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First Order Methods For Globally Optimal Distributed Controllers
Beyond Quadratic Invariance

Luca Furieri and Maryam Kamgarpour

Abstract— We study the distributed Linear Quadratic Gaus-
sian (LQG) control problem in discrete-time and finite-horizon,
where the controller depends linearly on the history of the
outputs and it is required to lie in a given subspace, e.g. to
possess a certain sparsity pattern. It is well-known that this
problem can be solved with convex programming within the
Youla domain if and only if a condition known as Quadratic
Invariance (QI) holds. In this paper, we first show that given QI
sparsity constraints, one can directly descend the gradient of the
cost function within the domain of output-feedback controllers
and converge to a global optimum. Note that convergence is
guaranteed despite non-convexity of the cost function. Second,
we characterize a class of Uniquely Stationary (US) problems,
for which first-order methods are guaranteed to converge to
a global optimum. We show that the class of US problems is
strictly larger than that of strongly QI problems and that it is
not included in that of QI problems. We refer to Figure 1 for
details. Finally, we propose a tractable test for the US property.

I. INTRODUCTION

The safe and efficient operation of emerging networked
dynamical systems, such as the smart grid and autonomous
vehicles, relies on the decision making of multiple interacting
agents. Controlling these systems optimally is challenged by
an inherent lack of information about the systems internal
variables, possibly due to privacy concerns, geographic dis-
tance or the high cost of implementing a reliable communi-
cation network. The classical works of [1], [2] highlighted
that, given information constraints, even simple instances of
the Linear Quadratic Gaussian (LQG) control problem can
result in highly intractable optimization tasks.

A vast amount of literature has focused on approaching the
distributed LQG problem and its variants with convex pro-
gramming in the Youla parameter [3]. This enables utilizing
efficient off-the-shelf software for numerical computation.
A main challenge inherent to this approach is that the
distributed control problem admits an exact convex refor-
mulation if and only if the information constraints and the
system dynamics interact in a Quadratically Invariant (QI)
manner [4], [5]. This limitation severely restricts the class
of problems for which optimal distributed controllers can be
computed in a tractable way. A variety of approximation
methods and alternative controller implementations have
henceforth been devised to deal with the non-QI cases, based
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both on convex programming and nonlinear optimization.
However, these approaches cannot compute a globally op-
timal sparse output-feedback controller in general. We refer
the reader to [6]–[11] for a collection of recent results.

The recent years have witnessed a rapid growth of interest
in developing learning-based, model-free techniques for op-
timal control problems. Specifically, some scenarios envision
an unknown black-box system, for which an optimal behav-
ior is obtained by observing the system’s output trajectories
in response to different controllers and iteratively improving
the control policy. In these cases, optimizing within the Youla
domain is impractical because one is unable to recover the
disturbance trajectories from the observed output trajectories
for an unknown dynamical system. Therefore, model-free
scenarios motivate optimizing directly within the domain
of output-feedback controllers, for instance, by devising
gradient-descent based methods. Convergence of these meth-
ods to a global optimum was recently proven for the LQR
problem in the non-distributed case [12]–[16]. When carrying
on these methods to the distributed controller case, however,
one can in general only guarantee convergence to a stationary
point, which may not be a global optimum [15], [17], [18].
For the infinite-horizon and static-controller cases, this is
mainly due to the set of stabilizing distributed controllers
being disconnected in general [19]. To the best of the
authors’ knowledge, classes of distributed control problems
solvable to global optimality with first-order methods are yet
to be characterized, and a connection with the QI notion is
yet to be established. Furthermore, a condition that is more
general than QI for global optimality certificates has not
been found yet. Indeed, the QI notion is closely linked to
using convex programming; this paper was driven by the
intuition that less restrictive conditions for global optimality
might exist by instead using first-order optimization methods
directly in the domain of output-feedback controllers. We
will show that this intuition indeed holds true.

Motivated as above, we investigate first-order methods
for the distributed LQG problem in discrete-time and finite-
horizon. Our contributions are as follows. First, we show that
given QI sparsity constraints, one can descend the gradient
of the generally non-convex cost function in the output-
feedback domain and always converge to a globally optimal
distributed controller. We foresee that this method will en-
able devising learning-based policy gradient approaches for
distributed control in future works. Second, we characterize
a new class of Uniquely Stationary (US) control problems,
which can be solved to global optimality using first-order
methods. We show that every strongly QI problem is US



and that there are instances of US problems which are neither
strongly QI or QI. We refer to Figure 1 for the details.

Paper structure: Section II introduces the necessary
notation and background. Section III contains our first result
about global optimality given strong QI and a numerical
example. Section IV establishes our results on first-order
methods for certificates of global optimality strictly beyond
QI. We conclude the paper in Section V.

II. BACKGROUND AND PROBLEM STATEMENT

We start this section by providing the necessary notation.
We then proceed with stating the distributed LQG problem
and reviewing useful results about disturbance-feedback con-
trol policies and quadratic invariance.

A. Notation
We use R to denote the set of real numbers. The (i, j)-th

element in a matrix Y ∈ Rm×n is referred to as Yi,j . We use
In to denote the identity matrix of size n×n, 0m×n to denote
the zero matrix of size m × n . Whenever the subscripts
are omitted, the dimensions are implied by the context.
The symbols Im(M) and Ker(M) denote the range and the
kernel of the linear operator associated with matrix M . We
write M = blkdg(M1, . . . ,Mn) to denote a block-diagonal
matrix where the blocks are the matrices M1, . . . ,Mn. For
a symmetric matrix M = MT we write M � 0 (resp.
M � 0) if and only if it is positive definite (resp. positive
semidefinite), that is its eigenvalues are strictly positive (resp.
non-negative). For two matrices M,P of any dimensions
M⊗P denotes the Kronecker product and for two matrices of
equal dimensions M�P denotes the Hadamard product1. For
any matrix K ∈ Rm×n, vec(K) ∈ Rmn is a vector obtained
by stacking the columns of K into a single column. Given
a binary matrix X ∈ {0, 1}m×n, we define the associated
sparsity subspace as

Sparse(X):= {Y | Yi,j= 0 for all i, j such that Xi,j = 0 } .
Similarly, given Y ∈ Rm×n, we define X = Struct(Y ) as the
binary matrix such that Xi,j = 0 if Yi,j = 0 and Xi,j = 1
otherwise. Let X, X̂ ∈ {0, 1}m×n and Z ∈ {0, 1}n×p be
binary matrices. We adopt the following conventions: X +
X̂ := Struct(X + X̂), XZ := Struct(XZ), X ≤ X̂ if and
only if Xi,j ≤ X̂i,j ∀i, j. The Euclidean norm of a vector
v ∈ Rn is denoted by ‖v‖22 = vTv and the Frobenius norm of
a matrix M ∈ Rm×n is denoted by ‖M‖2F = Trace(MTM).
Given a matrix K ∈ Rm×n and a continuously differentiable
function J : Rm×n → R we define ∇J(K) as the m × n
matrix such that ∇J(K)i,j = ∂J(K)

∂Ki,j
. For a vector v ∈ Rn

and a function f : Rn → R we denote the gradient by
∇f(v) ∈ Rn and the Hessian by ∇2f(v) ∈ Rn×n. Given a
subspace K ⊆ Rm×n we denote its orthogonal complement
as K⊥. The symbol N (µ,Σ) denotes the normal distribution
with expected value µ ∈ Rn and covariance matrix Σ ∈
Rn×n � 0, and x ∼ N (µ,Σ) indicates that x ∈ Rn follows
the distribution N (µ,Σ). For a subspace K ⊆ Rn, ΠK(·)
denotes the projection operator on K.

1(M � P )i,j = Mi,jPi,j

B. Problem Setup

We consider time-varying linear systems in discrete-time

xt+1 = Atxt +Btut + wt , (1)
yt = Ctxt + vt ,

where xt ∈ Rn is the system state at time t affected by
additive noise wt ∼ N (0,Σwt ) with x0 ∼ N (µ0,Σ0) , yt ∈
Rp is the output at time t affected by additive noise vt ∼
N (0,Σvt ) and ut ∈ Rm is the control input at time t. We
assume that Σ0,Σ

w
t � 0 and Σvt � 0 for all t. We consider

the evolution of (1) in finite-horizon for t = 0, . . . N , where
N ∈ N. By defining the matrices A = blkdg(A0, . . . , AN ),

B=

[
blkdg(B0, . . . , BN -1)

0n×mN

]
,C=

[
blkdg(C0, . . . , CN -1)T

0n×pN

]T
,

and the vectors x =
[
xT0 . . . xTN

]T ∈ Rn(N+1), y =[
yT0 . . . yTN−1

]T ∈ RpN , u =
[
uT0 . . . uTN−1

]T ∈
RmN , w =

[
xT0 wT

0 . . . wT
N−1

]T ∈ Rn(N+1) and v =[
vT0 . . . vTN−1

]T ∈ RpN , and the shift matrix

Z =

[
0n×nN 0n×n
InN 0nN×n

]
,

we can write the system (1) compactly as

x = P11w + P12u , y = Cx + v , (2)

where P11 = (I − ZA)−1 and P12 = (I − ZA)−1ZB. In
this paper we consider output-feedback policies of the form

u = Ky, K ∈ K , (3)

where K is a subspace that 1) ensures causality of the
feedback policy by forcing to 0 those entries of K corre-
sponding to future outputs, 2) may encode arbitrary time-
varying spatio-temporal sparsity constraints for distributed
control as per [20], and 3) can impose that the control
policy is memory-less and time-independent in the sense that
K = IN ⊗K for some K ∈ Rm×p.

Our goal is to compute K ∈ K that minimizes the expected
value of a quadratic cost in the states and the inputs:

J(K) :=Ew,v

[
N−1∑
t=0

(
xTtMtxt+u

T
t Rtut

)
+xTNMNxN

]
, (4)

where Mt � 0 and Rt � 0 for every t.
Remark 1: The problem of minimizing (4) is known as

the Linear Quadratic Gaussian (LQG) problem. It is well-
known that a time-invariant and memory-less control policy
(commonly denoted as static) of the form ut = Kyt
achieves global optimality when N → ∞ and there are no
subspace constraints to comply with. For the finite-horizon
and/or constrained cases, a time-varying control policy with
memory (commonly denoted as dynamic) achieves higher
performance in general. In this paper, we therefore consider
dynamic linear policies as in (3).



From (2)-(3) we derive the closed-loop equations:

x = (I −P12KC)−1(P11w + P12Kv) ,

y = C(I −P12KC)−1P11w + (I −CP12K)−1v , (5)

u = KC(I −P12KC)−1P11w + K(I −CP12K)−1v .

By defining M = blkdg(M0,M1, . . . ,MN ), R =
blkdg(R0, . . . RN−1), Σw = blkdg(Σ0,Σ

w
0 , . . . ,Σ

w
N−1),

Σv = blkdg(Σv0, . . . ,Σ
v
N−1), µw =

[
µT
0 0 . . . 0

]T
the

cost function (4) can thus be written as

J(K) =
∥∥∥M 1

2 (I −P12KC)−1P11Σ
1
2
w

∥∥∥2
F

+
∥∥∥M 1

2 P12K(I −CP12K)−1Σ
1
2
v

∥∥∥2
F

+
∥∥∥R 1

2 K(I −CP12K)−1CP11Σ
1
2
w

∥∥∥2
F

+
∥∥∥R 1

2 K(I −CP12K)−1Σ
1
2
v

∥∥∥2
F

(6)

+
∥∥∥M 1

2 (I −P12KC)−1P11µw

∥∥∥2
2

+
∥∥∥R 1

2 K(I −CP12K)−1CP11µw

∥∥∥2
2
.

A derivation of J(K) as per (6) is reported in the Appendix.
Remark 2: Note that J(K) is a multivariate polynomial

in the entries of K. Indeed, one can verify

(I −CP12K)−1 =

N∑
i=0

(CP12K)i ,

due to the fact that each p × p block on the diagonal
of CP12K is the zero matrix by construction, and hence
(CP12K)i = 0pN×pN for every i ≥ N + 1.

To summarize, in this paper we are interested in solving
the following optimization problem PK :

Problem PK
min
K∈K

J(K) ,

which might be non-convex due to J being non-convex in
K in general.

C. Disturbance-feedback strategies

The classical way to deal with the non-convexity of J(K)
is to parametrize the output-feedback policy u = Ky in
terms of an equivalent disturbance-feedback policy u =
QCP11w + Qv [20], [21]. Such parametrization is akin
to the Youla parametrization [3]. Similarly to [20], [21], we
have the following result, whose proof is reported in the
Appendix.

Lemma 1: Let us define function J̃ : RmN×pN → R as

J̃(Q) =
∥∥∥M 1

2 (I + P12QC)P11Σ
1
2
w

∥∥∥2
F

+
∥∥∥M 1

2 P12QΣ
1
2
v

∥∥∥2
F

+
∥∥∥R 1

2 QCP11Σ
1
2
w

∥∥∥2
F

(7)

+
∥∥∥R 1

2 QΣ
1
2
v

∥∥∥2
F

+
∥∥∥R 1

2 QCP11µw

∥∥∥2
2

+
∥∥∥M 1

2 (I + P12QC)P11µw

∥∥∥2
2
.

Let h : RmN×pN → RmN×pN be the bijection defined as

h(Q,CP12) = (I + QCP12)−1Q .

The following facts hold.
1) J̃(Q) is strictly convex and quadratic in Q.
2) J̃(h−1(K,CP12)) = J(K) for all K ∈ RmN×pN .
3) J̃(Q) = J(h(Q,CP12)) for all Q ∈ RmN×pN .

In other words, the nonlinear change of coordinates in-
duced by h allows expressing the non-convex cost function
J(K) in (6) as the convex function J̃(Q) in (7). Last, we
characterize the following property of J(K) to be exploited
in Section III and Section IV. The corresponding proof is
reported in the Appendix.

Lemma 2: Let K0 ∈ RmN×pN and define the sublevel set
of J(K0) as L := {K| J(K) ≤ J(K0)}. The sublevel set
L is bounded for any K0.

D. Quadratic invariance

Since J̃ is convex and it corresponds to J up to a
nonlinear change of coordinates, one may exploit J̃ for
convex computation of constrained controllers. In particular,
if and only if a property denoted as Quadratic Invariance
(QI) holds [4], [5], one can solve a convex program in Q
that is equivalent to PK . For our finite-horizon setting, it is
convenient to review the notions of QI and strong QI and
recall the corresponding convexity result from [20].

Definition 1: A subspace K ⊂ RmN×pN is QI with
respect to CP12 if and only if

KCP12K ∈ K , ∀K ∈ K .
and it is strongly QI with respect to CP12 if and only if

K1CP12K2 ∈ K , ∀K1,K2 ∈ K .
Note that a general subspace is QI if it is strongly QI,

but not vice-versa; instead, a sparsity subspace Sparse(S) is
QI if and only if it is strongly QI [4]. Now, notice that by
Lemma 1 our original problem PK is equivalent to

min
Q∈h−1(K,CP12)

J̃(Q) . (8)

The QI result in finite-horizon is that problem (8) is convex
if and only QI holds. We refer to [4], [5], [20] for details.

Theorem 1 (QI): The following three statements are
equivalent.

1) The set h−1(K,CP12) = −h(K,CP12) is convex.
2) K is QI with respect to CP12.
3) h−1(K,CP12) = K.
It follows from Theorem 1 that problem PK is equivalent

to a convex program, and in particular equivalent to

min
Q∈K

J̃(Q) , (9)

if and only if QI holds.
As we have observed in Section I, if the system model

was unknown and we only had black-box simulation access
to the cost function, we would not be able to optimize
within the Q domain due to the mapping h being unknown.



Moreover, it would be highly desirable to step beyond
the long-standing QI limitation, which is inherent to using
convex programming in the Q domain. Motivated as above,
the rest of the paper develops a first-order gradient-descent
method to solve PK to global optimality directly in the K
domain.

III. FIRST-ORDER METHOD FOR GLOBALLY OPTIMAL
SPARSE CONTROLLERS GIVEN QI

In this section we focus our attention on sparsity sub-
space constraints for the synthesis of distributed controllers
complying with arbitrary information structures [20]. For
a sparsity constraint K ∈ Sparse(S), the set of stationary
points for problem PK is defined as follows:

Definition 2: Consider problem PK with K = Sparse(S).
A controller K ∈ Sparse(S) is a stationary point for PK if
and only if

∇J(K) ∈ Sparse(S)⊥ = Sparse(Sc) , (10)

where Sc is the binary matrix that has a 0 wherever S has
a 1, and a 1 wherever S has a 0.

In general, a stationary point as in (10) could be a local
minimum, a local maximum or a saddle point for PK . In
the next lemma, we show that the set of stationary points
for PK corresponds to that of stationary points for problem
(9) when strong QI holds. The proof is mainly based on [21,
Lemma 1]. We report it in the Appendix for completeness.

Lemma 3: Suppose that the subspace K is strongly QI
with respect to CP21, and let K ∈ K. Also define Q =
h−1(K,CP12). We have that

∇J̃(Q) ∈ K⊥ ⇐⇒ ∇J(K) ∈ K⊥ .
Notice that since any QI sparsity subspace is also strongly

QI [4], Lemma 3 holds for all the arbitrary QI information
structures characterized in [20].

A. Global optimality of gradient-descent

By exploiting Lemma 3 our first result establishes that if
Sparse(S) is QI with respect to CP12, any stationary point
of PK is a global optimum.

Theorem 2: Suppose that Sparse(S) is QI with respect to
CP12 and let K? ∈ Sparse(S) be a stationary point of J(K).
Then,

K? ∈ arg min
K∈Sparse(S)

J(K) .

Proof: By Theorem 1, PK is equivalent to (9). Since
problem (9) is convex, every Q? ∈ Sparse(S) such that
∇J̃(Q?) ∈ Sparse(Sc) (that is, Q? is a stationary point)
is a global optimum and thus achieves the optimal cost J?.
Let K? = h(Q?,CP12). Now remember that Sparse(S)
is QI if and only if it is strongly QI [4]. By Lemma 3
∇J(K?) ∈ Sparse(Sc), and hence K? is a stationary point
for J(K). Since J̃(Q) = J(h(Q,CP12)) for every Q by
definition, we have that J(K?) = J̃(Q?) = J? and thus K?

is optimal. By Lemma 3, there can be no other stationary
point K ∈ Sparse(Sc) such that J(K) = J > J?; otherwise,
Q = h−1(K,PC12) would also be a stationary point for

problem (9) with cost J > J?, which is a contradiction due
to (9) being convex.

Remark 3: Theorem 2 trivially generalizes to any sub-
space constraint K that is strongly QI, as the key Lemma 3
holds for any strongly QI subspace. In Theorem 2, we
decided to specialize the result to the most common case
of sparsity constraints in the interest of clarity.

Theorem 2 leads to a fundamental insight: under QI
sparsity constraints, if we can find any stationary point
of the generally non-convex function J(K), this point is
certified to be a globally optimal solution to PK . Based on
this observation, we develop a gradient-descent method that
solves PK to global optimality for QI sparsity constraints.

Theorem 3: Suppose Sparse(S) is QI with respect to
CP12. Let K0 ∈ Sparse(S) be an initial output-feedback
control policy, and consider the iteration

Kt+1 = Kt − ηt∇J(Kt)� S . (11)

Then, Kt ∈ Sparse(S) for every t and there exists ηt for
every t such that

lim
t→∞

J(Kt) = J? ,

where J? is the optimal value of problem PK .
The proof of Theorem 3 uses Lemma 2 and the following

four Lemmas. The proofs of Lemmas 4, 5 and 6 can be
found in [22, Theorem 3.2], [22, Lemma 3.1] and [23,
Proposition 5.7] respectively. We prove Lemma 7 in the
Appendix.

Lemma 4: Let f : Rn → R be bounded below and
consider the iteration

xt+1 = xt − ηt∇f(xt) , (12)

where ηt satisfies the Wolfe conditions:

f(xt − ηt∇f(xt)) ≤ f(xt)− c1ηt‖∇f(xt)‖22 , (13)

−∇f(xt − ηt∇f(xt))
T∇f(xt) ≥ −c2‖∇f(xt)‖22 , (14)

for some 0 < c1 < c2 < 1 and every t. Let f be continuously
differentiable in an open set U containing the sublevel set
L = {x : f(x) ≤ f(x0)}, where x0 is the starting point of
the iteration (12). Assume that ∇f is Lipschitz continuous
on U . Then, limt→∞∇f(xt) = 0 .

Lemma 5: Suppose f : Rn → R is continuously differen-
tiable and bounded below. Then, for any 0 < c1 < c2 < 1,
there exist intervals of step lengths satisfying the Wolfe
conditions (13)-(14).

Lemma 6: Let f :Rn→R be twice continuously differen-
tiable on an open convex set U ⊆ Rn, and suppose that ∇2f
is bounded on U . Then, ∇f is Lipschitz continuous on U .

Lemma 7: Let f : Rn → R be a continuously differen-
tiable function and K ⊆ Rn be a subspace. Let f : Rr → R
be defined as f(α) = f(Mα), where Im(M) = K and r is
the dimension of K. Then:

1) minx∈K f(x) = minα∈Rr f(α).
2) ∇f(α) = 0 ⇐⇒ ∇f(Mα) ∈ K⊥.

We are now ready to prove Theorem 3.



Proof: [Theorem 3] Denote k = vec(K) and let f :
RmpN2 → R be the function such that f(k) = J(K) for
every K ∈ RmN×pN . Clearly, if k0 = vec(K0) the iterations
of (11) are equivalent to those of

kt+1 = kt − ηt∇f(kt)� vec(S) (15)
= kt − ηtΠSparse(vec(S)) (∇f(kt)) .

Now let M be such that its columns are an orthonormal basis
of Sparse(vec(S)). Consider the iteration

αt+1 = αt − ηt∇f(αt) , (16)

where f is such that f(α) = f(Mα) for every α. Let k0 =
Mα0 and suppose that kt = Mαt. Then, by (15), (16) and
noting that MTM = I and ∇f(αt) = MT∇f(Mαt):

kt+1 = Mαt − ηtM(MTM)−1MT∇f(Mαt) = Mαt+1 .

We conclude by induction that vec(Kt) = Mαt for every t.
Let us choose ηt satisfying (13)-(14). Notice that, according
to Lemma 5, a choice for ηt exists for every t because f
is continuously differentiable and bounded below by 0. By
Lemma 2 we obtain that the sublevel set L = {α| f(α) ≤
f(α0)} is bounded. Consider an open, convex and bounded
set U that contains L. Since f(α) is a multivariate poly-
nomial, every entry of its Hessian matrix ∇2f(α) is also
a multivariate polynomial and is thus bounded on U . By
Lemma 6, we deduce that ∇f is Lipschitz continuous. By
Lemma 4,

lim
t→∞

∇f(αt) = 0 . (17)

Let α? = limt→∞αt and K? ∈ Sparse(S) the corre-
sponding output-feedback controller according to vec(K?) =
Mα?. Since ∇f(α?) = 0, by Lemma 7 ∇J(K?) ∈
Sparse(Sc) and hence ∇J(K?) � S = 0, that is, iteration
(11) converges to a stationary point of PK . By Theorem 2,
K? is a globally optimal solution for PK because Sparse(S)
is QI with respect to CP12.
A choice for ηt satisfying the Wolfe conditions (13)-(14)
can be found by using, for instance, the bisection algorithm
reported in [23, Proposition 5.5], which always converges in
a finite number of iterations. We conclude this section by
providing a numerical example.

B. Numerical example

Motivated by the example system of [4], we consider
system (1) and the cost function (6) with

At =

1.6 0 0 0 0
0.5 1.6 0 0 0
2.5 2.5 −1.4 0 0
−2 1 −2 0.1 0
0 2 0 −0.5 1.1

 ,
and Bt = I, Ct = I , Mt = I , Rt = I , Σw = I , Σv = I ,
µ0 =

[
1 −1 2 −3 3

]T
. We set a horizon of N = 3.

Our goal is to compute a controller K with a given sparsity
that minimizes the cost (6). Specifically, we aim to solve PK

with K = Sparse(S) and S = T ⊗S, where Ti,j = 1 if j ≤ i
and Ti,j = 0 otherwise, and

S =

0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1

 .
The total number of scalar decision variables is |S| =
|S|N(N+1)

2 = 30. It is easy to verify that Sparse(S) is QI with
respect to CP12, for example, by using the binary test [20,
Theorem 1]. By direct computation of the Hessian through
the Symbolic Math Toolbox Ver. 7.1 available in MATLAB
[24] we verify that J(K) is not convex on K 2. Despite this
non-convexity, we know by Theorem 3 that the gradient-
descent iteration (11) will converge to a global optimum of
PK for t→∞ thanks to the QI property.

1) Numerical results: The gradient-descent iteration (11)
was implemented in MATLAB with the stepsize being cho-
sen according to the bisection algorithm of [23, Proposi-
tion 5.5]. The iteration (11) was initialized from a variety of
randomly selected initial distributed controllers. Specifically,
for each entry (i, j) such that Si,j = 1 we selected the entry
(K0)i,j uniformly at random in the interval [−10, 10], and
set (K0)i,j = 0 otherwise. In all instances, we converged to
a cost of 796.5627 within up to 700 iterations, with a run
time of approximately 2 seconds. The stopping criterion was
selected as max |∇J(Kt) � S| < 5 · 10−5. To validate the
global optimality result, we also solved the corresponding
convex program (9) in Q with MOSEK [25], called through
MATLAB via YALMIP [26], and obtained a minimum cost
of 796.5627.

At this point, it is natural to ask a follow-up question: is the
QI/strong QI property necessary to guarantee convergence of
gradient-descent to a globally optimal distributed controller?
In the following section, we provide a negative answer.

IV. UNIQUE STATIONARITY: GLOBAL OPTIMALITY
BEYOND QI

In this section, we consider general subspace constraints
K ∈ K. We define the notion of unique stationarity (US) and
show that it allows to step beyond the QI notion in obtaining
global optimality certificates with first-order methods. We
further provide initial results on verifying the US property
in a tractable way.

A. Unique stationarity generalizes QI

We define unique stationarity of problem PK as follows.
Definition 3: Consider problem PK subject to a subspace

constraint K ∈ K. We say that PK is Uniquely Stationary
(US) if and only if:

∇J(K) ∈ K⊥ =⇒ K ∈ arg min
K∈K

J(K) . (18)

First, it is easy to see that the class of US problem is at
least as large as that of strongly QI problems.

2specifically we verify ∇2f(0) 6� 0, where f(α) = f(Mα), the
columns of M are an orthonormal basis of K and f(vec(K)) = J(K)



Corollary 1 (Theorem 2): Suppose that K is strongly QI.
Then, PK is US.

Proof: If K is a stationary point of PK then
ΠK(∇J(K)) = 0. By Theorem 2 and Remark 3, K is a
global optimum. Hence, US as per (18) holds.

Second, we extend the global convergence result of The-
orem 3 from strongly QI to US problems.

Proposition 1: Suppose that PK is US. Let K0 ∈ K and
consider the iteration

Kt+1 = Kt − ηtΠK (∇J(Kt)) . (19)

Then, Kt ∈ K for every t and there exists ηt for every t such
that limt→∞ J(Kt) = J?, where J? is the optimal value of
problem PK .

Proof: The proof mirrors that of Theorem 3 by selecting
M such that its columns are an orthonormal basis of K in
proving that (19) converges to a stationary point. Since PK
is US, every stationary point is optimal.

In other words, every US problem can be solved to global
optimality with projected gradient-descent. Third, we char-
acterize a US problem that is neither strongly QI nor QI.

1) Example US beyond QI: Consider the system (1) and
the cost function (6) with

At =

[
1 2
−1 −3

]
, Bt = I , Ct = I , Σ0 = I ,

Mt = I , Rt = I , Σwt = 0 , Σv = I , ∀t = 0, 1, 2 ,

and µ0 =
[
0 1

]T
where we set a horizon of N = 2. The

controller K is subject to being in the form K = IN ⊗K
for some K ∈ R2×2. In other words, we consider a static-
controller ut = Kyt in finite-horizon. Note that in the finite-
horizon setup it is not necessary to require that (A + BK)
is Hurwitz, since the finite-horizon cost J(K) is finite for
every K, as opposed to the infinite-horizon cases of [15],
[19]. Additionally, we require that K is decentralized, or
equivalently K ∈ Sparse(I2). In summary, we enforce

K ∈ K = {K = IN ⊗ diag(a, b), a, b ∈ R} .

By computing KCP12K for a generic K ∈ K it is easy to
verify that K is neither strongly QI or QI with respect to
CP12. Hence, a convex program equivalent to PK in the Q
domain does not exist by Theorem 1. Nonetheless, we prove
that PK is US and can thus be solved to global optimality
with gradient-descent.

Proof of US: For any K ∈ K we verify

J(K) = f(a, b) = 4a4 + 8a3 + 28a2 + 18ab− 38a+

+ 6b4 − 42b3 + 149b2 − 216b+ 166 .

The expression above can be obtained by using the Sym-
bolic Math Toolbox in MATLAB [24]. The Hessian is

∇2f(a, b) =

[
48a2 + 48a+ 56 18

18 72b2 − 252b+ 298

]
.

Any KK is QI

K is strongly QI

(incl. Sparse(S) is QI)

K is US

?

K = Sparse(S) is QI
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Fig. 1: Problems in the blue region can be solved with convex
programming (QI problems). Problems in the green region can
be solved with gradient-descent (US problems). The US region
includes the case of QI sparsity constraints. The green circle stands
for the explicit example we provided. Different methods are needed
to solve problems in the red region; however, whether the red region
contains any problem at all is an open question. The question mark
indicates problems whose existence is yet to be verified.

We verify that 48a2 + 48a+ 56 = 12(2a+ 1)2 + 44 > 0 for
all a ∈ R and

det
(
∇2f(a, b)

)
= 24(1 + 2a)2

(
36 (b− 1.75)

2
+ 38.75

)
+ 198(7− 4b)2 + 3086 > 0, ∀a, b ∈ R .

It follows that ∇2f(a, b) � 0 for all a, b ∈ R, and hence
J(K) is convex on K. We conclude that PK is US, despite
not being QI. The globally optimal controller K? = IN ⊗
diag(0.2752, 1.1354) is found on average in 11 iterations
of (19) with the two free variables of K0 ∈ K randomly
selected in [−10, 10], stepsize as per [23, Proposition 5.5]
and stopping criterion max |ΠK (∇J(Kt)) | < 5 · 10−5.

Last, we summarize the main result of this section as fol-
lows. A corresponding visualization is reported in Figure 1.

Theorem 4: The class of US problems is both
1) strictly larger than the class of strongly QI problems,
2) not included in the class of QI problems.

Proof: Every strongly QI problem is US by Corollary 1.
We have shown an instance of a US problem which is neither
strongly QI or QI. This proves that the class of US problems
is both strictly larger than strongly QI problems and not
included in QI problems.

We remark that the notion of US genuinely extends
QI in terms of providing global optimality certificates for
distributed control. This might sound surprising at first. To
grasp this fact, notice that QI is method-specific, in the sense
that it is only necessary for global optimality certificates
when one uses convex programming in the Q domain [5].
On the contrary, we have shown that PK might be uniquely
stationary and even convex in the original K coordinates
despite being non-convex in the Q domain. This observation
and Corollary 1 allow stepping beyond the QI limitations,
from convexity in Q to unique stationarity in K!

B. Tests for unique stationarity

Note that the US property, while having a theoretical
interest, might not be useful in practice in the form (18). This
is because, in general, one can only prove (18) by knowing



the set of global optima. For this reason, it is necessary
to identify sufficient conditions for US. While noting that
more general tests should be envisioned in future research,
we provide our initial results. A first test of US given sparsity
constraints follows naturally from Corollary 2:

Corollary 2: Suppose that K = Sparse(S) and Let ∆ =
Struct(CP12). Then

S∆S ≤ S =⇒ PK is US .
Proof: By [20, Theorem 1], Sparse(S) is strongly QI

with respect to CP12 if and only if S∆S ≤ S. Hence, PK
is US as a consequence of Theorem 2.
Notice that S∆S ≤ S is verified in polynomial time in m,
p and N . A second sufficient test for US beyond QI is to
check whether J(K) is convex on K.

Proposition 2: Let f : RmpN2 → R be such that
f(vec(K)) = J(K) and f : Rr → R be such that f(α) =
f(Mα) where the columns of M are an orthonormal basis
of K and r is the dimension of K. Let ∇2

gf(α) ∈ Rg×g
denote the submatrix of ∇2f(α) obtained by removing its
last r − g rows and columns. Then

det
(
∇2
gf(α)

)
> 0 ∀α, ∀g = 1, . . . , r =⇒ PK is US .

Proof: By definition f is convex if and only if J
is convex on K. The function f is convex if and only
∇2f(α) � 0 for every α, or equivalently, the determinant
of each principal minor of ∇2f(α) is positive for every α.

Notice that det
(
∇2
gf(α)

)
is a polynomial for every g.

Deciding positivity of multivariate polynomials is NP-hard
in general, but it can be performed in finite time [27]. When
det
(
∇2
gf(α)

)
is a Sum-of-squares (SOS) for every g, as

in the example we provided, then the US property can be
decided in polynomial time with standard techniques [28].

V. CONCLUSIONS

We have addressed convergence to a global optimum of
first-order methods for the distributed discrete-time LQG
problem in finite-horizon. If the strong QI property holds,
a projected gradient-descent algorithm is guaranteed to con-
verge to a global optimum. Moreover, we have characterized
the class of uniquely stationary (US) problems, for which
projected gradient-descent converges to a global optimum.
We have proved that the class of US problems is strictly
larger than strongly QI problems and not included in QI
problems. Our results indicate that first-order methods in
the K domain are superior to convex programming in the
Q domain in terms of generality of their global optimality
certificates and allow stepping beyond the long-standing QI
limitation [4]. Additionally, first-order methods can be used
to learn globally optimal distributed controllers when the
system and the cost function are unknown, as was recently
shown in [12], [14], [18] for the non-distributed case. We
envision that future work will discuss application of our
methods to learning-based distributed control.

This work initiates the research for novel classes of
constrained and distributed control problems, for which a test
of the US property beyond QI and beyond testing convexity

of PK in the K domain is available. For instance, one could
study under which conditions J(K) is gradient dominated
on K [29]. In the finite-horizon setting considered here, it
is important to either confirm or disprove the existence of
non-US problems, indicated by “?” in Figure 1. This insight
would further advance the comprehension of the mathemati-
cal challenges inherent to linear distributed control. Last, it is
important to address the infinite-horizon and continuous-time
cases. In infinite-horizon, [19] provided explicit examples of
problems that are non-US due to the set of distributed static
stabilizing controllers being disconnected; it is interesting to
explore whether dynamic controllers can mitigate this issue.
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APPENDIX

A. Derivation of the cost function J(K)

Note that the cost (4) is equivalent to

J(K) = Ew,v

(
xTMx + uTRu

)
. (20)

Now consider the control input u = Ky. The closed-loop
state, output and input trajectories are given in (5), where x
and u are expressed as a function of w and v. Substitute (5)
into (20). By using the fact that for any matrix X we have

Ew

(
wTXw

)
= Trace(XΣw) + µT

wXµw ,

Ev

(
vTXv

)
= Trace(XΣv) , Ew,v

(
wTXv

)
= 0 ,

and remembering that ‖X‖2F = Trace(XTX) we obtain the
expression (6).

B. Proof of Lemma 1

1) By using several relationships to compute deriva-
tives with respect to matrices from [30] and the fact that
vec(AXB) = (BT ⊗A)vec(X) we obtain that

∇
(

vec
(
∇J̃(Q)

))
= 2
[

(Σv + CP11ΣwPT
11C

T)︸ ︷︷ ︸
�0

⊗ (R + PT
12MP12)︸ ︷︷ ︸
�0

+ CP11µwµ
T
wPT

11C
T︸ ︷︷ ︸

�0

⊗ (R + PT
12P12)︸ ︷︷ ︸
�0

]
� 0 ,

because R,Σv � 0 and M,Σw � 0 by hypothesis. It
follows that J̃(Q) is a quadratic form that is strictly convex.
The statements 2) and 3) follow from direct computation by
exploiting the definition of the function h.

C. Proof of Lemma 2

Since J̃(Q) is strictly convex by Lemma 1, its sublevel
set L̃ := {Q| J̃(Q) ≤ J(K0)} is bounded for any K0 [31,
Ch. 9.1.2]. Since J̃(Q) = J(h(Q,CP12)) for every Q we
have L = h(L̃,CP12). Now notice that

h(Q,CP12) =

N∑
i=0

(−1)i(QCP12)iQ , (21)



because each m×m block of QCP12 is the zero matrix by
construction. Hence, every entry of matrix h(Q,CP12) is a
multivariate polynomial in Q, that is, a continuous function.
We conclude that L is bounded if and only if L̃ is bounded.
Since L̃ is bounded for any K0, the result follows.

D. Proof of Lemma 3

⇐) In the interest of readability, in this proof we omit the
second argument of the function h(·, ·), which is assumed to
always be fixed to CP12. Assume that ∇J(K) ∈ K⊥, but
∇J̃(Q) 6∈ K⊥. Then, there exists Q̃ ∈ K with Q̃ 6= 0 with:

lim
ε→0

J̃(Q + εQ̃)− J̃(Q)

ε
= k 6= 0 .

Equivalently, since h(·) is invertible,

lim
ε→0

J̃(h−1(h(Q + εQ̃)))− J̃(Q)

ε

= lim
ε→0

J(h(Q + εQ̃))− J(K)

ε
= k 6= 0 . (22)

Now, using a first-order Taylor expansion we have

h(Q + εQ̃) = (I + (Q + εQ̃)CP12)−1(Q + εQ̃) (23)

= (I + QCP12 + εQ̃CP12)−1(Q + εQ̃)

=
[
(I + QCP12)−1 − ε(I + QCP12)−1Q̃CP12

× (I + QCP12)−1 +O(ε2)
]
(Q + εQ̃) = K + εK̃ +O(ε2) ,

where

K̃ = (I + QCP12)−1(Q̃− Q̃CP12(I + QCP12)−1Q) .
(24)

By (21) and by applying the strong QI property we deduce
that K̃ ∈ K. By substituting the above derivations into (22):

lim
ε→0

J(K + εK̃ +O(ε2))− J(K)

ε

= lim
ε→0

J(K + εK̃)− J(K)

ε
= k 6= 0 .

Since K̃ ∈ K and is non-null due to Q̃ 6= 0, this contradicts
∇J(K) ∈ K⊥. ⇒) can be proven analogously.

E. Proof of Lemma 7

Since Im(M) = K, minimizing f on Rr is equivalent to
minimizing f on K. Hence, the first point holds by definition
of f . For the second point, we have ∇f(α) = MT∇f(Mα)
by the derivative chain rule. We deduce that ∇f(α) = 0 if
and only if ∇f(Mα) ∈ Ker(MT) = Im(M)⊥ = K⊥ .
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