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Abstract

The recent work by Achlioptas, D’Souza, and Spencer opened up the possibility of obtaining a discontinuous (ex-

plosive) percolation transition by changing the stochastic rule of bond occupation. Despite the active research on this

subject, several questions still remain open about the leading mechanism and the properties of the system. We review

the largest cluster and the Gaussian models recently introduced. We show that, to obtain a discontinuous transition it

is solely necessary to control the size of the largest cluster, suppressing the growth of a cluster differing significantly,

in size, from the average one. As expected for a discontinuous transition, a Gaussian cluster-size distribution and

compact clusters are obtained. The surface of the clusters is fractal, with the same fractal dimension of the watershed

line.
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1. Introduction

Percolation, the paradigm for random connectivity, has since Hammersley [1] been one of the most often applied

statistical models [2, 3]. Its phase transition being related to magnetic models [4] is in all dimensions one of the

most robust continuous transitions known. This explains the enormous excitement generated by the recent work by

Achlioptas, D’Souza, and Spencer [5] describing a stochastic rule apparently yielding a discontinuous percolation

transition on a fully connected graph. A discontinuous percolation transition is observed when the growth of the

largest cluster is systematically suppressed [6], promoting the formation of several large components that eventually

merge in an explosive way [7]. Several aggregation models, based on percolation, have been developed to achieve

this change in the nature of the transition [5, 8, 9, 10, 6, 11, 12]. These models are generally classified as explosive
percolation, the name given in the original work that triggered the field [5]. In that work, a best-of-two product rule

is proposed where, at each iteration, two unoccupied bonds are randomly selected but only the one which minimizes

the product of the mass of the clusters, connected with the bond, is occupied. This work was originally studied by

Achlioptas et al. [5] on a fully connected graph and analyzed in detail by Friedman and Landsberg [7]. Ziff reported

simulations on a regular square lattice [13, 14], while Radicchi and Fortunato [15, 16] and Cho et al. [17] on scale-free

networks. However, reported results of finite-size studies and size distributions are not consistent with a discontinuous

transition. For example, Ziff [14], Radicchi and Fortunato [16], as well as Cho et al. [9] found a power-law cluster-size

distribution with an exponent close to two. Although, different from the exponent of classical percolation, the sole fact

of finding a power law is untypical for discontinuous transitions. Also unusual for a discontinuous transition is that

the clusters are fractal, as we found happens for the Achlioptas rule, from the behavior of the order parameter with

the system size [14, 16]. Since then, various rules have been devised [6, 7, 8, 11, 10], all attempting a discontinuous

transition towards an infinite cluster. In all proposed models one tries to keep the clusters of similar size and, for

random graphs, the internal bonds of clusters should also be additionally suppressed [5, 8]. For example, Moreira
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Largest cluster model Gaussian model

Figure 1: Typical configuration of the system, at the percolation threshold, for the Largest cluster and the Gaussian models, both with α = 1.

Pictures obtained from simulations on a square lattice with L2 sites and L = 1024. Both models yield clear discontinuous transitions and their

clusters are compact with the same fractal dimension of the watershed line.

et al. [8] have proposed a Hamiltonian formalism which provides a clear connection between equilibrium statistical

mechanics and explosive percolation. They have shown that, for obtaining a discontinuous transition the size of the

growing clusters should be kept approximately the same and, on random graphs, merging bonds (connecting different

clusters) should dominate over the redundant ones (connecting sites in the same cluster). In this manuscript we

review the work introduced by Araújo and Herrmann [6] where two models are proposed yielding clear discontinuous

transitions: the largest cluster and the Gaussian models. In the latter, at the percolation threshold, a bimodal cluster

size distribution is found consistent with the nature of the transition. For both models, the cluster perimeters are

fractal with a fractal dimension of 1.23 ± 0.03, similar to the one observed for watersheds [18, 19] and other models

[20, 21, 22].

More recently, the procedure proposed by Achlioptas et al. has been generalized to a best-of-m product rule

in random graphs [23, 24] and regular lattices [25] to study its percolation and transport properties. The larger

the set of bonds, m, the lower the probability that the occupied bond is related to the largest cluster, promoting the

compactness of the percolation cluster, delaying the percolation threshold, and above an intermediate value, improving

the conductivity of the system [25]. Andrade et al. [25] have shown that, at the percolation threshold, all exponents for

the size dependence of the spanning cluster, the conducting backbone, the cutting bonds, and the global conductance

of the system, change continuously and significantly with m.

A hybrid model has also been proposed [26] where an additional parameter is included to interpolate between the

discontinuous transition, observed for m = 10, and the continuous one of classical percolation. The model, discloses a

nonequilibrium tricritical percolation where explosive percolation is diluted with classical percolation. In the diagram

for the model two transition lines were identified: a discontinuous and a critical line; both meeting at a tricritical point.

In the work, the multicritical behavior is characterized by a new set of critical exponents and a tricritical crossover

between the discontinuous and the continuous regime is presented.

Potential applications of explosive percolation are, for instance, the growth dynamics of the Human Protein Ho-

mology Network [27] and the identification of communities in real systems [28].

In this manuscript, we start with a description of the two models (largest cluster and Gaussian) in the next section.

The nature of the transition and the fractal dimension of the cluster perimeter is discussed in Sec. 3, with some final

remarks in Sec. 4.
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Figure 2: Size dependence, at the percolation threshold, of the largest cluster model, of the susceptibility (χ) and the order parameter (P∞) –

fraction of sites belonging to the largest cluster. Results have been averaged over 104 realizations of square lattices with L2 sites. The linear system

size L ranges from 32 to 4096. The susceptibility scales linearly with the system size and the order parameter converges to a non-zero value in the

thermodynamic limit.

2. Model

In the largest cluster model [6], bonds are randomly selected from the list of available ones. If, once occupied, the

chosen bond would not lead to the formation or growth of the largest cluster, it is occupied; otherwise, the occupation

occurs with probability,

min

{
1, exp

[
−α
( s − s̄

s

)2]}
, (1)

where s is the size of the cluster obtained by occupying the bond, s̄ is the average cluster size after the occupation,

and α is a parameter of the model that, for simplicity, we take equal to unity. With this parameter α it is possible to

control the size distribution of the clusters. The larger the value of α, the lower the cluster-size dispersion. For α ≤ 0,

all selected bonds are occupied and the model boils down to the classical bond percolation problem, with a continuous

transition at the percolation threshold (see, for example, Ref. [2]). For α > 0, the formation of a largest cluster

differing significantly in size from the average cluster size is systematically demoted, promoting the homogenization

of the clusters size. This homogenization, induces the formation of a “powder keg” [7, 29] which merges at the

percolation threshold leading to a discontinuous transition.

The Gaussian model [6] is generalization of the largest cluster one. While in the latter an occupation probability is

solely defined to the bonds related with the largest cluster, and all the others are occupied with probability one, in the

former, all bonds are occupied with a probability given by Eq. (1). At each iteration, an unoccupied bond is randomly

selected and occupied with this probability, which allows to explicitly control the cluster size distribution. We denote

this model as Gaussian since the proposed expression corresponds to a Gaussian distribution with average size s̄ and

size dispersion s̄/
√

2. In principle, any function constraining the formation of clusters differing significantly in size

from the average cluster size could be considered leading to a discontinuous transition. Note that, in this model all

clusters size are controlled while, in the largest cluster model solely the largest cluster is directly controlled and all

the smaller ones can freely grow.

Figure 1 has snapshots of typical configurations, at the percolation threshold, of both models. Obtained clusters

are compact with fractal perimeters. In the next section, we discuss the discontinuous nature of the transition and the

fractal dimension of the largest-cluster interface.
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Figure 3: Size dependence, at the percolation threshold, of the Gaussian model, of the susceptibility (χ) and the order parameter (P∞) – fraction

of sites belonging to the largest cluster. Results have been averaged over 104 realizations of square lattices with L2 sites. The linear system size

L ranges from 32 to 4096. The susceptibility scales linearly with the system size and the order parameter converges to a non-zero value in the

thermodynamic limit.

3. Results

For nonequilibrium problems, where a free energy cannot be defined, transitions can still be classified based on the

behavior of the order parameter [30]. A discontinuous transition, is characterized by a jump in the order parameter,

otherwise, a transition is denoted as continuous. For percolation, we define as order parameter the fraction of sites in

the largest cluster (P∞) [2]. Here we also consider the second moment of the cluster size distribution (χ), defined as

χ =
1

N

∑
i

s2
i , (2)

where the sum runs over all clusters i. To estimate the percolation threshold we consider the average value of p
(fraction of occupied bonds) at which a connected path linking opposite boundaries of the system is obtained. Con-

sidering different system sizes, for α = 1, we obtain for the percolation threshold, of the largest cluster model,

pc = 0.632 ± 0.002. To identify the order of the transition, Fig. 2 presents a finite-size study for P∞ and χ, aver-

aged over 104 samples of square lattices with linear sizes ranging from 32 to 4096. As we can see in the inset of

Fig. 2, above a certain system size, the order parameter, at the percolation threshold, does not show any finite-size

dependence, staying at a constant value in the thermodynamic limit (L→ ∞). The second moment of the cluster size

distribution (χ) scales with Ld(d = 2) which is a sign of a discontinuous transition [31, 32]. For the present models,

the percolation thresholds are larger than the ones from previous models due to the compactness of the clusters (see

Fig. 1).

As example, for positive α, we present, in Fig. 3, a size dependence study of the order parameter and second

moment of the cluster size distribution, for the Gaussian model, with α = 1, at the percolation threshold, on a regular

square lattice with linear size (L) ranging from 32 to 4096. Results were averaged over 104 samples. We extrapolate,

for the infinite system, a percolation threshold pc = 0.56244 ± 0.00006. As for the largest cluster model, the density

of the infinite cluster does not change significantly with the system size and the second moment of the cluster size

distribution scales with Ld(d = 2). As before, these results imply a discontinuous transition.

As clearly seen in the snapshots of Fig. 1, clusters obtained with our models are compact but we find that the

surface is fractal. For the Gaussian model, we calculate for the cluster perimeter a fractal dimension of 1.23 ± 0.03,

obtained with the yardstick method [33] (Fig. 4). For the largest cluster model, it is also characterized by a fractal

perimeter with a fractal dimension of 1.26 ± 0.04 (Fig. 4). Compact clusters with fractal surface were also reported

for irreversible aggregation growth in the limit of high concentration by Kolb et al. [34]. The value of this fractal

dimension of percolation is intriguingly close to the one found for watersheds (1.211 ± 0.001) [18, 19], random
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Figure 4: For the largest cluster and the Gaussian models (α = 1), the dependence on the stick size of the number of sticks necessary to follow the

perimeter of the infinite cluster, with the yardstick method. Results have been averaged over 104 realizations on a square lattice with 20482 sites.

For visual clarity, data for the Gaussian model have been vertically shifted by a factor of 0.1.

Figure 5: Snapshot of the watershed line obtained by randomly occupying all bonds in the system except the ones leading to an infinite connection,

i.e., closing a path between the bottom and the top of the system. The fractal dimension of the interface line is the same as the one of the surface of

the infinite cluster of the largest cluster and Gaussian models.
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Figure 6: Cluster size distribution for the percolation threshold of the Gaussian model (α = 1), on a square lattice with L2 sites. Results have been

averaged over 104 samples and L = {1024, 2048, 4096}. To reduce finite-size effects, the contribution of the largest clusters has been neglected.

Black-dashed lines are two Gaussian distributions fitting the results from simulation. The black-solid line is the sum of both curves.

polymers in strongly disordered media (1.22 ± 0.02) [20], and several other models [35]. The simplest way to obtain

the watershed line has been proposed by Cieplak et al. [36] and consists in randomly occupying bonds in the system

by systematically suppressing the formation of a path connecting opposite borders of the system, i.e., any bond which

leads to the formation of a cluster of connected sites touching the bottom and the top of the system is never occupied.

As seen in Fig. 5, in the limit where all the other bonds are selected, only two clusters exist, separated by a watershed

line. This line is fractal, with the same fractal dimension of the largest-cluster interface of the two models discussed

here.

Figure 6 shows the cluster size distribution, P(s, α), for different system sizes, obtained with the Gaussian model.

Measurements have been performed at the percolation threshold on a square lattice with 10242, 20482, and 40962 sites,

and averaged over 104 samples. To reduce finite-size effects, we neglect the contribution of the largest cluster. Two

characteristic peaks are observed, a typical feature of a discontinuous transition. For a finite system, at the percolation

threshold of such transitions, coexistence of the percolative and non-percolative states is expected [37].

4. Final Remarks

In this manuscript we summarize the main properties of two models of explosive percolation yielding clear dis-

continuous transitions: the largest cluster and the Gaussian. With the largest cluster model we conclude that, on a

regular lattice, to obtain an explosive transition is solely necessary to suppress the growth of the largest cluster what,

indirectly, promotes the homogenization of the clusters size. With the Gaussian model the discontinuous nature of

the transition is supported by a bimodal cluster-size distribution resulting from the coexistence of a percolative and

non-percolative state. For both models, the fractal perimeter of the largest cluster is intriguingly close to the one found

for watersheds (1.211 ± 0.001) [18], random polymers in strongly disordered media (1.22 ± 0.02) [20], optimal path

cracking [21, 22], and several other models [35], and we have arguments that they are actually identical.
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