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Abstract: The SAFIR collaboration is developing a high rate positron emission tomography insert
for a preclinical 7 T magnetic resonance imaging (MRI) device. To meet the desired performance
figures, a large number of readout channels (≈15000) and integration of data digitisation into the
insert are required. Consequently, the insert will consume about 1.3 kW of input power at low
voltages (≤ 3.3 V). This corresponds to large supply currents of several 100 A, requiring heavy and
bulky supply cables. To overcome these problems we developed a compact and MR-compatible
DC-DC stepdown converter module. Our converter is based on an air core inductor and is optimised
for low electromagnetic emissions. It has an input voltage range from 6 V to 24 V and provides an
adjustable output voltage from 1 V almost up to the input voltage. The maximum continuous output
current is 6 A.

We measured conversion efficiencies between 70 % and 87% depending on output load and
input voltage. For the operation conditions foreseen (16 V input voltage, 2.4 V output voltage and
3 A output current), we achieved an efficiency of 83.8%. Our tests inside the MRI demonstrated
the compatibility between the MRI system and the step-down converters developed. No mutual
interference was observed. The signal-to-noise ratio of the MRI remains unaltered, independent of
the activity of the step-down converter under any operation condition and no effect on the operation
of the DC-DC converter was observed.

This successful test of an MR-compatible DC-DC converter creates new opportunities for the
power supply of complex hardware inside an MRI. 49 of the DC-DC converters will be used in
our SAFIR PET insert, but they can also be used in other applications with high power demand in
environments with strong magnetic fields.

Keywords: Multi-modality systems; Voltage distributions; Gamma camera, SPECT, PET
PET/CT, coronary CT angiography (CTA); MRI (whole body, cardiovascular, breast, others),
MR-angiography (MRA)
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1 Introduction

The SAFIR collaboration was formed to develop a positron emission tomography (PET) insert,
which is compatible with an existing preclinical magnetic resonance imaging (MRI) system (Bruker
BioSpec 70/30) [1, 2]. In contrast to other PET inserts, an important part of the SAFIR specification
is continued accurate function at high count rates (high radioactivity in field-of-view), providing
good count statistics for very short time frames (< 5 s). [3–5] The superconducting magnet of the
MRI creates a static 7 T B0-field. Its gradient system (B-GA 20S) has a maximum gradient strength
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of 0.2 T/m and a maximum slew rate of 640 T/sm. The inner diameter is 200 mm, which limits the
outer diameter of the insert. Furthermore the foreseen MRI RF coils (suitable for rat whole body
imaging) have an outer diameter of 114 mm. The remaining ring of 43 mm width can be used for
our electronics and mechanics.

The full detector will comprise 24 identical readout boards for data acquisition. Each sup-
ports 20 Application Specific Integrated Circuits (ASICs) for analogue signal handling, a Field
Programmable Gate Array (FPGA) for digital signal processing, as well as an optical Ethernet link
for communication and various buffer chips for fast signal distribution. The estimated power con-
sumption per board (including losses in the power converters) is about 50 W. Seven intermediate
rails (6x 2.4 V with ≈ 2.5 A and 1x 4.1 V with ≈ 2.0 A) are used to generate all voltages within
these boards. In addition, there are several auxiliary boards, 24 for bias voltage generation and five
for system clock distribution and timing synchronisation. We estimate a total power consumption of
1.3 kW, including losses in the used low drop-out regulators (LDOs), power converters and cabling.
The main power supplies will be located outside the MRI room with a cable length of about 11 m.
Three major problems are associated with supplying the required voltages directly. First, separate
supply lines are needed for the different voltages. Second, the large currents require large wire
cross sections in order to limit the voltage drop. Third, the limited space at the end of the PET
insert is not sufficient to place the corresponding large connectors. Moreover, a remote sensing of
the input voltage at the detector would be desirable to maintain a stable input voltage at different
load conditions. This would further increase the number of connections. DC-DC converters placed
inside the MRI bore solve all these problems. The input currents are lowered by a factor of five to
six and the cabling is simplified, to a single input line with smaller wire cross section. In addition,
remote sensing is not necessary in this configuration.

The MRI scanner’s receive and transmit system operates at frequencies around 300 MHz,
making it very susceptible to electromagnetic interference at this frequency. Commercially available
DC-DC converters use ferromagnetic materials in the core, which are incompatible with operation
in a 7 T field. Moreover, most designs have bad electromagnetic interference (EMI) characteristics.
Until now, to the best of our knowledge, only one group ever suggested the usage of a commercial
DC-DC module inside a 1.5 T MRI, but no results were published [6, 7].

In high energy physics, the usage of DC-DC converters was proposed but with slightly different
requirements [8]. In these applications, radiation hardness is most important, such that commercial
controller ASICs are excluded. This use case also involves strong magnetic fields (3.8 T in the
compact muon solenoid [9]). We used this similarity as a starting point for our research. At CERN,
there are so called FEASTMP modules available [10], which are radiation hard and magnetic field
tolerant DC-DC converter modules (max. 12 V input, max. 10 W/4 A output). Such devices
were successfully tested in the MRI. This inspired and encouraged our own development based on
commercial controller ASICs, which would additionally allow for larger input voltages, larger load
current and higher efficiency. For a successful test, we have to achieve an efficiency of at least
75 % without visible disturbances of the MRI images. The outcome of our efforts is presented in
this work.
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2 Materials

2.1 Schematic

Our development is based on the “LT8640S” ASIC from Analog Devices [11]. This device is a
controller for step-down converters, specially designed for low radio frequency (RF) emission. In
particular, all EMI critical bypass capacitors are integrated, reducing the dependence of the EMI
performance from the printed circuit board (PCB) layout. Furthermore, the ASIC comes in a LQFN
Package, which reduces trace lengths to the absolute minimum. It has a maximum input voltage of
42 V and a maximum continuous output current of 6 A. The schematic of our design is shown in
figure 1. The input capacitors are rated for 25 V and thereby limit the maximum input voltage of
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Figure 1. Schematic of the presented DC-DC converter module.

our converter module. The switching frequency is not fixed, but the minimum is set to 2 MHz (by
resistor R2, figure 1) and the spectrum spread mode is activated. This feature of the controller ASIC
modulates the switching frequency between 2.0 MHz and 2.4 MHz to prevent single emission peaks
in the power spectrum. To reduce EMI emissions we added two reverse geometry capacitors (C2
and C13) close to the LT8640S ASIC. Moreover, there are low pass filters with a cut off frequency
of ∼ 200 kHz on the input and output of the converter module (L2 and L3). We use two standard pin
headers (2.54 mm) for the electrical connections, with eleven pins in total. There are five ground
lines, two input lines, two output lines, one enable line and a power good open collector line. The
resistor R10 is placed outside of the shielding (figure 1), so that it can be changed easily. Together
with R3 and R4 it defines the output voltage. We developed a second version of the converter, with
one additional pin (twelve in total), so that the resistor R10 can be placed external to the converter
module. For the measurements presented in this work, we selected 2.4 V as output voltage. In our
final PET insert, this voltage is used to power 1.8 V LDOs for the components.

2.2 Design & layout

In general, the MRI scanner is sensitive to ferro magnetic materials (distortion of the B0-field), eddy
currents (distortion of the gradient pulses) and EMI (noise in the acquired signal). There are two
current loops (input loop and output loop) in the DC-DC converter which cannot be avoided [12].
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However we minimize the loop area to suppress EMI by placing the capacitors as close as possible
to the ASIC. Furthermore, we deploy a two-part copper shield with a thickness of 0.2 mm around
all main components (see schematics, figure 1). The two filters are placed outside of the shield to
avoid coupling between the inductors. A via fence within the PCB closes the shield completely,
with the exception of two inevitable gaps for input- and output-lines. Minimizing the area of the
critical current loop is important for minimizing the radiated power. For that reason, a four layer
PCB was chosen with an overall size of 17 mm × 33 mm. To ensure MR-compatibility, only non-
magnetic materials can be used (eg. air coil inductors). A conventional ferro-magnetic core would
distort the B0-field and would always be saturated in the MRI. The two small coils in the filters are
commercially available, while the main inductor is specially designed for this module. An image
of the developed DC-DC converter is shown in figure 2.

Figure 2. A picture of the developed device, the main shield as well as the two filters on the in- and output
are visible.

2.3 Main air-core inductor

We use a custom designed solenoid coil with an air core as main inductor. It has 16 windings of
0.8 mm enamelled copper wire (cross section 0.5 mm2). The inductor is rectangular shaped and
has outer dimensions of 4 mm × 8 mm × 13 mm. Due to the Lorentz force, it is necessary to soak
the coil with glue (Araldite Rapid) and to attach it to the PCB. The final coil has an inductance of
about 2.2 µH and a serial resistance of about 18 mΩ.

2.4 Emission measurement setup

The electromagnetic power radiated in the near field around 300 MHz is critical in our application.
Measurements were done with a spectrum analyser (Rohde & Schwarz: FSH4) in combination with
a near field probe (Langer EMV: RF-R 400-1). For the first measurement, the probe was placed
5 mm above the shield of our converter module. In addition we measured 5 mm below the bottom
shield.

2.5 MRI measurement

We performed the MRI measurements inside a Bruker BioSpec 70/30 device with a Bruker B-GA
20S gradient system. The same power supply (Keysight E3645A) and the same electronics load
(Mayuno DC Electronics load DC9711) were used, but they are placed outside of the Faraday cage.
An eight-core cable with shielding connected the power converter in the scanner room with the
power supply and load. The converter was placed centrally above the transmit- and receive coil
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(Bruker “RF RES 300 1H 075/040 QNS TR”). We used an MR transparent plastic ring to fix the
position of the power converter module 35 mm above the MR coil. A mouse sized phantom was
placed centrally in the animal bed. The phantom had a volume of 50 mL and was filled with a
standardized solution from Bruker (water with 1 g/L CuSO4 and 3.6 g/L NaCl).

3 Methods

3.1 Static measurements

For the static measurements, we performed load-regulation and line-regulation tests. These were
also used to evaluate the conversion efficiency. For all measurements we used a linear power supply
(Keysight E3645A) and an electronics load (Mayuno DC Electronics load DC9712). We used 0.5 m
of silicon cables with 0.5 mm2 cross-section to connect the converter to the power supply as well
as to the load. Sense wires on the input and the output were used to measure the voltages and to
maintain a stable input voltage. We varied the load current between 0 A and 6 A in steps of 1 A.
We used the voltages and currents to calculate the efficiency η, defined by:

η =
Pout
Pin

,

with the output power Pout and the input power Pin of the converter module. Since the overall
efficiency of the device is temperature dependent, it was switched off between the different mea-
surement points, to avoid excessive heating. An external temperature sensor was attached to the
copper shielding to verify that the device temperature was below 30 ◦C during each measurement.
The maximum observed temperature increase was 3 K. Furthermore, we measured the output volt-
age and efficiency for a high load operation scenario (16 V input voltage and 4 A output current) at
different device temperatures.

3.2 Dynamic measurements

In addition to the static measurements, we measured the transient behaviour of our power converter
module. We applied load changes up to 6 A for a fixed input voltage of 16 V. We monitored
the output voltage with an oscilloscope (LeCroy WaveRunner 640), directly at the output of the
converter. The maximum voltage drop/overshoot together with the recovery time are reported.

3.3 Emission spectrum measurements

For the emission measurements, the converter was powered with 16 V by a linear power supply
(Keysight E3645A). A constant load of 4 A was applied during the measurement (Mayuno DC
Electronics load DC9712). The MRI is sensitive around 300 MHz and therefore we selected a
measurement range from 297.5 MHz to 302.5 MHz. The resolution band width was set to 100 kHz
and the video band width to 10 kHz. We used the built-in pre-amplifier of the spectrum analyser
(gain x10). In addition, we measured the background spectrum and show it as comparison.

3.4 MRI measurements

Interference measurements in the MRI focused on distortions of the B0-field and on parasitic
coupling into the RF-system. The B0-field was mapped within the water phantom with the standard
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Bruker sequence (field of view: 40 mm×40 mm×40 mm; voxel size: 0.5 mm×0.5 mm×0.5 mm).
The system was shimmed before each measurement and we present three slices of the B0-map. To
analyse the impact on the signal-to-noise ratio we used five repetitive measurements with the Bruker
quality assurance sequence. This sequence is based on a T1-weighted sequence with automatic
post-processing, which fits a circular region-of-interest to the phantom to obtain a signal region and
four regions outside of that to get a background value. The signal-to-noise ratio is calculated and
normalized to the image voxel volume. This test was performed without converter (a), with the
converter module inside the MRI but not powered (b), powered with a load of 2 A (c) and powered
with a load of 4 A (d).

4 Results

4.1 Static measurements

The results of our line- and load measurements are presented in figure 3. The output voltages
dropped linearly by 70 mV with increasing load across the load range. The line regulation was
much better and no deviation was observed. In addition we show the efficiency of the converter
module at room temperature. The results are summarized in figure 4. The highest efficiency of

Figure 3. Load regulation measurements of our DC-DC converter module for three different input voltages
(nominal output voltage 2.4 V at room temperature).

Figure 4. Left: measured efficiency of our DC-DC converter module at room temperature, right: and for
higher temperatures with constant load (16 V input, 4 A load). The selected output voltage is 2.4 V.

86.8 % was measured at an input voltage of 12 V and with an output current of 2 A. For realistic
operation conditions (16 V input voltage, 3 A load) the efficiency is 83.8 %. Finally we analysed the
influence of different temperatures on the efficiency. The efficiency across the observed temperature
range (30 ◦C to 75 ◦C) decreased by about 3 percent points down to 78.9 %. Efficiency decreased
linearly with increasing temperature, with the exception of the first point.
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4.2 Dynamic measurements

An example for the measured transient is shown in figure 5 for a fixed input voltage of 16 V and a
load change from 0 A to 6 A. From this one can derive a maximum voltage drop of 350 mV. After

Figure 5. Left: measured transient for a load change from 0 A to 6 A, right: from 6 A to 0 A. The amplitude
is 50 mV per division and the time scale is 10 µs (20 µs) for the left (right) plot.

about 40 µs the output voltage recovered. The results for smaller load changes are summarized in
table 1. While the maximum voltage drop depends on the magnitude of the current change, the
recovery time is nearly constant with values between 30 µs and 40 µs. The behaviour is different for
load decreases and an example for the decrease from 6 A to 0 A is shown in figure 5. The maximum
voltage overshoot was 320 mV and the recovery time for this setting was 90 µs. Table 1 contains the
results for smaller current changes. In this case not only the maximum voltage overshoot but also
the recovery time was dependent on the amplitude of the current decrease. While the amplitude of
the voltage error was similar compared to the first measurement, the recovery time was larger.

Table 1. Maximum voltage under- and overshoot and recovery times for different load changes.

load change peak voltage drop recovery time
0 A -> 1 A −60 mV 30 µs
0 A -> 2 A −120 mV 30 µs
0 A -> 3 A −175 mV 40 µs
0 A -> 4 A −225 mV 40 µs
0 A -> 5 A −275 mV 40 µs
0 A -> 6 A −350 mV 40 µs
1 A -> 0 A 60 mV 50 µs
2 A -> 0 A 125 mV 55 µs
3 A -> 0 A 175 mV 60 µs
4 A -> 0 A 220 mV 70 µs
5 A -> 0 A 275 mV 80 µs
6 A -> 0 A 320 mV 90 µs

4.3 Emission spectrum measurements

In this subsection we present the measurements with the spectrum analyser (see figure 6). The
background level with the selected settings was −120 dBm. We did not observe any emissions
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Figure 6. Measured emission spectra (green) compared to be background (yellow) on the top (left) and
bottom (right) of the converter module, running at 4 A load and 16 V input voltage.

from our power converter between 297.5 MHz and 302.5 MHz. In addition no differences between
emissions from the top and the bottom side of converter module were visible. Since we did not see
radiated power in the near field at frequencies around 300 MHz, there will be also no power in the
far field.

4.4 MRI measurements

Figure 7. The measured MR B0-map with running converter (top) compared to the baseline measurement
(bottom). The black boxes indicate the shimming area.

The measured B0-maps are shown in figure 7. The maximum deviations in the shimmed area
were around 0.2 ppm and about 1 ppm at the edge of the field of view. The results from the SNR
measurements are summarized in table 2. There was a slight decrease in the signal-to-noise ratio
(about 2 %) after placing the converter module into the MRI, with attached cabling but without
powering. The value remains constant while the converter is powered on with different loads.
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Table 2. Normalized SNR ratio, obtained from the Bruker QA SNR sequence.

setup normalized SNR
a) baseline (no converter) 4127(48)mm−3

b) converter in, powered off 4038(29)mm−3

c) powered on, 2 A load 4050(20)mm−3

d) powered on, 4 A load 4048(55)mm−3

5 Discussion

5.1 Static measurements

The expectation for the load measurement based on the datasheet of the controller ASIC is a very
minor (1 mV) voltage drop from 0 A to 0.5 A and then again a small increase (up to 1 mV) from
3 A onwards. Due to the linear voltage drop with increasing output current we assume that our
converter module (including the connectors) has a serial resistance of 12 mΩ. Even though the
observed behaviour is different from the expectation, the absolute voltage drop is smaller than
75 mV. We will take this into account in the design of our electronics boards. The line regulation
(total absolute deviation < 0.1 percent) is in accordance with the manufacturer’s specification.

The measurements for efficiency in the datasheet are not given for our operation point (coil
inductance: 2.2 µH, switching frequency: 2 MHz, output voltage: 2.4 V), so that a direct comparison
is not possible. We achieved values between 70 % and 87 %, which are more than sufficient for our
application. Especially for the foreseen operation voltage of 16 V, the efficiency is above 80 % for
output currents between 1.5 A and 5 A. The decrease in the efficiency for small output currents is
caused by the constant idle input current of the converter module (about 40 mA). For low output
powers and high input voltages, this particularly influences the overall efficiency.

We observed a slight decrease in conversion efficiency with increasing temperature. The
measurements were taken in still air at about 25 ◦C ambient temperature. The device’s temperature
did not exceed the measured 75 ◦C at any moment. Therefore, we can operate the converter with
continuous output currents of up to 4 A in a still air environment.

5.2 Dynamic measurements

The load transients caused voltage drops and overshoots of the order of 300 mV for a maximum load
change of 6 A. For realistic load changes (3 A) the maximum deviation is 175 mV. We will bear
this behaviour in mind for the design of our hardware. In our design, we use the DC-DC converters
only for the supply of the intermediate rails, so that there are additional capacitors and LDOs, which
can compensate for the observed voltage spikes. The maximum voltage drop is taken into account
for the calculation of the voltage head room for the LDOs, such that their output voltage will always
be as required.

5.3 Emission spectrum measurements

There was no visual difference between the background spectrum and the spectrum from the
converter while operating. We conclude that the low-emission design, in combination with the
copper shielding, suppresses the high-frequency electromagnetic emissions. This is one of the
main requirements for operation inside the MRI.
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5.4 MRI measurements

Inside the shimmed volume, the B0 distortions are neglectable. Towards the edges of the field of
view the deviation increases but remains still below 1 ppm, which is fine for all MRI measurements.
The small decrease of the SNR value observed after the placement of the converter in the MRI
indicates that we couple external noise into the machine. Since we could not observe any further
degradation after powering the converter, we conclude that the converter itself does not disturb the
MRI. This observation is in accordance with our measurement with the spectrum analyser.

5.5 Effects of the MRI’s gradient system

TheMRI uses magnetic pulses for spatial encoding, which have a frequency of about 1 kHz and that
induce a current in every conductor loop. We did not observe any degradation in the performance
of the DC-DC converter due to these pulses. The effect depends on the cross section A of a
conductor loop and the slew rate of magnetic fields of the gradient system. The maximum slew rate
is s = 640 T/sm in each direction. The induced voltage Uind in a conductor loop is given by the law
of induction:

Uind = nA
dB
dT
= nAls = nwl2s

with the number of windings n (for coils only), the length l in the direction of the field change and
the width w perpendicular to that direction. The maximum induced voltage is below 15 mV, which
is less than 1 % of the output voltage. Furthermore, the gradient pulses have a low frequency of
about 1 kHz compared to the operation frequency of the converter (> 2 MHz). The controller ASIC
can compensate the induced voltages such that the gradient pulses have no measurable influence on
the performance of the power converter.

6 Conclusion & outlook

The goal of this work was the development of a compact MR-compatible DC-DC converter module.
The device described has been tested successfully. We reached efficiencies above 80 % without
disturbing the MRI during realistic operation conditions. The device fulfils all of our expectations
and allows a significant simplification of the powering concept of our detector hardware. Based on
this successful test, we will design the SAFIR insert to operate with only one 16 V input voltage.

Acknowledgments

We thank Parisa Khateri for proofreading this manuscript. This work was supported by the ETH
Zurich Foundation through ETH Research Grant ETH-30 14-2. Geoff Warnock was funded by the
Clinical Research Priority Program for Molecular Imaging of the University of Zurich (MINZ).

References

[1] R. Becker et al., Studies of the high rate coincidence timing response of the STiC and TOFPET ASICs
for the SAFIR PET scanner, 2016 JINST 11 P12001.

– 10 –

https://doi.org/10.1088/1748-0221/11/12/P12001


2
0
1
9
 
J
I
N
S
T
 
1
4
 
P
0
9
0
1
6

[2] R. Becker et al., The SAFIR experiment: Concept, status and perspectives, Nucl. Instrum. Meth. A
651 (2017) 651.

[3] M. Ahnen et al., Performance measurements of the SAFIR prototype detector with the STiC ASIC
readout, IEEE Trans. Rad. Plasma. Med. Sci. 2 (2018) 250.

[4] C. Tsoumpas, D. Visvikis and G. Loudos. Innovations in small-animal PET/MR imaging
instrumentation, PET Clinics 11 (2015) 105.

[5] R. Becker et al.,Monte-Carlo simulation based estimation of NECR, sensitivity, and spatial resolution
of a novel preclinical PET insert for MR, in the proceedings of the 2015 IEEE Nuclear Science
Symposium and Medical Imaging Conference (NSS/MIC), October 31–November 7, San Diega,
U.S.A. (2015).

[6] L. Biagi et al., Evaluation of DC/DC switching power regulation with small-scale integrated
inductors for PET/MR, EJNMMI Phys. 2 (2015) A14.

[7] ALTERA, Enpirion power datasheet EN6347QI 4 A Power SoC voltage mode synchronous PWM
buck with integrated inductor, rev. 1 (2016).

[8] S. Dhawan et al., Ideas on DC-DC converters for delivery of low voltage and high currents for the
SLHC/ILC detector electronics in magnetic field and radiation environments, in the proceeidngs of
the 12th Workshop on Electronics For LHC and Future Experiments, September 25–29, Valencia,
Spain (2007).

[9] CMS collabroation, The CMS experiment at the CERN LHC, 20018 JINST 3 S08004.

[10] CERN, FEASTMP radiation and magnetic field tolerant 10W DC/DC converter module, rev. 2.1
(2014).

[11] Linear Technology, 42V, 6A Synchronous Step-Down Silent Switcher 2 with 2.5 µA quiescent current,
Rev. A (2017).

[12] Texas Instruments, AN-2155 layout tips for EMI reduction in DC/DC converters, rev. 1 (2013).

– 11 –

https://doi.org/10.1016/j.nima.2016.05.037
https://doi.org/10.1016/j.nima.2016.05.037
https://doi.org/10.1109/TRPMS.2018.2797484
https://doi.org/10.1109/NSSMIC.2015.7582128
https://doi.org/10.1109/NSSMIC.2015.7582128
https://doi.org/10.1088/1748-0221/3/08/S08004
http://project-dcdc.web.cern.ch/project-dcdc/public/Documents/FEAST2Mod_Datasheet_gb2016.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/8640sfa.pdf
http://www.ti.com/lit/an/snva638a/snva638a.pdf

