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TopoFilter: a MATLAB package for
mechanistic model identification in systems
biology
Mikołaj Rybiński1,2 , Simon Möller1, Mikael Sunnåker1, Claude Lormeau1,3 and Jörg Stelling1*

Abstract

Background: To develop mechanistic dynamic models in systems biology, one often needs to identify all (or
minimal) representations of the biological processes that are consistent with experimental data, out of a potentially
large set of hypothetical mechanisms. However, a simple enumeration of all alternatives becomes quickly intractable
when the number of model parameters grows. Selecting appropriate dynamic models out of a large ensemble of
models, taking the uncertainty in our biological knowledge and in the experimental data into account, is therefore a
key current problem in systems biology.

Results: The TopoFilter package addresses this problem in a heuristic and automated fashion by implementing the
previously described topological filteringmethod for Bayesian model selection. It includes a core heuristic for
searching the space of submodels of a parametrized model, coupled with a sampling-based exploration of the
parameter space. Recent developments of the method allow to balance exhaustiveness and speed of the model
space search, to efficiently re-sample parameters, to parallelize the search, and to use custom scoring functions. We
use a theoretical example to motivate these features and then demonstrate TopoFilter’s applicability for a yeast
signaling network with more than 250’000 possible model structures.

Conclusions: TopoFilter is a flexible software framework that makes Bayesian model selection and reduction efficient
and scalable to network models of a complexity that represents contemporary problems in, for example, cell
signaling. TopoFilter is open-source, available under the GPL-3.0 license at https://gitlab.com/csb.ethz/TopoFilter. It
includes installation instructions, a quickstart guide, a description of all package options, and multiple examples.

Keywords: Ensemble modeling, Bayesian model selection, Topological filtering, Signal transduction

Background
Uncertainty poses a key challenge for developing pre-
dictive models in systems biology [1]. One challenge,
parameter inference for systems biology models, has
seen important progress in the development and imple-
mentation of computational methods that scale to real-
world problems [2, 3]. In particular, given that systems
biology model parameters are often not uniquely iden-
tifiable with the available experimental data, ensemble
modeling approaches have gained attention. They repre-
sent quantitative uncertainties of biology not by a single
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parametrization of a model, but by ensembles of param-
eter values, for applications in areas such as cell sig-
naling [4, 5] and metabolic network analysis [6, 7]. The
corresponding methods differ in important details, such
as how parameter ensembles are generated; constrained
multi-objective optimization [8] and random sampling
[9] are possibilities. Bayesian methods such as Approxi-
mate Bayesian Computation (ABC) [10–12], a simulation-
based method for approximating the Bayesian posterior
in parameter space and thereby systematically quanti-
fying uncertainties (in model parameters) [4], are key
techniques for model analysis in this context.
These approaches, however, address only one part of the

problem in that they assume the underlying network to be
uniquely determined. Often also the mechanisms of inter-
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actions (the model topology) are uncertain and need to
be identified by combining known mechanisms, biologi-
cal hypotheses, and experimental data. This is a pertinent
problem, for instance, for cell signaling studies [13]. If
there are few competing hypotheses on mechanisms—
leading to few possible model topologies—they can be
enumerated and, for example, one can apply ABC to each
model topology to select the topology that is most con-
sistent with the data [10, 14–17]. Such Bayesian model
selection has been successful for elucidating mechanisms
of mammalian epidermal growth factor (EGF) [18] and
target of rapamycin (TOR) [19] signaling and of gene
regulatory networks in yeast nutrient sensing [20].
With many biological hypotheses, however, the number

of possible model topologies explodes in a combinato-
rial fashion, making enumeration infeasible. To perform
model selection in hypothesis spaces with hundreds or
thousands of alternatives without full enumeration, three
classes of approaches have been proposed: First, it is
possible to use simpler, qualitative models to represent
alternative biological hypotheses [21, 22], but in this case
the quantitative characteristics of the modeled system
are not represented. A second option is to combine effi-
cient search in the space of model topologies by formu-
lating a mixed integer optimization problem [23] or by
using heuristics to generate candidate topologies [24] with
optimization-based parameter estimation. However, this
leads to single point estimates for model parameters that
do not necessarily reflect the parameter uncertainty, and
criteria for model selection that one can use with such
point estimates are only justified asymptotically for large
numbers of data points, which is rarely the case [25]. The
third alternative, ABC for model selection, circumvents
these limitations by sampling parameters and topologies
(which are again encoded as integers) jointly [10, 15, 16],
but with high computational effort and very limited scal-
ability. In particular, these ABC-based methods do not
exploit that candidate topologies may be related to each
other, preventing a re-use of samples that require costly
model simulations between model topologies.
To enable more efficient and scalable Bayesian model

selection, we previously proposed a method termed topo-
logical filtering [26]. While the original method consti-
tuted a first assessment of the basic idea, here we describe
an implementation in the TopoFilter package that gener-
alizes to a variety of applications in systems and synthetic
biology, makes the method directly usable in the form
of a well-documented toolbox, and includes new features
compared to the version in [26].

Implementation
Principle of topological filtering
Biochemical reaction networks, composed of species and
reactions that couple them, are the key basis for develop-

ing (dynamic) systems biology models. To capture how l
molecular species interact via m reactions, we consider a
parametric modelM(p) with d ≥ m real-valued parame-
ters p in a bounded parameter space P . Often in systems
biology applications, such a parametric model is given in
the form of a system of ordinary differential equations
(ODEs):

dx(t)
dt

= S · v(x(t);p), x(0) = x0,

where the state vector x(t) ≥ 0 is a time-dependent vec-
tor of concentrations of the l species. The time-invariant
stoichiometric matrix S, which captures how the l species
interact via the m reactions, and the reaction rate laws
encoded in the non-negative vector function v, which
depends on the d ≥ m parameters p, together define the
topology of the modelM(p).
The model generates predictions y(p) corresponding to

experimental data y0 with known measurement errors σ .
A scoring function s decides on whether, for a fixed p,
M(p) is viable—if it describes the data sufficiently well.
Correspondingly, we define the viable subspace of the
parameter space as ˜P = {

p
∣

∣s
(

p; y0
) ≤ s0

(

y0
)}

, where s0
is a model-independent viability threshold (Fig. 1a).
To identify model topologies that are consistent with the

data, topological filtering defines a root model based on
a network that includes the confirmed reactions as well
as all hypothetical reactions, and then finds viable reduc-
tions of this model. The key idea is to re-formulate model
reductions as projections in parameter space (Fig. 1a). A
rate law of a biochemical reaction j ≤ m is of the form
vj(x;p) = pj · rj(x; pm+1, . . . , pd), with x ≥ 0 the species
concentrations and rj scalar functions corresponding to
the concentration-dependent terms [27]. By projecting a
multiplicative kinetic constant pj to pj = 0, we elimi-
nate reaction j. Additional parameters pm+1, . . . , pd may
be projected to different values. For example, one could
project a Michaelis-Menten constant to infinity to remove
an enzyme-catalyzed reaction.
For the confirmed reactions in the root model, which

represent well-established mechanisms, the associated
parameters are non-removable (while they may assume
different values, they cannot be projected). For the hypo-
thetical reactions, we consider projections of any subset of
their associated d̃ ≤ d parameters to given projection val-
ues, and each of these subsets defines a submodel. Because
the values of all d parameters are uncertain (parame-
ters of known values are not part of the problem), we
not only need to search the topology space of 2d candi-
date submodels (Fig. 1b), but also the parameter space of
each submodel. Topological filtering achieves this by fil-
tering candidate reductions and by exploring their lower-
dimensional parameter spaces with an efficient sampling
algorithm [9].
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a b

Fig. 1 TopoFilter method. a Parameter space P = [

pmin
1 , pmax

1

] × [

pmin
2 , pmax

2

]

and viable subspace P̃ (gray). Sample parameter points (black dots),
when projected to zero separately for the two coordinates (arrows), yield viable (green) or non-viable (red) reductions. Colored lines at the axes and
a point at the origin denote viable (green) and non-viable (red) lower-dimensional subspaces. b Topological filtering step with a rank 1 exhaustive
search, for a viable (green) modelM with d̃ = 4 reducible parameters;MI (M\I) denotes the model with (without) reducible parameters

I ⊆
{

1, . . . , d̃
}

. For a single viable parameter sample p, all rank 1 parameter reductions (1P) are tested for viability. A union of the three viable 1P

reductions skips over the 2P reduction candidates (gray) and goes directly to a single 3P reduction (blue) for viability test. The remaining subspace
of models (white) induced by the non-viable 1P reduction (red) is pruned from testing for the current parameter sample. Reductions that have been
skipped (gray, white) may still be tested using another parameter sample or in a recursive step

TopoFilter algorithm
Here, we describe the original algorithm for topological
filtering in [26], and focus on the new features in the
subsequent sections (see also Fig. 2).
Topological filtering starts with the root model (that

is, the most complex model without any parameter elim-
inated, denoted as M\{}) and one sample in the viable
parameter space for this model (or for short: one viable
sample). The initial viable sample can be obtained by stan-
dard parameter estimation methods. Starting from such
a single viable sample, the original implementation uses a
combination of out-of-equilibrium adaptive Monte Carlo
(OEAMC) [28] sampling and multiple ellipsoid based
sampling (MEBS) [9] to explore the parameter space of the
root model. For each sample, the algorithm proceeds by
testing if single-parameter projections are viable, thereby
identifying possible single-parameter (1P) reductions of
the root model (submodels M\{1}, M\{2}, and M\{3} in
Fig. 1b). Subsequently, a union of 1P reductions resulting
from a sample is tested for viability. The 1P and union
reduced models with their associated viable parameter
samples serve as starting points for the next iterations
of the search, until no further reductions are possible.
Thus, TopoFilter explores the space of models by reducing
viability testing to possibly distant descendants of viable
submodels.

New features
To further develop the method since its first implemen-
tation [26], we focused on the scope of applications, the

accuracy of the model search, and the computational
efficiency. More specifically, the current implementation
of TopoFilter includes: (i) customizable scoring func-
tions that enable applications beyond model inference; (ii)
simultaneous reductions of several parameters to obtain a
viable submodel (see “Results and discussion” section for
an example where this feature is important); (iii) adaptive
re-sampling to avoid situations in which viable submod-
els are not detected because the parameter samples from
the root model are thinned out during the iterations over
the model space; (iv) efficient search heuristics over the
model space for cases where we are primarily interested
in finding maximal reductions (the most compact sub-
models that are still consistent with the experimental
observations); and (v) more comprehensive options for
parallelization, which can avoid redundant searches over
model and parameter subspaces. Relevant changes to the
algorithm are highlighted in Fig. 2.

Customizable scoring functions
By default, we assume uncorrelated and normally dis-
tributed errors E = (

y(p) − y0
) ∼ N (0, diag σ ). The

residuals sum-squared error � = ETdiag(σ )−1E then are
χ2-distributed. From the distribution of E , the negative
log-likelihood of the data given the model is � = �/2 + C,
with C = ln

(

√

(2π)k
∏

σi
)

and k the number of mea-
sured data. TopoFilter uses the default scoring function
s ≡ � and a threshold s0

(

y0
)

based on quantiles of the χ2

distribution with k degrees of freedom, an upper bound
in the standard goodness of fit test for model evaluation.
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Fig. 2 TopoFilter pseudo-code with an implementation outline. Note that, because of an option to re-sample and save viable points for all found
projections, preparing points comes actually after the for I ∈ In−1 loop, in a separate for I ∈ In loop, and during initialization. Parts in red highlight
differences to the original algorithm [26] such as choice of enumeration level, custom scoring and threshold functions, automatic (tail) recursion,
and adaptive resampling from whole (representative) sets of previous samples

The original scoring function from [26], which relied on
a threshold derived as an expected value plus two stan-
dard deviations over all data points of the (unknown) true
model and its true parameterization, remains available. In
addition, TopoFilter supports custom scoring functions,
including likelihood-free functions, for example, to enable
model-based design in synthetic biology. In such appli-
cations, one can score a model according to a desired

circuit performance (for example, the ability to adapt to an
external signal), without providing experimental data [29].

Variable-order projections and parameter coupling
We denote the number of parameters simultaneously
tested for projection as the rank r of a reduction (relative
to the (sub)model the projection is applied to). While the
original algorithm supports only reductions of rank r = 1
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and their subsequent unions in one iteration of topolog-
ical filtering, TopoFilter exhaustively checks reductions
up to a given, user-defined rank (and their subsequent
unions; Fig. 1b). As illustrated in the theoretical example
in the “Results and discussion” section, higher-rank reduc-
tions may find valid submodels not detected otherwise
because of—not necessarily obvious—couplings between
parameters. Moreover, TopoFilter supports a user-defined
asymmetric coupling of parameters, for example, to elim-
inate the associated Michaelis-Menten constants when
eliminating the multiplicative kinetic constant for typi-
cal enzyme kinetics. Such definitions help increasing the
efficiency of model space exploration.

Adaptive re-sampling
Originally, the D parameter samples in each step of topo-
logical filtering carry over from previous steps, and they
originate from sampling the root model. In addition to
thinning out the samples for higher-order reductions, the
distribution of samples in lower-dimensional parameter
spaces may not be representative for the corresponding
submodels. We therefore provide an option in TopoFilter
to obtain new samples adaptively when too few samples
are carried over. Re-sampling explores the viable sub-
space with HYPERSPACE [9], but in contrast to the initial
sampling, the OEAMC exploration uses all previously
found viable samples to improve MEBS performance. Re-
sampling improves discovery of viable submodels but
it increases the computational cost. In addition to the
model evaluations for parameter space exploration result-
ing in D samples, the number of model evaluations for
model space search in each recursive step of TopoFilter
is D · ∑r

i=0
(d̃
i
)

, linear in D and in the number of pro-
jectable parameters d̃ for a rank r = 1 exhaustive search,
quadratic for r = 2, etc. TopoFilter therefore allows the
user to control minimal and maximal sample sizes as
well as the maximal number of model evaluations per
sampling step.

Efficientmodel space exploration
In addition to exploring the model space exhaustively
up to a given depth (investigating all reductions up to a
given rank for each viable submodel), TopoFilter provides
options to speed up the search for higher-order reduc-
tions. The algorithm can „jump” heuristically to a union
of all viable lower-rank reductions for the currently con-
sidered parameter sample and thereby exceed the rank r
in practice. Each union reduction is then checked against
all parameter samples for viability (see the example of
howM{4} can be reached in Fig. 1b). TopoFilter may also
proceed recursively, where the set of root models for the
recursive steps (e.g.,M{4}, if it is viable for some parame-
ter sample) depends on a user-defined enumeration level
to trade off speed and exhaustiveness. TopoFilter supports

three enumeration strategies that are selected by their
corresponding enumeration levels (in brackets):

• conservative (0): enumerate only maximal viable
projections found in a single recursive search step,

• balanced (1): enumerate all viable union projections
found for each parameter sample (see Fig. 1b, blue
box if found viable), and

• aggressive (2): enumerate all viable projections found,
including those found during the initial exhaustive
search among low-rank reductions (Fig. 1b, green
boxes).

Note that aggressive enumeration is particularly impor-
tant for model selection, where the trade-off between
model complexity and goodness-of-fit needs to be considered.
Finally, TopoFilter implements backtracking as an

experimental option. If a reduction of rank r > 1 is
found to be inviable–either for a single parameter sample
or for all samples in a iteration of topological filtering–
backtracking will test if reductions of lower rank that were
’skipped over’ during model search are viable. For the
example in Fig. 1b, if M{4} was inviable, M\{1,2}, M\{1,3},
M\{2,3} would be tested during backtracking.

Parallelization
TopoFilter provides options to automatically support par-
allelization at different levels of the method, allowing
adjustments both to the considered case study and to the
available hardware. The currently available parallelization
levels (in brackets) are:

• (0): Runs are performed sequentially, without
parallelization.

• (1): Viability checks and, if required, maximal
projections found during viable point preparation are
parallelized. This is the least wasteful option
compared to sequential runs in terms of
computational time because it minimizes the number
of redundant model and parameter space searches
done in parallel. However, level 1 parallelization has
the biggest communication overhead.

• (2): Iterations over root models within a recursive step
are carried out in parallel, which is an automation of
the parallel strategy in the original method.

• (3): Independent repeats of topological filtering are
run in parallel. This option has no additional
overhead in terms of computations and
communication, and is useful if the number of
available parallel cores is small and the method’s
results in a particular application have high variance
in terms of the model reductions identified.

Software structure
The main inputs, internal dependencies, and outputs of
the TopoFilter implementation are summarized in Fig. 3.
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Fig. 3 Structure of the TopoFilter package. Call graph diagram of the main TopoFilter function files (middle) with corresponding inputs (left) and
outputs (right), denoted with empty arrowheads. Dashed lines and gray boxes indicate optional inputs, call dependencies and outputs. The
recommended (optional) own experiment function file can be created from the template experiment function file included in the package or from
one of the existing examples

Mandatory user-defined inputs include the mathematical
model, the experimental data (which usually is in the form
of time-course data for ODE models), and a specification
of the experimental design (e.g., to define time-dependent
inputs). Optional inputs allow for the customization of
many aspects of TopoFilter’s internal (default) functions,
such as the definition of custom scoring functions (see
above). Together with parameters for runtime operation
(e.g., enumeration level and initial viable parameter vec-
tor), these data files and functions are passed to a single
main function as the TopoFilter entry point. The main
function performs all required computations for topolog-
ical filtering, returning a single data structure containing
the essential outputs, such as each viable projection dis-
covered together with a single witness parameter sample
(the memory-consuming sets of all viable parameter sam-
ples are optionally written to files on-the-fly; see Fig. 3).

Implementation details
TopoFilter (v0.3.3) is implemented in MATLAB (Math-
Works, Natick, MA) with parallelization support via
MATLAB’s Parallel Computing Toolbox. Ordinary differ-
ential equation (ODE) models are numerically integrated
with SUNDIALS CVODES v2.5 C package [30] via the

IQM Tools v1.2.x MATLAB package (IntiQuan GmbH,
Basel), which supports SBML [31] and amulti-experiment
setup. Sampling uses the HYPERSPACE v1.2.x MATLAB
package—an improved version of the implementation
described in [9], available at https://gitlab.com/csb.ethz/
HYPERSPACE.
For our case studies, all computations were carried out

on a homogeneous cluster of Intel� Xeon� 2.70GHz 24
cores CPUs with 30720KB cache each, running MAT-
LAB R2018b with the Parallel Computing Toolbox.

Results and discussion
Case study: target of rapamycin signaling
Biological background and study setup
We previously reported applications of topological filter-
ing tomodels of cell signaling with up to 12 parameters for
model selection and up to hundreds of alternative topolo-
gies [26]. To test scalability of the improved TopoFilter
method for a larger, intracellular signaling pathwaymodel,
we focused on target of rapamycin (TOR) signaling. TOR
signaling, a pathway responding to the availability of nitro-
gen sources, is complicated by its connections to other
nutrient signaling pathways and because signal transduc-
tion involves the control of phosphatases that are hard to

https://gitlab.com/csb.ethz/HYPERSPACE
https://gitlab.com/csb.ethz/HYPERSPACE
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analyze experimentally [32]. Dynamic model-based analy-
sis has therefore been instrumental to investigate the path-
way’s topology in yeast [33] andmammalian [19] cells, and
it suggested complex emergent behaviors in mammalian
TOR signaling [34].
For our case study, we use the mass-action kinetics

model of the budding yeast target of rapamycin (yTOR)
signaling pathway from [33] that includes a core model
and several extensions representing hypothetical control
mechanisms shown in Fig. 4a. The model captures the
core upstream signaling, from TOR complex 1 (TORC1),
via the regulatory proteins Tip41 and Tap42, to the het-
erotrimeric protein phosphatase 2A 1/2 (PP2A1/2) com-
plexes; it includes the drug rapamycin, which binds to
TORC1 and inhibits its activity, as an input. As a root
model for our analysis, we lumped core model exten-
sions 1–4 to encapsulate a total of 31 state variables
and 42 parameters, out of which 18 parameters can be
reduced.We used an essential subset of the original exper-
imental data, namely a total of 20 data points for 13
different observable variables, in 3 different experimen-
tal conditions (inputs of +0 μM, +109 μM, and +500 μM
rapamycin; see example data and simulation results in
Fig. 4b-c).

Finding themaximal reduction
In this setup with 18 out of 42 parameters being reducible,
the core model with 24 parameters is viable, and thus the
maximally reduced model. Finding the maximal reduc-
tion would require a naïve search to test the whole space
of 218 = 262 144 submodels for viability. To character-
ize TopoFilter’s performance and accuracy, we therefore
first analyzed how the heuristics impact on the speed and
probability of finding the maximal reduction.
The data compiled in Table 1 shows that, with the num-

ber of model evaluations for the sampling in parameter
space varying between 102 and 104, the maximal reduc-
tion is always found using the balanced recursive heuris-
tic (enumeration level 1) and the conservative heuristic
(enumeration level 0), except for the most greedy search
setup with enumeration level 0, rank 1, and the small-
est sample size of n = 102. Time-wise, when searching
for the maximal reduction, the conservative enumera-
tion strategy outperforms the balanced enumeration strat-
egy in all cases on a single core (non-parallel), and the
performance difference increases with the number of
samples n. Together, these data indicate that TopoFilter
can traverse the model space efficiently and with high
reliability.

a b

c

Fig. 4 Dynamic model for TOR signaling in budding yeast. aMolecular interactions represented in the core model (solid lines) and in hypothetical
extensions (dashed lines), adapted from [33]. Nodes represent proteins or protein complexes (boxes; phosphorylation indicated by ’P’) as well as
small molecules (ellipses). Arrows indicate reversible complex formation, while filled (open)circles adjacent to transition reactions denote protein
phosphorylation (dephosphorylation). b, c Experimental data (symbols; mean and s.d.) and sample model trajectories (lines) for stimulation of TOR
signaling with 500 nM (b) and 109 nM (c) rapamycin at t = 20 min. In (b), the abundance of phosphorylated Tap42 protein (red) was measured; in
(c), complex formations of Tip41 with Tap42 (blue) and of Tap42 with Sit4 (green) were determined. All data are relative to steady-state
concentrations prior to rapamycin addition; for details on model structure and experimental data, see [33]. Simulations in (b) and (c) represent viable
parameter samples for a default negative log-likelihood scoring function with a 0.95 quantile as a threshold
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Table 1 TopoFilter performance in finding the maximally reduced TOR signaling model

Enumeration level Rank r
Success rate (%) Time per run (min)

n = 102 n = 103 n = 104 n = 102 n = 103 n = 104

Conservative (0) 1 80 100 100 4 19 154
2 100 100 100 11 93 733

Balanced (1) 1 100 100 100∗ 27 178 8’014∗
2 100 100 100 44 215 5’096

Data are averages from five repeated runs on a single worker each, except for the case ∗ with four repeats

Covering themodel space
Next, to assess how well TopoFilter covers the model
space, which is essential for Bayesian model selection, we
emphasized simulation studies with the balanced strat-
egy (enumeration level 1). Fig. 5a shows that the total
number of discovered projections (submodels) grows with
the number of model evaluations as a power function: a
higher number of model evaluations allows for a better
exploration of the parameter space, as would be expected.
In this application, TopoFilter re-samples on average every

ca. 3–9 viable projections found, and with each 10-fold
increase of the number of model evaluations per sam-
pling, the number of viable projections found per sam-
pling increases by ca. 1.5 fold (Fig. 5b). This implies that
re-sampling indeed helps to explore the viable subspace
more accurately, and that more often sufficiently many
lower-dimensional viable samples are left after a viable
projection than without re-sampling.
A comparison of the data for rank 1 and rank 2 exhaus-

tive search in Fig. 5a,b indicates that rank 2 exhaustive

a b c

Fig. 5 TopoFilter performance for the yeast TOR signaling model. a Number of identified viable projections (submodels of the root model) for rank 1
(blue) and 2 (red) exhaustive searches with balanced enumeration strategy, depending on the number of allowed model evaluations in each
(re-)sampling step, n. Symbols indicate number of workers in parallelized runs (inset). b Number of viable projection divided by the number of times
the parameter space sampling was carried out when the number of samples left after projecting and filtering was smaller than the user-defined
threshold (here: 1/20 of the number of evaluations per sample); symbols are as in (a). c Run time as a function of number of parallel processes for
n = 102 (blue), n = 103 (red), and n = 104 (orange); symbols indicate the enumeration level (inset). The dashed lines give references for a slope of
-1. Regression lines (and their standard prediction errors; shaded) were computed for groups per exhaustive search rank r (a,b), or per number of
function evaluations n (c)
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search finds fewer projections and (re-)samples more fre-
quently. Although this seems counter-intuitive, the expla-
nation is that in the balanced enumeration strategy (level
1), the total number of all projected parameters in the
rank-bounded exhaustive search grows with its rank (pro-
jections found in the search are not subject to further
recursive steps, only their unions are per parameter sam-
ple, see Fig. 2), and bigger projections leave less viable
samples after their re-validation. Hence, jumps over lev-
els (ranks) of the model space are bigger for the rank 2
search, but, relative to the number of discovered viable
submodels, they imply more frequent re-sampling than
for the rank 1 search (Fig. 5b). In addition, for the bal-
anced enumeration strategy, although significantly fewer
total projections are found with the rank 2 search (by a
factor of 5-10; Fig. 5b), and, hence, fewer iterations are
required, the higher (quadratic) cost of testing projections
in the rank-bounded exhaustive search steps makes the
rank 2 search only slightly faster overall than the rank 1
search (level 1; see Fig. 5b and Table 1). However, in prin-
ciple, as our theoretical example above demonstrates, the
rank 2 exhaustive search allows to find projections that
would not be found by eliminating only one parameter at
a time.
Finally, for the aggressive enumeration level 2, TopoFil-

ter finds approximately 7–9 · 104 viable projections with
only n = 102 average sample size, that is, ca. 25–35%
of all 218 ≈ 26 · 104 submodels. The strategy finds the
maximal projection quickly, and the vast majority of the
computations concerns parts of the model space close
to the root model, where previously found small viable
reductions from the rank-bounded exhaustive search are
systematically extended with single parameters in the fol-
lowing recursive steps (which is not done for enumeration
levels less than 2; see Fig. 2).

Parallelization and scaling
For the timing data per TopoFilter run in Fig. 5c, it is
worth noting that the time required on a single CPU
(worker) for n = 104 samples is approximately 80 h.
Hence, TopoFilter can make model selection feasible
for a complex practical example such as TOR signaling
in reasonable time. The total time per each TopoFilter
run decreases with the number of parallel workers lin-
early (Fig. 5c), showing a good scalability of the method
over a parallel computing infrastructure. The most fine-
grained parallelization (level 1, in which viability tests are
parallelized; see “Implementation” section) allows for sig-
nificant time improvements with respect to the number of
workers, but the average CPU time per worker increases
(see increasing gap with respect to the diagonal in Fig. 5c).
This is caused by parallelization bottlenecks such as the
initial (non-parallel) sampling, and the synchronization
after each recursive step, where the method waits for

the projections that require the most time-consuming
re-sampling.

Theoretical example
While the case study of TOR signaling indicated per-
formance characteristics of TopoFilter depending on the
algorithmic options, it is too complex to systematically
identify limitations of the topological filtering heuris-
tic for model selection. We therefore devised a simple,
theoretically tractable example network; its analysis moti-
vated in part the method modifications implemented in
TopoFilter. In particular, the theoretical example high-
lights caveats of the heuristic for rank 1 reductions in
the exhaustive search as well as the critical nature of the
choice of parameter bounds.
Our theoretical example network contains two species

with concentrations x1 and x2. The first species is only
added instantaneously at t = 0 and degraded with
rate k1x1(t). It acts as a ligand that enhances, with rate
x1(t), the production of the second (reporter) species. We
assume that the reporter is not present at t = 0, but that
it can be produced at constant rate k2 and degraded with
rate x2(t). This leads to the ODE system:

dx1(t)
dt

= −k1x1(t)

dx2(t)
dt

= k2 + x1(t) − x2(t),

with initial conditions x1(0) = x01 > 0 and x2(0) = x02 = 0.
With k1 > 0, that is, with a degradable ligand, the

steady-state of the system is:

x∗
1 = 0, x∗

2 = k2.

However, when we assume a non-degradable ligand (k1 =
0), we find that

x∗
1 = x01 > 0, x∗

2 = x01 + k2.

Assume that the correct model is themaximal reduction
with k1 = k2 = 0. We experimentally observe only the
reporter, and only close to the steady-state, such that the
model output would be y1 ≈ x∗

2. For the maximal reduc-
tion, x∗

2 = x01, and correspondingly the measurement data
for observable y1 is:

y01 = x01 + ε, where ε ∼ N
(

0, σ12
)

,

that is, the ligand’s initial concentration with a measure-
ment error ε that is assumed to be normally distributed
with variance equal to σ12. With TopoFilter’s default neg-
ative log-likelihood score and its default 95% quantile
threshold ε ≈ 1.96σ1, we have the viability criterion:

(

y1 − y01
)2

< 2σ12 ·
(

1.96σ1 − ln(
√

2πσ1)
)

,
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and in terms of parameter samples when parameters are
set to 0:

(

y1 − y01
) ≈

⎧

⎨

⎩

0 + ε if k1 = k2 = 0,
k2 − ε if k1 = 0,
x01 + ε if k2 = 0,

where the approximation becomes more accurate the
closer the system is to steady-state at the time point of
measurement.
Having fixed the ligand’s initial amount x01 and the lower

bound kmin
2 > 0, σ1 can be so small that neither k1 alone

nor k2 alone can be reduced by projection to 0 as shown
in Fig. 6. Hence, when using only the rank 1 exhaustive
search, the viable rank 2 reduction of both k1 and k2 will
not be tested. There are several alternatives to solve or cir-
cumvent such issues. One can straightforwardly increase
the exhaustive search rank, but this will increase the
runtime of a search step. Alternatively, we can choose
sufficiently wide bounds for the analyzed region of the
parameter space (possibly disregarding known physical

bounds)—by decreasing kmin
2 here—but this will decrease

sampling accuracy. Finally, if we choose small but posi-
tive projection values that approximate the true projection
values of 0 (Fig. 6), the caveat is an increased numerical
integration time.
For a different scenario, using the same model, the same

measurement data, and the same default score function
and threshold, consider a different projection value for k1
at the other end of the range of parameter values, k1 
 0
(Fig. 6). With a k1 projection value such that the half-life
of the ligand is sufficiently small compared to the time
point of the measurement t∗, only a value of the parame-
ter of the constitutive production of the reporter matters
for the score. Here, the k2 value has to be within error
bounds of ca. 1.96σ1 from the x01 value. Given that the
upper bound kmax

1 is sufficiently high to allow TopoFilter
to find a sample with k2 value within the error bounds, k1
can be reduced by projecting to 
 0 value.
Thus, while TopoFilter’s standard setting of testing only

single-parameter reductions at a time may prevent find-
ing a maximally reduced model that is consistent with the

Fig. 6 Likelihood and viable space for the theoretical example of a ligand-fluorescent reporter network with multiplicative kinetic constants k1 and
k2. Bounding box for searched parameter values is given as

[

kmin
1 , kmax

1

] × [

kmin
2 , kmax

2

]

(dashed). The ε-projection values for each of the parameters
(red dashed, bottom and left) can lead to discovery of the rank 2 reduction via rank 1 reductions (first k1:=ε1, then, from viable point

(

ε1, kmin
2

)

,
k2:=ε2), whereas projection values equal to 0 cannot. With the k1 projection value greater than kmax

1 (red dashed, right), the viable space, enclosed
within a 0.95 quantile of the cost function, is determined only by k2 ∈ (

x01 − 1.96σ1, x01 + 1.96σ1
)

; k1 can be projected alone to some (high enough)
value. The figure was plotted with

[

kmin
1 , kmax

1

] × [

kmin
2 , kmax

2

] = [0.0117, 0.027] × [1.3, 11.7], x01 = 10, σ1 = 0.05·x01
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experimental data, several options exist to prevent or mit-
igate this potential problem in an application. However,
note that these options may lead to increased computa-
tional cost or to decreased accuracy.

Conclusions
The TopoFilter package combines high flexibility in tack-
ling model selection problems in systems and synthetic
biology with state-of-the-art, scalable performance. In
particular, the user has control over the model space
search exhaustiveness and, correspondingly, over the total
run-time. TopoFilter’s parameters allow one to choose
between search goals: model reduction (maximal viable
reduction) and model selection (statistically representa-
tive enumeration of viable submodels, the method’s orig-
inal purpose) are the extremes. The characterization of
viable spaces during filtering also enables efficient post-
hoc uniform sampling for Bayesian computations, which
we exploited in prior applications in systems biology [26]
and synthetic biology [29] for automated model genera-
tion and selection.
We see three main limitations of TopoFilter that could

be addressed by future developments: First, paralleliza-
tion could be extended to the sampling in parameter
space, which requires costly model evaluations, in order
to improve the computational efficiency and scalabil-
ity to larger applications. Second, the heuristics for the
search in model space could be improved. For example,
TopoFilter deals with each parameter sample separately—
analyzing the ensemble of viable samples could, for exam-
ple, help identifying the most promising directions for
multi-parameter projections, and thus increase efficiency
and accuracy of model space exploration. Finally, TopoFil-
ter currently only provides interfaces for ordinary dif-
ferential equation (ODE) models, but it could be easily
extended to other classes of parametric models. For exam-
ple, extensions to stochastic network descriptions are
particularly straightforward when the dynamics is approx-
imated by so-called moment equations in the form of
ODEs [35]. In the future, it could also be interesting to aim
for hybrid methods [21] that, for the purpose of model
selection, use parameter-free approaches such as logical
modeling to constrain the search space for (more detailed)
topological filtering a priori as much as possible.
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