

ETH Library

Vine copulas for uncertainty quantification: why and how

Other Conference Item

Author(s): <u>Torre, Emiliano</u> (b; <u>Marelli, Stefano</u> (b; Embrechts, Paul; <u>Sudret, Bruno</u> (b)

Publication date: 2019-07-08

Permanent link: https://doi.org/10.3929/ethz-b-000353198

Rights / license: In Copyright - Non-Commercial Use Permitted

Vine copulas for Uncertainty Quantification: why and how

Emiliano Torre^{1,2,3}, Stefano Marelli¹, Paul Embrechts^{2,3}, Bruno Sudret^{1,2}

Outline

1 Uncertainty Quantification (UQ)

2 (Vine) copulas in UQ

Outline

1 Uncertainty Quantification (UQ)

(Vine) copulas in UQ

3 Conclusions

Problem statement

A model \mathcal{M} subject to input X produces the response Y:

$$Y = \mathcal{M}(\boldsymbol{X}),$$

where:

- *M*: <u>known</u> computational model (black box)
- $X = (X_1, \ldots, X_d)$: real-valued random vector with joint cdf F_X
- \Rightarrow Y uncertain: real-valued random variable

Uncertainty Quantification (UQ): Statistics of Y?

 \mathcal{M} computationally expensive \Rightarrow Monte Carlo unaffordable \Rightarrow faster methods.

Problem statement

A model \mathcal{M} subject to input X produces the response Y:

$$Y = \mathcal{M}(\boldsymbol{X}),$$

where:

- *M*: <u>known</u> computational model (black box)
- $X = (X_1, \ldots, X_d)$: real-valued random vector with joint cdf F_X
- \Rightarrow Y uncertain: real-valued random variable

Uncertainty Quantification (UQ): Statistics of Y?

 $\mathcal{M} \text{ computationally expensive} \Rightarrow \mathsf{Monte \ Carlo \ unaffordable} \Rightarrow \mathsf{faster \ methods}.$

UQ analyses and methods

Parameters of $Y = \mathcal{M}(\mathbf{X})$ of interest in UQ:

- Global parameters: $\mathbb{E}(Y^k)$, PDF f_Y , ... \hookrightarrow Perturbation theory, surrogate modelling
- Tail probabilities, extreme quantiles: P(Y ≥ y_{critical})
 → Reliability analysis: FORM, SORM, subset simulation, ...
- Conditional tail probabilities: P(Y ≥ y_{critical} | X₂ = x₂)
 → Fragility analysis
- Sensitivity indices, importance factors
 → Sensitivity analysis

• ...

Uncertainty analysis: main steps

- Most research in UQ: given \mathcal{M} (step A) and F_X (step B), solve step C. Historically: $\{X_i\}$ assumed independent or with Gaussian copula.
- Focus here: choose a suitable F_X (step B)
 - \hookrightarrow Especially a suitable copula. For large d: vines
 - \hookrightarrow Map to specific probability spaces needed for some UQ methods

Uncertainty analysis: main steps

- Most research in UQ: given \mathcal{M} (step A) and F_X (step B), solve step C. Historically: $\{X_i\}$ assumed independent or with Gaussian copula.
- <u>Focus here</u>: choose a suitable F_X (step B)
 - \hookrightarrow Especially a suitable copula. For large d: vines
 - \hookrightarrow Map to specific probability spaces needed for some UQ methods

Outline

2 (Vine) copulas in UQ

3 Conclusions

Examples: two finite element models

23 bar horizontal truss (bridge):

120 bar truss (dome):

- \mathcal{M} : finite element model
- X : structural parameters and loads
- Y : max deflection Δ

Parameter of Δ of interest:

• $\mathbb{P}(|\Delta| > \delta_{crit})$

What is coming

We will:

- Define the **true** joint PDF f_X of X (marginals + vine copula)
- Compute the reference solution by large MC simulation, or by FORM

Then, we will forget everything and

- Infer f_X from data (300 multivariate observations)
 In particular: Independence, Gaussian, or C-/D-vine copula
 →Q1: does the copula matter?
- Estimate P(|∆| > δ_{crit}) by large MC simulation and by FORM for each copula
 →Q2: does the "copula + UQ" framework work?

Copula

Model

 $C^{\mathcal{V}}$

 $\hat{C}^{\mathcal{V}}$

 $\hat{C}^{\mathcal{N}}$

Method

(# runs)

MC (10⁷)

MC (10⁷)

MC (10⁷)

 $MC(10^7)$

 P_f (×10⁻⁴)

4.84

5.52

0.31

Reliability analysis by MCS

The	copula	matters!

First Order Reliability Method (FORM)

Problem: system fails in <u>unknown</u> failure domain \mathcal{D}_f . Failure probability P_f ?

- Assume \mathcal{D}_f convex $\Rightarrow \exists !$ point $U^* \in \mathcal{D}_f$ closest to 0
- Assume $F_{\boldsymbol{X}} = \boldsymbol{\Phi}_d$, *d*-variate standard normal distribution

Then $P_f \approx 1 - F_X(U^*) = \Phi_d(-||U^*||).$

First Order Reliability Method (FORM)

Problem: system fails in <u>unknown</u> failure domain \mathcal{D}_f . Failure probability P_f ?

- Assume \mathcal{D}_f convex $\Rightarrow \exists !$ point $U^* \in \mathcal{D}_f$ closest to 0
- Assume $F_{X} = \Phi_{d}$, d-variate standard normal distribution

Then $P_f \approx 1 - F_X(U^*) = \Phi_d(-||U^*||)$. Task: find U^* .

First Order Reliability Method (FORM)

Problem: system fails in <u>unknown</u> failure domain \mathcal{D}_f . Failure probability P_f ?

- Assume \mathcal{D}_f convex $\Rightarrow \exists !$ point $U^* \in \mathcal{D}_f$ closest to $\mathbf{0}$
- Assume $F_{\boldsymbol{X}} = \boldsymbol{\Phi}_d$, *d*-variate standard normal distribution

Then $P_f \approx 1 - F_X(U^*) = \Phi_d(-||U^*||)$. Task: find U^* .

• If $f_{oldsymbol{X}}
eq \Phi_d$: First map $oldsymbol{X} \mapsto oldsymbol{X}' \sim \Phi_d$

Reliability analysis: MC vs FORM results

- The copula matters!
- FORM works well in combination with vine copulas

Reliability analysis: MC vs FORM results

E. Torre (RSUQ & Risk Center, ETH Zürich)

Conclusions

Conclusions

- Vine copulas are dependence models suitable to UQ problems:
 - \hookrightarrow Enable use of advanced UQ methods when input X exhibits complex dependencies
 - \hookrightarrow Work well in combination with inference
 - \hookrightarrow Demonstrated applications in reliability analysis (FORM)
- Code soon available via UQlab: www.uqlab.com
- For more details:

Probabilistic Engineering Mechanics Volume 55, January 2019, Pages 1-16

A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas

Emiliano Torre ^{a, b, c} 옷 쯔, Stefano Marelli ^b, Paul Embrechts ^{c, a, d}, Bruno Sudret ^{b, a}

Conclusions

Conclusions

- Vine copulas are dependence models suitable to UQ problems:
 - \hookrightarrow Enable use of advanced UQ methods when input X exhibits complex dependencies
 - \hookrightarrow Work well in combination with inference
 - \hookrightarrow Demonstrated applications in reliability analysis (FORM)
- Code soon available via UQlab:
 www.uqlab.com

THANK YOU!

Probabilistic Engineering Mechanics Volume 55, January 2019, Pages 1-16

A general framework for data-driven uncertainty quantification under complex input dependencies using vine copulas

Emiliano Torre ^{a, b, c} A 🖾, Stefano Marelli ^b, Paul Embrechts ^{c, a, d}, Bruno Sudret ^{b, a}

$\overline{\mathrm{UQLAB}}$: facts and figures

• \approx 2,000 users

- 930⁺ active users from 77 countries
- Release of V0.9 on July 1st, 2015 (beta version)
- V1.0 on April 28th, 2017 UQLabCore + modules (PCE, Kriging, Sensitivity, Rare events)
- V1.1 on July 1st, 2018 Support vector machines, UQLink
- V1.2 on February 22nd, 2019 Bayesian inversion, UQLib

Country	# Users
United States	354
China	224
France	223
Switzerland	180
Germany	134
United Kingdom	92
Italy	73
India	57
Canada	53
Brazil	51

As of May 27, 2019

www.uqlab.com

UQLAB

UQLAB: The Uncertainty Quantification Software

UQLAB

UQLAB example: Inference of Truss input model


```
for ii = 1:2
                 % Assign uncertain Young moduli
    iOpts.Marginals(ii).Type = 'LogNormal';
    iOpts.Marginals(ii).Moments = [2.1e11, 2.1e10];
end
for ii = 3:4 % Assign uncertain cross-sections
 iOpts.Marginals(ii).Inference.Data = A(:,ii-2);
end
for ii = 5:10 % Assign uncertain loads
    iOpts.Marginals(ii).Inference.Data = L(:,ii-4);
end
% Define the input copula: product of Independent(dim:4) copula
% and D-Vine copula inferred from data matrix L
iOpts.Copula(1).Type = 'Independent';
iOpts.Copula(1).Parameters = eve(4);
iOpts.Copula(2).Type = 'DVine';
iOpts.Copula(2).Inference.Data = L;
% Create Input
myInput = ug_createInput(iOpts);
```

```
E. Torre (RSUQ & Risk Center, ETH Zürich)
```

UQLAB

UQLAB example: Inference of Truss input model

% Create probabilistic input model myInput = ... % see previous slide

% Perform FORM analysis

aOpts.Type = 'Reliability'; aOpts.Method = 'FORM'; myAnalysis = uq_createAnalysis(aOpts);

Polynomial Chaos Expansion (PCE)

PCE model of
$$Y$$
 to X : $Y_{PC} = \sum_{\boldsymbol{\alpha} \in \mathbb{N}^d} y_{\boldsymbol{\alpha}} \Psi_{\boldsymbol{\alpha}}(X),$

where Ψ_{α} are multivariate polynomials orthonormal wrt f_{X} .

Theorem

If $\mathbb{V}(Y) < \infty$ and $\mathbb{E}(X^k) < \infty \ \forall k \ge 1$, then $\exists \{y_{\alpha}, \Psi_{\alpha}\} : Y_{PC} \xrightarrow{L^2} Y = \mathcal{M}(X)$.¹

- Properties of coefficients y_{α} : (A) $\mathbb{E}(Y_{PC}) = y_0$, (B) $\mathbb{V}(Y_{PC}) = \sum_{\alpha \neq 0} y_{\alpha}^2$
- (B) guarantees compressibility \Rightarrow parsimonious parametric model \Rightarrow for large *d*: sparse regression (e.g. least angle regression)
- Provides good estimates of "global" statistics of Y: $\mathbb{E}(Y), \mathbb{V}(Y), f_Y \dots$

How to build the orthonormal basis $\{\Psi_{\boldsymbol{\alpha}}, \boldsymbol{\alpha} \in \mathbb{N}^d\}$?

- If $f_X = \prod_{i=1}^d f_{X_i}$: $\Psi_{\alpha}(x) := \prod_{i=1}^d \phi_{\alpha_i}^{(i)}(x_i)$, where $\phi_{\alpha_i}^{(i)}$ are univariate polynomials orthonormal wrt f_{X_i} .
- Otherwise: Rosenblatt transform $m{X}\mapstom{X}'$, followed by PCE $Y_{
 m PC}(m{X}')$

¹Ernst, Mugler, Starkloff, Ullmann (2012), ESAIM:M2AN, 46(2):317-339

Polynomial Chaos Expansion (PCE)

PCE model of
$$Y$$
 to X : $Y_{\mathrm{PC}} = \sum_{oldsymbol{lpha} \in \mathbb{N}^d} y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(X),$

where $\Psi_{\pmb{\alpha}}$ are multivariate polynomials orthonormal wrt $f_{\pmb{X}}.$

Theorem

If $\mathbb{V}(Y) < \infty$ and $\mathbb{E}(X^k) < \infty \ \forall k \ge 1$, then $\exists \{y_{\alpha}, \Psi_{\alpha}\} : Y_{PC} \xrightarrow{L^2} Y = \mathcal{M}(X)$.¹

- Properties of coefficients y_{α} : (A) $\mathbb{E}(Y_{PC}) = y_0$, (B) $\mathbb{V}(Y_{PC}) = \sum_{\alpha \neq 0} y_{\alpha}^2$
- (B) guarantees compressibility ⇒ parsimonious parametric model
 → for large d: sparse regression (e.g. least angle regression)
- Provides good estimates of "global" statistics of Y: $\mathbb{E}(Y), \mathbb{V}(Y), f_Y \dots$

How to build the orthonormal basis $\{\Psi_{m{lpha}}, m{lpha} \in \mathbb{N}^d\}$?

- If $f_X = \prod_{i=1}^d f_{X_i}$: $\Psi_{\alpha}(x) := \prod_{i=1}^d \phi_{\alpha_i}^{(i)}(x_i)$, where $\phi_{\alpha_i}^{(i)}$ are univariate polynomials orthonormal wrt f_{X_i} .
- Otherwise: Rosenblatt transform $m{X}\mapstom{X}'$, followed by PCE $Y_{
 m PC}(m{X}')$

¹Ernst, Mugler, Starkloff, Ullmann (2012), ESAIM:M2AN, 46(2):317-339

Polynomial Chaos Expansion (PCE)

PCE model of
$$Y$$
 to X : $Y_{\mathrm{PC}} = \sum_{oldsymbol{lpha} \in \mathbb{N}^d} y_{oldsymbol{lpha}} \Psi_{oldsymbol{lpha}}(X),$

where Ψ_{α} are multivariate polynomials orthonormal wrt f_{X} .

Theorem

If $\mathbb{V}(Y) < \infty$ and $\mathbb{E}(X^k) < \infty \ \forall k \ge 1$, then $\exists \{y_{\alpha}, \Psi_{\alpha}\} : Y_{PC} \xrightarrow{L^2} Y = \mathcal{M}(X)$.¹

- Properties of coefficients y_{α} : (A) $\mathbb{E}(Y_{PC}) = y_0$, (B) $\mathbb{V}(Y_{PC}) = \sum_{\alpha \neq 0} y_{\alpha}^2$
- (B) guarantees compressibility ⇒ parsimonious parametric model
 → for large d: sparse regression (e.g. least angle regression)
- Provides good estimates of "global" statistics of $Y: \mathbb{E}(Y), \mathbb{V}(Y), f_Y \dots$

How to build the orthonormal basis $\{\Psi_{\boldsymbol{\alpha}}, \boldsymbol{\alpha} \in \mathbb{N}^d\}$?

• If $f_{\mathbf{X}} = \prod_{i=1}^{d} f_{X_i}$: $\Psi_{\alpha}(\mathbf{x}) := \prod_{i=1}^{d} \phi_{\alpha_i}^{(i)}(x_i)$, where $\phi_{\alpha_i}^{(i)}$ are univariate polynomials orthonormal wrt f_{X_i} .

- Otherwise: Rosenblatt transform $oldsymbol{X}\mapsto oldsymbol{X}'$, followed by PCE $Y_{
m PC}(oldsymbol{X}')$

¹Ernst, Mugler, Starkloff, Ullmann (2012), ESAIM:M2AN, 46(2):317-339

Polynomial chaos expansion

Vine representations + PCE: errors on $\mathbb{E}(\Delta)$ and $\operatorname{std}(\Delta)$

