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Abstract. Specialized hardware architectures and dedicated accelera-
tors allow the application of Deep Learning directly within sensing nodes.
With compute resources highly optimized for energy efficiency, a large
part of the power consumption of such devices is caused by transfers
of intermediate feature maps to and from large memories. Moreover,
a significant share of the silicon area is dedicated to these memories
to avoid highly expensive off-chip memory accesses. Extended Bit-Plane
Compression (EBPC), a recently proposed compression scheme targeting
DNN feature maps, offers an opportunity to increase energy efficiency by
reducing both the data transfer volume and the size of large background
memories. Besides exhibiting state-of-the-art compression ratios, it also
has a small, simple hardware implementation. In post-layout power simu-
lations, we show an energy cost between 0.27 pJ/word and 0.45 pJ/word,
3 orders of magnitude lower than the cost of off-chip memory accesses. It
allows for a reduction in off-chip access energy by factors of 2.2× to 4×
for MobileNetV2 and VGG16 respectively and can reduce on-chip access
energy by up to 45%. We further propose a way to integrate the EBPC
hardware blocks, which perform on-the-fly compression and decompres-
sion on 8-bit feature map streams, into an embedded ultra-low-power
processing system and show how the challenges arising from a variable-
length compressed representation can be navigated in this context.

Keywords: Edge AI · Feature Map Compression · Deep Learning ·
Hardware Acceleration

1 Introduction

Deep Learning has become the dominant technique in computer vision and its ap-
plications to other data processing tasks, such as speech recognition and biomed-
ical signal processing, are rapidly gaining prominence. To meet the demand for
computational efficiency generated by the rapid proliferation of these algorithms,
specialized hardware accelerators are being developed and studied, by academia
and industry alike, at an exceptional rate [1, 12, 16, 19, 27, 37]. A trend, com-
monly summarized under the term “Edge AI”, has been to move neural network
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inference from remote cloud resources to the source of sensor data in order to im-
prove latency, reduce transmission energy costs and alleviate privacy concerns.
Edge devices developed for these applications may rely on low-power general-
purpose processing cores [29] or dedicated accelerators [11] to perform the data
processing.

Power efficiency is the primary target metric in the design of such devices,
and with the elimination of energy-intensive long-range communication, data
transfer to and from central memories becomes the main contributor to power
consumption [3, 13]. In systems relying on external memory (DRAM), off-chip
communication dominates system energy consumption by a wide margin [4]. Dis-
regarding off-chip communication, on-chip (commonly SRAM-based) memories
are responsible for a major part - often more than half - of the power consump-
tion [3, 13]. At a given operating frequency, on-chip SRAM power consumption
is proportional to the frequency of accesses and static (leakage) power consump-
tion rises with the area allocated to memory macros. Consequently, reducing
the number of memory accesses and the size of on-chip memories holds great
potential for improving energy efficiency. One natural approach to compressing
both model representation and result data is reducing operand precision, which
is a subject of intensive investigation in the research community [17,24,38,39].

Another way to reduce memory size and the number of accesses is to compress
data located in large, energy-intensive memories and decompress it only at the
time of use. Compressing the model size in this way is also common practice,
with most works using approaches based on sparsity, which may be induced in
the model with negligible accuracy loss by techniques such as weight pruning [20,
23,25]. With model size shrinking thanks to these methods, intermediate feature
maps become a more significant contributor to data transfer volume. However,
the compression of feature maps has been less researched, for several reasons:
While weight precision can be reduced to extreme degrees while retaining good
accuracy [24, 38], reducing activation precision to e.g. ternary representations
leads to significant accuracy drops [2,10]. Furthermore, while static weights can
be compressed offline, compressing intermediate feature maps requires custom
hardware, and the offline pruning approach to induce sparsity is not applicable
to them as they are input-dependent. However, the transfer of intermediate
feature maps is responsible for a major part of total data transfer. With recent
applications working on high-resolution input data, such as pose estimation [6,
22] and object detection [26, 32], the share of feature map transfers increases
even further, making feature map compression even more promising for power
efficiency gains. In this work, we present the following contributions:

1) Implementation of a feature map compression and decompression engine [8]
in an advanced technology node (GlobalFoundries 22 nm FDX) with post-
layout and energy efficiency results;

2) A scheme for the integration of on-the-fly feature map compression into an
embedded computing platform, with a detailed discussion of the challenges
presented by the compressed representation in this regime and how to ad-
dress them;
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3) An analysis of the potential impact of EBPC integration on the energy cost
of on-chip and off-chip data transfers, showing a energy cost compression and
decompression between 0.27 pJ and 0.45 pJ per 8-bit word, which enables a
reduction in off-chip data transfer energy between 2.2× and 4× - improving
on the previous state of the art - and on-chip transfer energy savings of up
to 45%.

2 Related Work

A number of works present accelerators for the efficient computation of convo-
lutional layers with sparse inputs, among them Eyeriss v2 [9], SCNN [30] and
NullHop [1]. While reducing memory size and bandwidth requirements is an im-
portant benefit of the schemes proposed in these works, their focus is mostly on
reducing the number of computations by directly using the compressed repre-
sentations in the compute units to skip multiplications by zero. The compression
methods used in these works rely exclusively on data sparsity, which allows them
to be applied to both model parameters (which can be sparsified further by ap-
plying network pruning) and activations.

We focus on compressing activations with the intent of reducing data transfer
volume, an approach that allows the use of a compression method that exploits
properties exclusive to feature map data. The approach of compressing only
feature maps is shared by the Compressing DMA Engine (cDMA) [33]. It ex-
ploits only sparsity in its compression method, by using a zero-value compression
(ZVC) scheme, which achieves an average compression ratio of 2.6× on feature
maps of set of benchmark networks including VGG16 and SqueezeNet [18]. ZVC-
encoded data is represented by a binary mask, indicating for each word whether
it is zero or not, and a sequence comprised of the unencoded nonzero values.
cDMA targets sparse feature maps in 32-bit precision and provides a hardware
solution to increase the effective bandwidth over a PCIe link connecting GPU
memory space to the system memory, providing an average performance increase
of 32% on virtualized DNNs (vDNN). While cDMA offers attractive advantages
for backplane data transfers of full-precision data, the performance of its ZVC
scheme does not improve with lower arithmetic precision as employed in state-
of-the-art embedded applications. For 8-bit and 16-bit data, it is surpassed by
the recently introduced method of Extended Bit-Plane Compression.

3 EBPC: Extended Bit-Plane compression

Extended Bit-Plane Compression (EBPC), first introduced in [7] and extended in
[8], combines zero run-length encoding (ZRLE) with bit-plane compression [21],
an algorithm originally intended for texture compression. It is a lossless compres-
sion algorithm uniquely suited to the compression of neural network feature maps
as it exploits not only data sparsity but also its smoothness and achieves state-of-
the-art compression rates between 2.2× (MobileNetV2) and 5.1× (AlexNet) on
8-bit data. EBPC encodes an input data stream into two output streams: 1) A
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Fig. 1: Extended bit-plane compression for 8-bit data: The ZNZ stream encodes
for each input word whether it is zero, the BPC stream encodes the
nonzero words.

zero-runlength encoded (ZRLE) zero/nonzero stream (ZNZ) analogous to the
binary mask in ZVC, exploiting data sparsity and providing additional compres-
sion for longer sequences of zeros, and 2) a BPC stream, generated by applying
BPC to the nonzero values of the input stream. Figure 1 shows the process for
8-bit data.

Due to its simplicity and inherent symmetry, the encoder and decoder blocks,
which operate on streams of 8-bit data, can both be implemented in hardware
with a very small resource footprint of about 3000 gate-equivalents each in UMC
65 nm, giving a single compressor-decompressor pair an area footprint equivalent
to that of a 32-bit multiplier. As EBPC is applied only to intermediate feature
maps and the feature maps are decompressed before being processed, its use
is orthogonal to that of model compression schemes which act on the network
weights, such as Deep Compression [14]. The only condition is that feature map
data be consumed and produced by the compute units in raw form rather than
some compressed representation.

In comparison to the ZVC scheme employed by cDMA, EBPC achieves sig-
nificantly higher compression ratios for fixed-point data for 8-bit and 16-bit data
types, which have been found to provide sufficient arithmetic precision to retain
baseline accuracy, i.e., deliver equivalent results to 32-bit floating point data [5]:
For VGG16, MobileNetV2 and ResNet34, EBPC achieves average compression
ratios of 4×, 2.2× and 2.4× respectively on 8-bit fixed-point data, comparing
favorably to the compression ratios of 2.3×, 1.5× and 1.6× attained by ZVC,
making it the best-performing lossless compression algorithm in literature for
DNN feature maps to the best of our knowledge. More detailed comparisons
between EBPC and other compression methods can be found in [8].

3.1 Applications in Computing Systems

There are different goals which can be achieved by the integration of EBPC
hardware into an existing system, shown in Figure 2:

1) Memory size reduction: In order to reduce silicon area (in the case of on-chip
memory) and power consumption, it is desirable to keep the size of the large
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Fig. 2: Opportunities for power efficiency gains from EBPC: 1) Memory size
reduction, 2) Off-chip data transfer volume reduction, 3) On-chip data
transfer volume reduction

background memory (L2 in Figure 2) small. EBPC lowers the required memory
capacity by consistently providing state-of-the-art compression ratios with no
accuracy penalty due to its lossless nature: For instance, output feature maps
from MobileNetV2’s fifth layer, which are the largest in terms of data volume and
thus set the lower bound for memory size in layerwise processing, can reliably
be compressed by a factor of more than 1.7, theoretically enabling a reduction
in L2 memory size by that factor.

2) More efficient use of off-chip bandwidth: Systems which rely on off-chip mem-
ory to store intermediate feature maps can benefit from a significant reduction
in off-chip data traffic volume or, equivalently, an increase in effective band-
width. As off-chip communication is typically responsible for a large share of
system power consumption [1,4], this holds major potential for energy efficiency
improvements.

3) Reducing on-chip data access energy: While on-chip memory accesses are
generally about 2 orders of magnitude more energy-efficient than off-chip ac-
cesses, they are nonetheless the main contributor to the power consumption of
neural network accelerators [3, 13]. If the added energy cost of compressing and
decompressing the feature map data is lower than the energy saved as a result
of the reduced memory accesses, EBPC offers a way to reduce system energy
consumption.

4 System Integration

Integrating EBPC into an embedded system architecture brings several chal-
lenges:
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Fig. 3: Proposed System Integration. The extension to the basic system is un-
derlaid in purple.

1. The EBPC-encoded representation of a data stream has a data-dependent
length not known ahead of the compression process. The compressed streams
in memory must thus be managed actively;

2. Due to its variable-length nature, randomized access into the compressed
space is in general not possible;

3. As the encoded representation consists of two separate streams and the com-
pressing/decompressing hardware blocks process only one word of a single
stream at a time, memory accesses must be time-multiplexed between the
different compressed streams and the respective BPC and ZNZ streams they
comprise.

In this section, we will address these challenges as they relate to integrating
EBPC into a parallel ultra-low-power (PULP), RISC-V based system architec-
ture based on Mr. Wolf [31]. In such a system, there is a tiered, user-managed
memory hierarchy with a large SRAM-based central L2 memory and one or mul-
tiple smaller, low-latency and low-power L1 scratchpads based on standard-cell
memories (SCM). The system operation is orchestrated by a Fabric Controller
(FC), which in Mr. Wolf is implemented as a low-complexity, low-power RISC-V
microcontroller. The L2 memory and the FC are located in the Control Do-
main, which contains all the components that make the system work, such as
peripherals, clock generation and power management. Intensive data processing
is performed by then compute units in the DSP Domain (called the Cluster
Domain in the context of Mr. Wolf and other PULP systems) working on the
scratchpad memories, so high-frequency memory accesses happen on low-power
memories. In the case of Mr. Wolf, the compute units are implemented as a
cluster of high-efficiency RISC-V cores optimized for embedded DSP tasks, but
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Fig. 4: Compressing DMA Engine

they might also take the form of more specialized accelerators in a generic sys-
tem. A system overview is shown in Figure 3. Data is transferred between the
Control and DSP domains via DMA transfers. Following the pattern laid out
by cDMA, we propose a compression-enabled DMA engine to compress (decom-
press) feature map data being transferred to (from) L2 on-the-fly. A regular DMA
controller is retained for transferring data not amenable to compression, and in
general, no major system reorganization is needed to integrate the compression
functionality. A typical computation flow would then proceed as follows:

1. Compressed data is transferred from L2 to L1 using the proposed DMA
engine, which decompresses them on-the-fly;

2. Compute units perform calculations on the uncompressed data in the L1
scratchpad;

3. The uncompressed results are transferred back to L2 and compressed on-
the-fly.

As the data in L1 is uncompressed, compute units see the same input data
as when using a regular, non-compressing DMA engine and inference time is
not affected by our proposed scheme. Likewise, time spent on data transfer
is not noticeably impacted as our DMA engine transfers data at a rate of 1
uncompressed word/cycle.

4.1 Compression-Enabled DMA Controller Architecture

The DMA engine has a compressing and a decompressing submodule, both
of which are attached to interconnects connecting to the L1 and L2 memories. A
block diagram of the compressing (i.e., L1 to L2) DMA engine is shown in Fig-
ure 4. As each compressor and decompressor block has a maximum throughput
of one uncompressed 8-bit word per cycle and most systems use wider words,
multiple streams are processed in parallel. After the start addresses of input and
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Fig. 5: Dealing with overlap regions: In the “L1 Overlap Copy” scheme, applica-
tions or accelerators can assume feature maps stored contiguously but an
additional copy operation is required. In the “L1 Ring Buffer” scheme,
compute elements must be able to accommodate address wrap-around
but no additional operations are required.

output streams and the length of each input stream are configured, the unit
starts reading from the configured input stream addresses in short bursts. The
data read from memory is fed into a FIFO queue for the corresponding stream,
from which the packed words are removed and unpacked into their constituent
8-bit words, which are fed into the (de)compressor unit assigned to the stream.
Its output is packed into wide data words again, passes through another FIFO
queue and is finally written to the target address in short bursts. The other
functionality of the compression-enabled DMA engine is identical to that of a
simple memory-to-memory DMA controller.

4.2 Tiling Compressed Feature Maps

Intermediate feature maps of networks that perform complex tasks, e.g. au-
tonomous navigation of nano-drones as in PULP-DroNet [29], may not fit into
the limited space available in L1 memory scratchpads. To enable their execu-
tion on small embedded systems, a commonly used approach is tiling of input
or output data into multiple portions (tiles) and processing them individually.
Three-dimensional feature map tensors can be tiled in each of their dimensions
or any combination thereof. In the following, we will assume tiling in only one di-
mension. In channel-wise-tiling, the tensor is split into multiple sets of complete
feature maps. As separate feature maps are compressed separately, channel-wise
tiling is natively supported if the individual feature maps are transferred to L1
in their entirety. In spatial tiling, the tensor is divided along spatial dimensions.
Following [29], we will consider tiling into horizontal stripes. In this case, the
EBPC-encoded representation of a block of as two variable-length streams in-
troduces additional sources of complexity relative to the uncompressed case.
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Fig. 6: Approaches for horizontal tiling of compressed feature maps, illustrated
for L2-to-L1 transfers: Stripes can be individually compressed in L2 (A),
or the feature maps can be encoded in their entirety (B), requiring context
switching capability of the decoder.

The first is the overlap between two successive tiles: a convolutional kernel
of dimension k× k requires an overlap of k− 1 pixels between tiles. When using
uncompressed data, a possible (but non-optimal) solution is to transfer each tile,
including the overlap with the previous one, from L2 to L1 in its entirety. With
EBPC-encoded feature maps however, the beginning of the overlap region cannot
be found by simple address manipulation. Thus, the only option is to keep the
overlap region from the previous tile in the L1 memory. Two ways to deal with
this issue are shown in Figure 5. As the overlap region will be at the end of the
memory buffer allocated in L1 for the input feature maps, the overlap region may
be either: 1) copied to the beginning of the input buffer (shown on the left), or
2) left in place (as shown on the right). The first option incurs the cost (in energy
and available computation time) of an additional L1-to-L1 copy operation but
provides the data in a linear organization to the computation implementation,
while the second option requires that the application or accelerator performing
the calculations is capable of dealing with a ring buffer memory. Note that in [29],
as in other optimized implementations, a double buffering scheme is used for the
L1 input buffer, which is not shown in Figure 5. The underlying principle still
applies, with the input buffer simply having a larger size.

The second consideration is how to tile the compressed feature maps. We pro-
pose two approaches, shown in Figure 6 for L2-to-L1 transfers, to this challenge,
each with its respective trade-offs: A) Compressed striping entails compressing
each channel of a computed output tile into a distinct set of BPC and ZNZ
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streams. This approach has the advantage of being native to the architecture
shown in Figure 3. Its drawbacks are a potential degradation of the compression
ratio due to edge effects (which will be more severe for smaller tiles) and an
added memory overhead for book-keeping metadata in L2 to keep track of the
size and location of the different compressed streams. This approach also has the
drawback of imposing a fixed tiling scheme on the compressed data. B) Decoder
context switching, on the other hand, stores each feature map as a single set of
compressed streams in L2 memory. To illustrate the decoder context switching
approach, consider the transfer from L2 to L1 memory of M = 8 feature maps
divided into NT = 2 stripes by a decompressing DMA engine which processes
4 streams in parallel. The engine starts transferring the first 4 feature maps,
keeping track of the number of uncompressed words produced. When it reaches
the tile boundary, it raises an interrupt to notify a processor core in the DSP
domain (or the fabric controller). The internal state (context) of the unit is then
stored to L1 memory and the transfer of the second set of 4 channels is initiated.
On reaching the tile boundary again, the unit’s context is again saved and the
feature maps can be processed. Once processing of the first tile is completed,
the transfer of the second tile is started by restoring the first saved context.
Compressing transfers from L2 to L1 memory are performed analogously.

This approach has the advantage of avoiding the degradation of the compres-
sion ratio through edge effects and eliminating the book-keeping overhead inher-
ent to compressed striping. Furthermore, it allows for different (one-dimensional)
striping schemes to be applied at will throughout the network, as the feature
maps are stored contiguously in L2 and can be split arbitrarily. The drawback
is the additional L1 memory capacity required to store one decoder and encoder
state (approximately 200 bit each) per feature map. This fixed overhead makes
the context switching approach suitable for spatially large tiles with few feature
maps, where it would make up only a small portion of the uncompressed data
size. Taking as an example the second layer of PULP-DroNet with a feature
size of 50 × 50 pixels and 32 channels, the feature maps would need to be di-
vided into 5 stripes to allow for a partition of a 64 KiB L1 memory space into a
double-buffered input and an output buffer while also accommodating the layer’s
weights. A stripe of one feature map would then take up approximately 500 B,
making the relative overhead of the two 200 bit transfer contexts a mere 10%.
This approach requires hardware support for saving and restoring the internal
state, but this would likely introduce only an insignificant area overhead.

5 Results

5.1 Evaluation Setup

Physical implementation: To evaluate the energy which can be saved on mem-
ory accesses by integrating an EBPC-enabled DMA into an integrated processing
system, we synthesized the compressor and decompressor hardware designs de-
tailed in [8]. We generated silicon layouts in GlobalFoundries 22 nm FDX, with
timing closure at 556 MHz at VDD = 0.65 V. Using these implementations, we
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performed a post-layout power analysis at the nominal clock speed and supply
voltage to determine the average energy cost of (de)compressing a word.

Stimuli data: We simulated the compression and decompression of intermedi-
ate feature maps extracted from inferences on the VGG16 [36], ResNet34 [15]
and MobileNetV2 [35] network architectures. To generate the feature maps, 4
random images from the ISLVRC2012 [34] validation dataset were run through
the network. 5% of the output feature maps at each layer were selected at ran-
dom and used as stimuli, and the sparsity and resulting compression ratio were
confirmed to be in line with the statistics reported in [8]. In addition to the
feature map datasets, we also evaluated a sequence of zero words, representing
the best case, and a sequence of uniform randomly generated data to represent
the worst, uncompressible case. No stalls were introduced at the interfaces, i.e.,
the compressor and decompressor were operating at full throughput.

Energy cost modelling: Accesses to central memory were modeled as having
fixed energy costs of 106 fJ/bit and 112 fJ/bit for read and write accesses re-
spectively. These numbers were obtained from the datasheet of a 4096x32 bit
SRAM macrocell for the same process. The SRAM macrocell was characterized
at VDD = 0.65 V and VCS = 0.8 V. Having determined for a given dataset the
compression ratio C, the write/read memory access energy cost per word Eacc

and the cost for (de)compression of a word Eebpc, we define the total trans-
fer cost (memory access and (de)compression) Exfer of the compression-enabled
transfer of one word between the control and DSP domains and the transfer
energy efficiency ηxfer as:

Exfer =
1

C
Eacc + Eebpc (1)

ηxfer =
Eacc

Exfer
(2)

We denote the relative transfer efficiency by ηxfer,S for on-chip SRAM accesses
and by ηxfer,D for off-chip DRAM acceses.

5.2 Power Analysis and Discussion

Table 1 shows the results of our evaluation. At less than 60 fJ/bit for 8-bit fea-
ture map data, the energy cost of compressing and decompressing the data to
be transferred is around 3 orders of magnitude lower than the cost of transfer-
ring it to or from an external LPDDR2 DRAM, which has been estimated to
consume 40 pJ/bit [28]. Consequently, the energy efficiency gains from storing
data off-chip in EBPC-compressed form scale almost linearly with the compres-
sion rate and even for a modest compression rate of C = 1.2, memory accesses
can be reduced by 16.5% under the simplifying assumptions that each result is
stored to and loaded from off-chip memory once. For the more typical cases of
MobileNetV2 and VGG16, which exhibit average compression ratios of C = 2.2
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Table 1: Compressing/Decompressing Data Transfer Costsvs. Uncompressed
Transfers

Dataset
C

(≈ ηxfer,D)
Compressor Decompressor
Eebpc ηxfer,S Eebpc ηxfer,S

VGG16 4.00 271 fJ 1.81 308 fJ 1.69
ResNet34 2.27 408 fJ 1.12 425 fJ 1.10
MobileNetV2 2.11 424 fJ 1.06 452 fJ 1.02
Random 0.74 696 fJ 0.47 581 fJ 0.50
All Zeros 25.60 110 fJ 6.20 149 fJ 4.89

and C = 4 respectively, off-chip access energy would be reduced by 55% and 75%
respectively. The ZVC scheme used by cDMA has a simpler hardware implemen-
tation which can thus be assumed to consume even less energy than our EBPC
blocks. However, due to the superior compression ratios achieved by EBPC, the
energy efficiency gains for off-chip memory transfers are correspondingly higher.

The energy cost of accessing data stored in on-chip SRAM is much lower, at
around 100 fJ/bit for both read and write accesses. Our results show that even
for on-chip transfers of feature maps between large central memories and local
scratchpads, substantial energy savings are possible: For the well-compressible
VGG16 feature maps, write energy can be reduced by 45%, while the read en-
ergy decreases by 39%. Networks whose feature maps exhibit lower compression
ratios, represented by MobileNetV2 in our analysis, naturally show smaller gains
- this is exacerbated by the fact that the energy cost of the compression and de-
compression processes increases with lower compression ratios. The break-even
point in energy consumption for on-chip data transfers in our evaluation setup
is around a compression ratio of 2.

6 Conclusion

In this paper, we have shown that EBPC compression and decompression can
be implemented at an energy cost of less than 60 fJ/bit. This makes it possible
to reduce the cost of off-chip data transfer nearly linearly with the compression
ratio, i.e., by factors between 2.2× and 4×, depending on the network in question.
We have further demonstrated that EBPC offers a viable method for reducing the
energy consumption resulting from the transfer of feature maps between different
levels of an on-chip memory hierarchy by up to 45% for read accesses and 39%
for write accesses. To realize this potential, we have presented an approach to
integrating EBPC into ultra-low-power edge computing systems in the form of
a compression-enabled DMA engine capable of tiling compressed feature maps
horizontally.
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