
stefano duca

C O O P E R AT I O N I N G R O U P S :
A G A M E - T H E O R E T I C I N V E S T I G AT I O N O F B E H AV I O U R ,

M E C H A N I S M S , A N D D Y N A M I C S





diss . eth no. 25753

C O O P E R AT I O N I N G R O U P S :
A G A M E - T H E O R E T I C I N V E S T I G AT I O N O F

B E H AV I O U R , M E C H A N I S M S , A N D D Y N A M I C S

A dissertation submitted to attain the degree of

doctor of sciences of eth zurich

(Dr. sc. ETH Zurich)

presented by

stefano duca

M.Sc.

born on 28 December 1988

citizen of Italy

accepted on the recommendation of

Prof. Dr. Dirk Helbing, examiner
Prof. Dr. Matjaž Perc, co-examiner

Prof. Dr. Rainer Hegselmann, co-examiner

2019



Stefano Duca: Cooperation in Groups: a Game-Theoretic Investigation of 
Behaviour, Mechanisms, and Dynamics, © 2019

doi: 10.3929/ethz-a-



A B S T R A C T

What makes people cooperate? How can one design mechanisms in order
to incentivize players to contribute to public goods? These are the kinds
of fundamental questions that are exemplified by analysis of the free-rider
problem: The problem arises from the fact that, while an entire popula-
tion benefits from the presence of a public good produced at some cost by
cooperative individuals, free-riders (defectors) can benefit from the public
good even when not producing any of it. Using the tools of Game Theory,
Mechanism Design and Experimental Economics, one can identify and un-
derstand the underlying conflicting forces leading to such free-riders prob-
lems in human interactions. This understanding can then be used to design
suitable mechanisms to avoid “tragedies of the commons", i.e. convergence
to socially sub-optimal outcomes.

In this dissertation, I focus on Public Goods games, and in particular
on understanding under which conditions the public good is successfully
provided and sustained through voluntary contributions, when players in-
teract in groups. I not only focus on how cooperation can emerge as a
result of incentive mechanisms and/or behavioural regularities, but I also
study the implications of said mechanisms in terms of the total welfare of
the players. The aim is to assess how robust positive predictions obtained
for Voluntary Contribution Games are, when transferred to more general
models which are closer to real-world social dilemmas situations.

I extend the Voluntary Contribution Game in several ways: by consid-
ering different strategy spaces and public good provision efficacies, by
adding noise, and, crucially, by accounting for heterogeneity among play-
ers. Using a mixture of analytical, experimental and computational tools,
I show that highly-efficient equilibria are enabled by so called “grouping”
mechanisms but that they also often cease to exist when heterogeneity is
taken into account. I identify under which conditions high cooperation
can be achieved and determine what is the optimal mechanism in terms of
social welfare, as a function of a social planner’s preference.

Finally, I also investigate mechanisms based on reputations expressed
by “scores", and show that the positive results obtained in pairwise inter-
actions do not necessary apply to multiplayer prisoner’s dilemmas, regard-
less of how much information is provided about the past behaviour of the
interacting partners.
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Z U S A M M E N FA S S U N G

Was bewegt Menschen dazu sich kooperativ zu verhalten? Welche Mecha-
nismen eignen sich dazu Menschen ausreichend zu motivieren, dass sie
zum öffentlichen Gemeingut beitragen? Diese und mehr sind die Art von
grundlegenden Fragen, die durch die Analyse "Trittbrettfahrer-Problems" 
veranschaulicht werden:

Das Problem entsteht dadurch, dass –obschon die gesamte Bevölkerung
am Vorhandensein eines von kooperierenden Individuen produzierten All-
gemeingutes interessiert ist– die "Trittbrettfahrer"(zu englisch «freerider»)
ebenfalls vom öffentlichem Gut profitieren können, ohne dass sie an der
Produktion teil haben muessen. Indem man die Mittel und Methoden der
Spieltheorie, der Mechanismus-Design-Theorie und der Experimentellen
Ökonomik verwendet, kann man die zugrundeliegenden widerstreitende
Kräfte in diesen Arten von Problemsituationen identifizieren und verste-
hen, und so die Dynamiken herausarbeiten die zu solchen Problemen mit
"Trittbrettfahrernïn menschlichen Interaktionen führen.

Dieses Wissen kann dann genutzt werden, um passende Mechanismen
zu kreieren, und um die "Tragik der Allmendeßu vermeiden, d.h. die Kon-
vergenz zu gesellschaftlich suboptimalen Kollektivergebnissen.

In dieser Dissertation konzentriere ich mich auf das so genannte «public
goods game» (zu deutsch «Öffentliche-Güter-Spiel») und insbesondere dar-
auf zu verstehen, unter welchen Bedingungen diese öffentlichen Güter in
Gruppen erfolgreich bereitgestellt und durch freiwillige Mitwirkung erhal-
ten werden.

Ich befasse mich hierbei nicht nur damit, wie Zusammenarbeit durch
Anreizmechanismen und/oder Verhaltensregelmässigkeiten hervorgebracht
werden kann, sondern ich untersuche vor allem auch die Auswirkungen
gewisser Mechanismen mit Blick auf den resultierenden Gesamtwohlstand
der Gruppe.

Mein Ziel ist es zu erörtern, wie solide positive Resultate gewisser Me-
chanismen sind, wenn sie auf generellere Modelle angewandt werden, die
naeher an realen gesellschaftlichen Dilemmasituationen.

Ich erweitere das "Voluntary Contribution Game"(zu deutsch "Freiwilli-
ge Beitragspiel") auf verschiedene Weise: durch die Berücksichtigung von
Heterogenitaet und der diverser Synergiefaktoren, und durch das Hinzu-
fügen von Imperfektionen des Mechanismus.
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Unter Verwendung einer Kombination von analytischen, experimentel-
len und simulationsbasierten Methoden zeige ich, dass hocheffiziente Gleich-
gewichtszustände durch sogenannte "Gruppierungsmechanismenërmöglicht
werden, aber dass sie auch oftmals gänzlich wegfallen, wenn der Hetero-
genität Rechnung getragen wird.

Ich identifiziere unter welchen Bedingungen hochwertige Zusammen-
arbeit erreicht werden kann und bestimme den optimalen Mechanismus
indem ich die Perspektive eines Sozialplaners einnehme.

Schliesslich untersuche ich die reputationsbasierten Mechanismen in Form
von «Punktevergabe» und zeige auf, dass die positiven Ergebnisse, welche
in paarweisen Interaktionen erzielt wurden, nicht notwendigerweise für
Gefangendilemma mit mehr als zwei Spielern halten, egal wieviele Infor-
mationen über das vergangene Verhalten der interagierenden Spieler vor-
liegen.
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R I A S S U N T O

Quali sono le basi per la cooperazione fra persone? Come si possono pro-
gettare dei meccanismi che incentivino degli agenti a contribuire al bene
pubblico? Queste domande fondamentali sono esemplificate dall’analisi
del problema dei profittatori (free-riders): Il problema dei free-riders deri-
va dal fatto che ogni membro di una popolazione, anche chi non contri-
buisce al bene pubblico, beneficia della presenza dei beni pubblici prodotti
dai cooperatori, che però ne pagano il costo di produzione. Usando gli
strumenti della Teoria dei Giochi, del Mechanism Design e dell’Economia
Sperimentale, è possibile identificare e comprendere le varie dinamiche
contrastanti che fanno sì che molte interazioni umane diano luogo al pro-
blema dei free-riders. Una volta comprese le forze sottostanti a queste dina-
miche, è possibile sviluppare dei meccanismi appropriati affinchè si possa
evitare che il sistema converga ad un equilibrio sub-optimale, la cosiddetta
tragedia dei beni comuni (o tragedy of the commons).

Questa tesi è incentrata sui cosiddetti giochi dei Beni Pubblici focaliz-
zandosi su quali siano le condizioni affinché il bene pubblico possa venire
prodotto con contributi pienamente volontari quando i giocatori interagi-
scono in gruppi. Questa dissertazione studia come si possa far emergere
un comportamento cooperativo sfruttando regolarità comportamentali e
meccanismi in grado di incentivarne la diffusione. Essa analizza, inoltre,
le implicazioni di tali meccanismi in termini di benessere collettivo della
popolazione. In particolare, lo scopo di questo lavoro consiste nel valutare
quanto robuste siano le predizioni positive (in termini di percentuale di
cooperazione in una popolazione) ottenute per i cosiddetti Voluntary Con-
tribution Games, quando estese a modelli più generici, e quindi capaci di
descrivere i dilemmi sociali reali in maniera più realistica.

Questa tesi estende il modello dei Voluntary Contribution Games in di-
versi modi: espandendo lo spazio delle strategie possibili e l’efficacia della
fornitura del bene pubblico, aggiungendo la possibilità di errori nelle os-
servazioni e, cosa fondamentale, tenendo conto dell’eterogeneità dei gio-
catori. Con metodi analitici, sperimentali e computazionali, è possibile di-
mostrare che si possono raggiungere equilibri molto efficienti, utilizzando
meccanismi cosiddetti “raggruppanti” (cioè, meccanismi che sfruttano l’as-
segnazione dei giocatori in gruppi). D’altro canto, si dimostra che questi
equilibri cessano di esistere quando si tiene in considerazione l’eterogenei-
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tà dei giocatori. In questo lavoro vengono definite le condizioni affinché
si possano raggiungere alti livelli di cooperazione e si descrive quale sia il
meccanismo ottimale in termini di benessere collettivo, dal punto di vista
di un pianificatore sociale.

Infine, questa tesi investiga vari meccanismi basati sulla reputazione ap-
partenenti alla famiglia dei meccanismi di “scoring” e vuole dimostrare
che i risultati positivi (in termini di cooperazione) che sono stati preceden-
temente ottenuti nel caso di interazioni tra due giocatori, non si applicano
a dilemmi del prigioniero (o Prisoner’s dilemma) giocati da più di due
individui. Nel caso di interazioni tra più persone, i risultati si confermano
negativi a prescindere dalla quantità di informazioni riguardanti le azioni
passate dei giocatori che viene fornita durante il gioco.
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1
I N T R O D U C T I O N

The power of a theory is exactly proportional to the
diversity of situations it can explain.

— Elinor Ostrom

1.1 preamble

According to Roger Myerson, Game Theory is the study of mathematical
models of conflict and cooperation between intelligent rational decision
makers [1]. First formulated by von Neumann and Morgenstern [2, 3], it
provides general mathematical techniques for analysing systems in which
two or more individuals make decisions that will influence one another’s
welfare.

To each combination of choices is assigned a payoff, i.e. a measure of
how much each player gains when these strategies are selected. Generally
(but not necessarily) it is assumed that players know the payoff assigned
to each strategy and that they cannot communicate with each other; this
implies that each player analyses the game and decides which strategy to
play beforehand, hence players do not react to the actions of other play-
ers. A fundamental assumption is that each player is rational, i.e. that it
always chooses to perform the action with the optimal expected outcome
for itself1. Under this assumption, each player can choose its optimal strat-
egy, e.g. the strategy that leads to the highest payoff, by expecting all other
players to choose their optimal strategy as well. A key result obtained by
Nash [6] is that there always exist at least one choice of strategies for which
no player can gain by unilaterally switching strategy; such a situation is
called a Nash equilibrium.

Game Theory can be used to understand the conflicting forces that sum
up to produce a very fundamental problem: the Free Rider problem [7]. The
problem arises from the fact that, while an entire population benefits from
the presence of a public good produced at some cost by cooperative indi-
viduals, free-riders (defectors) can still benefit from the public good with-

1 Rationality imposes restrictions over the shape of the utility function, in particular about
individuals’ preferences over alternatives. A more detailed description of rationality is out of
the scope of this dissertation; a curious reader can see e.g. [4, 5].
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2 introduction

out producing any of it. In Game Theory terms, one can reformulate the
problems as follows: A cooperator provides a benefit b to another player
at a cost c with b > c; in contrast a defector does not provide any pub-
lic good and thus it bears no cost. A defector, however, can still benefit
from the public good produced by the cooperators. For rational agents,
defecting is better than cooperating because it permits to avoid the cost
of cooperation and the risk of being exploited, thus obtaining an advan-
tage over cooperators. If all players defect, however, everybody obtains a
net gain of 0, worse than the payoff b − c > 0 that results from diffused
cooperation. Nevertheless, the only Nash equilibrium of this game is for
all agents to defect and, as a result, they are all worse off than if every-
body cooperated; a phenomenon often referred to as the “tragedy of the
commons" [8]. Nonetheless, human societies offer many examples of peo-
ple regularly working together (and thus cooperating) even when it would
be in their selfish interest not to do so. In fact, some might say that the
foundation of our modern societies is people working together to achieve
a common good.

Situations in which individual strategic incentives result in under-production
or over-consumption of goods and thus in sub-optimal outputs for the so-
ciety, are often referred to as “social dilemmas". Social dilemmas can be
modelled by games sharing this common feature [9]: there exists at least
one Pareto inefficient equilibrium, i.e. an equilibrium for which there ex-
ists an alternative outcome in which at least one player could be better off
without making anyone else worse off. Games that display this inherent
tension between the collective good (because a Pareto improvement could
be possible) and the strategic incentives (which lead to the inefficient Nash
equilibria) include Common Pool Resource management and Public Goods
games2.

The focus of this dissertation will be on Public Goods games. Common
examples of public goods include: military defence, public infrastructures,
clean air and other environmental goods, team work, scientific advances,
Wikipedia. [12]. In particular, I will focus on a very fundamental question
in economics and social sciences in general [13] (and indeed in several
other disciplines): understanding the conditions under which public goods
can be supplied through voluntary contributions.

The most common framework for modeling volontary contribution Pub-
lic Goods games, widely used by experimentalist and theoreticians, is the

2 Common Pools and Public Goods are both examples of non-excludable scarce goods, the
difference being that Common-pool resources are rivalrous while Public Goods are not. For
a discussion on this topic please see e.g. [10, 11].



1.1 preamble 3

family of Voluntary Contribution Games (VCGs), first introduced by Mar-
well and Ames [14] and Isaac and Walker [15]. While there exist many vari-
ations of the VCG that take into account the fact that individuals might
exhibit different enjoyment of public goods or that contributions might
not be sustitutable3 (for a literature review on VCGs from a modelling
and experimental point of view, see e.g. [13, 18–20]), the most common
instantiation of VCGs is the linear Voluntary Contribution Game as imple-
mented by Andreoni [21]: N players make voluntary contributions choos-
ing to contribute a percentage of their endowment (assumed to be equal
for every player) and are then randomly assigned to equal-sized groups4.
The payoff of each player is realized by aggregating all the contributions
of the players in his group, multiplied by a marginal per capita rate of re-
turn (mpcr from now on), and then evenly dividing the result among the
members of the group. Besides this, each player receives the part of his en-
dowment which he did not contribute to the common pool. When the mcpr
is bigger than the group size, the total welfare is maximized if every agent
contributes all of its endowment. However, for any mpcr smaller than one,
the only dominant strategy for each player is to contribute nothing. Hence,
this game is a classic example of a social dilemma.

This dissertation focuses on Public Goods games with voluntary contri-
butions. This introduction is meant to provide context for the contributions
presented in the next chapters. In the next section, I briefly introduce the
field of mechanism design and present a class of mechanisms that will fea-
ture prominently in this dissertation: Assortative Matching. The following
section summarizes key insights on VCGs from a behavioural perspective
and introduces the concepts of indirect reciprocity and reputation. Then,
the dynamics section, introduces a prominent way to implement reputa-
tion dynamics, namely Image Scoring, and briefly discusses the concept of
Logit dynamics. Readers already familiar with these concepts may directly
go the Manuscript Contributions section, where I summarize the results
presented in this dissertation. A thesis overview concludes this chapter.

3 E.g. by a design with constant marginal value of the public good and randomly-varying,
individual-specific values of the private good [16], or taking into account non linearities [17].

4 Alternatively, players can instead be assigned to a group in the beginning of the game and
then groups would remain fixed throughout the game.



4 introduction

1.2 mechanisms

In mechanism design one takes the point of view of a social planner design-
ing the rules of a game in order to obtain or optimize a certain outcome5. It
is often called reverse Game Theory because it starts by defining desirable
outcomes and it work backwards to create a game that incentivizes play-
ers towards those outcomes. Hence, the incentives created by the choice of
rules of games are central to the theory of mechanism design.

Mechanism design has classically been applied to a variety of problems
such as auctions, optimal taxation systems, investments in public projects,
voting, school choices and, more recently, distributed control [24–27]. Here
I focus on mechanisms that can successfully incentivize players to con-
tribute more to the public good. Indeed, the outcome of Voluntary Con-
tribution Games dramatically depends on how the rules of the games are
designed (for example on how players are assigned to the groups); it is
therefore of interest to study mechanisms that can potentially overcome
the Free Rider problem, thus solving the social dilemma.

A plethora of mechanisms has been suggested to maintain/explain large-
scale cooperation among humans in Public Goods Games and Common
Pool Resources management. A class of well studied and often applied
mechanisms rely on governmental authorities to provide certain public
goods to a population by levying taxes to pay for them [28]. Further, a gov-
ernment could employ subsidies (monetary or otherwise) in order to incen-
tivize the production of a public good [29], an example would be providing
tax breaks (the incentive) to citizens buying solar panel for their homes. A
large body of scholarship has investigated the role of social norms [30–32],
such as communal responsibility, and social ‘punishment’ [33], either by
‘peer punishment’ [34, 35] (where individuals decide to punish others in a
bilateral way) or by ’pool punishment’ [36, 37] (a tax-paid-like organization
to which punishment is outsourced), on maintaining high levels of cooper-
ative behaviour. However, this mechanisms tend to be invasive, and thus
hard to implement in many settings. In this thesis, I instead focus on less
intrusive mechanisms where, contrary to the ones mentioned above, no
payoff additions, subtractions or transfer between individuals take place.
One such family of mechanisms, that features prominently in my thesis, is
“grouping" mechanisms.

5 Fudenberg [22] and Mas Colell [23] provide a good introduction to the field of Mechanism
Design.
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A prominent instantiation of these mechanisms has been proposed by
Gunnthorsdottir et al. [38], who, instead of randomly matching players
to group, suggest to group players based on each individual contribution:
Players are ranked from best to worst based on how much they contributed,
with ties among them broken at random, and are then assigned to groups
accordingly. In particular, given a group size of S, the S players that con-
tributed the most are put in the first group, the second S highest contribut-
ing players are put in the second group and so on. Gunnthorsondottir et
al. prove that, if all are assigned the same initial endowment, there exists
a Nash Equilibrium6 where almost all players contribute everything they
have and a small amount of players contributes nothing. This equilibrium
is almost maximally efficient in terms of total welfare, thus effectively solv-
ing the tragedy of the commons. Furthermore, it is important to note that
the free-riding equilibrium continues to exist even in this new setting. A
key property of the game, necessary for the nearly efficient equilibria to
exist, is that ties in the ranking placement are broken at random. In all
these equilibria, in fact, there exists a mixed group where fully contribu-
tive players are grouped with defectors, i.e. players contributing nothing
to the common pool. In order for this to be a NE, the fully contributive
players must have a sufficiently high probability to be grouped only with
other full contributors so that they would not benefit (in expectation) by
decreasing their contribution and be placed with certainty in the defectors
group.

Interestingly, several experiments [39–41] have observed the existence
of the high contribution equilibria when playing VCGs with Assortative
Matching in the laboratory, and they have shown that, when existing, near-
efficient equilibria are almost always preferred over worst ones.

1.3 behaviour

In the following, I will briefly present some examples of behavioural mech-
anisms that have also been shown to be able to sustain high levels of coop-
eration. As opposite to mechanism design, where one tries to incentivize
cooperation trough cleverly manipulating the incentives structure, here
one tries to exploit pre-existing behavioural patterns, in order to achieve
the desired outcome, i.e. high levels of cooperation.

6 A Nash Equilibrium is an outcome of a game where no player has an incentive to deviate
from his or her chosen strategy after considering an opponent’s choice.



6 introduction

Indeed, when VCGs are played in laboratory experiments, it is often
observed that people cooperate much more than it would have been pre-
dicted by the theoretical models (see e.g. [20, 42]).

This is often attributed to what has been deemed a “universal behavioural
regularity" [43–45]: players are often conditional cooperators, i.e. they are will-
ing to contribute more to a public good the more they observe other players
contributing7. In particular, players often behave as “imperfect conditional
cooperators" [46, 47], meaning that they contribute more when they ob-
serve more contributions, but they do so with a selfish bias in that they
contribute less than the others do on average. This results in contributions
“spiraling downwards" over time due to players observing less and less
cooperative behavior thus further reducing their own contributions.

In 2-player games with fixed interactions (meaning that players always
play with the same partner), conditional cooperation coincides with direct
reciprocity. Direct reciprocity is the propensity for a person to cooperate
provided that others cooperate with him/her as well, and with a view of
what will happen in the future (also called ‘tit for tat’). It is imporant to
note this could be part of a (proto-)strategic rule or of a repeated-game
strategy.

Indeed, in general the norm of reciprocity is the expectation that people
will respond favourably to each other by returning benefits for benefits,
and maybe hostility with hostility [48]. Reciprocity as a social rule seems
to come very natural to humans [49, 50]. As Gouldner wrote: “There is no
duty more indispensable than that of returning kindness" [51]. Reciprocity
has even been suggested to have played a fundamental role in the early
development of human societies and markets [52, 53].

Let us picture a situation in which an individual has the opportunity to
help another to gain a benefit for a certain cost, smaller than the gain of the
other person. Under the assumption of direct reciprocity, a player would
help the other person under the expectation that he would do the same, if
the roles were switched. If the help was reciprocated in the next occasion,
then both individuals would obtain a net benefit. If this game is repeated
for several rounds, thus allowing for direct reciprocity, it can be shown
that there can be many strategies that lead to both players always helping
each other, depending on how forward-looking the players are [54, 55].
An example is the grim trigger strategy8 that prescribes cooperation (i.e.

7 Note that this could be a behaviour on its own, or be motivated by ‘other regarding’ prefer-
ences like inequality aversion or fairness.

8 See e.g. [56] for a discussion.
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helping the other player) for the first round and then whichever strategy
the other agent played the last round.

However, if two players were to interact only once, there would be no
fear of retaliation (i.e. a switch to a defective strategy) and thus the mech-
anism of direct reciprocity could not work9. Just as direct reciprocity is
based on repeated encounters between the same two individuals (“my be-
havior toward you depends on what you have done to me"), so is indirect
reciprocity based on repeated encounters in a group of individuals (“my
behavior toward you also depends on what you have done to others"). As
David Haig said: “For direct reciprocity you need a face, for indirect reci-
procity you need a name" [59].

In the context of indirect reciprocity, a person does not expect the recip-
ient of his help to reciprocate but he expects that somebody else will. The
driver of indirect reciprocity is often reputation, famously called by Milinski
a ‘universal currency for human social interactions’ [60]. The idea is that a
donor might provide help to somebody that is more likely to help others:
Assuming that helping someone, or refusing to do so, can have an impact
on a person standing within his community and that, when interacting, a
donor will take into account the receiver’s reputation to decide whether to
help him or not, it follows that players would care about their reputation.
Under these assumptions, it is ‘rational’ for ‘forward looking’ players10 to
help others.

1.4 dynamics

In this section I will briefly discuss which dynamics, based on the mecha-
nism (behavioural and not) discussed above, can lead to sustained cooper-
ation over a long period of time.

A simple way to implement a reputation dynamic driving indirect reci-
procity is image scoring, first introduced by Nowak & Sigmund [61]. The
idea is that each player has a score that represents its reputation among
the other players. Every player starts with a score of 0. Whenever a player
has the opportunity to help someone else, its score gets updated: if it helps
the receiver its score is increased by one, if not it is decreased by one. Thus
a player’s reputation is continuously reassessed based on its last decision.

9 It has been pointed out that trigger strategies could still ensure a cooperative Nash equilib-
rium but that that would require some community-enforced mechanism [57, 58]

10 I.e. players that somehow take into account their future payoff when deciding about their
course of action
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Computer simulations have shown that the strategy to cooperate with
anybody with a non-negative image score is the fittest one and it evolves
to fixate in the population [61, 62]. This means that a population starting
with agents playing multiple competing strategies, ranging from uncon-
ditional cooperation to unconditional defection, will eventually evolve in
a population where the only existing strategy is conditional cooperation
with anybody exhibiting a non-negative image score.

It is important to notice that in refusing to help an individual with a low
image score, a player is decreasing his own score, thus reducing his own
probability of receiving help in the future. In this way, not helping a player
in bad standing can be interpreted as a form of punishment. Allowing
the players to take into account also their own score, results in the best
strategy being: helping another player if his image score is non-negative
and the donor’s own score is less than one [61, 62].

Besides image scoring, there are other possible strategies to implement
indirect reciprocity. An example of a possible strategy that takes into ac-
count the aforementioned problem is the "standing strategy" introduced
by Sugden [63]. In this model, everyone is initially in good standing and
an individual looses good standing when refusing to help a receiver in
good standing. It was found [64] that this strategy usually beats image
scoring and can in fact invade a population of image scorers. Standing
strategies are part of the “leading eight”, the only eight rules that result
in an evolutionary stable strategy with a high cooperation level as identi-
fied by Ohtsuki et al. in a study of all possible reputation dynamics11 [65].
They conclude that keys to the success in indirect reciprocity are to be nice
(maintenance of cooperation among themselves), retaliatory (detection of
defectors, punishment, and justification of punishment), apologetic, and
forgiving. It is important to note that image scoring is not part of the lead-
ing eight.

Numerous experiments have shown that donations are more frequent to
receivers who had been generous to others in previous interactions, thus
validating the concept of indirect reciprocity [66–69].

However, even though standing strategies possess superior analytical
properties than image scoring, an experiment designed by Milinski et al. to
explicitly distinguish experimentally between the two strategies obtained
results compatible with image scoring but not with standing strategies [70].
It has been speculated [60] that a possible reason for why people seem to
use image scoring in experimental settings is the simplicity of the rule.

11 When reputation is considered binary: a player can have either good or bad reputation.
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Standing strategies, indeed, require much more information to work than
image scoring. To learn the standing of a player, it is not enough to know
what his last action was but also what the last action of the last person
with whom he interacted was and so on. In fact, it would be necessary to
know the entire history of the game. With binary image scoring, instead, it
is enough to know what the last action of the recipient was.

Therefore, another aspect to consider is how much information each
reputation rule requires, because many real world situations take place in
settings that don’t allow for players to observe the actions undertaken by
all the other individuals. For instance, if agents are playing a public good
games in groups, information regarding the individual behaviour can be
hard to obtain. The performance of the group as a whole could be the only
available information. It was shown [71] that in group interactions, when
only the group performance is available but not the individual informa-
tion about the players, cooperation cannot be sustained. As a measure of
group performance, it is necessary to introduce the concept of group score.
Each player’s group score summarizes the aggregate cooperativeness of
the groups of which he has been a member in the past, without any ad-
ditional information regarding what the player individually did. It is also
possible to show that, if players are given with probability p the image
score of the players with which they interact and with probability 1− p
the group score, a low value of p is enough to lead to cooperation.

It thus seems that scoring can result in the emergence of cooperation for
a wide range of informational settings.

In the discussion above, I have approached the dynamics of the games
from a mainly behavioural point of view. In the following, I will briefly
discuss an approach that is particularly suited to implement game dynam-
ics in computer simulations. Many possible dynamical rules that could be
used to simulate the outcome of a game have been suggested in the liter-
ature12; in this dissertation, I focus on best response dynamics [76], and
in particular on perturbed best response [77, 78]: The family of (myopic)
best response dynamics implements strategy updating rules where players
decisions are determined by maximizing their payoff in the current round
(potentially with mistakes/noise) via best responding to the actions taken
by all the other players in the previous round. Perturbed best response ex-
pands this concept to a probabilistic choice when updating one’s strategy;
in this way, it is ensured that the probability of an agent’s choice varies

12 Examples of such rules are, among others, imitation [72], replicator dynamics [73], regret
minimization [74] and learning [75].
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smoothly with changes in the payoff values, thus obtaining differentiable
dynamics [79, 80]. A crucial feature of perturbed best response is that the
probability of choosing a certain strategy is proportional to the payoff that
such strategy would realize, thus maintaining the concept of a rational
agent.

In particular, in this dissertation I make extensive use of the Logit dy-
namic [81]13, which offers a best response behavioral model built on the
concept of bounded rationality agents, i.e. agents whose rationality is some-
how limited (e.g., due to their cognitive limitations or the tractability of the
decision problem) [84]. The Logit dynamics allows to obtain a smooth ap-
proximation of the myopic best response dynamics while being very suited
to a computational approach [85].

1.5 manuscript contributions

The mechanisms discussed above would let societies overcome the free
riders problem without the need of additional structures. Crucially, how-
ever, the positive predictions arising from these mechanism rely on specific
underlying assumptions that might not be satisfied in more realistic scenar-
ios.

In this dissertation, using a mixture of analytical, computational and ex-
perimental tools, I set out to address the important question of how robust
the high-contributions predictions are, under more relaxed and realistic
assumptions. The focus will be on voluntary contribution games where in-
dividuals interact in groups, which can be formed on the basis on various
criteria.

As a first step toward assessing the robustness of the positive equilibria
resulting from assortative matching, I examine when do the nearly efficient
equilibria exist for a wider range of public-goods provision efficacies (that
nests the standard mpcr model as a special, linear case) and for different
action spaces. This can be relevant when observing these classes of games
empirically: it could be quite hard to exactly determine the payoff structure
of the game and/or the players’ available actions, and thus it is important
to know how robust a theoretical prediction is when the structure of the
game is changed slightly. I find that the equilibria predictions are not de-
pendent on the exact nature of the strategy space of the game but that they
are indeed dependent on “how good" the public-good provision efficacy

13 The Logit is related to the concept of Quantal Response Equilibrium. For a discussion on the
topic, see e.g. [82, 83].
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is: Counter-intuitively, when the public-goods provision efficacy is so good
that the nearly efficient outcome becomes highly rewarding, the only exist-
ing Nash equilibrium is for all players to contribute almost nothing to the
common pool, thus disrupting the positive predictions obtained by Gun-
nthorsdottir et al. . This is due to the fact that, while contributing would
yield a huge benefit for the group, defecting becomes tempting for too
many players, thus making it impossible for a mixed group of contributive
and defective players to exist; a condition necessary for the highly efficient
equilibria to exist, as discussed in section 1.2.

A focal point of this dissertation is to tackle a crucial limitation of pre-
vious studies: allowing for heterogeneous players. Undeniably, players are
often different from each other: e.g. workers might have different innate tal-
ent no matter how hard they work, investors might have different abilities
to judge a good investment or start with a different initial capital. Fur-
thermore, there is evidence in the literature that taking into account the
heterogeneity of players’ attributes or endowments might result in differ-
ent outcomes than in the homogeneous case, for several different games.
For example, Cherry et al. [86] show that in a linear public good game
players tend to contribute much less if provided with heterogeneous en-
dowments14. However this key characteristic has been missing in the mod-
els described above. In this dissertation, I take into account two diverse
dimensions over which agents can differ: wealth and talent.

Using analytical tools, I show that the consequences of including het-
erogeneous agents in the model depend crucially on the structure of the
game, but that they can be quite disrupting. Indeed, when players pick
their strategy from a continuous action space, all near-efficient Nash equi-
libria that exist under homogeneity fall apart. Instead, either players revert
back to the negative full-defection equilibrium or new, previously impossi-
ble, complex mixed-strategy Nash equilibria emerge. In fact, when players
have access to a continuous action space, they can reduce or increase their
contributions by an infinitesimal amount. Due to the players’ heterogene-
ity, it will always be beneficial to do so (see chapter 2 for details) and thus
there cannot exist an equilibrium where two or more players contribute the
same amount, a condition for the high-efficient equilibria to exist. Using
computational tools, it is possible to determine the loss in efficiency of the
mixed strategy equilibria, compared to the homogeneous case.

14 For other examples see [87, 88].
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In the case of a binary15 or very coarse action space, instead, it is pos-
sible to prove that the highly efficient equilibria continue to exist. This is
because in this case, the above argument about infinitesimal changes in
contributions does not hold anymore.

This manuscript also addresses the case of imperfect grouping mecha-
nisms. The imperfection is realized by adding a certain amount of noise in
the ranking procedure (or equivalently by adding noise to the observation
of each player’s contribution). Hence, in case of full or no noise, the model
reduces to the ones described above. It is possible to prove that, if the noise
in the ranking is not too high, whenever the nearly efficient equilibria ex-
ist in the case of perfect matching, they can exist also for the imperfect
mechanism (albeit for a higher mpcr). By interpreting the noise as a policy
instrument, I assess the welfare properties of the different equilibria: it is
found that in some case a small amount of noise in the matching mecha-
nism can be beneficial, allowing for a fairer distribution of wealth while
conserving the population’s efficiency.

Building on these results, I address another important limitation of prior
studies: namely the focus on one-shot games16 instead of the more realis-
tic repeated interactions. Moving from one to repeated interactions can
substantially alter the equilibria of the game especially if one allows for
wealth to be accumulated over time; for one, because it might increase
the heterogeneity of the population over time which in turn could alter the
level of cooperative behaviour. With the introduction of different sources of
agents’ diversity, one has automatically introduced different criteria based
on which one could assign agents to groups. For example, one could rank
the players based on the total contribution that they made to the group
or based solely on the percentage of their endowment they contributed,
regardless of their talent (i.e. a multiplicative factor in front of the mpcr,
making it potentially unique for each player).

Using an agent based computer simulation where agents follow a logit-
response dynamics, I find that how much agents cooperate dramatically
depends on which criteria it is used to rank the agents. Moreover, criteria
that result in highly cooperative behaviour on the short run, might fail to
sustain it over a longer time span. The distribution of wealth among the
population is also a function of which criterion is used to assign agents
to groups. Treating the choice of the ranking criterion as a policy choice,
I find that a social planner trying to minimize the (wealth) inequality in

15 Meaning that the only possible actions are to contribute everything or nothing to the common
pool.

16 Meaning a game where players interact only once.
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the population while maximizing society’s output would prefer ranking
agents only based on their relative contribution to the common pool if
very inequality averse, and ranking agents taking into account their talent,
but not their total amount of wealth otherwise.

Repeated interactions among players are also the focus of the final contri-
bution of this dissertation. As discussed in section 1.3, for forward-looking
enough players, image scoring is a known mechanism that can poten-
tially lead to the emergence of cooperative behaviour through indirect
reciprocity. Indeed, many laboratory experiments have found results that
confirm this in two-players interactions. However, in reality most social in-
teractions unfold in groups and yet no laboratory experiment in a group
setting has been performed so far. Extending scoring mechanisms to group
interactions, presents interesting challenges: real-world group interactions
vary with respect to the information that is available, and typically individ-
uals do not observe all actions undertaken by all other individuals, espe-
cially in large groups. Moreover, the larger the groups, the more difficult
it might be to correctly process all the available information. Hence, when
players interact in a group setting, there are many potential scoring rules
that could be applied.

Another appealing question is whether a centralized authority is needed
for scoring to work. For the scores to be meaningful, in fact, there has to
exist some sort of mechanism that keeps track of the individual contribu-
tions and then assigns the scores based on the performance of the play-
ers/groups. A centralized authority could perform this role by observing
the actions of the players and then assigning the scores. However, there
could be situations where it would be impossible to simultaneously ob-
serve the actions of all the players, e.g. due to logistic reasons. Furthermore,
even if such a mechanism could be put in place, there might be concerns re-
garding privacy or the misuse of the collected information [89]. Hence, it is
interesting to investigate a decentralized mechanism where players them-
selves can rate their fellow group members based on their contributions in
the last round. Naturally, the decision to assign a certain score to a player
could, of course, be subjected to strategic consideration, and thus it is an
interesting question to ask how would the players rate their group-mates.

Hence, the goal is to find out how much information is enough for co-
operation to be sustained in a group setting, considering various informa-
tional contexts. For this, a laboratory experiment was designed, focusing
in particular on the simplest possible implementation of scoring mecha-
nisms: ‘Markovian’ scores, i.e., scores that depend only on the players’ ac-
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tions from the previous period17. The baseline of the experiment was to
test image scoring in a group setting. In addition, alternative scoring rules
that could apply to group interactions were tested, including one where
players score each other endogenously through votes. The proposed rules
differ with respect to how much information regarding past behaviour of
their group-mates is required, ranging from no feedback to full feedback.

The experimental results concerning cooperation are unambiguously neg-
ative: for every scoring mechanism, a steady decline in cooperation is ob-
served. The decay of cooperation is similar under every mechanism and
comparable even with the case when no scoring mechanism at all is imple-
mented. This applies even for the scoring mechanism discussed in section
1.3 that was experimentally shown to stabilize high level of cooperative
behaviour in the two-player case. A plausible explanation for this, is that
it is harder to isolate the ‘bad apples’ in a group interaction; i.e. defectors
cannot be individually punished, and cooperators cannot be individually
rewarded. This results in a reaction to the average group score that is in-
creasingly biased towards defection, therefore leading to a steady decrease
of high-reputation players in the population that in turn begets lower levels
of cooperative behaviour. Furthermore, in the cases where only group-level
information is provided to the players, when a high-score player decides
not to cooperate because of the presence of low-score subjects in his group,
this reduces the score of all his group-mates, not just of the low-score indi-
viduals. This results in a steady decay of players with good reputation and
cooperative behaviour in the population, and consequentially to a down-
ward spiral of contributions, akin to the one observed by Fischbacher et al.
and discussed above.

1.6 thesis overview

The overarching research question of this thesis is: what are mechanisms
that can support high level of cooperative behaviour over a long period of
time and, crucially, how robust/reliable are they? All material contained in
this cumulative thesis is based on scientific publications addressing these
questions. Each chapter of the dissertation is based on an individual paper:
Three of these papers are already published in peer-reviewed international
journals, while the other one is currently under review in a peer-reviewed

17 This is akin to assume that players only value/remember their last interactions with other
players, i.e. that players have memory 1.
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international journal. A list of these papers is provided at the end of this
dissertation.

The rest of the manuscript is constructed as follows:
Chapter 2 is based on a paper titled: Assortative Matching with Inequality
in Voluntary Contribution Games Using a mixture of analytical and com-
putational tools, it analyzes how robust the positive equilibria predictions
of VCGs with Assortative Matching are, when a wider range of public-
goods provision efficacies is considered and agents have heterogeneous
endowments.
Chapter 3 is based on a paper titled: Contribution-Based Grouping under
Noise. Using a mixture of analytical and computational tools, it extends
the above generalization to a wider set of strategy spaces while at the
same time allowing for inaccurate (noisy) implementations of the group-
matching mechanism. Furthermore, interpreting the noise as a policy in-
strument, it investigates the welfare properties of the assortative matching
mechanism.
Chapter 4 is based on a paper titled: Heterogenous agents in voluntary
contribution games with assortative matching and wealth accumulation.
Using an agent based computer simulation, it builds on the previous chap-
ters to analyze the long term outcome of repeated VCGs with Assortative
Matching under different group-matching criteria, accounting for the pos-
sible heterogeneity in wealth and talents of the agents and allowing agents
to accumulate wealth over time.
Chapter 5 is based on a paper titled: Groups and scores: the decline of
cooperation. Using data from a behavioral laboratory experiment, it pro-
poses and tests several scoring rules (implementing a reputation dynamic
as a driver of indirect reciprocity) that could apply to VCGs, played in sep-
arate groups. In addition, it tests an alternative scoring rules where players
score each other endogenously through votes.
A discussion concludes and an Appendix contains the Supplementary Ma-
terials of the papers presented above.

Even though all of the above chapters touch upon all the different facets
of this dissertation, they each focus on one or more of these aspects. In the
table below, I provide a comparison of the chapters of this thesis, indicating
their focus, on which paper they are based and what is their publication
status. The focus of each paper is represented by one or more icons: the
gears ( ) indicate a focus on mechanisms, the dynamical lines ( ) a
focus on the dynamics, and the three people ( ) a focus on behaviour.
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Chapter Focus Paper Journal

2

Assortative Matching
with Inequality in

Voluntary Contribution
Games

Computational Eco-
nomics

3
Contribution-Based

Grouping under Noise
Games

4

Heterogenous agents in
voluntary contribution
games with assortative
matching and wealth

accumulation

Under review in
Palgrave Communi-
cations

5
Groups and scores: the
decline of cooperation

J. R. Soc. Interface

Table 1.1: Comparison of the chapters in this PhD Thesis.
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A S S O RTAT I V E M AT C H I N G W I T H I N E Q U A L I T Y I N
V O L U N TA RY C O N T R I B U T I O N G A M E S

abstract

Voluntary contribution games are a classic social dilemma in which the
individually dominant strategies result in a poor performance of the

population. The negative zero-contribution predictions from social
dilemma situations give way to more positive (near-)efficient ones when

assortativity, instead of random mixing, governs the matching process in
the population. Under assortative matching, agents contribute more than

what would otherwise be strategically rational in order to be matched
with others doing likewise. An open question has been the robustness of

such predictions in terms of provisioning of the public good when
heterogeneity in budgets amongst individuals is allowed. Here, we show

analytically that the consequences of permitting heterogeneity depend
crucially on the exact nature of the underlying public-good provision

efficacy, but generally are rather devastating. Using computational
methods, we quantify the loss resulting from heterogeneity vis-a-vis the
homogeneous case as a function of (i) the public-good provision efficacy

and (ii) the population inequality.

17
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2.1 introduction

Suppose a population of agents faces the collective action [90] challenge
to provide public goods by means of various simultaneous but separate
voluntary contributions games [91]. In each one, the collective would benefit
from high contributions but individuals may have strategic incentives [6]
to contribute less. Such situations, also known as ‘social dilemmas’ related
to collective management of ‘common-pool resources’ [30, 92], often result
in underprovisioning of the public good (i.e. tragedy of the commons as
in [8]) as a result of this misalignment of collective interests and strategic
incentives.

Generally, grave underprovision of the public good is the unique Nash
equilibrium when individual contribution decisions are independent of
the matching process. [21]’s model with random re-matching of groups is
the best-known instantiation of this, and numerous experimental investi-
gations have reported corresponding decays in contributions [20, 93] when
such games are played in the laboratory [20, 93]. Predictions may change
dramatically, however, when agents are matched ‘assortatively’ instead,
that is, based on their pre-committed choice on how much to contribute so
that high (low) contributors are matched with other high (low) contribu-
tors. Such mechanisms have been coined ‘meritocratic group-based match-
ing’ [38], short ‘meritocratic matching’ [94].1 Under meritocratic matching,
new equilibria emerge through assortative matching that are as good as
near-efficient [38, 94]. Indeed, when better (i.e. more efficient) equilibria
exist, humans have been shown to consistently play them in controlled
laboratory environments [38–41].

In this chapter, we address the important question of how robust the pos-
itive predictions stemming from assortative matching are. To assess this,
we generalize the baseline model on two dimensions. On the one hand, we
consider a range of public-goods provision efficacies that nests the stan-
dard marginal-per-capita-rate-of-return (‘mpcr’) model as a special, linear
case. On the other hand, we allow heterogeneity in players’ budgets, ex-
pressing the ex ante inequality amongst individuals. In other contexts, het-
erogeneity has been shown to ‘help’ cooperation [96]. Our work, in par-
ticular, builds on one prior attempt at generalizing the standard model in
terms of heterogeneity by [39], who consider two levels of budgets in the
standard case of mpcr-linear payoffs.

1 Note that this kind of mechanism differs crucially from other contribution-inducing mecha-
nisms such as ‘punishment’ [95, 96] as no payoff additions, subtractions or transfer between
individuals take place.
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Methodologically, we blend analytical and computational approaches.
Our results summarize as follows. We show analytically that the conse-
quences of permitting heterogeneity in terms of provision of the pub-
lic good depend crucially on the exact nature of the underlying public-
good provision efficacy, but generally are devastating. Indeed, all near-
efficient Nash equilibria that exist under homogeneity fall apart when
heterogeneity is allowed. Instead, we are either back at the negative all-
contribute-nothing equilibrium or new, previously impossible, complex
mixed-strategy Nash equilibria emerge. In the latter case, the expected
level of resulting public-good provision depends crucially on (i) the public-
good provision efficacy and (ii) the population inequality. These mixed
equilibria are virtually impossible to characterize and to evaluate analyti-
cally for general cases. We therefore use computational methods and quan-
tify the loss resulting from heterogeneity vis-a-vis the homogeneous case
as a function of parameters regarding (i) and (ii). Our analysis thus per-
mits precise statements regarding possible consequences in terms of mak-
ing wrong predictions when assuming a homogeneous population, which
in many real-world cases is unrealistic.

The rest of this chapter is structured as follows. Next, we set up the
model including details about our computational algorithm. Section 3 con-
tains the chapter’s results. Section 4 concludes. Appendix 2.5 contains de-
tails of the analytical results.

2.2 the model

N players are assigned an initial endowment wi, that might be different
for each player i, and play the following game, of which all aspects are
common knowledge:

1. Actions. Each player makes a simultaneous and committed unilat-
eral decision regarding how much of his endowment to contribute.
We will indicate with αi ∈ [0, 1] the percentage of wi contributed by
player i. We indicate with α = {αi} the array of strategies obtained in
this way and with α−i the strategy vector obtained excluding agent i.

2. Matching. Players are ranked by their effective contributions si = wiαi
(from highest to lowest with random tie-breaking). They are then
assigned to M = N

S equal-sized groups of size S, such that the S
highest-ranking players are assigned to the first group, the S second-
highest ranking players are assigned to the second, etc.
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3. Outcome. Payoffs φi realize based on the contribution total in each
group. Each player receives the amount that he did not contribute
plus the sum of all the contributions made by the members of his
group multiplied by a factor Q (the marginal-per-capita-rate-of-return):

φi (αi | α−i) = wi (1− αi) + Q ∑
j∈Gi

α
γ
j wj (2.1)

with Gi being the group to which agent i belongs.

The mpcr Q represents the benefits of cooperation among members of
the same group. When 1

S < Q < 1 the game is a social dilemma, meaning
that group efficiency is maximized if every member contributes fully but
doing so is always a dominated strategy.

The parameter γ in the return from the common pool is a measure of
the “goodness" of the public-good provision efficacy. For high values of γ
(super-linear payoffs) even a high percentage of contributions has little ef-
fect on the common pool, thus making the public good less fruitful. On the
other end, for low γ values (sub-linear payoffs) even a small contribution
allows players to obtain large benefits from cooperation. It is important to
notice that the value of γ determines also the maximum efficiency2 of the
system ranging from wi + Q ∑j∈Gi

wj for γ→ 0 to wi for γ→ ∞.

2.2.1 Simulation

We simulate the above model in the following way:

1. We assign the initial endowments to each player sampling them from
a truncated Gaussian distribution with mean W0 and standard devi-
ation σ. The distribution is truncated at wi = 0 and wi = 2W0 so
that endowments are always positive and symmetrically distributed
around W0.

2. The initial strategy αi of each player is set to 0, hence the simulation
starts in the fully defective state3.

2 Efficiency is defined as the gain from the game relative to the initial endowment:

Efficiency =
∑N

i=1 φi −∑N
i=1 wi

∑N
i=1 wi

.
3 Different initial starting conditions have been explored and they have been observed to have

no effect on the final outcome of the simulation.
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3. Each player updates his strategy in the following way:

• With probability p he keeps playing the strategy played the
round before.4

• With probability 1− p he myopically best responds to the strate-
gies played by the other agents the round before: The agent
checks what would his rank and consequent payoff be for each
of the possible strategies5 he can play, given that the other agents
keep playing the strategies played the round before. He then
chooses the strategy that results in the highest payoff.

4. Based on the contribution of each player, groups are formed as de-
scribed above and payoffs are then materialized.

5. The endowment of each player is then reset to his initial one and the
algorithm repeats from point 3.

After T rounds the algorithm stops and the population average of the
strategies is computed. The procedure is repeated EN times and the en-
semble average of the population average is obtained.

2.3 results

The above game exhibits different Nash equilibria depending on the value
of γ and on the players having different or the same initial endowments.

As already shown in [38], in the case of linear payoff (γ = 1) and homo-
geneous players the voluntary contribution game with assortative match-
ing has multiple pure strategy Nash Equilibria: one is non contribution by
all players and the others are almost Pareto optimal equilibria in which
nearly all players contribute their entire endowment and few (less than the
group size) contribute nothing. It is easy to see (see Appendix 2.5) that
this result actually holds for any value of γ bigger than a threshold value
γ̄, with γ̄ < 1 and depending on groups size, mpcr and the total number
of players. The only difference with the linear payoff case is that for γ < 1

the within group Nash Equilibrium is to contribute ᾱ =
(

1
Qγ

) 1
γ−1 . Hence,

for sublinear payoffs such that γ > γ̄, the Nash Equilibria are: all players
contribute ᾱ and all players contribute their total endowment except for

4 Inertia was added to ensure the convergence to the pure-strategy Nash equilibrium (if exist-
ing). Without inertia, the best-response dynamics could oscillate around such an equilibrium.

5 The interval [0, 1] is, of course, discretized.



22 assortative matching with inequality in voluntary contribution games

few players that contribute ᾱ. For very small values of the exponent of the
public good provision, the numbers of non contributors in the near effi-
cient equilibrium becomes too high to be sustained. Hence, even though
the public good game would be very convenient, for γ ≤ γ̄ the only exist-
ing equilibrium is that all players contribute ᾱ6.

A key property of the game, necessary for the nearly efficient equilibria
to exist, is that ties in the ranking placement are broken at random. In all
these equilibria, in fact, there exists a mixed group where fully contributive
players are grouped with defectors, i.e. players contributing the within
group Nash Equilibrium. In order for this to be a NE, the fully contributive
players must have a sufficiently high probability to be grouped only with
other full contributors so that they would not benefit (in expectation) by
decreasing their contribution and be placed with certainty in the defectors
group.

If each player is endowed with a different initial wealth, however, things
change drastically. The heterogeneity of the players implies that there can-
not be an equilibrium where more than one player contributes the same
positive percentage of his endowment: Since players are ranked based on
their effective contributions si = wiαi, if more than one player were to con-
tribute the same percentage, the one with the highest endowment would
have a profitable deviation due to the existence of the mixed group. He
could in fact contribute slightly more and be guaranteed to be placed in a
better group. If the two players were already contributing everything, the
wealthiest player could instead contribute slightly less and still be guaran-
teed to remain in the same group. For the above reason, the nearly efficient
Nash Equilibria in which almost all players contribute everything does not
exist for heterogeneous players. Moreover, any unique contribution αi such
that ᾱ < αi < 1 is also clearly not a Nash Equilibrium due to the fact that it
would be possible to contribute less and still be placed in the same group.

Furthermore, for sublinear payoffs (γ < 1) the equilibrium in which all
players contribute the within group Nash Equilibrium does not exist. In-
deed, for γ < 1 we have that ᾱ > 0 and if all players were to play ᾱ, players
with a lower endowment would have a profitable deviation by increasing
their contributions and being grouped with players with a higher endow-

6 All players contributing ᾱ is always an equilibrium for homogeneous players. The proof
proceeds like in the linear case: it does not make sense to be the only player contributing more
than that because this would only make the player’s groupmates better off at the player’s
expense. Contributing less than ᾱ is never beneficial, not even with random re-matching of
groups, because of the non-linearity of the payoff function. See Appendix A for more details.
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γ ≤ γ̄γ ≤ γ̄γ ≤ γ̄ γ̄ < γ < 1γ̄ < γ < 1γ̄ < γ < 1 γ ≥ 1γ ≥ 1γ ≥ 1

PSL MS PSH PSL MS PSH PSL MS PSH

Homog. 3 7 7 3 7 3 3 7 3

Heterog. 7 3 7 7 3 7 3 7 7

Table 2.1: In this table we show which equilibria exist for homogeneous and het-
erogeneous players depending on the value of γ. For homogeneous
players, for any payoff such that γ is bigger than a threshold value
γ̄, there exist one Nash Equilibrium in which all players contribute
nothing (indicated as PSL) and almost Pareto optimal Nash Equilibria
where almost all players contribute everything and few (less than the
group size) contribute nothing (PSH). For γ < γ̄, the only Nash Equi-
libirum is non contribution by all. In these cases, there exist no mixed
strategy (MS) Nash Equilibrium. For heterogeneous players the situa-
tion is different for different values of γ. For sublinear payoffs (γ < 1)
there exist no pure strategy equilibria and hence the only Nash Equi-
librium is in mixed strategies. For superlinear payoffs (γ ≥ 1), the
only pure strategy Nash Equilibrium is non-contribution by all play-
ers.

ment. Hence, for heterogeneous players and sublinear payoffs there exist
no pure strategy Nash Equilibria for the game.

For superlinear payoffs (γ ≥ 1), however, the within group Nash Equi-
librium is to contribute nothing and hence the pure strategy equilibrium
in which no player contributes anything continues to exist. Consequently,
there are no mixed strategy Nash Equilibria for this game.

Table 2.1 summarizes which Nash Equilibria exist in which situation. In
Appendix 2.5 we formally derive the results described in this section.

To obtain the mixed strategy equilibrium of the game we resort to com-
putational methods. We simulate agents playing the game for different
payoffs and different width of the initial wealth distribution.

We are mainly interested in a comparison between the (unique) equi-
libria in the case of heterogeneous players and the equilibria reached in
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the homogeneous case. In particular, we are interested in how much effi-
ciency 2 is lost due to the heterogeneity of players. Indeed, even though
non contribution by all is a Nash Equilibrium, the quasi Pareto optimal
equilibrium is payoff dominant7 and hence is the one to which we refer
(when it exists). Furthermore, experimental results [38] have also shown
that the nearly efficient equilibria are the one reached by the population.

In figure 2.1 we plot the loss of efficiency due to the heterogeneity of
the players with respect to the level of contributions that would have been
achieved in the homogeneous case as a function of γ and for a choice or
representative parameters. A 100% loss (dashed red line) indicates that
all players contribute nothing and thus that there is a complete loss of
efficiency with respect to the homogeneous case. A 0% loss (dashed green
line) means that the system reaches the same efficiency as it would with
homogeneous players. A negative loss indicates that when endowments
are heterogeneous the equilibrium reaches a higher efficiency than in the
homogeneous case.

We observe, as predicted, that for superlinear payoffs the only possible
equilibrium is non contribution by all and thus that the loss of efficiency is
total. For intermediate sublinear payoff the system achieves different effi-
ciency level, from quite low ones to levels closer to the homogeneous case.
The quantitative value of efficiency that the mixed equilibrium achieves
depends on the value of the mpcr and the width of the distribution of ini-
tial wealth as well as from other parameters. For values of the exponent
of the public good provision lower than γ̄, we initially observe an increase
in efficiency when endowments are heterogeneous. This is due to the fact
that for values of γ slightly below γ̄, the only equilibrium in the homoge-
neous case is to contribute ᾱ but it would still be more efficient if more
players contributed a higher percentage of their endowment. Finally, for
γ → 0, the heterogeneous system approaches the same efficiency of the
homogeneous, on account of the benefits of cooperation being obtainable
for an arbitrary small contribution.

Interestingly, one can observe that the efficiency loss doesn’t seem to
change much for different widths of the endowment distribution (see fig-
ure A.2 in the appendix). For the width of the distribution approaching
0 we observe, as expected, the Nash Equilibria in case of homogeneous
endowments.

7 Here we use payoff dominant in the sense of [97, 98]. The nearly efficient equilibrium can be
shown to be ex-ante payoff dominant [38].
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Figure 2.1: (Caption on the following page.)
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Figure 2.1: Here we show the loss of efficiency in case of heterogeneous play-
ers with respect to the level of contribution that would have been
achieved in the homogeneous case. A 100% loss (dashed red line)
indicates that all players contribute nothing and thus that there is
a complete loss of efficiency with respect to the homogeneous case.
A 0% loss (dashed green line) means that the system reaches the
same efficiency that it would have reached in the case of homoge-
neous players. A negative loss (values below the dashed green line)
indicates that when endowments are heterogeneous the equilibrium
reaches a higher efficiency than in the homogeneous case. As pre-
dicted, for superlinear payoffs γ ≥ 1 the only possible equilibrium is
non contribution by all and thus the loss of efficiency is total (right
side of the picture). For intermediate sublinear payoff we can see
that the efficiency is not completely lost and that it goes from being
quite low to being closer to the homogeneous case. The quantitative
value of efficiency that the mixed equilibrium achieves depends on
the value of the mpcr and the width of the distribution of initial
wealth as well as from other parameters. Finally, for γ ≤ γ̄ we first
observe a slight increase in efficiency (below the dashed green line)
and then the efficiency approaches the homogeneous one (left side
of the picture), on account of the benefits of cooperation being ob-
tainable for an arbitrary small contribution. Hence, for a wide range
of values of γ, we observe a significant loss in efficiency compared to
the homogeneous case. The simulation was obtained for the follow-
ing set of parameters: N = 100, S = 4, Q = 0.6, W0 = 2, EN = 50,
p = 0.2 and σ = 0.45. For these parameters, γ̄ ≈ 0.18 .
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For different values of the marginal per capita rate of return we observe
(see figure A.2 in Appendix A) that the higher the mpcr, the wider is the
area with partial efficiency losses in the picture and the smaller is the gain
in efficiency around γ̄.

Hence we can conclude that for a wide range of payoffs, the more re-
alistic assumption of heterogeneous players leads to a disruptive loss in
efficiency when compared to the homogeneous case. For a very limited
range of γ, however, heterogeneity seems to result in a small increase in
efficiency.

2.4 summary of results

In summary, mechanisms based on assortative matching promise large ef-
ficiency gains when the interaction is such that it is safe to assume that the
population consists only of equals. With heterogeneity, however, whether
and how much assortative matching is likely to gain the population rela-
tive to random matching depends crucially on the provision efficacy of the
public good and on the precise degree of heterogeneity. This implies that
guarantees of more equal playing fields in these environments may be as
important as implementation of assortative matching.
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2.5 appendix : nash equilibria

In this section we derive the Nash Equilibria of the generalized assortative
matching voluntary contribution game.

We first define the game and derive some useful properties of it. Later,
we show which equilibria exist for homogeneous and heterogeneous play-
ers for different values of the public good game efficacy.

notation

• The expected payoff of player i is

Ei (αi, α−i) = (wi − si) +
M

∑
k=1

Pr (k | αi, α−i) ·
[

Q ·
(

Sk
−i + wiα

γ
i

)]
(2.2)

with M the number of groups in the population, Sk
−i the sum of

the effective contributions in agent’s i group minus his own and
Pr (k | αi, α−i) the probability of being ranked kth given αi and α−i.
We indicate with S the size of the groups.

• We say that players i, j are in class Cr if si = sj = sr. We write cr ≡
|Cr| = Dr · S + c̃r; Dr, c̃r ∈ N ∪ {0}.8 Note that by definition 0 ≤ c̃r <
S .

• We call h the highest effective contribution and H the number of
players s.t. αi = h; hence H ≡ |C1|.

• We indicate with z the number of players playing the strategy ᾱ.

• Full heterogeneity means that wi 6= wj ∀i 6= j.

Let us first compute the within group best response.

Lemma 2.5.1. The best response within a group is: αi = ᾱ if 0 < γ < 1 and
αi = 0 if γ ≥ 1 .

Proof. The within group payoff is defined as following:

φi (αi | α−i) = wi (1− αi) + Q ∑
j∈Gi

α
γ
j wj

with Gi being the group to which agent i belongs and αi ∈ [0, 1].

8 Or alternatively, Dr and c̃r are defined as the unique non-negative integers such that |Cr | =
Dr · S + c̃r
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The first order condition reads:

∂φi
∂αi

= −wi + Qwiγα
γ−1
j

FOC
= 0⇒ αi =

(
1

Qγ

) 1
γ−1
≡ ᾱ (2.3)

implying the following payoff for agent i:

wi (1− ᾱ) + wiQᾱγ + C (2.4)

with C defined as ∑j∈Gi ,j 6=i α
γ
j wj.

The payoff for the corner strategies instead is wi + C for α = 0 and
wiQ + C for α = 1.

Since 0 < Q < 1 the payoff for α = 0 is always bigger than the one α = 1.
Now we need to check when φi (ᾱ) > φi (0) and hence when

Q
(

1
Qγ

) γ
γ−1

>

(
1

Qγ

) 1
γ−1

.

If 0 < γ < 1 we can rewrite the above expression as Q (Qγ)
γ

1−γ > (Qγ)
1

1−γ

and hence as γγ > γ; a condition that is always true for 0 < γ < 1. If γ > 1
we instead obtain the condition γ−γ > γ−1, never true for γ > 1.

If γ = 0, the FOC trivially results in α = 0.
Hence, the best response for player i if the group placement is indepen-

dent from αi is αi = ᾱ for 0 < γ < 1 and αi = 0 for γ > 1.

NE for homogeneous players

Here we compute what are the Nash Equilibria in the case of homogeneous
players. The proof presented here follows closely the one in [38], changing
only to adapt it to the generalized payoff. Note that for homogeneous play-
ers we have wi = w ∀i.

We first of all note that, for homogeneous players, all players playing the
within group Nash Equilibria is a best response.

Lemma 2.5.2. αi = ᾱ ∀i is a Nash Equilibrium for every value of γ.

Proof. This is obviously an equilibrium. Since the mpcr Q is smaller than
1, there is no profitable deviation in being the only one contributing more
than ᾱ. A player i deviating to a higher contribution would have the guar-
antee to be placed in the best group. The best group, however, would be
such only because of him, thus making it not profitable to deviate.
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In order to prove the existence of the high contribution equilibrium, we
first observe that in order for the equilibrium to exist, the following condi-
tions have to hold:

Lemma 2.5.3. If there are some strategies αi s.t. αi > ᾱ, then in equilibrium we
have to have H > S and (H mod S) > 0. Hence a player contributing more than
ᾱ has a non-zero probability to be grouped with a player contributing less than
him.

Proof. If the number of the highest contributors were a multiple of the
group size, one of those player could unilaterally deviate and reduce his
contribution by an amount small enough to remain in the same group and
still profit from the deviation. For the same reason, that number of players
has to be bigger than S . If it were smaller, in fact, high contributors would
benefit by deviating to ᾱ.

Lemma 2.5.4. If there are some strategies αi s.t. αi > ᾱ, then the highest contri-
bution h cannot be smaller than w. I.e. αi = 1 ∀i ∈ C1.

Proof. We call αh the strategy s.t. αhw = h. From lemma 2.5.3 we know
that (one of) the highest contributor(s) i has a non-zero probability to be
grouped with some other player contributing less. Hence, if agent i were
playing αh < 1, he could increase his contribution by an arbitrary small
amount and be placed for certain in the best group.

Indeed the expected payoff for player i playing αh is at most:

Ei (αh) < w (1− αh) + QSwα
γ
h

(
1− c̃1

c1

)
+ Qw

[
α

γ
h c̃1 + lγ (S − c̃1)

]
(2.5)

where l is the strategy played an agent j ∈ C2 and hence l < αh.

By deviating, player i would surely be placed in the best group, gaining

Ei (αh + ε) = w (1− αh − ε) + QSwα
γ
h + O (ε) (2.6)

.
We have that Ei (αh) < Ei (αh + ε) if

ε < Q
c̃1

c1

[
(S − c̃1)

(
α

γ
h − lγ

)]
that for a small enough ε is true. Hence player i would be better off

deviating to αh + ε. Consequently, αi = 1 ∀i ∈ C1.
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Lemma 2.5.5. If there are some strategies αi s.t. αi > ᾱ, then there cannot be any
player j contributing ᾱ < αj < 1.

Proof. Let us call j the player with the highest contribution after all the
players contributing h; i.e. j ∈ C2 and let us call his strategy αl .

If there are no ties regarding group membership, j could reduce his
contribution to αl − ε and remain in the same group.

If there are ties, j could increase his contribution by an arbitrary small
amount and be sure to be grouped together with players belonging to C1.
Similarly to lemma 2.5.4, it is possible to prove that for an arbitrary small
ε we have:

E (αl) < E (αl + ε)

and hence that αj cannot be an equilibrium strategy.

Lemma 2.5.6. If there are some strategies αi s.t. αi > ᾱ, then the number of
players playing the within group best response is smaller than the group size; i.e.
z < S .

Proof. From lemma 2.5.3 we know that (H mod S) > 0 and hence
((N − H) mod S) > 0.

If z were bigger than the group size, a player i contributing ᾱ could in-
crease his payoff by an arbitrary small amount and be placed with certainty
in the group containing some players contributing h.

Hence there is a profitable deviation and z ≥ S could not be a Nash
Equilibrium.

From lemmata 2.5.3-2.5.6 follows that if an equilibrium s.t. αi > ᾱ for
some i exists, then each player plays either ᾱ or 1. Furthermore, the number
of players playing the within group best response is smaller than the group
size.

From the lemmata above we can derive under which condition the gen-
eralized voluntary contribution game has a Nash Equilibrium with high
contributions level. Hence the existence of a nearly-efficient high equilib-
rium depends on the marginal per capita rate of return, the number of
players and the size of the groups.

Theorem 2.5.7. For values of γ bigger equal than a threshold value γ̄ (Q, N,S),
the generalized voluntary contribution game has Nash Equilibria in which z < S
players contribute ᾱ and all the others N− z players contribute 1. These equilibria
are in addition to the equilibrium where all players contribute ᾱ.

For γ < γ̄, the only NE is that all players contribute the within group best
response ᾱ.
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Proof. For N − z players contributing 1 to be a NE, we have to show that
no full contributor has a profitable deviation to contribute ᾱ and that no
player contributing ᾱ has an incentive to play 1. We write

E1 (1) = w
S − z
N − z

Q [(S − z) + zᾱγ] +
N − S
N − z

QSw

(2.7)

E1 (ᾱ) = w (1− ᾱ) + wQ [S − z− 1 + (z + 1) ᾱγ]
(2.8)

Eᾱ (ᾱ) = w (1− ᾱ) + wQ [S − z + zᾱγ]
(2.9)

Eᾱ (1) = w
S − z + 1
N − z + 1

Q [(S − z + 1) + (z− 1) ᾱγ] +
N − S

N − z + 1
QSw

(2.10)

where we indicate with E1 (α) the payoff of a high contributor and with
Eᾱ (α) the payoff of a low contributor.

For the above to be a NE we have to have that (2.7) > (2.8) and (2.9) >
(2.10).

The first condition is equivalent to:

z ≥ (1− ᾱ) N −QN (1− ᾱγ)

Q (1− ᾱγ) [N − 1− S ] + 1− ᾱ
(2.11)

The second condition leads to:

z ≤ 1 +
(1− ᾱ) N −QN (1− ᾱγ)

Q (1− ᾱγ) [N − 1− S ] + 1− ᾱ
(2.12)

However, it is important to remember that z needs to be smaller than the
size of the groups.

Hence, we have that for values of the exponent γ such that (2.11) is
at most S − 1, the generalized voluntary contribution game has nearly
efficient Nash Equilibria. For values of γ s.t. (2.11) is bigger than S − 1 the
only equilibrium is the one where all players play the within group best
response. We call γ̄ the value of γ such that eq. (2.11)= S − 1.

Hence we obtain the existence of a nearly-efficient high equilibrium de-
pends on the marginal per capita rate of return, the number of players and
the size of the groups.
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NE for heterogeneous players

Here we show that the near efficient Nash Equilibrium cannot exist for
heterogeneous players. Furthermore, we derive under which condition the
generalized voluntary contribution game has a pure strategy NE.

In the following we prove the lemmata necessary to derive the equilib-
rium.

Lemma 2.5.8. In case of full heterogeneity 9 the assumptions of Lemma 2.5.3
cannot be satisfied.

Proof. Let’s assume that they are and show that this cannot be a NE. We
call k the player with the lowest wi belonging to C1.

We have two possibilities: (a) sk = wk and (b) sk < wk

• (a):

Let’s take a player j s.t. j ∈ C1 and j 6= k. When playing sj = s1, he
has an expected payoff of at most (because in the mixed group that
could be also player of classes lower than 2):

E (j) ≤ wj − s1 + ms1S ·
(

1− c̃1

c1

)
+ m

[
s1 c̃1 + s2 (S − c̃1)

]
· c̃1

c1
(2.13)

where c̃1
c1

is the probability that agent j ends up in the group where
not all agents belong to C1.

But agent j could play αε s.t. sj = s1 + ε, being guaranteed to end up
in the first group and thus having an expected payoff of

Eε (i) = wj − s1 − ε + m (S − 1) s1 + m
(

s1 + ε
)

But if ε < ms1 (S − c̃1)
c̃1
c1

(
1− s2

s1

)
we have that Eε (j) > E (j). 10

Hence there is a profitable deviation for agent j; so there can’t be a
NE.

9 Actually it is already valid for "enough" heterogeneity.
10 Because:

A = m
[
s1S + ε

]
− ε > ms1S ·

(
1− c̃1

c1

)
+ m

[
s1 c̃1 + s2 (S − c̃1)

]
· c̃1

c1

A > ms1S + ε > ms1S ·
(

1− c̃1

c1

)
+ ms1S · c̃1

c1
+ m

[
s1 (c̃1 − S) + s2 (S − c̃1)

]
· c̃1

c1

−ε > ms1 (c̃1 − S)
c̃1

c1

[
s2

s1 − 1
]
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• (b):

The same as (a), except that now even for k it is profitable to deviate
to sk = s1 + ε.

Hence for heterogeneous players, it is impossible to maintain the condi-
tions under which nearly efficient equilibrium was possible.

Lemma 2.5.9. In case of full heterogeneity of endowments wi, with all wi having
the same order of magnitude, αi = ᾱ ∀i is not a Nash Equilibrium.

Proof. If all players were playing ᾱ, they would be ranked based on their en-
dowments. Hence, a player i with the biggest endowment wi smaller than
the biggest S endowments would have a profitable deviation by playing
αi = ᾱ + ε and be assigned to the best group.

If the endowments are such that wi < wi+1αi+1 ∀i 11, then there are no
profitable deviations and αi = ᾱ ∀i is a Nash Equilibrium.

From the above lemmas we can derive the following theorem:

Theorem 2.5.10. For γ ≥ 1, the generalized voluntary contribution game has as
only equilibrium non-contribution by all. For 0 < γ < 1, the game has no pure
strategy NE and hence it has a mixed strategy Nash Equilibrium.

Proof. From lemma 2.5.8 we know that the nearly efficient NE cannot exist
for heterogeneous players. Furthermore, we can prove as in lemma 2.5.5
that there can be no pure strategies such that ᾱ < αi < 1 for any player i.

From lemma 2.5.1 we know that for γ ≥ 1 the within group best re-
sponse is to play αi = 0 ∀i. This can be an equilibrium and hence for values
of γ bigger than 1 there is a unique pure strategy NE for the generalized
voluntary contribution game.

For γ < 1, however, the within group best response is to play αi = ᾱ.
But lemma 2.5.9 shows that this cannot be an equilibrium of the game (if
the values of the endowment don’t differ too much). Hence for γ < 1 there
are no pure strategy NE and thus there has to exist a mixed strategy Nash
Equilibrium.

11 With the endowments ranked from the lowest to the highest.
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C O N T R I B U T I O N - B A S E D G R O U P I N G U N D E R N O I S E

abstract

Many real-world mechanisms are “noisy” or “fuzzy”, that is the
institutions in place to implement them operate with non-negligible

degrees of imprecision and error. This observation raises the more general
question of whether mechanisms that work in theory are also robust to

more realistic assumptions such as noise. In this paper, in the context of
voluntary contribution games, we focus on a mechanism known as

"contribution-based competitive grouping". First, we analyze how the
mechanism works under noise and what happens when other

assumptions such as population homogeneity are relaxed. Second, we
investigate the welfare properties of the mechanism, interpreting noise as

a policy instrument, and we use logit dynamic simulations to formulate
mechanism design recommendations.

35
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3.1 motivation

Typically, individual decisions in social-dilemma interactions are not per-
fectly observable in the real world. Applied mechanism designers should
keep this in mind when implementing mechanisms, in particular in the
context of interactions that have the strategic nature of voluntary contri-
bution games where imperfect observability is ubiquitous.1 Real-world in-
stitutions are usually “noisy” or “fuzzy”, operating with non-negligible
degree of imprecision. By contrast, theory investigations of mechanisms
for the most part study perfect mechanisms. In this chapter, as a first step
towards performing robustness checks of mechanisms under relaxed as-
sumptions more generally, we investigate the mechanism of contribution-
based competitive grouping (as introduced by [38]): we relax some assump-
tions and investigate what happens when there is (i) noise, (ii) heterogene-
ity and (iii) different action spaces.

The chapter is structured as follows. Next, we introduce our model. In
Section 3.3, we first analyze how the existence of Nash equilibria depends
on (iii) the strategy space of the game and on (ii) the underlying population
homogeneity/heterogeneity in terms of contribution budgets. Then, we
assess their robustness when we allow more and more (i) monitoring noise.
In Section 3.4, we investigate how a social planner, interpreting monitoring
noise and/or the other model characteristics as policy instruments, would
trade-off efficiency and equality to maximize social welfare. Finally, we use
agent-based simulations to study the logit dynamics of the game in order
to quantify the effect of noisy monitoring.

Our results are summarized as follows. In terms of the existence of Nash
equilibria, the zero-contribution outcome is always a Nash equilibrium and
becomes the unique one under too much noise. High-contribution equilib-
ria exist if three things come together: the rate of return of the underlying
contribution game is high enough, grouping is sufficiently precise, and
agent homogeneity is established (either in terms of budgets or via the
strategy space). In terms of welfare, implementations with an intermediate
level of noise/fuzziness, enabling high efficiency gains at low inequality
costs, maximize welfare in most cases. The exception is the case of hetero-
geneous budgets and binary (all-or-nothing) contribution decisions, where
less noise is unambiguously preferable. Finally, our logit-dynamics simu-
lations indicate that high-contribution equilibria, when existent, tend to be

1 For other social-dilemma contexts, see, for example, [99, 100] for imperfect public monitor-
ing, [101] for noisy prisoners’ dilemmas and [102] for team-production games with group-
level information.
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more robust than the zero-contribution equilibrium, and we are able to
identify an optimal level of mechanism noise/fuzziness as a function of
the behavioral noise that is inherent under the logit-choice rule.

3.2 the mechanism

3.2.1 The Model

Population N = {1, 2, ..., n} plays the following three-step game under
common knowledge.

Step 1. Voluntary contributions:

Action Space 1. Binary: Each i ∈ N simultaneously decides whether to set
c′i = 0 (i.e., to free-ride) or to set c′i = 1 (i.e., to contribute).

Action Space 2. Continuous: Each i ∈ N simultaneously decides on a pro-
portional contribution c′i ∈ [0, 1] between free-ride (c′i = 0) and contribute
(c′i = 1).

Each i ∈ N has a budget of Bi ∈ R+, and his/her above action results
in an effective contribution of ci = c′i · Bi. The effective contributions yield
a population contribution vector c = {ci}i∈N . Denote by c−i the vector
excluding i.

Budget 1. Homogeneity: Bi = 1 for all i.
Budget 2. Heterogeneity: Bi 6= Bj ∀i 6= j with (w.l.o.g.) Bi < Bi−1. We place

a very mild constraint on how different endowments can be by imposing
that ∃X ∈ < s.t. Bi > Bi−1 + X ∀i and any X > 0.

Step 2. Fuzzy grouping based on a ‘noisy’ ranking of contributions:

Step 2.1. From ‘noisy’ rankings...: Instead of ci, the authority observes
xi = ci + ei, where ei is some i.i.d. white noise with mean zero and variance
σ2 = 1−β

β where β ∈ (0, 1]. Based on the vector of observed contributions
x, players are ranked from highest to lowest.

β takes the role of a “meritocracy” parameter in our setting: (i) under no
meritocracy (when β → 0), all rankings are equally likely, and all players
have the same expected rank2; (ii) under full meritocracy (when β = 1),
only “perfect” rankings are possible, that is, players who contributed more
have a higher rank than players who contributed less, and ties are ran-

2 With a slight abuse of notation, from now on, we will write β ∈ [0, 1] and β = 0 to indicate
the “no meritocracy” case where σ→ ∞, and the ranking, and consequentially, the matching,
of the players is (uniformly) randomly selected.
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domly broken; (iii) under intermediate meritocracy (when β ∈ (0, 1)), all
rankings have positive probability, but on aggregate, depending on β, play-
ers who contributed more have a higher expected rank than players who
contributed less. As β increases, we move continuously from (i) to (ii).

Step 2.2. ...to fuzzy groupings: Groups form based on the noisy ranking
such that g groups {S1, S2, ..., Sg} of a fixed size s < n form. The result is
a partition ρ of N (where s = n/g > 1 for some s, g ∈ N+) with groups
Sp ∈ ρ (s.t. p = 1, 2, ..., g) where the s highest-ranked players form Group
1, the s second-highest players form Group 2, etc.3

(See Appendix 3.9 for implementation examples of fuzzy grouping.)

Step 3. Payoffs:

Step 3.1. Realized payoffs (ex post): Given c and ρ, total payoffs gener-
ated in each S ∈ ρ are s + (r− 1)∑i∈S ci, where r is the rate of return. Each
i ∈ N s.t.i ∈ S ∈ ρ receives an individual payoff of:

φi(ci|c−i, ρ) = (1− ci)︸ ︷︷ ︸
remainder from budget

+ (R) ∗∑
j∈S

cj.︸ ︷︷ ︸
return from the public good

, (3.1)

where R := r
s is the marginal per capita rate of return; it is standard to

assume a ‘social dilemma’ character of the game by setting R ∈
(

1
s , 1
)

.4

Let φ = {φi}i∈N denote the payoff vector.
Step 3.2. Expected payoffs (ex ante): Groups form in Step 2, and payoffs

materialize in Step 3, both based on the sunk contribution decisions taken
during Step 1. From expression (3.1), i’s expected payoff of contributing ci,
as evaluated during Step 1 given c−i, is therefore:

E [φi(ci|c−i)]︸ ︷︷ ︸
exp. return from ci

= 1︸︷︷︸
(i) budget

− (1− R) ∗ ci︸ ︷︷ ︸
(ii) sure loss on own contribution

+ (3.2)

R ∗ E

[
( ∑

j 6=i: j∈S
cj) | ci

]
,︸ ︷︷ ︸

(iii) exp.return from others in group

3 Meritocracy β guides smoothly from (i) no meritocracy (grouping is random as in [21]) to (ii)
full meritocracy (the case of perfect contribution-based grouping as in [38]). Note that many
public goods experiments use variants of Andreoni’s random (re-)matching implementation
(e.g., [21, 42, 43, 103–110]); see [20, 93] for reviews.

4 Thus, full-contribution is collectively efficient, and zero-contribution, despite collectively in-
efficient, is the unique Nash equilibrium under no meritocracy.
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Note that Term (iii), the expected return from others’ contributions, may
depend on one’s own contribution if β > 0.

Actions

E
n

d
o

w
.

Noise

Figure 3.1: The figure illustrates the three dimensions that we vary to assess
the robustness of the mechanism. Two are binary (indicated by the
blue dotted lines): For one, players have either the same or different
initial endowments; further, they either choose a proportional or an
all-or-nothing contribution. One dimension is varied continuously
(indicated by the blue continuous line): contributions are observed
with different degrees of noise.

3.3 nash equilibria

Next, we analyze the Nash equilibria in terms of the ex ante decisions
made in the games that we detailed in the previous section, where various
games result from the different combinations of the chosen model ingredi-
ents. Figure 3.2 summarizes what is presented in more detail below.
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Figure 3.2: The figure summarizes the existence of the “high-efficiency” equilib-
ria described in this section. For homogeneous endowments, regard-
less of the action space, there exist high contribution equilibria for
high enough marginal rates of return. In the case of heterogeneous
endowments, only a binary action space allows for contributive equi-
libria. Whenever high contribution equilibria exist under full meritoc-
racy, there exists a marginal rate of return (higher than the one for
β = 1) such that the high equilibria exist also with a fuzzy mecha-
nism.

3.3.1 Game 1: ‘Baseline’

The following equilibrium structure results in the no-noise implementa-
tion with agent homogeneity and continuous action space (as in [38]). For
this case, there always exists a Nash equilibrium with zero contributions;
as in standard voluntary contribution games with a single group or with
random grouping. We call this equilibrium the “non-contribution equilib-
rium”. However, non-contribution is not a dominant strategy, as it would
be if groups were randomly assigned, because players may prefer to con-
tribute when this gets them into high-contribution groups that promise
higher payoffs. As a result, provided the marginal per capita rate of return
R is high enough, [38] prove that there exist new asymmetric pure-strategy
Nash equilibria where most players contribute and very few players free-
ride.5 We call these equilibria “high-contribution equilibria”. We call the

5 See [38], Theorem 1.
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threshold for which these equilibria exist mpcr; note that this threshold is
increasing in the relative group size s/n, which implies that it is, ceteris
paribus, harder (easier) to satisfy for relatively large groups (populations)

High-contribution equilibria are particularly interesting, because several
recent experimental studies provide support for them [38, 111, 112].6

3.3.2 Game 2: ‘Heterogeneity Extension’ (Extension 1)

3.3.2.1 Heterogeneity and Continuous Action Space

The first negative result is that under heterogeneity, non-contribution is the
only existing equilibrium. A key property of high-contribution equilibria
in the baseline case is that there exists a mixed group where both defectors
and contributors are placed. In these equilibria, a contributor has a high-
enough probability to be placed in a group filled only with contributors
and a low enough probability to be placed in the mixed group so that it is,
in expectation, not beneficial to free-ride and be placed with certainty in
the low group instead.

However, in chapter 2, it is proven that, under heterogeneity, there can-
not exist an equilibrium where two or more players contribute the same
amount. The reason is that, if two or more players contribute the same
amount, then the one with the highest endowment would have a profitable
deviation in contributing slightly more due to the existence of the mixed
group: contributing only slightly more, and he/she is guaranteed not to be
placed in a worse group. Conversely, if players in a higher group already
contribute everything, then the wealthiest player could instead contribute
slightly less and still be guaranteed to remain in the same group. Therefore,
when players have access to a continuous action space and can thus reduce
or increase their contributions by an infinitesimal amount, then there can
be no high contribution equilibrium for heterogeneous endowments.

It is important to note that this result relies on players all having differ-
ent endowments. Indeed, if players were to belong only to two endowment
classes, Gunnthorsdottir et al. [39] prove that there might exist an equilib-
rium where every player contributes everything. This equilibrium, how-
ever, requires conditions that become harder to satisfy the more classes of
endowments are introduced, eventually becoming impossible if there are
as many levels of endowment as there are players.Interestingly, Gunnthors-

6 In fact, recent evidence suggests that players may endogenously implement variants
of contribution-based competitive grouping over time and then converge to the high-
contribution equilibria [113].
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dottir et al. [39, 111] also find empirical support for the high-efficiency
equilibria by showing that, when existing, near-efficient equilibria are pre-
ferred over the worst ones.

3.3.2.2 Binary Action Space

With a binary action space, the above argument about infinitesimal changes
in contributions does not hold any more. Indeed, it can be shown (see
Proposition 3.7.5 in Appendix 3.7) that in the case of heterogeneous endow-
ments and binary action space, there exists a threshold for the marginal
rate of return such that contributive equilibria exist.

For this configuration, a maximum of g pure strategy Nash equilibria
can coexist, depending on the value of r. Their structure is so that the k · s
(0 ≤ k < g) poorest players defect and the (g− k) · s richest players con-
tribute. The non-contribution equilibrium (k = 0) always exists, regardless
of the value of the marginal rate of return. Interestingly, for the equilibrium
with k = 1 to exist, the marginal rate of return has to be higher than for
the equilibrium with k = 2 to exist, and so on, until the lowest threshold
for R such that the only contributive equilibrium is the one were all but
one group is filled with contributors7.

As a corollary of Proposition 3.7.5, there also exist high-contribution
equilibria for homogeneous endowments and binary action space. In this
case, all thresholds collapse and reduce to the same value as in the baseline
case, and all the existing equilibria are such that there exists a mixed group
of contributors and defectors, in analogy with the continuous action space
case.

3.3.3 Game 3: ‘Noise Extension’ (Extension 2)

In the case of a noisy mechanism, the existence of Nash equilibria summa-
rizes as follows.

Whenever the chosen model allows for high-contribution equilibria in
perfect meritocracy, then there exists a noise/fuzziness level below which
the same equilibria continue to exist: given any R > mpcr, there exists a
β < 1 such that the same high-contribution equilibria (possibly with more
free-riders than under β = 1, but < s) continue to exist as when β = 1 (see
Appendix 3.7, Proposition 3.7.8). The minimum level of β, denoted by β,

7 For a marginal per capita rate of return R > s, the game is not a social dilemma anymore:
“cooperate” becomes a dominant strategy, and the only existing equilibrium is for everybody
to contribute everything.
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for which high-contribution equilibria exist, is an implicit function that is
decreasing in R and increasing s/n.

Universal non-contribution is a Nash equilibrium for any β (see Ap-
pendix 3.7, Proposition 3.7.7). The reason for this is that the only incentive
for an individual to contribute a positive amount under contribution-based
grouping is to be grouped with others doing likewise. When no one else
contributes, there is no such incentive.

3.3.4 Remark: Mixed-Strategy Nash Equilibria

With heterogeneous endowments, symmetric mixed-strategy NE do not
exist, either because the only existing equilibrium is non-contribution by all
or because of the structure of the high-efficient equilibria (see Proposition
3.7.5 in Appendix 3.7 and Theorem 2 in chapter 2).

Similarly, for heterogeneous endowments and continuous action space,
mixed-strategy equilibria do not exist (see Appendix 3.8, Corollary 3.8.3.2).
When contribution decisions are restricted to coarse or binary action spaces,
however, it is the case that, for every β, there exists a R ∈ (mpcr, 1) at which
there exists one and above which there exist two mixed-strategy Nash equi-
libria of the form ‘contribute fully with p and free-ride with 1− p’, one
with a high contribution probability p and one with a low p (see Appendix
3.8, Proposition 3.8.1). 8

3.4 welfare comparison

We now turn to the point of view of a social planner and analyze the wel-
fare properties of equilibria in terms of realized payoffs φ.9 Ex post, in
contrast to ex ante, it is not always the case that high-contribution equi-
libria are payoff-dominant.10 Hence, it is not obvious which equilibria a
social planner who cares about equality will prefer. To evaluate welfare,
we therefore use a variant of the social welfare function of [117], which has
the advantage that, like the parameter β governing meritocracy, a single

8 Note that, whenever pure strategy highly-efficient equilibria exist, there could also exist sev-
eral asymmetric Nash equilibria whose characterization is not easily obtained.

9 Note that Harsanyi’s social welfare approach [114], by contrast, would consider ex ante pay-
offs, that is expected payoffs. His social welfare function is WH(φ) = 1

n ∑i∈N E[φi ]. See, for
example, [115] for a discussion of ex ante versus ex post approaches.

10 The work in [116] defines that outcome φ payoff-dominates φ′ if φi ≥ φ′i for all i, and there
exists a j such that φj > φ′j .
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parameter characterizes a continuous range of social planner preferences,
spanning preferences across the entire equality-efficiency tradeoff.

Social welfare: Given outcome (ρ, φ), let We(φ) be the social welfare
function measuring its welfare given the inequality aversion parameter
e ∈ [0, ∞):

We(φ) =
1

n(1− e) ∑
i∈N

φ1−e
i (3.3)

(For e = 1, expression (3.3) is defined by W1(φ) =
1
n ∏i∈N φi, i.e., by the

Nash product.) Expression (3.3) nests both the utilitarian (Bentham) and
Rawlsian social welfare functions as special cases.11 When e = 0, Expres-
sion (3.3) reduces to W0(φ) = 1

n ∑i∈N φi, i.e., the utilitarian criterion mea-
suring the state’s ‘efficiency’ (total payoffs) only. When e→ ∞, Expression
(3.3) approaches W∞(φ) = min(φi), i.e., the Rawlsian criterion measuring
the outcome’s welfare by the utility of the worst-off. Obviously, a utili-
tarian social planner prefers the high-contribution equilibria to the non-
contribution equilibrium, because it is more efficient. A Rawlsian, how-
ever, would prefer the non-contribution equilibrium (with perfect equality
of payoffs) if any player receives a lesser payoff in the high-contribution
equilibria.

Which equilibrium is preferable in terms of social welfare for any given
social welfare function depends on the game considered and on the so-
cial planner’s relative weights on efficiency and equality. Critical for this
assessment is the inequality aversion e.

Welfare criterion: The social planner acts in order to maximize E[We(φ)],
where φ are evaluated according to the equilibrium selection criterion. Sup-
pose that the social planner can set some of the rules of the game to achieve
the above goal: Which conditions maximize the social welfare? Depending
on the game, what is the value of β ∈ [0, 1] that maximizes E[We(φ)]?

3.4.1 Homogeneous Endowments

In case of homogeneous endowments, there is a clear trade-off between
efficiency and equality: the high gains in efficiency are obtained at the ex-
pense of the cooperative players placed in the group containing some de-
fectors. These few players are worse off than in the case where everybody
defects. A very inequality averse social planner might choose to increase
the fuzziness in the observations in order to revert to the non-contribution
equilibrium and thus improve the ex-post payoff of the worst off.

11 See, for example, [118] for a discussion of this generalization.
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For an example, consider the economy illustrated in Table 3.1 (with
n = 16, s = 4 and r = 1.6), and suppose a social planner considers moving
from β = 0 to β = 1 (i.e., from completely random to fully-meritocratic
ranking). At β = 0, he/she considers the non-contribution equilibrium.
At β = 1, he/she considers the high-contribution equilibrium. To assess
which one he/she prefers, he/she makes a We-comparison. For this numer-
ical example, it turns out that for any We with e < 10.3 he/she prefers the
high-contribution equilibria, while for a We with e ≥ 10.3, he/she prefers
the non-contribution equilibrium.12 The following general statement about
the welfare-optimal β can be made.

Proposition 3.4.1. For any R > max{mpcr, 1/(s− 1)}, there exists a popula-
tion size n < ∞ such that E[We(φ); β] > E[We(φ); β] for all β 6= β given any
parameter of inequality aversion e bounded away from ∞.

Proof. Below β, the high-contribution equilibrium does not exist. The non-
contribution equilibrium cannot be welfare-maximizing for any e < ∞ as
n → ∞, because large efficiency gains (approaching infinity) would be
foregone at virtually no inequality cost. Consider setting some β ∈ (β, 1)
instead, for which the high-contribution equilibrium exists. Write qn

1 for the
probability of having more than one free-rider in any group for a realized
outcome (ρ, φ) given n < ∞. Since the number of free-riders does not
increase as n increases, ∂qn

1 /∂n < 0. Since contributors in groups with at
most one free-rider receive a payoff strictly greater than one ((s− 1)R > 1),
we have E[We(φ); β] > (1− qn

1 )×We(φi = (s− 1)R ∀i). Because, given any
β < 1, ∂qn

1 /∂n < 0, there therefore must exist a population size n < ∞
above which E[We(φ)] > We(φi = 1 ∀i). Hence, β is generally welfare-
optimal for any e < ∞ as n→ ∞.

Remark 3.4.2. E[We(φ); β] > E[We(φ); β] for all β 6= β is also the case for n
bounded away from infinity if (a)e is set below some bound e < ∞ and/or (b) R
is set above some bound R > 1/(s− 1).

12 With e = 10.3, We requires efficiency gains of more than twice the amount lost by any player
to compensate for the additional inequality.
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High-Contribution Equilibrium Payoff Non-Contribution Equilibrium
when β = 1 when β = 0

0 0.0 0

0 0.2 0

0 0.4 0

0 0.6 0

13 14 (ci = 1) 2 0.8 0

0 1.0 16 (ci = 0) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 1.2 0

0 1.4 0

1 2 3 4 5 6 7 8 9 10 11 12 (ci = 1) 12 1.6 0

15 16 (ci = 0) 2 1.8 0

24.4 efficiency 16

The stem of the table comprises the payoffs. The leafs are the number of
players receiving that payoff (with their contribution decision) and the in-
dividual ranks of players corresponding to payoffs in the two equilibria.
At the bottom, the efficiencies of the two outcomes are calculated.

Table 3.1: Stem-and-leaf plot of individual payoffs for the non-contribution equi-
librium (valid for any β ∈ [0, 1]) and for the high-contribution equilib-
rium (when evaluated at β = 1). Parameter values are n = 16, s = 4,
r = 1.6 and β = 1.

3.4.2 Heterogeneous Endowments

In the case of heterogeneous endowments and binary action space13, there
is no equilibrium in which some contributors are grouped together with
some defectors. Hence, no player is worse off in the high-contributing
equilibria compared to the non-contributing one. Indeed, every contribu-
tive equilibria Pareto dominates the non-contributing one. The equilibrium
where all but the S poorest players contribute is ex-post payoff dominant.

Hence, regardless of the value of the social planner preference parameter
e, a social planner will always prefer the least possible amount of noise
in the observations (ideally β = 1) in order to ensure the most efficient
outcome.

Note however that this does not mean that inequality does not increase
due to the agents playing the efficient equilibrium. The starting inequal-
ity due to the initial endowments is amplified by the fact that the poor-
est players are the ones in the non-contributing group and thus the ones

13 For continuous action space, the only equilibrium is non-contribution by all, and therefore,
there is no social welfare analysis to be made.
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that do not benefit from the common good. Indeed, if the social planner
were to measure inequality based on statistical dispersion measures rather
than looking at the worst off player, he/she would observe an increase in
inequality. As an example, consider the Gini coefficient14, a standard mea-
sure of inequality in a population, for a population of 16 players with ini-
tial endowments distributed according to a normal distributionN

(
1, 0.12):

for a realization of the starting endowment resulting in a Gini coefficient
of ∼0.09, the Gini coefficient for the realized payoff in the ex-post domi-
nant equilibrium is ∼0.18. Hence, by this measure, the inequality in the
population doubled after the game.

3.5 logit dynamics

In order to quantify the effect of noise, we simulate the above games with
an agent-based model where players use logit-response [81, 121] to study
the dynamics of the game. The following algorithm is used in these simu-
lations:

14 For a definition of the Gini coefficient, see, e.g., [119, 120]
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Algorithm 1: Logit choice dynamics.

1 Initialization: Assign the initial endowments to each player
sampling them from a Gaussian distribution with mean W0 and
standard deviation σ. If some endowments are zero or negative,
the sampling is repeated.a

2 Initialization: Set initial strategy αi to 0 ∀i (start the simulation in
the fully-defective stateb), and set time t to zero.

repeat
3 Update players’ strategy:

for i = 1 to N do
Generate random number X uniformly in [0, 1).
if X < p then

Do not update player i’s strategy.c

else
Player i chooses a new strategy j based on the logit

probability distributiond: Pj =
exp(λEUj(α−i))

∑k exp(λEUk(α−i))
, where

λ is the rationality parameter and EUj (α−i) is the
expected utility of strategy j given the α−i, the
strategies played by all the other players in the
previous round.

4 Matching: Based on the contribution of each player, groups are
formed as described in Section 3.2.1 and payoffs are then
materialized.

5 Reset wealth: Set the wealth of each player to his/her initial
one and increase time t by one.

until t < T;

a The standard deviation is chosen for this to be an unlikely event.
b Different initial starting conditions have been explored, and they have been observed to have

no effect on the final outcome of the simulation.
c Inertia was added to ensure the convergence to the pure-strategy Nash equilibrium (if exist-

ing). Without inertia, the best-response dynamics could oscillate around such an equilibrium.
d For a definition, see, e.g., [82].

After T rounds, the algorithm stops, and the population average of the
strategies is computed. The procedure is repeated EN times, and the en-
semble average of the population average is obtained.

Figure 3.3 shows example results for homogeneous endowments in four
different cases: perfect and imperfect observations for continuous and bi-
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nary action spaces. When the matching mechanism is implemented per-
fectly, we observe a high level of contributions both in the binary and
continuous action space (blue lines in Figure 3.3a,b). However, for an inter-
mediate level of noise in the observed contributions, the results are quite
different: in the binary case, we observe an intermediate level of average
contributions (orange line in Figure 3.3b), while in the continuous case, we
see very low amounts of cooperation (orange line in Figure 3.3a).

In Figure 3.4, we quantify how the percentage of contributions depends
on the rate of return R and the level of noise in the matching mechanism
β for agents with homogeneous endowments in a strategy space with con-
tinuous action. As predicted, the average level of cooperation weakly in-
creases with increasing R and β, and we observe almost complete cooper-
ation when approaching one. Naturally, regardless of the value of β, we
observe no cooperation for a value of R ≤ 1

s . The contour lines indicate
when the average contribution is above a certain threshold.
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a Average cooperation in continuous action space. These simulations are obtained
with N = 80 and λ = 10.
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b Average cooperation in binary action space. These simulations are obtained with
N = 16 and λ = 20.

Figure 3.3: (Caption on the following page.)
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Figure 3.3: The figure summarizes the average level of contributions in contin-
uous and binary action spaces. The average is shown as a function
of time for the voluntary contribution game with meritocratic match-
ing with homogeneous endowments in four different cases: perfect
and imperfect observations for continuous (a) and binary (b) ac-
tion spaces. When the matching mechanism is implemented without
noise (β = 1, blue lines in (a,b)), we observe high levels of coopera-
tion in both cases. On the other hand, when the matching mechanism
is implemented with partially-noisy observations β = 0.7, orange
lines in (a,b), the result depends on the strategy space of the game:
for a continuous action space (a), we observe a very low percentage
of average contributions, while for a binary action space (b), we see a
higher level of cooperation. The blurred areas around the lines repre-
sent the 95% confidence interval. The simulations were obtained for
the following set of parameters: s = 4, R = 0.5, EN = 200, p = 0.99.
The simulations for the binary action space are obtained with a lower
value for the rationality parameter in the logit function in order to
speed up convergence and with a higher number of agents to reduce
the error.
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Figure 3.4: The figure depicts the average percentage of contributions as a func-
tion of the rate of return R and the level of noise in the matching
mechanism β. For values of R ≤ 1

s = 0.25 and/or too low values of
β, we observe no cooperation. Otherwise, as predicted, the average
level of cooperation weakly increases with increasing R and β, and
we observe almost complete cooperation when approaching one. The
contour lines indicate when the average contribution is above 25%,
50% and 75% of the whole population, respectively. The simulation
was obtained for the following set of parameters: N = 80, s = 4,
λ = 30, EN = 100, p = 0.99, T = 2000.

3.6 summary

Our analysis aimed to achieve three things. First, we study how the exis-
tence of high-contributions Nash equilibria depends on the strategy space
of the players and on the homogeneity/heterogeneity of their initial en-
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dowment Second, we allow noisy/fuzzy implementations of the mecha-
nism everywhere between “no meritocracy” (completely random group-
ing) and “full meritocracy” (perfect contribution-based grouping). We found
that the minimum meritocracy threshold that enables pure-strategy equi-
libria with high contributions decreases with the population size, the num-
ber of groups and with the rate of return. Where they exist, we estab-
lished that, in the presence of some unconditional contributors, the high-
contribution equilibria are selected rather than the non-contribution equi-
librium. Mixed-strategy equilibria do not exist, unless the contribution
space is binary (or very coarse).

Finally, we assessed the welfare properties of candidate equilibria to
identify the welfare-maximizing regime, given varying degrees of inequal-
ity aversion of the regime. We found that setting meritocracy at the mini-
mum meritocracy threshold that enables high-contribution equilibria max-
imizes welfare for general social welfare functionals as the population be-
comes infinitely large. An exception to this is in the case of coarse/binary
action space and heterogeneous endowments where a mechanism with
perfect matching is preferred regardless of how inequality averse the social
planner is. For finite populations, the same result holds if (a) the inequality
aversion is not extreme and (b) the rate of return is high.

More broadly, the mechanism we considered here belongs to a family of
“grouping” mechanisms that enable high-contribution equilibria in volun-
tary contribution games.15 Their common feature is that they implement
non-random, contribution-based grouping, but require no payoff transfers
between players. Importantly, these mechanisms incentivize contributions
even if most of the players are narrowly self-interested. Our paper there-
fore complements other research on cooperative phenomena that arise
from other-regarding preferences [130, 131], in particular in public goods
games (e.g., [132]).16 We found that a fuzzy mechanism implementation
could outperform a perfect implementation. It is an avenue for future re-
search to consider fuzzy implementations of these alternative grouping
mechanisms and of other mechanisms and to study other social dilemmas
and games more generally under fuzzy mechanism design.

15 Other mechanisms include: [122, 123] consider endogenous group formation via voting; [124,
125] study free group entry and exit; [126] analyze roommate-problem stable matching in
pairwise-generated public goods; [127] study rematching based on reputation; [128, 129] con-
sider signaling.

16 Using the terminology of [133], our paper therefore studies a ‘system’ rather than moral ‘acts’
or ‘intentions’. In our mechanism, the system assorts contributions, i.e., actions, as other evolu-
tionary biology mechanisms that lead to cooperation as, for example, kin selection (e.g., [134–
136]), local interaction and/or assortative matching of preferences [137–141].
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3.7 appendix : pure strategy nash equilibria

3.7.1 Perfect Meritocracy

Let us consider the case of fully-heterogeneous agents playing the binary
version of the voluntary contribution game.

In this case, we have ci ∈ {0, 1}, and we define c = {ci}i∈N
We indicate with wi the endowment of player i, and (without loss of

generality) we order players such that w1 > w2 > · · · > wn.
We will assume that the endowments of the players do not differ too

much; in particular, we will assume that there exists a real finite number X
such that wi < wi−1 + X ∀i. If this assumption is not satisfied (or if the X is
too big), then the only possible Nash equilibrium (NE) is non-contribution
by all.

Formalism:

• We have a population of n players with N = {1, 2, . . . , n}.

• We have g groups,
{

S1, S2, . . . , Sg
}

, of size s.

• φi (ci | c−i) is the payoff of agent i with c−i ≡ c \ {ci}.

Proposition 3.7.1. {ci} = 0 ∀i is an NE.

Proof. This is trivially proven: if every player but j were to contribute ci = 0,
the payoff for j would be the following:

φj
(
cj | c−j

)
= wj

(
1− cj

)
+ Rwjcj

and for values of R less than one, the first order condition (FOC) results in
cj = 0.

We will now study the conditions under which there can be “high effi-
cient” Nash equilibria.

First of all, we note that a situation where the S wealthiest players con-
tribute and all the others do not is a Nash equilibrium:

Lemma 3.7.2. {ci} = 1 ∀i ∈ {1 . . . S} and {ci} = 0 ∀i /∈ {1 . . . S} is an NE if
the rate of return R is greater than or equalto a threshold value R̄.

Proof. Remark: It is enough to check that Player 1 (i.e., the wealthiest
player) does not deviate from the contributive strategy because he/she
is the player that benefits the least by contributing one.
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The expected payoffs for Player 1 are:

E [φ1 (c1 = 1)] = R

(
S

∑
i=1

wi

)

and:
E [φ1 (c1 = 0)] = w1 +

R
n− S + 1

(w2 + w3 + w4)

For {ci} = 1 ∀i ∈ {1 . . . S} to be an NE, we need to have that
E [φ1 (c1 = 1)] ≥ E [φ1 (c1 = 1)].

Because of the decreasing wealth in the order of players, we have:

E [φ1 (c1 = 1)] > sRwS ≡ A

and:

E [φ1 (c1 = 0)] < w1 +
(S− 1) RwS

n− S + 1
≡ B

Thus, it is enough to prove that A ≥ B.

Since wS > w1 + (S− 1) X, we can rewrite A
?
≥ B as:

SR [w1 − (S− 1) X]− (S− 1)
n− S + 1

[w1 − (S− 1) X]
?
≥ w1

which is equivalent to:

w1 (SR− 1)− (S− 1)
Rw1

n− S + 1
+

SRX
(

1− 2
n− S + 1

− S +
S

n− S + 1

)
+

XR
n− S + 1

≥ 0

thus leading to:

R ≥ w1

SR + SX
(

1− S + S−2
n−S+1

)
− (S−1)w1+X

n−S+1

≡ R̄

Remark: Note that for X = 0 (i.e., for homogeneous agents), the thresh-
old R̄ reduces to the threshold found for homogeneous agents by [38].

We now proceed to show that all strategies (barring the one where every-
one contributes) where the k · S (with k an integer number) richest players
contribute and the rest defect are Nash equilibria of the game:
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Lemma 3.7.3. With m < n− S and k such that k ≡ m mod S:
If {ci} = 1 ∀i ∈ {1, . . . , k · S}, cj = 0 else, is an NE, then {ci} = 1 ∀i ∈
{1, . . . , (k + 1) · S}, cj = 0 else, is also an NE.

Remark: Note that m < n − S excludes the situation where all players
are contributing.

Proof. Because wi > wi−1 > . . ., player kS can never be ranked lower than
player kS if contributing. Hence, the remaining n− kS players are playing
the same game as in Lemma 3.7.2, but with different numbers of players
and groups: ñ = n− k · S and g̃ = g− k.

Hence, the same logic of Lemma 3.7.2 applies with the difference that,
because n appears only in the numerator of R̄ (n), the threshold ¯̄R for the
reduced game is smaller than the one for the full game; i.e., ¯̄R < R̄.

In all the equilibria described above, players in the last group left, i.e.,
the one with the S poorest player when all the other players contribute,
will always defect:

Lemma 3.7.4. ci = 0 ∀i ∈ {k · (S− 1) + 1, . . . , k · S}.

Proof. This follows trivially from the fact that with no possibility to be
placed in a better group because of their low initial endowment, the poor-
est S players are playing the within the group best response where it is
always true that E [φi (ci = 1)] < E [φi (ci = 0)]. Because R < 1, it is always
the case that:

wi + R ∑
j 6=i

wj > R ∑
j

wj

The above lemmata lead to the conclusion that for binary action space
and heterogeneous players, a maximum of g pure strategy Nash equilibria
can coexist, depending on the value of the marginal per capita rate of
return. Interestingly, for the equilibrium with k = 1 to exist, the marginal
rate of return has to be higher than for the equilibrium with k = 2 to exist,
and so on, until the lowest threshold for R such that the only contributive
equilibrium is the one were all but one group is filled with contributors.

Proposition 3.7.5. Depending on the value of the marginal rate of return R, there
exists a maximum of g = S

n pure strategy Nash equilibria.
Their structure is so that the k · s (0 ≤ k < g) poorest players defect and the

(g− k) · s richest players contribute.
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The non-contribution equilibrium (k = 0) always exists, regardless of the value
of the marginal rate of return.

There can be no other pure strategy NE.

Proof. Starting from the NE described in Lemma 3.7.2 and iteratively ap-
plying Lemma 3.7.3, we can derive the existence of the g− 1 contributive
equilibria. Note that the threshold for the marginal rate of return derived
in Lemma 3.7.2 is the highest of all the thresholds.

Proposition 3.7.1 shows that the non-contribution equilibrium always
exists regardless of the value of R.

The heterogeneity of players’ endowment ensures that there can be no
mixed group such that contributors and non-contributors are grouped to-
gether. This, together with Lemma 3.7.4, proves that there can be no other
pure strategy Nash equilibria other than the ones described above.

Let us now move to continuous action space and show that, in the case
of homogeneous agents, when some strategies in equilibrium have positive
contributions, there can be no player i contributing 0 < ci < 1.

Lemma 3.7.6. If in equilibrium there is some player i for which ci s.t. ci > 0,
then there cannot be any player j contributing 0 < cj < 1.

Proof. If there are no players other than player j contributing, then from
Proposition 3.7.7, it follows that j’s best reply is to defect, as well.

If there are other players contributing more than zero, let us call j the
player(s) with the highest contribution.

If there are no ties regarding group membership, j could reduce his/her
contribution to cl − ε, with ε arbitrarily small, and remain in the same
group. If there are ties, j could increase his/her contribution by an arbi-
trary small amount and be sure to be grouped together with players con-
tributing. Similarly to Lemma 3 in [38], it is possible to prove that for an
arbitrary small ε, we have:

E
[
φ
(
cj
)]

< E
[
φ
(
cj + ε

)]
and hence that cj 6= {0, 1} cannot be an equilibrium strategy.

3.7.2 Fuzzy Mechanism

We now turn our attention to Nash equilibria in the case of the implemen-
tation of the fuzzy mechanism.
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Proposition 3.7.7. For any population size n > s, group size s > 1, rate of return
r ∈ (1, s) and meritocratic matching factor β ∈ [0, 1], universal non-contribution
is always a Nash equilibrium.

The proof of Proposition 3.7.7 follows from the fact that, given any β and
for c−i such that ∑j 6=i cj = 0, we have:

1 = E [φi(0|c−i)] > E [φi(1|c−i)] = R. (3.4)

Equation (3.4), in other words, means that it is never the best response
to be the only contributor for any level of β. If, for any level of β, given any
c−i, E [φi(0)|c−i] > E [φi(1)|c−i] holds for all i, then we have a situation
where non-contribution is the strictly dominant strategy. In that case, for
any level of meritocracy (β), universal non-contribution is the unique Nash
equilibrium.

Lemma 3.7.6 implies that for players with homogeneous endowments, it
is enough to focus on the extremal strategies when analyzing Nash equi-
libria.

We shall now proceed to show that additional high-contribution equi-
libria exist if the marginal per capita rate of return (R) and the merito-
cratic matching fidelity (β) are high enough. Before we do this, we write
1m to refer to a strategy profile where “m players contribute, all others
free-ride” and 1m

−i for the same statement excluding player i, i.e., “m of
the other players contribute, n−m other players free-ride”. We also define
a critical threshold for the marginal per capita rate of return of mpcr =

n−s+1
ns−s2+1 , which is the threshold, as identified by [38], for which the high-
contribution equilibria exist for the case of perfect merit (when β = 1) and
homogeneous endowments.

Proposition 3.7.8. Given population size n > s, group size s > 1 and rate
of return r such that R ∈ (mpcr, 1), there exists a necessary meritocracy level,
β ∈ (0, 1), above which there is a high-contribution Nash equilibrium, where
m > 0 agents contribute and the remaining n−m agents free-ride.

Proof. The following two conditions must hold for Proposition 3.7.8 to be
true:

E
[
φi(1|1m

−i)
]
≥ E

[
φi(0|1m−1

−i )
]

(3.5)

E
[
φi(0|1m

−i)
]
≥ E

[
φi(1|1m+1

−i )
]

(3.6)

The proof for the existence of an equilibrium in which some appropriate
(positive) number of contributors m exists for the case when β = 1 and
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R ≥ mpcr follows from Theorem 1 in [38], in which case both Equations
(3.5) and (3.6) are strictly satisfied.

The fixed point argument behind that result becomes clear by inspection
of Terms (ii) and (iii) in Expression (3.2): namely, the decision to contribute
rather than to free-ride is a trade-off between (ii) ‘the sure loss on own
contribution’, which is zero for free-riding, versus (iii) ‘the expected return
on others’ contributions’, which may be larger by contributing rather than
by free-riding depending on how many others also contribute. Obviously,
when c−i is such that ∑j 6=i cj = 0 or ∑j 6=i cj = (n− 1) (i.e., if either all others
free-ride or all others contribute), it is the case that φi(0|c−i) > φi(1|c−i).
Hence, in equilibrium, 0 < m < n.

Now, suppose 1m describes a pure-strategy Nash equilibrium for β = 1
with 0 < m < n and R ∈ (mpcr, 1) in which case Equations (3.5) and (3.6)
are strictly satisfied. Note that β has a positive effect on the expected payoff
of contributing and a negative effect on the expected payoff of free-riding:

∂E
[
φi(1|1m

−i)
]

/∂β > 0 (3.7)

∂E
[
φi(0|1m

−i)
]

/∂β < 0 (3.8)

When β = 0, we know that φi(1|1m
−i) = R < φi(0|1m

−i) = 1 for any m.
However, by existence of the equilibrium with m > 0 contributors when
β = 1, provided that R > mpcr is satisfied, there must exist some maxi-
mum value of β ∈ (0, 1), at which either Equation (3.5) or Equation (3.6)
first binds due to continuity of Expressions (3.7) and (3.8) in β. That level
is the bound on β above which the pure-strategy Nash equilibrium with
m > 0 exists.

Remark 3.7.9. Note that, for a finite population of size n, a group size s larger
than one implies that mpcr > 1/s for Proposition 3.7.8 to be true, but as n→ ∞,
mpcr converges to 1/s.17

A special case of such a pure-strategy Nash equilibrium is the high-
contribution Nash equilibrium as identified by (see [38]): in our setup, the
almost-no-free-riders pure-strategy Nash equilibrium generalizes to the
pure-strategy Nash equilibrium in which m is chosen to be the largest
value given n, s, r for which Equations (3.5) and (3.6) hold. For that m to be
larger than zero, β needs to be larger than β (Proposition (3.7.8)).

17 It is easy to check that limn→∞ mpcr = 1/s.
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3.8 appendix : mixed-strategy nash equilibria

Now, we shall compare the asymmetric high-contribution Nash equilibria
with potential symmetric mixed-strategy Nash equilibria. For this, we de-
fine pi ∈ [0, 1] as a mixed strategy with which player i plays ‘contribut-
ing’ (ci = 1), while playing ‘free-riding’ (ci = 0) with (1 − pi). Write
p = {pi}i∈N for a vector of mixed strategies. Write 1p for “all players
play p” and 1p

−i for the same statement excluding some player i.
First, we consider the case of a binary contribution space, i.e., when

contributions can only be full or null.

Proposition 3.8.1. Consider the case of ci ∈ {0, 1} for all i. Given population size
n > s and group size s > 1, there exists a rate of return r such that R ∈ [mpcr, 1)
beyond which there exists a necessary meritocracy level, β ∈ (0, 1), such that
there always are two mixed strategy profiles, where every agent places weight
p > 0 on contributing and 1 − p on free-riding, that constitute a symmetric
mixed-strategy Nash equilibrium. One will have a high p (the near-efficient
symmetric mixed-strategy Nash equilibrium), and one will have a low p (the less-
efficient symmetric mixed-strategy Nash equilibrium).

Proof. The symmetric mixed-strategy Nash equilibrium exists if there ex-
ists a p ∈ (0, 1) such that, for any i,

E
[
φi(0|1p

−i)
]
= E

[
φi(1|1p

−i)
]

, (3.9)

because, in that case, player i has the best response also playing pi = p,
guaranteeing that 1p is a Nash equilibrium. Proposition 3.7.8 implies that,
if R > mpcr, Equations (3.5) and (3.6) are strictly satisfied when β = 1 for
m contributors corresponding to the almost-no-free-riders pure-strategy
Nash equilibrium. Indeed, Expressions (3.5) and (3.6) imply lower and up-
per bounds (see [38]) on the number of free-riders given by:

l =
n− nR

1− R + nR− r
, u = 1 +

n− nR
1− R + nR− r

. (3.10)

Part 1. First, we will show, given any game with population size n and
group size s, for the case when β = 1, that there is (i) at least one symmetric
mixed-strategy Nash equilibrium when R → 1; (ii) possibly none when
R = mpcr; and (iii) a continuity in R such that there is some intermediate
value of R ∈ [mpcr, 1) above which at least one symmetric mixed-strategy
Nash equilibrium exists, but not below.
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(i) Because ∂E
[
φi(ci|1p

−i)
]

/∂p > 0 for all ci, there exists a p ∈ (m−1
n , m+1

n )

such that Expression (3.9) holds if R → 1. This is the standard symmetric
mixed-strategy Nash equilibrium, which always exists in a symmetric two-
action n-person game where the only pure-strategy equilibria are asym-
metric and of the same kind as the high-contribution pure-strategy Nash
equilibrium (see the proof of Theorem 1 in [142]). In this case, the presence
of the non-contribution Nash equilibrium makes no difference because the
incentive to free-ride vanishes as R→ 1.

(ii) If R = mpcr, one or both of the equations, (3.5) or (3.6), bind. Hence,
unless Expression (3.9) holds exactly at p = m/n (which is a limiting case
in n that we will address in Proposition 3.8.4), there may not exist any p
such that Expression (3.9) holds. This is because the binomially-distributed
proportions of contributors implied by p, relatively speaking, place more
weight on the incentive to free-ride than to contribute because universal
free-riding is consistent with the non-contribution Nash equilibrium, while
universal contributing is not a Nash equilibrium. In this case, the incentive
to free-ride is too large for a symmetric mixed-strategy Nash equilibrium
to exist.

(iii) ∂E
[
φi(ci|1p

−i)
]

/∂r is a different linear, positive constant for both ci =

0 and ci = 1. At and above some intermediate value of R, therefore, there
exists a p ∈ (0, 1) such that, if played in a symmetric mixed-strategy Nash
equilibrium, the incentive to free-ride is mitigated sufficiently to establish
Equation (3.9). We shall refer to this implicit minimum value of R by mpcr.

Finally, for any p > 0 constituting a symmetric mixed-strategy Nash

equilibrium when β = 1, E
[
φi(0|1p

−i)
]
= E

[
φi(1|1p

−i)
]
> 1. Because of this,

a similar argument as in Proposition 3.7.8 applies to ensure the existence of
some β ∈ (0, 1) above which the symmetric mixed-strategy Nash equilib-
rium continues to exist when R > mpcr: because, at β = 1, Equations (3.5)
and (3.6) are strictly satisfied and E

[
φi(0|1p

−i)
]
= E

[
φi(1|1p

−i)
]
> 1, there

therefore must exist some β < 1 and p′ < p satisfying Equation (3.9) while
still satisfying E

[
φi(0|1p

−i)
]
= E

[
φi(1|1p

−i)
]
> 1. Note that this implicit

bound here may be different from that in Proposition 3.7.8.
Part 2. If R > mpcr and β > β, the existence of two equilibria with

p > p > 0 is shown by analysis of the comparative statics of Equation
(3.9).

First note that, for any R > mpcr and β > β, ∂E
[
φi(0|1p

−i)
]

/∂β < 0,

while ∂E
[
φi(1|1p

−i)
]

/∂β > 0. p therefore has to take different values for
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Equation (3.9) to hold for two different values of β above β. It is un-
clear whether it has to take a higher or lower value. Note also that both

∂E
[
φi(0|1p

−i)
]

/∂p > 0 and ∂E
[
φi(1|1p

−i)
]

/∂p > 0 for all β ∈ (0, 1). We
can rearrange the partial derivative with respect to β of Expression 3.9, and
obtain:

∂p/∂β =
∂E
[
φi(1|1p

−i)
]

/∂β− ∂E
[
φi(0|1p

−i)
]

/∂β

∂E
[
φi(0|1p

−i)
]

/∂p− ∂E
[
φi(1|1p

−i)
]

/∂p
. (3.11)

Expression 3.11 is negative if the denominator is negative, because the
numerator is always positive.

Claim 3.8.2. The denominator of Equation (3.11) is negative when p is low, and
positive when p is high.

Write wi
ci

and wi
ci

respectively for the probabilities with which agent i is
matched in an above- or below-average group when playing ci where the

average is taken over contributions excluding i. Write E
[
φi(ci|1p

−i)
]

and

E
[
φi(ci|1p

−i)
]

for the corresponding expected payoffs.



64 contribution-based grouping under noise
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Figure 3.5: The figure depicts the expected payoffs of contributing versus free-
riding for the economy with n = 16, s = 4, r = 1.6. The expected
values of φi(0|1p

−i) and φi(1|1p
−i) are plotted as functions of contri-

bution probability p and meritocratic matching fidelity β. The two
planes intersect at the bifurcating symmetric mixed-strategy Nash
equilibrium-values of p and p (see Proposition 3.8.1). Notice that the
expected values of both actions increase linearly in p when the meri-
tocratic matching fidelity is zero, but turn increasingly S-shaped for
larger values, until they intersect at p and p.

Recall that, for β > 0 and 1p
−i ∈ (0, 1), Expression (3.15)18 holds, where k̂

is compatible with a perfect ordering π̂, and k̃ is any rank compatible with
a mixed ordering π̃. When 1p

−i = 0 or 1p
−i = 1, the probability of agent i to

take rank j, f β
ij , depends on his/her choice of ci, but wi

ci
= wi

ci
= 0 for any

choice of contribution ci.
For p(0, 1), we shall rewrite ∂E

[
φi(0|1p

−i)
]

/∂p in the denominator of
Equation (3.11) as:

∂

∂p

[
wi

0 ∗ E
[
φi(0|1

p
−i)
]]

+
∂

∂p

[
wi

0 ∗ E
[
φi(0|1p

−i)
]]

(3.12)

and ∂E
[
φi(1|1p

−i)
]

/∂p as:

∂

∂p

[
wi

1 ∗ E
[
φi(1|1

p
−i)
]]

+
∂

∂p

[
wi

1 ∗ E
[
φi(1|1p

−i)
]]

. (3.13)

18 See Appendix C.
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Notice that, for large β, wi
0 � wi

0 when p is close to zero, and wi
1 � wi

1
when p is close to one. Moreover, notice that the existence of the pure-
strategy Nash equilibrium with high contribution for high levels of β en-

sures that E
[
φi(0|1p

−i)
]

is not always larger than E
[
φi(1|1p

−i)
]
. It therefore

follows from continuity in β that Expression 3.13 exceeds Expression 3.12

when p is low and that Expression 3.12 exceeds Expression 3.13 when p is
high; hence, the denominator of Equation 3.11 is negative when p is low
and positive when p is high. Figure 3.6 illustrates.

Expected value 
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Figure 3.6: Expected payoffs of contributing versus free-riding.The expected val-
ues of φi(0|1p

−i) and φi(1|1p
−i) are plotted as functions of the probabil-

ity p for some fixed β > β. The two planes intersect at the bifurcating
symmetric mixed-strategy Nash equilibrium-values of p and p (see
Proposition 3.8.1). The relative slopes of the two curves illustrate the
proposition. Note that this figure is a slice through Figure 3.5 along
a value of β > β.

Remark 3.8.3. Note that the necessary meritocracy level β in Propositions 3.7.8
and 3.8.1 need not be the same. We shall write β for whichever level is larger.

Corollary 3.8.3.1. For intermediate values of p, contributing is a better reply
than free-riding.

Corollary 3.8.3.2. For the case when ci ∈ [0, 1], a symmetric mixed-strategy
Nash equilibrium does not exist.



66 contribution-based grouping under noise

Proof. Consider the symmetric mixed-strategy Nash equilibrium from the
above proof with pi = p for all i. Suppose all j 6= i play p. Then, in the

neighborhood of ε = 0, ∂E
[
φi(ε|1p

−i)
]

/∂ε > 0, because playing ε > 0 for
this player will always rank him above others playing zero. Hence, pi = p
for all i cannot be an equilibrium.

Proposition 3.8.4. Given group size s > 1, then, if β = 1, as n→ ∞: (i) 1m/n
of the high-contribution pure-strategy Nash equilibrium and p of the near-efficient
symmetric mixed-strategy Nash equilibrium converge; and (ii) the range of R for
which these equilibria exist converges to (1/s, 1).

Proof. Suppose R > mpcr, i.e., that both symmetric mixed-strategy Nash
equilibrium and high-contribution pure-strategy Nash equilibrium exist.
Let 1m describe the high-contribution pure-strategy Nash equilibrium and
1p describe the near-efficient symmetric mixed-strategy Nash equilibrium.
Recall that expressions under (3.10) summarize the lower and upper bound
on the number of free-riders, (n−m) in the high-contribution pure-strategy
Nash equilibrium. Taking limn→∞ for those bounds implies a limit lower
bound of 1

1+n R−r/n
1−R

and a limit upper bound of the expected proportion of

free-riders of 1
n + 1

1+n R−r/n
1−R

and, thus, bounds on the number of free-riders

that contain at most two integers and at least one free-rider (notice that the
limits imply that exactly one person free-rides as R→ 1). We know that, if
there is one more free-rider than given by the upper bound, then Equation
(3.6) is violated. Similarly, if there is one fewer free-rider than given by the
lower bound, then Equation (3.5) is violated.

With respect to the near-efficient symmetric mixed-strategy Nash equi-

librium, recall that Expression 3.9 must hold; i.e., E
[
φi(0|1p

−i)
]
= E

[
φi(1|1p

−i)
]
.

We can rewrite E
[
φi(ci|1p

−i)
]

as E [φi(ci|B)], where B is the number of other
players actually contributing (playing ci = 1), which is distributed accord-
ing to a binomial distribution Bin(p, n) with mean E [B] = np and variance
V [B] = np(1− p). As n → ∞, by the law of large numbers, we can use
the same bounds obtained for the high-contribution pure-strategy Nash
equilibrium to bound (B/n) ∈ [(n− u)/n, (n− l)/n], which converges to
the unique p for which Expression (3.9) actually holds.19

Suppose all players contribute with probability p corresponding to the
near-efficient symmetric mixed-strategy Nash equilibrium limit value. Then,

19 Details concerning the use of the law of large numbers can be followed based on the proof
in [142].
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limn→∞ V [(B/n)] = limn→∞
p(1−p)

n = 0 for the actual proportion of con-
tributors. Hence, the limit for the range over R necessary to ensure exis-
tence converges to that of the high-contribution pure-strategy Nash equi-
librium, which by Remark 3.7.9 is (1/s, 1).

Remark 3.8.5. In light of the limit behavior, it is easy to verify, ceteris paribus,
that the value of the marginal per capita rate of return necessary to ensure the
existence of the symmetric mixed-strategy Nash equilibrium is decreasing in pop-
ulation size n, but increasing in group size s; i.e., decreasing in relative group size
s/n.

3.9 appendix : properties of the fuzzy ranking

Fixing β ∈ [0, 1], we indicate with k̄β
i (ci) the expected ranking of player i

when contributing ci. The ranking is such that, under a perfect ordering,
ki > k j ⇒ ci ≤ cj. We define the fuzziness such that for each player, the ob-
served contribution xi is distributed normally around the true contribution
ci with standard deviation σ. We define σ2 = 1−β

β such that xi ∼ N
(
ci,σ

2).
The following properties hold:

• For β = 1, the contributions are perfectly observable, and the ranking
follows a perfect ordering.

• For β = 0, contributions do not matter, and the ordering of the play-
ers is determined completely at random. This follows from the prop-
erty of the normal distribution for σ→ ∞ (β→ 0).

• For 0 < β < 1, the expected ranking for every player has the follow-
ing properties:

∂E
[
k̄β

i (ci)
]

∂ci
< 0 (3.14)

E
[
k̄β

i (cL)− k̄β
i (cH)

]
> 0 ; cL < cH (3.15)

∂E
[
k̄β

i (cL)− k̄β
i (cH)

]
∂β

> 0 (3.16)
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Proofs

Let us define xL and xH as the imperfectly observed contributions when a
player contributes cL and cH , respectively; i.e., xL ∼ N

(
cL, σ2) and xL ∼

N
(
cL, σ2).

Lemma 3.9.1. Proof of (3.14):

Proof. This follows trivially from E
[
k̄β

i
(
cq
)]

= k̄β
i
(
E
[
cq
])

and the match-
ing rules.

Lemma 3.9.2. Proof of (3.15):

Proof. It again follows from E
[
k̄β

i
(
cq
)]

= k̄β
i
(
E
[
cq
])

, and hence:

E
[
k̄β

i (cL)− k̄β
i (cH)

]
= E

[
k̄β

i (cL)
]
− E

[
k̄β

i (cH)
]
= k̄1

i (cL)− k̄1
i (cH) > 0

for cL < cH .

Lemma 3.9.3. Proof of (3.16):

Proof. Let us write Equation (3.16) as a function of σ:

∂g
∂β

= − 1
β2

∂g
∂σ2 = − 1

2σβ2
∂g
∂σ

with a slight abuse of notation. Hence, we have that:

∂E
[
k̄β

i (cL)− k̄β
i (cH)

]
∂β

> 0⇒
∂E
[
k̄β

i (cL)− k̄β
i (cH)

]
∂σ

< 0.

The expected difference in ranking between cL and cH can be rewritten
in terms of the probability of observing a higher realized contribution for
cL than for cH ; i.e.,

∂E
[
k̄β

i (cL)− k̄β
i (cH)

]
∂σ

< 0⇔ ∂P (z > 0)
∂σ

< 0

with z ≡ xL − xH . Note that z ∼ N
(
cL − cH , 2σ2)20.

By definition, we have:

P (z > 0) = 1− P (z ≤ 0) ≡ 1−Φ
(

cH − cL√
2σ

)
=

1
2

[
1− er f

(
cH − cL

2σ

)]
20 See, e.g., [143]
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where Φ (x) denotes the cumulative distribution function of the normal
distribution and er f (x) the error function.

We thus obtain:

∂E
[
k̄β

i (cL)− k̄β
i (cH)

]
∂β

> 0⇔ ∂P (z > 0)
∂σ

< 0⇔
∂er f

(
cH−cL

2σ

)
∂σ

> 0

However, er f (x) =
∫ x

0 e−t2
dt, and hence, ∂er f (x)

∂x = e−x2
. We thus obtain

that:
∂er f

(
cH−cL

2σ

)
∂σ

= e−
(

cH−cL
2σ

)2

· 2
(

cH − cL
2σ

)
· cH − cL

2σ2 > 0

which is always positive for β > 0.
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M AT C H I N G A N D W E A LT H A C C U M U L AT I O N

abstract

Voluntary contribution games (VCG) are a classic example of social
dilemma where the dominant strategy for individuals conflicts with what

is best for society as a whole. Assortative matching (i.e. the practice of
ranking agents based on their contributions and then grouping them

according to this ranking) has been shown to be a mechanism leading to
desirable (highly cooperative) equilibria in VGCs, due to agents

contributing more so that they are grouped with other agents doing the
same. However the outcome of the game can change quite drastically if it
is repeated over time and heterogeneity among agents is allowed. In this

chapter, using an agent based model, we study how VCGs with
Assortative Matching evolve when agents can accumulate wealth over

time. Several ranking mechanisms are proposed that take into account the
possible heterogeneity in wealth and talent among agents and, using a

computational approach, we determine which mechanisms are
sub-optimal from a social welfare point of view.

71
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4.1 introduction

How can one sustain cooperative (or altruistic) behavior in ‘social dilemma’
situations? This has been a recurrent question attracting scholars from sev-
eral disciplines [73, 144–146]. The dilemma can be summarized with the
so called free-riders problem: while a collective benefits from the presence
of a public good produced at some cost by cooperative individuals, free-
riders can still benefit from the public good without producing any of it,
thus having little incentive to pay its cost in the first place. This misalign-
ment of collective interest and individual strategic incentives often results
in the so called ‘tragedy of the commons’, i.e. underproduction of the pub-
lic good [8, 30, 92].

Voluntary contribution games (VCG) [91] are a classic example of so-
cial dilemmas: Individuals are placed in one or more groups and asked
how much of their starting endowment they would like to contribute to
a group-wide common pool; they then keep what they did not contribute
and share equally their group output (i.e. the sum of all the contributions
made by the members of the group multiplied by the marginal-per-capita-
rate-of-return or mpcr). When the mcpr is bigger than the group size, the
total welfare is maximized if every player contributes all of its endowment.
However, if players are assigned to the groups in a random fashion, the
only dominant strategy for each player is to contribute nothing (for any
mpcr bigger than one) [20, 21], thus realizing the tragedy of the commons.

Conversely, if the matching of players to groups is linked to the indi-
viduals’ contributions decisions, the outcome of the game might change
dramatically. Indeed, Gunnthorsdottir et al. [38] showed that when play-
ers are asked to pre-commit on how much they are willing to contribute
and then groups are formed based on the contributions so that high (low)
contributors are matched with other high (low) contributors, there exists
an equilibrium in which almost all players contribute everything to the
common pool of their groups, thus realizing a near-efficient outcome. This
family of mechanisms has been named “meritocratic group-based match-
ing" or “assortative matching".

Recent scholarship [39] and the previous chapters have tested how ro-
bust the positive predictions arising from assortative matching are to vari-
ations in the payoff function, the action space and, more importantly, to
ex-ante inequality among the players1.

1 Allowing for heterogeneity in player’s initial budget.
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However, an important limitation of prior studies has been the focus
on one-shot games insted of considering more realistic repeated interac-
tions. Moving from one to repeated interactions might substantially alter
the equilibria of the game [22, 147, 148], especially if one allows for wealth
to be accumulated over time. Indeed, wealth accumulation could have a
significant impact on the outcome of the game because it might increase
the heterogeneity of the population over time, which could alter the level
of cooperative behaviour (see e.g. [96]). Hence, it is crucial to address the
question of how does taking into account repeated interactions affect the
positive predictions obtained with one-shot VCGs with assortative match-
ing.

As a first step toward dealing with this question more generally, this pa-
pers investigates a repeated VCG with assortative matching in which het-
erogeneous agents, interacting according to a logit-response dynamics, ac-
cumulate wealth over multiple rounds (thus resulting in agents having dif-
ferent amount with which to contribute to the common pool). Two diverse
dimensions over which agents can differ are taken into account: wealth
and talent. This is to model the fact that e.g., workers might have different
innate talent no matter how hard they work or investors might have differ-
ent abilities to judge a good investment and/or start with a different initial
capital. Note that, while in a one-shot game the two different sources of
heterogeneity would produce the same results, in a repeated game with
payoff accumulation they might have different effects.

Building on Gunnthorsdottir [38], agents pre-commit to a certain contri-
bution, are ranked based on it and are then assigned to the groups based
on this ranking. However, with the introduction of different sources of
agents’ diversity, one has automatically introduced different criteria based
on which one could assign agents to groups. For example, one could rank
the players based on the total contribution that they made to the group
or based solely on the percentage of their endowment they contributed,
regardless of their talent (i.e. a multiplicative factor of their contribution).

Using an agent based simulation, this papers investigates the model de-
scribed above for four different ranking criteria2 and the results summarize
as follows:

The average level of cooperation in the agents’ population strongly de-
pends on which criteria it is used to rank the agents. Furthermore, ranking
criteria that result in high level of cooperation in the short run, might not
sustain it over longer periods of time. In particular, it is found that ranking

2 Described in the Model section
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agents taking into account their talent, but not their total amount of wealth,
is the criterion that leads to the highest levels of cooperation in the long
run. The distribution of wealth among the population is also a function
of which criterion is used to assign agents to groups: ranking agents only
based on their relative contribution to the common pool being results in
the most equal distribution of wealth in the population.

A social planner trying to minimize the (wealth) inequality in the pop-
ulation while maximizing society’s output, can thus judge which ranking
criteria among the ones considered could best serve his purpose. By consid-
ering the long term outcome of the different simulated VCGs it is possible
to determine that some criteria are worse than others, by e.g. having the
same global output as another ranking but distributing it more unevenly.
Naturally, which among the remaining ranking criteria should be consid-
ered the best, will depend on the social planner’s preferences.

The rest of the chapter is structured as follows. In the following section,
we set up the model. Section 4.3 contains the chapter’s results and section
4.4 concludes. A Methods section contains details of the computational
algorithm.

4.2 the model

Using an agent based model, we simulate the game below in which agents
update their strategy using a logit-response dynamics [81, 82, 121]3:

N agents are assigned an initial endowment wi, the same for every player
i, and are randomly assigned a talent ri drawn from a Normal distribu-
tion4.

After the initialization, the agents play the following game for T rounds:

1. Choose strategy. Agents make a simultaneous and committed unilat-
eral decision (updating their strategy using a logit-response function)
regarding how much of their endowment to contribute to a common
pool. αi ∈ [0, 1] indicates the percentage of wi contributed by player
i.

2. Groups creation. Agents are ranked from highest to lowest based on
one of four possible criteria (see the ranking subsection below), with

3 The reader is referred to the methods section for a description of the pseudo algorithm used
in the simulations.

4 Test simulations were run also with different talent distributions but the qualitative outcome
of the game did not change.
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ties broken at random. Based on the ranking, they are assigned to
M = N

S equal-sized groups of size S, such that the S highest-ranking
agents are assigned to the first group, the S second-highest ranking
players are assigned to the second, etc.

3. Payoffs. Every agent receives a payoff Pi realized based on the total
contribution in each group and on his decision. Each agent receives
the sum of all the contributions made by the members of his group
multiplied by their individual talent and by a common factor Q. In
formula:

Pi = Q ∑
j∈Gi

αjwjrj

with Gi being the group to which agent i belongs.

4. Wealth update. Agents add their payoff for the round to the amount
of wealth that they did not contribute to the common pool and then
play a new round of the game. Hence their updated wealth wNEW =
φi (αi) is computed as:

φi (αi) = wi (1− αi) + Pi = wi (1− αi) + Q ∑
j∈Gi

αjwjrj (4.1)

Note that every round, agents can contribute any percentage of their
entire wealth; hence, even though every agent starts with the same initial
endowment, after the first round everyone could have a different amount
with which to contribute to the common pool5.

The marginal per capita rate of return Q represents the benefits of coopera-
tion among members of the same group. If agents were to be assigned in
groups completely randomly, the above game would be a social dilemma
for 1

S < Q < 1. Indeed, for these intermediate values of Q the group
output is maximized if every agent contributes his entire endowment but
every agent’s best response is to contribute nothing to the common pool.

In contrast, the talent ri is a multiplicative factor that represents how
much each individual agent i is able to contribute to the common group. A
very low talented agents provides little benefit to his group when contribut-
ing to the common pool, while a highly talented agent is highly beneficial
to his group when contributing. Talents are drawn so that the above game
is still a social dilemma6

5 In particular, note that players can also lose wealth during a given round.
6 See the methods section for more details.
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In the game described above, there are two possible sources of hetero-
geneity:

• Heterogeneity in wealth: Agents might end up with different endow-
ments and so the maximum amount of what they can contribute to
the common pool might vary. In particular, depending on the rank-
ing criterion, even by contributing everything it has, a poor agent
might never be able to enter in one of the top groups, i.e. the groups
with the highest return from the common pool.

• Heterogeneity in talent: Contributions of different agents might have
different effectiveness when added to the common pool, thus result-
ing in a different marginal per capita rate of return for each agent.
Two players contributing the same amount, hence, might be assigned
to completely different groups.

4.2.1 Ranking criteria

When assigning agents to their groups, taking or not into account the diver-
sity of the agents might result in completely different outcomes. Based on
the above diversity, the ranking criteria that can be used to assign agents
to their groups are the following:

1. Total contribution: Players are ranked based on their total contribution
to the group. This means that they are ranked based on αi · wi · ti.

2. Total wealth: Players are ranked based on the total wealth they bring to
the group, regardless of their talent. This means that they are ranked
based on αi · wi.

3. Percentage and talent: Players are ranked based on the percentage of
their wealth contributed but taking into account their talent, regard-
less of their wealth. This means that they are ranked based on αi · ti.

4. Percentage of wealth contributed: Players are ranked solely based on the
percentage αi of their wealth that they contributed.

Each ranking system could be interpreted as mirroring a society de-
signed by social planners with different preferences. E.g. the ranking sys-
tems 1 and 2 might be considered to represent two different kinds of ”cap-
italistic" society while the ranking system 4 a society mainly focused on
egalitarianism.



4.3 results 77

4.3 results

Figure 4.1 shows snapshots of sample realizations of the simulation de-
scribed above for three different ranking criteria: players ranked based on
their total contribution (case 1), players ranked based on the percentage
of their contribution taking into account their talent (case 3), and players
ranked solely based on the percentage of wealth they contributed (case
4). The case of the players ranked solely based on their total wealth con-
tributed (case 2) is qualitatively similar to 1 and it is therefore not shown7

Each subfigure depicts the entire population, with each agent represented
by a colored dot, at an earlier (left column) and later (right column) stage
of the simulation. The abscissa of an agent indicates which percentage of
his wealth he contributed to the common pool while his ordinate indicates
his current wealth. The black cross marks the average of the population.
The color of each agent indicates how talented he is, ranging from low
talent (blue) to high talent (red).

When agents are ranked only based on the percentage of their wealth
contributed to the common pool αi (case 4) , the results are in line with
what expected from previous scholarship [38, 40] and the previous chap-
ters (see fig. 4.1 (e) and (f)): agents are split in a (relatively) high contribu-
tions majority and a low contributions minority. In fact, this is very close to
one of the possible equilibria of the one-shot8 version of the Voluntary Con-
tribution Game with assortative matching in case of homogeneous agents;
in that case, the almost Pareto optimal equilibrium is for nearly all agents
to contribute their entire endowment and for few (less than the group size
S) to contribute nothing (see e.g. Gunnthorsdottir et al. [38]). This situation
seems to remain qualitatively the same throughout the simulation from an
early stage (fig. 4.1 (e)) to late stage (fig. 4.1 (f)) Naturally, agents with
higher talent tend to have a higher wealth than less talented agents, due
to the fact that their own contirbutions to the common pool make their
groups better than average. Nevertheless, the total amount of wealth in the
population is somewhat evenly distributed among the agents9.

In cases 1 and 3, where agents are ranked taking into account more than
only αi (fig. 4.1 (a), (b),(c), (d)), one can observe that the most talented
individuals tend to be wealthier and, more importantly, to contribute less
than the other agents. This is due to the grouping mechanism: if players are

7 The entire sample realizations (also for case 2) can be found in the Appendix.
8 I.e. a version of the game described above where agents only play one round.
9 Snapshots illustrating the evolution of the wealth distribution as a function of time can be

found in the Appendix.
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Figure 4.1: (Caption on the following page.)
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Figure 4.1: Snapshots of sample realizations of the simulation described above
for three different ranking criteria: players ranked based on their
total contribution (case 1, first row), players ranked based on the
percentage of their contribution taking into account their talent (case
3, second row), and players ranked solely based on the percentage of
wealth they contributed (case 4, third row). Each scatter plot depicts
the entire population, with each agent represented by a dot, at an
earlier (left column) and later (right column) stage of the simulation.
The abscissa of an agent indicates which percentage of his wealth
he contributed to the common pool while his ordinate indicates his
current wealth. The black cross marks the population average. The
color of each agent indicates how talented he is, ranging from low
talent (blue) to high talent (red). The simulation was obtained with
the following set of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22,
λ = 20.

ranked based on more than just their chosen contribution level, it follows
that highly endowed individuals (be it by wealth or talent) can percentage-
wise contribute less and still be placed in a good group (meaning a group
with a large common pool). For example, in the case of ranking 1, the
wealthiest and most talented agent only has to contribute a percentage of
his wealth so that his total contribution matches the maximum possible
total contribution of the Sth best player, to be guaranteed to be placed in
the best group.

It is also possible to observe that early in the simulation, case 1 (fig. 4.1
(a)) and case 3 (fig. 4.1 (c)) are quite similar: many agents contribute a high
percentage of their wealth to the common pool of the group. Agents with
a low talent contribute significantly less than the population average and
are also the ones with the lowest wealth.

Later in the simulation (fig. 4.1 (b) and (d)), the situation changes and
the figure shows that the two ranking criteria lead to dramatically different
outcomes: When players are ranked based on αi · ti (case 3), the structure of
the population later in the game (fig. 4.1 (d)) resembles the one earlier on
(fig. 4.1 (b)): most agents contribute a higher percentage of their wealth to
the common pool and wealth is distributed in a similar fashion as earlier
in the simulation10. Instead, when players are ranked based on the total
of their contribution (case 1), the situation later in the simulation (fig. 4.1
(b))is quite different from the one in the beginning (fig. 4.1 (a)): less agents
are contributing a high percentage of their wealth to the common pool and,

10 See footnote 9.
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more importantly, the distribution of wealth becomes more unequal and it
is possible to observe a clear separation in levels of wealth in the agents’
population.

Indeed, as it was similarly observed in non repeated games [39] and
chapter 2, the cause for the decline in contributions is the extreme inequal-
ity among agents: (relatively) poorer agents are disincentivized to commit
a high percentage of their wealth to the common pool because it is in any
case very difficult for them to match the total contributions of richer agents,
even if they only contribute very little percentage-wise. Furthermore, the
wealthiest among the agents also have less incentives to contribute to the
common pool, because the bigger the difference in wealth, the lower is the
benefit for wealthy agents to pool resources together with the less wealthy.

The differences in long term outcomes of the different ranking criteria
are clearly visible in fig. 4.2. The figure displays the average of the pop-
ulation efficiency11 (i.e. the ratio of the wealth realized in a given round
over the maximum that could have been obtained, if every agent fully con-
tributed to the common pool) over several simulations as a function of time
for the four different ranking criteria: case 1 in blue, case 2 in green, case 3

in red and case 4 in cyan.
After an initial growth in efficiency (and hence in contributions) compa-

rable for all cases, one observes that when agents are ranked solely based
on their percentage-wise contribution αi, the efficiency of the population
quickly stabilizes around low values (cyan line in fig. 4.2). Instead, the
ranking criteria that take into account the agents heterogeneity result into
a much higher growth for the population efficiency (blue, green and red
lines in fig. 4.2).

However, after a faster initial growth compared to case 3 (red line), in
the cases where players are ranked taking into account the total amount of
wealth contributed, the efficiency of the population starts to decline (blue
and green lines in fig. 4.2). Indeed, as discussed above the high inequality
of wealth in the population seems to result in diminished contribution lev-
els over time, thus leading to a decline in the overall efficiency. Hence, on
the long run, it appears that ranking agents taking into account the differ-
ences in their talent, but not in their wealth, leads to the best performance
of the overall population.

Efficiency might not be the only relevant dimension when judging the
performance of a system. Often, from a social planner point of view, one
has two goals when considering the welfare properties of a system: to

11 See the Methods section for a discussion on the efficiency measure.
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Figure 4.2: Average efficiency as a function of time for all the ranking criteria:
case 1 in blue, case 2 in green, case 3 in red and case 4 in cyan.
The results are obtained averaging over 2000 simulations and the
dotted lines represent the 95% confidence interval for the ensem-
ble average. After an initial growth in efficiency comparable for all
cases, one observes that when agents are ranked solely based on
their percentage-wise contribution αi, the efficiency of the popula-
tion quickly stabilizes around 10% (cyan line). Instead, the ranking
criteria that take into account the agents heterogeneity result into a
much higher growth for the population efficiency (blue, green and
red lines). However, after a faster initial growth compared to case 3

(red line), in the cases where players are ranked taking into account
the total amount of wealth contributed, the efficiency of the pop-
ulation starts to decline (blue and green lines). The results were ob-
tained with the following set of parameters: N = 500, S = 4, Q = 0.3,
σ = 0.22, λ = 20, T = 350.
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maximize efficiency and to minimize inequality (see e.g. [114, 115, 117]
for a discussion). However, as Okun [149] famously remarked: very often
pursuing equality can reduce the overall efficiency of a system. It is thus
of importance, when examining the different ranking criteria, to also look
at how the wealth is distributed among the agents.

Figure 4.3 shows how the Gini coefficient12 (a measure for wealth in-
equality in a population ranging from 0, meaning everyone has the same
wealth, to 1, meaning that one agent owns the entire wealth of the popula-
tion) evolves over time for the four different ranking criteria.

As expected, one can observe that ranking agents only based on the
percentage of their wealth αi contributed to the common pool (case 4),
leads to low levels of wealth inequality in the population (cyan line in fig.
4.3). Barring the very beginning of the simulation, one also notices that
assigning players to groups taking into account the total amount of wealth
contributed to the common pool (cases 1 and 2, blue and green lines in fig.
4.3) leads to consistently higher inequality than ranking agents taking into
account the differences in their talent but not in their wealth (case 3, red
line in fig. 4.3). This is despite the fact that, on the long run, case 3 leads
to higher amounts of wealth produced by the population.

Hence, from the point of view of a social planner who cares about equal-
ity as well as efficiency, choosing ranking criteria 1 and 2 would indeed be
suboptimal13. I.e. one could say that ranking criteria 1 and 2 are “worse"
than ranking criteria 3 and/or 4, in terms of the efficiency-equality trade-
off. Of course, which ranking is “best" between 3 and 4, will depend on
the social planner’s relative weight on efficiency and equality.

4.4 discussion

How to deal with “social dilemmas" has been a long-standing question in
the social sciences. Contribution-based group formation promises to result
in high levels of cooperative behaviour when applied to multiple-groups
one-shot voluntary contribution games with equal agents. When played
repeatedly, however, the outcome of the game might be quite different,
especially when wealth accumulation is taken into account.

Using an agent based simulation, this paper investigates repeated VCGs
with heterogeneous agents which accumulate wealth over time (thus in-

12 See the Methods section for a discussion of the Gini coefficient.
13 More precisely: assuming a social planner assigning positive weights to efficiency and equal-

ity measure, one could say that cases 1 and 2 are Pareto suboptimal.
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Figure 4.3: Average Gini coefficient as a function of time for all the ranking
criteria: case 1 in blue, case 2 in green, case 3 in red and case 4 in
cyan. As expected, ranking agents only based on the percentage of
their wealth αi contributed to the common pool (case 4), leads to
low levels of wealth inequality in the population (cyan line). Barring
the very beginning of the simulation, one also notices that assigning
players to groups taking into account the total amount of wealth
contributed to the common pool (cases 1 and 2, blue and green lines)
leads to consistently higher inequality than ranking agents taking
into account the differences in their talent but not in their wealth
(case 3, red line). This is despite the fact that, on the long run, case 3

leads to higher amounts of wealth produced by the population. The
results are obtained averaging over 2000 simulations and the dotted
lines represent the 95% confidence interval for the ensemble average.
The results were obtained with the following set of parameters: N =
500, S = 4, Q = 0.3, σ = 0.22, λ = 20, T = 350.
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creasing in diversity). Whether, and at which level, cooperative behaviour
emerges, depends on which criterion is used to assign people to groups.
The matching criterion also starkly determines how the wealth produced
during the game is distributed among the population. This paper studies
several ranking criteria based on different dimensions and asks what are
the properties of these mechanisms in terms of total production of wealth
and its distribution. While in general it is impossible to determine a single
best ranking system, some perform objectively better than others from the
point of view of a social planner placing positive weights on the efficiency
and equality of a population. In particular, it is found that ranking agents
considering the total amount of wealth that they are able to contribute to
the common pool, leads to a sub-optimal scenario in the long run.

On a broader level, the presented results show that it is not trivial to
maintain in a more general setting the positive predictions obtained in the
homogeneous one-shot assortative matching VCGs. An important compo-
nent of the model considered here is which behavioural rules are followed
by the agents. This paper assumes that agents update their strategies over
the course of the game following a logit-response rule. Considering more
realistic agents’ behaviours (with the possibility of different agents follow-
ing different behavioural rules) appears to be an exciting and important
avenue for future work, in order to assess the robustness of the “good"
equilibria of the game.

4.5 methods

Pseudo algorithm

To simulate the game described in the Model section , we used the follow-
ing algorithm:
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Algorithm 2: Pseudo algorithm for dynamical VCG with assor-
tative matching

1 Initialization:

• Assign the same initial wealth to each player

• Assign talent to each player sampling it from a Normal distribution
with mean 1 and standard deviation σa.

• Start the simulation in a fully defective state; i.e. set initial
contributions αi to 0 ∀ib.

• Set time t to zero.

repeat
2 Update agents’ contributions:

for i = 1 to N do
Generate random number X uniformly in [0, 1).
if X < p then

Do not update player i’s strategy.
else

Player i chooses a new contribution level αj based on

the logit probability distributionc: Pj =
exp(λEUj(α−i))

∑k exp(λEUk(α−i))
,

where λ is the rationality parameter and EUj (α−i) is
the expected payoff of strategy j given α−i, the
strategies played by all the other players in the previous
round.

3 Group formation: Based on the contribution of each agent,
groups are formed depending on the ranking criterion chosen,
as described in the Ranking criteria subsection 4.2.1.

4 Materialize payoff: Each agent receives a payoff depending on
the group to which he was assigned as described in equation
4.1.

5 Update wealth: Each agent adds the rounds’s payoff to his
portion of wealth that wasn’t committed to the common pool.
The time t is then increased by one.

until t < T;

a Sigma is chosen small enough so that the VCG is still a social dilemma.
b The interval [0, 1] is discretized for computational purposes.
c For a definition, see, e.g., [82].
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In order to make sure that agents would converge to a Nash equilib-
rium14, inertia (i.e. updating the strategy only if a random number is above
a certain threshold) was added when updating the player strategies (step
2 in Alg. 2)15. In this way, the algorithm is guaranteed to converge to one
equilibrium, instead of oscillating around it.

The parameter λ is the so called rationality parameter and it determines
what is the probability of an agent playing a strategy other than the one
that would maximize his gains in the current round (assuming that no
other player changes strategy from the previous round). A value of λ ap-
proaching infinity would result in an agent always playing the miopic op-
timal strategy, while for λ → 0, an agent would choose a contribution
level uniformly at random. A positive but finite value of λ allows agents
to explore the strategy space while giving more weight to strategies that
maximize their payoff. In this way, agents can converge to ”good" equilib-
ria and avoid to be stuck in ”bad" ones; e.g . agents can converge from
an equilibrium where no one contributes to one where some people con-
tribute and are placed in good groups, thus earning a higher payoff. The
results presented above hold qualitatively for a large set of values of the
λ parameter. For very large values of λ (λ � 100), one can observe a
qualitative difference16 in the outcome of the simulation when ranking ac-
cording to percentage of wealth contributed and talent (case 3): Because of
the extremely low exploration of the strategy space, highly talented agents
do not manage to coordinate into concurrently contributing a high per-
centage of their wealth, thus failing to reap the benefit of being placed in
highly profitable groups. Hence, after an initial increase in cooperative be-
haviour, the average percentage of contribution settles on the same level as
in the case where agents are ranked only base on which percentage of their
wealth they contribute (case 1), in striking contrast with what observed in
figure 4.2.

4.5.1 Efficiency and Gini coefficient

4.5.1.1 Efficiency measure

The efficiency E of a population of N players at any given time step t is
defined as the ratio of the sum of the payoffs of all players at time t over the

14 See e.g. [4, 76] for a definition of Nash equilibrium.
15 See e.g. [150] for a discussion on this topic.
16 Figures displaying average efficiency and Gini coefficient for λ = 400 can be found in the

Appendix.
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maximum sum of payoffs that could have been achieved in the same round,
i.e. the sum of payoffs if every agent contributed his entire endowment to
the common pool of his groups. Hence:

E =

N
∑

i=1
φi (αi)

Q
N
∑

i=1
wiri

=

N
∑

i=1
[wi (1− αi) + Qαiwiri]

Q
N
∑

i=1
wiri

Therefore, efficiency is effectively a weighted measure of cooperation,
with wealthier and/or more talented individuals having a bigger weight.
A figure depicting the average cooperation as a function of time for all the
different ranking criteria can be found in the Supplementary Material.

4.5.1.2 Gini coefficient

The Gini coefficient is a measure meant to represent the wealth distribu-
tion in a population of agents [151, 152]. A value of the Gini coefficient
close to 0 indicates that wealth is distributed almost uniformly in the pop-
ulation while a value close to 1 means that almost the entire wealth of the
population is owned by one individual17.

The following formula is used to compute the Gini coefficient G (see
e.g. [rutherford1955income, 153] for the derivation and a discussion):

G =
1
N

N + 1− 2


N
∑

i=1
(N + 1− i)wi

N
∑

i=1
wi


 =

2ΣN
i=1 iwi

NΣN
i=1wi

− N + 1
N

with the N agents in the populations ordered from poorest to richest (i.e.
so that wi ≤ wi+1.

17 To put the numbers in perspective most OECD countries have a pre-taxes Gini coefficient
around 0.5 and an after taxes coefficient below 0.35.
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G R O U P S A N D S C O R E S : T H E D E C L I N E O F
C O O P E R AT I O N

abstract

Cooperation amongst unrelated individuals in social-dilemma-type
situations is a key topic in social and biological sciences. It has been

shown that, without suitable mechanisms, high levels of
cooperation/contributions in repeated public goods games are not stable

in the long run. Reputation, as a driver of indirect reciprocity, is often
proposed as a mechanism that leads to cooperation. A simple and

prominent reputation dynamic functions through scoring: contributing
behavior increases one’s score, non-contributing reduces it. Indeed, many

experiments have established that scoring can sustain cooperation in
two-player prisoner’s dilemmas and donation games. However, these

prior studies focused on pairwise interactions, with no experiment
studying reputation mechanisms in more general group interactions. In

this chapter, we focus on groups and scores, proposing and testing several
scoring rules that could apply to multi-player prisoners’ dilemmas played

in groups, which we test in a laboratory experiment. Results are
unambiguously negative: we observe a steady decline of cooperation for

every tested scoring mechanism. All scoring systems suffer from it in
much the same way. We conclude that the positive results obtained by

scoring in pairwise interactions do not apply to multi-player prisoner’s
dilemmas, and that alternative mechanisms are needed.
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5.1 introduction

Social dilemmas are situations where the optimal decision from the per-
spective of a self-interested individual conflicts with what is optimal for
the group collectively. Examples include public goods [91] and common-
pool resources situations [30], as modeled using game theory via, for ex-
ample, prisoner’s dilemmas (PD), voluntary contributions games [15, 21]
or donation games [49]. The common feature of these interactions is that
in the absence of a suitable mechanism [154, 155] and given insufficient
foresight by the players [156, 157], the only stable outcome coincides with
the socially undesirable one, i.e. absence of cooperation1. The players fail
to cooperate and, as a result, are all worse-off than in the collective opti-
mum; a phenomenon often referred to as the “tragedy of the commons" [7,
8] or the “free riding dilemma" [158].

One of the most important mechanisms that successfully implements
cooperation is “reciprocity” [159, 160]. Reciprocity is a behavior whereby
people return benefits for benefits (and hostility with hostility) [51]. Thus,
cooperation breeds cooperation and may lead to higher payoffs in the long
run, if people resist the momentary benefits of defection (which, instead,
breeds more defection and eventually leads to low payoffs). Commonly,
one distinguishes between direct and indirect reciprocity. Direct reciprocity
assumes that a player would cooperate with another person expecting he
to do the same in return [145]; under indirect reciprocity, instead, a person
does not expect the recipient of his help to reciprocate but he expects that
someone else will [49]: “the recipients of an act of kindness are more likely
to help in turn, even if the person who benefits from their generosity is
somebody else" [161].

A principal driver of indirect reciprocity is reputation [162], therefore
considered as a “universal currency" [60]: cooperating, or refusing to do
so and choosing to defect, not only affects one’s stage-game payoff but
also one’s reputation. When interacting again in the future, players will
take each others’ reputations into account, thus indirectly reciprocating
players who have good a reputation (i.e. that have cooperated in the past).
This creates incentives to cooperate beyond the momentary temptations of
defection, provided the future benefits of cooperation are substantial. As
a result, cooperation may emerge in the presence of suitable reputation
mechanisms.

1 In the remainder of this document, we will use cooperate as a common terminology for
related terms like contribute, donate, exert effort, etc.



5.1 introduction 91

Indeed, reputation –via numerous implementations– has been shown
to stabilize high levels of cooperative behavior in controlled experiments
involving human subjects [163–165]. However, an important limitation of
prior studies has been the focus on pairwise interactions, while in real-
ity most social interactions unfold in groups [166] involving team produc-
tion [167]. Producing in teams is particularly relevant in present society as
interactions increasingly take place online, involving largely impersonal,
crowd interactions.

Moving from pairwise interactions to group interactions substantially
complicates matters in theory and in practice. In a group interaction, play-
ers might not be able to observe the actions undertaken by others individ-
ually, thus making it harder to track and update other players’ reputations.
Other than in a two-person interaction, one can often not infer the others’
individual actions from the aggregated outcome. For instance, when play-
ing a public good game, information regarding individual behaviors may
not be available, and the only available information may concern the group
as a whole.

This raises the following question: How do reputation mechanisms fare
in group interactions? More specifically, as a first step towards address-
ing the question more generally, we shall here investigate one of the best-
known and simplest mechanisms for reputation called “scoring". Our anal-
ysis of "group scoring" extends the concept of “image scoring” [62, 66], as
has been studied widely in pairwise interactions. Under image scoring [49,
61], each player has a score (starting at 0) as a proxy for his reputation.
Whenever a player has the opportunity to cooperate with someone else,
his score is updated: if he cooperates his score is increased by one, if not it
is decreased by one. Thus a player’s reputation is continuously reassessed
based on the past (in the simplest case, based on the previous decision).
A seminal theory result [61] is that the strategy to cooperate with any-
body with a non-negative image score is evolutionary stable. Crucially, by
refusing to cooperate with someone with a low image score a player is
decreasing his own score, thus reducing his own probability of receiving
cooperation in the future. Hence, not cooperating with a player with a
low image score can be interpreted as a form of punishment. Indeed, in
practice, numerous behavioral experiments show that image scoring helps
stabilize cooperative behavior in two-player PDs and donation games [66–
68, 168].

As we extend scoring mechanisms to group interactions more generally,
and to multi-player PDs in particular, we increase the degree of freedom
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regarding the scoring rules that may apply. Real-world group interactions
vary with respect to the information that is available, and typically in-
dividuals do not observe all actions undertaken by all other individuals,
especially in large groups. The relevant scoring mechanism that applies to
a specific group interaction therefore depends on how much information
is available to players and how much information each reputation rule
requires, as processing the available information correctly may become dif-
ficult in larger interactions. Indeed, a conjecture [60] for why image scoring
is favored over other reputation dynamics is that (relatively) little informa-
tion is required to implement it under full feedback [70]. As such, with
limited [69] or partially erroneous feedback [169], sufficiently accurate in-
formation is key for mechanism success.

When interacting in groups, information becomes coarser and a sin-
gle subject may thus find it harder to reap the benefits of “reputation-
building”, and cooperation may therefore unravel. Recent theory has ex-
tended “scoring" methods to group interactions [71]. The baseline estab-
lishes a positive cooperation result for the case of image scoring in group
interactions2. Furthermore, when only information regarding group perfor-
mance –but not regarding individual players– is available, “group scores”
replace image scores: each player’s group score summarizes the aggregate
cooperativeness of the groups to which he belonged in the past, without
any additional information regarding what players did individually. In this
case, theory predicts that cooperation cannot be sustained.

In this chapter, we provide the first test of this theory in a group setting
considering various informational contexts. Hence, as a first step toward
addressing this question more generally, we investigate whether different
scoring mechanisms can sustain cooperation in experimental multi-player
PDs. In particular, we consider a simple and widely used implementation
for scoring mechanisms based on ‘Markovian’ scores, that is, scores that
depend only on players’ actions from the previous period (‘memory 1’).
The basic model we consider is an individual-level binary3 Markovian ‘im-
age score’, as investigated theoretically in numerous prior studies (e.g. [49,
62, 65, 170–173]). For such scores, theory predicts that high levels of co-
operation can stabilize, and there exists experimental evidence confirming
this in the context of pairwise interaction [69, 174]. In fact, concerning the
role of memory, existing experimental evidence [174] suggests that Marko-
vian memory already leads to high levels of cooperation and that longer

2 I.e. when full information regarding individual decisions is provided.
3 Meaning that the score of a player can only have two values, e.g. 0 and 1.
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memory increases cooperation further. The goal of the present chapter is
to investigate whether, for the case of the Markovian baseline, the positive
results that were obtained for pairwise interactions carry over to group
interactions.

For this, we conducted an extensive laboratory experiment. The baseline
is to test image scoring. In addition, we test alternative scoring rules that
could apply to group interactions including one where players score each
other endogenously through votes. The proposed rules differ with respect
to how much information regarding past behavior of their group-mates is
required, ranging from no feedback to full feedback.

The experimental results concerning cooperation are negative: for every
scoring mechanism we observe a steady decline in cooperative behavior.
The decay of cooperation is the same under every mechanism and compa-
rable even with the case when no scoring mechanism is implemented at
all. We conclude that positive results regarding cooperation deriving from
scoring, as were repeatedly observed in two-player interactions, do not
generalize to group interactions. Our results confirm the negative theoreti-
cal prediction with respect to coarse group scoring but falsify the positive
prediction regarding image scoring in groups.

The rest of this chapter is structured as follows. Next, we present the ex-
perimental procedure, followed by our results. A Methods section contains
additional details concerning experimental design and statistical analyses.

results

Before presenting results, we briefly discuss the structure of the experi-
ment and introduce the different scoring mechanisms that were tested. For
further detail concerning the experimental design, we refer the reader to
the Methods section and appendix C.

Experimental procedure

Our experiment involved 192 subjects playing several, repeated multi-player
PDs, resulting in a total of 11,520 on whether to cooperate or not. The
experiment had 12 sessions involving 16 subjects each; each session con-
sisted of three different treatments, each played for blocks of 20 rounds
(“phases”). In each treatment, subjects were faced with a different scoring
mechanism and treatments differed according to which and in which order
the following mechanisms were implemented:
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Scoring mechanisms

Treatment Feedback provided

No scoring No feedback about other players’ actions

Image scoring Feedback about individual actions of others

Group scoring Feedback about average behavior in the group

Self scoring Endogenous feedback

Image self scoring Same as Image scoring (control for Self and Image scoring)

Table 5.1: Summary of scoring mechanisms: The above table summarizes how
much information about other players’ actions in the previous round
was provided to the players. Regardless of the treatment, all subjects
were given feedback regarding the profit made during the round (and
hence on the number of contributors in their group).

Scoring mechanisms range between image scoring, providing full feed-
back about other player’s actions, and no scoring, providing no feedback
at all:

• No scoring: Subjects receive no information at all regarding the past
actions of the other players, and therefore it is the treatment with the
lowest informational content. Expectation: In this implementation of a
repeated multi-player PD we expect a decay of cooperation resulting
in low contribution levels, as shown by numerous previous experi-
ments [66, 68, 70, 175] mainly conducted in voluntary contribution
games settings.

• Image scoring: This is the treatment with the highest informational
content of all, equivalent to the case with a binary image score in two-
players interactions. Players are told whether their past and future
group-mates cooperated in the previous round. Expectation: Based
on previous experiments on donation games [175] and on theoretical
results [71], one could expect a stable high level of cooperation.

• Group scoring: Scoring proceeds as in image scoring, except that
all group members receive the same score based on the number of
cooperators in their group. Subjects are given no direct information
about individual decisions. Expectation: Recent theoretical work [71]
suggests that a low level of cooperative behavior is to be expected.
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• Self scoring: Players directly assign the score to their fellow play-
ers based on feedback regarding own payoffs and aggregate contri-
butions in their group. This treatment might contain more or less
information than group scoring depending on whether players are
truthful when assigning the scores. Expectation: In this case the only
Nash equilibrium is for nobody to contribute, independently of the
assigned ratings.

• Image self scoring: This is a control treatment for self and image scor-
ing, where scores are exogenously assigned as if all the players were
truthful in the Self scoring treatment. The resulting informational
content is, in principle, equivalent to Image scoring, but provided in
a slightly more complicated format.

Every round, subjects were randomly reshuffled and rematched into
groups of size 4 and provided with scores feedback, in particular of their
group-mates, calculated using the current scoring rule. After deciding whether
to cooperate or not, subjects received their personal individual payoff feed-
back (thus knowing how many people cooperated in their group) and were
assigned updated scores.

It is important to note that, by virtue of our design, the score of a subject
only reflected his last action, and that scores did not carry over multiple
rounds of the game. Our focus is on situations where mechanisms are in-
troduced or where a new mechanism replaces an old one. Hence, subjects
in our experiments always initially played a treatment were no feedback
about others’ actions or scores was given ("Initial phase"). After that, two
different scoring mechanisms were played in succession ("Scoring phase 1"
and "Scoring phase 2").

Experimental results

In fig. 5.1 we show the percentage of cooperators as a function of time for
all the different treatments4. For all treatments, we observe a steady decline
in cooperation; the decay occurs in much the same way, independent of the
order in which the different treatments were played5.

4 More detailed plots are available in Appendix C.
5 This decay is in line with similar patterns known from multi-player public goods games (see

e.g. [15, 19, 110, 176, 177]).
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Figure 5.1: (Caption on the following page.)
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Figure 5.1: Percentage of cooperation as a function of time for all the treat-
ments: The figures on the top and on the bottom show the contri-
bution levels observed during the first and second scoring phases of
the experiment, respectively. The black line in the background shows
the average cooperation observed in the initial phase. Since first treat-
ment subjects (i.e. in the initial phase) always played the treatment
with no scoring mechanism, it can be treated as a baseline. The grey
area represent the binomial proportion confidence interval [178]. The
figures show a steady decline in average cooperation. The decline
happens in much the same way for all treatments, and independent
of the order in which the different treatments were played.

Even though there are significant statistical differences between some of
the observed downward trends (e.g. image scoring is significantly different
from no scoring, see table 5.2), the main difference in treatments can be
reduced to a slight offset in the initial percentage of contributors. Figure
5.2 illustrates that the estimated (linear) decay of cooperation over time
occurs at the same speed. Indeed, all the slopes are within the error range
of each other. The only noticeable difference regards the intercept, that is,
the initial contributions (see fig. 5.2 (b)).
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Table 5.2: Pairwise Mann–Whitney–Wilcoxon Rank Sum tests. The table
shows the p-values obtained from the Mann–Whitney–Wilcoxon Rank
Sum test for each pair of treatments. The test was performed only on
first-period decisions and excluding the initial phase of every session.
Red p-values indicate a statistically significant difference (with dark
red when p < 0.05 and light red when p < 0.1) while a black p-value
indicates no significant difference.
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Figure 5.2: Estimated decays of cooperative behavior. In figure (a), each col-
ored line illustrates the fitted linear function of a treatment. The grey
areas depict the 95% confidence interval. The black line depicts the
estimated decay for the entire data set. Table (b) lists the values ob-
tained for the various slope estimators. There is a difference in some
of the intercepts of the different lines, but all treatments decline with
(statistically) similar slopes.

For more details on the statistical analysis, we refer the reader to the
Methods section.
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The above results indicate that the scoring mechanisms considered here,
even ones which were shown to stabilize high level of cooperation in two-
players games (i.e. image scoring), fail to achieve positive results in multi-
player interactions. The most plausible explanation is that it is harder to
isolate the “bad apples" in a group interaction, resulting in a deterioration
of the quality of scores, as perceived by subjects. This kind of impreci-
sion destabilizes cooperation: to keep stable levels of cooperation, players
should –on average– cooperate with a frequency at least as high as the
observed number of players with a high score in their group, thus main-
taining a stable percentage of cooperators in the population. Instead, we
observe that, while, ceteris paribus, players do cooperate more with an in-
creased observed score in their group, they do so with a (downward) bias,
especially for high sums of scores in the group6. Figure 5.3 illustrates the
case of image and group scoring7: in the picture we can see that players co-
operate less than 80% (on average) of what they should cooperate in order
to obtain stable cooperation. This behavior is also confirmed by an analysis
of individual decision making: subjects positively react to observed high
scores in their group, but they do not “reciprocate" enough for cooperation
to be stable. A formal model and analysis of the players’ decision making
is presented in the Supplementary Material.

Further contributing to the steady decline of cooperation is the fact that
when a high-score player decides not to cooperate because of the pres-
ence of low-score subjects in his group, this reduces the score of all his
group-mates, not just of the low-score individuals. This results in a steady
decay of players with good reputation and cooperative behavior in the
population, and consequentially to a downward spiral of contributions, as
observed by Fischbacher et al. [47] in a study on (imperfect) conditional
cooperation in a public goods experiment.

6 It is important to note that this effect relies on the players being able to observe the scores
in their group. If this is not the case, like in the “No scoring" treatment, no such effect is
observed. See the Supplementary Material for more information.

7 See Supplementary Material for the other cases.
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Figure 5.3: Percentage of cooperators as a function of the observed score in
their group. The figure shows how many players contributed to the
common pool of their group as a function of the sum of the scores
in the group. Black and grey illustrate the image scoring and group
scoring cases, respectively. The error bars indicate the 95% binomial
proportion confidence interval computed using Wilson score inter-
vals [178]. The red line depicts the percentage of cooperations in
the no scoring treatment as a function of what would have been the
observed score (see Supplementary Material for more details); the
gray area represent the 95% confidence interval. The figure shows
that, even though players cooperate significantly more when the ob-
served sum of scores increases, they do so with a downward bias,
as compared with the identity line, especially for high score values;
decisions below the identity line will result in a steady reduction of
”good players” in the population, thus lowering the average score
and resulting in a spiraling down of cooperative behavior.

discussion

Scoring methods in general, and image scoring in particular, are simple
implementations of reputation mechanisms. They stabilize cooperative be-
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havior in various standard, two-players social dilemma situations, such as
in prisoner dilemmas or donation games. Image scoring requires reliable
feedback regarding individual-level behavior. The purpose of this study is
to extend such mechanisms to group interactions, in particular to multi-
players prisoner dilemmas with or without full individual feedback. We
propose several scoring rules that could apply in this setting, depending
on informational context, and test them in a laboratory experiment. Fur-
thermore, we investigate how an endogenized scoring mechanism could
be implemented. The results are unambiguously negative: independent of
information, feedback and scoring mechanism, cooperation decays. This
includes mechanisms that were previously shown to stabilize cooperation
in corresponding two-player cases. A plausible explanation is that individ-
uals cannot be isolated; i.e. defectors cannot be individually punished, and
cooperators cannot be individually rewarded. This results in a reaction to
the average group score that is increasingly biased toward defection, there-
fore leading to a steady decrease of high-reputation players in the popula-
tion that in turn begets lower levels of cooperative behavior.

On a broader level, our results show that there is still much that we do
not know about reputation dynamics. Even though indirect reciprocity is
considered one of the main mechanisms through which cooperation can be
sustained, there have been very few studies on interactions in group set-
ting. Understanding such settings has become particularly relevant in re-
cent years because, due to the increasing digitalization of our world, more
and more interactions take place online where people frequently commu-
nicate via crowd platforms and where often explicit reputation tallying is
provided as a method to build trust. Due to the increasing decentralization
of interactions, partial or total anonymity of the actors involved can be the
norm and reputation is often built on a peer-to-peer basis with members of
communities rating each other. For example, a project may involve several
groups of individuals, and information on individual level contributions
could be imperfectly filtered via several community-layers before reaching
the players. With this work we set up to investigate some of these issues.

A key conclusion is that many positive results on cooperation, as have
been observed in pairwise interactions, may not hold anymore when groups
are concerned.

There are numerous avenues for future work and many open questions;
for example: are dynamics of play in multi-player games fundamentally
different from two-player games (as it might be the case for direct reci-
procity, see e.g. [179–181])? And if so, could one exploit this to devise a



5.1 introduction 103

scoring mechanism that is able to sustain higher levels of cooperation?
How does group size matter? Could the combination of multiple mecha-
nisms, such as scoring and punishment, lead to higher cooperation? Could
the deterioration of the quality of scores be compensated by cumulating
the scores over multiple rounds, letting players “build” their reputation?
Future work should address such issues and many others, as group struc-
tures are an important, ubiquitous aspect of human society.

methods

The experiment

The experiment was conducted as an experiment on interactive decision-
making at the ETH Decision Science Laboratory (DeSciL) in Zurich using
the z-Tree [182] software. We ran 12 sessions with 16 participants in each
session, for a total of 192 participants. Participants were recruited from
the joint subject pool of ETH Zurich and University of Zurich using the
hroot [183] sofware and mainly consisted of university students. All proce-
dures adhered to DeSciL’s Operational Rules8; additional ethics approval
was waived following standard DeSciL protocol for members of the lab-
oratory’s Review Board. In no way at all does the experiment violate the
ethical principles of the Declaration of Helsinki, and subjects were properly
incentivized by converting their earnings in real currency with full trans-
parency (i.e. no deception). Each session in the laboratory lasted roughly
one hour during which the players played 3 treatments for 20 rounds each.
On average, subjects earned 33 CHF (roughly 33 USD at the time), with a
range of 25 to 40 CHF, including a 5 CHF show-up fee.

First, subjects always played the treatment were no information regard-
ing past behavior was provided. After that, subjects played two of the other
scoring treatments. The table below details the treatments’ combinations.

8 These implement the standards of behavioral economics including no deception, compatible
incentives and payment, minimal earnings, rights to terminate experiments at any time, data
anonymity, and confidentiality
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Treatments’ combinations

Initial Phase→ Scoring Phase 1→ Scoring Phase 2

(Round 1-20) (Round 21-40) (Round 41-60)

Control treat. No scoring→ No scoring→ No scoring

Treat. Com. 1 No scoring→ Image scoring→ Group scoring

Treat. Com. 2 No scoring→ Group scoring→ Image scoring

Treat. Com. 3 No scoring→ Image scoring→ Self scoring

Treat. Com. 4 No scoring→ Image self scoring→ Self scoring

Treat. Com. 5 No scoring→ Self scoring→ Image scoring

Table 5.3: Combinations of treatments played during the experiment: Each
row details one of the 6 treatment combinations in the experiment.
Each combination was played twice (in two different experimental
sessions).

At the beginning of the session and before each treatment, subjects were
given written instructions9 explaining what the experiment was about and
the game that they were about to play, scoring mechanism included. Be-
fore the first treatment, subjects were given some minutes to familiarize
with the game with a small training. Before the Truthful self scoring treat-
ment, because of the complexity of the scoring mechanism, subjects also
had some minutes to understand how the scoring worked using a score
simulator. Screenshots displaying the different treatments can be found in
the Supplementary Material.

As customary, subjects were incentivized by converting their earnings
in real currency. Subjects on average earned 33 CHF (roughly 33 USD),
including 5 CHF of show-up fee. Earnings ranged from 25 to 40 CHF.

In the following we define the game that the subjects played in the ex-
periment and the scoring mechanisms that were used.

N-players prisoner’s dilemma

The subject played the following game whose aspects were all common
knowledge:

9 Available in the Supplementary Material.
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1. At the beginning of each round (for 20 rounds), N subjects (N = |n|
where n ≡ {1, . . . , 16} ) are randomly assigned to four groups of
fixed size four.

2. Every subject decides whether to contribute his endowment to the
common pool (i.e. whether to cooperate). For player i ∈ n, let ci = 0
and ci = 1 denote whether player i cooperated or not, respectively.
Starting from the second round of play, players are shown the scores
assigned to all players in the previous round. Furthermore, players
learn the score of their group-mates in the current round.

3. Subjects receive individual payoff φ according to φi = (1 − ci) +
1
2 ∑4

j=1 cj.

4. Scoring: a score is assigned to each player based on his contribution
and depending on the treatment. The score is visible to the other
subjects in the following round and it replaces the score from the
previous round.

Regardless of the treatment, all subjects were shown the profit that they
made during the round and during the entire session; thus each subject
was told how many people cooperated in his group in the previous round.

The scoring mechanisms

Depending on treatment, a different score was assigned to each subject.
The score was not cumulative over rounds and, every round , subjects were
only shown the scores (if any) as were assigned in the previous round. The
scoring mechanisms were designed so that the score ranged between 0 and
1 for all treatments.

• No scoring: No score was assigned to players during this treatment.

• Image scoring: Subjects were assigned a score of 1 if they cooperated
in the previous round and 0 if not.

• Group scoring: Subjects were assigned a score proportional to how
many people in their group contributed to the common pool. The
score equaled the number of cooperators in their group divided by
the group size (4); thus subjects in the same group all received the
same score. More precisely, the score si of player i in group Gi equals
as si =

1
4 ·∑j∈Gi

cj. In principle, the higher subject i’s score, the higher
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is the probability that i invested in the group account. If the resulting
score is 1 or 0, the group score faultlessly indicates whether a subject
cooperated or not, respectively.

• Self scoring: Each subject was asked to rate his/her group awarding
a number of stars ranging from 0 to 3. The score of each subject was
computed as the sum of all the stars awarded to the group by his
group-mates (excluding his own rating) divided by 9 (i.e. the maxi-
mum number of stars that a player could be assigned). Therefore, in-
dicating with ?j ∈ {0, 1, 2, 3} the score assigned by player j in group
Gi to his group, the score si of player i in group Gi was computed as
si =

1
9 · ∑j∈Gi ,j 6=i ?j. Hence, the score of each subject ranges between

0 (all his group-mates awarded 0 stars to the group) and 1 (all his
group-mates awarded 3 stars to the group).

• Image self scoring: The score was assigned as in the self scoring
treatment but exogenously. This means that each subject was consid-
ered as having awarded a number of stars to his group equal to the
number of cooperators (excluding himself) observed in his group.
More precisely, for a group Gi we denote with ui ∈ {0, 1, 2, 3} the
sum of the players cooperating in Gi as observed by player i; i.e.
ui ≡ ∑j∈Gi ,j 6=i cj. The score si of player i in group Gi was then com-
puted as si = 1

9 · ∑j∈Gi ,j 6=i uj. Hence, each score ranges between 0
(all players in that group defected) to 1 (each player in that group
cooperated).

Statistical Analysis

To determine if treatments significantly differ from one another, we used
the Mann-Whitney-Wilcoxon rank sum test [184, 185]. Due to (possible)
autocorrelations between same-session decisions, we restricted our analy-
sis to only decisions in the first period. Furthermore, we exclude from the
analysis decisions taken during the initial phase. Let xq

i ∈ {0, 1} denote
the decision that player i took during the first period of treatment q. We
obtain xq ≡

{
xq

1, ..., xq
m

}
where m is the number of players that played

treatment q (excluding the initial phase). We perform a rank sum test for
each pair of treatments: the p-value obtained from the test is a measure of
how likely it is that xi and xj are drawn from the same distribution with
the same mode. Table 5.2 shows the p-values for each pair of treatments in
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the first and second scoring phase of the experiment. A value depicted in
red indicates that the two treatments significantly differ from each other.

To obtain fig. 5.2 we performed a linear regression of the contributions
to the public good as a function of time for each treatment individually
and for all of them combined. An alternative analysis, using a random
resampling permutation test, is available in the Appendix. In Appendix C,
we also provide a model for the decision making of the individual player
and fit it to our data. The obtained results are compatible with the ones
presented in this chapter.





6
C O N C L U S I O N

You can’t have your cake and eat it, too, is a good
candidate for the fundamental theorem of economic
analysis. We can’t have our cake of market efficiency
and share it equally.

— A. M. Okun

Understanding how cooperation is organised, distributed and maintained,
among humans and in other situations, is one of the oldest and most in-
teresting questions in game theory. The dilemma of the emergence of co-
operative (or altruistic) behaviour can be summarized by the free-riders
problem: The free-riders problem arises from the fact that, while an entire
population benefits from the presence of a public good produced at some
cost by cooperative individuals, free-riders (defectors) can still benefit from
the public good without producing any of it. Exploiting the cooperative
agents, the defectors save the cost of producing the public good, obtain-
ing an advantage over cooperators. As a consequence, on the long run the
players often fail to cooperate and, as a result, are all worse off than in
the collective optimum; a phenomenon often referred to as the “tragedy
of the commons". Yet, in the real word, we often observe cooperative-like
conducts in a variety of cases, ranging from human behaviour to bacterial
traits. In the past years, much literature has been devoted to understanding
why is cooperative behaviour sustained in situations where models predict
it should not, and how could this behaviour be incentivized in situations
where it is not.

In this dissertation, I focus on Public Goods games, and in particular in
understanding under which conditions can the public goods be supplied
through voluntary contributions when players interact in groups. I not only
focus on how, through incentive mechanisms or exploiting behavioural reg-
ularities, cooperation can emerge, but on what are the implications of the
needed mechanisms in terms of the total welfare of the society. In particu-
lar, I study Voluntary Contribution Games and focus on mechanisms that
have been shown to lead to high cooperation without needing allow pay-
off manipulations, such as transfers or subtractions of wealth. The aim is
to assess, using a mixture of analytical, computational and experimental
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tools, how robust are these positive predictions (in terms of cooperation)
when more generals models, thus closer to real-world social dilemmas, are
taken into account.

I do this by first looking at the family of “grouping" mechanisms: these
mechanisms have been shown to result in almost Pareto-efficient equilibria
by ranking players based on their contributions and then ranking them
accordingly. I first test what is the effect on the equilibria predictions of
the game if different action spaces and a wider range of public goods
provision efficacies are considered. I find that the equilibria do not depend
much on the exact nature of the available action space but that they are
very much dependent on “how good" the public-good provision efficacy
is.

A central focus of this dissertation is to tackle a crucial limitation of pre-
vious scholarship: accounting for diversity among players. Using a mixture
of analytical and computational tools, I show that the consequences of in-
cluding heterogeneous agents in the model, while of course depending on
the exact structure of the game, are often quite detrimental: Indeed, unless
the action space of the game is very coarse, all the highly efficient equilib-
ria realized in the case of homogeneous agents cease to exist; instead, the
game reverts back to either the fully non contributive equilibrium, or to
new, complex, highly inefficient mixed strategies.

I also address the case of imperfect grouping mechanisms by adding
noise to the observed contributions and show that, if the noise is not too
high, nearly efficient equilibria continue to exist whenever they exist in
case of perfect matching (albeit for a smaller parameters’ set).

Building on the above results, I investigate how the equilibria of the
games discussed above change when moving from the one-shot case to
repeated interactions. I show that, due to wealth accumulation, the het-
erogeneity among players increases over time, thus leading to different
equilibria than in the one-shot case. Having introduced agents’ diversity,
different criteria based on which one could assign agents to groups are also
automatically introduced. Interestingly, it is possible to show that the aver-
age cooperation among agents dramatically depends on which criterion it
is used to rank the agents.

Furthermore, for both the one-shot and repeated games, I examine the
welfare effect of the different mechanisms discussed above. Interpreting
noise and ranking criteria as policy tools, I determine which choices would
maximize the welfare in the population, from the point of view of a social
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planner whose preferences place positive weight on maximal efficiency
and minimal inequality among the population.

Lastly, I shift the focus on “scoring", a behavioural mechanism also
known to achieve high level of cooperation in two-players games with
repeated interactions, by implementing a reputation dynamic as a driver
of indirect reciprocity. I extend scoring mechanisms to group interactions,
considering the different degrees of available information that naturally
emerge due to the grouping structure (e.g. players might only be able to
observe the average performance of a group). I also investigate whether
it is possible to decentralize the scoring mechanism by allowing players
to themselves rate their fellow group members. Using a behavioural lab-
oratory experiment, I test several scoring rules which apply to group in-
teractions (differing with respect to how much information regarding past
behaviour of other players was provided) and find unambiguously nega-
tive results: All the proposed scoring rule fail to sustain cooperation on
a longer time-scale, even image scoring, i.e. the one that was experimen-
tally shown to stabilize high level of cooperative behaviour in two players
interactions.

This thesis only took some initial steps in the direction of giving answers
to the fundamental questions concerning the existence and robustness of
efficient equilibria of VCGs played in groups, and there is much that still
needs to be addressed:
An important assumption of the models discussed above regarded which
behavioural rules are followed by the agents. An exiting avenue for fu-
ture work, both theoretical and experimental, is to consider more realis-
tic agents’ behaviours, in particular taking into account the effect of play-
ers following different behavioural rules while interacting with each other.
A further possible research direction is to consider the effects of a bet-
ter players’ “memory": computationally, by implementing more sophisti-
cated strategy selection dynamics than myopic best response, and experi-
mentally, by testing for scoring mechanisms that allow players to “build"
their reputation over multiple rounds. Finally, the combination of multi-
ple mechanisms which individually are not able to sustain cooperation in
groups but that might be able to do it jointly, should be investigated.

More broadly, all the mechanisms that were considered in this thesis try
to incentivize contributions to a public good by implementing mechanisms
that reward a “good" behaviour, be it via contribution-based grouping or
reputation, and require no payoff transfers between players. However, the
results presented in this dissertation show that there is still much that
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we do not know about Voluntary Contribution Games (and Public Goods
Games in general) when played in a group setting. Understanding such
settings is of fundamental interest due to the fact that most real-world in-
teractions take place in groups, thus making it crucial to extend our models
to these situations in order to better apply whatever insight is gained to
address real social dilemmas.
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A P P E N D I X : A S S O RTAT I V E M AT C H I N G W I T H
I N E Q U A L I T Y I N V O L U N TA RY C O N T R I B U T I O N G A M E S

a.1 efficiency loss as a function of the endowment distri-
bution

The following is an heatmap displaying the efficiency loss for different
widths of the endowment distribution.
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Figure A.1: Caption on the following page.
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Figure A.1: Here we show the loss of efficiency in case of heterogeneous play-
ers with respect to the level of contribution that would have been
achieved in the homogeneous case. A 100% loss (dark red) indicates
that all players contribute nothing and thus that there is a complete
loss of efficiency with respect to the homogeneous case. A 0% loss
(light blue) means that the system exhibits the same efficiency that it
would have with homogeneous players. A negative loss (dark blue)
indicates that when endowments are heterogeneous the equilibrium
reaches a higher efficiency than it would have in the homogeneous
case. As predicted, for superlinear payoffs γ ≥ 1 the only possible
equilibrium is non contribution by all and thus the loss of efficiency
is total (dark red upper stripe). For intermediate sublinear payoff
we can see that the efficiency is not completely lost and that it goes
from being quite low to being closer to the homogeneous case. The
quantitative value of efficiency that the mixed equilibrium achieves
depends on the value of the mpcr and the width of the distribu-
tion of initial wealth as well as from other parameters. Finally, for
γ ≤ γ̄ we first observe a slight increase in efficiency (dark blue line)
and then the efficiency approaches the homogeneous one (light blue
stripe), on account of the benefits of cooperation being obtainable for
an arbitrary small contribution. For the width of the distribution ap-
proaching 0 we observe, as expected, the Nash Equilibria in case of
homogeneous endowments (blue column on the left). Hence, for a
wide range of values of γ, we observe a significant loss in efficiency
compared to the homogeneous case. The simulation was obtained
for the following set of parameters: N = 100, S = 4, Q = 0.6, W0 = 2,
EN = 50 and p = 0.2. For these parameters, γ̄ ≈ 0.18 .

The picture shows that the loss of efficiency doesn’t seem to change
much when changing the width of the endowments distribuion. As ex-
pected, for width ≈ 0, we observe the Nash equilibrium for homogeneous
endowments.

For different values of the marginal per capita rate of return, we observe
that the higher the mpcr, the wider is the area with partial efficiency losses
in the picture and the smaller is the gain in efficiency around γ̄. The picture
below
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Figure A.2: This figure is the equivalent of the previous figure but with a lower
marginal per caputa rate of return. Compared to figure A.1, we ob-
serve a bigger area with complete (100%) efficiency loss. We also ob-
serve a much higher increase in the efficiency gain around γ̄ (which
for this parameters is ≈ 0.3.
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A P P E N D I X : H E T E R O G E N O U S A G E N T S I N V O L U N TA RY
C O N T R I B U T I O N G A M E S W I T H A S S O RTAT I V E
M AT C H I N G A N D W E A LT H A C C U M U L AT I O N

b.1 simulation snapshots

The following are snapshots of a sample realization of the simulation de-
scribed in chapter 4 for all the different ranking criteria and taken at an
early and later stage of the simulation.
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Figure B.1: Early snapshot of a sample realization of the simulation described
in chapter 4 for the ranking criterion that takes into account the total
contributions (case 1). The scatter plot depicts the entire population,
with each agent represented by a dot. The abscissa of an agent indi-
cates which percentage of his wealth he contributed to the common
pool while his ordinate indicates his current wealth. The black cross
marks the population average. The color of each agent indicates how
talented he is, ranging from low talent (blue) to high talent (red).
The simulation was obtained with the following set of parameters:
N = 500, S = 4, Q = 0.3, σ = 0.22, λ = 20.
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Figure B.2: Late snapshot of a sample realization of the simulation described in
chapter 4 for the ranking criterion that takes into account the total
contributions (case 1). The scatter plot depicts the entire population,
with each agent represented by a dot. The abscissa of an agent indi-
cates which percentage of his wealth he contributed to the common
pool while his ordinate indicates his current wealth. The black cross
marks the population average. The color of each agent indicates how
talented he is, ranging from low talent (blue) to high talent (red).
The simulation was obtained with the following set of parameters:
N = 500, S = 4, Q = 0.3, σ = 0.22, λ = 20.
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Figure B.3: Early snapshot of a sample realization of the simulation described
in chapter 4 for the ranking criterion that takes into account only
the total wealth contributed by each player (case 2). The scatter plot
depicts the entire population, with each agent represented by a dot.
The abscissa of an agent indicates which percentage of his wealth
he contributed to the common pool while his ordinate indicates his
current wealth. The black cross marks the population average. The
color of each agent indicates how talented he is, ranging from low
talent (blue) to high talent (red). The simulation was obtained with
the following set of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22,
λ = 20.
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Figure B.4: Late snapshot of a sample realization of the simulation described
in chapter 4 for the ranking criterion that takes into account only
the total wealth contributed by each player (case 2). The scatter plot
depicts the entire population, with each agent represented by a dot.
The abscissa of an agent indicates which percentage of his wealth
he contributed to the common pool while his ordinate indicates his
current wealth. The black cross marks the population average. The
color of each agent indicates how talented he is, ranging from low
talent (blue) to high talent (red). The simulation was obtained with
the following set of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22,
λ = 20.
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Figure B.5: Early snapshot of a sample realization of the simulation described in
chapter 4 for the ranking criterion that takes into account the percent-
age contributed and the talent of each player (case 3). The scatter plot
depicts the entire population, with each agent represented by a dot.
The abscissa of an agent indicates which percentage of his wealth
he contributed to the common pool while his ordinate indicates his
current wealth. The black cross marks the population average. The
color of each agent indicates how talented he is, ranging from low
talent (blue) to high talent (red). The simulation was obtained with
the following set of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22,
λ = 20.
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Figure B.6: Late snapshot of a sample realization of the simulation described in
chapter 4 for the ranking criterion that takes into account the percent-
age contributed and the talent of each player (case 3). The scatter plot
depicts the entire population, with each agent represented by a dot.
The abscissa of an agent indicates which percentage of his wealth
he contributed to the common pool while his ordinate indicates his
current wealth. The black cross marks the population average. The
color of each agent indicates how talented he is, ranging from low
talent (blue) to high talent (red). The simulation was obtained with
the following set of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22,
λ = 20.
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Figure B.7: Early snapshot of a sample realization of the simulation described
in chapter 4 for the ranking criterion that takes into account only the
percentage of wealth contributed by each player (case 4). The scat-
ter plot depicts the entire population, with each agent represented
by a dot. The abscissa of an agent indicates which percentage of
his wealth he contributed to the common pool while his ordinate
indicates his current wealth. The black cross marks the population
average. The color of each agent indicates how talented he is, rang-
ing from low talent (blue) to high talent (red). The simulation was
obtained with the following set of parameters: N = 500, S = 4,
Q = 0.3, σ = 0.22, λ = 20.
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Figure B.8: Late snapshot of a sample realization of the simulation described in
chapter 4 for the ranking criterion that takes into account only the
percentage of wealth contributed by each player (case 4). The scat-
ter plot depicts the entire population, with each agent represented
by a dot. The abscissa of an agent indicates which percentage of
his wealth he contributed to the common pool while his ordinate
indicates his current wealth. The black cross marks the population
average. The color of each agent indicates how talented he is, rang-
ing from low talent (blue) to high talent (red). The simulation was
obtained with the following set of parameters: N = 500, S = 4,
Q = 0.3, σ = 0.22, λ = 20.
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b.2 snapshots of wealth distribution

The following figures show snapshots of the wealth distribution of the pop-
ulation at a late stage of the game for a sample realization of the simulation
described in chapter 4 and for all the different ranking criteria. In the pic-
tures, it is clearly possible to observe that in the late stage of the game,
most of the wealth produced in the population is owned by very few indi-
viduals, with most of the population owning virtually nothing. This seems
to hold independently of the ranking criterion used in the simulation, ex-
cept for when only the percentage of wealth contributed by each player is
taken into account (Fig. B.12,case 4).

Figure B.9: Snapshot of the wealth distribution in the population of a sample
realization of the simulation described in chapter 4 for the ranking
criterion that takes into account the total contributions (case 1). The
line indicates how many agents in the population hold an amount
of wealth x, with x being the value of the abscissa. The simulation
was obtained with the following set of parameters: N = 500, S = 4,
Q = 0.3, σ = 0.22, λ = 20.
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Figure B.10: Snapshot of the wealth distribution in the population of a sample
realization of the simulation described in chapter 4 for the ranking
criterion that takes into account only the total wealth contributed
by each player (case 2). The line indicates how many agents in the
population hold an amount of wealth x, with x being the value of
the abscissa. The simulation was obtained with the following set of
parameters: N = 500, S = 4, Q = 0.3, σ = 0.22, λ = 20.
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Figure B.11: Snapshot of the wealth distribution in the population of a sample
realization of the simulation described in chapter 4 for the ranking
criterion that takes into account the percentage contributed and the
talent of each player (case 3). The line indicates how many agents in
the population hold an amount of wealth x, with x being the value
of the abscissa. The simulation was obtained with the following set
of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22, λ = 20.
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Figure B.12: Snapshot of the wealth distribution in the population of a sample
realization of the simulation described in chapter 4 for the rank-
ing criterion that takes into account only the percentage of wealth
contributed by each player (case 4). The line indicates how many
agents in the population hold an amount of wealth x, with x be-
ing the value of the abscissa. The simulation was obtained with the
following set of parameters: N = 500, S = 4, Q = 0.3, σ = 0.22,
λ = 20.
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b.3 average cooperation levels

The following figure depicts the average cooperation as a function of time
for all the different ranking criteria.
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Figure B.13: Average cooperation as a function of time for all the ranking crite-
ria: case 1 in blue, case 2 in green, case 3 in red and case 4 in cyan.
The results are obtained averaging over 2000 simulations and the
dotted lines represent the 95% confidence interval for the ensemble
average. After an initial growth in cooperation comparable for all
cases, one observes that when agents are ranked solely based on
their percentage-wise contribution αi, cooperation seems to stabi-
lize around 40% (cyan line). Instead, the ranking criteria that take
into account the agents heterogeneity result into a much higher
growth for the cooperation (blue, green and red lines). However,
when players are ranked taking into account the total amount of
wealth contributed, the amount of cooperation in the population
starts to decline (blue and green lines). The results were obtained
with the following set of parameters: N = 500, S = 4, Q = 0.3,
σ = 0.22, λ = 20, T = 350.
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c.1 detailed experimental results

In the following we show the percentage of cooperators as a function of
time for each treatment and phase. The plots show data separately for the
three phases: the Initial phase (denoted in green) and the first (red) and
second (blue) scoring phases. We immediately observe from the pictures
that there seem to be no qualitative difference between the behavior of
players in the first and second scoring phase.

The errors bars indicate the 95% Binomial proportion confidence inter-
val1. The difference in the error bars’ size depends on the wide difference
in the number of available data points2.

Because not all treatments were played in every phase (see Table 2 in
the main manuscript), not all the plots show data from all the three phases
of the experiment; e.g. only the No scoring treatment was played during
the initial phase and so for all the other treatments there is no plot for the
Initial Phase of the experiment.

1 For an exact definition see e.g. [186].
2 Because we did not run experiments for all possible treatments combinations, the number

of data points available for each treatment differs considerably. E.g the Image self scoring
treatment was only run before the self scoring treatment, resulting in many less data points
for it compared to other treatments. Furthermore, the No scoring treatment has been run
at least once in every session (during the first phase), thus resulting in more available data
points than all the other treatments.
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Figure C.1: Average percentage of cooperators as a function of time for the No
scoring treatment. The three phases are shown separately: the initial
phase in green, first scoring phase in red and the second one in blue.
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Figure C.2: Average percentage of cooperators as a function of time for the Im-
age scoring treatment. The phases are shown separately: the first
scoring phase in red and the second one in blue. In no session, the
Image scoring treatment was never played during the Initial phase.
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Group scoring
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Figure C.3: Average percentage of cooperators as a function of time for the
Group scoring treatment. The phases are shown separately: the first
scoring phase in red and the second one in blue. In no session, the
Group scoring treatment was never played during the Initial phase.
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Figure C.4: Average percentage of cooperators as a function of time for the Self
scoring treatment. The phases are shown separately: the first scoring
phase in red and the second one in blue. In no session, the Image
scoring treatment was never played during the Self phase.
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Image self scoring
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Figure C.5: Average percentage of cooperators as a function of time for the Im-
age self scoring treatment. The Image self scoring treatment was
only played during the first scoring phase.
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c.2 percentage of cooperators as a function of the observed

score in their group

In the following, we plot the percentage of cooperators as a function of the
observed score in their group.

In the Image and Group score figures, we can observe that players con-
tribute more with increasing observed score in their group. However, play-
ers seem to do so with a downward bias, especially for high score values;
this downward bias results in a steady reduction of "good players"3 in the
population and thus in the breakdown of whatever positive effect the scor-
ing mechanism might have had on the cooperative behavior of players.

In the plots below, the bars indicate the 95% Binomial proportion con-
fidence interval, computed using the Wilson score interval1. The Wilson
score was chosen because it is well behaved even for small sample sizes
and extreme probabilities, and it returns asymmetric confidence intervals4.

The numbers at the side of each point indicate how many experimental
points contributed to the average. The different number of observations
derives from the fact that different scoring mechanisms produce a different
number of possible combinations of scores in a group.

3 I.e. players with a high score.
4 A focal property of the Wilson score is that it returns non-vanishing error bars for small

sample sizes even when the expected probability is 0 or 1.
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Figure C.6: Cooperation as a function of observed score for the Image scoring
treatment. The red line in the figure represents the identity line.
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Figure C.7: Cooperation as a function of observed score for the Group scoring
treatment. The red line in the figure represents the identity line. The
dashed error bar indicates that, due to the low number of observa-
tions for that point, it is not possible to provide a good estimation
of the confidence interval; nevertheless, the best estimation is pro-
vided.

Due to the high numbers of possible values for the Self and Image Self
scores, the related figures are more chaotic but a similar trend seems to be
present as well.



142 appendix : groups and scores : the decline of cooperation

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Self scoring

Sum of scores in the group

P
er

ce
nt

ag
e 

of
 c

on
tr

ib
ut

or
s

128

1

5

1

8

17

16

30

34
53

47

63

62

63

76

84

82
85

76

60

61

63 46
42 38

19

20

Figure C.8: Cooperation as a function of observed score for the Self scoring treat-
ment. The red line in the figure represents the identity line. The
dashed error bars indicate that, due to the low number of observa-
tions for that points, it is not possible to provide a good estimation
of the confidence intervals; nevertheless, the best estimations are
provided.
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Figure C.9: Cooperation as a function of observed score for the Image self scor-
ing treatment. The red line in the figure represents the identity line.
The dashed error bars indicate that, due to the low number of ob-
servations for that points, it is not possible to provide a good esti-
mation of the confidence intervals; nevertheless, the best estimations
are provided.

We now look at the case where no score at all was provided to the play-
ers: in the following we plot the percentage of cooperation in the group as
a function of the image score that the players would have observed if the
information would have been provided, i.e. as a function of people in the
group that contributed in the previous round. In this case we observe no
apparent trend of increasing cooperation.

This suggests that players were indeed responding to the observed scores
in the group, and that higher levels of cooperation were not just an artifact
due to the correlation between the high scores and high levels of coopera-
tion, i.e. purely a result of conditional cooperation.
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Figure C.10: Cooperation as a function of what would have been the observed
score for the No scoring treatment. The red line in the figure repre-
sents the identity line.

In order to further highlight the difference between the cases where scor-
ing is provided or not, we also plot together the image scoring (in black)
and no scoring case (in black).
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Figure C.11: Comparison between the No scoring (black) and the Image scoring
(red) treatments: The above picture shows the average cooperation
as a function of the scores in the group. We can discern an upward
trend for the Image scoring case (red line) but there seem to be no
significant trend in the case of No scoring (black line). This suggests
that players are indeed responding to other players’ scores.
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c.3 further statistical analysis

In the following, we present a different statistical analysis to test whether
it is possible to statistically distinguish between treatments.

In accordance to the test presented in the main manuscript, because of
the potential correlations between decisions taken by player i at time t and
all decisions taken at t− 1 (also known as temporal autocorrelations), we
decided to perform the statistical test only on the data acquired during the
first round of each phase. For completeness, at the end of this section we
present the same test performed on the entire dataset.

Our goal is to try to understand whether the null hypothesis H0 that
treatments have no significant impact on the decisions taken by the agents
is verified. For this reason, we performed a permutation test5 using the
between sum of squares (SSB) as statistics:

SSB =
m

∑
i=1

ni (ȳ− ȳi)
2

where i represents a treatment, ȳi the average cooperation in that treat-
ment and ȳ the overall average cooperation.

The idea behind the test is to randomly permute treatments within
sessions many times, thus creating a random sample of all the possible
matches between our observable and the treatment under which they have
been observed (see figure for a two dimensional example with 3 treatments
tested 3 times each).

5 See e.g. [187–190] for a review and example applications of permutation tests.
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Figure C.12: Example of permutation. Every symbol represents data collected in
an experiment session. X, 4 and O indicate that the data were col-
lected during the first, second and third session respectively. Green
indicates that data were collected during treatment 1, red during
treatment 2 and blue during treatment 3. Ti is the mean for treat-
ment i while y represents the global mean.

For every random permutation we computed the resulting SSB, thus
obtaining an histogram representing the empirical distribution of the SSB
values.

We can now compare two hypothesis: The null hypothesis (H0), where
treatments have no impact on the decisions taken by the agents and the al-
ternative hypothesis (H1) where we should observe statistical significance
of treatments.

To compare the two hypothesis, we calculate the SBB for our original
data (let us call it SBB∗) and we compute how likely it is (using the em-
pirical observed cumulative distribution function) to observe SBB∗ under
H0.

Here is what we obtain:
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Figure C.13: The histogram represents the frequency of observed sbb values ob-
tained from 1000000 permutations. The blue line indicates where
the SBB for the original data lies.
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Figure C.14: Here we plot the empirical cumulative distribution function ob-
tained from the permutation. From it, it is possible to compute the
empirical p-value for SBB∗.

From the figures above we can clearly observe that H0 is rejected and
thus that the treatments are not all statistically indistinguishable from each
other (the observed p-value is < 0.05). This is in line with the results pre-
sented in table 3 where we observe that some treatments are significantly
different from each other.

For completeness, in the following we show the histogram and empirical
CDF for the entire dataset (note that some of the points in the complete
dataset may be autocorrelated):
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Figure C.15: Histogram (a) and empirical CDF (b) obtained using the complete
dataset.
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c.4 decision making micro model

In the following we provide a simple model for each player’s decision
making and we subsequently fit it to our data.

We hypothesize that a player could act according to one or more of these
behavioral rules:

• Unconditional defection (cooperation): Players could just uncondi-
tionally defect or cooperate, regardless of the other players’ actions.
We find that slightly less of 20% of the subjects in our dataset are
unconditional defectors and that two players are unconditional coop-
erators.

• Conditional cooperation: Players’ experiences in their previous group(s)
might influence their propensity to cooperate in the future. This im-
plies that players are sensitive to the decisions taken by other players
in the past so that the more players cooperated with them in the past,
the more will they tend to cooperate in the future6. Due to the binary
nature of actions in the multi-player PD, we get non linear thresh-
olds policies for conditional cooperation; i.e. a player might decide
to cooperate if 1,2 or 3 players (other than himself) cooperated in
his previous group. Figure C.16 shows how a conditional cooperator
would behave depending on the number of people N that cooperated
in his previous group and the conditional cooperation threshold.

• Indirect reciprocity: Players have a propensity to cooperate with peo-
ple that they know cooperated with others in the previous interaction.
This means that players are sensitive to the score of the players whit
which they interact. Again, the binary nature of actions results in
more than threshold also for indirect reciprocity; i.e. players might
decide to cooperate if the aggregated score that they observe in the
group is equal or higher than different values (fixed in our case to 1,2
or 3). Figure C.16 shows how an indirect reciprocator would behave
depending on the observed sum of scores and his indirect reciprocity
threshold.

• Learning: While playing, players might figure out which actions lead
to higher payoff. Hence a player would decide to keep his current
strategy if the payoff received in the current round is at least equal to
the one received in the previous round and switch action otherwise.

6 See e.g. [44, 47, 191] for theoretical and empirical results on conditional cooperation.
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Figure C.17 shows how a player behaving according to our definition
of learning would choose his following action based on his actions
in the current and previous rounds (respectively at and at−1) and the
resulting payoffs (respectively φt and φt−1).

Conditional Cooperation
N  = # of people cooperating 
in players'group at time t-1

N
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Figure C.16: Predicted action for conditional cooperation (left) and indirect reci-
procity (right). Due to the binary nature of actions in the multi-
player PD, we obtain non linear thresholds policies for both condi-
tional cooperation and indirect reciprocity. The decision to cooper-
ate or not for a conditional cooperator will depend on the number
of people N that cooperated in his previous group and on his con-
ditional cooperation threshold. The decision to cooperate or not for
an indirect reciprocator depends on the sum of the scores observed
in his current group N and on his indirect reciprocity threshold
(here set at 1,2 or 3).

We fitted these behavioral rules to the data collected in our experiment
and the results are in line with the macroscopic analysis presented in the
main manuscript: We find that people significantly react to the information
provided by the score. In fact, people seem to behave more according to
indirect reciprocity rules, the more robust (or trustworthy) is the scoring
mechanism; e.g. in the image scoring treatments players seem to rely more
on an indirect reciprocity strategy than in the group scoring treatments
and even more so for the self scoring treatment. When information on the
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Figure C.17: Predicted action for a player behaving according to (our definition)
of learning. A player would decide to keep his current action (at ∈
{C, D}) if the payoff received in the current round φt is at least
equal to the one received in the previous round φt−1 and switch
action otherwise.
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score of players is either unreliable (as in the self scoring treatment) or
unavailable (as in the no scoring case), people revert a conditional cooper-
ation behavior.

Crucially, we find that players seem to have high thresholds for both
conditional cooperation and indirect reciprocity. This implies that players
react to other players cooperating, but not as much as they should to keep
a steady percentage of cooperative players in the population. This is in per-
fect accord with what observed in Figure 3 in the main manuscript and it
results in a steady shrinking of players with a positive score, thus negating
the positive effect of reputation on cooperative behavior culminating in the
"spiraling down" of cooperation.

We also find that there is a significant percentage of learning behavior
across all treatments. Table C.1 summarizes our findings.

For a more detailed explanation of the regressions that we performed
and for detailed results, we refer the readers to the following subsections:
in subsection C.4.1 we present the detailed results of regressions using
the first 12 out of 20 periods and in subsection C.4.2 the results using all
periods. Finally, in subsection C.4.3 we show the marginal effect of each
independent variable over the dependent variable.
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Learning Cond. Coop. Indirect Rec.

No information 3 3 3 NA

Image scoring 3 3 7 3 3

Group scoring 3 7 3

Self scoring 3 3 3 3 7

Image self scoring 3 7 3

Table C.1: Summary of the outcome of the regressions: In the above table we
summarize how significant for each treatment are Conditional Coop-
eration, Indirect Reciprocity and Learning. A double tick indicates
that a behavioral rule is highly significant in a given treatment, a sin-
gle tick signals that a rule is somehow significant and a cross indicates
no evidence of that behavior in a given treatment. The results shown
in the table are in agreement with the macro analysis presented in
the main text: people seem to behave more according to indirect reci-
procity rules, the more robust is the scoring mechanism. When scores
are unreliable or not available, players revert to conditional coopera-
tion. We also find for all treatments a significant percentage of learn-
ing behavior.

c.4.1 Fit for first 12 rounds

Due to the large decline in cooperation happening during the late rounds
of every treatment, it is harder to distinguish between different behavioral
rules since all of the rules we consider would predict the same outcome
when nearly everyone defects. For this reason, we performed our regres-
sions using only the first 12 rounds of each phase, thus resulting in 10 data
points for each phase7. Regressions taking into account the full dataset, are
presented in the next subsection.

For every treatment, we performed a linear and a probit regression of
the full model and of subsets of it.

The full model with which we fit our data is:

Action = α + β1 ·OneCC + β2 · TwoCC + β3 · ThreeCC + β4 ·OneIR

+ β5 · TwoIR + β6 · ThreeIR + β7 · Learn_Inert + β8 · tindex (C.1)

where

7 The predictions of the behavioral rules can be tested starting from round 3, because one needs
at and at−1 to predict the action at at+1.
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• Action is the dependent variable. It can only take two values: either
defect or cooperate.

• OneCC is a dummy variable signaling whether at least one person
cooperated in the group of the active player in the previous round.

• TwoCC is a dummy variable signaling whether at least two people
cooperated in the group of the active player in the previous round.

• ThreeCC is a dummy variable signaling whether at least three people
cooperated in the group of the active player in the previous round.

• OneIR is a dummy variable signaling whether the sum of the scores
in the active player’s group (excluding the active player’s score) is at
least one.

• TwoIR is a dummy variable signaling whether the sum of the scores
in the active player’s group (excluding the active player’s score) is at
least two.

• ThreeIR is a dummy variable signaling whether the sum of the scores
in the active player’s group (excluding the active player’s score) is at
least three.

• LearnInert is a dummy variable taking signaling whether or not the
player’s choice is consistent with the learning behavior (as defined
above).

• tindex represents the round in which the decision takes place. It
ranges from 3 to 12.

Below are the results of the regressions that we performed, presented
using the texreg [192] package. For every treatment we performed a linear
and a probit regression for the entire model and then a probit regression
for subsets of the model, i.e. taking into account only conditional cooper-
ation or indirect reciprocity (OnlyCC & OnlyIR) or only one of the three
possible thresholds (Only1, Only2, Only3).
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Table C.2: Regression results for the No scoring treatment when only the first 12

rounds are taken into account. Due to the lack of information about
the scores of players in this treatment, the model considered here
doesn’t contain the indirect reciprocity dummy variables.



158 appendix : groups and scores : the decline of cooperation

Image scoring
Pr

ob
it

Li
ne

ar
O

nl
yC

C
O

nl
yI

R
O

nl
y1

O
nl

y2
O

nl
y3

(I
nt

er
ce

pt
)

−
0.

76
∗∗
∗

0.
22
∗∗
∗

−
0.

12
−

0.
94
∗∗
∗

−
0.

56
∗∗

−
0.

78
∗∗
∗

−
0.

50
∗∗
∗

(0
.1

8)
(0

.0
6)

(0
.1

5)
(0

.1
6)

(0
.1

7)
(0

.1
5)

(0
.1

3)

O
ne

C
C

−
0.

23
∗

−
0.

07
∗

−
0.

12
−

0.
10

(0
.1

0)
(0

.0
4)

(0
.1

0)
(0

.0
9)

Tw
oC

C
−

0.
02

−
0.

00
0.

12
−

0.
04

(0
.1

1)
(0

.0
4)

(0
.1

0)
(0

.0
9)

Th
re

eC
C

0.
08

0.
02

0.
27

0.
11

(0
.1

6)
(0

.0
5)

(0
.1

5)
(0

.1
4)

O
ne

IR
0.

14
0.

04
0.

12
0.

60
∗∗
∗

(0
.1

3)
(0

.0
4)

(0
.1

2)
(0

.1
1)

Tw
oI

R
0.

65
∗∗
∗

0.
23
∗∗
∗

0.
63
∗∗
∗

0.
82
∗∗
∗

(0
.1

1)
(0

.0
4)

(0
.1

0)
(0

.0
9)

Th
re

eI
R

0.
42
∗∗
∗

0.
16
∗∗
∗

0.
40
∗∗
∗

0.
76
∗∗
∗

(0
.1

2)
(0

.0
4)

(0
.1

2)
(0

.1
1)

Le
ar

n_
In

er
t

0.
42
∗∗
∗

0.
14
∗∗
∗

0.
45
∗∗
∗

0.
44
∗∗
∗

0.
45
∗∗
∗

0.
45
∗∗
∗

0.
44
∗∗
∗

(0
.0

8)
(0

.0
3)

(0
.0

8)
(0

.0
8)

(0
.0

8)
(0

.0
8)

(0
.0

8)

ti
nd

ex
−

0.
01

−
0.

00
−

0.
04
∗∗

−
0.

00
−

0.
04
∗∗

−
0.

01
−

0.
02

(0
.0

2)
(0

.0
1)

(0
.0

1)
(0

.0
2)

(0
.0

1)
(0

.0
1)

(0
.0

1)

A
IC

12
75

.6
8

13
76

.7
2

12
75

.5
4

13
50

.9
2

12
85

.8
7

13
26

.0
7

BI
C

13
20

.3
8

14
06

.5
2

13
05

.3
4

13
75

.7
5

13
10

.7
0

13
50

.9
0

Lo
g

Li
ke

lih
oo

d
−

62
8.

84
−

68
2.

36
−

63
1.

77
−

67
0.

46
−

63
7.

93
−

65
8.

03

D
ev

ia
nc

e
12

57
.6

8
13

64
.7

2
12

63
.5

4
13

40
.9

2
12

75
.8

7
13

16
.0

7

N
um

.o
bs

.
10

60
10

60
10

60
10

60
10

60
10

60
10

60

R
2

0.
15

A
dj

.R
2

0.
14

R
M

SE
0.

45

∗∗
∗ p

<
0.

00
1,
∗∗

p
<

0.
01

,∗
p
<

0.
05

Table C.3: Regression results for the Image scoring treatment when only the first
12 rounds are taken into account.
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Table C.4: Regression results for the Group scoring treatment when only the
first 12 rounds are taken into account.
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Table C.5: Regression results for the Self scoring treatment when only the first
12 rounds are taken into account.
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Table C.6: Regression results for the Image self scoring treatment when only the
first 12 rounds are taken into account.
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c.4.2 Fit for all rounds

In this sections we present the results of the regressions when the entire
dataset is taken into consideration. The model with which we fit the data
is exactly the same as the one presented in the previous subsection (except,
of course, for tindex that in this case ranges from 3 to 20).
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Table C.7: Regression results for the No scoring treatment when all the rounds
are taken into account. Due to the lack of information about the scores
of players in this treatment, the model considered here doesn’t con-
tain the indirect reciprocity dummy variables.
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Table C.8: Regression results for the Image scoring treatment when all the
rounds are taken into account.
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Table C.9: Regression results for the Group scoring treatment when all the
rounds are taken into account.
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Table C.10: Regression results for the Self scoring treatment when all the rounds
are taken into account.
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Table C.11: Regression results for the Image Self scoring treatment when all the
rounds are taken into account.
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c.4.3 Marginal effects

In the following subsection, we plot the marginal effects of each indepen-
dent variable over the dependent variable, i.e. the choice to cooperate or
defect in the following round, as obtained from the probit regression8.

For each treatment, we compute the average of the sample marginal
effects, as suggested in Fernihough [193].

The results are shown below; the error bars indicate the confidence in-
terval at 2σ.
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Figure C.18: Marginal effects of all the independent variables for the No scoring
treatment. Due to the lack of information about the scores of play-
ers in this treatment, the model considered here doesn’t contain the
indirect reciprocity dummy variables.

8 The marginal effect m of an independent variable x on a dependent variable y can be inter-
preted as the value such that a unit increase in x increases y by m units.
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Marginal effect for Image scoring
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Figure C.19: Marginal effects of all the independent variables for the Image scor-
ing treatment.
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Marginal effect for Group scoring
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Figure C.20: Marginal effects of all the independent variables for the Group scor-
ing treatment.
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Marginal effect for Self−scoring
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Figure C.21: Marginal effects of all the independent variables for the Self scoring
treatment.
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Marginal effect for Image self−scoring
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Figure C.22: Marginal effects of all the independent variables for the Image self
scoring treatment.
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c.4.4 Order Effects

Throughout both this and the main manuscript, we have assumed that the
order in which treatments are played have no influence over the decision
of the players. This assumption was supported by qualitative observation
of our data and the well known restart effect (see e.g. Andreoni [21]).

Here we very briefly check whether this assumption holds by perform-
ing a very simple linear regression with the order of the treatment as the
only independent variable and the player’s decision as dependent variable:

Order linear regression

(Intercept) 0.41∗∗∗

(0.01)

Order −0.03∗∗∗

(0.01)

R2
0.00

Adj. R2
0.00

Num. obs. 13248

RMSE 0.47

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table C.12: Results of a linear regression assuming the order in which treat-
ments are played as the only independent variable.

As we can observe from the above table, the order in which the treat-
ments are played results to be significant. However, the marginal effect of
it seems to be quite small9.

Hence, we conclude that, while the order is not completely irrelevant,
its effect on the overall decision of the players are small enough that our
approximation remains reasonable.

9 In a linear regression, the coefficient of the regression is a good approximation of the marginal
effect of an independent variable.
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c.5 screenshots

In the following we show screenshots of various stages of the experiment.
These are exactly what the participants saw on their screens.
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179. Grujić, J., Eke, B., Cabrales, A., Cuesta, J. A. & Sánchez, A. Three is
a crowd in iterated prisoner’s dilemmas: Experimental evidence on
reciprocal behavior. Scientific Reports 2 (2012).

180. Barcelo, H. & Capraro, V. Group size effect on cooperation in one-
shot social dilemmas. Scientific Reports 5 (2015).

181. Nosenzo, D., Quercia, S. & Sefton, M. Cooperation in small groups:
The effect of group size. Experimental Economics 18, 4 (2015).

182. Fischbacher, U. z-Tree: Zurich toolbox for ready-made economic ex-
periments. Experimental Economics 10, 171 (2007).

183. Bock, O., Baetge, I. & Nicklisch, A. hroot: Hamburg registration and
organization online tool. European Economic Review 71, 117 (2014).

184. Mann, H. B. & Whitney, D. R. On a test of whether one of two ran-
dom variables is stochastically larger than the other. The Annals of
Mathematical Statistics 18, 50 (1947).

185. Richardson, A. M. Nonparametric statistics: A step-by-step ap-
proach. International Statistical Review 83, 163 (2015).

186. Brown, L. D., Cai, T. T. & DasGupta, A. Interval estimation for a
binomial proportion. Statistical Science, 101 (2001).

187. Fisher, R. A. The design of experiments. (1935).

188. Good, P. Resampling Methods: A Practical Guide to Data Analysis
(Birkhäuser, Basel, CH, 1999).

189. Collingridge, D. S. A primer on quantitized data analysis and per-
mutation testing. Journal of Mixed Methods Research 7, 81 (2013).

190. Phipson, B. & Smyth, G. K. Permutation P-values should never be
zero: Calculating exact P-values when permutations are randomly
drawn. Statistical Applications in Genetics and Molecular Biology 9
(2010).

191. Keser, C. & Van Winden, F. Conditional cooperation and voluntary
contributions to public goods. scandinavian Journal of Economics 102,
23 (2000).



196 bibliography

192. Leifeld, P. texreg: Conversion of Statistical Model Output in R to
LATEX and HTML Tables. Journal of Statistical Software 55, 1 (2013).

193. Fernihough, A. Simple logit and probit marginal effects in R Working Pa-
pers 201122 (School of Economics, University College Dublin, 2011).



C U R R I C U L U M V I TA E

personal data

Name Stefano Duca
Date of Birth December 28, 1988

Place of Birth Naples, Italy
Citizen of Italy

education

October 2011

– March 2014

Jointly: Ludwig Maximilians Universität and Tech-
nische Universität München
Munich, Germany
Final degree: M.Sc. in Theoretical and Mathematical
Physics (1.3/1)

September 2007

– October 2010

Universitá degli studi di Napoli, Federico II,
Naples, Italy
Final degree: B.Sc. in Physics (110/110 cum laude)

September 2002

– July 2007

Liceo Scientifico Statale "Leon Battista Alberti",
Naples, Italy
Final degree: Diploma di Maturità Scientifica
(100/100)

employment

October 2014 – PhD Student
ETH Zürich,
Zurich, Switzerland

March 2014 –
September 2014

Research Assistant
Ludwig Maximilians Universität,
Munich, Germany

197





P U B L I C AT I O N S

Articles in peer-reviewed journals:

1. Duca, S., Helbing, D. & Nax, H. H. Assortative matching with in-
equality in voluntary contribution games. Computational Economics
52, 1029 (2018).

2. Nax, H. H., Murphy, R. O., Duca, S. & Helbing, D. Contribution-
based grouping under noise. Games 8, 50 (2017).

3. Duca, S. & Nax, H. H. Groups and scores: the decline of cooperation.
Journal of The Royal Society Interface 15, 20180158 (2018).

Article under review:

4. Duca, S. Heterogenous agents in voluntary contribution games with assor-
tative matching and wealth accumulation ETH Zürich Working Paper.
2018.

199


	Abstract
	Zusammenfassung
	Riassunto
	Acknowledgements
	Contents
	1 Introduction
	1.1 Preamble
	1.2 Mechanisms
	1.3 Behaviour
	1.4 Dynamics
	1.5 Manuscript contributions
	1.6 Thesis overview

	2 Assortative Matching with Inequality in Voluntary Contribution Games
	2.1 Introduction
	2.2 The model
	2.2.1 Simulation

	2.3 Results
	2.4 Summary of results
	2.5 Appendix: Nash Equilibria

	3 Contribution-based grouping under noise
	3.1 Motivation
	3.2 The Mechanism
	3.2.1 The Model

	3.3 Nash Equilibria
	3.3.1 Game 1: `Baseline'
	3.3.2 Game 2: `Heterogeneity Extension' (Extension 1)
	3.3.3 Game 3: `Noise Extension' (Extension 2)
	3.3.4 Remark: Mixed-Strategy Nash Equilibria

	3.4 Welfare Comparison
	3.4.1 Homogeneous Endowments
	3.4.2 Heterogeneous Endowments

	3.5 Logit Dynamics
	3.6 Summary
	3.7 Appendix: Pure Strategy Nash Equilibria
	3.7.1 Perfect Meritocracy
	3.7.2 Fuzzy Mechanism

	3.8 Appendix: Mixed-Strategy Nash Equilibria
	3.9 Appendix: Properties of the Fuzzy Ranking

	4 Heterogenous agents in voluntary contribution games with assortative matching and wealth accumulation
	4.1 Introduction
	4.2 The model
	4.2.1 Ranking criteria

	4.3 Results
	4.4 Discussion
	4.5 Methods
	4.5.1 Efficiency and Gini coefficient


	5 Groups and scores: the decline of cooperation
	5.1 Introduction

	6 Conclusion
	A Appendix: Assortative Matching with Inequality in Voluntary Contribution Games
	A.1 Efficiency loss as a function of the endowment distribution

	B Appendix: Heterogenous agents in voluntary contribution games with assortative matching and wealth accumulation
	B.1 Simulation snapshots
	B.2 Snapshots of wealth distribution
	B.3 Average Cooperation Levels

	C Appendix: Groups and scores: the decline of cooperation
	C.1 Detailed experimental results
	C.2 Percentage of cooperators as a function of the observed score in their group
	C.3 Further statistical analysis
	C.4 Decision making micro model
	C.4.1 Fit for first 12 rounds
	C.4.2 Fit for all rounds
	C.4.3 Marginal effects
	C.4.4 Order Effects

	C.5 Screenshots

	 Bibliography
	Curriculum Vitae
	Publications

