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First Order Methods For Distributed Control:
Unique Stationarity Beyond Quadratic Invariance

Luca Furieri and Maryam Kamgarpour

Abstract— We study the distributed Linear Quadratic Gaus-
sian (LQG) control problem in finite-horizon, where the con-
troller depends linearly on the history of the outputs and
it is required to possess a given sparsity pattern. It is well-
known that a convex formulation of this problem in terms of
disturbance-feedback control policies is only possible when a
condition known as Quadratic Invariance (QI) holds. In this
paper, we first show that given QI sparsity constraints the
LQG problem is solved to global optimality with a first-order
steepest descent method in the domain of output-feedback con-
trollers. Convergence is obtained despite non-convexity of the
problem with respect to output-feedback controllers. Second,
we characterize a class of Uniquely Stationary (US) problems,
for which first-order methods are guaranteed to converge to
a global optimum. We show that the class of US problems is
strictly larger than that of strongly QI problems, and that it
is not included in that of QI problems. Finally, we develop a
tractable test for the US property. Our test provides an a priori
global optimality certificate for a class of problems which are
not QI.

I. INTRODUCTION

The safe and efficient operation of emerging networked
dynamical systems, such as the smart grid and autonomous
vehicles, relies on the decision making of multiple interacting
agents. Controlling these systems optimally is challenged by
an inherent lack of information about the systems’ internal
variables, possibly due to privacy concerns, geographic dis-
tance or the high cost of implementing a reliable communi-
cation network. The classical works of [1], [2] highlighted
that, given information constraints, even simple instances of
the Linear Quadratic Gaussian (LQG) control problem can
result in highly intractable optimization tasks.

A vast amount of literature has focused on approaching the
distributed LQG problem and its variants with convex pro-
gramming in the Youla parameter [3]. This enables utilizing
efficient off-the-shelf software for numerical computation.
A main challenge inherent to this approach is that the
distributed control problem admits an exact convex refor-
mulation if and only if the information constraints and the
system dynamics interact in a Quadratically Invariant (QI)
manner [4], [5]. This limitation severely reduces the class of
problems for which a certificate of global optimality is avail-
able. For this reason, a variety of approximation methods and
alternative controller implementations have been devised to
partially deal with the non-QI cases, based both on convex
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programming and nonlinear optimization. We refer the reader
to [6]–[11] for a collection of recent results.

The past few years have witnessed a rapid growth of
interest in developing learning-based, model-free techniques
for optimal control problems. Specifically, some scenarios
envision a system that is completely unknown, for which
an optimal behavior is obtained by observing the system
response to different controllers and iteratively improving the
control policy. Since operating within the Youla domain is
impractical due to the system and thus the exact mapping
to the Youla parameters being unknown, these scenarios
motivate computing controllers in a direct way, for instance
by devising first-order, gradient-descent based methods. Con-
vergence of these methods to a global optimum was recently
proven for the LQR problem in the non-distributed case [12]–
[15]. When carrying on these methods to the distributed
controller case, however, one can in general only guarantee
convergence to a stationary point, which may not be a
global optimum [15], [16]. For the infinite-horizon and static-
controller cases, this is mainly due to the set of stabilizing
distributed controllers being disconnected in general [17].
To the best of the authors’ knowledge, classes of distributed
control problems solvable to global optimality with first-
order methods are yet to be characterized, and a connection
with the QI notion is yet to be established. Furthermore, a
condition that is more general than QI for global optimality
certificates has not been found yet. Indeed, the QI notion
is closely linked to using convex programming, whereas we
show that more general global optimality conditions can be
found with first-order methods.

Motivated as per above, in this paper we study first-order
methods to solve the distributed LQG problem with dynamic
controllers in finite-horizon. Our contributions are as follows.
First, we show that given QI sparsity constraints, one can
use first-order methods to find a globally optimal output-
feedback controller directly, as an alternative to solving a
convex program in the disturbance-feedback (Youla) domain.
This will enable devising learning-based policy gradient
methods for distributed control in future works. Second, we
characterize a new class of Uniquely Stationary (US) control
problems, which can be solved to global optimality using
first-order methods. We show that every strongly QI problem
is US and that there are instances of US problems which are
not QI. This implies that first-order methods enable global
optimality certificates strictly beyond QI. We conclude the
paper by discussing tests for the US property.

The paper is structured as follows. Section II introduces
the necessary notation and background. Section III contains



our first result about global optimality given strong QI and
a numerical example. Section IV characterizes the class of
US problems and establishes the result about certificates
of global optimality beyond QI. We conclude the paper in
Section V.

II. BACKGROUND AND PROBLEM STATEMENT

We start this section by providing the necessary notation.
We then proceed with stating the distributed LQG problem
and reviewing results about disturbance-feedback control
policies and quadratic invariance.

A. Notation

We use R to denote the set of real numbers. The (i, j)-th
element in a matrix Y ∈ Rm×n is referred to as Yi,j . We use
In to denote the identity matrix of size n×n, 0m×n to denote
the zero matrix of size m × n . Whenever the subscripts
are omitted, the dimensions are implied by the context. We
write M = blkdg(M1, . . . ,Mn) to denote a block-diagonal
matrix where the blocks are the matrices M1, . . . ,Mn. For
a symmetric matrix M = MT we write M � 0 (resp.
M � 0) if and only if it is positive definite (resp. positive
semidefinite), that is its eigenvalues are strictly positive (resp.
non-negative). For two matrices M,P of any dimensions
M⊗P denotes the Kronecker product and for two matrices of
equal dimensions M�P denotes the Hadamard product1. For
any matrix K ∈ Rm×n, vec(K) ∈ Rmn is a vector obtained
by stacking the columns of K into a single column. Given
a binary matrix X ∈ {0, 1}m×n, we define the associated
sparsity subspace as

Sparse(X) := {Y | Yi,j = 0 for all i, j such that Xi,j = 0 } .

Similarly, given Y ∈ Rm×n, we define X = Struct(Y ) as
the binary matrix given by

Xi,j :=

{
0 if Yi,j = 0

1 otherwise .

Let X, X̂ ∈ {0, 1}m×n and Z ∈ {0, 1}n×p be binary
matrices. We adopt the following conventions: X + X̂ :=
Struct(X + X̂), XZ := Struct(XZ), X ≤ X̂ if and only if
Xi,j ≤ X̂i,j ∀i, j. The Euclidean norm of a vector v ∈ Rn
is denoted by ‖v‖22 = vTv and the Frobenius norm of a
matrix M ∈ Rm×n is denoted by ‖M‖2F = Trace(MTM).
Given a matrix K ∈ Rm×n and a continuously differentiable
function J : Rm×n → R we define ∇J(K) as the m × n
matrix such that

∇J(K)i,j =
∂J(K)

∂Ki,j
.

For a vector v ∈ Rn and a function f : Rn → R we
denote the gradient by ∇f(v) ∈ Rn and the Hessian by
∇2f(v) ∈ Rn×n. Given a subspace K ⊆ Rm×n we denote
its orthogonal complement as K⊥. The symbol N (µ,Σ)
denotes the normal distribution with expected value µ ∈ Rn
and covariance matrix Σ ∈ Rn×n � 0, and x ∼ N (µ,Σ)

1(M � P )i,j = Mi,jPi,j

means that the random vector x ∈ Rn follows the distribution
N (µ,Σ).

B. Problem Setup
We consider time-varying linear systems in discrete-time

xt+1 = Atxt +Btut + wt , (1)
yt = Ctxt + vt ,

where xt ∈ Rn is the system state at time t affected by
additive noise wt ∼ N (0,Σwt ) with x0 ∼ N (µ0,Σ0) ,
yt ∈ Rp is the output at time t affected by additive noise
vt ∼ N (0,Σvt ) and ut ∈ Rm is the control input at time
t. We consider the evolution of (1) in finite-horizon for
t = 0, . . . N , where N ∈ N. By defining the matrices
A = blkdg(A0, . . . , AN ),

B =

[
blkdg(B0...BN−1)

0n×mN

]
,C =

[
blkdg(C0...CN−1)T

0n×pN

]T
,

and the vectors x = (xT0 , . . . , x
T
N )T ∈ Rn(N+1), y =

(yT0 , . . . , y
T
N−1)T ∈ RpN , u = (uT0 , . . . , u

T
N−1)T ∈

RmN , w = (xT0 , w
T
0 , . . . , w

T
N−1) ∈ Rn(N+1) and v =

(vT0 , . . . , v
T
N−1) ∈ RpN , and the shift matrix

Z =


0n×n

In
. . .
. . . . . .

In 0n×n

 ∈ Rn(N+1)×n(N+1) ,

we can write the system (1) compactly as

x = P11w + P12u , y = Cx + v , (2)

where P11 = (I − ZA)−1 and P12 = (I − ZA)−1ZB. In
this paper we consider causal output-feedback strategies of
the form

u = Ky, K ∈ Sparse(S) ∩ K ,

where S ∈ {0, 1}mN×pN and K ⊆ RmN×pN is a subspace.
By denominating the m × p block matrices inside K as
follows:

K =

 K0,0 0m×p 0m×p
...

. . . 0m×p
KN−1,0 . . . KN−1,N−1

 , (3)

a sparsity constraint K ∈ Sparse(S) is equivalent to Ki,j ∈
Sparse(Si,j) for every i = 0, . . . , N − 1, j ≤ i, where
the matrix Si,j is the corresponding matrix block of S
and encodes those outputs from the time instant j < i
that are known to controllers at time i. In this sense, S
expresses spatio-temporal constraints for distributed control.
The subspace K can encode additional general subspace
constraints, such as for instance Ki,i = Kj,j for every
i, j = 0, . . . , N − 1.

Our goal is to compute K ∈ Sparse(S)∩K that minimizes
a finite-horizon cost

J(K) := Ew,v

(
N−1∑
t=0

xTtMtxt + uTt Rtut

)
+ xTNMNxN ,

(4)



where Mt � 0 and Rt � 0 for every t.
Remark 1: When K is not constrained, the problem of

minimizing (4) is known as the Linear Quadratic Gaussian
(LQG) problem. The infinite-horizon LQG problem is that
of minimizing (4) for N →∞, where usually it is required
that the controller is static in the sense that ut = Kyt for
some K ∈ Rm×p for every t. In this paper, we address the
distributed and finite-horizon version of the LQG problem,
where the controller K is dynamic in the sense that it is
allowed to depend on the full history of the outputs. As
will be clarified later in this section, considering dynamic
controllers allows to link the quadratic invariance notion [4]
with first-order methods.

By defining M = blkdg(M0,M1, . . . ,MN ) ∈
Rn(N+1)×n(N+1), R = blkdg(R0, . . . RN−1) ∈
RmN×mN , Σw = blkdg(Σ0,Σ

w
0 , . . . ,Σ

w
N−1),

Σv = blkdg(Σv0, . . . ,Σ
v
N−1), µw =

[
µT
0 0 . . . 0

]T
the

cost function (4) can be written as

J(K) =
∥∥∥M 1

2 (I −P12KC)−1P11Σ
1
2
w

∥∥∥2
F

+

+
∥∥∥M 1

2 P12K(I −CP12K)−1Σ
1
2
v

∥∥∥2
F

+

+
∥∥∥R 1

2 K(I −CP12K)−1CP11Σ
1
2
w

∥∥∥2
F

+

+
∥∥∥R 1

2 K(I −CP12K)−1Σ
1
2
v

∥∥∥2
F

+ (5)

+
∥∥∥M 1

2 (I −P12KC)−1P11µw

∥∥∥2
2

+

+
∥∥∥R 1

2 K(I −CP12K)−1CP11µw

∥∥∥2
2
.

A derivation of J(K) as per (5) is reported in the Appendix.
Remark 2: Note that J(K) is a multivariate polynomial

in the entries of K. This is because one can verify

(I −CP12K)−1 =

N∑
i=0

(CP12K)i , (6)

due to the fact that each pN × pN block on the diagonal
of CP12K is the zero matrix by construction, and hence
(CP12K)i = 0pN×pN for every i ≥ N + 1.

To summarize, in this paper we are interested in solving
the following optimization problem:

Problem PK
min

K∈Sparse(S)∩K
J(K) .

which might be non-convex due to J being non-convex in
K in general.

C. Disturbance-feedback strategies

Motivated by e.g. [18], [19], we introduce the concept of
equivalent disturbance-feedback strategies.

Lemma 1: A disturbance-feedback control input of the
form ũ = QCP11w + Qv yields the same state, output
and input trajectories as an output-feedback control input of
the form u = Ky if and only if

K = h(Q,CP12) ,

where h : RmN×pN → RmN×pN is the bijection defined as

h(Q,CP12) = (I + QCP12)−1Q ,

h−1(K,CP12) = K(I −CP12K)−1 .
Proof: For u = Ky, from (2) we derive the closed-loop

equations:

x = (I −P12KC)−1(P11w + P12Kv) , (7)

y = C(I −P12KC)−1P11w + (I −CP12K)−1v ,

u = KC(I −P12KC)−1P11w + K(I −CP12K)−1v .

By defining Q = h−1(K,CP12) = K(I − CP12K), the
above equations can be rewritten as

x = (I + P12QC)P11w + P12Qv ,

y = C(I + P12Q)P11w + (I + CP12Q)v ,

u = QCP11w + Qv .

Hence, the disturbance-feedback control input u =
QCP11w + Qv achieves the same trajectories as u = Ky.

Now, define the function

J̃(Q) =
∥∥∥M 1

2 (I + P12QC)P11Σ
1
2
w

∥∥∥2
F

+ (8)

+
∥∥∥M 1

2 P12QΣ
1
2
v

∥∥∥2
F

+
∥∥∥R 1

2 QCP11Σ
1
2
w

∥∥∥2
F

+

+
∥∥∥R 1

2 QΣ
1
2
v

∥∥∥2
F

+
∥∥∥R 1

2 QCP11µw

∥∥∥2
2

+

+
∥∥∥M 1

2 (I + P12QC)P11µw

∥∥∥2
2
.

By directly comparing the expressions for J̃(Q) and J(K),
we obtain that:

J̃(h−1(K,CP12)) = J(K) ,

J̃(Q) = J(h(Q,CP12)) .

We introduce the following Lemmas about J(K) and
J̃(Q) which will be useful for proving our main results in
Section 3 and Section IV. The proofs are reported in the
Appendix.

Lemma 2: The function J̃(Q) is strictly convex and
quadratic in Q.

Lemma 3: Let K0 ∈ RmN×pN and define the sublevel set
at J(K0) as

L := {K| J(K) ≤ J(K0)} .

The sublevel set L is bounded for any K0.

D. Quadratic invariance

Since J̃(·) is convex in the disturbance-feedback strate-
gies, it can be exploited for convex computation of sparse
controllers. In particular, if and only if a property denoted as
Quadratic Invariance (QI) holds, it is possible to compute a
solution of PK by solving a corresponding convex program
in the disturbance-feedback parameter Q. We recall the
notion of QI and the corresponding result from [4]:



Definition 1: A subspace C ⊂ RmN×pN is QI with
respect to CP12 if and only if

KCP12K ∈ C , ∀K ∈ C ,

and it is strongly QI with respect to CP12 if and only if

K1CP12K2 ∈ C , ∀K1,K2 ∈ C .
Notice that a subspace is QI if it is strongly QI, but not

vice-versa. Note that a sparsity subspace Sparse(S) is QI if
and only if it is strongly QI [4]. The QI property has been
shown to be necessary and sufficient for convex design of
globally optimal distributed controllers [4], [5]. To review
this result, notice that problem PK is equivalent to

min
Q∈h−1(Sparse(S∩K),CP12)

J̃(Q) , (9)

where h−1(Sparse(S) ∩ K,CP12) = −h(Sparse(S) ∩
K,CP12) by definition of the bijection h. The main QI result
is that problem (9), equivalent to PK , is convex if and only
QI holds.

Theorem 1 (QI, [4], [5]): The set h(Sparse(S) ∩
K,CP12) is convex if and only if Sparse(S) ∩ K is QI
with respect to CP12, and if and only if it is equal to
Sparse(S) ∩ K.

It follows from Theorem 1 that problem PK is equivalent
to a convex program, and in particular to

min
Q∈Sparse(S)

J̃(Q) , (10)

if and only if QI holds.

The rest of the paper is dedicated to developing a first-
order gradient-descent method to solve PK to global opti-
mality directly in the K domain.

III. FIRST-ORDER METHOD FOR GLOBALLY OPTIMAL
SPARSE CONTROLLERS GIVEN QI

Given a sparsity constraint K ∈ Sparse(S), we character-
ize the set of stationary points for problem PK as follows:

Proposition 1: Consider problem PK with K ∈
Sparse(S). A controller K ∈ Sparse(S) is a stationary point
for PK if and only if

∇KJ(K) ∈ Sparse(Sc) , (11)

where Sc is the binary matrix that has a 0 wherever S has
a 1, and a 1 wherever S has a 0. When (11) holds, we say
that K is a structured stationary point.

Proof: Let k = vec(K) for every K and f be the
function such that f(k) = J(K) for every K. By definition
K ∈ Sparse(S) is a stationary point for PK if and only if

∇f(k)T(k− k) ≥ 0, ∀k ∈ Sparse(vec(S)) . (12)

Now suppose that (11) does not hold or equivalently there
exists i such that vec(S)i = 1 and ∇f(k)i = α 6= 0. Take
k = k + αei, where ei is the i-th element of the standard
orthonormal basis of RmpN2

. Since k ∈ Sparse(vec(S)) and

∇f(k)T(k− k) = ∇f(k)T(−αei) = −α2 < 0 ,

we conclude that (12) implies (11). Vice-versa, if (11) holds,
then ∇f(k) ∈ Sparse(vec (Sc)) and

∇f(k)T(k− k) = 0 , ∀k ∈ Sparse(vec (S)) .

Hence, (11) implies (12).
In general, a structured stationary point as in (11) can

be a local/global minimum/maximum or a saddle point for
problem PK . In the next lemma, we show that the set of
stationary points for PK corresponds to that of stationary
points for problem (10) when strong QI holds. The proof is
based on the idea of [18, Lemma 1] and is reported in the
Appendix.

Lemma 4: Suppose that C is strongly QI with respect to
CP21, and let K ∈ C. Also define Q = h−1(K,CP12). We
have that

∇QJ̃(Q) ∈ C⊥ ⇐⇒ ∇KJ(K) ∈ C⊥ .
A. Global optimality of gradient descent

By exploiting Lemma 4, our first result establishes that,
if Sparse(S) is QI with respect to CP12, any structured
stationary point of PK is a global optimum.

Theorem 2: Suppose that Sparse(S) is QI with respect to
CP12 and let K? ∈ Sparse(S) be a structured stationary
point of J(K). Then,

K? ∈ arg min
K∈Sparse(S)

J(K) .

Proof: By Theorem 1, PK is equivalent to (10). Since
problem (10) is convex, every Q? ∈ Sparse(S) such that
∇J̃(Q?) ∈ Sparse(Sc) (that is, Q? is a structured stationary
point) is a global optimum and thus achieves the optimal cost
J?. Let K? = h(Q?,CP12). Now remember that Sparse(S)
is QI if and only if it is strongly QI [4]. By Lemma 4 we
have

∇J(K?) ∈ Sparse(Sc) ,

and hence K? is a structured stationary point for J(K). Since
J̃(Q) = J(h(Q,CP12)) for every Q by definition, we have
that J(K?) = J̃(Q?) = J? and thus

K? ∈ arg min
K∈Sparse(S)

J(K) .

By Lemma 4, there can be no other structured stationary
point K ∈ Sparse(Sc) such that J(K) = J > J?; otherwise,
Q = h−1(K,PC12) would also be a structured stationary
point for problem (10) with cost J > J?, which is a
contradiction because problem (10) is convex.

Remark 3: We remark that Theorem 2 trivially generalizes
to any constraint set K ∈ Sparse(S)∩K where K is strongly
QI. Indeed, the key Lemma 4 holds for any strongly QI
subspace. In Theorem 2, we decided to make the most
common case of sparsity constraints explicit in the interest of
clarity. Instead, if K was QI, but not strongly QI, Lemma 4
would not hold because the matrix K̃ as per (25) would
not necessary lie in K. Future work will investigate whether
Theorem 2 can be proven for QI subspaces that are not
strongly QI.

Theorem 2 clarifies a fundamental insight: if we can find
any structured stationary point of the generally non-convex



function J(K), and QI holds, this is enough to guarantee that
we have solved problem PK . Strong of this observation, we
develop a gradient-descent method that solves PK to global
optimality for QI sparsity constraints.

Theorem 3: Suppose Sparse(S) is QI with respect to
CP12. Let K0 ∈ Sparse(S) be an initial output-feedback
control policy, and consider the iteration

Kt+1 = Kt − ηt∇J(Kt)� S , (13)

Then, Kt ∈ Sparse(S) for every t and there exists a choice
for ηt at every t such that

lim
t→∞

J(Kt) = J? ,

where J? is the optimal value of problem PK .
The proof of Theorem 3 makes use of Lemma 3 and the

following three Lemmas adapted from [20]. The adapted
proof of Lemma 5 is reported in the Appendix and the proofs
of Lemma 6 and Lemma 7 can be found in [20, Lemma 3.1]
and [21, Proposition 5.7] respectively.

Lemma 5: Let f : Rn → R be bounded below in Rn and
consider the iteration

xt+1 = xt − ηt∇f(xt) , (14)

where ηt satisfies the Wolfe conditions:

f(xt − ηt∇f(xt)) ≤ f(xt)− c1ηt‖∇f(xt)‖22 , (15)

−∇f(xt − ηt∇f(xt))
T∇f(xt) ≥ −c2‖∇f(xt)‖22 , (16)

for some 0 < c1 < c2 < 1.
Let f be continuously differentiable in an open set U

containing the level set L = {x : f(x) ≤ f(x0)}, where
x0 is the starting point of the iteration (14). Assume that
the gradient ∇f is Lipschitz continuous on U , that is, there
exists a constant L > 0 such that

‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖ , ∀x, y ∈ U .

Then,
lim
t→∞

∇f(xt) = 0n×1 .

Lemma 6: Suppose f : Rn → R is continuously differen-
tiable and bounded below. Then, for any 0 < c1 < c2 < 1,
there exist intervals of step lengths satisfying the Wolfe
conditions (15)-(16).

Lemma 7: Let f : Rn → R be twice continuously
differentiable on an open convex set U ⊆ Rn, and suppose
that the Hessian ∇2f is bounded on U . Then ∇f is Lipschitz
continuous on U .

We are now ready to prove Theorem 3.
Proof: [Theorem 3] We denote k ∈ R|S| to be the

vector that contains only those entries of K ∈ Sparse(S) that
correspond to non-zero entries of vec(S). Let f : R|S| → R
be the function such that f(k) = J(K) for every K ∈
Sparse(S). Then, ∇kf(k) ∈ R|S| contains only those entries
of ∇J(K) that correspond to non-zero entries of S. Hence,
the iteration (13) is equivalent to

kt+1 = kt − ηt∇f(kt) , (17)

which is a standard gradient-descent iteration. By definition
kt corresponds to a Kt ∈ Sparse(S), and hence the iterates
of (13) remain in Sparse(S) if K0 ∈ Sparse(S).

At every iteration t, let us choose ηt satisfying (15)-(16).
Notice that, according to Lemma 6, a choice for ηt exists for
every t because f is continuously differentiable and bounded
below by 0. Let k0 be the initial value for the decision
variables. We know by Lemma 3 that the sublevel set

L = {k| f(k) ≤ f(k0)} ,

is bounded. Consider an open, convex and bounded set U
that contains L (for instance, an open ball that contains L).
Since f(k) is a multivariate polynomial, every entry of its
Hessian matrix ∇2f(k) is also a multivariate polynomial.
Every multivariate polynomial is bounded on a bounded set,
and hence ∇2f(k) is bounded on U . By Lemma 7, we
deduce that there exists L > 0 such that

‖∇f(k1)−∇f(k2)‖ ≤ L‖k1 − k2‖ , ∀k1,k2 ∈ U .

By Lemma 5, we conclude that

lim
t→∞

∇f(kt) = 0n×1 . (18)

Let k? = limt→∞ kt and K? ∈ Sparse(S) the correspond-
ing output-feedback controller. Since ∇f(k?) = 0|S|×1, by
definition ∇J(K?) � S = 0mN×n(N+1) or equivalently
∇J(K?) ∈ Sparse(Sc), that is, K? is a structured stationary
point. We conclude by Theorem 2 that K? is a globally
optimal solution for PK because Sparse(S) is QI with respect
to CP12.

A choice for the stepsize ηt for every t satisfying the Wolfe
conditions (15)-(16) can be found by using, for instance, the
following bisection Algorithm at each time t.

Algorithm 1 Bisection for the Wolfe conditions (15)-(16)

1: Let 0 < c1 < c2 < 1, a = 0, b = 2, continue = 1,
p = −∇f(kt)

2: while f(kt + bp) ≤ f(kt)− c1b ‖p‖22 do
3: b = 2b
4: end while
5: while continue = 1 do
6: ηt = 1

2 (a+ b)

7: if f(kt + ηtp) > f(kt)− c1ηt ‖p‖22 then
8: b = ηt
9: else if ∇f(kt + ηtp)Tp < −c2 ‖p‖22 then

10: a = ηt
11: else
12: continue = 0
13: end if
14: end while return ηt

We refer the reader to [21, Proposition 5.5] for a proof that
Algorithm 1 returns a stepsize satisfying (15)-(16) in a finite
number of iterations. We conclude this Section by providing
a numerical example.



B. Numerical example

Motivated by the example system of [4], we consider (1)
and the cost function (5) with

At =


1.6 0 0 0 0
0.5 1.6 0 0 0
2.5 2.5 −1.4 0 0
−2 1 −2 0.1 0
0 2 0 −0.5 1.1

 , Bt = I , Ct = I ,

Mt = I , Rt = I , Σw = I, Σv = I , ∀t = 0, . . . , 5 ,

and µ0 =
[
1 −1 2 −3 3

]T
, where we set a horizon of

N = 5. Our goal is to compute a controller K with a given
sparsity that minimizes the cost (5). Specifically, we aim at
solving PK with K = RmN×pN and

S = T ⊗ S ,

where Ti,j = 1 if j ≤ i and Ti,j = 0 otherwise, and

S =


0 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 1

 .

It follows that the total number of scalar variables is |S| =
|S|N(N+1)

2 = 30. It is easy to verify that Sparse(S) is QI
with respect to CP12, for example by using the binary
test [4, Theorem 26]. By direct computation of the Hessian
through the Symbolic Math Toolbox Ver. 7.1 available in
MATLAB [22] we verify that ∇2J(0|S|×1) 6� 0, where
k ∈ R|S| contains only the entries of K ∈ Sparse(S) such
that vec (S)i,j = 1. It follows that J(K) is not convex in
K. Despite this non-convexity, we know by Theorem 3 that
the gradient descent iteration (13) will converge to a global
optimum of PK for t→∞ thanks to the QI property.

1) Numerical results: The gradient-descent iteration (13)
was implemented in MATLAB with the stepsize being
chosen according to Algorithm 1. The iteration (13) was
initialized from a variety of randomly selected initial dis-
tributed controllers. Specifically, for each entry (i, j) such
that Si,j = 1 we selected the entry (K0)i,j uniformly
at random in the interval [−10, 10], and set (K0)i,j = 0
otherwise. In all instances, we converged to an optimal cost
of 767.5627 in ≈ 500 − 600 iterations, with a run time of
approximately 2 seconds. The stopping criterion was selected
as max |∇J(kt)| < 0.005. To validate the global optimality
result, we solved the corresponding convex program (10) in
Q with MOSEK [23], called through MATLAB via YALMIP
[24], and obtained a minimum cost of 767.5627.

At this point, it is natural to ask a follow-up question: is the
QI/strong QI property necessary to guarantee convergence of
gradient-descent to a globally optimal distributed controller?
In the following section, we provide a negative answer.

IV. UNIQUE STATIONARITY: GLOBAL OPTIMALITY
BEYOND QI

It was shown in [5] that the QI condition is not only
sufficient, but also necessary for convexity of the set
h(Sparse(S),CP12). This implies that convex program-
ming can only be used to systematically solve PK in the
disturbance-feedback parameter Q if QI holds. In this paper,
we have shown that descending the gradient directly in the K
domain also guarantees global convergence for (strongly) QI
problems. One may then be tempted to guess that, similarly
to [5], QI/strong QI are necessary conditions to certify global
convergence of first-order methods.

In this Section, we show otherwise. We define a novel
class of problems, which we denote as Uniquely Station-
ary problems (US). Every US problem can be solved to
global optimality via gradient-descent starting from any
initial controller in (13). Our main result is that the class
of US problems is strictly larger than that of strongly QI
problems, and it is not included in the class of QI problems.
It follows that first-order minimization offers certificates of
global optimality strictly beyond those offered by convex
programming for distributed control.

A. Unique stationarity generalizes QI

We define the concept of unique stationarity of problem
PK as follows.

Definition 2 (Unique Stationarity (US)): Consider prob-
lem PK subject to a general subspace constraint K ∈
Sparse(S)∩K, where S is a binary matrix and K ⊆ RmN×pN
is a subspace. We say that PK is Uniquely Stationary (US)
if and only if for every K:

ΠK
(
∇J(K)� S

)
= 0 =⇒ K ∈ arg min

Sparse(S)∩K
J(K) ,

(19)
where ΠK(·) is the projection operator on the subspace K.

We have the following result about US problems.
Proposition 2: Suppose that PK is US. Let K0 ∈

Sparse(S) ∩ K and consider the iteration

Kt+1 = Kt − ηtΠK (∇J(Kt)� S) . (20)

Then, K ∈ Sparse(S) ∩ K for every t and there exists a
choice for ηt at every t such that

lim
t→∞

J(Kt) = J? ,

where J? is the optimal value of problem PK .
Proof: First, notice that (20) is equivalent to

Kt+1 = ΠSparse(S)∩K (Kt − ηt∇J(Kt)) .

It follows that (20) is a standard projected gradient-descent
iteration. Let {ni}ri=1 be an orthonormal basis of Sparse(S)∩
K and let f : RmpN2 → R be the function such that
f(vec(K)) = J(K) for every K. Also define f : Rr → R
as

f(α) = f

(
r∑
i=1

αini

)
, (21)



where α =
[
α1, . . . , αr

]T
and r ≤ mpN2 is the dimension

of Sparse(S)∩K. By (21), the constrained optimization prob-
lem of minimizing J(K) over Sparse(S)∩K is equivalent to
the unconstrained optimization problem of minimizing f(α).
It follows that (20) is equivalent to the iteration

αt+1 = αt − ηt∇f(αt) .

We have shown in Theorem 3 that the iteration above
converges to limt→∞∇f(αt) = 0 by choosing ηt according
to (15)-(16), for instance by using Algorithm 1. Since PK is
US, every stationary point is optimal and thus achieves the
cost J?.
We deduce that every US problem can be solved to global
optimality with a projected gradient-descent algorithm. Our
main result is as follows.

Theorem 4: The class of US problems is strictly larger
than the class of strongly QI problems, and it is not included
in the class of QI problems.

The proof of Theorem 4 is based on constructing an
example of a US problem which is neither strongly QI or
QI, for which the property (19) can be certified a priori in a
tractable way.

Example: Consider the system (1) and the cost function
(5) with

At =

[
1 2
−1 −3

]
, Bt = I , Ct = I , Σ0 = I ,

Mt = I , Rt = I , Σwt = 0 , Σv = 0 , ∀t = 0, 1, 2 ,

and µ0 = 0, where we set a horizon of N = 2. The output-
feedback controller K is subject to being in the form

K = IN ⊗K ,

for some K ∈ R2×2. In other words, we consider the static-
controller case where ut = Kyt, as was also considered in
the works [15], [17] for the infinite-horizon setup. We remark
that in the finite-horizon framework considered here, it is not
necessary that (A+BK) is Hurwitz, since the finite-horizon
cost J(K) is finite for every K. Additionally, we require that
K is decentralized, or equivalently K ∈ Sparse(I2). The
resulting subspace constraint for problem PK is expressed
as

K ∈ Sparse(S) ∩ K = {K = IN ⊗ diag(x, y), x, y ∈ R} .

By computing KCP12K for a generic K ∈ Sparse(S) ∩ K
it is easy to verify that Sparse(S) ∩ K is neither strongly
QI or QI with respect to CP12. Hence, a convex program
equivalent to PK in the Q domain does not exist by
Theorem 1. Nonetheless, we have the following result:

Proposition 3: The problem PK considered in this exam-
ple is US. Specifically, PK is convex in K.

Proof: For any K ∈ Sparse(S) ∩ K, the cost function
(5) is equivalent to

J(K) = J(x, y) = 2x4 + 6x3 + 14x2 + 10xy − 22x+ 2y4−
− 18y3 + 67y2 − 110y + 87 .

The expression above was obtained by using the Symbolic
Math Toolbox in MATLAB [22]. The Hessian of J(x, y) is

H(x, y) =

[
24x2 + 36x+ 28 10

10 24y2 − 108y + 134

]
=

[
24(x+ 3

4 )2 + 29
2 10

10 24(y − 9
4 )2 + 25

2

]
.

Clearly, H(x, y) � 0 for all x, y ∈ R, and hence J(K)
is convex over Sparse(S) ∩K. It follows that PK is convex
and hence US, despite not being QI. We remark that, for this
example, checking whether PK is US is done in polynomial
time. Indeed, a sufficient condition for US in this case is
that the diagonal entries of the Hessian of J(K) are sum-
of-square (SOS) polynomials over Sparse(S) ∩ K. Deciding
whether a polynomial is a SOS is tractable [25].

We are now ready to prove Theorem 4.
Proof: First, we have proven in Theorem 1 that if PK is

strongly QI, then every stationary point is a global optimum.
See also Remark 3. Hence, (19) holds and every strongly
QI problem is US. Second, by Proposition 3 there exists an
instance of a US problem PK which is neither strongly QI
or QI. This proves that the class of US problems is both
strictly larger than strong QI problems and not included in
QI problems.

Theorem 4 shows that the notion of US genuinely ex-
tends QI. This is possible because QI is only necessary for
global optimality certificates of convex programming in the
Q domain. However, we have shown that QI might miss
instances of PK which may even be convex in the original
K coordinates.

Remark 4: The reader might be familiar with the recent
results of [6], [7], where it was shown that for a special
instance of PK one can construct a convex restriction in
the Q domain which contains a global optimum despite a
lack of QI. One may argue that such an example shows
that [6], [7] go beyond the QI notion. However, as was also
clarified in [6], the techniques of [6], [7] do not offer a global
optimality certificate beyond QI. This is because in [6], [7]
global optimality is certified only after computing the optimal
solution analytically, which may defy the purpose of solving
an optimization problem numerically in the first place.

Instead, in this paper, we have provided an example of one
non-QI problem for which a global optimality certificate is
obtained without knowing its solution analytically. Addition-
ally, similarly to the binary test of QI for sparsity constraints
[4, Theorem 26], the US property was proven in a tractable
way.

B. Tests for unique stationarity

The reader might have noticed that the US property, while
having a theoretical interest, is not useful in practice in the
form (19). This is because, in general, one can only prove
(19) by knowing the set of global optima a priori. For this
reason, it is necessary to identify sufficient conditions for US
that are not based on directly checking that every stationary
point is a global optimum. While noting that more general
tests should be envisioned in future research, we provide



our initial results. A first test for US follows naturally as a
corollary of Theorem 2:

Corollary 1 (Theorem 2): Suppose that K1CP12K2 ∈
Sparse(S) ∩ K for every K1,K2 ∈ Sparse(S) ∩ K. Then,
PK is US.

Proof: The required property is strong QI. If K is a
stationary point of PK then by definition

ΠSparse(S)∩K(∇J(K)) = ΠK(∇J(K)� S) = 0 .

By Theorem 1 and Remark 3, it follows that the above
implies K is a global optimum. Hence, US as per (19) holds.

When K = RmN×pN , it was shown [4, Theorem 26] that
QI of the sparsity subspace Sparse(S) can be tested in
polynomial time by checking

(S Struct(CP12)S)i,j 6= 0 =⇒ Si,j = 1 , ∀i, j .

A second sufficient test for US beyond QI is to check
whether PK is convex, that is to verify that J(K) is convex
on Sparse(S) ∩ K.

Proposition 4: Let k = vec(K), {ni}ri=1 be an orthonor-
mal basis of Sparse(S) ∩ K, f be the function such that
f(k) = J(K) for every K, and define f : Rr → R as per
(21). Define H = ∇2f(α) and let Hg be the submatrix of H
obtained by removing its last r−g rows and columns. Then,
if the determinant of Hg is a positive multivariate polynomial
for every g = 1, . . . , r, the problem PK is convex and thus
US.

Proof: Notice that for every K ∈ Sparse(S) ∩ K
there exists α ∈ Rr such that k =

∑r
i=1 αini and vice-

versa. Hence, PK is equivalent to the unconstrained problem
minα f(α). The function f is convex if and only if its
Hessian H is positive definite for every α, or equivalently
the polynomial det (Hg) is globally positive for every g. The
statement follows.
Deciding positivity of multivariate polynomials is NP-hard
in general, but it can be performed in finite time [26]. When
the determinants of Hg as per the proposition above are all
SOS, as in our Example above, then the US property can be
decided in polynomial time [25].

V. CONCLUSIONS

We have studied convergence to a global optimum of
gradient descent first-order methods for the distributed LQG
problem in finite-horizon. When the strong QI property
holds, a steepest descent algorithm is guaranteed to converge
to a global optimum. Moreover, we have characterized the
class of US problems, which is strictly larger than strong
QI problems and not included in QI problems, for which
projected gradient descent converges to a global optimum.
Our results show that first-order methods in the K domain
are superior to convex programming in the Q domain in
terms of generality of the corresponding global optimality
certificates. Additionally, first-order methods can be used
to learn globally optimal distributed controllers when the
system and the cost function are unknown, as was recently

shown in [12], [14] for the non-distributed case. A follow-up
work will discuss this application of our methods.

This work opens up the possibility of finding novel classes
of distributed control problems, for which an a priori and
possibly tractable test of the US property is available, beyond
QI and beyond testing convexity of PK in the K domain. For
instance, one can study conditions such that f(α) is gradient
dominated [27], a condition more general than convexity
which ensures convergence of gradient descent and thus
implies US. It is also important to extend this work to the
infinite-horizon and continuous-time cases.
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APPENDIX

A. Derivation of the cost function J(K)

Note that the cost (4) is equivalent to

J(K) = Ew,v

(
xTMx + uTRu

)
. (22)

Now consider the control input u = Ky. The closed-loop
state, output and input trajectories are given in (7), where x
and u are expressed as a function of w and v. Substitute (7)
into (22). By using the fact that for any matrix X we have

Ew

(
wTXw

)
= Trace(XΣw) + µT

wXµw ,

Ev

(
vTXv

)
= Trace(XΣv) ,

Ew,v

(
wTXv

)
= 0 ,

and remembering that ‖X‖2F = Trace(XTX) we obtain the
expression (5).

B. Proof of Lemma 2

By using several relationships to compute derivatives with
respect to matrices from [28] and the fact that vec(AXB) =
(BT ⊗ A)vec(x), where ⊗ is the Kronecker product, we
obtain that

∇
(

vec
(
∇J̃(Q)

))
= 2
[

(Σv + CP11ΣwPT
11C

T)︸ ︷︷ ︸
�0

⊗ (R + PT
12MP12)︸ ︷︷ ︸
�0

+

+ CP11µwµ
T
wPT

11C
T︸ ︷︷ ︸

�0

⊗ (R + PT
12P12)︸ ︷︷ ︸
�0

]
� 0 .

because R,Σv � 0 and M � 0 by hypothesis. The positive
definite matrix above is the Hessian of J̃(Q) when the entries
of Q are stacked into a single column. It follows that J̃(Q)
is a quadratic form that is strictly convex everywhere.

C. Proof of Lemma 3

Since J̃(Q) is strictly convex everywhere by Lemma 2,
its sublevel set

L̃ := {Q| J̃(Q) ≤ J(K0)} ,



is bounded for any K0 [29, Ch. 9.1.2]. Since J̃(Q) =
J(h(Q,CP12)) for every Q we have

L = h(L̃,CP12) .

Now notice that, similar to (6)

h(Q,CP12) = (I+QCP12)−1Q =

N∑
i=0

(−1)i(QCP12)iQ .

The expression above clarifies that if all the entries of Q
are finite, so are all the entries of h(Q,CP12). In particular,
we conclude that L is bounded if and only if L̃ is bounded.
Since L̃ is bounded for any K0, the result follows.

D. Proof of Lemma 4

⇐) In the interest of readability, in this proof we omit the
second argument of the function h(·, ·), which is assumed to
always be fixed to CP12. Assume that ∇KJ(K) ∈ C⊥, but
∇QJ̃(Q) 6∈ C⊥. Then, there exists Q̃ ∈ C with Q̃ 6= 0 such
that:

lim
ε→0

J̃(Q + εQ̃)− J̃(Q)

ε
= k 6= 0 ,

that is, there exists a direction Q̃ in C along which the
gradient is not null at Q. Equivalently, since h(·) is invertible,

lim
ε→0

J̃(h−1(h(Q + εQ̃)))− J̃(Q)

ε
=

= lim
ε→0

J(h(Q + εQ̃))− J(K)

ε
= k 6= 0 (23)

Now, observe

h(Q + εQ̃) = (I + (Q + εQ̃)CP12)−1(Q + εQ̃) (24)

= (I + Q̃CP12 + εQ̃CP12)−1(Q̃ + εQ̃)

=
[
(I + Q̃CP12)−1 + ε(I + Q̃CP12)−1Q̃CP12·

· (I + Q̃CP12)−1 +O(ε2)
]
(Q + εQ̃) = K + εK̃ +O(ε2) ,

where

K̃ = (I + QCP12)−1(Q̃ + Q̃CP12(I + QCP12)−1Q̃) .
(25)

Since QCP12 is strictly lower-triangular by construction, it
easy to verify that

(I + QCP12)−1 =

N∑
i=0

(−1)i(QCP12)i ,

and by repeated application of the strong QI property we
deduce that K̃ ∈ C. By substituting the above derivations
into (23), we obtain

lim
ε→0

J(K + εK̃ +O(ε2))− J(K)

ε
=

= lim
ε→0

J(K + εK̃)− J(K)

ε
= k 6= 0 .

Since K̃ ∈ C, this contradicts ∇KJ(K) ∈ C⊥. ⇒) can be
proven analogously.

E. Proof of Lemma 5

From (16) and (14) we have

∇f(xt+1)T∇f(xt) ≤ c2‖∇f(xt)‖22 ,

while the Lipschitz condition implies

∇f(xt+1)T∇f(xt) ≥ (1− ηtL)‖∇f(xt)‖22 ,

and hence
ηt ≥

1− c2
L

.

By substituting the above inequality into (15) we obtain

f(xt+1) ≤ f(xt)− c1
1− c2
L
‖∇f(xt)‖22 .

By summing the above expression over all indices j =
1, . . . , t we obtain

f(xt+1) ≤ f(x0)− c1
1− c2
L

t∑
j=0

‖∇f(xj)‖22 . (26)

Since f is bounded below, we have that f(x0)− f(xt+1) is
bounded above by some positive constant for all t. Hence,
we conclude from (26) that

∞∑
t=0

‖∇f(xt)‖22 <∞ ,

which implies
lim
t→∞

∇f(xt) = 0n×1 .
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