
ETH Library

Optimal position detection of a
dipolar scatterer in a focused field

Journal Article

Author(s):
Tebbenjohanns, Felix; Frimmer, Martin; Novotny, Lukas 

Publication date:
2019-10

Permanent link:
https://doi.org/10.3929/ethz-b-000372245

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
Physical Review A 100(4), https://doi.org/10.1103/PhysRevA.100.043821

Funding acknowledgement:
169319 - Non-equilibrium Fluctuations of Vacuum Trapped Nanoparticles (SNF)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0002-9970-8345
https://doi.org/10.3929/ethz-b-000372245
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1103/PhysRevA.100.043821
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


PHYSICAL REVIEW A 100, 043821 (2019)
Editors’ Suggestion

Optimal position detection of a dipolar scatterer in a focused field

Felix Tebbenjohanns,* Martin Frimmer, and Lukas Novotny
Photonics Laboratory, ETH Zürich, CH-8093 Zürich, Switzerland

(Received 30 July 2019; published 14 October 2019)

We theoretically analyze the problem of detecting the position of a classical dipolar scatterer in a strongly
focused optical field. We suggest an optimal measurement scheme and show that it resolves the scatterer’s
position in three dimensions at the Heisenberg limit of the imprecision-backaction product. We apply our
formalism to levitated-optomechanics experiments and show that backscattering detection provides sufficient
information to feedback cool the particle’s motion along the optical axis to a phonon occupancy below unity
under realistic experimental conditions.
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I. INTRODUCTION

Soon after the advent of the laser, scientists began to
investigate and harness the forces arising from the interaction
of light and matter [1]. Of outstanding practical significance
are the works on optically trapping micron- and sub-micron-
sized particles in dilute gas and in liquid, which led to the
optical tweezer, an indispensable tool in the life sciences
[2–4]. Interestingly, optical trapping in vacuum has seen a
revival in recent years in the wake of optomechanics rising
as an intensely researched subfield of physics [5–8]. Optome-
chanics strives to control mechanical motion using the forces
of light [9]. The experimental platforms harnessed by optome-
chanics are high-quality mechanically tethered oscillators, the
positions of which are read out optically. The limits of this
measurement process have been understood since the early
theoretical works in the context of designing interferometer-
based gravitational-wave detectors [10–12]. In the canonical
optomechanical setup, the position of a mirror reflecting a
beam of light is encoded into the field’s phase and is read
out interferometrically [13]. At the same time, the radiation-
pressure fluctuations of the probe light influence the mechan-
ical motion of the mirror. Accordingly, the measurement of
the mirror’s position inevitably entails a perturbation of its
momentum [14–16]. In the limit of perfect detection effi-
ciency, and in the absence of dephasing mechanisms besides
radiation pressure shot noise, the product of the measurement
imprecision and the measurement backaction satisfies the
Heisenberg relation with equality [17]. In recent years, har-
nessing enhancement effects provided by optical cavities, the
optomechanics community has pushed the position detection
of mechanically clamped oscillators to operate essentially at
the Heisenberg limit [18].

Levitated optomechanical systems are experimental
testbeds complementary to mechanically clamped systems
[6,19]. One particularly intriguing aspect of optical
levitation is the fact that the potential experienced by the
mechanical oscillator can be tuned by shaping the optical
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field distribution. Thus, optically levitated systems may
enable tests of our understanding of physics at a very
fundamental level and in parameter regimes currently
inaccessible [20–23]. The current forerunner in the quest for
bringing an optically levitated system to the quantum regime
is a sub-wavelength-sized dielectric nanoparticle trapped in
the focus of a single laser beam [8,24–26]. The center-of-mass
motion of such a particle has been cooled to a population of
a dozen phonons using active feedback cooling in a system
operating three orders of magnitude from the Heisenberg limit
of maximum detection efficiency [27]. At the current stage,
pushing optically levitated systems into the quantum regime
relies on improving the detection efficiency for the position of
a dipolar scatterer in a focused light field [28,29]. To this end,
remarkable progress has been made in recent years to couple
optically levitated nanoparticles to optical resonators [30–34],
in efforts inspired by the atomic physics community [35–38].
Interestingly, while sophisticated detection systems using
optical cavities are under development, the question of the
reachable position-detection efficiency for a dipolar scatterer
in a single-beam optical trap has remained unanswered.

In this paper, we theoretically analyze the problem of
how to optimally measure the position of an isotropic dipolar
scatterer in a focused light field. We derive a scheme to detect
the motion of a nanoparticle optically trapped in a focused
light field which operates strictly at the Heisenberg limit
of optimal detection efficiency. Furthermore, we analyze the
efficiencies of detection schemes currently employed by the
optical-levitation community. Our results show that a simple
backscattering configuration provides a detection efficiency
for the oscillation mode along the optical axis of more than
60% of the Heisenberg limit. Accordingly, active feedback
cooling of a levitated nanoparticle’s center-of-mass motion to
a phonon occupancy below unity is feasible in a single-beam
optical trap.

II. IDEAL MEASUREMENT SCHEME

We consider a laser beam, linearly polarized along the
x direction and propagating along the optical z axis, which
is strongly focused, as shown in Fig. 1. The focus defines
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FIG. 1. Sketch of the ideal measurement scheme. An isotropic
dipolar scatterer is located at position r0 relative to the origin, which
coincides with the focal point of a beam of light traveling from left
to right. An array of detectors (only one is depicted for clarity, each
covering a solid angle d�) is covering a sphere centered on the origin
with radius much larger than the wavelength. A reference field Eref

is added at the detector for homodyne detection of the scattered field
Esc.

the origin of the coordinate system. We furthermore assume
an isotropic dipolar scatterer with polarizability α located at
position r0 = (x0, y0, z0). The distance |r0| of the scatterer
to the focus is much less than a wavelength. At the scatterer
position, the electric field reads

Efoc(r0) = E0nx exp(iAkz0), (1)

which resembles a plane wave traveling in the positive z
direction (see Appendix A for a derivation of the focal field).
Here, nx is the unit vector along x, E0 is the field ampli-
tude at the focus, and k is the wave number. The geometric
factor 0.64 < A � 1 is a result of the Gouy phase shift in a
focused beam and increases the effective wavelength close
to the focus. We derive an analytical expression for A in a
strongly focused field in Appendix A. In a mildly focused
field, described as a Gaussian beam with Rayleigh range zR,
we find A = 1 − (kzR)−1 [29,39].

The dipolar scatterer acquires the dipole moment p =
αEfoc(r0), and radiates the scattered field Esc(r). At an ob-
servation point r much farther from the scatterer than a
wavelength, we can write the scattered field in the Fraunhofer
approximation as

Esc(r) = Edip(r) exp [−ik · (r0 · nr − Az0)], (2)

where nr is the unit vector in the radial direction and Edip(r)
is the far field generated at the observation point r by an x ori-
ented dipole located at the origin. Importantly, the scatterer’s
position r0 is contained in the phase of the scattered field,
which consists of two terms. The first term −kr0 · nr describes
the phase generated by the displacement of the dipole relative
to the origin. The second term Akz0 stems from the fact that
the dipole is driven by a traveling wave which acquires a
phase shift during propagation. In the following, we use a
spherical coordinate system, where the angle θ denotes the
polar angle relative to the z axis, and φ denotes the azimuthal
angle relative to x. Furthermore, we introduce the differential
power d pdip scattered by an x polarized dipole into the solid

angle d� = sin(θ )dθdφ:

d pdip = 3

8π
Pdip[1 − sin(θ )2 cos(φ)2] d�, (3)

with the total scattered power Pdip.

A. Measurement backaction

In this subsection, we analyze the measurement backaction
arising from the interaction of the scatterer with the electro-
magnetic field. This backaction takes the form of a recoil
force, which can be interpreted as an inevitable consequence
of the fact that the scattered field contains information about
the scatterer’s position. The measurement-backaction force
along a certain direction (x, y, z) can be quantified by its
power spectral density [40]. Along the transverse directions
x and y, the spectral densities of this measurement backaction
read [24,41]

Sx
ba = 1

5

h̄k

2πc
Pdip, (4a)

Sy
ba = 2

5

h̄k

2πc
Pdip. (4b)

Note that along the x and y axes the result for the measurement
backaction for a (passive) dipole scattering a power Pdip equals
the result for an active dipolar source radiating the same
power. In contrast to an active source, however, the fluctuating
force acting on a scatterer along the z axis has two contri-
butions. First, there is the contribution that equals Sy

ba, which
arises both for a passive scatterer and an active dipolar source.
However, for a passive scatterer, a second term arises, which
stems from the fluctuations of the radiation pressure along the
propagation direction of the beam. In close vicinity of the
focus, for a lossless dipolar scatterer, this radiation pressure
force reads F z

rp = APdip/c [39]. Summing both contributions,
we find the total measurement backaction along the z axis:

Sz
ba =

(
2

5
+ A2

)
h̄k

2πc
Pdip. (4c)

We provide a derivation of Eqs. (4) in Appendix B and note
that our results agree with a full quantum calculation [42,43].

B. Measurement imprecision

Having dealt with the measurement backaction, we now
turn to the measurement imprecision associated with locating
a point scatterer in a focused light field. Since the scatterer’s
position r0 is encoded solely in the phase of the scattered light
according to Eq. (2), we make use of a homodyne measure-
ment, where we superpose the scattered light at the detector
position r with a strong local oscillator field. Note that we do
not use the trapping field as a reference field here (as is done in
typical experimental schemes discussed in Sec. III), which is
always possible by introducing a sufficiently strong additional
reference. For optimal interference, we choose the (local)
polarization of the reference to equal that of the scattered light.
Thus, we construct an ideal reference field

Eref (r) = −iγ Edip(r) (5)
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with γ � 1 (such that the reference field is much stronger
than the scattered field) and let it interfere with the dipole’s
scattered light such that the field at position r is Eref (r) +
Esc(r). For small displacements r0, a detector positioned at
r covering the differential solid angle d� measures the power

d pdet (θ, φ) = [γ 2 + 2γ k(r0 · nr − Az0)] d pdip, (6)

where we have retained only the term linear in the scattered
field (which is much weaker than the reference field). The first
term of Eq. (6) accounts for the power of the reference and the
second term accounts for the interference between reference
and scattered fields. Being linear in r0, the interference term
represents a measure of position. Assuming shot noise as the
dominating noise source, the power spectral density of the
imprecision noise associated with a differential detector under
direction (θ, φ) is (see Appendix C for detailed derivation)

sx
imp(θ, φ) = h̄c

8πk sin(θ )2 cos(φ)2 d pdip
, (7a)

sy
imp(θ, φ) = h̄c

8πk sin(θ )2 sin(φ)2 d pdip
, (7b)

sz
imp(θ, φ) = h̄c

8πk[cos(θ ) − A]2 d pdip
. (7c)

Next, we fill up the entire sphere surrounding the scatterer
with differential detectors. Importantly, Eqs. (7) show that
the measurement imprecision depends on the position (θ, φ)
of the differential detector and is not uniformly distributed.
Accordingly, to minimize the total imprecision, we need to
weight each measurement by its inverse imprecision before
averaging [44]. To obtain the total imprecision, we exploit the
fact that its inverse 1/Simp is given by the integral over the
inverse imprecisions contributed by the differential detectors
1/[simp(θ, φ)], such that we find (the calculation is detailed in
Appendix C)

Sx
imp = 5

h̄c

8πk

1

Pdip
, (8a)

Sy
imp = 5

2

h̄c

8πk

1

Pdip
, (8b)

Sz
imp = 1

2
5 + A2

h̄c

8πk

1

Pdip
. (8c)

C. Discussion of the ideal measurement scheme

By comparing Eqs. (8) with Eqs. (4), we find that the
imprecision-backaction product S j

impS j
ba = [h̄/(4π )]2 fulfills

the Heisenberg uncertainty relation with equality for all three
axes j ∈ {x, y, z} [17]. Accordingly, our measurement scheme
decodes the scatterer’s position in an optimal way along all
three axes simultaneously. It is instructive to consider the
angular dependence of the contributions to the measurement
imprecision in Eqs. (7). To this end, we inspect their (nor-
malized) inverse I j (θ, φ) = S j

imp/s j
imp(θ, φ). This quantity re-

sembles the angular information density about the scatterer’s
position along the axis j. As an example, let us consider
motion along the x axis, shown in Fig. 2(a). We plot Ix(θ, φ)
such that its value is encoded as the radial distance of the

FIG. 2. Information radiation patterns. (a) Contour plot of the
information radiated into a unit solid angle. We plot the quantity
Ix (θ, φ) as the radial distance of the contour to the origin. (b) Cross
section through Ix in the plane xz. The cross-hatched region indicates
where a displacement x0 > 0 gives rise to a positive detector signal
d pdet(θ, φ). (c) Contour plot of Iy. (d) Cross sections of Iy in the
plane xy (blue, inner area) and yz (red, outer area). (e) Contour plot
of Iz. Note that the information is mostly radiated in the negative z
direction. (f) Cross sections of Iz in the xz plane (blue, inner area)
and in the yz plane (red, outer area). Note the different radial scale in
the range −π/6 � θ � π/6. A was fixed to cos(π/6) = 0.866.

contour to the origin. We observe that the information content
Ix vanishes in the plane x = 0. This means that a detector
located anywhere in this plane cannot extract any information
about the scatterer’s position along x. This observation makes
sense, since any displacement along x (to linear order) has
no influence on the phase of the field scattered in the plane
x = 0. Furthermore, also a detector located on the (positive
or negative) x axis cannot infer any information about the
motion along x. This observation might be surprising at first
sight, since the phase shift of the scattered signal along this
direction should be most sensitive to the scatterer’s position
along x. However, a linearly polarized dipole radiates no far
field along its axis and the measurement signal vanishes along
the x axis. In Fig. 2(b), we show a cross section of Ix in a plane
containing the x axis (which is an axis of symmetry for Ix).
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We have crosshatched the region where the signal d pdet (θ, φ)
is positive for a positive displacement x0 of the scatterer,
which is the case in the half space x > 0. In Fig. 2(c), we show
Iy(θ, φ). We see that most information about the scatterer’s
position along y is radiated along the y axis. This observation
makes sense, since both the radiation pattern of the dipolar
scatterer and the dependence of the phase of the scattered field
on the position along the y axis reach a maximum along that
direction. In Fig. 2(d), we show a cross section of Iy in the yz
plane (red, outer area) and in the xy plane (blue, inner area).
The signal d pdet (θ, φ) is positive for positive y0 in the half
space y > 0.

The quantity Iz(θ, φ) shown in Fig. 2(c) is particularly
interesting. In contrast to Ix (Iy), which bears a symmetry
relative to the plane x = 0 (y = 0), Iz has no symmetry
relative to z = 0. This symmetry is broken by the propagating
nature of the beam illuminating the scatterer. It turns out that
more than 90% of the entire information about the position
along the z axis is contained in the field scattered in the
backward direction (half space z < 0). This observation can
be intuitively understood in the limiting case of a plane wave
illuminating the scatterer (A = 1). In this case, the phase of
the field scattered in the forward direction on the optical axis
is independent of the scatterer’s position along the z axis.

Let us recap at this point the essential features of the
optimal measurement scheme discussed thus far. The first
feature is the optimal reference field in Eq. (5). This position-
dependent field has to locally match the polarization of the
field radiated by the scatterer. Second, the optimal reference
field has to be phase shifted by π/2 relative to the scattered
field. Finally, the differential detector signal collected on a
detector under the direction (θ, φ) has to be appropriately
weighted according to its inverse imprecision noise as given
by Eqs. (7) to obtain the optimal measurement of the scat-
terer’s position. The total measurement imprecision of this
scheme, given by Eqs. (8), multiplies with the measurement
backaction given by Eqs. (4) to fulfill the Heisenberg uncer-
tainty relation with equality in each direction (x, y, z).

III. REALISTIC DETECTION SYSTEM

Thus far, we have analyzed the problem of detecting the
position of a dipolar scatterer and described an ideal mea-
surement scheme that allows for a Heisenberg-limited mea-
surement of the scatterer’s position in three dimensions. Two
experimental difficulties make our ideal measurement scheme
impractical. First, it is challenging to generate a reference field
the phase and polarization of which match those of a dipolar
field, as required by Eq. (5). Reference fields typically avail-
able in a laboratory setting are Gaussian beams with uniform
polarization. Second, this ideal measurement scheme requires
a distribution of infinitesimal detectors spanning the full 4π of
solid angle, where the signal from each detector is individually
weighted according to its imprecision. In contrast, in practice
one typically uses a simple four-quadrant detector [28].

A. Forward detection

In this section, we consider the performance of the
most commonly used detection system in optical trapping

experiments, which relies on a standard (four-quadrant) split
detection scheme in the forward direction [28]. The situation
under consideration is sketched in Fig. 3(a). A first lens
(termed the “trapping lens”) focuses an x polarized plane wave
(corresponding to a strongly overfilled objective) such that
the focal point coincides with the origin. The optical axis
is along z, and a second lens (termed the “collection lens”)
recollimates the trapping beam. A dipolar scatterer is located
close to the origin and generates the scattered field Esc(r)
given by Eq. (2). For detection in the forward direction, the
reference field Eq. (5) has to be replaced by the field of the
trapping beam arriving on the detector.

As detailed in Appendix D, and in analogy to Sec. II B, we
calculate the measurement imprecision S j,fw

imp of this forward
detection scheme for all three axes j ∈ {x, y, z}. In order
to compare our results for forward detection with the ideal
case discussed in Sec. II B, we define the detection efficiency
ηfw

j = S j
imp/S j,fw

imp for the axis j as the ratio of the result for

forward scattering S j,fw
imp and the measurement imprecision at

the Heisenberg limit given by Eqs. (8). Thus, the detection
efficiency is a measure for how close to the Heisenberg limit
a detection system operates. Note that absorption losses or a
limited quantum efficiency of the detector further decrease the
detection efficiency.

In Fig. 3(b), we plot the detection efficiencies ηfw
x (red

dashed), ηfw
y (green dotted), and ηfw

z (blue solid) in forward
scattering as a function of the numerical aperture of the
collection lens NAcl for a numerical aperture of the trapping
lens NAtl = 0.85. As expected, a larger NAcl generally leads
to higher detection efficiency for all three axes. However, the
detection efficiency for the z axis ηfw

z shows a remarkable
feature. It turns out that ηfw

z vanishes for a symmetric setup,
i.e., when the numerical aperture of the trapping lens equals
that of the collection lens. We discuss this feature quanti-
tatively in Appendix D. It can be understood qualitatively
by close inspection of Fig. 2(f) from the discussion of the
ideal measurement scheme. As indicated by the crosshatched
regions in the polar plot, the signal changes sign in the half
space z > 0. In the specific case of a symmetric setup (NAtl =
NAcl), the integration over θ is truncated such that the result
strictly vanishes.

Let us apply our insights to realistic experimental con-
ditions. For typical values of NAcl = 0.7, the detection ef-
ficiency of the transverse modes in the forward direction is
around ηfw

x ∼ ηfw
y ∼ 0.1, while for the longitudinal mode it is

about two orders of magnitude smaller (ηfw
z ∼ 0.001).

B. Backward detection

We now turn to detection in the backward direction. Here,
the backscattered light is collected by the trapping objective
and then interfered with an external reference field [26]. In
contrast to forward scattering, where the reference beam is
naturally phase locked with the right phase shift (due to
the common-path arrangement together with the Gouy phase
shift), backward scattering is technically more involved, since
the phase shift of the reference beam relative to the scattering
signal has to be actively stabilized to a value of π/2. To
compare with forward scattering, we consider a reference field
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FIG. 3. (a) Laboratory detection system. A trapping lens with numerical aperture NAtl = sin(	tl ) focuses an x polarized plane wave. On
the opposite side, the fields are collimated by a collection lens with numerical aperture NAcl = sin(	cl ). A particle close to the focal point
scatters the focused field. (b) Detection efficiency ηfw in the forward detection for a trapping lens with NAtl = 0.85. We plot the detection
efficiencies for motion in the focal plane ηfw

x (NAcl ) (red dashed), ηfw
y (NAcl ) (green dotted) as a function of NAcl. The detection efficiency

along the optical axis ηfw
z (NAcl ) (blue solid), multiplied by factor 100, vanishes when NAtl = NAcl. In the range NAcl > NAtl, the detection

efficiencies stay constant, since no reference field is available in that range. We also plot the fraction of the scattered power which is collected
by the optics (black dash-dotted). (c) Detection efficiency ηbw in the backward detection. In the transverse directions, ηbw is identical to the
case of forward detection shown in (b). However, most information about the motion along z is encoded in the backscattered field, such that
ηbw

z (blue solid) reaches values exceeding 0.6 for realistic trapping lenses with NAtl > 0.8.

that has the same spatial distribution as the trapping beam (a
truncated plane wave).

In Appendix D 2, we derive expressions for the detection
efficiencies ηbw

j in the backward direction, which are plotted
in Fig. 3(c) as a function of the numerical aperture of the
trapping lens NAtl. We find that the detection efficiencies for
motion in x and y directions are the same for forward and
backward detection, i.e., ηbw

x = ηfw
x and ηbw

y = ηfw
y . This result

is expected, since the information about motion along x and y
is radiated symmetrically in the forward and in the backward
direction [compare Figs. 2(a) and 2(c)]. On the other hand,
for motion along the z direction, we find that the detection
efficiency is much higher in the backward direction than in the
forward direction. This result can be anticipated from the dis-
tribution of radiated information content shown in Figs. 2(e)
and 2(f). For a typical value of the numerical aperture of the
trapping lens NAtl = 0.8, we find the efficiency to be as high
as ηbw

z = 0.6.

C. Discussion of real-world measurement schemes

Let us recap the most important insights gained from our
analysis. Clearly, forward and backward detection using quad-
rant detectors fall short of reaching the Heisenberg limit of
maximum detection efficiency η = 1, where the imprecision-
backaction product has its minimum. Several factors con-
tribute to this imperfection. First, the numerical aperture
collecting the light scattered by the dipole is finite and, as
a result, part of the information about the dipole’s position
is not collected. We plot the fraction of collected power as
a function of numerical aperture in Figs. 3(b) and 3(c) as
the black dash-dotted lines. Importantly, not every collected
photon carries the same amount of information. For example,
motion along the z axis is predominantly encoded in the
field scattered in the backward direction, allowing for a large
detection efficiency for the z motion in backscattering. An-
other factor limiting the detection efficiency is the imperfect
overlap of the reference field (with homogeneous polariza-

tion) with the field scattered by the dipole (the polarization
of which varies spatially). Finally, an ideal detection system
must not only collect the measurement signal across the full
solid angle surrounding the scatterer, but must also weight
the individual contributions according to their information
content as given by the measurement imprecision. Clearly, a
quadrant detector offers very limited capability to perform this
weighting procedure. Consider, for example, detection of the y
motion. It is clear from Fig. 2 that practically no information
is contained in the signal striking the detector close to the z
axis. Nevertheless, a standard detector will sum the shot-noise
contribution generated in this region by the reference field
and add it to the output signal. A possible alternative to a
spatially resolving detector would be a reference field with an
appropriately shaped spatial intensity distribution. Such a field
distribution could, for example, be generated using a spatial
light modulator.

In this paper, we solely consider a dipolar scatterer much
smaller than the wavelength. For particles comparable to or
even larger than the wavelength [3,7,22,23], one in general
needs to solve the full scattering problem in order to calculate
the far field and its phase dependence on the object’s position.
Following an analysis analogous to the one described here,
one can then find both the total measurement backaction as
well as an ideal local-oscillator field allowing for detection at
the Heisenberg limit.

Finally, let us consider the repercussions of our findings for
active feedback cooling of a levitated nanoparticle’s motion.
Considering the finite transmissivity of optical components,
the finite quantum efficiency of photodetectors, and our find-
ing that the detection efficiency for the motion along the
optical axis in backward scattering can reach ηbw

z ∼ 0.8, we
conclude that a total efficiency of 0.35 appears well within
reach. Adding the fact that at sufficiently low pressures the
reheating of a levitated particle is dominated by measurement
backaction [24], active feedback by means of cold damping
[27,45] should be able to cool a levitated nanoparticle in a
free-space configuration with only a single laser beam to mean
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phonon occupation numbers as low as n = [η−1/2 − 1]/2 =
0.35 along the optical axis, and thus to the quantum ground
state of motion.

IV. CONCLUSIONS

We have theoretically analyzed the problem of determin-
ing the position of a dipolar scatterer in a focused field.
We have proposed an ideal detection scheme locating the
scatterer in three dimensions at the Heisenberg limit of the
imprecision-backaction product. Furthermore, we have an-
alyzed configurations commonly used in experiments and
derived their measurement efficiencies. We have found that
for realistic experimental setups the detection efficiencies for
motion transverse to the optical axis are limited to ηx,y ∼ 0.1.
On the other hand, our analysis shows that the motion along
the optical axis is most efficiently detected in backscattering,
where the detection efficiency of the longitudinal motion can
be as high as 80%, such that ground-state cooling of a levitated
particle in a single beam optical trap should be feasible.
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APPENDIX A: EFFECTIVE WAVELENGTH
OF FOCUSED FIELD

In this Appendix, we show that a strongly focused field in
the focal region to first order appears as a plane wave prop-
agating along the optical axis with an effective wavelength
determined by the numerical aperture of the focusing lens.
We start with the focal field generated by a highly overfilled
objective, which can be written analytically in cylindrical
coordinates as [39]

Efoc ∝

⎛
⎜⎝

I00 + I02 cos(2φ)

I02 sin(2φ)

−2iI01 sin(φ)

⎞
⎟⎠, (A1)

where the incoming light is polarized along x. The integrals
I00, I01, and I02 depend on coordinates ρ and z:

I00 =
∫ 	tl

0
dθ

√
cs(1 + c)J0(kρs)eikzc, (A2a)

I01 =
∫ 	tl

0
dθ

√
cs2J1(kρs)eikzc, (A2b)

I02 =
∫ 	tl

0
dθ

√
cs(1 − c)J2(kρs)eikzc, (A2c)

where c = cos(θ ) and s = sin(θ ). Furthermore, Jn are the
Bessel functions of the first kind for n ∈ N0, which we ex-
pand to first order as J0(x) = 1, J1(x) = x/2, and J2(x) = 0.
The x component of Efoc to first order reads C + ikzD ≈
C exp(ikzD/C) where C and D are integrals over θ which are

independent of any coordinates. The electric-field component
along y vanishes to first order. The phase of the z component
of the field is constant to first order, but its amplitude is
linear in the transverse directions and vanishes at the origin.
Importantly, the z component of the field is π/2 out of phase
with the x polarization such that it appears only to second
order in standard homodyne detection schemes. We hence
conclude that the focal field in close vicinity to the focus can
be approximated as an x polarized plane wave traveling in the
positive z direction according to Efoc = E0nx exp(iAkz), with

A =
∫ 	tl

0 dθ s
√

c(1 + c)c∫ 	tl

0 dθ s
√

c(1 + c)
. (A3)

See Appendix E for an analytical expression for A.

APPENDIX B: DERIVATION OF
MEASUREMENT BACKACTION

The differential power d pdip radiated by an x polarized
dipolar scatterer into solid angle d� = sin(θ ) dθ dφ is given
by Eq. (3). This power exerts a radiation pressure force
dF x

RP = −(nx · nr )d pdip/c on the scatterer along the x direc-
tion. Assuming shot noise to dominate the fluctuations of the
radiated power, we find for the power spectral density of the
radiated power along direction nr

dsPP(θ, φ) = h̄kc

2π
d pdip. (B1)

Due to these fluctuations, the radiation pressure force
along nx fluctuates with power spectral density dsx

ba = (nx ·
nr )2 dsPP(θ, φ)/c2. We integrate this differential contribution
to the measurement backaction over the unit sphere to find the
backaction noise spectral density along the x direction:

Sx
ba =

∫
dsx

ba(θ, φ) = 1

5

h̄k

2πc
Pdip. (B2)

By analogous derivations, we find the values for Sy
ba and Sz

ba as
given by Eqs. (4). As described in the main text, along the z di-
rection, Sz

ba needs to be amended by an additional contribution
for a scatterer polarized by a traveling wave, which exerts a
radiation pressure force along its propagation direction. While
our derivation rests on a semiclassical treatment, our results
match a full quantum derivation for a two-level system in the
classical limit [42].

APPENDIX C: DERIVATION OF OPTIMAL
MEASUREMENT IMPRECISION

In this Appendix, we derive the measurement imprecision
of our ideal measurement scheme. Equation (6) in the main
text is the differential power impinging on a detector covering
a solid angle d� and located at (θ, φ). Let us temporarily
assume that the scatterer is only displaced along the x axis,
such that y0 = z0 = 0. Then, the locally measured power

d pdet(θ, φ) = [γ 2 + 2γ k sin(θ ) cos(φ)x0]d pdip (C1)

linearly depends on position x0 and therefore is a measure for
the scatterer’s position x0. The first term contributing to d pdet

is independent of x0, but dominates the fluctuations of the
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measurement through photon shot noise. The power spectral
density of the fluctuations is

dsdet
PP (θ, φ) = h̄kc

2π
γ 2d pdip. (C2)

In order to extract the position x0 from the differential detector
signal Eq. (C1), it needs to be divided by the prefactor
dβ(θ, φ) = 2γ k sin(θ ) cos(φ)d pdip. Accordingly, we trans-
late the fluctuations given in Eq. (C2) to fluctuations of the
position as

sx
imp(θ, φ) = dsdet

PP (θ, φ)

dβ(θ, φ)2
. (C3)

In analogy, we derive sy
imp(θ, φ) and sz

imp(θ, φ) given in

Eqs. (7). Recall that s j
imp(θ, φ) for j ∈ {x, y, z} are the power

spectral densities of the measurement imprecision associated
with a differential detector located at (θ, φ). Importantly, we
find s j

imp(θ, φ) ∝ 1/(d�), meaning that as the solid angle d�

goes to zero the imprecision noise of the detector diverges to
infinity. This intuitively makes sense, since the signal vanishes
together with the detector area.

As mentioned in the main text, we perform inverse-
variance weighting in order to minimize the total imprecision
when the signals from all detectors covering the unit sphere
are combined. The local reading of x0 is hence weighted with
the inverse of sx

imp(θ, φ) before averaging over the unit sphere.
The total imprecision then turns out to be [44]

Sx
imp =

[∫
dβ(θ, φ)2

dsdet
PP (θ, φ)

]−1

= 5
h̄c

8πk

1

Pdip
, (C4)

where the integral runs over the full unit sphere. The results
for all three axes are given in Eqs. (8).

Finally, let us drop our assumption that the scatterer is only
displaced along one axis and allow for the position r0 to have
three nonzero components. In this case, d pdet depends on a
linear superposition of x0, y0, and z0 and, therefore, also the
local reading for the position along x

x̃0(θ, φ) = d pdet(θ, φ) − γ 2d pdip

dβ(θ, φ)

= x0 + y0 tan(φ) + z0
cos(θ ) − A

sin(θ ) cos(φ)
(C5)

includes contributions by y0 and z0. Nevertheless, when com-
bining the information from all differential detectors correctly,
following the procedure of inverse variance weighting, we
indeed find

x0 = Sx
imp

∫
dβ(θ, φ)2

dsdet
PP (θ, φ)

x̃0(θ, φ), (C6)

meaning that the contributions of y0 and z0 cancel. Analo-
gously, y0 and z0 can be extracted from the measurements
d pdet using

ỹ0(θ, φ) = d pdet − γ 2d pdip

2γ k sin(θ ) sin(φ) d pdip
, (C7a)

z̃0(θ, φ) = d pdet − γ 2d pdip

2γ k[cos(θ ) − A] d pdip
, (C7b)

together with an appropriately adjusted version of Eq. (C6).

FIG. 4. Laboratory detection system. A trapping lens with nu-
merical aperture NAtl = sin(	tl ) focuses an x polarized plane wave.
On the opposite side, the fields are collimated by a collection lens
with numerical aperture NAcl = sin(	cl ). The coordinate pair (θ, φ)
denotes a point both on the collection and on the trapping lens. A
particle close to the focal point scatters the focused field.

APPENDIX D: DERIVATION OF REALISTIC
MEASUREMENT IMPRECISION

The situation under consideration is sketched in Fig. 4. An
x polarized plane wave is focused by a trapping lens with
numerical aperture NAtl = sin(	tl ) before being recollimated
by a collection lens with numerical aperture NAcl = sin(	cl ).
A dipolar scatterer is positioned at r0 in close vicinity to
the focus located at the origin. The scattered field, given by
Eq. (2), is interfered with the trapping beam on the reference
surface of the collection lens. We formulate the fields using
the formalism laid out in Ref. [39], such that the electric field
on the reference sphere of the trapping lens reads

E∞ = Einc[− sin(φ)nφ + cos(φ)nθ ]
√

cos(θ ). (D1)

Here, nφ and nθ are spherical unit vectors along the azimuthal
and polar direction, respectively. Note that in our notation the
polar angle θ spans the range [0 . . . π/2], while the azimuthal
angle φ spans [0 . . . 2π ]. Therefore, the coordinate pair (θ, φ)
denotes both a point on the trapping lens and a point on the
collection lens (lying diametrically opposite relative to the
origin). In this notation, the trapping field on the collection
lens (where it serves as the reference field in a forward-
scattering detection scheme) takes the exact same form as
the field in Eq. (D1), besides an additional (irrelevant) phase
factor accounting for propagation through the focal region.

1. Quadrant detection in the forward direction

We first turn our attention to the case of detection in
the forward direction, where the field trapping the particle
naturally serves as a self-aligned reference field. The total
field on the reference sphere of the collection lens reads
E∞ + iEsc, with Esc the field scattered by the particle from
Eq. (2). The relative phase between both fields is fixed to
π/2, since the field in the focal region (driving the dipolar
scatterer) carries the Gouy phase shift relative to the field on
the reference sphere (and the polarizability of the particle is
assumed to be purely real) [39].
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Under the assumption of a strong reference field and a
small particle displacement r0 from the origin, the differential
power in direction (θ, φ) per unit solid angle is

d pcl(θ, φ)

d�
= Pinc cos(θ ) + √

3PdipPinc cos(θ )/(2π )

× [sin(φ)2 + cos(φ)2 cos(θ )]k(r0 · nr − Az0).

(D2)

Here, Pinc ∝ E2
inc is the power of the trapping beam. Note

that the polarization of the scattered dipole field Edip ∝ [nx −
(x/r)nr] differs from the reference field. As usual in homo-
dyne detection, we find two contributions to the power. The
first contribution is independent of the scatterer’s position and
dominates the associated photon shot noise, while the second
(interference) term is a measure for the scatterer’s position r0.

Typically, the intensity distribution on the reference sphere
is not spatially resolved. Instead, the fields are sent to a
quadrant photodetector aligned along the x and y axes. The
detector measures the integrated power striking the individual
quadrants. The power PQ

1 in the first quadrant is given by

PQ
1 =

∫ 	cl

0
dθ sin(θ )

∫ π/2

0
dφ pcl(θ, φ)

= Pinc
π

4
NA2

cl + k
√

3PincPdip/(2π )Bfwr0. (D3)

The powers PQ
n in the other quadrants (n = 2, 3, 4) are equiva-

lent with replacement x0 → −x0 for n ∈ {2, 3} and y0 → −y0

for n ∈ {3, 4}. In Eq. (D3), we have furthermore introduced
the quantity

Bfw =
∫ 	cl

0
dθ s

√
c

⎛
⎜⎝

s(1 + 2c)/3

s(2 + c)/3

π (c − A)(1 + c)/4

⎞
⎟⎠, (D4)

where we use the abbreviations s = sin(θ ) and c = cos(θ ).
An analytical solution of the third component Bfw

z is given in
Appendix E.

We note that the particle position r0 can be extracted from
the values PQ

n of the quadrant detector. Specifically,(
PQ

1 + PQ
4

) − (
PQ

2 + PQ
3

) = Pcal
x kx0, (D5a)(

PQ
1 + PQ

2

) − (
PQ

3 + PQ
4

) = Pcal
y ky0, (D5b)

4∑
n=1

PQ
n − PincπNA2

cl = Pcal
z kz0, (D5c)

with the calibration factors

Pcal
j = √

24PincPdip/π Bfw
j , j ∈ {x, y, z}, (D6)

where Bfw
j is the jth vector component of Eq. (D4). To get

access to z0, a constant reference power has to be subtracted.
Assuming that the detection is shot-noise limited, each of the
position measurements will be subject to fluctuations with a
white power spectrum

SQ
PP = h̄kc

2
PincNA2

cl, (D7)

arising from the first term in Eq. (D3). By dividing these
fluctuations by the calibration factor (Pcal

j k)2, we find the im-

precision noise spectral density for the motion of the particle
along the j axis:

S j,fw
imp = h̄c

kPdip

πNA2
cl

48
(
Bfw

j

)2 . (D8)

As detailed in Sec. III, we compare the calculated imprecision
noise of the realistic detection system to the one obtained in
the ideal case [Eqs. (8)] to obtain the measurement efficiencies
in forward scattering which are plotted in Fig. 3(b):

ηfw
x = 30

(
Bfw

x

)2

π2NA2
cl

, (D9a)

ηfw
y = 15

(
Bfw

y

)2

π2NA2
cl

, (D9b)

ηfw
z = 1

1 + 5
2 A2

15
(
Bfw

z

)2

π2NA2
cl

. (D9c)

Finally, we discuss the feature that ηfw
z plotted in Fig. 3(b)

vanishes for a symmetric setup. This feature can be under-
stood by looking at Bfw

z = (π/4)
∫ 	cl

0 dθ s
√

c(c − A)(1 + c)
from Eq. (D4), with c = cos(θ ) and s = sin(θ ). The factor
[cos(θ ) − A] in the integrand changes sign as the collection
angle θ passes a certain critical value. For a symmetric setup
(NAtl = NAcl), the integration over θ is truncated such that
it strictly vanishes. This result can be obtained directly by
plugging Eq. (A3) into Bfw

z and assuming NAtl = NAcl.
Note that the derivation presented here tacitly assumed

NAcl < NAtl, since when θ exceeds the maximum angle of
the trapping beam 	tl = sin−1(NAtl ) the reference power
drops to zero, such that there is no signal (but also no excess
noise). For this reason, the detection efficiencies plotted in
Fig. 3(b) are constant for NAcl > NAtl.

2. Quadrant detection in the backward direction

To analyze the case of backscattering detection, we assume
a reference field which has the same spatial distribution as the
trapping field. The reference beam is then identical to Eq. (D1)
by our choice of coordinates. Following the same derivations
as in Appendix D 1, with the field scattered by the dipole
expressed in the coordinate system given by the reference
spheres, we find expressions for the imprecision noise spectral
densities in backward scattering S j,bw

imp identical to Eq. (D8)
under the substitutions 	cl → 	tl, NAcl → NAtl, as well as
Bfw → Bbw, with

Bbw =
∫ 	tr

0
dθ s

√
c

⎛
⎜⎝

s(1 + 2c)/3

s(2 + c)/3

π (c + A)(1 + c)/4

⎞
⎟⎠. (D10)

Note that Bbw differs from Bfw only in the third vector com-
ponent. Since both A and Bbw depend on 	tl, the z component
can be further simplified by inserting Eq. (A3) for A, which
yields

Bbw
z = π

2

∫ 	tl

0
dθ s

√
c(1 + c)c. (D11)
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An analytical solution of Bbw
z is given in Appendix E. In anal-

ogy to forward scattering, we compare the obtained impreci-
sion noise S j,bw

imp to the one for an ideal measurement given
by Eqs. (8), in order to compute the detection efficiencies in
backscattering ηbw

j , as plotted in Fig. 3(c).

APPENDIX E: ANALYTICAL SOLUTIONS

In this Appendix, we calculate analytical solutions of
Eqs. (A3), (D4), and (D11). To ease our notation, we define

C(	) =
∫ 	

0
dθ s

√
c(1 + c), (E1a)

D(	) =
∫ 	

0
dθ s

√
c(1 + c)c. (E1b)

We can solve both integrals analytically and find

C(	) = 2

(
8

15
− cos(	)3/2

3
− cos(	)5/2

5

)
, (E2a)

D(	) = 2

(
12

35
− cos(	)5/2

5
− cos(	)7/2

7

)
. (E2b)

This allows us to find solutions of the following integrals
in terms of the functions C(	) and D(	):

A = D(	tl )

C(	tl )
, (E3a)

Bfw
z = π

4
[D(	cl ) − AC(	cl )], (E3b)

Bbw
z = π

2
D(	tl ). (E3c)

[1] W. D. Phillips, Rev. Mod. Phys. 70, 721 (1998).
[2] A. Ashkin, Science 210, 1081 (1980).
[3] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, Opt.

Lett. 11, 288 (1986).
[4] A. Ashkin, Optical Trapping and Manipulation of Neutral

Particles Using Lasers (World Scientific, Singapore, 2006).
[5] D. E. Chang, C. A. Regal, S. B. Papp, D. J. Wilson, J. Ye, O.

Painter, H. J. Kimble, and P. Zoller, Proc. Natl. Acad. Sci. USA
107, 1005 (2010).

[6] O. Romero-Isart, A. C. Pflanzer, M. L. Juan, R. Quidant, N.
Kiesel, M. Aspelmeyer, and J. I. Cirac, Phys. Rev. A 83, 013803
(2011).

[7] T. Li, S. Kheifets, and M. G. Raizen, Nat. Phys. 7, 527 (2011).
[8] J. Gieseler, B. Deutsch, R. Quidant, and L. Novotny, Phys. Rev.

Lett. 109, 103603 (2012).
[9] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev. Mod.

Phys. 86, 1391 (2014).
[10] C. M. Caves, Phys. Rev. Lett. 45, 75 (1980).
[11] C. M. Caves and G. J. Milburn, Phys. Rev. A 36, 5543 (1987).
[12] V. B. Braginsky and F. Y. Khalili, Quantum Measurement

(Cambridge University, Cambridge, England, 1992).
[13] W. Bowen and G. Milburn, Quantum Optomechanics (Taylor &

Francis, London, 2015).
[14] T. P. Purdy, R. W. Peterson, and C. A. Regal, Science 339, 801

(2013).
[15] J. D. Teufel, F. Lecocq, and R. W. Simmonds, Phys. Rev. Lett.

116, 013602 (2016).
[16] R. W. Peterson, T. P. Purdy, N. S. Kampel, R. W. Andrews,

P.-L. Yu, K. W. Lehnert, and C. A. Regal, Phys. Rev. Lett. 116,
063601 (2016).

[17] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and
R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).

[18] M. Rossi, D. Mason, J. Chen, Y. Tsaturyan, and A. Schliesser,
Nature (London) 563, 53 (2018).

[19] Z. Yin, A. A. Geraci, and T. Li, Int. J. Mod. Phys. B 27, 1330018
(2013).

[20] A. A. Geraci, S. B. Papp, and J. Kitching, Phys. Rev. Lett. 105,
101101 (2010).

[21] A. Arvanitaki and A. A. Geraci, Phys. Rev. Lett. 110, 071105
(2013).

[22] D. C. Moore, A. D. Rider, and G. Gratta, Phys. Rev. Lett. 113,
251801 (2014).

[23] A. D. Rider, D. C. Moore, C. P. Blakemore, M. Louis, M. Lu,
and G. Gratta, Phys. Rev. Lett. 117, 101101 (2016).

[24] V. Jain, J. Gieseler, C. Moritz, C. Dellago, R. Quidant, and
L. Novotny, Phys. Rev. Lett. 116, 243601 (2016).

[25] B. Rodenburg, L. P. Neukirch, A. N. Vamivakas, and
M. Bhattacharya, Optica 3, 318 (2016).

[26] J. Vovrosh, M. Rashid, D. Hempston, J. Bateman, M.
Paternostro, and H. Ulbricht, J. Opt. Soc. Am. B 34, 1421
(2017).

[27] F. Tebbenjohanns, M. Frimmer, A. Militaru, V. Jain, and
L. Novotny, Phys. Rev. Lett. 122, 223601 (2019).

[28] F. Gittes and C. F. Schmidt, Opt. Lett. 23, 7 (1998).
[29] C. Dawson and J. Bateman, J. Opt. Soc. Am. B 36, 1565

(2019).
[30] N. Kiesel, F. Blaser, U. Delić, D. Grass, R. Kaltenbaek, and M.
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