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Abstract—Kernel methods are a powerful approach for learn-
ing on structured data. However, as we show in this paper, simple
but common instances of the popular R-convolution kernel
framework can be meaningless when assessing the similarity of
two time series through their subsequences. We therefore propose
a meaningful approach based on optimal transport theory that
simultaneously captures local and global characteristics of time
series. Moreover, we demonstrate that our method achieves
competitive classification accuracy in comparison to state-of-the
art methods across a wide variety of data sets.

Index Terms—Time Series Classification, Optimal Transport,
Wasserstein, R-Convolution Kernels

I. INTRODUCTION

Time series are ubiquitous in numerous domains, ranging
from astrophysics [1] to biomedical applications [2], with
time series classification (TSC) remaining a highly active
research topic. TSC methods make use of extremely diverse
methodologies, relying on the extraction of short, predictive
subsequences [3], for example or on distance measures, such
as dynamic time warping (DTW). We approach this topic
from a different point of view, taking inspiration from the
field of kernel methods. While some attempts were made to
develop relevant kernel functions for TSC, successes in this
area are limited. We hypothesise that this might be due to the
fact that kernel function construction for time series suffers
from two fundamental pitfalls. First, many similarity measures
are either hypersensitive or insensitive to time shifts. Second,
some time series subsequence kernel functions, representing
simple instances of the R-convolution framework [4], can be
meaningless, as we will show in Section II.

In this paper, we introduce the Wasserstein Time Series Ker-
nel (WTK), a kernel for time series that captures the similarity
between subsequence distributions in addition to their pairwise
similarities. WTK relies on notions from optimal transport,
a field increasingly popular in the data mining community
that provides similarity measures between probability distri-
butions [5]. In the remainder of the paper, we describe the
following contributions in detail:

1) We show that a straightforward application of simple
instances of the R-convolution kernel framework to time
series can be meaningless.

2) We develop the first subsequence-based distance measure
for time series that relies on the Wasserstein distance.

3) We demonstrate its competitive classification perform-
ance in comparison to state-of-the-art methods.

II. BACKGROUND

We give a more formal definition of kernels and discuss
recent advances in the field. Let X be a set with n elements
and k: X × X → R be a function that is symmetric and
positive definite1, i.e.

∑n
i,j=1 cicj k(xi, xj) ≥ 0 for every ci ∈

R and xi, xj ∈ X . Then there exists a Hilbert space H, i.e.
a complete inner product space, and a mapping φ : X → H
such that k(·, ·) can be equivalently expressed as k(xi, xj) =
〈φ(xi), φ(xj)〉H, where 〈·, ·〉H denotes the inner product on
H. The space H is also referred to as a Reproducing Kernel
Hilbert Space (RKHS) because its inner product reproduces
k. Since proving that positive definiteness holds for a kernel
function can be challenging [6], alternative approaches that are
not based on an RKHS were developed [7]. They are known
as Reproducing Kernel Kreı̆n Spaces (RKKS). In an RKKS,
the positive definiteness requirement for the kernel function is
dropped, so that kernels are allowed to be indefinite. Previous
research [8] also showed that support vector machine (SVM)
classifiers can use indefinite kernel matrices while maintaining
favourable predictive performance.

However, kernel construction can suffer from certain
pitfalls, particularly when using simple instances of the
R-convolution kernel framework [4], which evaluates a base
kernel between all substructures and aggregates them. Letting
T, T ′ refer to two time series, S,S ′ to their respective sets
of subsequences, and kbase be a base kernel function, such a
kernel takes the form of

k(T, T ′) :=
1

|T | · |T ′|
∑
s∈S

∑
s′∈S′

kbase(s, s
′). (1)

Choosing kbase as a linear kernel will lead to

k(T, T ′) =
1

|T | · |T ′|
∑
s∈S

∑
s′∈S′

s>s′

≈ 1

|T | · |T ′|

(∑
s∈S

s>

)(∑
s′∈S′

s′

)
≈ T>T ′,

(2)

where the last approximation follows from the fact that in the
respective sums over all subsequence feature vectors, almost
all of the observations of length w, except for the leading
w − 1 as well as the trailing w − 1 observations, will appear
at all dimensions of the vectors in the sum. Hence, for many
values of w, this R-convolution kernel degenerates to a simple

1For reasons of notational simplicity, we will not make a distinction
between ‘positive definite’ and ‘positive semi-definite’ in this paper.



comparison of the means of two time series T and T ′. The
consequence of Eq. 2 is that, in particular for z-normalised
data sets, which are the suggested default in time series
analysis [9], the kernel becomes de facto meaningless. Our
argumentation runs along the lines of the famous result [10]
about the inherent meaninglessness of clustering time series
subsequences. When looking at some data sets from the ‘UCR
Time Series Classification Archive’ [11], we observe that the
values obtained from a R-convolution linear kernel are close
to zero for short subsequence lengths. As our experiments
in Section V demonstrate, even increasing the subsequence
length w does not result in competitive predictive performance.

III. RELATED WORK

There is a plethora of TSC approaches, so we refer the
reader to Bagnall et al. [12] for a comprehensive overview
of methods. The first kernel-based classification approaches
comprise standard SVM kernels (linear, RBF) between whole
time series [13]. For periodic patterns, several cross-correlation
kernels are available [14]. Furthermore, some methods are
based on DTW kernels [15] or general alignments of time
series [16]. A lack of positive definiteness in such kernels
prompted an investigation into the impact of indefinite kernels
on classification performance [17]. Closest to our current
method is KEMD [18], which uses the Earth Mover’s Dis-
tance [19] on histograms of the time series.

IV. OUR METHOD

A. Optimal transport

Optimal transport refers to a set of methods for comparing
probability distributions by geometrical means. One of its
commonly used methods is the Wasserstein distance. Given the
probability distributions on some metric space, the Wasserstein
distance defines a metric between them. More precisely, let σ
and µ be two probability distributions defined on a metric
space M with some metric dist(·, ·).

Definition 1. Given p ∈ R>0, the pth Wasserstein distance is
defined as

Wp(σ, µ) :=

(
inf

γ∈Γ(σ,µ)

∫
M×M

dist(x, y)pdγ(x, y)

) 1
p

, (3)

where Γ(σ, µ) is the set of all transportation plans γ ∈ Γ(σ, µ)
over M×M with marginals σ and µ on the first and second
factors, respectively.

The Wasserstein distance satisfies the axioms of a metric,
as long as dist(·, ·) is a metric [20]. This is also used for
other classification problems [21]. We will focus on the 1st

Wasserstein distance, i.e. p = 1, and refer to it as the
Wasserstein distance. The Wasserstein distance is related to
optimal transport problems [20], where the general goal is to
find the most ‘inexpensive’ (in terms of predefined costs) way
to transport the probability mass of one probability distribution
σ to another probability distribution µ. It is possible to refor-
mulate the Wasserstein distance as an optimisation problem
between two matrices [19].

Definition 2. Let X ∈ Rn×m and Y ∈ Rn
′×m be two

matrices. We consider X and Y to represent sets of feature
vectors of dimension m, but with potentially different cardin-
alities n and n′. The 1st Wasserstein distance between X and
Y is defined as

W1(X,Y ) := min
P∈Γ(X,Y )

〈D,P 〉F, (4)

where D is an n×n′ matrix containing the pairwise distances
dist(x, y) for (x, y) ∈ X × Y , P is the transport matrix, and
〈·, ·〉F is the Frobenius inner product.

The transport matrix P contains the fractions indicating how
to transport the values from X to Y with the lowest transport
effort. If we assume that the total mass to be transported is
1 and is evenly distributed across the elements of X and Y ,
then the values for the rows and columns of P must sum up
to 1/n and 1/n′, respectively.

B. A subsequence-based Wasserstein kernel

We now define our novel subsequence-based Wasserstein
kernel. Let w ∈ N>0 refer to a window width (i.e. a
subsequence length). Given a set of n time series T :=
{T1, . . . , Tn} we denote their length-w subsequences as S :=
{S1, . . . ,Sn}.

Definition 3 (Wasserstein time series kernel). Let Ti and Tj
be two time series, and si1, . . . , siU as well as sj1, . . . , sjV
be their respective subsequences. Moreover, let D be a
U × V matrix that contains the pairwise distances of all
subsequences, such that Duv := dist(siu, sjv), where dist(·, ·)
denotes the usual Euclidean distance. Following Definition 2,
we must solve the optimisation problem

W1(Ti, Tj) := min
P∈Γ(Ti,Tj)

〈D,P 〉F, (5)

which yields the optimal transport cost to transform Ti into
Tj by means of their subsequences. Then, given λ ∈ R>0, we
can define

WTK(Ti, Tj) := exp(−λW1(Ti, Tj)), (6)

which we refer to as our Wasserstein-based subsequence ker-
nel; we will discuss its theoretical properties in Section IV-D.

Since we consider a time series Ti to be represented by
its set of subsequences Si, we will also write W1(Si,Sj) :=
W1(Ti, Tj) and WTK(Si,Sj) := WTK(Ti, Tj) to simplify
the notation. Note that in the calculation of WTK, the ex-
pression in Eq. 5, i.e. W1(Ti, Tj), is a metric [20]. Hence,
it is also possible to use it in a k-nearest neighbour (k-NN)
classifier.

C. Intuition

Similar to the Matrix Profile [22] and other shapelet-based
methods, our method WTK makes use of the descriptive
power of the subsequences of a time series. Figure 1 depicts
the individual steps of our method, i.e. length-w subsequence



(a) Subsequence extraction (b) Subsequence distance matrix (c) Optimal transport plan (d) Transport plan visualisation

Figure 1. To measure the dissimilarity between two time series, our method proceeds in several steps. (a) First, all subsequences of the two time series
are extracted based on a sliding window approach (here, not all subsequences are shown because their windows overlap). (b) Second, the pairwise distance
matrix between all subsequences is calculated. Yellow indicates large distances, whereas blue indicates small distances. On its own, this matrix is not sufficient
to assess the dissimilarity between the two time series, because it is not clear which subsequences correspond to each other. (c) Calculating the optimal
transport plan makes correspondences more readily visible. Yellow indicates a large fraction of transported mass (high similarity), whereas blue indicates
a small fraction (low similarity). For example, the two highlighted subsequences are matched with each other in the plan. Since the two time series have
different lengths, some rows of the transport plan contain fractional matchings, making it possible to detect fine-grained differences in the distributions of
subsequences. (d) A visualisation of the transport plan. Each line indicates a match between two subsequences, with the line being anchored at the respective
beginning of the corresponding subsequences. The thickness of the line indicates the transport value. For clarity, only the largest transport values are shown.

extraction (Figure 1a), followed by pairwise distance calcula-
tions (Figure 1b), which is finally followed by the calculation
of the optimal transport plan (Figure 1c).

The transport plan P that results from solving the optimisa-
tion problem in Eq. 5 can be seen as a map that assigns each
length-w subsequence of the first time series (columns) to at
least one length-w subsequence of the other time series (rows).
Ultimately, all subsequences from the first time series must be
‘transported’ to some subsequences of the second time series.
Figure 1d shows how the obtained transport plan values map
on the example time series. The formulation of the optimisa-
tion problem already accounts for different cardinalities in the
respective sets, which makes our method applicable to time
series of varying lengths, as depicted in the figure. In case
the time series have the same length (such as the time series
data sets in the ‘UCR Time Series Archive’), this mapping is
a bijection.

Finally, the Wasserstein distance is computed by summing
the entries obtained by the Hadamard product of the two
matrices shown in Figure 1. The obtained distance value
is capable of better capturing the difference between the
time series in terms of subsequence distributions compared
with merely summing the values of the transport plan. In
the example, we can observe that the optimisation procedure
selects the lowest distances between subsequences and aligns
the respective peaks of the time series correctly.

D. Theoretical Properties

Before using the similarity measure defined in Eq. 6, we
have to prove that it satisfies the properties of a kernel: if
we want to have a kernel that belongs to an RKHS, we
must prove that it is positive definite. According to Feragen
et al. [23, Theorem 5], this is equivalent to stating that for
any data set, the symmetric matrix D with Dij = W1(Ti, Tj)
is (conditionally) negative definite, which implies that it has
at most one positive eigenvalue. Our empirical results indicate
that for some data sets and some configurations, we observe
more than one positive eigenvalue in D; the kernel matrix K

obtained via Eq. 6 is therefore not positive definite. This leaves
us with several options:

(a) We can enforce the eigenvalue condition by calculating
L := K · K>, where K refers to the n × n matrix with
entries according to Eq. 6. Letting y := K>x for x ∈ Rn,
we then have x>KK>x = x>Ky = y>y =

∑n
i=1 yi ≥ 0,

so L is positive definite. This is also known as the empir-
ical kernel. It is computationally the easiest, requiring only
an additional matrix multiplication. However, it changes
the values between individual time series, and we observed
in our experiments that the predictive performance suffers
when compared with other options.

(b) We can simplify the matrix by subtracting all negative
eigenvalues, leading to L := K −

∑
i λiviv

>
i , where i

ranges over the indices of the negative eigenvalues and
vi denotes their corresponding unit eigenvectors. By con-
struction, this will set negative eigenvalues to zero, leaving
us with a positive definite matrix. This is computationally
harder, requiring a full eigendecomposition.

(c) We can generalise the Wasserstein distance to a ‘softmin’
of all possible transportation plans, which ensures that
we obtain a positive definite kernel. However, it scales
exponentially with the number of subsequences and is
infeasible for all practical purposes [24].

(d) We can sidestep the eigenvalue condition by using al-
gorithms that are capable of handling these indefinite
matrices [7].

The majority of all data sets in our experiments resulted in a
positive definite kernel matrix K, making the options outlined
above unnecessary. Nevertheless, to ensure classifier conver-
gence, we employ a Kreı̆n SVM [25] (following Option d),
which is capable of handling positive definite and indefinite
matrices. Unlike the other options, this one does not have to
modify the kernel values at testing time. Hence, we refer to
WTK as a kernel, with the added caveat that for some data
sets, the kernel matrix is indefinite. We also tried Options (a)
and (b) but none of them exhibited a significantly better
performance.



Algorithm 1 Wasserstein Time Series Kernel
Input: Time series for training and testing Ttrain, Ttest; subsequence length

w; kernel weight factor λ
Output: K train,K test

1: // Extract subsequences
2: S train ← SUBSEQUENCES(Ttrain, w)
3: S test ← SUBSEQUENCES(Ttest, w)
4: for Ti ∈ Ttrain do
5: for Tj ∈ Ttrain do
6: // Wasserstein distance calculation (train)
7: Dtrain

ij ←W1

(
S train
i ,S train

j

)
8: end for
9: for Tk ∈ Ttest do

10: // Wasserstein distance calculation (test)
11: Dtest

ik ←W1

(
S train
i ,S test

k

)
12: end for
13: end for
14: // Kernel matrix calculation
15: K train ← exp

(
−λDtrain

)
16: K test ← exp(−λDtest)
17: return K train,K test

Comparison to KEMD: Our method differs substantially
from the KEMD method [18], which can be considered a
histogram intersection kernel that treats each time series as
a one-dimensional distribution. By contrast, our approach
measures the distance between high-dimensional distributions
of subsequences and it is therefore better suited to capture
long-distance similarities of subsequences and time series.

E. Complexity and implementation

Our method comprises the following parts: (a) sub-
sequence extraction, (b) subsequence distance calculation, and
(c) Wasserstein metric calculation. Letting n refer to the
number of time series, we have at most s := m − w + 1
subsequences per time series. The extraction process is dom-
inated by m, the length of the time series, leading to a total
complexity of O(nm). This is a preprocessing step that we
share with other methods such as [3] and [26]. Then, the
following operations are performed for each pair of time
series. Computing the distances between subsequences of
two time series requires s2 distance calculations, each of
which has to process a sequence of length w. Hence, in the
worst case, this calculation has a complexity of O

(
s2w

)
; it

is possible to reduce this quite significantly, at least in the
case of Euclidean distances, by reusing calculations. Finally,
evaluating Eq. 5 for two time series has dimensions s×s [27].
Asymptotically, the runtime of all parts can be summarised
as O

(
n2m3 logm

)
, because m is an upper bound on the

number of subsequences of a fixed length. This worst-case
approximation can be sped up using approximation schemes
such as Sinkhorn iterations [27]. In our experimental setup,
which relied on a basic entropic regularisation scheme without
hyperparameter search, we could observe a slight speed im-
provement, but the accuracies obtained via a straightforward
Sinkhorn approximation were not competitive with the results
of the exact distance computation, which is why we do not
discuss it further.

Algorithm 1 depicts a pseudocode description of our
method. Our implementation uses Python 3.7 and
POT [28]. Our code is publicly available2.

V. EXPERIMENTS

We perform all experiments on the 85 ‘UCR Time Series
Archive’ data sets [11]. Each data set consists of a predefined
train/test split of varying sizes and time series of varying
lengths, though in each data set the time series length is
fixed.3 We perform different experiments for evaluating the
performance of our proposed approach. Specifically, we are
interested in evaluating the accuracies obtained using WTK
and compare it with (a) different subsequence-based methods,
(b) established baselines such as DTW, and (c) state-of-the-art
methods for TSC.

a) Comparison partners: The compared methods range
from neural network architectures over shapelet-based clas-
sifiers such as Shapelet Transform (ST) [29] and Learned
Shapelets (LS) [30] to ensemble methods such as Elastic
Ensemble (EE) [31], FLAT-COTE [32], and HIVE-COTE [33].
Other algorithms include dictionary-based classifiers such
as BOSS [34], a classifier based on a combination of
DTW distances and SAX histograms (DTW F) [35], and
SAXVSM [36]. Furthermore, a rotation forest [37] (RotF)
and a random forest are considered. Other baselines include
a 1-nearest neighbour based on Euclidean Distance (E-1NN)
and a Bayesian network (BN).

b) Training and evaluation: We evaluate the classi-
fication accuracy on the test set and select the paramet-
ers on the training set via 5-fold cross-validation using a
Kreı̆n SVM classifier [25] with the following parameter
grid: (a) γ ∈ {10−5, 10−4, . . . , 103} for the RBF ker-
nel, (b) λ ∈ {10−4, 10−3, . . . , 10} for WTK, (c) C ∈
{10−3, 10−2, . . . , 103} for the SVM classifier. We also vary
length w of the subsequences used for each subsequence-based
method by checking potential values of w as 10 %, 30 %, and
50 % of the original time series length. We initially included
k-NN classifiers based on Eq. 5 in our experimental setup, but
they perform more than 3 % worse on average, so we do not
discuss them any further.

A. Comparison to other kernels

We compare our method with a linear kernel and an RBF
kernel, trained on subsequences of the same length. For the
linear kernel, we expect bad predictive performance since it ef-
fectively degrades into a comparison of the means of two time
series, as outlined in Section II. By contrast, the RBF kernel
has already shown favourable performance [13], but we are the
first to include it in a large-scale comparison. The RBF kernel
compares each pair of subsequences independently, whereas
WTK is able to capture similarities between the entire distri-
butions of subsequences of two time series. Figure 2a depicts
the results for all UCR data sets. Our kernel outperforms the
simple linear kernel in all cases; a straightforward application

2https://github.com/BorgwardtLab/WTK
3Please refer to http://www.timeseriesclassification.com for details.

https://github.com/BorgwardtLab/WTK
http://www.timeseriesclassification.com
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Figure 2. (a) Comparison of the predictive accuracy of our method with
the linear and the RBF kernels for the ‘UCR Time Series Archive’ data
sets. (b) A ‘Texas Sharpshooter’ plot, comparing the expected gains of our
method with the actual gains, relative to DTW-1-NN. TP (TN) points indicate
correct prediction of superior (inferior) method performance. FP (FN) points
overestimate (underestimate) method performance.

of simple instances of the R-convolution framework with
linear subsequence kernels is indeed meaningless for TSC.
Moreover, we outperform the RBF kernel on all but 12 data
sets. The accuracy difference for the points below the diagonal
is negligible (≈2.2 %). Hence, the performance of our method
is not caused by considering subsequences per se, but by
considering the distribution of subsequence similarities. In
terms of computational runtime, we observe that the linear
kernel, the RBF kernel, and our method WTK, each of which
uses distances between subsequences, perform asymptotically
the same. Therefore, computing the Wasserstein distance is
not the driving factor in complexity.

B. Comparison to DTW-1-NN

Following best practices in TSC literature [11], we also
compare our method with a DTW-1-NN baseline and cre-
ate a ‘Texas Sharpshooter’ plot, which shows the expected
gain (estimated from the training data set via 5-fold cross-
validation) and the actual gain (calculated on the test data set).
Figure 2b depicts the results: most points fall into the TP or TN
quadrants, implying that we either correctly predicted that we
outperform DTW-1-NN (TP), or that we are outperformed
by DTW-1-NN (TN). Points in FN are a ‘happy surprise’
because we predicted that our method would do worse than
it actually does. The problematic quadrant, the FP quadrant,
only contains few points; moreover, the accuracy differences
in this quadrant are relatively minor. Hence, the plot supports
our claim that WTK is better than the DTW-1-NN baseline
as most points are in the TP quadrant.

C. Comparison to the state of the art (SOTA)

Next, we compare our method with the SOTA. To this
end, we collected the accuracies of all published methods
of [12], as well as two neural network baselines [38] with
their classification performances from [39]. This resulted in
40 methods, although the availability of comparison part-
ners depends on the data set. For each data set, we picked
the best-performing method (using the published train/test

split), referring to it as the respective state-of-the-art method
for the data set. In total, we compare our method with
the best of 40 other methods to ensure the most hon-
est and comprehensive testing scenario. We observe that
our method outperforms all state-of-the-art methods on six
data sets, i.e. DistalPhalanxTW, DistalPhalanxOutlineAgeGroup,

MiddlePhalanxOutlineAgeGroup, Earthquakes, ECG5000, and FordB.
In total, we exhibit at least equal accuracy as any state-of-the-
art method on 12 data sets: we are on a par with the SOTA
on BeetleFly, Coffee, ECGFiveDays, Plane, ShapeletSim, and Trace.

Performance breakdown: In numerous other data sets, we
are almost as good as the SOTA. Table I gives a more precise
breakdown of these performance differences. We compare
our method with HIVE-COTE, the best-performing ensemble
method, and with KEMD, a conceptually similar competitor.
Each table entry shows the fraction of data sets for which
the condition of the first column is fulfilled. We observe that,
while we do not match the performance of HIVE-COTE,
an ensemble method, for the majority of all data sets, our
performance difference is less than 5 %. At the same time, we
see that the performance of KEMD is highly variable, leading
to favourable performance on some data sets, while being
completely outperformed on the majority of them.

Statistical analysis: To strengthen our claims, Figure 3
shows a critical difference plot [40] that depicts our method
and other selected methods. For a significance level of α =
0.05, the plot shows that there is no statistically signific-
ant difference in the performance of our method and these
best-performing classifiers. The best-performing classifiers are
either deep neural networks or large ensembles and therefore
heavily parametrised, thus showing a good promise for the
generalisation performance of our method.

VI. CONCLUSION

We developed a novel subsequence-based kernel that uses
the Wasserstein distance as an effective similarity measure
for time series classification. To prove the benefits of our
method, we performed a large-scale evaluation on the ‘UCR
Time Series Archive’ data sets that showed that our method
outperforms some of the state-of-the-art time series classific-
ation algorithms while also displaying favourable generalisa-
tion properties. Currently, our method only considers fixed-
size subsequence lengths and we plan to include varying-
length subsequences in future work. However, there is a
computational burden in their selection, as well as additional

Table I
DIFFERENCE (∆) IN MEAN ACCURACY WITH RESPECT TO THE SOTA

∆ WTK HIVE-COTE KEMD

∆ ≥ 0 14.1 % 36.5 % 4.7 %
0% >∆ ≥ −5% 44.7 % 34.1 % 15.3 %
−5% >∆ ≥ −10% 24.7 % 18.8 % 7.1 %
−10% >∆ ≥ −15% 8.2 % 1.2 % 16.5 %
−15% >∆ ≥ −20% 4.7 % 7.1 % 9.4 %
−20% >∆ 3.5 % 2.4 % 47.1 %
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Figure 3. Critical difference plot, comparing our method (shown in bold) with several other methods. The scale indicates the average rank of each method
in terms of test accuracy for all data sets. The classification performances of methods sharing horizontal bars are not significantly different. We observe that
there is no statistically significant difference between the performance of our method and state-of-the-art ensemble methods.

constraints because no commonly-used metric for comparing
subsequences of varying lengths exists. We also plan to
extend our method to multivariate time series. Finally, effective
subsequence preselection techniques will reduce the com-
putational burden while potentially increasing the predictive
performance. In conclusion, this work demonstrates the merits
of subsequence-based kernels for time series classification, and
the potential of optimal transport measures in data mining.
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[7] D. Oglic and T. Gärtner, “Learning in reproducing kernel Kreǐn spaces,”
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