

Biotin-independent Strains of Escherichia coli for Enhanced Streptavidin Production

Journal Article

Author(s): Jeschek, Markus; Bahls, Maximilian O.; Schneider, Veronika; Marlière, Philippe; Ward, Thomas R.; Panke, Sven

Publication date: 2017-03

Permanent link: https://doi.org/10.3929/ethz-b-000370994

Rights / license: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in: Metabolic Engineering 40, <u>https://doi.org/10.1016/j.ymben.2016.12.013</u>

Funding acknowledgement: 289572 - Code-engineered new-to-nature microbial cell factories for novel and safety enhanced bio-production (EC)

Supplementary Information for

Biotin-independent Strains of *Escherichia coli* for Enhanced Streptavidin Production M. Jeschek, M.O. Bahls, V. Schneider, P. Marlière, T.R. Ward, and S. Panke

 $\begin{array}{c} correspondence \ to: \ \underline{markus.jeschek@bsse.ethz.ch} \ , \ \underline{thomas.ward@unibas.ch} \ , \\ \underline{sven.panke@bsse.ethz.ch} \end{array} , \\ \end{array} \\$

This PDF file includes:

Supplementary Figures 1 to 4 Supplementary Tables 1 to 3 Supplementary References 65 to 68

Supplementary Results

Supplementary Fig. 1 | Complementation of biotin auxotrophy in shake flask cultures of *E. coli*. The MatBC bypass allows to restore growth of the biotin auxotrophic mutant JM83(DE3) $\Delta bioB$ depending on the amount of malonate supplemented to the biotin-free medium (M9). Bars represent average growth rates of two independent shake flask cultures with s.d. (n=2).

Supplementary Fig. 2 | Complementation of biotin auxotrophy in *C. glutamicum* depends on the expression level of *matBC* genes. Cultivations were performed in biotin-free CGXII medium supplemented with 10 mM malonate and varying IPTG concentrations to alter the expression of *matBC* genes. Bar heights are mean OD_{600} values after 48 h of cultivation in 96-deepwell plates with s.d. (n=4).

Supplementary Fig. 3 | Shake flask cultivation of biotin-independent strains for SAV production. (a) Cultivations were performed with *E. coli* JM83(DE3) both in the presence (*matBC*⁺) and absence (*matBC*⁻) of pCKmatBC as well as with (MAL⁺) and without (MAL⁻) supplementation of 5 mM malonate to the biotin-free medium (M9). To improve SAV expression the cultivation temperature was lowered from 37°C to 20°C (dotted vertical line) prior to induction of SAV expression with IPTG (dashed vertical line). (b) Analysis of the final SAV titers revealed a significantly improved product formation for the biotin-independent strain (*matBC*⁺ MAL⁺). Data points/bars represent average OD₆₀₀ (a) values and final SAV titers (b) of two independent shake flask cultivations with s.d. (n=2).

Supplementary Figure 4 | SDS-PAGE analysis of cell lysates from biotin-independent SAV production. Samples from 0 to 12 hours after induction from the best replicate process with the biotin-independent strain were run together with a purified, lyophilized SAV standard (ST) corresponding to 4 g L^{-1} as well as a protein ladder (M). Please note that due to its extraordinary stability SAV does not denature under standard SDS-PAGE conditions if the samples are not heat-denatured prior to loading of the gel and consequently the prominent band appearing over time corresponds to native, tetrameric SAV.

Strain or plasmid	Genotype/Description	Source/Reference
E. coli strains		
TOP10	F ⁻ mcrA ∆(mrr-hsdRMS-mcrBC) <i>φ</i> 80lacZ∆M15 ∆lacX74 nupG recA1 araD139 ∆(ara-leu)7697 galE15 galK16 rpsL(Str ^R) endA1 λ ⁻ ; general cloning strain	Thermo Fisher Scientific, Reinach, Switzerland
JM83	ara $\Delta(lac-proAB)$ rspL(+strA) ϕ 80 lacZ $\Delta M15$	Yanisch-Perron <i>et al.</i> (1985) ⁶⁵
JW0758	BW25113 carrying an insertional knockout of the biotin synthase gene, <i>bioB:kan</i>	Keio collection ⁶⁶
BL21(DE3)	Strain used for SAV expression experiments	Studier & Moffatt (1986) ⁶⁷
JM83(DE3)⊿bioB	Product of JM83(DE3) transduction with P1 phage lysate from JW0758 and removal of <i>kan^R</i> by FRT recombination; <i>bioB</i> deficient, biotin auxotroph	This study
JM83(DE3)	λDE3 lysogen of JM83	This study
<u>C. glutamicum</u> <u>strains</u> DSM 20300	Wild type strain (ATCC 13032), biotin auxotroph	DSMZ, Braunschweig, Germany
<u>Plasmids</u> pCK01	P _{lac} promoter, pSC101 ori, <i>cat</i> (Cam ^R); used for cloning of pCKmatBC and as empty vector control	Fernandez <i>et al.</i> (1995) ²⁹
pET-30b(+)	P_{T7} promoter, pBR322 ori, Kan ^R	Merck Millipore, Darmstadt, Germany
pEKEx2	<i>E. coli/C. glutamicum</i> shuttle vector; P_{tac} promoter, kan^{R}	Eikmanns <i>et al.</i> $(1991)^{30}$
pCP20	Yeast Flp recombinase, temperature sensitive replicon, <i>amp, cat</i> ; used for removal on kanamycin resistance gene from insertional knockout <i>bioB:kan</i>	Datsenko & Wanner (2000) ²⁸
pET30T7SAV	Derivative of pET-30b(+) containing the gene coding for T7-tagged SAV ⁶⁸ under transcriptional control of P_{T7}	Jeschek <i>et al.</i> (2016) ⁴⁸
pCKmatBC	Derivative of pCK01 containing the <i>matBC</i> cassette This study from <i>R. trifolii</i> under the control of a P_{lac} promoter	
pET30matBC	Derivative of pET-30b(+) containing the <i>matBC</i> This study cassette from <i>R. trifolii</i> under transcriptional control of P_{T7} and the natural GTG start codon in <i>matB</i>	
pET30matBC*	Derivative of pET-30b(+) containing the <i>matBC</i> cassette from <i>R</i> . <i>trifolii</i> under transcriptional control of P_{T7} and the an ATG start codon in <i>matB</i>	This study
pEKEx2matBC	Derivative of pEKEx2 containing the <i>matBC</i> cassette from <i>R. trifolii</i> under transcriptional control of P _{tac}	This study

Supplementary Tab. 1 | Strains and plasmids used in this study.

Supplementary Tab. 2 | Oligonucleotides used in this study.

No.	Sequence (5'-3')	Description
1	CCAGATATGGCGTTGGTCAAAGG	Forward primer flanking <i>bioB</i>
2	CGCTATAACCGCTGACGTGACC	Reverse primer flanking <i>bioB</i>
3	TATAGGATCCAGGAGGGCGAAAGTGAGCAACC	Amplification of matBC, BamHI site
4	TATAGATATCGGCGCGCCTCAAACCAGC	Amplification of matBC, EcoRV site
5	TAGGATCCCCGGGTACCGAGCTC	Amplification of pCK01, BamHI site
6	TAGATATCCTGCAGGCATGCAAGCTTGC	Amplification of pCK01, EcoRV site
7	GCCGCATCATATGTAATAAGGAGG	Amplification of matBC, NdeI site
8	TATACATATGAGCAACCATCTTTTCGACGC	Amplification of <i>matBC</i> , <i>Nde</i> I site, ATG start codon
9	TATAGGATCCGGCGCGCCTCAAACCAGC	Amplification of matBC, BamHI site
10	TAGGATCCAGGAGGGCGAAAG	Amplification of matBC, BamHI site
11	ATGGTACCTCAAACCAGCCCGGGCAC	Amplification of matBC, KpnI site

Supplementary Tab. 3 | **Synthetic** *matBC* **DNA construct used in this study.** Genes (*matB* and *matC*) are underlined.

Name/Description	Sequence (5'-3')
	catatgtaataaggagggcgaaagtgagcaaccatcttttcgacgccatgcgggccgccgcg
	cccggtaacgcaccattcatccggatcgataacacgcgcacatggacctatgacgacgcctt
	cgctctttccggccgcattgccagcgcgatggacgcgctcggcattcgccccggcgaccgcg
	$\underline{\texttt{ttgcggtgcaggtcgagaaaagtgccgaggcattgatcctctatctcgcctgtcttcgaagc}$
	$\underline{g}gcgccgtctacctgccgctcaacaccgcctatacgctggctg$
	cgatgcggagccgcgtttggtggttgtcgcatcgtcggctcgagcgggcgtggagacaatcg
	$\underline{ccaagccccgcggtgcgatcgtcgaaactctcgacgctgctggcagcggctcgttgctggat}$
	${\tt ctcgcccgcgacgagccggccgactttgtcgatgcctcgcgctccgccgatgatctggcggc}$
	gateetetacaegteeggaaeggeggegeteeaagggggggggtgatgeteaegeatgggaaee
	tgctctcgaacgccctgaccttgcgagatttttggcgcgtcaccgccggcgatcgactgatc
	<pre>catgccttgccgatcttccacacgcatggactgttcgtcgccacgaacgtcacactgctcgc</pre>
	cggcgcctcgatgttcctgctgtcgaagttcgacccggaggagatcctgtcgctgatgccgc
	aggcaacgatgctgatgggggtgccgaccttctacgtgcgcctcctgcagagcccgcgcctc
	gacaagcaagcggtcgccaacatccgcctcttcatttccggttcggctccactgcttgcaga
	aacacataccgagttccaggcacgtaccggtcacgccattctcgagcgctacggcatgacgg
	aaaccaatatgaacacgtccaacccttatgaggggaaacggattgccggaacggtcggcttc
<i>matBC</i> cassette from	
R. trifolii	
	ggcgtcggagggaggggaatcatgggtattgaattactgtccataggcctgctgatcgccat
	gttcatcattgcgacgatccagccaatcaacatgggtgcgctcgcctttgccggcgccttcg
	tgctcggctcgatgatcatcggggatgaaaaccaacgaaatatttgccggctttccgagtgat
	ctgttcctgacgctcgtcgccgtcacctacctcttcgccatagcgcagatcaacggcacgat
	cgactggctcgtcgaatgtgccgtccgcctggtacgcgggcgg
	tgatgttccttgtcgccgccatcattactggcttcggtgcacttgggcctgctgcggtcgcc
	attctcqcacccqtcqcqttqaqctttqccqtqcaqtaccqcattcatccqqtqatqatqqq
	tctgatggtgatccacggcgcgcaggcaggcggcttctcgccgatcagcatctatggcggaa
	tcaccaaccagatcgttgcgaaggccggcctgcctttcgctccgacctcgctgtttctttc
	agcttcttctttaacctggcgatcgcggtgctggtgttcttcgtgttcggcggcgcgagggt
	gatgaagcacgatcccgcatcacttggccccttgcccgaactccatcccgagggcgtatcgg
	cgtcgatcagaggccacggcggcacgccggcaaaaccgatcagagagcatgcctatggtacg
	gcggccgataccgcgacgacgttgcgtctgaacaatgagagaattaccaccttgatcggcct
	gacggcgctcggcatcggcgccctggttttcaagttcaatgttggcctcgtcgccatgaccg
	tcgccgtcgtcctcgcgctgctgtcaccgaagacccagaaggccgcaatcgacaaggtcagt
	${\tt tggtcgaccgtgctgctgattgccggcatcatcacctatgtcggcgtcatggagaaggccgg}$
	$\verb+tacggtcgactacgtggcgaatggcatatccagtctcggcatgccgctactggtagcgctcc+$
	$\underline{\texttt{tgctttgctttacgggcgccatcgtctcggcctttgcttcctcgaccgcgctgctcggcgcg}$
	$\underline{\texttt{atcatcccgcttgccgttccattcctcctgcaagggcacatcagcgccatcggtgtggtcgc}$
	$\underline{g}gcgatcgccatctcgacgacgatcgtcgacaccagcccattctccaccaacggcgcccttg$
	${\tt tcgtcgccaatgcgccggacgacagccgtgagcaggtgttgcgacagctactgatctacagc}$
	${\tt gccttgatcgctatcatcggtccgatcgttgcctggttggt$
	ttgaggcgcgcc

Supplementary references

- 65. Yanisch-Perron, C., Vieira, J., Messing, J. Improved M13 phage cloning vectors and host strains nucleotide-sequences of the M13mp18 and pUC19 vectors. *Gene* **33**, 103-119 (1985).
- 66. Baba, T. *et al.* Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. *Mol. Syst. Biol.* **2**, 2006.0008 (2006).
- 67. Studier, F. W. & Moffatt, B.A. Use of bacteriophage T7 RNA polymerase to direct selective highlevel expression of cloned genes. *J. Mol. Biol.* **189**, 113-130 (1986).
- 68. Gallizia, A. *et al.* Production of a soluble and functional recombinant streptavidin in *Escherichia coli. Protein Expr. Purif.* **14**, 192-196 (1998).