the inhibition of
BCL-2 family and no significant change in the dynamics of BCL-2 under the inhibitions
of pErk (Figure 3.4). In the case of p-p38, we expect perturbation BCL-2 proteins to
perturb p38 signaling and the reverse to be true.

Using the most effective kinase inhibitors SB203580 and GSK1120212, we pre-treated
HeLa cells prior to TRAIL exposure to measure the effect of targeting these markers
through mass cytometry profiling. Moreover, as we had identified connections between
these kinases and BCL-2 family members that might explain the means by which they
regulate intrinsic apoptosis, we also collected mass cytometry data to characterize the
effects of several BCL-2 specific inhibitors on TRAIL-induced apoptosis. From this data,
we recreated the trajectories of cells towards different times of death or survival with
combined treatment. This analysis reveals the change in the response of each individual
marker per time-of-death group in order to answer if and when each marker was affected
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upon exposure to both a perturbation and TRAIL.

Relative to the DMSO control, MEKi and p38i reduced the characteristic spikes in
both p-Erk and p-p38 that follow exposure to TRAIL (Figure 3.4). These kinase in-
hibitors increased apoptosis at earlier time points as seen with greater loss of BID at less
than two hours of TRAIL treatment than what is seen in the DMSO control. Moreover,
these kinase inhibitors also reduced levels of p-BADS136 and p-BCL-2, which recovered
in late timepoints with p38i treatment, but dropped precipitously with MEKi treatment.
Notably, this pattern suggests that the p38 and Erk MAPK pathways are able to in-
fluence levels of pro-survival BCL-2 family members or post-translational modifications.
These observations can be partially explained by prior studies suggesting p90RSK kinase
downstream of pErk feeding back into the BCL-2 proteins, namely pBADS112. Thus,
these kinase inhibitors show potential to synergize with TRAIL and lead to reduced
TRAIL resistance.

We similarly tested the effects of ABT-199, a selective BCL-2 inhibitor, and ABT-737,
a BCL-XL, BCL-2 and BCL-w inhibitor, by mass cytometry compared to that of our
kinase inhibitors (Figure 3.4). Inhibitors of pro-survival BCL-2 proteins have been
developed as anti-cancer agents due to their ability to sensitize cancer cells to existing
therapies or initiate cell death as a monotherapy. As the BCL-2 family work mainly
via protein-protein interactions, these inhibitors compete for the binding sites in pro-
survival BCL-2 proteins and displace pro-apoptotic BCL-2 proteins. This action allows
pro-apoptotic BCL-2 family members to bind to and facilitate BAX/BAK complex for-
mation, ultimately enabling apoptosis to occur. Both inhibitors led to notable reductions
in pBADS136 and pBCL-2, as well as a characteristic drop in BID levels that explained
the ability of these inhibitors to lead to reduced survival after TRAIL treatment. As
expected, both inhibitors also had dramatic effects on levels of p-Erk and p-p38.

3.3. Conclusion

Deeper understanding into what drives susceptibility versus resistance to TRAIL could
make great strides into developing TRAIL into an effective anti-cancer therapeutic. Prior
technological limitations have led to ambiguous or even contradictory conclusions on the
roles of various signaling pathways in regulating TRAIL-induced apoptosis. In part, this
confusion resulted from methodologies that averaged measurements across a diverse pop-
ulation such as those undergoing TRAIL-induced apoptosis in an asynchronous manner
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and even a mixed population of cells sensitive or resistant to TRAIL. Recent advances in
single-cell platforms such as mass cytometry enable us to characterize these populations
in-depth. Using RealMatch, we aimed to recreate trajectories of cells responding dif-
ferently to TRAIL and discover the underlying network regulating these heterogeneous
responses. The final network derived from known reactions and those identified from
the application of RealMatch to our mass cytometry data is depicted in Figure 3.5A.
For the annotation of the “activation/inhibition” shown in this network, we used logic
rules described above and the “rainbow” plots from a previous step (Figure 3.4).

This pathway analysis may explain the mechanisms of action of the inhibitors we
investigated as possible synergistic co-treatments with TRAIL. We tested two kinase
inhibitors directed against MEK and p38 as well as two BCL-2 family inhibitors, ABT-
199 and ABT-737, in combination with TRAIL. MEKi is supposed to reduce levels of
p-Erk though inhibition of its upstream kinase MEK, but we also see that it affects levels
of p-p38, p-BCL-2, pBAD136 and pBADS112. p38i inhibits p38 activity and leads to a
modest decrease in p-p38 levels, but also clearly affects pErk, pBCL-2, and p-BADS136
levels. ABT-737 reduces levels of BCL-2 family members pBCL-2, p-BADS136, and
p-BADS112 while ABT-199 affects p-BADS136 and p-BCL-2 more dramatically with
less effect on p-BADS112.

The observed effects of treatment with the inhibitors are consistent with and can
inform the networks produced through Reactionet analysis. MEK inhibition leads to
downstream effects on pBADS112 via a known reaction through p90RSK, but our in-
hibitor data as well as less stringent Reactionet analysis supports a connection between
Erk and p38 signaling. This connection could explain how MEKi is able to also drive
decreased levels of pBCL-2. Similarly, less stringent Reactionet analysis suggests the re-
verse connection between Erk and p38 is also true, which is supported by the dramatic
reduction in pErk observed upon p38i treatment. Surprisingly, negligible effects were
observed on pBADS112 in either treatment scenario. However, pBADS136 was signifi-
cantly affected by both kinase inhibitors. This connection might have been missed by our
Reactionet lasso method, especially if the connection is mediated by several unmeasured
markers. Alternatively, our less stringent Reactionet results identified a connection be-
tween p-p38 and pAkt, which is the known upstream kinase of pBADS136. Thus, p38i
could indirectly reduce pBADS136 via pAkt and the connection between p38 and pErk
might explain MEKi’s similar ability to downregulate pBADS136 through the same axis.

Importantly, this discovered network may provide explain the degree of efficacy we
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Figure 3.4.: “Rainbow” plots show Asinh transformed median expression values of some
BCl-3 family markers, p-Erk and p-p38 in TRAIL-treated HeLa cells with various kinase
inhibitors.
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observed with synergistic TRAIL co-treatments. We saw limited efficacy with the various
BCL-2 family targeted inhibitors compared to kinase inhibitors despite conventional
wisdom suggesting that the regulatory role of BCL-2 proteins in apoptosis would make
them of greater import in co-treatments. We observed that the strongest death-inducing
kinase inhibitors MEKi and p38i, which both reduced BCL-2 protein levels significantly
through several proposed reactions that connect these pathways to measured pro-survival
markers. Though anti-apoptotic regulation may be classically attributed to survival
pathways such as pAkt, the hierarchy we identified might justify the ordering of efficacy
we found: MEKi, p38i, and PI3Ki (Figure 3.5B). pErk’s role upstream of p38 and
pAkt, while also downregulating a separate axis through pBADS112 led to the greatest
effect across multiple BCL-2 family members, while the effects of each subsequent marker
(p-p38 and pAkt) encompassed fewer of these BCL-2 proteins.

Of interest, the network we identified might not fully reveal the rationale behind the
efficacy of each pair-wise combination of these kinase inhibitors. Though the network
suggests that MEKi should be largely redundant with PI3Ki and p38i due to pErk sitting
upstream of both targeted nodes, we observe additional reduction in TRAIL resistance
in both dual-kinase targeting strategies. Possible mechanisms for this phenomena in-
clude feedback loops wherein targeting of pErk may lead to a compensatory response
through Akt or p38, which is subsequently blocked by either inhibitor, leading to further
death. Alternatively, as the connections we found between pAkt, pErk, and p-p38 were
very subtle and were labeled low confidence edges, it is possible that there is only a
partial effect on either pAkt and p38 when inhibiting pErk levels. Adding a targeted
inhibitor against either may achieve the full inhibitory effect. This mystery could be
unraveled through future validation, such as profiling TRAIL-induced apoptosis using
single-cell RNA-sequencing data that has fewer hidden variables or profiling of the dif-
ferent inhibitor combinations with the same approach via mass cytometry.

Studying asynchronous processes from disjoint mass cytometry snapshots is a difficult
problem. Providing rich source of information by means of high-dimensional measure-
ments, mass cytometry is still missing the vital aspect of following cells in time-lapse. A
naive approach reconstructs the temporal state sequence on the basis of averaging the
single-cell data, implicitly making the assumption of a synchronous processes yielding
homogeneous cell state distributions over time. This approach is confounded by asyn-
chronous processes such TRAIL induced apoptosis. RealMatch addresses the problem
of disjoint snapshots by finding the best match between consequent snapshots under a
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parsimony assumption.

There are several options for such a matching approach. Our choice of a conventional
discrete optimal transport was motivated by several factors as: simplicity and inter-
pretability, demonstrated success of Waddington-Optimal Transport for transcriptomics
applications [11] and the fact that minimizing total transportation cost fits well with
the biological assumption of the cells choosing an optimal path in terms of “the least
effort”. Computational complexity, i.e. quadratic memory and run time requirements
constitute a limitation of this choice. Therefore, we considered cell subsets of 10’000
for the reported computations. Subsampling could in general introduce biases in the
matching procedure. We ruled out such biases in our study by assessing stability of our
results under various random seeds. Another limitation of such a matching is the “curse
of dimensionality”: computing the cost function with large number of dimensions could
lead toward insignificant (random) matches. To account for the fact that not all of our
cells were reliably matched, we suggest to use only the signal trend, i.e. the average
expression per time-of-death group, instead of performing inferences on the individual
trajectories.

We reconstruct cell state trajectories for cell subsets with differential apoptosis out-
come and use these to reason about potential causal mechanisms yielding different time
of death in TRAIL induced apoptosis. We cast this task into a feature selection problem
for classification of time-of-death. We used linear SVC with l1 penalty in order to select
a sparse set of predictors. Another choice could be logistic regression with l1 penalty.
However, logistic regression is known to be more sensitive to the outliers and SVC is eas-
ier to extend to non-linear case (non-linear SVC) in order to inspect the best prediction
score of selected features assuming that their interaction is not linear. No matter which
feature selection method we use, selected features are not guaranteed to be causal and
could be just confounded with the outcome. In this case any drug intervention on such a
feature wouldn’t lead to a different process behaviour. In order to identify the potential
causal role of selected features we applied Reactionet lasso. Reactionet lasso showed
good performance in the reconstruction of dynamic systems for the cases of systems
with sufficient amount of prior knowledge about network structure. Reactionet lasso is
the only known to us method for automatic reaction reconstruction from purely obser-
vational single-cell time series snapshots. Other approaches to this task are conceivable,
e.g. performing model selection among several different topologies of an ordinary dif-
ferential equation system. This approach could potentially give a better performance
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(confidence in the edge), but is typically limited by its required computational resources
for evaluation of a potentially large number of model variants. The amount of models
to consider for the considered marker panel in this study easily amounts to billions of
variants that in practice are not tractable.

Time-series single-cell snapshots have never been used before for the analysis of asyn-
chronous process because of the aforementioned limitations. We present RealMatch to
overcome these limitations by means of an automatic and systematic procedure to iden-
tify asynchrony inducing mechanisms. RealMatch demonstrated its ability to discover
potential causes of asynchrony in TIA. Further, we expect this approach to enable other
studies based on time-series mass cytometry snapshots to reconstruct the mechanisms
of other asynchronous processes. For example, RealMatch could be applied to studies
of cells exhibiting trajectories profiled through well-defined status markers such as cell
cycle or differentiation state.

3.4. Methods

3.4.1. Reagents

Cell Culture and Inhibitors

The HeLa cell line was cultured in DMEM media containing 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (Gibco). Cells were treated with 50 ng/ml Su-
perKiller TRAIL (Enzo Life Sciences). In inhibitor experiments, the following reagents
and inhibitors were used: 0.1% DMSO (Sigma-Aldrich), 1 µM GSK1120212 (Selleck
Chemicals), 20 µM SB203580 (Cell Signaling Technology), 2.5 µM GDC-0941 (Selleck
Chemicals), 2 µM ABT-737 (ChemScene), and 2 µM ABT-199 (ChemScene).

Antibodies

The antibody panel including targeted epitopes, metal/mass conjugations, staining con-
centrations, clone, and manufacturers are described in detail below (Figure 3.6).
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Target  Antigen  Metal  Mass 

Final 

Conc. 

(ug/ml) 

Antibody Clone  Source 

Histone H3  pS28  In  113  2  HTA28  Biolegend 

Bad  pS112  Pr  141  2  40A9  CST 

Caspase 3  total cleaved (active form)  Nd  142     C92­605  BD 

4EBP1  pT37/pT46  Nd  143  2  236B4  CST 

RSK2  total  Nd  144  1  D21B2  CST 

p38  pT180/pY182  Nd  145  2  36/p38  BD 

Caspase 7  total cleaved at N198  Nd  146  2  poly  CST 

p90RSK  pT573  Sm  147  2  poly  CST 

NFkB  pS529  Sm  149  2  K10­895.12.50  BD 

S6  total  Nd  150  0.5  54D2  CST 

Akt  pS473  Sm  152     D9E  CST 

MAPKAPK­2  pT334  Eu  153     27B7  CST 

BCL­2  pS70  Gd  156  2  5H2  CST 

Bid  total (p22 Bid)  Gd  158  2  poly  Sigma 

Bad  pS136  Dy  162  1  D25H8  CST 

Cyclin B1  total  Dy  164  0.25 test  GNS­1  BD 

Rb  pS807/pS811  Ho  165  0.5  J112­906  BD 

HSP27  pS82  Er  166  2  D1H2  CST 

Erk  pT202/pY204  Er  167     D13  CST 

Ki67  total  Er  168     B56  BD 

IkBalpha  total (N­terminal antigen)  Tm  169  2  L35A5  CST 

PARP  total cleaved at N214  Yb  171  1  F21­852  BD 

S6  pS235/pS236  Yb  172  2  N7­548  BD 

AMPK  pT172  Lu  175  2  40H9  CST 

Mcl­1  total  Yb  176  2  poly  CST 

 

Figure 3.6.: Antibodies used for mass cytometry experiments..
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3.4.2. Clonogenic Survival Assays

To perform clonogenic assays, HeLa cells growing in log phase were seeded into 6-well
plates at 2000 cells per well as counted by a manual hemacytometer about 18 hours prior
to start of TRAIL treatment. Inhibitors or DMSO control was added the following day
for 1 hour prior to TRAIL treatment, followed by the addition of TRAIL. Exposure to
treatments continued for 24 hours before cells were washed twice with warm media and
new media was added. Cell culture continued as described until colonies were visible to
the naked eye and counted above 50 cells under the microscope, generally about 7-10
days later. At this point, media was removed from all 6-well plates. Colonies were
stained by washing out remaining media using sterile PBS and fixing colonies using a
cold methanol/acetone (60:40%) solution for 5-10 minutes. Colonies were visualized with
a 1% crystal violet solution (dissolved in 25% methanol in water). Colonies on all plates
were counted using a light box and counter pen (Fisher Scientific). All clonogenic assays
are quantified as a percentage of surviving colonies relative to the TRAIL + DMSO
control well.

3.4.3. Mass Cytometry

For mass cytometry experiments, HeLa cell line treatments were performed in 6-well
plates using TRAIL and the inhibitors described under the Reagents section. Time
course experiments were set up as a reverse time course with TRAIL treatment ranging
from 0 to 6 hours sampled at every 30 minutes (TRAIL only experiment) or every hour
(TRAIL plus inhibitor combinations). For TRAIL plus inhibitor treated cells, cells were
treated with their respective inhibitor for 1 hr prior to addition of TRAIL. DMSO-treated
cells were used as controls in all experiments with added inhibitors.

Prior to collecting time course samples, all cells were stained for cell cycle status with
IdU and stained for viability with cisplatin according to previously published protocols.
Cells from time course experiments were then lifted from plates using trypsin and fixed
with 1.6% paraformaldehyde (Electron Microscopy Sciences) for 10 minutes at room
temperature. Cells were pelleted and washed with cell staining medium (CSM) consisting
of PBS with 0.5% BSA and 0.02% sodium azide. Cells were permeabilized with 4◦p-NFC
methanol for 10 minutes and stored at −80◦.

Cells were barcoded using palladium barcoding as previously described to multiplex
up to 20 different biological samples in a single experiment. After barcoding, cells were

57



Chapter 3

pelleted and washed three times CSM and stained with antibodies (Table 1) for one
hour at room temperature. Cells were washed with CSM, then stained with 125 nm
191Ir/193Ir DNA intercalator (Fluidigm, South San Francisco, CA, USA) in PBS with
1.% paraformaldehyde at 4◦ overnight. Cells were washed once with CSM, washed
three times with double-distilled water and filtered to remove aggregates. Prior to
analysis, cells were resuspended with normalization beads and assayed on a CyTOF2
mass cytometer (Fluidigm, South San Francisco, CA, USA).

FCS files containing mass cytometry measurements were exported from CyTOF2 soft-
ware. These files were concatenated, bead normalized, and de-barcoded using previously
published software. Individual cells or singlets were gated on Cytobank (http://www.cytobank.org)
using the event length and 191Ir/193Ir DNA parameters to remove debris and doublets.

3.4.4. Computational Approach

Data preprocessing

The data were preprocessed with a standard ashinh(x/5) transformation. Cells were
classified into “alive” and “dead” with a strict threshold of 2.7 of the “cisplatin” marker.

Optimal transport

From each snapshot 10 000 cells were subsampled for the analysis. Python optimal trans-
port library (https://github.com/rflamary/POT) was used to perform the matching.
The transportation cost between each pair of cells in consecutive snapshots was com-
puted as a squared euclidean distance with a cell cycle penalization:

c(x1, x2) =

||x1 − x2||2, if x1agrees with the cell cycle x2

+∞, otherwise
(3.1)

By “agrees with the cell cycle” we mean that cells are not allowed transition back in
the cell cycle (except from G1 to G0 phase) or skip cell phase (e.g. go from G0 directly
to G2).

The output of the optimal transport between each pair of consequent snapshots is a
transition probabilities matrix P containing probabilities of each cell of first snapshot
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transition into a cell state of the second snapshot. There for each cell of the first snapshot
we can compute “expected state” as:

Xpredicted = XP (3.2)

For each cell we can estimate time-of-death as a first time when the predicted value of
cisplatin for the “alive” cell in X became greater than the threshold used for the labeling
last snapshot into “dead” and “alive”. Consequent matching of the snapshots allow to
reconstruct the full trajectory from the beginning to the end of the process and assign
expected time-of-death to each point of the zero snapshot. Cells with expected time-
of-death 13 we call “survivors” meaning that they are alive by the moment of the last
measured snapshot (for the total of 12 snapshots after TRAIL stimulation).

Feature selection

Linear Support Vector Classifier with L1 regularization was used to select the most
informative features to classify cells into “survivors” and “committing apoptosis” at time
point zero. The regularization parameter was chosen with a 5-fold cross validation. After
the most significant features were selected, we rerun the SVC with “gaussian” kernel in
order to access he best prediction score if the features could be non-linearly transformed.

Reactionet lasso

We ran Reactionet lasso with a standard set parameters proposed in the original paper:
100 bootstrap samples, splines gradient fit. We fixed 13 reactions as a prior stoichiometry
based on the literature and allowed for 181 potential reactions. The set of potential
reactions was chosen to connect important features identified in the step before between
each other and to the known downstream regulators of apoptosis.

References
[1] S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke, and P. K. Sorger. “Non-genetic origins of cell-to-cell variability

in TRAIL-induced apoptosis”. Nature 459:7245 (2009), p. 428.
[2] S. Skylaki, O. Hilsenbeck, and T. Schroeder. “Challenges in long-term imaging and quantification of single-cell

dynamics”. en. Nat. Biotechnol. 34:11 (2016), pp. 1137–1144.
[3] B. Bodenmiller, E. R. Zunder, R. Finck et al. “Multiplexed mass cytometry profiling of cellular states perturbed

by small-molecule regulators”. Nat. Biotechnol. 30:9 (2012), pp. 858–867.

59



Chapter 3

[4] K. Sachs, S. Itani, J. Fitzgerald et al. “Single timepoint models of dynamic systems”. en. Interface Focus 3:4 (2013),
p. 20130019.

[5] J. G. Albeck, J. M. Burke, S. L. Spencer, D. A. Lauffenburger, and P. K. Sorger. “Modeling a snap-action, variable-
delay switch controlling extrinsic cell death”. PLoS biology 6:12 (2008), e299.

[6] F. Bertaux, S. Stoma, D. Drasdo, and G. Batt. “Modeling dynamics of cell-to-cell variability in TRAIL-induced
apoptosis explains fractional killing and predicts reversible resistance”. PLoS computational biology 10:10 (2014),
e1003893.

[7] M. Sunnåker, E. Zamora-Sillero, A. López García de Lomana et al. “Topological augmentation to infer hidden
processes in biological systems”. Bioinformatics 30:2 (2013), pp. 221–227.

[8] S. M. Hill, N. K. Nesser, K. Johnson-Camacho et al. “Context Specificity in Causal Signaling Networks Revealed
by Phosphoprotein Profiling”. en. Cell Syst 4:1 (2017), 73–83.e10.

[9] R. Opgen-Rhein and K. Strimmer. “Learning causal networks from systems biology time course data: an effective
model selection procedure for the vector autoregressive process”. en. BMC Bioinformatics 8 Suppl 2 (2007), S3.

[10] K. R. Moon, J. S. Stanley, D. Burkhardt et al. “Manifold learning-based methods for analyzing single-cell RNA-
sequencing data”. Current Opinion in Systems Biology 7 (2018), pp. 36–46.

[11] G. Schiebinger, J. Shu, M. Tabaka, B. Cleary et al. “Reconstruction of developmental landscapes by optimal-
transport analysis of single-cell gene expression sheds light on cellular reprogramming”. BioRxiv (2017).

[12] A. Ocone, L. Haghverdi, N. S. Mueller, and F. J. Theis. “Reconstructing gene regulatory dynamics from high-
dimensional single-cell snapshot data”. Bioinformatics 31:12 (2015), pp. i89–i96.

60



4 Causal learning of signaling
pathways from single-cell time
series snapshots

Anna Klimovskaia, Sara Magliacane, Stefan Ganscha, Fabian Radler, Manfred Claassen

Contribution by AK: conceived and implemented the computational analysis, de-
signed and performed the computational experiments, wrote the manuscript.

61



Chapter 4

4.1. Introduction

Signaling networks regulate ubiquitous cellular processes such as proliferation, differ-
entiation and cell death [1]. The study of signaling networks typically centers around
defining and taking advantage of causal relationships of its, typically protein compo-
nents:

• Does protein X influence protein Y?

• If we increase/decrease/remove the abundance of protein X, how will it affect the
final response of the signaling (e.g. arrest cell cycle, induce/inhibit apoptosis,
etc.)?

• How to design an optimal treatment strategy for the system under study? (How
to get the desired outcome, for example inducing apoptosis in cancer cells?)

Mechanistic modeling by means of dynamic systems is considered to be the most
precise modeling approach in the attempt to answer these questions, for example ordi-
nary and stochastic differential equations models are widely used to design new drug
treatments [2]. Typical applications of mechanistic modeling assume the model struc-
ture to be known, which might not be true in practice. Discovery of new signaling
interactions for a long time was precluded by the data: only few components were mea-
sured at a time, allowing to focus only on small parts of the pathway. Development of
multi-parametric measurement technologies such as for example mass spectrometry or
reverse-phase protein array time-course assays facilitated the development of algorithms
to learn molecular interactions from data. The proposed approaches span from model
selection for mechanistic models [3, 4] to recently statistical approaches extracting causal
information from correlations and drug interventions [5, 6]. The major drawback of the
aforementioned mechanistic approaches is that they are not scalable to large signaling
networks. Even a more comprehensive enumeration of plausible network structures by
topological augmentation is limited for the large scale systems with many unknown
interactions [7]. Several regression based approaches were proposed recently to over-
come the scalability limitation for learning mechanistic models from data [8, 9], but the
structure learning capabilities could be largely precluded by overall identifiability of the
models from the data [10]. The proposed statistical approaches in their turn typically
don’t suffer from computational limitations, but need a large variety of interventions to
distinguish between correlation and causation.
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Another important limitation of the aforementioned approaches for discovery of sig-
naling interactions is that majority of them explicitly assume the signaling network to
be deterministic. While this could be a reasonable approximation for certain type of
systems, a number of recent studies with single-cell technologies, such as flow cytometry
and time-lapse live-cell data, demonstrated that cell-to-cell variability plays a crucial
role in systems on all levels from intrinsic variability (stochastic nature of molecular re-
actions) like in the examples of stochastic gene expression [11, 12] to extrinsic variability
in protein concentrations during cell signaling, e.g. fractional killing effect in apoptosis
[13]. Mathematical models explicitly addressing the heterogeneity demonstrate superior
performance than deterministic approaches [14–17].

Development of new high-throughput single-cell measurement technologies, such as
mass cytometry [18], allowed to measure up to 50 components in the system simultane-
ously and therefore unlocked a variety of opportunities for computational modeling of
non-genetic origins of cell heterogeneity. However, addressing the cell-to-cell variability
in structure learning task for mechanistic models still remains an extremely challenging
problem [8].

Difficulty of structure learning for mechanistic models and the development of high-
throughput single-cell technologies such as flow and mass cytometry facilitated appli-
cation of statistical models in an attempt to generate hypothesis about causal protein
interactions. For example, Bayesian Networks were proposed as a tool for causal hy-
pothesis generation [19, 20]. These models essentially describe the joint distribution of
the data as a tractable factorized distribution. Signaling relationships are represented
as statistical dependencies implied by this factorization and can but in general do not
coincide with the causal direction.

A more rigorous generalization of Bayesian Networks towards causal Bayesian Net-
works [21] and corresponding structure learning methods were recently proposed to infer
causal structure from a single time point flow or mass cytometry snapshots of a signaling
system in a steady-state [22–24]. However, even though causal Bayesian Networks indeed
are representing truly causal dependencies, their applicability towards protein signaling
is limited by two strong assumptions: the signaling system is at a steady-state and the
signaling network is a directed acyclic graph (DAG) [25]. It is well-known that signaling
systems contain a numerous amounts of feedback loops, which means the violation of the
assumption of signaling network to be a DAG. In the latter study authors experimen-
tally demonstrated that even in the case of perfectly designed experiment in terms of
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interventions, the structure learning capabilities of algorithms are indeed limited by the
acyclicity assumption. Some recent theoretical work confirmed the significance of the
aforementioned limitation by formulating the steady-state of a dynamic systems (mech-
anistic models) as a cyclic causal Structural Equation Models (SEM) for deterministic
[26] and stochastic cases [27].

Dynamic Bayesian Networks would be one of the natural ways to overcome the prob-
lems imposed by single time point models [28]. However, structure learning methods for
Dynamic Bayesian Networks [6, 29] are not directly applicable for flow or mass cytome-
try datasets due to their destructive nature: we don’t posses the joint distribution over
time snapshots. These models exploit temporal information of the process by formulat-
ing a time series model formulation. This information for cytometry datasets could only
be acquired from multiple time snapshots and either by averaging or by matching of the
snapshots (e.g. with optimal transport [30]). While averaging would lead to the loss of
single-cell information and therefore not applicable to study cell-to-cell variability, the
optimal transport could be an attractive alternative to make the Dynamic Bayesian Net-
works applicable for cytometry snapshot, but no study to our knowledge demonstrated
it yet.

Despite aforementioned limitations (acyclicity) of recently proposed methods for causal
structure learning from single time point cytometry snapshots, causal modeling is still
very attractive and promising approach to modeling behaviour of complex signaling
systems. First, because there are not many examples of success stories when causal
modeling in biology was applied to learn gene regulatory networks [31–33]. Second, fast
development of mathematical approaches for causal reasoning opens new opportunities
to answer central systems biology questions we introduced in the beginning [34].

Here we introduce a Causal Time Series Snapshots Model (CTSSM), a special case
of causal Structural Equations Models which allows to overcome the assumptions of the
steady-state and acyclicity accounting for the time of the process. CTSSM also explicitly
models extrinsic variability. The time component here is the backdoor between mech-
anistic and causal modeling: all the information is unrolled in time (no instantaneous
interactions), resulting in the joint causal graph over time without cycles. This model
formulation combines advantages of both mechanistic and statistical models: it is able to
accommodate the most important structures in protein signaling such as feedback loops,
variability in initial protein concentrations and temporal changes of node abundance,
and at the same time takes advantage of the simplicity of the statistical models and
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Figure 4.1.: General time series model for disjoint snapshots in the context of transfection
experiments. A Time-unrolled model: individual box represents measured nodes per
snapshot. We assume: (i) there are no instantaneous causal relations inside one snapshot,
(ii) causal structure is preserved between pairs of consequent snapshots. Solid circles
represent observed variables per snapshot. B Corresponding time-rolled causal model.
Time-rolled graph is allowed to have cycles (negative and positive feedback loops).

directly transfers approaches developed for counterfactual reasoning in causal models.

We propose MassCaRA (Mass cytometry Causal Reaction Annotation algorithm) a
simple method for practical discovery of signaling relationships in CSSTM from single-
cell snapshots. We demonstrate performance of MassCaRA algorithm on several syn-
thetic datasets, including one generated from a mechanistic model. By accounting for
time, MassCaRA significantly outperformed aforementioned causal structure learning
methods. We applied MassCaRA to a recently published dataset of EGFR signaling in
HEK295T cells [35].
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4.2. Results

4.2.1. Protein signaling as Causal Time Series Snapshots Model

(CTSSM)

Consider a protein signaling network of n proteins measured at T distinct time points.
We denote V a set of observed (measured) proteins. Lets assume a time series Xt =(
X i
t

)
i∈V describes the corresponding protein signaling dynamics over time and satisfies

the following assumptions:

• We denote PAi a set of causal parents of protein i: intervention on any of the
parents at any point in time will lead to a change of the distribution of protein i
at later timepoints.

• We assume that causal structure is preserved between all the pairs of consequent
snapshots (this assumption corresponds to the state of the art modeling of biochem-
ical network as continuous time Markov chains) and there are no instantaneous
signaling relations between variables in the same snapshot: ∀i ∈ V there is a set
PAi ⊆ XV , s.t. ∀t ∈ {1, . . . , T}

X i
t = f ti

(
(PAi)t1, X

i
t−1, N

i
t

)
(4.1)

with N i
t (jointly) independent and for each i, N i

t identically distributed in t and
F (X1

0 , . . . , X
n
0 ) being a joint distribution of the nodes before the signaling was

induced. N i
t represents measurement noise per protein per snapshot.

One way to describe mechanistic models is to formulate them as discrete time systems
[36]. Difference equations in discrete time systems are essentially Dynamic Structural
Equations Models (DSEMs) [37], a special class of Structural Equations Models [21]
unrolled over time. CTSSM is a DSEM for the case when only infrequent snapshots are
observed and therefore in the case of infrequent mass cytometry time snapshots could
be thought of as a crude approximation of the discrete time system.

The corresponding full time graph (Figure 4.1A) is obtained by drawing arrows
from any node that appears in the right-hand side of (4.1) to X i

t . As we don’t allow
any instantaneous effects the full time graph is always a Directed Acyclic Graph (DAG).
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Figure 4.2.: MassCaRA pipeline. Green and blue boxes represent pooling of the data for
different steps of the method.

Joint distribution over all time snapshots is always Markov1 with respect to the full
time graph (follows of it being a SEM). We additionally assume the joint distribution
to be faithful2 w.r.t. the full time graph. Therefore, CTSSM is on one hand just
a special case of causal models introduced by Pearl [21] and we can use all the rich
formalism developed for it: interventions, counterfactual analysis, causal inference; and
on the other hand just a simple case of TiMINo model introduced by Peters et al.[38].
Unfortunately the corresponding methods for structure learning proposed by Peters et
al. are not applicable for the cytometry snapshots since the joint distribution of the
unrolled graph is not available.

By intervention in this study we denote any controlled manipulation on the value of a
variable at any time point [21]. We must to point out that we clearly distinguish between
"intervention" and "stimulation". In order to induce signaling, the system needs to be
"stimulated", e.g. with a drug and only then we are talking about the signaling cascade.
We don’t consider stimulation as an intervention and assume the amount of stimulation
to be preserved between different transfection experiments.

1The Markov condition states that each variable is probabilistically independent of its non-descendants
given its parents in the graph.

2Faithfulness states that all the independence relations in the probability distribution over the variables
are a consequence of the Markov condition.
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The most common type of interventions considered in the literature are drug inter-
ventions, e.g. small molecular inhibitors, kinase inhibitors, etc. One major drawback
of the interventions of this kind is that might be "unspecific": we might not know why
the exact target and mechanism of these interventions. However, majority of causal
structure learning methods assume require "surgical" interventions: the target and the
value of the intervention is known precisely [21].

Though CTTSM and the structure learning approach proposed below are still valid for
the case of drug intervention, in this study we focus on recently proposed interventions
by transient transfection [35]. Mechanism of transfection is more transparent and easier
to incorporate into CTSSM model than unspecific drug inhibitors. In case of transient
transfection "intervention" is modeled as a change of the distribution of a target node
at time point t = 0 (before the stimulation).

We denote by experiment a set of single-cell snapshots corresponding to one of the con-
ditions: only stimulation and no intervention was performed we call ("observational"),
and when some intervention on one of the nodes was performed ("interventional").

4.2.2. Mass Cytometry Causal Reactions Annotation

(MassCaRA)

This section introduces the MassCaRA (Figure 4.2), a simple method for practical
signaling relations discovery under the assumptions of CTSSM. As we mentioned before
CTSSM satisfies TiMINo assumptions [38], therefore the joint distribution over all the
snapshots is faithful with respect to the full time graph. In this case we could apply
constraint-based causal discovery methods to recover the full time and corresponding
time-rolled graphs. However, due to the destructive nature of mass cytometry we can
only observe joint distributions inside one snapshot, but not essential for this approach
joint distribution over all snapshots.

The cornerstone of constrained-based causal structure learning methods is d-separation3

[21]. However, for CTSSM the essential set of nodes for d-separation is not available:
to d-separate two nodes in one snapshot the d-separation set has to contain the nodes
from previous time snapshots. Therefore, the structure recovered inside one snapshot
using conventional constrained-based methods does necessarily contain all the ancestral

3two variables are d-separated if they are marginally dependent but become independent of each other
once we condition on variables in d-separation set
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casual relations and not only direct ones.

Blom et al. [39] recently introduced the concept of "weak" d-separation to overcome
the problem of measurement error. We propose to exploit the proposed "weak" d-
separation as a heuristic approximation of the real d-separation as if we were conditioning
on the right set of variables, e.g. we can only condition on Bt in the example from
Figure 4.1, so At and Ct are not d-separated, but they could appear to be "weakly"
d-separated (with a low confidence α < 10−6), which would allow us to remove an edge
between them. Therefore, under "weakly" d-separation the recovered structure will be
always more sparse. In the worst case this heuristic would select indirect causal relations
instead of the direct one for the skeleton inference procedure, which is not dramatic for
the skeleton, but could lead to misleading conclusions if it is used for edge orientation.
Therefore, we propose to use it only for the skeleton learning part as a first step in
MassCaRA. Also due to heuristic nature of the "weak" d-separation in this case, the
learned skeleton could differ between different time points. We construct a joint skeleton
between the snapshots by simple averaging of the edges in different snapshots. At the
end of step 1 of MassCaRA we have a skeleton with a confidence score for each edge
(details in Methods).

As a second step we acquire the edge direction with a simple straightforward procedure
based on the definition of causality introduced above: for each node at each time point
we test if its distribution changed significantly between control and intervention setting.
In this case the edges will represent true, but only ancestral causal directions. We use
the sign of the fold change in the directed edge in order to assign a type to the edge:
"activation" (positive change) and "inhibition" (negative change). Unfortunately it is
almost impossible to perform transfection experiment on every protein in the signaling
network, therefore some edges will remain unoriented. To fill this gap we propose to use
Invariant Causal Prediction (ICP) [40]. Successful applicability of ICP towards inferring
causal relationships in genomics data with interventions by knock-outs was demonstrated
before [33], therefore here we explore the performance of ICP for CTSSM.

As the last step of MassCaRA we superimpose the inferred directions and the skeleton
favoring two-sample test directions above ICP in case of ambiguity. As we mentioned
above, the final graph in the worst case contains all ancestral relations (direct and
indirect). We suggest to use the weight of the edge from step 1 (skeleton) as a confidence
in "closeness of relationships" (e.g. parents from grandparents and further ancestors):
edges to direct parents are more likely to have a higher score.
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4.2.3. Experimental results and benchmarks

Synthetic data

In this study we performed comprehensive comparison of the proposed method on sev-
eral synthetic systems. We simulated 3 datasets of different levels of complexity from
CSSTM, where the time-rolled graph is: a simple DAG ("EGFRsynDAG"), small net-
work with two feedback loops ("EGFRsynCyc") and a large network corresponding to
the available ground truth graph from Lun et al. ("EGFRsynLun") (Supplementary
Figure C.1)). We also simulated a dataset from one of the state of the arts dynamic
model (using ODE formulation and random initial conditions) for EGFR signaling [41]
(Supplementary Figure C.2) in order to access performance of MassCaRA in a com-
plicated case of mechanistic models (details in Methods).

We compared MassCaRA to two recently introduced methods for causal structure
learning: Invariant Causal Prediction (ICP)[40] method and backShift [42]. Performance
of ICP in biological setting [33] was demonstrated on the example of flow cytometry
data with inhibitory interventions [22]. Performance of backShift [23] was demonstrated
on mass cytometry data with various activators and inhibitors [43]. However, these set-
tings are different from the dataset of Lun et al. in two major ways: they are based on a
single time snapshot per experiment potentially corresponding to the steady-state of the
signaling and majority of the interventions were performed with inhibitions, therefore
constituting a different type of interventions ("surgical") opposed to the interventions
with transient transfection ("fat-hand"). Both methods are build around a central con-
cept of environment. Essentially environment is a different experimental condition. In
case for example inhibition experiments each inhibition setting corresponds to the en-
vironment. On the other hand, different time snapshots could also serve as a different
environments. Since methodologically it is not clear how we should handle the additional
information coming from several time snapshots, we incorporated in three different ways:

• Joint time. We pull all the time snapshots from one experiment together to form
one environment. In this case a sample from one environment is a sample from
a joint distribution over time. Each environment corresponds to one experiment.
Therefore, given M experiments, we get M environments.

• Individual time. We separate the problem into T sub-problems. In each prob-
lem we learn the structure from the distributions of "observational" and "inter-
ventional" experiments separately per time point and the total outcome average
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Figure 4.3.: Comparison of MassCaRA with different hyperparameteres against various
settings of ICP and backShift. The comparison is done in terms of the ration of between
true positives and false positives to the total amount of positive edges. We limited the
x-axis to the value 1.0, because if the amount of false positives proposed by the method
is greater than the total amount of positives, the results are not practical from biological
point of view.
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the joint edges. In this case we have T runs of a method with M environments in
each.

• Time as environment. We treat each time snapshot in each experiment as a
separate environment instance. Given T snapshots per experiment and M experi-
ments we get T ∗M environments.

The outcome of plain ICP was always an empty set for all setting, there we used
the version of the methods with hidden variables (hiddenICP). As a metric of the per-
formance we use a conventional true positive rate (fraction of correctly identified true
positives to the total amount of positives) and a not commonly used fraction of pos-
itives to the total amount of positives. We don’t use conventional Receiver Operator
Characteristic curve since for perform de novo reconstruction of a sparse system and
will mask the false positive signal due to a large amount of negatives. For practical
biological applications such as consequent verification of the edges with experiments it
is very important to achieve low amount of false positives since because of the cost of
the experiments: only confident edges should go into validation [44].

Figure 4.3 demonstrates the results of the comparison. For the first two examples of
test systems all the methods show good/comparable performance. This is largely due
to the fact that the systems are too small and therefore don’t contain too many indi-
rect ancestral relations. Moreover, the models were generated from a Linear Structural
Equations Model and therefore constitute an easy example for methods based on lin-
ear inference like ICP or backShift. Third example was generated from CSSTM with a
system containing large amount of feedbacks. MassCaRA shows significantly better per-
formance then ICP or backShift still containing relatively small amount of false positive
reactions. For the dynamic systems case we didn’t expect a very good performance of
any of the methods since none of them specifically designed to handle structure learning
of dynamic systems. However, we see that MassCaRA is consistently more correct than
ICP or backShift.

Real data

Here we demonstrate application of MassCaRA to the EGFR signaling dataset from Lun
et. al[35]. The data comprise several mass cytometry snapshots over signaling nodes
measured at several different time points after the signaling stimulation and therefore
constitute a perfect example of a CTSSM. 20 signaling proteins of HEK295T cells of
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Figure 4.4.: Output of MassCaRA on Lun et al. dataset. Only edges with score above
0.6 were depicted for readability. Red edges correspond to positive activation and blue
ones to negative feedback. Directions of red and blue edges was identified by transient
transfection and gray edges correspond to the ICP directions.

EGFR signaling network were measured with a panel of 35 antibodies by mass cytom-
etry during 1-h EGF stimulation time course. Measurements were performed at 0, 5
15, 30 and 60 minutes. Around 11 000 cells were measured per one experimental con-
dition. A set of interventions was performed on the system by transient transfection:
genes encoding protein of interest were cloned into vectors containing a cytomegalovirus
(CMV) promoter and a GFP-tag sequence to transiently overexpress GFP-tagged pro-
teins of interest. The tagged protein abundance was measured by mass cytometry using
an anti-GFP antibody.

The original data were preprocessed with a standard arcsinh(x/5) transformation.
Cells in M phase of the cell cycle were removed from the study since cell cycle is known
not to play a role in EGFR signaling yet cycling cells might introduce spurious corre-
lations. For the skeleton inference procedure data were additionally preprocessed with
the removal of outliers for each protein and the values below 5 counts were replaced
with missing as it was suggested in the original study. All three replicates were used to
obtain all the results in order to increase the robustness. For the skeleton inference it
was implemented via median value in the covariance matrix. For the edge orientation
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the direction was acquired as a median direction between the replicates. Same applies
for ICP. Parameters "spearman" and α = 10−12 were selected for the independence tests
to achieve a sparse solution.

MassCaRA identified in total 84 edges. 70 of these edges were oriented based on
transfection interventions. 34 edges correspond to positive interactions and 50 to neg-
ative feedback. In Figure 4.4 we depicted 54 edges with a score above 0.6. 11 edges
were reported previously in the SIGNOR database. We found 3 new interactions not re-
ported in the SIGNOR database in particular interesting: positive feedback from pP38 to
pERK, negative feedback from pP90RSK to pERK and negative feedback from pERK to
pMEK1and2. Identification of these interactions wouldn’t be possible without temporal
information.

4.3. Methods

4.3.1. Learning sparse skeleton

First, the causal skeleton was obtained separately for each individual time snapshot from
the observational experiment with a "skeleton" function from R package "PCALG" [45]
and stability selection procedure [46]. Stability selection allows to increases robustness
and obtain an estimation of a confidence score for an individual edge. Edges with
a stability score less than 0.1 were removed. The final skeleton was constructed by
obtaining an average score for each individual edge.

Skeleton inference procedure needs two parameters to be specified: a function for con-
ditional independence tests and significance level α ∈ (0, 1) for the individual conditional
independence tests. The standard choice for the conditional independence tests is based
on "pearson" correlation. We additionally suggest to use "spearman" correlation for
the case when the dependency between the variables is rather just monotonic, but not
necessary linear. For the significance level a standard choice is α = 0.01, but the lower
levels of α = 10−12, 10−6 would correspond to the "weak" d-separation.
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4.3.2. Orient edges: "soft" interventions with transient

transfection

Two-sample test

In order to obtain the direction of an edge from the skeleton, we performed non-
parametric one-dimensional Kolmogorov-Smirnov two-sample test. Assume there is an
edge in the skeleton between proteins A and B and transfection of protein A is avail-
able. Lets denote Bobs

0 , . . . , Bobs
T samples from one-dimensional distribution per indi-

vidual snapshot t0, . . . , tT for observational setting and BA
0 , . . . , B

A
T for the correspond-

ing transfection of A. For each i ∈ {t1, . . . , tT} we test a null hypothesis of Bobs
i and

BA
i be drawn from the same continuous distribution and assign a weight to the edge

wA→B = 1
T

∑T
i=1 1H0:reject(EBA

i − EBobs
i ). We use a standard p-value 0.01 for the rejec-

tion of the hypothesis.

Invariant Causal Prediction

In order to obtain direction of the unseen interventions we use function "hiddenICP"
from R package "InvariantCausalPrediction". ICP provides a set of potential causal
ancestors for a target variable Y . Therefore, for each node in the graph we learn potential
ancestors from observational and interventional setting (holding out an intervention on
the node under study). Snapshots from different time points were pooled together into
one environment for this study.

4.3.3. Simulating synthetic experiments

Simulations from CTSSM

For demonstration purposes that non-linearity is not the main issue the causal structure
learning in this case all the datasets functional dependency was chosen to be linear. We
first simulate distribution at t = 0 of every node i independently from N (a0

i , s
0
i ). At the

next step we simulate "next time point" for every node i:

X t
i = btiiX

t−1
i +

∑
j∈pa(i)

X t−1
j btij, (4.2)
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where the pa(i) - the set of causal parents of node i and the corresponding parameters
for the distributions for t = 0, . . . , T are sampled from: ati ∼ U [0, 2], sti ∼ U [1, 4],
btij ∼ U [1, 4].

In order to account to possible measurement noise, we model observed value as:

X̂ t
i = X t

i + εti, (4.3)

where εti ∼ N (0, 0.1) - measurement noise.

To model "fat-hand" interventions emulating transient transfection we simulate ini-
tial distribution from Gamma instead of Gaussian in order to account for heavy tails
generated by transfection. We additionally introduce extra ’GFP-node’ as a readout of
the intervention.

X̂ t
GFP = aGFPX

0
int + εtGFP , (4.4)

for t ∈ {0, . . . , T} and εtGFP ∼ N (0, 0.1). We sample aGFP ∼ U [0.9, 1.2] to account
for variability in the GFP read out.

For every setting we sample 6 time points, but use for the analysis only t = 0, 1, 3, 6

to model time intervals (0, 5, 15, 30 min) from Lun et al.

Simulations from mechanistic model

In this simulation we tried to reproduce experiment of Lun et al. with mechanistic model-
ing. We simulated a mechanistic model of "EGF and NGF signaling" [41] from an SBML
model acquired from http://www.ebi.ac.uk/biomodels-main/BIOMD0000000033. The
model was chosen to model phosphorylation mechanisms and to overlap in the most
amount of nodes with the data measured by Lun et al. The model contains in total 32
nodes corresponding to both phosphorylated (active)/dephosphorylated(inactive) states
of the protein. For the consequent analysis we assumed only phosphorylated (active)
states to be observed. The reactions in the model are defined by Michaelis-Menten
kinetics, and are reversible.

To reproduce mass cytometry single-cell experiment and to take in account destruc-
tiveness of the technology, we sampled all the snapshots separately. We assume the
dynamics of the process to be deterministic, and we model single-cell variability with
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the variability in the initial conditions. The dynamics of individual cell was simulated
with Ordinary Differential Equations with Matlab Simbio toolbox. Initial conditions
were sampled randomly from log-normal distribution around original values provided in
the SMBL model. All time points were sampled separately with reinitiate initial condi-
tions. Time points were selected to correspond to 0, 5, 15, 30, 60 min intervals in the
way that only last time point corresponds to the steady-state of the process. Interven-
tions by transient transfection were modeled as a change of the initial distribution of
the inactive form of the intervened protein from log-normal to a heavy tailed one. For
the analysis the data were log-transformed.

4.4. Discussion

In this paper we introduced formulation of protein signaling as Causal Time Series Snap-
shots Model, a special case of causal dynamic Structural Equation Models accounting for
infrequent time snapshots. The small modification by accounting for time compared to
the classical single snapshot causal models, introduces a big advantage on the conceptual
level: CTSSM allows to explicitly model feedback loops and cell-to-cell variability, the
properties essential to apply the causal reasoning in a way it is traditionally performed
by mechanistic models.

We introduced MassCaRA, a simple algorithm based on a combination of the constrained-
based causal structure learning methods and recently proposed algorithm of Invariant
Causal Prediction. MassCaRA consists of two parts: learning the skeleton and learning
the causal directions. The skeleton learning part is based on a heuristic, however it shows
a great performance on the synthetic data in order to refine arbitrary ancestral relations
towards direct parents. This part of the procedure is generic and relies on purely obser-
vational data. The second part of edge orientation is theoretically sound and exploits
model formulation as CTTSM. We demonstrated how "fat-hand" intervention could be
used to obtain causal direction of the edges, but in principle any type of interventions
could be applied here.

We demonstrated that MassCaRA significantly outperforms state of the art causal
structure learning not only applied to models simulated from CTTSM, but to a mecha-
nistic model generated from a dynamic system. The performance of MassCaRA on the
mechanistic system suggests that the method could be well applicable for the real data
scenario. When applied to Lun et al. dataset, MassCaRA revealed several potentially
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interesting feedback relations not reported in the SIGNOR database.

The demonstrated success of MassCaRA for structure learning for mechanistic sys-
tems, opens new horizons for the future research. First, an interesting direction for fur-
ther investigation could be towards more explicitly accounting for time in the structure
learning procedure. For example, optimal transport was recently proposed to overcome
the problem of disjoint snapshots in single-cell transcriptomics data [30], however it’s
relation to causal structure learning is not established yet. Second important direction
of the research is given a known CTSSM graph to infer the parameters of the model.
Moment-based regression approaches could be for example used for this task [8]. And
the last and the most interesting question for systems biology applications is to which
extent in practice CTSSM could be used for causal reasoning, e.g. how to design drug
interventions using CTSSM.
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Everything should be made as simple as possible, but not sim-
pler.

– Albert Einstein

Rapid development of single-cell proteomics measurement technologies, such as flow
and mass cytometry, allowed to access the non-genetic origins of cell-to-cell variability
simultaneously monitoring up to 30 markers at a time. In particular, with the new
measurements, the heterogeneous response during protein signaling of a seemingly ho-
mogeneous population become apparent. Understanding the molecular mechanisms of
cell-to-cell variability is crucial for design of treatment strategies for the diseases such
as cancer [1].

There are two main sources of variability at a single-cell level: extrinsic, such as vari-
ability in the initial conditions before the signaling stimulation, and intrinsic, variability
arising from the inherent stochastic nature of biochemical processes [2]. In this thesis, we
discussed mathematical modeling approaches for both sources of variability. In particu-
lar, we focused on the question of reverse engineering these models (structure learning)
from mass cytometry time snapshots for the cases when the majority of the signaling
reactions is not known.

Chapter 2 addresses the question of learning topology of a Chemical Master Equa-
tion from data. Chemical Master Equation is a gold standard of mechanistic modeling of
intrinsic variability by means of Stochastic Differential Equations. This chapter solely
focuses on the problem of learning a topology of a reaction network in the presence of
intrinsic variability. We introduced Reactionet lasso, a sparse regression based approach
for de novo reconstruction of a topology of the Chemical Master Equation. Reactionet
lasso is the first to our knowledge algorithm for automatic structure learning for Chem-
ical Master Equation going beyond model selection.

We used the structure learning capabilities of Reactionet lasso to recover stochastic
signaling interactions on synthetic data. This method is scalable and explicitly handles
measurement noise potentially arising from the measurement. However, Reactionet lasso
assumes all the components of a signaling network to be observed. Therefore, in practical
application, when only part of the network could be measured due to the availability of
antibodies, Reactionet lasso can not guarantee stable performance. Unfortunately there
is no explicit way to account for unobserved variables in this approach, but the tests on
synthetic systems showed that Reactionet lasso could achieve good performance in the
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presence of sufficient amount of prior knowledge. However, we can not quantitatively
define what sufficient means in the context of an arbitrary signaling system; we suggest
for practical applications keep a reasonable balance between the prior knowledge and
plausible reactions.

Chapter 3 demonstrates an application of Reactionet lasso to uncovering the mech-
anisms of fractional killing during TRAIL-induced apoptosis. This chapter addresses
both problems of intrinsic and extrinsic variability during signaling. The previously re-
ported asynchrony of apoptosis after exposure to TRAIL can in principle arise because
of two reasons: variation in protein concentrations before the onset of apoptosis and the
stochastic nature of signaling reactions. Our collaborators performed extensive mass
cytometry time snapshot measurements spanning the duration of TRAIL-induced apop-
tosis. The panel of measured markers was chosen to most informatively cover potential
causes of apoptotic asynchrony in TRAIL-induced apoptosis. Analysis of individual
snapshots demonstrated progressive dynamics of asynchrony: starting from a unimodal
distribution before the stimulation of apoptosis (by the end of 6 hours) cells show distinct
bimodal behavior.

Since Reactionet lasso only addresses intrinsic variability we combined it with snap-
shot matching approach by optimal transport. Cell matching between the snapshots
is an indispensable part of addressing the extrinsic heterogeneity. Optimal transport
allowed to select a set of markers, differences in initial concentration of which before
the stimulus could be causing fractional killing effect. And as a next step Reactionet
lasso was used to generate hypothesis in which signaling reactions these markers could
be involved. Proposed mechanisms were validated with inhibitory experiments.

Despite the demonstrated success of application of Reactionet lasso towards under-
standing mechanisms of apoptotic signaling, it is a valid question if we were using "a
hammer to crack a nut". The conclusions that we were drawing for the problem of frac-
tional killing are rather of a causal, rather than mechanistic nature. In the end, apart
of assuming the stochastic reaction networks to be a generating mechanism of intrinsic
cell-to-cell variability, we never explicitly constructed a mechanistic model after. The
main reason for that the the state of the art model of TRAIL-induced apoptosis [3]
already contains around 60 nodes and doesn’t include any interactions with stress or
survival pathway which we demonstrated to be important. So if we would set ourselves
with a task to construct a precise mechanistic model of the mechanistic model (mass
action, Michaelis-Menten or Hill kinetics), we would be immediately lost in modeling
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latent nodes, which were not observed in our study. A legitimate question is if do we
even need this detailed road map of the signaling in order to design drug treatment. If
we zoom out a bit from modeling and just ask ourselves "why" do we need a mechanistic
model, the answer would probably be "to design drug interventions". And if we have
look in the simple hierarchy of modern approaches towards modeling systems [4], we
will notice that the aforementioned question could be answered not only by means of
mechanistic modeling, but with a perhaps simpler class of Structural Equation Models.

Structural Equation Models gained so far very little attention in Systems Biology,
however their success to answer causal question in molecular biology was already recently
demonstrated [5]. In Chapter 4 we focus on a comprehensive modeling of extrinsic cell-
to-cell variability with Structural Equations Models. We demonstrate that when the time
explicitly incorporated into the Structural Equations Model (SEM), the feedback loops
don’t constitute a problem anymore. We proposeMassCaRA, a simple algorithm to learn
the structure of SEM from single-cell time snapshots and intervention experiments.

Obviously, there is "no free lunch" and the frequency of the time snapshots and the
quality and amount of the interventions would affect the overall applicability of this ap-
proach towards signaling systems. Essentially, when performing snapshot measurements,
we want to be sure that they cover the dynamics of the process. However, the latter
statement is based on the scientific intuition and interesting question for the further
research would be how to perform optimal experimental design in order to extract the
most information about the system from experimental data. In particular, the questions
would be: (i) how frequent should the snapshot be; (ii) would measuring the snapshots at
equal time intervals help the structure learning procedure; (iii) which type interventions
lead to a better identifiability of the model; (iv) how to infer not only the structure, but
also the parameters of the model. Another interesting direction of the research would be
given a Structural Equation Model, to design an optimal intervention strategy to achieve
a desired outcome, e.g. complete induction of apoptosis avoiding fractional killing effect.

86



Chapter 5

References
[1] S. L. Spencer, S. Gaudet, J. G. Albeck, J. M. Burke,

and P. K. Sorger. “Non-genetic origins of cell-to-
cell variability in TRAIL-induced apoptosis”. Nature
459:7245 (2009), p. 428.

[2] A. Singh and M. Soltani. “Quantifying intrinsic and
extrinsic variability in stochastic gene expression
models”. Plos one 8:12 (2013), e84301.

[3] J. G. Albeck, J. M. Burke, S. L. Spencer, D. A. Lauf-
fenburger, and P. K. Sorger. “Modeling a snap-action,

variable-delay switch controlling extrinsic cell death”.
PLoS biology 6:12 (2008), e299.

[4] J. Peters, D. Janzing, and B. Schölkopf. Elements
of causal inference: foundations and learning algo-
rithms. MIT press, 2017.

[5] N. Meinshausen, A. Hauser, J. M. Mooij et al. “Meth-
ods for causal inference from gene perturbation ex-
periments and validation”. Proceedings of the Na-
tional Academy of Sciences 113:27 (2016), pp. 7361–
7368.

87





6 Acknowledgements

First, I would like to say a big thank you to my supervisor Prof. Manfred Claassen
for believing that I could do this big jump from mathematics to biology research. Thank
you a lot for all you patience and support during this uneasy journey. I hope I learned
to speak "biology language" if not at fluent, but at least at advanced level.

I would like to thank my committee Prof. Uwe Sauer and Prof. Nicolai Meish-
nausen for your genuine interest and valuable scientific input, that greatly helped me
in this journey. And special thank you to Nicolai for introducing me to the world of
Causality.

I would like to thank my collaborator Dr. Melissa Ko for being my guide in the
world of molecular biology. It was very enjoyable to work with you. Thank you for your
patience for answering my questions about apoptosis over and over again.

I would like to thankDr. Sara Magliacane for all your support an Causality project.
Your advices and corrections were invaluable to me and you patience to Causality is just
contagious.

I would like to say a very special thank you to my friend Dr. Valera Vishnevskiy
for all your support through all these years. Our discussion about life and science had
a major influence on a formation of me as a researcher.

I would like to acknowledge all the past and present members of Claassen lab for a
such an amazing working environment. The warm and friendly atmosphere in our group
was helping to survive the moments when I already couldn’t see the light at the end of
the tunnel. Special thank you to Will, Laura, Eirini, Ioana for all your invaluable
support.

Thank you my best ballet team Gabi, Martha and Fumio. You kept me sane and
positive all these years, never allowing to give up. That’s worth a lot.

I would like to thank my two best friends Nastya and Valya for all the patience with

89



Chapter 6

which you were supporting me all these years and all that optimism you were bringing
to me.

I’m especially grateful to my parents for their love and encouragement.

90



Appendices

91
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Chapter 2

A.1. S1 Text

Moment expansion. Lets consider Stochastic Chemical Reaction Network described
in Methods. Lets denote stoichiometric matrix of this system as S = {s}ij. In mass
action kinetics propensity function al(x; kl) can be represented as al(x; kl) = kl ∗ gl(x),
where

gl(X(t)) =

Xa(t)Xb(t), for bimolecular reactions Rl : a+ b→ . . .

Xa(t), for unimolecular reactions Rl : a→ . . .

We can derive equations for moment expansion for mass action kinetics for moments of
any order. However, for the reactionet lasso we use only moments up to second order, so
we provide closed form equations only for these moments. Let denote µi(t) = E[Xi(t)],
σi(t) = Var[Xi(t)], cij(t) = Cov(Xi(t), Xj(t)).

Then dynamics of means follows:

dµi
dt

(t) =
∑
l

kl ∗ Fil(t), (A.1)

where

Fil(t) = sil ∗ E[gl(X(t))].
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The dynamics of variances follows:

dσi
dt

(t) =
∑
l

kl ∗ F(N+i)l(t), (A.2)

where

F(N+i)l(t) = s2
il ∗ E[gl(X(t))] + 2sil ∗ Cov(Xi(t), gl(X(t))).

And the dynamics of covariances follows:

dcij
dt

(t) =
∑
l

kl ∗ F(N(i+1)+j)l(t), (A.3)

where

F(N(i+1)+j)l(t) = s2
il ∗ E[gl(X(t))] + sil ∗ Cov(Xj(t), gl(X(t))) + sjl ∗ Cov(Xi(t), gl(X(t))).
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A.2. S2 Text

Information criteria. The output of the reactionet lasso is a set of nested models.
Selection of the optimal solution in terms of true/false positive tradeoff without ground
truth still remains an open question. In the current paper we applied different strategies
based on information criteria. To asses trade-off of goodness-of-fit and cardinality of
the solution we used Akaike information criteria (AIC) or Bayesian information criteria
(BIC).

A common selection strategy is to use the minimum of either of these functions. How-
ever, we found this strategy suboptimal for reactionet lasso. Evaluation of information
criteria turns out to be monotonously improving for many problems, as it was the case
for our problem instances. We therefore recommend to use 1st, 2nd etc. maximum of
absolute change in the information criteria. Fig.2.6 demonstrates how absolute change
of the BIC corresponds to desirable true/false positive trade-off (black dots labeled "1",
"2", "3"). We applied described approach to the regression problem formulation from
Eq.2.3 (see Results).
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A.3. S3 Text

Inference of binomial noise correction for empirical moments. Lets X a random
variable denoting theoretical abundance of a given specie s at a give time point t. Lets
assume that as an outcome of an experiment we observe Xobs, which follows binomial
distribution Bi(X, p) with some fixed probability of success p. This allows us to explicitly
formalize connections between moments of X and Xobs:

E[Xobs] = EE[Xobs|X] = E[Xp] = pE[X] (A.4)

E[X2
obs] = EE[X2

obs|X] = E[Xp(1− p) +X2p2] = p(1− p)E[X] + p2 E[X2] (A.5)

E[X2
obs] = EE[X2

obs|X] = E[Xp(1− p) +X2p2] = p(1− p)E[X] + p2 E[X2] (A.6)

Var[Xobs] = E[X2
obs]−[EXobs]

2 = = p(1−p)E[X]+p2 E[X2]−p2(EX)2 = p(1−p)EX+p2Var[X]

(A.7)

E[Xobs, 1Xobs, 2] = EE[Xobs, 1Xobs, 2|X1, X2] = E[pX1pX2] = p2 E[X1X2] (A.8)

Cov(Xobs, 1, Xobs, 2) = E[Xobs, 1Xobs, 2]− EXobs, 1 EXobs, 2 =

= p2 E[X1X2]− pE[X1]pE[X2] = p2Cov(X1, X2)
(A.9)
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A.4. S4 Text

Biological replicates. As a default, we consider single time series experiments. Re-
actionet lasso analysis easily accommodates multiple replicates. Specifically, replicate
specific response vectors bk and design matrices Ak for each condition k are utilized to
construct a problem instance by concatenation and apply reactionet lasso as described:

Matrix concatenation strategy:

1. Perform bootstrapping of stoichiometric moment function evaluations separately
for each of the replicates k.

2. Construct joint regression problem by concatenation:
response vector b := [b1b2. . . bn]

design matrix A := [A1A2. . . An]..

3. Run reactionet lasso on the joint regression problem defined by b and A.
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A.5. S1 Dataset

For TRAIL induced apoptosis signaling cascade inference we used 33 equally distributed
time points (in seconds) between 0 and 8 hours: [0, 900, 1800, 2700, 3600, 4500, 5400,
6300, 7200, 8100, 9000, 9900, 10800, 11700, 12600, 13500, 14400, 15300, 16200, 17100,
18000, 18900, 19800, 20700, 21600, 22500, 23400, 24300, 25200, 26100, 27000, 27900,
28800].
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A.6. Supplementary Figures
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Supplementary Figure A.1.: Structure learning performance of the reactionet lasso for 105

single cell trajectories evaluated at 13 time points for (A) apoptotic receptor subunit (no
measurement noise); (B) the enzymatic system. Empirical moment gradients estimated
with cubic splines. Solution selected with Bayesian Information Criteria (BIC).
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Supplementary Figure A.2.: Regularization paths in terms of true/false positive tradeoff
over different data availability situations. Results for reactionet lasso application to
apoptotic receptor subunit (no measurement noise). (A-B) Empirical moment gradients
estimated with “smooth” procedure: (A) 105 single cell trajectories evaluated at different
amount of time points (tp) as indicated in the legend. (B) Different number of single
cell trajectories: 103, 104, 105 evaluated at thirteen time points. (C-E) Results for
different empirical moment gradient estimates: smooth(red), splines (blue), FDS (green)
for different amount of time points: 28 (C), 13 (D), 7 (E).
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Supplementary Figure A.3.: Regularization paths in terms of true/false positive trade-
off over different data availability situations. Results for reactionet lasso application to
enzymatic system (no measurement noise). (A-B) Empirical moment gradients esti-
mated with “smooth” procedure: (A) 105 single cell trajectories evaluated at different
amount of time points (tp) as indicated in the legend. (B) Different number of single
cell trajectories: 103, 104, 105 evaluated at thirteen time points. (C-E) Results for dif-
ferent empirical moment gradient estimates: smooth(red), splines (blue), FDS (green)
for different amount of time points: 28 (C), 13 (D), 7 (E).
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Supplementary Figure A.4.: Overlay of five regularization paths in terms of true/false
positive tradeoff over different data availability situations. Results for reactionet lasso
application to apoptotic receptor subunit (p = 0.05) with 13 time points. Results for
different empirical moment gradient estimates: splines (red), FDS (blue) for different
amount of time points: 28 (A), 13 (B), 7 (C).

Supplementary Figure A.5.: Structure learning performance of the reactionet lasso for
105 single cell trajectories evaluated at 13 time points for apoptotic receptor subunit
(p = 0.05). Empirical moment gradients estimated with cubic splines. Solution selected
with Bayesian Information Criteria (BIC).
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Supplementary Figure A.6.: Analysis of standard deviation of moment and stoichiomet-
ric moment function estimates for high order moments for different sample sizes. Results
for application to apoptotic receptor subunit (p = 0.05). (A) Absolute values of stan-
dard deviation of moment estimate estimated from bootstrap for the apoptotic receptor
subunit with no noise with 105 (red), 104 (blue), 103 (green) trajectories, 13 time points.
(B) Relative change of standard deviation of the moment estimates with decreasing num-
ber of trajectories compared to 105. (C) Corresponding absolute and relative change of
standard deviation of design matrix estimate (with stoichiometric moment functions as
entries) with decreasing number of samples compared to 105.
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Supplementary Figure A.7.: Overlay of five regularization paths in terms of true/false
positive tradeoff over different data availability situations. Results for reactionet lasso
application to apoptotic receptor subunit for uniform selection of timepoints. Results
for different empirical moment gradient estimates: splines (red), FDS (blue) for different
amount of time points and different levels of noise: 28 (A, D), 13 (B, E), 7 (C, F).

105



Appendix A

Supplementary Figure A.8.: Original reaction network of TRAIL induced apoptosis.
Different modules colored in different colors. Reactions connecting the models depicted
in gray.
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Supplementary Figure A.9.: Comparison of the reactionet lasso with various simplified
baseline procedures. RL = reactionet lasso; STlsq = sequential thresholded regression,
TF = Topological filtering. All methods applied to Moment Equations of 1st and 2nd
order correspondingly. Results for: (A) the apoptotic receptor subunit with noise (p =
0.05) with 105 trajectories, 13 time points; (B) TRAIL-induced apoptosis with noise (p
= 0.05) with 105 trajectories, 33 time points. TF2 was interrupted after 2h hours and
didn’t produce any solution in the range of cardinality represented on the plot.
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Supplementary Figure A.10.: Results for application of different strategies for reactionet
lasso for the case of multiple replicates to apoptotic receptor subunit (p = 0.05). Red
dots correspond to different replicates. Size of the dot proportional to the frequency of
the solution between the replicates. Blue line corresponds to the strategy of concatenat-
ing design and response matrices.
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Supplementary Figure A.11.: Recovery of the dynamics of mean trajectories by the
reactionet lasso. Red: observed data for 105 single cell trajectories evaluated at 13 time
points for apoptotic receptor subunit without measurement noise. Solution selected
with AIC for two distinct scenarios: ab initio learning (blue), a priori specified reaction
identified false negative in ab initio learning setting (green).
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Supplementary Figure B.1.: Raw output of Reactionet lasso. Black edges correspond
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