
ETH Library

On the Approximation of Rough
Functions with Artificial Neural
Networks

Master Thesis

Author(s):
De Ryck, Tim

Publication date:
2020-01-31

Permanent link:
https://doi.org/10.3929/ethz-b-000397533

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-6860-1345
https://doi.org/10.3929/ethz-b-000397533
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

On the Approximation of Rough
Functions with Artificial Neural

Networks

Master’s Thesis

Tim De Ryck

Friday 31st January, 2020

Advisor: Prof. Dr. Siddhartha Mishra

Department of Mathematics, ETH Zürich

Abstract

Deep neural networks and the ENO procedure are both efficient frameworks for
approximating rough functions. We prove that at any order, the stencil shifts of
the ENO and ENO-SR interpolation procedures can be exactly obtained using a
deep ReLU neural network. In addition, we construct and provide error bounds for
ReLU neural networks that directly approximate the output of the ENO and ENO-
SR interpolation procedures. This surprising fact enables the transfer of several
desirable properties of the ENO procedure to deep neural networks, including its
high-order accuracy at approximating Lipschitz functions. Numerical tests for
the resulting neural networks show excellent performance for interpolating rough
functions, data compression and approximating solutions of nonlinear conservation
laws.

i

Acknowledgements

In the first place, I would like to thank my supervisor Prof. Dr. Siddhartha Mishra.
He suggested a topic that seamlessly combines two of my research interests, numer-
ical mathematics and deep learning. This, together with his excellent guidance,
made it a pleasure to develop this thesis. In particular, I thank him for providing
me with a workplace at SAM and for giving me the chance to work on a research
paper.

Second, I owe thanks to Dr. Deep Ray for the pleasant collaboration on this
topic. It is his research findings that constitute the foundation of this thesis. I
am particularly grateful to him for letting me use his code and for the fruitful
discussion on ENO regression networks.

Finally, I am thankful for my parents and the opportunities they provided. My
time in Zürich has been a great experience and it would not have been possible
without their support.

iii

Contents

Contents v

1 Introduction 1

2 Preliminaries 5
2.1 Feedforward artificial neural networks 5
2.2 Basic ReLU calculus . 7

3 Function approximation with neural networks 11
3.1 Expressive power of neural networks . 11
3.2 Approximation of Lipschitz continuous functions by deep ReLU networks 14

3.2.1 Approximation with continuous weight assignment 15
3.2.2 Approximation with discontinuous weight assignment 16

4 ENO interpolation with ReLU neural networks 21
4.1 ENO interpolation . 21
4.2 ENO reconstruction . 24
4.3 ENO stencil selection with ReLU neural networks 26
4.4 ENO interpolation with ReLU neural networks 31

5 Second-order ENO-SR interpolation with ReLU neural networks 37
5.1 Second-order ENO-SR interpolation . 37

5.1.1 Algorithm . 37
5.1.2 Properties . 39
5.1.3 ENO-SR-2 stencil selection with ReLU neural networks 40

5.2 Adapted second-order ENO-SR interpolation 45
5.2.1 Algorithm . 45
5.2.2 Properties . 46
5.2.3 Adapted ENO-SR-2 stencil selection with ReLU neural networks 49
5.2.4 Adapted ENO-SR-2 interpolation with ReLU neural networks . . 50

6 Numerical results 59
6.1 Training procedure . 59

6.1.1 Training data sets . 60
6.1.2 Training details . 61

v

Contents

6.2 Performance of DeLENO(-SR) methods 63
6.2.1 DeLENO classification networks 63
6.2.2 DeLENO regression networks . 64
6.2.3 DeLENO-SR classification network 68
6.2.4 DeLENO-SR regression network 69

6.3 Applications . 70
6.3.1 Function approximation . 70
6.3.2 Data compression . 70
6.3.3 Conservation laws . 75

7 Conclusion 79

A Weights and biases for trained networks 81

B Multi-resolution representation of functions for data compression 83

Bibliography 85

vi

Chapter 1

Introduction

Functions of limited regularity arise in a wide variety of problems in mathematics,
physics and engineering. Weak solutions of nonlinear partial differential equations con-
stitute a prominent class of such rough functions. For instance, solutions of Hamilton-
Jacobi equations and other fully nonlinear PDEs are in general only Lipschitz continu-
ous [Evans, 1998]. Discontinuous functions appear as solutions of nonlinear hyperbolic
systems of conservation laws, e.g. the compressible Euler equations of gas dynamics,
as they can contain shock waves [Dafermos, 2010]. Similarly, solutions to the incom-
pressible Euler equations would well be only Hölder continuous in the turbulent regime
[Eyink and Sreenivasan, 2006]. Another notable class of rough functions are images.
On account of their sharp edges, they are usually assumed to be no more than func-
tions of bounded variation.

In view of their prevalence, the need for numerical procedures that can efficiently and
robustly approximate rough functions can not be undervalued. However, in classi-
cal approximation theory the accuracy of the interpolant usually relies on the regu-
larity of the underlying function in a critical way. This poses a severe problem for
the interpolation (or approximation) of rough functions. For continuous, piecewise
smooth functions, standard linear interpolation procedures are only first-order accu-
rate [Aràndiga et al., 2005] and the order of accuracy (in terms of the interpolation
mesh width) degrades even further if the underlying function is discontinuous. Apart
from a reduced accuracy, classical approximation procedures can also cause the emer-
gence of spurious oscillations near jump discontinuities. This issue particularly arises
when dealing with solutions of nonlinear hyperbolic systems of conservation laws that
contain shock waves. The approximation of rough functions clearly poses a formidable
challenge.

In Chapter 2 of this thesis, we present the concept of artificial neural networks. In-
spired by the neural circuits in the human brain, they are formed by concatenating
affine transformations with pointwise application of nonlinearities, the so-called acti-
vation functions. Being only piecewise smooth themselves, interpolation using neural
networks will lead to significantly different results than the polynomial approximations
arising from classical interpolation theory. The expressiveness of neural networks man-
ifests itself through the universal approximation properties the networks possess, as
will be discussed in Chapter 3. In particular, they can approximate piecewise smooth
functions with an arbitrary degree of accuracy. These universality results however do

1

1. Introduction

not specify the precise architecture of the approximating network. This changed re-
cently, when for example [Yarotsky, 2017] was able to explicitly construct deep neural
networks with ReLU activation functions that can approximate Lipschitz functions to
second-order accuracy. Moreover, [Yarotsky and Zhevnerchuk, 2019] were able to con-
struct deep neural networks with alternating ReLU and sine activation functions that
can approximate Lipschitz (or Hölder continuous) functions to exponential accuracy.
In both cases, very precise estimates on the type and architecture of the underlying
networks were given. These results give insight in how artificial neural networks can be
used to construct approximation of rough functions and are therefore a starting point
for this thesis.

Although the importance of the results of Yarotsky is well established, as they illustrate
the power of deep neural networks in approximating rough functions, there is a practical
issue in the use of these deep neural networks we want to address. The neural networks
constructed in [Yarotsky, 2017] are mappings fN from the space coordinate x ∈ D ⊂ Rd
to the output fN (x) ∈ R, with as goal to approximate an underlying function f : D → R.
Hence, for every given function f , a new neural network fN has to be obtained. This
happens through the minimization of a loss function with respect to a finite set of
samples of f [Goodfellow et al., 2016]. Although it makes sense to train networks for
each individual function f in high dimensions, for instance in the context of uncertainty
quantification of PDEs [Lye et al., 2019], doing so for every low-dimensional function is
unrealistic as this minimization procedure is computationally far more expensive than
classical interpolation procedures. This problem can be resolved by noting that in a
large numbers of contexts, the goal of approximating a function f is in fact finding
a mapping {f(xi)}i 7→ If , where {f(xi)}i is a vector containing the function values
of f at some sampling points and where the interpolant If approximates f . Hence,
one would like to construct neural networks that map the input vector to an output
interpolant (or its evaluation at certain sampling points). It is unclear if the networks
proposed by Yarotsky can be adapted to this setting.

Another (a priori very different) way to interpolate rough functions with a high accu-
racy is the use of data dependent interpolation procedures, a renowned example being
the essentially non-oscillatory (ENO) procedure, which we will introduce in Chapter
4. It was first developed in the context of the reconstruction of non-oscillatory polyno-
mials from cell averages and has proven its value in high-order accurate finite volume
schemes for the approximation of the solutions of hyperbolic PDEs [Harten et al., 1987].
Moreover, ENO was shown to satisfy a subtle non-linear stability property, the so-called
sign property [Fjordholm et al., 2013]. Later, ENO was adapted for interpolating rough
functions [Shu and Osher, 1989]. Once augmented with a sub-cell resolution (SR) pro-
cedure of [Harten, 1989], which will be introduced in Chapter 5, it was provided in
[Aràndiga et al., 2005] that the ENO-SR interpolant also approximated (univariate)
Lipschitz functions to second-order accuracy. On account of their desirable properties,
the ENO and ENO-SR interpolation procedures have also been successfully employed in
the numerical approximation of Hamilton-Jacobi equations [Shu and Osher, 1991] and
in data compression in image processing [Harten et al., 1997, Aràndiga et al., 2005].

As both deep neural networks and the ENO procedure provide frameworks for the
efficient approximation of rough functions, it is natural to explore links between these
two a priori disconnected concepts. The main goal of this thesis is to shed light on these

2

links. In Chapter 4, we argue that the ENO(-SR) interpolation procedure can either be
interpreted as a classification or a regression problem. We prove that for any order, the
ENO interpolation procedure can be cast as a suitable deep ReLU neural network in the
classification context. When interpreted as a regression problem, we prove the existence
of a deep ReLU neural network that approximates the ENO interpolation procedure
without being deprived of some of ENO’s desirable properties. In Chapter 5, we propose
a new variant of the piecewise linear ENO-SR procedure of [Harten, 1989] and prove
again that it can be cast as a deep ReLU neural network in the classification context.
In addition, we prove that there exists a deep ReLU neural network that provides an
approximation of a piecewise smooth function that is second-order accurate, up to an
arbitrarily small constant error.

In Chapter 6, we investigate whether it is possible to (re)obtain (or train) ReLU neural
networks that satisfy the accuracy results of Chapter 4 and Chapter 5 based on a so-
called training data set. This data set contains vectors of function evaluations on a grid
and their corresponding ENO(-SR) interpolants. We describe in detail how to generate
these data sets and how to train networks to obtain what we term as DeLENO (Deep
Learning ENO) approximation procedures for rough functions. Furthermore, we test
the performance of these newly proposed DeLENO procedures in different contexts
and explore the effect of input scaling on the performance. To stress their practicality,
we conclude the thesis by showing how the DeLENO interpolation procedures can
be applied for function approximation, data compression and the approximation of
solutions of conservation laws.

3

Chapter 2

Preliminaries

In statistics, machine learning, numerical mathematics and many other scientific disci-
plines, the goal of a certain task can often be reduced to the following. We consider a
(usually unknown) function f : D ⊂ Rm → Rn and we assume access to a (finite) set
of labelled data S ⊂ {(X, f(X)) : X ∈ D}, using which we wish to select an approx-
imation f̂ from a parametrized function class {fθ : θ ∈ Θ} that predicts the outputs
of f on D with a high degree of accuracy. Classical choices include affine functions
(linear regression), splines and many others. In the past decade, the use of artificial
neural networks has gained popularity. In the following section, this class of functions
is introduced, with special attention for ReLU deep neural networks, as these will form
the cornerstone of this thesis. Afterwards, we present some very basic properties of
ReLU neural networks.

2.1 Feedforward artificial neural networks

Artificial neural networks (ANNs) can be divided into many different categories. One
of the most straightforward network types is the multilayer perceptron (MLP) or feed-
forward artificial neural network. These models are called feedforward because of the
absence of feedback connections. Artificial neural networks that do have such connec-
tions are called recurrent neural networks. In feedforward artificial neural networks, a
feedforward structure is created by stacking neurons, which are the basic computing
units, in multiple layers. The input is fed into the source layer and flows through a
number of hidden layers to the output layer. An example of an MLP with two hidden
layers is shown in Figure 2.1.

In the following, we formalize the definition of a feedforward artificial neural network.

Definition 2.1 Let L, n0, n1, . . . , nL ∈ N with L > 2, let W l ∈ Rnl×nl−1 and bl ∈ Rnl
for l = 1, 2 . . . , L. Let Al be the affine linear map given by Al : Rnl−1 → Rnl : x 7→
W lx + bl and let ρl : Rnl → Rnl be a function, for each l = 1, 2 . . . , L. A map
Φ : Rn0 → RnL defined by

Φ(x) = (ρL ◦ AL ◦ ρL−1 ◦ · · · ◦ ρ1 ◦ A1)(x) (2.1)

for all x ∈ Rn0 is called a feedforward artificial neural network of depth L. The network
is said to have depth L, width maxi ni and activation functions ρ1, . . . , ρL. Furthermore,
W 1, . . . ,WL and b1, . . . , bL are called the weights and biases of the network.

5

2. Preliminaries

X = Z0 Z1 Z2 Z3

A
ct
.
fn

A
ct
.
fn

O
u
t.

fn

Ŷ

Source Layer

Hidden Layer 1 Hidden Layer 2

Output Layer

Figure 2.1: An MLP with 2 hidden layers. The source layer transmits the signal X to the first hidden layer.
The final output of the network is Ŷ .

In this terminology, a feedforward ANN of depth L consists of an input layer, L − 1
hidden layers and an output layer. It is said to be deep if L > 3, in this case we speak
of a feedforward deep neural network (DNN). We denote the vector fed into the input
layer by Z0. The l-th layer (with nl neurons) receives an input vector Z l−1 ∈ Rnl−1 and
transforms it into the vector Z l ∈ Rnl by first applying the affine linear transformation,
followed by the activation function ρl,

Z l = ρl(W lZ l−1 + bl), 1 6 l 6 L, (2.2)

with Z l serving as the input for the (l+ 1)-th layer. Note that it is only interesting to
choose nonlinear activation functions; if all activation functions are linear, the network
reduces to an affine linear map. Many suitable options remain, common choices being
(the multidimensional version of) the standard logistic function, the hyperbolic tangent
and the rectified linear unit (ReLU). This last function is defined as

ReLU : R→ R : x 7→ max{x, 0} = (x)+, (2.3)

and has grown over the past year to the activation function of choice in many applica-
tions. Thanks to its simple form and its even simpler derivative, it is computationally
cheaper to optimize a network with ReLU activation functions than a network with for
instance sigmoidal activation functions. ReLU neural networks also partly resolve the
saturation problem that is typical for the sigmoidal function: whereas the derivative
of a sigmoidal function vanishes for both large positive and large negative values, the
derivative of the rectified linear unit only vanishes for negative values. This facilitates
again the problem of finding the optimal network, as most optimization algorithms
fundamentally depend on the gradient to find an optimum. Furthermore, ReLU neural
networks are also able to exactly represent some very basic, but useful functions. This
is the topic of Section 2.2. This also allows the construction of explicit approximations
of continuous functions, as will be seen in Chapter 3. It is the combination of these
theoretical properties and its computational efficiency that makes the ReLU neural
network ubiquitous nowadays. As we will almost exclusively use this type of multilayer
perceptron in this thesis, we formalize the concept of an ANN that uses the rectified
linear unit as activation function.

Definition 2.2 Let L, n0, n1, . . . , nL ∈ N with L > 2. For l = 1, 2 . . . , L − 1, let
ρl : Rnl → Rnl be a function that satisfies ρl(x) = (ReLU(x1), . . . ,ReLU(xnl))

T for all
x ∈ Rnl and let ρL : RnL → RnL satisfy ρL(x) = x for all x ∈ RnL. A feedforward

6

2.2. Basic ReLU calculus

artificial neural network of depth L with activation functions ρ1, . . . , ρL is called a ReLU
neural network of depth L.

Definition 2.3 Let L, n0, nL ∈ N with L > 2. Then we denote by NL,n0,nL the set of
ReLU neural networks that have depth L, input dimension n0 and output dimension
nL.

We can now also make the connection with the problem setting in the introduction of
this chapter. The function class under consideration in this case, is of course those of
feedforward artificial neural networks. For consistency, we set n0 = m and nL = n. The
parameter space Θ then consists of the weights and biases of the network. Depending on
the nature of the problem, the output of the ANN may have to pass through an output
function S to convert the signal into a meaningful form. In classification problems, a
suitable choice for such an output function would be the softmax function

S(x) : Rn → Rn : x 7→
(

ex1∑n
j=1 e

xj
, . . . ,

exn∑n
j=1 e

xj

)
. (2.4)

This choice ensures that the final output vector Ŷ = S(ZL) satisfies
∑n

j=1 Ŷj = 1 and

0 6 Ŷj 6 1 for all 1 6 j 6 n, which allows Ŷj to be viewed as the probability that
the input Z0 belongs to the j-th class. Note that the class predicted by the network is
arg maxj Ŷj . More output functions, and more information on multilayer perceptrons
in general, can be found in Chapter 6 of [Goodfellow et al., 2016].

2.2 Basic ReLU calculus

In the following chapters, we will use ReLU neural networks to construct approxima-
tions of certain mappings. For this reason, we must develop some basic results on the
composition and addition of neural networks. One can also establish bounds on other
properties of these composed networks, e.g. the network connectivitiy (the total num-
ber of nonzero entries of weights and biases). As these bounds will play no role in this
thesis, we refer the reader to [Grohs et al., 2019a, Grohs et al., 2019b] for the exact
results. The following lemma discusses the composition of two ReLU neural networks.

Lemma 2.4 Let L1, L2, d1, d2, NL1 , NL2 ∈ N with L1, L2 > 2, Φ1 ∈ NL1,d1,NL1
, and

Φ2 ∈ NL2,d2,NL2
with NL1 = d2. Then there exists a network Ψ ∈ NL1+L2−1,d1,NL2

satisfying Ψ(x) = Φ2(Φ1(x)), for all x ∈ Rd1.

Proof Let W 1
i , . . .W

Li
i and b1i , . . . b

Li
i be the weights and biases of Φi for i = 1, 2

according to Definition 2.1. Define

W j = W j
1 and bj = bj1 for j = 1, . . . , L1 − 1,

WL1 = W 1
2W

L1
1 and bL1 = W 1

2 b
L1
1 + b12,

WL1+j−1 = W j
2 and bL1+j−1 = bj2 for j = 2, . . . , L2,

(2.5)

and let Ψ be the ReLU neural network corresponding to these weights and biases. �

In many results where the total number of weights and biases plays an important role,
Lemma 2.4 should be replaced by Lemma II.5 in [Grohs et al., 2019b]. If the number

7

2. Preliminaries

of neurons in the hidden layers of Φ1 and Φ2 are large compared to d2, the network
connectivity of the network of the proof of Lemma 2.4 can be significantly reduced at
the cost of creating an additional hidden layer.

As preparation for the result on linear combinations of ReLU neural networks, we show
how the depth of a ReLU neural network can be increased in such a way that it still
corresponds to the same function.

Lemma 2.5 Let L,K, d ∈ N with L > 2, Φ1 ∈ NL,d,1, and K > L. Then, there exists
a corresponding network Φ2 ∈ NK,d,1 such that Φ2(x) = Φ1(x), for all x ∈ Rd.

Proof Lemma II.6 in [Grohs et al., 2019b]. LetW 1
1 , . . .W

L
1 and b11, . . . b

L
1 be the weights

and biases of Φ1, according to Definition XX. Define

W j
2 = W j

1 and bj2 = bj1 for j = 1, . . . , L− 1,

WL
2 =

(
WL

1

−WL
1

)
and bL2 =

(
bL1
−bL1

)
,

WL+j
2 =

(
1 0
0 1

)
and bL+j

2 =

(
0
0

)
for j = 1, . . . ,K − L− 1,

WK
2 =

(
1 −1

)
and bK2 = 0

(2.6)

and let Φ2 be the ReLU neural network corresponding to these weights and biases. �

Lemma 2.6 Let N,Li, di ∈ R, with Li > 2, ai ∈ R, Φi ∈ NLi,di,1 for i = 1, 2, . . . , N ,

and set d =
∑N

i=1 di. Then, there exist networks Ψ1 ∈ NL,d,N and Ψ2 ∈ NL,d,1 with
L = maxi Li, satisfying

Ψ1(x) = (a1Φ1(x1) . . . aNΦN (xN))T and

Ψ2(x) =

N∑

i=1

aiΨi(xi),
(2.7)

for all x = (xT1 , . . . , x
T
N)T ∈ Rd with xi ∈ Rdi for i = 1, 2, . . . , N .

Proof We follow the proof of Lemma II.7 in [Grohs et al., 2019b]. Apply Lemma 2.5
to the networks Φi to get corresponding networks Φ̃i of depth L and set Ψ1(x) =
(a1Φ̃1(x1) . . . aN Φ̃N (xN))T and Ψ2(x) = (1, . . . , 1)Ψ1(x). �

To conclude this chapter, we illustrate how ReLU neural networks can be used to
exactly represent some simple functions. The three lemmas above guarantee that any
function that can be written as a composition of additions and the rectified linear unit,
can in fact be written as a ReLU neural network.

Example 2.7 The identity function can be written as a ReLU neural network of depth
2 with zero biases and weights W 1 = (1,−1)T and W 2 = (1,−1). Indeed, the equality
x = (x)+ − (−x)+ holds for all x ∈ R. Similarly, the absolute value function can be
represented by a ReLU neural network of depth 2 with zero biases and weights W 1 =
(1,−1)T and W 2 = (1, 1).

Example 2.8 The function max : R2 → R : (x, y) 7→ max{x, y} can also be written as
a ReLU neural network. One can note that max{x, y} = idR(x) + (y−x)+ for x, y ∈ R.

8

2.2. Basic ReLU calculus

Using Example 2.7 and Lemma 2.6, one finds that a possible choice is the ReLU neural
network of depth 2 with weights

W 1 =

−1 1
1 0
−1 0

 and W 2 = (1, 1,−1)

and zero bias vectors. Moreover, using this result, Lemma 2.4 and Lemma 2.6, we see
that also the calculation the maximum of four real numbers can be performed by a ReLU
neural network, given the observation that max{a, b, c, d} = max{max{a, b},max{c, d}}
for a, b, c, d ∈ R.

9

Chapter 3

Function approximation with neural
networks

Neural networks are nowadays a very popular tool for the approximation of functions,
often despite the lack of a rigorous theoretical framework that explains why the results
are as good as they are. Nonetheless, it has been the topic of many lines of modern
research to answer the following question: how well can a function be approximated by
a (ReLU) neural network of a certain architecture? First, we give an overview of some
results on this topic for depth-bounded and width-bounded neural networks. Next, we
discuss one particular result on the approximation of Lipschitz continuous functions by
deep ReLU neural networks [Yarotsky, 2018a].

3.1 Expressive power of neural networks

In the last decades, many papers have been published that show that (deep) neural
networks are universal approximators for a multitude of function classes, under vary-
ing conditions on the network architecture and the choice of the activation function.
Whereas earlier results focus on neural networks of only one hidden layer, more recent
results investigate the expressive power of deep neural networks. One of the first fa-
mous results is due to Cybenko, who proved in [Cybenko, 1989] that shallow neural
networks are universal approximators for continuous functions, under some conditions
on the activation function.

Definition 3.1 A function σ : R→ R is called discriminatory if for any finite, signed
regular Borel measure on [0, 1]n it holds that the condition

∀y ∈ Rn, θ ∈ R :

∫

[0,1]n
σ(yTx+ θ)dµ(x) = 0 (3.1)

implies that µ = 0.

Theorem 3.2 Let σ : R→ R be a continuous, discriminatory function and let αj , θj ∈
R, yj ∈ Rn for 1 6 j 6 n. Then finite sums of the form

G(x) =

N∑

j=1

αjσ(yTj x+ θj), x ∈ Rn (3.2)

11

3. Function approximation with neural networks

are dense in C([0, 1]n).

Cybenko further proves that any continuous, sigmoidal function is discriminatory. It
is also not very hard to prove that the ReLU function is discriminatory.

Theoretical results that are in a similar vein as Cybenko’s universal approximation
theorem were proved in [Funahashi, 1989, Hornik, 1991, Barron, 1993]. Many of these
results turned out to be special cases of the following general result:

Theorem 3.3 Let σ : R→ R be a function that is locally essentially bounded with the
property that the closure of the set of points of discontinuity has zero Lebesgue measure.
For 1 6 j 6 n, let αj , θj ∈ R and yj ∈ Rn. Then finite sums of the form

G(x) =
N∑

j=1

αjσ(yTj x+ θj), x ∈ Rn (3.3)

are dense in C(Rn) if and only if σ is not an algebraic polynomial.

This result is due to Leshno, Lin, Pinkus and Schocken [Leshno et al., 1993], the proof
relies again on techniques from functional analysis. We conclude that all initial results
on the expressive power of neural networks focus on networks with one single hidden
layer and merely prove the existence of a network that approximates a given function
well. In the last decade, however, the interest in and applications of (deep) neural
networks have grown explosively. This sudden massive gain in popularity of a mathe-
matical tool whose theoretical properties are poorly understood, has revived the need
of rigorous results on the expressive power of neural networks. As the ReLU activa-
tion function became the method of choice in many applications, most recent results
only focus on ReLU neural networks. In particular, they provide insight in how the
width and depth of the network influence its accuracy. In contrast to the approach
of Cybenko and others, these more recent universal approximation theorems are often
proved by explicitly constructing the network architecture and weights.

Cybenko already showed that neural networks with bounded depth are expressive
enough to approximate continuous functions arbitrarily well. It is then only a nat-
ural question to ask whether the same holds for networks with bounded width. A first
interesting result on this topic is due to Hu, Lu, Pu, Wang and Wang. In their paper
‘The Expressive Power of Neural Networks: A View from the Width’ [Lu et al., 2017],
they state the following universal approximation theorem for width-bounded ReLU
networks.

Theorem 3.4 For any Lebesgue-integrable function f : Rn → R and ε > 0, there
exists a fully-connected ReLU network fN with width at most n+ 4, such that

∫

Rn
|(f(x)− fN (x)|dx < ε. (3.4)

The constructed network is a concatenation of subnetworks (so-called blocks), where
each block mimics the indicator function on a small enough n-dimensional cube. The
result then follows by multiplying the output of each block with a suitable weight.
The number of blocks that are needed is indeed finite since the underlying function is
Lebesgue-integrable.

12

3.1. Expressive power of neural networks

A second universal approximation theorem for width-bounded ReLU networks, this
time with respect to the supremum norm, can be found in the paper ‘Approximat-
ing continuous functions by ReLU nets of minimal width’ by to Hanin and Sellke
[Hanin and Sellke, 2017]. In addition, they provide bounds on the minimal width
needed for the universal approximation property.

Definition 3.5 Let m,n > 1. The minimal width wmin(n,m) is defined as the minimal
value of w such that for every continuous function f : [0, 1]n → Rm and every ε > 0
there is a ReLU network fN with input dimension n, hidden layer widths at most w
and output dimension m, such that

sup
x∈[0,1]n

‖f(x)− fN (x)‖ 6 ε. (3.5)

The main result of the paper is the following theorem.

Theorem 3.6 For every n,m > 1,

n+ 1 6 wmin(n,m) 6 n+m. (3.6)

In the proof of the upper bound the authors also provide a bound on the depth of
the network needed to approximate a continuous function. For this bound we must
introduce

ω−1
f (ε) = sup{δ : ωf (δ) 6 ε} (3.7)

where ωf is the modulus of continuity of f . Then for any compact set K ⊆ Rn and
continuous function f : K → Rm, there exists a ReLU network with input dimension
n, hidden layer widths n+m, output dimension m and depth O(diam(K)/ω−1

f (ε))n+1.

Thus far, we have established that both width-bounded and depth-bounded ReLU
neural networks admit a universal approximation theorem. It is a natural question
to ask which type provides a better accuracy with the same number of neurons. In
practice, deeper networks tend to be more powerful than shallow ones. Rolnick and
Tegmark provide some interesting results on this topic in the paper ‘The power of
deeper networks for expressing natural functions’ [Rolnick and Tegmark, 2017].

Definition 3.7 Suppose that a nonlinear function σ is given. For p a multivariate
polynomial, let Mk(p) be the minimum number of neurons in a depth-k artificial neural
network fN that satisfies supx∈K‖p(x)− fN (x)‖ < ε for all ε > 0 on some compact set
K ⊂ Rn.

Theorem 3.4 of [Rolnick and Tegmark, 2017] proves that Mk(p) is indeed a well-defined
finite number. The following theorem then shows that the uniform approximation of
monomials requires exponentially more neurons in a shallow than a deep network.

Theorem 3.8 Let p(x) =
∏n
i=1 x

ri
i and set d =

∑n
i=1 ri. Suppose that the nonlinearity

σ has nonzero Taylor coefficients up to degree 2d. Then, we have

1. M1(p) =
∏n
i=1(ri + 1),

2. minkMk(p) 6
∑n

i=1(7dlog2(ri)e+ 4).

13

3. Function approximation with neural networks

Theorem 4.3 of [Rolnick and Tegmark, 2017] provides a generalization of the above
theorem to sums of monomials.

Finally, we mention the many recent results of Yarotsky on the approximation of
functions by deep neural networks [Yarotsky, 2017, Yarotsky, 2018a, Yarotsky, 2018b,
Yarotsky and Zhevnerchuk, 2019]. In [Yarotsky, 2017], he described explicit ReLU neu-
ral networks to approximate the function f : R → R : x 7→ x2 with respect to the
supremum norm. This approximation can then be used to approximate the multipli-
cation operator, since xy = ((x + y)2 − x2 − y2)/2, and consequently to approximate
polynomials and other smooth functions. In [Yarotsky and Zhevnerchuk, 2019], Yarot-
sky and Zhevnerchuk were able to construct deep neural networks with ReLU and sine
activation functions that can approximate Lipschitz functions to exponential accuracy.
When restricted to ReLU activation functions, he proved that it is still possible to
obtain second-order accuracy using deep neural networks [Yarotsky, 2018a]. Because
of its relevance for the subject of this thesis, we will study this result in detail in the
next section.

3.2 Approximation of Lipschitz continuous functions by deep
ReLU networks

In this section we interpret and summarize the paper ‘Optimal approximations of con-
tinuous functions by very deep ReLU networks’ by Dmitry Yarotsky [Yarotsky, 2018a]
in the special case of Lipschitz continuous functions on the unit interval. Yarotsky
constructed for every feasible approximation rate deep ReLU neural networks that can
approximate continuous functions on finite-dimensional cubes. He found that the phase
diagram of those rates consists of two distinct phases. For slow approximations, a net-
work with constant depth where the weights are continuously assigned is sufficient.
This continuity and the constant depth need necessarily to be sacrificed in order to
improve the approximation rate.

The main goal of the paper is investigating the relation between the approximation
errors, the modulus of continuity of a function and the number of weights W of the
approximating network. For a continuous function f : [0, 1]ν → R, we define f̃W :
[0, 1]ν → R to be a ReLU network with W weights and biases that approximates f ,
where the architecture of the network only depends on W and not on f . The main
question becomes then: for which powers p ∈ R is it possible to find for all f ∈ C([0, 1]ν)
a network f̃W such that

‖f − f̃W ‖∞ = O(ωf (O(W−p))), (3.8)

where ωf is the modulus of continuity of f? This question is partially answered by
the following theorem (Theorem 1 in [Yarotsky, 2018a]). The theorem states that some
approximation rates are infeasible, whereas for some other rates discontinuous weight
selection is inevitable.

Theorem 3.9 Approximation rate (3.8) cannot be achieved with p > 2
ν . Approxima-

tion rate (3.8) can also not be achieved with p > 1
ν if the weights of the approximating

network f̃ are required to depend on f continuously with respect to the standard topology
of C([0, 1]ν).

14

3.2. Approximation of Lipschitz continuous functions by deep ReLU networks

3.2.1 Approximation with continuous weight assignment

In this section we present the counterpart to the second part of Theorem 3.9, where it
was mentioned that when continuous weight selection is required, approximation rate
(3.8) is infeasible for p > 1

ν . The following theorem states that it is possible to find a
ReLU network satisfying the continuity requirement for p = 1

ν . We will only discuss
the proof in the case of a Lipschitz continuous function on the unit interval.

Theorem 3.10 There exist network architectures with W weights and, for each W , a
weight assignment linear in f such that equation (3.8) is satisfied with p = 1

ν . The
network architectures can be chosen as consisting of O(W) parallel blocks each having
the same architecture that only depends on ν. In particular, the depths of the networks
depend on ν but not on W .

Corollary 3.11 There exist network architectures with W weights and, for each W , a
weight assignment linear in f such that

‖f − f̃W ‖∞ 6 cLfW−1, (3.9)

where f is a Lipschitz function with Lipschitz constant Lf and c > 0 is a constant
not depending on f or W . The network architectures can be chosen as consisting of
O(W) parallel blocks each having the same architecture. The architecture and depth in
particular are independent of all parameters.

Proof Let f be a Lipschitz function on [0, 1] with Lipschitz constant Lf . We will
construct the piecewise linear approximation of f on some, for now undetermined, scale
1
N and prove that the neural network representing this function satisfies the properties
of the corollary. First define the intervals INn = [nN ,

n+1
N] for n ∈ Z.1 Next we define

the spike function

ϕ : R→ R : x 7→ (min(1− x, 1 + x))+, (3.10)

which is linear on all intervals I1
n and satisfies ϕ(n) = δ0(n) for all n ∈ Z. We then

define the linear interpolation f̃1 by

f̃1(x) =
∑

n∈{0,1,...N}

f
(n
N

)
ϕ (Nx− n) . (3.11)

Note that the derivative of f̃1 in the interior of each interval INn is constant and equal to
the difference quotient of f on that interval. From this follows the bound ‖f̃ ′1‖∞ 6 Lf
and thus Lf̃1 6 Lf . Next we consider the discrepancy

f2 = f − f̃1, (3.12)

for which Lf2 6 2Lf . Since every x ∈ [0, 1] is within distance 1
2N of one of the

interpolation knots where f2 vanishes, we have that

‖f2‖∞ 6
1

2N
Lf2 6

1

N
Lf . (3.13)

1In the notation of [Yarotsky, 2018a], INn = ∆
(N)
n,id.

15

3. Function approximation with neural networks

Now notice that the spike function can be exactly represented by a small ReLU neural
network, a block. The desired neural network consists of N+1 of such blocks in parallel
computing the values ϕ (Nx− n) for n ∈ {0, 1, . . . N} and an output layer that returns
a weighted sum of those values, with f(nN) as the weights. Clearly, the output of this
ReLU network is equal to (3.11). Moreover, the number of weights W is seen to be
proportional to the number of grid points N , that is W = cN for some constant c > 0.
This yields the wanted result. �

3.2.2 Approximation with discontinuous weight assignment

Theorem 3.9 stated that approximation rate (3.8) cannot be achieved for p > 2
ν . In this

section we will prove that it is possible to find a (deep) ReLU neural network leading
to the optimal rate p = 2

ν .

Theorem 3.12 For any p ∈
(

1
ν ,

2
ν

]
there exist architectures with depths L = O(W pν−1)

and respective weight assignments such that inequality (3.8) holds with this p. In par-
ticular, the rate with p = 2

ν can be achieved by narrow fully-connected architectures of
constant width 2ν + 10.

We will again concentrate on the approximation rate result for Lipschitz functions on
the unit interval. We refer the reader to [Yarotsky, 2018a] for the proof of the general
case and a proof of the statements concerning the precise width and depth of an example
of a suitable network.

Corollary 3.13 There exist narrow fully-connected architectures such that for every
Lipschitz function on the unit interval with Lipschitz constant Lf and for every number
of weights W it holds that

‖f − f̃W ‖∞ 6 cLfW−2, (3.14)

where c > 0 is an independent constant.

Proof We split the proof into three parts. In the first part we propose an approxima-
tion method. Next we guarantee that this approximation can indeed be represented by
a ReLU neural network and in the final part we verify that the number of weights and
the approximation error satisfy the bound of the corollary.

Step 1: The two-scales approximation and its accuracy

Let f be a Lipschitz function on the unit interval with Lipschitz constant Lf . We will
approximate f in two significantly different steps, which will both require not more
than W/2 weights. The first step merely consists of approximating f by f̃1 (3.11) with
N 6 c1W , where c1 is a sufficiently small constant. We now proceed by decomposing
the discrepancy f2 = f − f̃1 and approximating the components of this decomposition.
A key insight will be that it suffices to dispose only over a discrete set of approximating
functions.

Let S = {0, 1, 2} and define for every q ∈ S the function given by

gq(x) =
∑

n∈(q+3Z)∩[0,N]

ϕ(Nx− n), (3.15)

16

3.2. Approximation of Lipschitz continuous functions by deep ReLU networks

for x ∈ [0, 1] and where ϕ is the spike function defined in (3.10). It can easily be noted
that

∑
q∈S gq = 1 on the unit interval. We then decompose the discrepancy as

f2 =
∑

q∈S
f2,q where f2,q = f2gq. (3.16)

Let Qn =
[
n−1
N , n+1

N

]
. The support of f2,q is then given by the disjoint union

Qq =
⋃

n∈(q+3Z)∩[0,N]

Qn. (3.17)

It will also turn out to be useful to define q(n) as the unique q ∈ S such that n ∈
(q + 3Z) ∩ [0, N]. We now calculate the Lipschitz constant of f2,q. Let x, y ∈ [0, 1].
Then

|f2,q(x)− f2,q(y)| 6 ‖f2‖∞|gq(x)− gq(y)|+ ‖gq‖∞|f2(x)− f2(y)|

6
Lf
N
N |x− y|+ Lf2 |x− y|

6 3Lf |x− y|,

(3.18)

where we used in particular (3.13), Lgq = N and Lf2 6 2Lf . We conclude that
Lf2,q 6 3Lf .

We now proceed by approximating each f2,q by f̃2,q on the grid Z/M , with M
N ∈ Z, such

that it is a refinement of the grid Z/N . We define f̃2,q on the grid Z/M by rounding

down f2,q to the nearest multiple of the discretisation parameter λ =
3Lf
M ,

f̃2,q

(m
M

)
= λbf2,q

(m
M

)
/λc, m ∈ [0, 1, . . . ,M]. (3.19)

We then define f̃2,q on [0, 1] as the piecewise linear interpolation of these values. We

also define f̂2,q as the piecewise linear interpolation of f2,q on the grid Z/M . Note that

this directly yields the bound ‖f̂2,q − f̃2,q‖∞ 6 λ. We also have

‖f̂2,q − f2,q‖∞ 6
1

2M
Lf̂2,q−f2,q 6

1

M
Lf2,q 6 λ, (3.20)

where we used similar arguments as in the proof of Theorem 1. Altogether we have

‖f − f̃‖∞ 6
∑

q∈S
‖f2,q − f̃2,q‖∞ 6 6λ =

18Lf
M

. (3.21)

If we now succeed in taking W ∼
√
M we obtain the wanted approximation rate.

Step 2: Representation of the refined approximation

Recall that on the refined grid, f̃2,q was defined as a multiple of the parameter λ. We
will store and characterize this value by this integer multiplier of λ. For q ∈ S and
n ∈ (q + 3Z) ∩ [0, N] (and therefore for the interval Qn) we write

Aq,n(m) =
⌊
f2,q

(n
N

+
m

M

)
/λ
⌋
, m ∈

[
−M
N
, . . . ,

M

N

]
. (3.22)

17

3. Function approximation with neural networks

Note that Aq,n(±M
N) = 0. Furthermore we define

Bq,n(m) = Aq,n(m)−Aq,n(m− 1), m ∈
[
−M
N

+ 1, . . . ,
M

N
− 1

]
. (3.23)

It is now crucial to recall that Lf2,q 6 Mλ. This allows us to see that Bq,n(m) ∈
{−1, 0, 1} and therefore store all these coefficients in a single ternary number

bq,n =

2M/N−1∑

t=1

3−t
(
Bq,n

(
t− M

N

)
+ 1

)
. (3.24)

This representation also allows to recover {Bq,n(m)} from bq,n using ReLU neural net-
works. Define the sequence zt recursively by setting z0 = bq,n and zt+1 = 3zt − b3ztc,
in this way Bq,n

(
t− M

N

)
= b3zt−1c. Since there exists ε > 0 such that 0 6 zt < 1 − ε,

we do not need to be able to write the floor function as a ReLU neural network on
the whole interval [0, 3]. In fact, we can replace it by a piecewise linear function that
coincides with the floor function for all possible values of 3zt. Details can be found in
[Yarotsky, 2018a].

We now proceed by rewriting f̃2,q on the interval Qn. For this reason we define

Φn(m,x) =
m∑

s=−M/N+1

ϕ
(
M
(
x−

(n
N

+
s

M

)))
. (3.25)

Summation by parts allows us to write

f̃2,q(x) = λ

M/N−1∑

m=−M/N+1

ϕ
(
M
(
x−

(n
N

+
m

M

)))
Aq,n(m)

= λ

M/N−1∑

m=−M/N+1

(Φn(m,x)− Φn(m− 1, x))Aq,n(m)

= λ

M/N−1∑

m=−M/N+1

Φn(m,x)Bq,n(m)

(3.26)

for x ∈ Qn. We now wish to make this representation independent of the chosen interval
Qn. As a first step we can define

bq(x) =
∑

n∈(q+3Z)∩[0,N]

bq,n((2− |Nx− n|)+ − (1− |Nx− n|)+). (3.27)

The second factor of the summand is 1 if x ∈ Qn and 0 on Qq \ Qn. Using a similar
method (i.e. by using a function that acts like a step function on Qq) one can define a
function Ψq that maps all x ∈ Qq to the index of the interval it belongs to. That is, if
x ∈ Qn then Ψq(n)(x) = n. Consequently we get bq(x) = bq,Ψq(x).

Similarly, we want to replace Φn(m,x) in (3.26) by an expression independent of n.
We will call this expression Φ̃q(m,x). In particular it should satisfy for every n that

18

3.2. Approximation of Lipschitz continuous functions by deep ReLU networks

Φ̃q(n)(m,x) = Φn(m,x) on Qq(n) and Φ̃q(n)(m,x) = 0 on (Qq(n))c. This can be achieved
by defining

Φ̃q(m,x) = min(ΦΨq(x)(m,x), θq(x)) (3.28)

where θq is a piecewise linear function that vanishes on (Qq)c and is larger than the
first argument of the minimum on Qq. Therefore we can write

f̃2,q(x) = λ

M/N−1∑

m=−M/N+1

Φ̃q(m,x)Bq(m,x). (3.29)

The last obstacle is the computation of the product inside the sum, but this can be
overcome by noting that Φ̃q(m,x) ∈ [0, 1], Bq(m,x) ∈ {−1, 0, 1} and that for all x ∈
[0, 1] and y ∈ {−1, 0, 1} we can write

xy = (x+ y − 1)+ + (−x− y)+ − (−y)+. (3.30)

We can write our total approximation as

f̃ = f̃1 +
∑

q∈S
f̃2,q (3.31)

and we have proven that it can be exactly computed by a ReLU neural network.

Step 3: Network implementation

Recall that we need to show that the total number of weights used to implement f̃2

does not exceed W/2. We will count for all defined quantities in the above construction
how many weights are needed.

We need to compute O(1) times the term f̃2,q. In order to compute θq(x), Ψq(x) and
bq(x) we need to sum O(N) expressions that each require O(1) network weights. Let
c2 > 0 be the constant such that if we take N 6 c2W , then this part of the network
consists of less than W/4 weights. As we also need N 6 c1W in order to control the
number of weights needed to compute f̃1, we fix N = min(c1, c2)W .

Recovering Bq,n(m) from bq(x) for every m ∈
[
−M
N + 1, . . . , MN − 1

]
requires 2M

N − 1
times O(1) network weights. Similarly, calculating all Φn(m,x) requires also O(M/N)
weights. The same holds for computing the sum to obtain f̃2,q(x). Take now c3 > 0
and M = c3W

2 such that this part of the network needs at most W/4. We have now
described a network with at most W weights such that for some c > 0, ‖f − f̃W ‖∞ 6
cLfW

−2, where we used (3.21).

It is also interesting to note that all sums can be computed in a serial way. Therefore
the described network is very deep, but it has a narrow width that is independent of
the function. In fact, following the arguments in [Yarotsky, 2018a], one can prove that
the width of the network does not need to exceed 12. �

19

Chapter 4

ENO interpolation with ReLU neural
networks

The previous chapter has clearly demonstrated the expressive power of ReLU neural
networks, in particular their capability of approximating rough functions. In practice,
there might be a major issue in this approach when used to approximate an unknown
function f : D ⊆ R → R based on a finite set S ⊂ {(x, f(x)) : x ∈ D}, as for
each individual function f a new neural network has to be found. The retrieval of
this network, also called the training of the network, has a computational cost that is
significantly higher than that of other classical regression methods, which makes this
approach rather impractical. This motivates us to investigate how one can obtain a
neural network that takes input in D and produces an output interpolant, or rather its
evaluation at certain sample points. Such a network primarily depends on the training
data S and can be reused for each individual function. Instead of creating an entirely
novel data dependent interpolation procedure, we base ourselves in this chapter on
the essentially non-oscillatory (ENO) procedure of [Harten et al., 1987]. This proce-
dure can attain any order of accuracy for smooth functions and reduces to first-order
accuracy for continuous rough functions. In what follows, we introduce the ENO inter-
polation framework and we suggest new approaches that use ReLU neural networks to
reproduce or approximate the results of the ENO interpolation procedure.

4.1 ENO interpolation

We begin by introducing the ENO interpolation procedure and its properties. Let f
be a function on Ω = [c, d] ⊂ R that is at least p times continuously differentiable. We
define a sequence of nested uniform grids {T k}Kk=0 on Ω, where

T k = {xki }Nki=0, Iki = [xki−1, x
k
i], xki = c+ ihk, hk =

(d− c)
Nk

, Nk = 2kN0, (4.1)

for 0 6 i 6 Nk, 0 6 k 6 K and some positive integer N0. Furthermore we define
fk = (f(xk0), . . . , f(xkNk)), fki = f(xki) and we let fk−p+2, ..., f

k
−1 and fkNk+1, ...f

k
Nk+p−2

be suitably prescribed ghost values. We are interested in finding an interpolation
operator Ihk such that

Ihkf(x) = f(x) for x ∈ T k and ‖Ihkf − f‖∞ = O(hpk) for k →∞.

21

4. ENO interpolation with ReLU neural networks

In standard approximation theory, this is achieved by defining Ihkf on Iki as the unique
polynomial pki of degree p− 1 that agrees with f on a chosen set of p points, including
xki−1 and xki . The linear interpolant (p = 2) can be uniquely obtained using the stencil
{xki−1, x

k
i }. However, there are several candidate stencils to choose from when p > 2.

The ENO interpolation procedure considers the stencil sets

Spi (r) = {xki−1−r+j}p−1
j=0, 0 6 r 6 p− 2, (4.2)

where r is called the (left) stencil shift. Note that every stencil shift r uniquely defines a
polynomial P[Spi (r)] of degree p−1 that perfectly agrees with f on Spi (r). To get insight
in the smoothness of this polynomial, we consider divided differences f [z0, . . . , zm] and
undivided differences ∆f [z0, . . . , zm]. These are inductively defined by

f [z] = ∆f [z] = f(z),

∆f [z0, . . . , zm] = ∆f [z1, . . . , zm]−∆f [z0, . . . , zm−1],

f [z0, . . . , zm] =
∆f [z0, . . . , zm]

zm − z0
,

(4.3)

for z, z0, . . . , zm ∈ [c, d] and m ∈ N. One can calculate that for any permutation
σ : {0, . . . ,m} → {0, . . . ,m} it holds f [zσ(0), . . . , zσ(m)] = f [z0, . . . , zm]. This allows us
to define

f [Spi (r)] = f [xki−1−r, . . . , x
k
i−r+p−2]. (4.4)

We can introduce a similar definition for undivided differences,

∆f [Spi (r)] = ∆f [xki−1−r, . . . , x
k
i−r+p−2]. (4.5)

where the order of the arguments of ∆f [·] are not to be interchanged, as undivided
differences are not invariant under permutations. Under the assumption that zi =
z0 + i∆m for 1 6 i 6 m, the divided differences reflect the smoothness of f in the
following way.

1. If f is at least m times continuously differentiable on [z0, zm], then there exists
ξ ∈ [z0, zm] with

f [z0, . . . , zm] =
f (m)(ξ)

m!
. (4.6)

2. If f is only piecewise smooth and (for 0 6 j 6 m− 1) the j-th derivative of f has
one discontinuity at z ∈ [z0, zm], then [Laney, 2007]

f [z0, . . . , zm] = O
(

1

(∆z)m−j

(
djf(z+)

dxj
− djf(z−)

dxj

))
. (4.7)

Using this, we can write the polynomial P[Spi (r)] as Newton’s divided differences inter-
polation polynomial,

P[Spi (r)](x) =

p−1∑

m=0

f [Sm+1
i (r)]

m−1∏

j=0

(x− xki−1−r+j), (4.8)

22

4.1. ENO interpolation

and we observe that [Harten, 1986]

P[Spi (r)](x) = P[Sp−1
i (r)](x) + f [Spi (r)]

p−2∏

j=0

(x− xki−1−r+j) and

P[Spi (r + 1)](x) = P[Sp−1
i (r)](x) + f [Spi (r + 1)]

p−2∏

j=0

(x− xki−1−r+j).

(4.9)

This allows us to inductively define the p-th order accurate ENO interpolation poly-
nomial. For p = 2, only S2

i (0) is a suitable stencil set. Therefore we define the
second-order ENO interpolation polynomial on Iki by P[S2

i (0)]. For p = 3, one can
choose between S3

i (0) and S3
i (1). From (4.9), it follows that the only difference between

P[S3
i (0)] and P[S3

i (1)] is the coefficient of the quadratic term. Since this coefficient mir-
rors the smoothness of f , as established earlier, we take P[S3

i (0)] as third-order ENO
polynomial if |f [S3

i (0)]| 6 |f [S3
i (1)]| and P[S3

i (1)] otherwise. We thus extended the
stencil in the direction of smoothness. By repeating this process, one obtains a stencil
shift rki that uniquely defines the p-th-order accurate ENO interpolation polynomial
pki = P[Spi (rki)]. Selecting an ENO polynomial thus reduces to p−2 comparisons of two
(un)divided differences, as described by Algorithm 1. Note that the use of undivided
instead of divided differences has no effect on the output of Algorithm 1. We can write
the final interpolant as

Ihkf(x) =

Nk∑

i=1

pki (x)1[xki−1,x
k
i)(x).

It is clear from its construction, that the ENO polynomial is designed to be as smooth
as possible. Whereas many classical interpolation methods will lead to spurious oscilla-
tions when applied on rough functions (e.g. near discontinuities), this will not be the
case for the essentially non-oscillatory (ENO) polynomial. This property can be made
precise using the total variation (TV) seminorm

TV d
c (f) = sup

{
N−1∑

i=0

(f(xi+1)− f(xi)) : c = x0 < . . . < xN = d, N ∈ N

}
(4.10)

of a function f : [c, d]→ R. We say that an interpolation operator Ih is total variation
bounded (TVB) when there exists a function g : [c, d]→ R such that

‖Ihf − g‖∞ = O(h) for h→ 0 and TV d
c (g) 6 TV d

c (f). (4.11)

It is this property that guarantees the disappearance of spurious oscillations when the
grid is refined. In addition, Ihf is monotone on intervals containing a discontinuity
[Shu, 1998]. Both are very useful properties to have when interpolating a rough func-
tion.

23

4. ENO interpolation with ReLU neural networks

Algorithm 1 ENO interpolation stencil selection

Input: ENO order p, input array ∆0 = {fki+j}p−2
j=−p+1, for any 0 6 i 6 Nk.

Output: Stencil shift r.
Evaluate Newton undivided differences:
for j = 1 to p− 1 do

∆j = ∆j−1[2 : end]−∆j−1[1 : end− 1]
end for
Find shift:
r = 0
for j = 2 to p− 1 do

if |∆j [p− 2− r]| < |∆j [p− 1− r]| then
r = r + 1

end if
end for
return r

Remark 4.1 It is also interesting to make the connection between selecting an ENO
polynomial and the following optimization problem:

minimize F(r2, . . . , rp) :=

p∑

j=2

|f [Sji (rj)]|

such that 0 6 rj 6 j − 2 for 2 6 j 6 p,

Sj−1
i (rj−1) ⊆ Sji (rj) for 3 6 j 6 p.

(4.12)

Algorithm 1 then can be interpreted as a greedy algorithm with the intent to find the
solution of (4.12).

In many applications, one is only interested in predicting the values of fk+1 given fk.
In this case, there is no need to calculate Ihk+1f and evaluate it on T k+1. Instead, one
can use Lagrangian interpolation theory to see that there exist fixed coefficients Cpr,j
such that

Ihkf(xk+1
2i−1) =

p−1∑

j=0

Cp
rki ,j

fk
i−rki +j

for 1 6 i 6 Nk and

Ihkf(xk+1
2i) = fk+1

2i = fki for 0 6 i 6 Nk,

(4.13)

where rki is the stencil shift corresponding to the smoothest stencil for interval Iki . The
coefficients Cpr,j are listed in Table 4.1.

4.2 ENO reconstruction

ENO was actually initially introduced by [Harten et al., 1987] for high-order accurate
piecewise polynomial reconstruction given cell averages of a function. This allows
to develop high-order accurate numerical methods for hyperbolic conservation laws,
the so-called ENO schemes. ENO reconstruction can be loosely interpreted as ENO
interpolation applied to the primitive function. For the sake of completeness, we repeat
the main steps of the algorithm for reconstruction purposes.

24

4.2. ENO reconstruction

p r j = 0 j = 1 j = 2 j = 3

3
0 3/8 3/4 -1/8 -
1 -1/8 3/4 3/8 -

4
0 5/16 15/16 -5/16 1/16
1 -1/16 9/16 9/16 -1/16
2 1/16 -5/16 15/16 5/16

Table 4.1: Coefficients for ENO interpolation for p > 2 used in (4.13).

Let V be a function on [c, d]. We define a uniform mesh T on [c, d] with N cells,

T = {Ii}Ni=1, Ii = [xi− 1
2
, xi+ 1

2
], xi = c+ (2i− 1)

h

2
, h =

(d− c)
N

, (4.14)

for 1 6 i 6 N and where xi and xi± 1
2

denote the cell center and cell interfaces of the

cell Ii, respectively. We are given the cell averages

V i =
1

h

∫ x
i+1

2

x
i− 1

2

V (ξ)dξ, 1 6 i 6 N (4.15)

and we define V −p+2, ..., V 0 and V N+1, ..., V N+p−1 to be suitably prescribed ghost
values. The goal is to find a local interpolation operator Ihi such that

‖Ihi V − V ‖∞,Ii = O(hp) for h→ 0.

For this purpose, let V̂ be the primitive function of V and note that we have access to
the value of V̂ at the cell interfaces,

V̂ (xi+ 1
2
) = h

i∑

j=0

V j where V̂ (x) =

∫ x

c
V (ξ)dξ. (4.16)

Next let Pi be the unique polynomial of degree p that agrees with V̂ on a chosen set of
p + 1 cell interfaces that includes xi− 1

2
and xi+ 1

2
. The ENO reconstruction procedure

considers the stencil sets

Sri = {xi− 1
2
−r+j}

p
j=0, 0 6 r 6 p− 1,

where r is called the (left) stencil shift. The smoothest stencil is then selected based on
the local smoothness of f using Newton’s undivided differences. Algorithm 2 describes
how the stencil shift ri corresponding to this stencil can be obtained. Note that ri
uniquely defines the polynomial Pi. We then define Ihi V to be the first derivative of
Pi, one can check that this polynomial is indeed a p-th order accurate approximation.
Note that the interpolants on two adjacent intervals do not need to agree on the mutual
cell interface.

In order to implement an ENO scheme, one only needs the values of Ihi V at the cell
interfaces xi− 1

2
and xi+ 1

2
. Analogously to (4.13), these can be directly obtained by

calculating

Ihi V (xi+ 1
2
) =

p−1∑

j=0

C̃pri,jV i−ri+j and Ihi V (xi− 1
2
) =

p−1∑

j=0

C̃pri−1,jV i−ri+j , (4.17)

where ri is stencil shift corresponding to the smoothest stencil for interval Ii and with
the coefficients C̃pr,j listed in Table 4.2.

25

4. ENO interpolation with ReLU neural networks

Algorithm 2 ENO reconstruction stencil selection

Input: ENO order p, input array ∆0 = {V i+j}p−1
j=−p+1, for any 1 6 i 6 N .

Output: Stencil shift r.
Evaluate Newton undivided differences:
for j = 1 to p− 1 do

∆j = ∆j−1[2 : end]−∆j−1[1 : end− 1]
end for
Find shift:
r = 0
for j = 1 to p− 1 do

if |∆j [p− 1− r]| < |∆j [p− r]| then
r = r + 1

end if
end for
return r

p r j = 0 j = 1 j = 2 j = 3

2
-1 3/2 -1/2 - -
0 1/2 1/2 - -
1 -1/2 3/2 - -

3

-1 11/6 -7/6 1/3 -
0 1/3 5/6 -1/6 -
1 -1/6 5/6 1/3 -
2 1/3 -7/6 11/6 -

4

-1 25/12 -23/12 13/12 -1/4
0 -1/4 13/12 -5/12 1/12
1 -1/12 7/12 7/12 -1/12
2 1/12 -5/12 13/12 -1/4
3 -1/4 13/12 -23/12 25/12

Table 4.2: Coefficients for ENO reconstruction used in (4.17).

4.3 ENO stencil selection with ReLU neural networks

The crucial step of the ENO procedure is determining the correct stencil shift. Given
the stencil shift, the retrieval of the ENO polynomial is straightforward. ENO-p can
therefore be interpreted as a classification problem, with the goal of mapping an input
vector (the evaluation of a certain function on a number of points) to one of the p− 1
classes (the stencil shifts). One of the main results of this thesis is that the ENO stencil
shift can exactly be calculated using a ReLU neural network. The result is joint work
with Deep Ray and can also be found in [De Ryck et al., 2020].

Theorem 4.2 There exists a ReLU neural network consisting of p +
⌈
log2

(p−2

b p−2
2
c
)⌉

hidden layers and a suitable output function, that takes input ∆0 = {fki+j}p−2
j=−p+1 and

leads to exactly the same stencil shift as the one obtained by Algorithm 1.

Proof We look for the ENO stencil shift r := rki corresponding to the interval Iki .
Let k ∈ N and define ∆0

j = fki+j for −p + 1 6 j 6 p − 2 and 0 6 i 6 Nk, where

26

4.3. ENO stencil selection with ReLU neural networks

fk−p+1, . . . , f
k
−1 and fkNk+1, . . . , f

k
Nk+p−2 are suitably defined ghost values. Furthermore

we define ∆s
j = ∆s−1

j − ∆s−1
j−1 for s odd and ∆s

j = ∆s−1
j+1 − ∆s−1

j for s even. In what

follows, we use Y l and Z l to denote the values of the l-th layer of the neural network
before and after activation, respectively. We use the notation X l for an auxiliary vector
needed to calculate Y l.

Step 1. Take the input to the network to be

Z0 = [∆0
−p+1, . . . ,∆

0
p−2] ∈ R2(p−1).

These are all the candidate function values considered in Algorithm 1.

Step 2. We want to obtain all quantities ∆s
j that are compared in Algorithm 1, as

shown in Figure 4.1. We therefore choose the first layer (before activation) to be

Y 1 =

(
Y∆

−Y∆

)
∈ R2M where Y∆ =

∆2
0

∆2
−1
...

 ∈ RM

is the vector of all the terms compared in Algorithm 1 and M = p(p−1)
2 − 1. Note that

every undivided difference is a linear combination of the network input. Therefore one
can obtain Y 1 from Z0 by taking a null bias vector and weight matrix W 1 ∈ R2M×(2p−2).
After applying the ReLU activation function, we obtain

Z1 =

(
(Y∆)+

(−Y∆)+

)
.

Step 3. We next construct a vector X2 ∈ RL, where L = (p−2)(p−1)
2 , that contains

all the quantities of the if-statement in Algorithm 1. This is ensured by setting,

X2 =

|∆2
−1| − |∆2

0|
|∆3

0| − |∆3
1|

|∆3
−1| − |∆3

0|
...

 .

Keeping in mind that |a| = (a)+ + (−a)+ for a ∈ R we see that there is a matrix

W̃ 2 ∈ RL×2M such that X2 = W̃ 2Z1. We wish to quantify for each component of X2

whether it is strictly negative or not (cf. the if-statement of Algorithm 1). For this
reason, we define the functions H1 : R→ R and H2 : R→ R by

H1(x) =

0 x 6 −1

x+ 1 −1 < x < 0

1 x > 0

and H2(x) =

−1 x 6 0

x− 1 0 < x < 1

0 x > 1

.

The key property of these functions is that H1 and H2 agree with the Heaviside function
on x > 0 and x < 0, respectively. When x = 0 the output is respectively +1 and −1.
Now note that H1(x) = (x+1)+−(x)+ and H2(x) = (x)+−(x−1)+−1. This motivates
us to define

Y 2 =

X2 + 1
X2

X2 − 1

 ∈ R3L,

27

4. ENO interpolation with ReLU neural networks
OUTPUT

∆0
0∆0

−1∆0
−2∆0

−p+1 ∆0
1 ∆0

p−2
... ...

∆1
0∆1

−1∆1
−p+2 ∆1

1 ∆1
p−2

... ...

∆2
0∆2

−1∆2
−p+2 ∆2

p−3
... ...

∆3
0∆3

−1 ∆3
1

... ...

...

∆p−1

N1

N2N3

N4N5N6

...
...

NL−p+3.NL

r = 01. . .p− 3p− 2

+1−1

+1−1+1−1

+1−1+1−1

1

Figure 4.1: Only undivided differences in the
shaded region are compared in Algorithm 1.

OUTPUT

∆0
0∆0

−1∆0
−2∆0

−p+1 ∆0
1 ∆0

p−2
... ...

∆1
0∆1

−1∆1
−p+2 ∆1

1 ∆1
p−2

... ...

∆2
0∆2

−1∆2
−p+2 ∆2

p−3
... ...

∆3
0∆3

−1 ∆3
1

... ...

...

∆p−1

N1

N2N3

N4N5N6

...
...

NL−p+3.NL

r = 01. . .p− 3p− 2

+1−1

+1−1+1−1

+1−1+1−1

N1

N2N3

N4N5N6

...
...

NL−p+3.NL

r = 01. . .p− 3p− 2

+1−1

+1−1+1−1

+1−1+1−1

1

Figure 4.2: Arrangement of N1, . . . ,NL into di-
rected acyclic graph.

which can be obtained from Z1 by taking weight matrix W 2 ∈ R3L×2K and bias vector
b2 ∈ R3L,

W 2 =

1
1
1

⊗ IL

 · W̃ 2 and b2j =

1 1 6 j 6 L

0 L+ 1 6 j 6 2L

−1 2L+ 1 6 j 6 3L

where IL denotes the L × L unit matrix. After activation we obtain Z2 = (Y 2)+ =
(W 2Z1 + b2)+.

Step 4. We first define X3 ∈ R2L by

X3
j =

{
H1(X2

j) = Z2
j − Z2

L+j 1 6 j 6 L

H2(X2
j−L) = Z2

j − Z2
L+j − 1 L+ 1 6 j 6 2L.

This is clearly for every j an affine transformation of the entries of Z2. For this reason
there exist a matrix W̃ 3 ∈ R2L×3L and a bias vector b̃3 ∈ R2L such that X3 = W̃ 3Z2+b̃3.
In order to visualize the next steps, we arrange the elements of X3 in a triangular
directed acyclic graph, shown in Figure 4.2, where every node Nj corresponds to the
tuple (X3

j , X
3
j+L) = (H1(X2

j), H2(X2
j)). We note that this tuple is either of the form

(+1, H2(X2
j)) or (H1(X2

j),−1). Algorithm 1 is equivalent to finding a path from the
top node to one of the bins on the bottom. Starting from N1, we move to the closest
element to the right in the row below (i.e. N2) if N1 is of the form (+1, H2(X2

j)). If N1

is of the form (H1(X2
j),−1), we move to the closest element to the left in the row below

(i.e. N3). If N1 is of the form (+1,−1), then it is not important in which direction we
move. Both paths lead to a suitable ENO stencil shift. Repeating the same procedure
at each row, one ends up in one of the p−1 bins at the bottom representing the stencil
shift r.

There are 2p−2 paths from the top to one of the bins at the bottom. In order to
represent the path using a (p− 2)-tuple of entries of X3, one needs to choose between
H1(X2

j) and H2(X2
j) at every node of the path, leading to 2p−2 variants of each path.

At least one of these variants only takes the values +1 and −1 on the nodes and is
identical to the path described above; this is the variant we wish to select. Counting
all variants, the total number of paths is 22p−4.

28

4.3. ENO stencil selection with ReLU neural networks

Consider a path P = (X3
j1
, . . . , X3

jp−2
) that leads to bin r. We define for this path a

weight vector W ∈ {−1, 0, 1}2L whose elements are set as

Wj =

+1 if X3
j = +1 and j = js for some 1 6 s 6 p− 2

−1 if X3
j = −1 and j = js for some 1 6 s 6 p− 2

0 otherwise.

For this particular weight vector and for any possible X3 ∈ R2L we have W ·X3 6 p−2,
with equality achieved if and only if the entries of X3 appearing in P are assigned
the precise values used to construct W . One can construct such a weight vector for
each of the 22p−4 paths. We next construct the weight matrix Ŵ 3 ∈ R22p−4×2L in
such a way that the first 2p−2 ·

(
p−2

0

)
rows correspond to the weight vectors for paths

reaching r = 0, the next 2p−2 ·
(
p−2

1

)
for paths reaching r = 1 et cetera. We also

construct the bias vector b̂3 ∈ R22p−4
by setting each element to p − 2 and we define

X̂3 = Ŵ 3X3 + b̂3 = Ŵ 3(W̃ 3Z2 + b̃3) + b̂3. By construction, X̂3
j = 2p− 4 if and only if

path j corresponds to a suitable ENO stencil shift, otherwise 0 6 X̂3
j < 2p− 4.

Step 5. Next the components of Ẑ3 that correspond to the same bin need to be
accumulated. We will use the following lemma.

Lemma 4.3 Let maxn : Rn+ → R be the maximum of n positive real numbers. Then
the function maxn can be written as a ReLU neural network with dlog2 ne hidden layers
with widths 2dlog2 ne, . . . , 21.

Proof We prove the statement for the case n = 2m, where m ∈ N, by induction on m.
Let x ∈ R2

+. Then max(x1, x2) = (x1)+ + (x2 − x1)+. This can indeed be written as a
ReLU network with 1 hidden layer of width 2.

Now assume the statement holds for n = 2m and take x ∈ R2m+1

+ . By the induction
hypothesis, there exist two ReLU networks like in the statement that compute z1 =
max(x1, . . . , x2m) and z2 = max(x2m+1, . . . , x2m+1). Construct a new ReLU network
by putting these two networks in parallel and adding a hidden layer with the values z1

and z2− z1 before activation. The formula max(z1, z2) = (z1)+ + (z2− z1)+ then gives
the wanted result. �

The definitions of Y 3, Y 4 . . . follow from the lemma above. We can now define the final
output vector in the following way,

Ŷj = maxn(j)

(
Ẑ3

(
1 + 2p−2 ·

j−2∑

k=0

(
p− 2

k

))
, . . . , Ẑ3

(
2p−2 ·

j−1∑

k=0

(
p− 2

k

)))
,

where n(j) = 2p−2 ·
(
p−2
j−1

)
and Ẑ3(j) = Ẑ3

j . Note that the calculation of Ŷ requires⌈
log2 n

(
bp−2

2 c+ 1
)⌉

= p−2+
⌈
log2

(p−2

b p−2
2
c
)⌉

additional hidden layers. By construction,

it is true that Ŷj = 2p − 4 if and only if the (j − 1)-th bin is reached. Furthermore,
Ŷj < 2p− 4 if the (j − 1)-th bin is not reached. The set of all suitable stencil shifts R
and the unique stencil shift r from Algorithm 1 are then respectively given by

R = argmaxj Ŷj − 1 and r = minR = min argmaxj Ŷj − 1. (4.18)

�

29

4. ENO interpolation with ReLU neural networks

Remark 4.4 The neural network constructed in the above theorem is local in the sense
that for each interval, it provides a stencil shift. These local neural networks can be
concatenated to form a single neural network that takes as its input the vector fk of
sampled values and returns the vector of interpolated values that approximates fk+1.
The global neural network combines the output stencil shift of each local neural network
with a simple linear mapping (4.13).

Although the previous theorem provides a network architecture for every order p, the
obtained networks are excessively large for small p. We therefore present alternative
constructions for ENO interpolation of orders p = 3, 4. These results are due to Deep
Ray.

Algorithm 1 for p = 3 can be exactly represented by the following ReLU network with
a single hidden layer, whose architecture is given by:

• Input X = (∆0
−2,∆

0
−1,∆

0
0,∆

0
1)>.

• The first hidden layer is identical to the one described in the original proof of
Theorem 4.2 for p = 4, with a null bias vector and W 1 ∈ R4×4,

W 1 =

0 1 −2 1
1 −2 1 0
0 −1 2 −1
−1 2 −1 0

 , b1 =

0
0
0
0

 . (4.19)

• Output layer:

W 2 =

(
−1 1 −1 1
1 −1 1 −1

)
, b2 =

(
0
0

)
. (4.20)

• The shift is determined using (4.18), since

Ŷ =

(
|∆2
−1| − |∆2

0|
|∆2

0| − |∆2
−1|

)
.

For p = 4, Algorithm 1 can be represented by following ReLU network with 3 hidden
layers:

• Input X = (∆0
−3,∆

0
−2,∆

0
−1,∆

0
0,∆

0
1,∆

0
2)>.

• The first hidden layer is identical to the one described in the original proof of
Theorem 4.2 for p = 4, with a null bias vector and W 1 ∈ R10×6,

W 1 =

(
W̃ 1

−W̃ 1

)
∈ R10×6 where W̃ 1 =

0 0 1 −2 1 0
0 1 −2 1 0 0
0 0 −1 3 −3 1
0 −1 3 −3 1 0
−1 3 −3 1 0 0

. (4.21)

• The second hidden layer has a null bias and the weight vector

W 2 =

(
W̃ 2 W̃ 2

−W̃ 2 −W̃ 2

)
∈ R6×10 where W̃ 2 =

−1 1 0 0 0
0 0 −1 1 0
0 0 0 −1 1

 . (4.22)

30

4.4. ENO interpolation with ReLU neural networks

Note that W̃ 2 ∈ R3×5 also comes back in the original proof of Theorem 4.2 for
p = 4.

• The third hidden layer:

W 3 =

1 1 1 0 0 1
1 0 1 0 1 1
−1 1 0 1 0 −1
0 1 0 1 1 1

 , b3 =

0
0
0
0

 . (4.23)

• Output layer:

W 4 =

1 0 0 0
0 1 1 0
0 0 0 1

 , b4 =

(
0
0

)
. (4.24)

• After an elementary, yet tedious case study, one can show that the shift can again
be determined using (4.18).

Remark 4.5 Similarly, one can show that Algorithm 2 for p = 2 can be exactly rep-
resented by a ReLU DNN with one hidden layer of width 4. The input and output
dimension are 3 and 2, respectively. For p = 3, Algorithm 2 can be shown to corre-
spond to a ReLU DNN with three hidden layers of dimensions (10, 6, 4). Input and
output dimension are 5 and 4, respectively.

4.4 ENO interpolation with ReLU neural networks

After having successfully recast the ENO stencil selection as a ReLU neural network,
it is natural to investigate whether there exists a ReLU neural network with output
(Ihkf)k+1, as in the setting of (4.13) in Section 4.1. Since ENO interpolation is a
discontinuous procedure and a ReLU neural network is a continuous function, a network
with such an output does not exist. It remains however interesting to investigate to
which extent we can approximate ENO using ReLU neural networks.

As a first step in developing such an approximation, we provide an explicit formula
to calculate (Ihkf)k+1

i . We base ourselves on the inductive definition of the ENO
polynomials, given in (4.9), and the interpretation using a graph from Figure 4.2 from
the proof of Theorem 4.2. We also introduce for ε > 0 the function Hε : R→ R defined
by

Hε(x) =

0 x 6 0

x/ε 0 < x 6 ε

1 x < ε.

(4.25)

In Figure 4.3, we revisit the directed acyclic graph displayed in Figure 4.2 from the
proof of Theorem 4.2. Note that we altered the notation and turned the arrows around.
We are going to define a mapping Qp that connects every node in the graph to one of
the polynomials of {P[Spi (r)] : 0 6 r 6 p − 2}. We start with the bottom layer of the
triangle and we set

Qp[N p
r](x) = P[Spi (r)](x) (4.26)

31

4. ENO interpolation with ReLU neural networks

N 2
0

N 3
0N 3

1

N 4
0N 4

1N 4
2

...
...

N p−1
0

.N p−1
p−3

N p
0N p

1
. . .N p

p−3N p
p−2

Figure 4.3: Directed acyclic graph that can be used during the calculation of the ENO interpolant.

for 0 6 r 6 p − 2. Every node Nm
r of a higher layer is connected to two nodes from

the layer below. Each of these two nodes corresponds through Qp to a polynomial;
we define Qp[Nm

r] to be the smoothest of these two polynomials. We use undivided
differences as smoothness indicator, as explained in Section 4.1. This procedure is
repeated until the top node of the graph is reached. The polynomial corresponding to
N 2

0 then corresponds to the ENO polynomial. This procedure can be quantified by the
formula

Qp[Nm
r](x) = (1− αmr) · Qp[Nm+1

r](x) + αmr · Qp[Nm+1
r+1](x) (4.27a)

= Qp[Nm+1
r](x) + αmr ·

(
Qp[Nm+1

r+1](x)−Qp[Nm+1
r](x)

)
, (4.27b)

where the coefficients αrm are explicitly given by

αmr = H0

(
|∆f [Sm+1

i (r)]| − |∆f [Sm+1
i (r + 1)]|

)
, (4.28)

for 2 6 m 6 p− 1 and 0 6 r 6 m− 2. One can check that indeed

Qp[N 2
0](x) = P[Spi (rki)](x), (4.29)

where rki is the ENO stencil shift. Note that this formula is independent of the grid
size for uniform grids. For the base case m = p (4.26), we note that P[Spi (r)](x∗)
can (for every r) be trivially written as ReLU neural network, as it merely is a linear
combination with fixed coefficients of the function values of the stencil. On the other
hand, as we have already established, the formula of the induction step cannot be
calculated using a pure ReLU neural network. Nevertheless, we will base ourselves on
this formula to introduce an approximate ENO algorithm that can be exactly written
as a ReLU neural network. A first straightforward step is to replace H0 by Hε with
ε > 0, since

Hε(x) =
1

ε
(x)+ −

1

ε
(x− ε)+, (4.30)

which can be written as a ReLU network. This then leads to the definition

αmr,ε = Hε

(
|f [Sm+1

i (r)]| − |f [Sm+1
i (r + 1)]|

)
, (4.31)

32

4.4. ENO interpolation with ReLU neural networks

x

y

x · y

x ? y

(1− x)λ λ

−(1− x)λ−λ

xλ

−xλ

Figure 4.4: Plot of x ? y and x · y for fixed x ∈ [0, 1] and λ > 0.

for 2 6 m 6 p−1 and 0 6 r 6 m−2. The only remaining issue is that the multiplication
of two numbers cannot be exactly represented using a ReLU neural network. We
therefore introduce the following operation in order to replace the multiplication of
bounded numbers.

Definition 4.6 For λ > 0, we denote by ? the operation on [0, 1]× [−λ, λ] given by

? : [0, 1]× [−λ, λ]→ [−λ, λ] : (x, y) 7→ x ? y := (y+λx−λ)+− (−y+λx−λ)+. (4.32)

We plot x ? y for fixed x ∈ [0, 1] and λ > 0 in Figure 4.4. Next, we list some properties
of ?.

Lemma 4.7 For λ > 0, the operation ? satisfies the following properties:

1. For all x ∈ {0, 1} and y ∈ [−λ, λ] it holds true that x ? y = xy.

2. For all x ∈ [0, 1] and y ∈ [0, λ] we have 0 6 x ? y 6 xy, for all x ∈ [0, 1] and
y ∈ [−λ, 0] we have xy 6 x ? y 6 0.

3. There exist x ∈ [0, 1] and y1, y2 ∈ [−λ, λ] such that

min{y1, y2} 6 (1− x) ? y1 + x ? y2 6 max{y1, y2}

does not hold.

4. For all x ∈ [0, 1] and y1, y2 ∈ [−λ, λ] it holds true that

min{y1, y2} 6 y1 + x ? (y2 − y1) 6 max{y1, y2}.

Proof Properties 1 and 2 follow immediately from the definition and can also be
verified on Figure 4.4. For the third property, note that 1/2 ? λ/2 + 1/2 ? λ/2 = 0.
Property 4 is an application of property 2. �

33

4. ENO interpolation with ReLU neural networks

Lemma 4.7 allows us to discuss the effect of replacing the multiplication · by the
operation ? in the definition of Qp[Nm

r] in (4.27). First of all, we check whether this
replacement is well-defined. If we assume that f is a bounded function, then it follows
that there exists a constant λ > 0 such that all ENO approximations at some chosen
point lie in the interval [−λ, λ]. From its definition, we also note that 0 6 αmr,ε 6 1.
Therefore it is possible to replace · by ?. Furthermore, if we do not replace H0 by Hε,
then the first property of Lemma 4.7 assures that the introduction of ? has no effect
on the value of Qp[Nm

r] as αmr ∈ {0, 1}. The third and fourth property of Lemma 4.7
stress that ? is not distributive over the addition anymore. Therefore replacing · by ?
in (4.27a) will not lead to the same quantity as doing so in (4.27b). We will choose to
base ourselves on variant (4.27b), as the fourth property of Lemma 4.7 guarantees that

Qpε[Nm
r](x) = Qpε[Nm+1

r](x) + αmr,ε ?
(
Qpε[Nm+1

r+1](x)−Qpε[Nm+1
r](x)

)
(4.33)

will still be a convex combination of Qpε[Nm+1
r+1](x) and Qpε[Nm+1

r](x), which is required
for the approximation to be meaningful. Together with (4.31), (4.33) and

Qpε[N p
r](x) = P[Spi (r)](x), (4.34)

we can define our approximation of the ENO interpolation polynomial as Qpε[N 2
0]. Fig-

ure 4.5 visualizes a possible ReLU neural network for the calculation of Qpε[N 2
0] in the

case of fourth-order ENO. It consists of four hidden layer with widths 13, 9, 5 and 3.
The flowchart shows the values of the neurons of each layer before activation. Similar
networks can be constructed for other orders. The network for ENO-3 has for instance
3 hidden layers with widths 6, 4 and 3.

Although our approximation is a very straightforward generalization of the ENO proce-
dure, it can not be guaranteed that ‖Qpε[N 2

0]−Qpε[N 2
0]‖∞ is small. One of the reasons

for this is that absolute values of undivided differences are compared in the ENO pro-
cedure, and not the undivided differences directly. In the latter case, an error bound
would have been possible. Nevertheless, our approximation of ENO does have some
desirable properties. First, we recall that our goal is to train a network with the archi-
tecture from above on a finite training data set, consisting of function evaluations on a
stencil. For every such data set, the parameter ε > 0 can be taken small enough such
that every αmr,ε is either 0 or 1. As a consequence, the approximation Qpε[N 2

0] agrees
with the ENO approximation for every stencil in this finite set, which guarantees that
it is theoretically possible to reach an accuracy of 100% on the training data set. This
guarantee of course does not hold anymore for new functions. Fortunately, it can be
proven that for ε > 0 small enough and a fine enough grid, our approximation of ENO
agrees with the original ENO stencil selection procedure in the neighbourhood of jump
discontinuities. The following proposition makes this statement precise.

Proposition 4.8 Let m ∈ N with m > 2 and let f− : [c, d]→ R and f+ : [c, d]→ R be
smooth functions. Let h > 0 and x0 ∈ [c, d] be such that

xi = x0 + ih for 0 6 i 6 m+ 1,

all lie in [c, d] and set Sm+1
i (r + 1) = {x0, . . . , xm} and Sm+1

i (r) = {x1, . . . , xm+1},
using notation as in (4.2). Let also xm < z 6 xm+1 and define

f(x) =

{
f−(x) x 6 z

f+(x) x > z

34

4.4. ENO interpolation with ReLU neural networks

f(xki+q) for −3 ≤ q ≤ 2
6 neurons

±∆f [S3i (0)],±∆f [S3i (1)],±∆f [S4i (0)],±∆f [S3i (1)],±∆f [S3i (2)],
P[Spi (r)](x) + λ for r ∈ {0, 1, 2}

13 neurons

∣∣∆f [S3i (0)]
∣∣−
∣∣∆f [S3i (1)]

∣∣,
∣∣∆f [S3i (0)]

∣∣−
∣∣∆f [S3i (1)]

∣∣− ε,∣∣∆f [S4i (0)]
∣∣−
∣∣∆f [S4i (1)]

∣∣,
∣∣∆f [S4i (0)]

∣∣−
∣∣∆f [S4i (1)]

∣∣− ε,∣∣∆f [S4i (1)]
∣∣−
∣∣∆f [S4i (2)]

∣∣,
∣∣∆f [S4i (1)]

∣∣−
∣∣∆f [S4i (2)]

∣∣− ε,
P[S4i (r)](x) + λ for r ∈ {0, 1, 2}

9 neurons

±(P[S4i (2)](x)− P[S4i (1)](x)) + λα3
1,ε − λ,

±(P[S4i (1)](x)− P[S4i (0)](x)) + λα3
0,ε − λ, α2

0,ε

5 neurons

±(Q3
ε [N 3

1](x)−Q3
ε [N 3

0](x)) + λα2
0,ε − λ,

Q3
ε [N 3

0](x) + λ
3 neurons

Q3
ε [N 2

0]
1 neuron

A
B

C
D

E

F

G

Figure 4.5: ReLU neural network to calculate the approximation Qpε [N 2
0] for ENO-4.

35

4. ENO interpolation with ReLU neural networks

for x ∈ [c, d]. Furthermore we set [f] = f+(z)− f−(z) and

µ = sup
[c,d]
|f ′−|+ sup

[c,d]
|f ′+|+ 2 sup

[c,d]
|f (m)
− |. (4.35)

For 0 < ε < |[f]|, the condition

h < min

{
1,
|[f]| − ε

µ

}

implies that
|∆f [Sm+1

i (r)]| − |∆f [Sm+1
i (r + 1)]| > ε

and therefore that αmr,ε = αmr , where αmr and αmr,ε are resp. defined in (4.28) and (4.31).

Proof We adopt the definitions and notation from the proposition statement and set
S1 = Sm+1

i (r + 1) and S2 = Sm+1
i (r) to simplify notation. We then have that,

f(xi) = f−(xi) for 0 6 i 6 m,

f(xm+1) = f+(xm+1) = f−(xm+1) + [f] + (xm+1 − z)(f ′+(ν1)− f ′−(ν2))
(4.36)

for some ν1, ν2 ∈ [z, xm+1]. By (4.3) and (4.6) we then have the following identities for
the undivided differences,

∆f [S1] = hmf
(m)
− (ξ1),

∆f [S2] = hmf
(m)
− (ξ2) + [f] + (xm+1 − z)(f ′+(ν1)− f ′−(ν2))

(4.37)

for some ξ1 ∈ [x0, xm] and ξ2 ∈ [x1, xm+1]. We now look for a condition on h such that
|∆f [S2]| − |∆f [S1]| > ε. Indeed, then we have that αmr,ε = αmr for the corresponding r.
We calculate that under the assumption that 0 < h < 1 and using (4.35),

|∆f [S2]| − |∆f [S1]| > |[f]| − |xm+1 − z||f ′+(ν1)− f ′−(ν2)| − |hmf (m)
− (ξ1)| − |hmf (m)

− (ξ2)|
> |[f]| − h(|f ′+(ν1)|+ |f ′−(ν2)|)− 2h sup

x∈[c,d]
|f (m)
− |

> |[f]| − hµ.
(4.38)

From this it follows easily that |∆f [S2]|−|∆f [S1]| > ε when h < min{1, (|[f]|−ε)/µ}.�

36

Chapter 5

Second-order ENO-SR interpolation with
ReLU neural networks

In the previous chapter we introduced the ENO interpolation method and highlighted
its ability to interpolate rough functions without undesirable side effects (e.g. oscil-
lations near discontinuities). There is however still room for improvement. By itself,
the ENO interpolation procedure degrades to first-order accuracy for piecewise smooth
functions i.e, functions with a singularity in the second derivative. However, following
[Harten, 1989], one can use sub-cell resolution, together with ENO interpolation, to
obtain second-order accurate approximation of such functions [Aràndiga et al., 2005].
Similar to Section 4.3, we argue in this chapter that ENO-SR interpolation can be
interpreted as a classification problem and prove the existence of a ReLU neural net-
work that predicts the right class. In addition, we propose a variant of the ENO-SR
procedure of [Aràndiga et al., 2005] and recast it as a deep neural network, both in
classification and regression context. In the following, we assume f to be a continu-
ous function that is two times differentiable except at a single point z where the first
derivative has a jump of size [f ′] = f ′(z+) − f ′(z−). We use the notation introduced
in Section 4.1.

5.1 Second-order ENO-SR interpolation

As a first step, we investigate the second-order ENO-SR procedure as proposed in
[Aràndiga et al., 2005]. We denote the ENO-SR-2 interpolation of some function f
by Ihkf . In what follows, we first describe the algorithm and list some properties
thereof. Similarly to Section 4.3, we prove that the ENO-SR-2 stencil shift can be
exactly obtained using a ReLU neural network.

5.1.1 Algorithm

We first state the ENO-SR detection and interpolation mechanism, as proposed in
[Aràndiga et al., 2005]. The mechanism uses second-order differences as smoothness
indicator and labels every interval as good (G) or bad (B) after comparing adjacent
second-order differences. For a sufficiently fine grid, it can be shown that the interval
that contains z is labelled as B (Lemma 2 in [Aràndiga et al., 2005]). The central idea

37

5. Second-order ENO-SR interpolation with ReLU neural networks

is to construct a piecewise linear interpolant only based on G intervals, which will result
in second-order accuracy on all intervals.

We define

∆2
hf(x) = f(x− h)− 2f(x) + f(x+ h).

The rules of the detection mechanism are the following:

1. If

|∆2
hk
f(xki−1)| > max

n=1,2
|∆2

hk
f(xki−1±n)|

then both Iki−1 and Iki are initially labelled B.

2. If

|∆2
hk
f(xki)| > |∆2

hk
f(xki+1)| and |∆2

hk
f(xki−1)| > |∆2

hk
f(xki−2)|

then Iki is initially labelled B.

3. During the interpolation procedure, there is the possibility that a B-interval is
relabelled G (see below).

Note that neither detection rule implies the other and that an interval can be labelled
B by both rules at the same time. The interpolation procedure is as follows:

1. If Iki was labelled as G, then we take the linear interpolation on this interval as
approximation for f ,

Ihki f(x) = Nk(f(xki)− f(xki−1))(x− xki−1) + f(xki−1).

2. If Iki was labelled as B and the two adjacent intervals as G, we construct linear
functions pki−1 and pki+1 by linearly interpolating on the intervals Iki−1 and Iki+1,
respectively, and use them to predict the location of the singularity. If both lines
intersect at a single point y inside Iki , then we define

Ihki f(x) =

{
pki−1(x) x 6 y,

pki+1(x) x > y,

for x ∈ Iki . Otherwise we relabel Iki as good.

3. If Iki belongs to a B-pair, we treat the pair as a single bad interval and return

to step 2. This however means that Ihki f does not need to interpolate f at the
midpoint of the B-pair.

Lemma 5.1 below guarantees that these are indeed the only possibilities. To conclude,
we write the final interpolant as

Ihkf(x) =

Nk∑

i=1

Ihki f(x)1[xki−1,x
k
i)(x).

38

5.1. Second-order ENO-SR interpolation

5.1.2 Properties

In what follows, we present some useful properties of ENO-SR-2. The first two are due
to [Aràndiga et al., 2005]. In particular, they guarantee that the described ENO-SR
method is second-order accurate for continuous, piecewise smooth functions.

Lemma 5.1 The groups of adjacent B intervals are at most of size 2.

Proof See Lemma 1 in [Aràndiga et al., 2005]. �

Theorem 5.2 Let f be a globally continuous function with a bounded second derivative
on R\{z} and a discontinuity in the first derivative at a point z. The interpolant Ihkf
satisfies

‖f − Ihkf‖∞ 6 Ch2
k sup
R\{z}

|f ′′|

for all hk > 0, with C > 0 independent of f .

Proof See Theorem 1 in [Aràndiga et al., 2005]. �

Similarly to Section 4.3, we wish to develop a method that exactly reproduces the
output of ENO-SR-2 using ReLU neural networks. We are amongst others interested
in investigating whether there exists a ReLU neural network that maps the input data
to the the ENO-SR-2 interpolant evaluated at a fixed grid point. For this to be possible,
the ENO-SR-2 procedure should be a continuous mapping, as ReLU neural networks
are continuous functions as well. The following lemma ascertains that this is in fact
not the case.

Lemma 5.3 The ENO-SR-2 interpolant does not continuously depend on the input
data.

Proof We prove the lemma by giving an example that shows that Ihkf does not need
to depend continuously on fk when the second-order ENO-SR algorithm is used. The
function values fk = {f(xi)}6i=0 and the absolute values of the corresponding second-
order finite differences are shown in the table below. We wish to find an approximation
of f(xk+1

5). Note that xk+1
5 is the midpoint of the interval Ik3 = [xk2, x

k
3] = [2, 3].

xki = i 0 1 2 3 4 5 6

f(xki) 0 0 0 1 3 + ε 6 + 2ε 9 + 3ε

|∆1f(xki)| / 0 1 1 + ε 1 0 /

If ε > 0, then Ik3 and Ik4 are labelled bad by both rules. The interpolants used to
estimate the discontinuity are therefore pk2,ε(x) = 0 and pk5,ε(x) = (3 + ε)(x − xk3).

We calculate that the intersection point of pk2,ε and pk5,ε is yk2,5,ε = xk3. Note that

yk2,5,ε ∈ Ik3 ∪ Ik4 , so that there is no relabelling. Furthermore we have xk+1
5 < yk2,5,ε such

that Ihk3,εf(xk+1
5) = pk2,ε(x

k+1
5) = 0.

If ε = 0, then all intervals are labelled as good. We get that

Ihk3,ε=0f(xk+1
5) = pk3,ε=0(xk+1

5) =
1

2
.

39

5. Second-order ENO-SR interpolation with ReLU neural networks

Since limε→0 Ihk3,εf(xk+1
5) 6= Ihk3,ε=0f(xk+1

5), we have proven that the interpolation proce-
dure induced by the second-order ENO-SR algorithm cannot be written as a continuous
function with input fk and output fk+1. In particular, it cannot be written as a ReLU
neural network with continuous output activation function. �

Corollary 5.4 There is no ReLU neural network with a continuous output function,
input fk and output (Ihkf)k+1 from second-order ENO-SR.

5.1.3 ENO-SR-2 stencil selection with ReLU neural networks

We adopt the setting of Section 4.1. As in (4.13), the goal is to determine Ihki (xk+1
2i−1), the

interpolation of fk in xk+1
2i−1 (the midpoint of Iki), for every 1 6 i 6 Nk. From the ENO-

SR interpolation procedure it is clear that for every i there exists ri ∈ {−2,−1, 0, 1, 2}
such that Ihki (xk+1

2i−1) = pki+ri(x
k+1
2i−1). Analogously to what was described in Section 4.3,

this gives rise to a classification problem. Instead of considering the stencil shifts as the
output classes of the network, one can also treat the different cases that are implicitly
described in the ENO-SR interpolation procedure in Section 5.1.1 as classes. This
enables us to construct a ReLU neural network of which the output clearly indicates
for each interval which stencil shift should be used. From this, one can easily calculate

Ihki (xk+1
2i−1) = Nk(f

k
i+ri − fki+ri−1)(xk+1

2i−1 − xki+ri−1) + fki+ri−1.

Note that one can also adapt the output activation function of the ANN to include the
above, such that for each 1 6 i 6 Nk the output is Ihki f(xk+1

2i−1) instead of ri.

Theorem 5.5 There exists a ReLU neural network with a suitable output function,
input fk ∈ RNk+1 and output (r1, . . . , rNk) ∈ RNk as defined above.

Proof We will refrain from writing down explicitly the exact weights and biases of
the ANN. Instead, we will break the ENO-SR-2 algorithm down in different steps, all
of which can be written as a ReLU neural network. The basic ReLU calculus results
from Section 2.2 then ensure that the composition is again a ReLU neural network. A
possible network implementation will be discussed later. In what follows, the vectors
Xj do not need to refer to the layers of that specific network implementation. We also
assume without loss of generality that xki = i for 0 6 i 6 Nk.

The input of the ANN will be the vector X0 ∈ RNk+1 such that X0
i+1 = f(xki) for all

0 6 i 6 Nk. Using a simple affine transformation, we can obtain X1 ∈ RNk−1 such
that X1

i = ∆hkf(xki) for all 1 6 i 6 Nk − 1.

We now define the following quantity,

Mi = max
n=1,2

|∆2
hk
f(xki±n)| = max

n=1,2
|X1

i±n| (5.1)

where 3 6 i 6 Nk − 3. Next, we construct a vector X2 ∈ RNk such that every entry
corresponds to an interval. For 1 6 i 6 Nk, we want X2

i > 0 if and only if the interval
Iki is labelled as B by rule 1 or 2 of the ENO-SR detection mechanism. Good intervals
Iki will have X2

i = 0 (excluding relabelled G intervals). We can achieve this by defining

X2
i =(min{|X1

i | − |X1
i+1|, |X1

i−1| − |X1
i−2|})+

+ (|X1
i | −Mi)+ + (|X1

i−1| −Mi−1)+

(5.2)

40

5.1. Second-order ENO-SR interpolation

for 4 6 i 6 Nk− 3. Furthermore we set X2
1 = X2

2 = X2
3 = X2

Nk−2 = X2
Nk−1 = X2

Nk
= 0.

We thus assume that the discontinuity is far enough from the boundary of the interval.
This can be achieved by taking k large enough, or by introducing suitably prescribed
ghost values. Note that the first term of the sum will be strictly positive if Iki is labelled
bad by the second rule of the detection mechanism and one of the other terms will be
strictly positive if Iki is labelled bad by the first rule.

So far we only considered the first and second rule of the ENO-SR detection mecha-
nism. The third rule states that a bad interval can be relabelled as good during the
interpolation procedure. We denote by pi(x) = aix+ bi the linear interpolation on Iki .
It can be easily seen that

ai = Nk(f(xki)− f(xki−1)),

bi = f(xki−1)−Nk(f(xki)− f(xki−1))xki−1.

A bad interval Iki will be relabelled as good in three cases:

• The intervals Iki−1 and Iki+1 were labelled as good and the interpolants pi−1 and
pi+1 do not intersect in a single point of Iki .

• The interval Iki−1 was labelled bad, Iki−2 and Iki+1 good and the interpolants pi−2

and pi+1 do not intersect in a single point of Iki−1 ∪ Iki .

• The interval Iki+1 was labelled bad, Iki−1 and Iki+2 good and the interpolants pi−1

and pi+2 do not intersect in a single point of Iki ∪ Iki+1.

The goal is to develop for each case a quantity that is zero when the case is applicable.
Let (m,n) ∈ {(i− 2, i+ 1), (i− 1, i+ 1), (i− 1, i+ 2)} like in the cases above. We first
consider the case where am = an. In this case the interpolants do not have a single
intersection point in Iki . Note that |am − an| is a quantity that is zero when am = an
and strictly larger otherwise.

Second, we treat the case am 6= an. Let ym,n denote the intersection point of the two
interpolants coming from the intervals Ikm and Ikn, i.e.

ym,n =
bn − bm
am − an

.

We want to define a quantity that is equal to zero when ym,n ∈ [z1, z2] and strictly
larger otherwise. We first develop a condition to determine whether |ym,n| is left or
right from some point z. Define for this goal

γm,n(z) = |bm − bn| − z|am − an|. (5.3)

We obtain

|ym,n| < z ⇐⇒ γm,n(z) < 0,

|ym,n| > z ⇐⇒ γm,n(z) > 0.

When we use this notation, we have for example that |yi−1,i+1| ∈ Iki if and only if
γi−1,i+1(xki−1) > 0 and γi−1,i+1(xki) 6 0. It remains to check that ym,n = |ym,n|. Define

λm,n = min{(bm − bn)+, (am − an)+}+ min{(bn − bm)+, (an − am)+}. (5.4)

41

5. Second-order ENO-SR interpolation with ReLU neural networks

One can check that

ym,n < 0 ⇐⇒ λm,n > 0,

ym,n > 0 ⇐⇒ λm,n = 0.

We can now define

βm,n(z1, z2) = λm,n + (−γm,n(z1))+ + (γm,n(z2))+ +X2
m +X2

n (5.5)

and observe that for 0 6 z1 6 z2 the quantity βm,n(z1, z2) indeed is equal to zero when
ym,n ∈ [z1, z2] and the intervals Ikm and Ikn were labelled as good. It is strictly larger
otherwise.

Now define ni,l = l + 13(i − 1) for 1 6 i 6 Nk and 1 6 l 6 13. Using this notation, i
refers to the interval Iki . Define X3 ∈ R13Nk in the following way:

X3
ni,1 = X2

i X3
ni,8 = βi−1,i+2(xk+1

2i−1, x
k
i+1)

X3
ni,2 = X2

i−1 +X2
i+1 + |ai−1 − ai+1| X3

ni,9 = X2
i−1 +X2

i+2

X3
ni,3 = βi−1,i+1(xki−1, x

k+1
2i−1) X3

ni,10 = X2
i−2 +X2

i+1 + |ai−2 − ai+1|
X3
ni,4 = βi−1,i+1(xk+1

2i−1, x
k
i) X3

ni,11 = βi−2,i+1(xki−2, x
k+1
2i−1)

X3
ni,5 = X2

i−1 +X2
i+1 X3

ni,12 = βi−2,i+1(xk+1
2i−1, x

k
i)

X3
ni,6 = X2

i−1 +X2
i+2 + |ai−1 − ai+2| X3

ni,13 = X2
i−2 +X2

i+1

X3
ni,7 = βi−1,i+2(xki−1, x

k+1
2i−1)

(5.6)

for 6 6 i 6 Nk − 5. We set X3
ni,l

= 0 for 1 6 l 6 13 and 1 6 i 6 5 or Nk − 4 6 i 6 Nk.

We can now define the output Y ∈ RNk of the ReLU neural network by

Yi = min argmin16l613X
3
ni,l
. (5.7)

Table 5.1 shows how one can directly obtain ri from Yi. The second column shows the
label of interval Iki : G refers to intervals which were never labelled B by the detection
mechanism, G∗ stands for good after relabelling, B means bad. The ‘interpolants’
column shows the interpolants used to estimate the location of the discontinuity for an
initially bad interval. The fifth column tells whether those interpolants intersect, and
if so, where.

Note that all possible cases are listed in the table. After the first two steps of the
ENO-SR-2 detection mechanism, Iki is either given the initial label G or B. The former
corresponds to Yi = 1, the latter to all other values of Yi. As a consequence of Lemma
5.1 there are three options when Iki was initially labelled B: it either is an isolated
bad interval or it belongs to a bad pair, either with Iki−1 or with Iki+1. Every of these
three cases can then be partitioned into four subcases, depending on the existence of
the intersection point of the two interpolants and its location (if applicable).

To conclude the proof, we motivate that the value of Yi indeed corresponds to the situa-
tions described in Table 5.1. We will refer to the description in the table corresponding
to Yi = l as case l. By construction, we know that X3

ni,l
= 0 if case l is applicable. Con-

versely, it is possible that X3
ni,l

= 0 even though case l is not applicable. If for example

all intervals are good, then X3
ni,1 = X3

ni,5 = X3
ni,9 = X3

ni,13 = 0. Or more problematic,

42

5.1. Second-order ENO-SR interpolation

Yi label initially bad pair? interpolants single intersection point? ri
1 G / / / 0
2 G∗ no pi−1, pi+1 no, parallel lines 0

3 B no pi−1, pi+1 yes, in [xki−1, x
k+1
2i−1] 1

4 B no pi−1, pi+1 yes, in [xk+1
2i−1, x

k
i] −1

5 G∗ no pi−1, pi+1 yes, but outside Iki 0
6 G∗ yes, with Iki+1 pi−1, pi+2 no, parallel lines 0

7 B yes, with Iki+1 pi−1, pi+2 yes, in [xki−1, x
k+1
2i−1] 2

8 B yes, with Iki+1 pi−1, pi+2 yes, in [xk+1
2i−1, x

k
i+1] −1

9 G∗ yes, with Iki+1 pi−1, pi+2 yes, but outside Iki ∪ Iki+1 0
10 G∗ yes, with Iki−1 pi−2, pi+1 no, parallel lines 0

11 B yes, with Iki−1 pi−2, pi+1 yes, in [xki−2, x
k+1
2i−1] 1

12 B yes, with Iki−1 pi−2, pi+1 yes, in [xk+1
2i−1, x

k
i] −2

13 G∗ yes, with Iki−1 pi−2, pi+1 yes, but outside Iki−1 ∪ Iki 0

Table 5.1: Overview of all possible values of Yi and how they relate to ri. Further explanation about the
columns can be found in the main text.

it is possible that X3
ni,3 = 0 even though Iki is a good interval, which corresponds to a

different value of ri. However, thanks to the definition of X3, in particular the specific
order of its entries, the correspondence as in Table 5.1 is justified. Indeed, if Yi > 2
then Iki must have been initially labelled bad. Furthermore, if Yi ∈ {3, 4} and thus
Yi 6= 2 then |ai−1−ai+1| 6= 0 such that we are justified to use definition (5.5). Similarly,
if Yi > 6 then Iki must belong to a bad pair and if Yi > 10 then (Iki−1, I

k
i) must be the

bad pair. This concludes the proof of the theorem. �

Now that we have proven that ENO-SR-2 can be written as a ReLU neural network
with a suitable output function, we present a possible architecture of such an ANN
that calculates Yi from fk. The network we present has four hidden layers, of which
the width varies from 29 to 39, and an output layer of 13 neurons. It is visualized
using a flowchart in Figure 5.1. The entire network to calculate Y can then easily be
obtained by concatenating these local networks. With more effort, one can also take
into account that adjacent local networks share quite a lot of neurons, leading to a
reduction of the width of the network.

We recall the following observations from Section 2.2:

a = (a)+ − (−a)+, (5.8a)

|a| = (a)+ + (−a)+, (5.8b)

max{a, b} = a+ (b− a)+, (5.8c)

min{a, b} = a− (a− b)+, (5.8d)

max{a, b, c, d} = a+ (b− a)+ +
(
c+ (d− c)+ − a− (b− a)+

)
+
, (5.8e)

for all a, b, c, d ∈ R. Furthermore we introduce the shorthand notation ∆q = ∆2
hk
f(xki+q),

where we keep i and k are fixed during the remainder of this section. To simplify no-
tation, the flowchart shows the values on the neurons before the activation function is
applied.

We now give some more explanation about how all the layers can be calculated from the
previous layer in Figure 5.1. The bold letters in this paragraph refer to the letters next

43

5. Second-order ENO-SR interpolation with ReLU neural networks

f(xki+q) for −6 ≤ q ≤ 5
12 neurons

±(bm − bn) and ±(am − an) for (m,n) ∈ Λi,
Λi = {(i− 2, i+ 1), (i− 1, i+ 1), (i− 1, i+ 2)}

12 neurons

±∆q for −5 ≤ q ≤ 4,
20 neurons

|bm − bn|, (bm − bn)+,
(bn − bm)+, |am − an|,

(bm − bn)+ − (am − an)+,
(bn − bm)+ − (an − am)+,

for (m,n) ∈ Λi

18 neurons

|∆q| for −4 ≤ q ≤ 3,
|∆−5| − |∆−2|,|∆−4| − |∆−1|,|∆−3| − |∆0|,

|∆−2| − |∆1|,|∆2| − |∆−1|,
|∆3| − |∆0|,|∆4| − |∆1|

15 neurons

|∆−3|, |∆−2|, |∆−1|, |∆0|, |∆1|, |∆2|,
(|∆−4| − |∆−1|)+,(|∆−3| − |∆0|)+,

(|∆2| − |∆−1|)+,(|∆3| − |∆0|)+,
max{|∆−2|, |∆−5|} −max{|∆−1|, |∆−4|},
max{|∆−1|, |∆−4|} −max{|∆0|, |∆−3|},
max{|∆1|, |∆−2|} −max{|∆0|, |∆−3|},
max{|∆1|, |∆−2|} −max{|∆−1|, |∆2|},
max{|∆0|, |∆3|} −max{|∆−1|, |∆2|},
max{|∆1|, |∆4|} −max{|∆0|, |∆3|},
|∆q| − |∆q+1| − |∆q−1|+ |∆q−2|

for −2 ≤ q ≤ 1,
|∆1| − |∆0| − |∆2|+ |∆3|

21 neurons

−γm,n(xkm),
γm,n(xk+1

2i−1),

−γm,n(xk+1
2i−1),

γm,n(xkn−1),
|am − an|,
λm,n

for (m,n) ∈ Λi

18 neurons

min{|∆q| − |∆q+1|, |∆q−1| − |∆q−2|},
for −2 ≤ q ≤ 2,

|∆s| −Ms for −3 ≤ s ≤ 2
11 neurons

(−γm,n(xkm))+,(γm,n(xk+1
2i−1))+,

(−γm,n(xk+1
2i−1))+, (γm,n(xkn−1))+,
|am − an|,(λm,n)+

for (m,n) ∈ Λi

18 neurons

X3
ni,l

for 1 ≤ l ≤ 13
13 neurons

Yi
1 neuron

A B

C

E

G

I

D

F

H

I

J

Figure 5.1: Flowchart of a ReLU ANN to calculate the output of the ENO-SR-2 procedure Yi from fk.

44

5.2. Adapted second-order ENO-SR interpolation

to the arrows in the flowchart. We will refer to the input layer as the zeroth layer, and so
on. A.B. It is easy to see that all quantities of the first layer are linear combinations
of the input neurons. C. Straightforward application of (5.8b) on ±(bm − bn) and
±(am−an) and some linear combinations. D. Straightforward application of (5.8b) on
±∆q, followed by taking linear combinations. E. Note that the ReLU activation does
not affect the first four quantities of the third layer in the left subnetwork as they are
positive. From the definitions of γm,n and λm,n in equations (5.3) and (5.4), respectively,
it is clear that this is again nothing more than the straightforward calculation of linear
combinations and the application of (5.8d). F. The first ten quantities were forwarded
from the previous layer. The next six are applications of (5.8c), where the order of the
arguments of the maximums are carefully chosen. The last five are linear combinations
of the quantities of the third layer. G. Forwarding values. H. For the calculation of
the minimum, (5.8d) can be used. Note that for q = 2 it was used that min{a, b} =
b− (b− a)+. For the calculation of Ms, recall equations (5.1) and (5.8e). I. The result
follows from combining definitions (5.2), (5.5), (5.6) and (5.8c). J. As can be seen in
definition (5.7), Yi is obtained by applying the output activation function min argmin
on the output layer.

5.2 Adapted second-order ENO-SR interpolation

Based on the second-order ENO-SR procedure, as proposed by [Aràndiga et al., 2005]
and described in Section 5.1.1, we propose an adapted ENO-SR procedure that can
be more easily recast as a ReLU neural network, without losing second-order accuracy.
In the following, we describe this adapted procedure and prove that it indeed is still
second-order accurate. Next, we present a new version of Theorem 5.5, in which the
number of classes is reduced from thirteen to four. Similarly to Section 4.4, we approach
the ENO-SR procedure again as a regression problem instead of classification problem.

5.2.1 Algorithm

The first step of the adapted procedure is again to label intervals that might contain
the singular point z as B (bad), other intervals get the label G (good). We use again
second-order differences

∆2
hf(x) := f(x− h)− 2f(x) + f(x+ h) (5.9)

as smoothness indicators. The rules of the adapted ENO-SR detection mechanism are
the following:

1. The intervals Iki−1 and Iki are labelled B if

|∆2
hk
f(xki−1)| > max

n=1,2,3
|∆2

hk
f(xki−1±n)|.

2. Interval Iki is labelled B if

|∆2
hk
f(xki)| > max

n=1,2
|∆2

hk
f(xki+n)| and |∆2

hk
f(xki−1)| > max

n=1,2
|∆2

hk
f(xki−1−n)|.

3. All other intervals are labelled G.

45

5. Second-order ENO-SR interpolation with ReLU neural networks

Note that neither detection rule implies the other and that an interval can be labelled
B by both rules at the same time. In the following, we denote by pki : [c, d]→ R : x 7→
aix+bi the linear interpolation of the endpoints of Iki , where we write ai and bi instead
of aki and bki to simplify notation. The interpolation procedure is as follows:

1. If Iki was labelled as G, then we take the linear interpolation on this interval as
approximation for f ,

Ihki f(x) = pki (x).

2. If Iki was labelled as B, we use pki−2 and pki+2 to predict the location of the
singularity. If both lines intersect at a single point y , then we define

Ihki f(x) =

{
pki−2(x) x 6 y,

pki+2(x) x > y,

Otherwise we treat Iki as a good interval and let Ihki f(x) = pki (x).

We then define the final interpolant by requiring that the restriction of Ihkf to the
interval Iki is equal to Ihki f .

5.2.2 Properties

We present some properties of our adaptation of the ENO-SR algorithm. To prove the
second-order accuracy, we state some results due to [Aràndiga et al., 2005] in a slightly
adapted form.

Lemma 5.6 The groups of adjacent B intervals are at most of size 2. They are sepa-
rated by groups of adjacent G intervals that are at least of size 2.

Proof Note that our detection algorithm is the same as the one in [Aràndiga et al., 2005]
for m = 3. The result then follows from their Lemma 1. �

Lemma 5.7 Let f be a globally continuous function with a bounded second derivative
on R\{z} and a discontinuity in the first derivative at a point z. Define the critical
scale

hc :=
|[f ′]|

4 supx∈R\{z}|f ′′(x)| , (5.10)

where [f ′] is the jump of the first derivative f ′ at the point z. Then for h < hc, the
interval that contains z is labelled B.

Proof See Lemma 2 in [Aràndiga et al., 2005]. �

Lemma 5.8 There exist constants C > 0 and 0 < K < 1 such that for all continuous
f with uniformly bounded second derivative on R\{z} and for h < Khc with hc defined
by (5.10), the following holds:

1. The singularity z is contained in an isolated B interval Iki or in a B-pair (Iki , I
k
i+1).

2. The two polynomials pki−2 and pki+2 (or pki−1 and pki+3) have only one intersection
point y inside Iki or Iki ∪ Iki+1, respectively.

46

5.2. Adapted second-order ENO-SR interpolation

3. The distance between z and y is bounded by

|z − y| 6
C supx∈R\{z}|f ′′(x)|h2

|[f ′]| . (5.11)

Proof This is a light adaptation of Lemma 3 in [Aràndiga et al., 2005]. The proof
remains the same, after one minor change. We take I = [b, c] to be equal to I−1∪I0∪I1,
which does not affect equation (38) in the proof. In fact, all other steps of their proof
remain valid. It only must be noted that the constant C in equation (5.11) of this
thesis and equation (37) in [Aràndiga et al., 2005] do not necessarily agree. �

The theorem below states that our adaptation of ENO-SR is indeed second-order accu-
rate and can also be found in [De Ryck et al., 2020].

Theorem 5.9 Let f be a globally continuous function with a bounded second derivative
on R\{z} and a discontinuity in the first derivative at a point z. The adapted ENO-SR
interpolant Ihf satisfies

‖f − Ihf‖∞ 6 Ch2 sup
R\{z}

|f ′′|

for all h > 0, with C > 0 independent of f .

Proof This theorem and its proof are based on Theorem 1 in [Aràndiga et al., 2005].
Let hc be as in Lemma 5.7 and let K be as in Lemma 5.8. Note that we can write

f = f−1(−∞,z] + f+1(z,+∞)

where f−, f+ are C2 on R such that

sup
R\{z}

|f ′′±| 6 sup
R\{z}

|f ′′|.

Let us consider some interval I0 = [b, c] = [b, b+h]. First consider the case 0 < h < Khc.
Suppose it was labelled as good. Lemma 5.7 then guarantees that I0 does not contain
z. It then follows directly from the theory of Lagrange interpolation that

|f(x)− Ihf(x)| 6 Ch2 sup
R\{z}

|f ′′| (5.12)

for all x ∈ I0. Now suppose that I0 was labelled bad. As a consequence of Lemma
5.6, I−2 and I2 are good intervals and therefore do not contain the discontinuity. If in
addition z 6∈ I−1 ∪ I0 ∪ I1, then (5.12) holds again for all x ∈ I0 since Ihf(x) is either
equal to p−2(x), p0(x) or p2(x). On the other hand, if z ∈ I−1 ∪ I0 ∪ I1 then Lemma
5.8 guarantees the existence of a single intersection point y ∈ I−1 ∪ I0 ∪ I1 of p−2 and
p2. Assume now without loss of generality that z 6 y. In this case, equation (5.12)
holds for all x ∈ [b, z] ∪ [y, c]. It thus remains to treat the case z < x < y. For such x,
we have

|f(x)− Ihf(x)| = |f+(x)− p−2(x)| 6 |f+(x)− f−(x)|+ |f−(x)− p−2(x)|

where the second term is again bounded by Ch2 supR\{z}|f ′′|. We can use a second-order
Taylor expansion for the first term to derive

|f+(x)− f−(x)| 6 (y − z)([f ′] + 2h sup
R\{z}

|f ′′|) 6 3

2
|[f ′]|(y − z)

47

5. Second-order ENO-SR interpolation with ReLU neural networks

where in the last inequality we used that h < hc. By invoking the third part of Lemma
5.8, we find indeed that (5.12) holds again. This concludes the proof for the case
h < Khc.

Now suppose that h > Khc. First define

f2(x) = f(x)− [f ′](x− z)+

for x ∈ R. Furthermore, by the definition of hc in Lemma 5.7, we find that for h > Khc,

[f ′] = 4hc sup
R\{z}

|f ′′| 6 C0h sup
R\{z}

|f ′′|, (5.13)

where C0 > 0 does not depend on f . We distinguish two cases.

Case 1: Ih(x) = p0(x) for all x ∈ I0. If z 6∈ I0, second-order accuracy as in (5.12) is
immediate. If not, more work is needed. Define

g1(x) =
[f ′](x0 − z)+

h
(x− x−1)

and note that p0−g1 is the linear interpolation between (x−1, f2(x−1)) and (x0, f2(x0)).
Since f2 is C2 we know that p0 − g1 is a second-order accurate approximation of f2 on
I0, such that (5.12) holds. We then calculate for x ∈ I0,

|f(x)− p0(x)| 6 |f2(x)− (p0(x)− g1(x))|+ |[f ′](x− z)+ − g1(x)|

6 C1h
2 sup
R\{z}

|f ′′|+ [f ′]

(
|(x− z)+|+

(x0 − z)+

h
|x− x−1|

)

6 C1h
2 sup
R\{z}

|f ′′|+ C0h sup
R\{z}

|f ′′|(h+ h)

= Ch2 sup
R\{z}

|f ′′|,

where we used (5.13).

Case 2: Ih(x) = p−2(x)1(−∞,y](x) + p2(x)1(y,+∞)(x) for x ∈ I0, where y is the
intersection point of p−2 and p2. If z 6∈ ∪2

q=−2Iq, then (5.12) follows immediately for

x ∈ I0. Consider now the case that z ∈ ∪2
q=−2Iq and assume without loss of generality

z 6 y. Let x ∈ I0 be arbitrary. It follows that (5.12) also holds immediately for this x
if y 6 x or x 6 z. It suffices to find a bound for when x−3 6 z 6 x 6 y. Define

g2(x) =
[f ′](x−2 − z)+

h
(x− x−3).

Note that p−2 − g2 is an affine function through (x−3, f2(x−3)) and (x−2, f2(x−2)). It
follows that

|f(x)− p−2(x)| 6 |f2(x)− (p−2 − g2(x))|+ |[f ′](x− z)+ − g2(x)|

6 C1h
2 sup
R\{z}

|f ′′|+ [f ′]

(
|(x− z)+|+

(x−2 − z)+

h
|x− x−3|

)

6 C1h
2 sup
R\{z}

|f ′′|+ C0h sup
R\{z}

|f ′′|(3h+ 3h)

= Ch2 sup
R\{z}

|f ′′|,

where we used again (5.13) and the bounds |x−x−3| 6 3h and x−3 6 z. This concludes
the proof of Theorem 5.9. �

48

5.2. Adapted second-order ENO-SR interpolation

5.2.3 Adapted ENO-SR-2 stencil selection with ReLU neural networks

Assume the setting of Section 4.1. We will now prove that the second-order accurate
prediction of fk+1 from the previous subsection can be obtained given fk using a ReLU
DNN. The proof we present can be directly generalized to interpolation at points other
than the midpoints of the cells, e.g. retrieving cell boundary values for reconstruction
purposes. Equation (4.13) shows that we only need to calculate Ihki f(xk+1

2i−1) for every
1 6 i 6 Nk. From the ENO-SR interpolation procedure it is clear that for every i
there exists rki ∈ {−2, 0, 2} such that Ihki f(xk+1

2i−1) = pk
i+rki

(xk+1
2i−1). It is thus straight-

forward to calculate Ihki f(xk+1
2i−1) from rki . The following result can also be found in

[De Ryck et al., 2020].

Theorem 5.10 There exists a ReLU neural network with a discontinuous output func-
tion, input fk and output (rk1 , . . . , r

k
Nk

) as defined above.

Proof Instead of explicitly constructing a ReLU neural network, we will prove that
we can write the output vector as a composition of functions that can be written as
pure ReLU neural networks with linear output functions. Such functions include the
rectifier function, absolute value, maximum and the identity function (cfr. Section 2.2).
The network architecture of a possible realisation of the network of this proof can be
found after the proof. Furthermore we will assume that the discontinuity is not located
in the first four or last four intervals. This can be achieved by taking k large enough,
or by introducing suitably prescribed ghost values. We also assume without loss of
generality that xki = i for 0 6 i 6 Nk.

The input of the neural network will be the vector X0 ∈ RNk+1 with X0
i+1 = f(xki) for

all 0 6 i 6 Nk. Using a simple affine transformation, we can obtain X1 ∈ RNk−1 such
that X1

i = ∆2
hk
f(xki) for all 1 6 i 6 Nk − 1. We now define the following quantities,

Mi = max
n=1,2,3

|∆2
hk
f(xki±n)| = max

n=1,2,3
|X1

i±n|,

N±i = max
n=1,2

|∆2
hk
f(xki±n)| = max

n=1,2
|X1

i±n|,
(5.14)

where 4 6 i 6 Nk − 4. Next, we construct a vector X2 ∈ RNk such that every entry
corresponds to an interval. For 1 6 i 6 Nk, we want X2

i > 0 if and only if the interval
Iki is labelled as B by the adapted ENO-SR detection mechanism. We can achieve this
by defining

X2
i = (min{|X1

i | −N+
i , |X1

i−1| −N−i−1})+ + (|X1
i | −Mi)+ + (|X1

i−1| −Mi−1)+ (5.15)

for 5 6 i 6 Nk − 4. Furthermore we set X2
1 = X2

2 = X2
3 = X2

4 = X2
Nk−3 = X2

Nk−2 =

X2
Nk−1 = X2

Nk
= 0. Note that the first term of the sum will be strictly positive if Iki is

labelled bad by the second rule of the detection mechanism and one of the other terms
will be strictly positive if Iki is labelled bad by the first rule. Good intervals Iki have
X2
i = 0.

Now define ni,l = l + 4(i − 1) for 1 6 i 6 Nk and 1 6 l 6 4. Using this notation, i
refers to the interval Iki . Define X3 ∈ R4Nk in the following manner:

X3
ni,1 = X2

i , X3
ni,3 =

(
|bi−2 − bi+2| − xk+1

2i−1|ai−2 − ai+2|
)

+
,

X3
ni,2 = |ai−2 − ai+2|, X3

ni,4 =
(
−|bi−2 − bi+2|+ xk+1

2i−1|ai−2 − ai+2|
)

+
,

(5.16)

49

5. Second-order ENO-SR interpolation with ReLU neural networks

for 5 6 i 6 Nk − 4. We set X3
ni,l

= 0 for 1 6 l 6 4 and 1 6 i 6 4 or Nk − 3 6 i 6 Nk.

We can now define the output Ŷ ∈ RNk of the ReLU neural network by

Ŷi = min argmin16l64X
3
ni,l
. (5.17)

It remains to prove that rki can be obtained from Ŷi. Note that Ŷi = 1 if and only if Iki
was labelled G. Therefore Ŷi = 1 corresponds to rki = 0. If Ŷi = 2, then Iki was labelled
B and the interpolants pki−2 and pki+2 do not intersect, leading to rki = 0 according

to the interpolation procedure. Next, Ŷi = 3, 4 corresponds to the case where Iki was
labelled B and the interpolants pki−2 and pki+2 do intersect. This intersection point is
seen to be

y =
bi+2 − bi−2

ai−2 − ai+2
.

If Ŷi = 3, then xk+1
2i−1 is right of y and therefore rki = 2. Analogously, Ŷi = 4 corresponds

to rki = −2, which concludes the proof. �

Now that we have established that the adapted second-order ENO-SR algorithm can
also be written as a ReLU ANN with a discontinuous output activation function, we
present a possible architecture of an ANN that calculates Yi from fk. The network we
present has five hidden layers, of which the width varies from 6 to 20, and an output
layer of 4 neurons. It is visualized as a flowchart in Figure 5.2. Note that is is a
considerably smaller network than the one presented in Figure 5.1.

We now give some more explanation about how all the layers can be calculated from the
previous layer in Figure 5.2, where we use the same notation as in the previous section.
A.B. It is easy to see that all quantities of the first layer are linear combinations of
the input neurons. C. Straightforward application of (5.8b) and Definition (5.3) on
±(bi−2 − bi+2) and ±(ai−2 − ai+2). D. Straightforward application of (5.8b) on ±∆q,
followed by taking linear combinations. E.G.I. Passing by values. F. The first six
quantities were passed by from the previous layer. The other ones are applications
of (5.8c), where the order of the arguments of the maximums is carefully chosen. H.
For the calculation of the minimum, (5.8d) can be used. Furthermore (5.8e) was used.
J. Application of (5.14). K. The result follows from combining definitions (5.15) and
(5.16). L. As can be seen in definition (5.17), Yi is obtained by applying the output
activation function min argmin on the output layer.

5.2.4 Adapted ENO-SR-2 interpolation with ReLU neural networks

In this subsection, we investigate whether it is possible to extend the previously ob-
tained stencil selection network to a ReLU neural network that maps fk to (Ihkf)k+1.
Recall that Corollary 5.4 proved that there is no such network for the ENO-SR-2 inter-
polation procedure. The counterexample given in the proof still holds for the adapted
ENO-SR-2 procedure, which proves that there is no pure ReLU network with input fk

and output (Ihkf)k+1. In what follows, we design an approximate ENO-SR method,
based on the adapted ENO-SR-2 method of the previous section, and investigate its
accuracy.

50

5.2. Adapted second-order ENO-SR interpolation

f(xki+q) for −5 ≤ q ≤ 4
10 neurons

±∆q for −4 ≤ q ≤ 3,
16 neurons

|∆−2|, |∆−1|, |∆1|, |∆0|,
|∆−3| − |∆−2|,|∆3| − |∆−1|,
|∆2| − |∆1|,|∆−4| − |∆0|

8 neurons

|∆−1|, |∆0|, |∆1|,
(|∆−4| − |∆0|)+,(|∆3| − |∆−1|)+,(|∆2| − |∆1|)+,

max{|∆−2|, |∆−3|} −max{|∆1|, |∆2|},
max{|∆−2|, |∆−3|} −max{|∆−1|, |∆3|},

|∆0| −max{|∆1|, |∆2|} − |∆−1|+ max{|∆−2|, |∆−3|}
9 neurons

(±γi−2,i+2(xk+1
2i−1))+,

|ai−2 − ai+2|
3 neurons

±γi−2,i+2(xk+1
2i−1),

|ai−2 − ai+2|
3 neurons

±(bi−2 − bi+2) and ±(ai−2 − ai+2)
4 neurons

max{|∆1|, |∆2|, |∆−2|, |∆−3|} −max{|∆0|, |∆−4|},
max{|∆−1|, |∆3|, |∆−2|, |∆−3|} −max{|∆−1|, |∆3|},

min{|∆0| −N+
0 , |∆−1| −N+

−1},
(|∆3| − |∆−1|)+,(|∆−4| − |∆0|)+, |∆0|, |∆1|

7 neurons

(±γi−2,i+2(xk+1
2i−1))+,

|ai−2 − ai+2|
3 neurons

|∆−1| −M−1, |∆0| −M0,
min{|∆0| −N+

0 , |∆−1| −N−
−1}

3 neurons

(±γi−2,i+2(xk+1
2i−1))+,

|ai−2 − ai+2|
3 neurons

X3
ni,l

for 1 ≤ l ≤ 4
4 neurons

Yi
1 neuron

A B

C

E

G

I

K

D

F

H

J

K

L

Figure 5.2: Flowchart of a ReLU ANN to calculate the output Yi of the adapted ENO-SR-2 procedure from
fk.

51

5. Second-order ENO-SR interpolation with ReLU neural networks

We recall the function Hε : R→ R, where ε > 0, defined by

Hε(x) =

0 x 6 0

x/ε 0 < x 6 ε

1 x < ε.

(5.18)

Using this function and the notation of the proof of Theorem 5.10, we can write down
a single formula for Ihki f(xk+1

2i−1),

Ihki f(xk+1
2i−1) = (1− α)pki (x

k+1
2i−1) + α

(
(1− β)pki+2(xk+1

2i−1) + βpki−2(xk+1
2i−1)

)
,

where α = H0(min{X3
ni,1 , X

3
ni,2}), β = H0(X3

ni,3),
(5.19)

for 1 6 i 6 Nk. This formula cannot be calculated using a pure ReLU DNN. Never-
theless, we will base ourselves on this formula to introduce an approximate ENO-SR
algorithm that can be exactly written as a ReLU DNN.

Similar to what we did in Section 4.4, the first step is to replace H0 by Hε with ε > 0,
since

Hε(x) =
1

ε
(x)+ −

1

ε
(x− ε)+, (5.20)

Next we replace the multiplication · by the operation ? as defined in Definition 4.6. For
the moment, we assume that there exists λ > 0 such that all quantities that we will
need to multiply, lie in the interval [−λ, λ]. In view of the third property in Lemma 4.7,
directly replacing all multiplications in (5.19) by the operation ? will lead to a quantity
that is no longer a convex combination of pki−2(xk+1

2i−1), pki (x
k+1
2i−1) and pki+2(xk+1

2i−1). We

therefore introduce the approximate ENO-SR prediction f̂k+1
i,ε of f(xk+1

i) by setting

f̂k+1
2i,ε = fk+1

2i for 0 6 i 6 Nk and

f̂k+1
2i−1,ε = pki (x

k+1
2i−1)+α ?

(
pki+2(xk+1

2i−1)− pki (xk+1
2i−1) + β ?

(
pki−2(xk+1

2i−1)− pki+2(xk+1
2i−1)

))
,

where α = Hε(min{X3
ni,1 , X

3
ni,2}), β = Hε(X

3
ni,3),

(5.21)

for 1 6 i 6 Nk. The fourth property of Lemma 4.7 ensures that the two convex
combinations in (5.19) are replaced by convex combinations (with possibly different
weights). The theorem below quantifies the accuracy of the approximate ENO-SR
predictions for ε > 0.

Theorem 5.11 Let f : [c, d]→ [−1, 1] be a globally continuous function with a bounded
second derivative on R\{z} and a discontinuity in the first derivative at a point z. For
every k, the approximate ENO-SR predictions f̂k+1

i,ε satisfy for every 0 6 i 6 Nk+1 and
ε > 0 that

|Ihki f(xk+1
2i−1)− f̂k+1

i,ε | 6 Ch2
k sup

[c,d]\{z}
|f ′′|+ 3

2
ε,

where Ihki f(xk+1
2i−1) is the ENO-SR-2 prediction.

Proof In what follows, we let x∗ = xk+1
2i−1, f∗ = Ihki f(xk+1

2i−1), f̂ε = f̂k+1
2i−1,ε and X3

l =

X3
ni,l

for 1 6 l 6 4 (where X3
ni,l

is as in the proof of Theorem 5.10). We assume

52

5.2. Adapted second-order ENO-SR interpolation

without loss of generality that [c, d] ⊂ [0,∞). Furthermore we simplify the notation by
dropping the index k and setting i = 0. It follows from the proof of Theorem 5.9 that
the results holds for h > Khc, since f̂ε is a convex combination of p−2(x∗), p0(x∗) and
p2(x∗) for any value of X3. We therefore assume in the following that h < Khc. The
proof consists of an extensive case study, visualized in Figure 5.3.

X3
1 = 0

Case 7

0 < X3
1 < ε

Case 6

X3
1 = 0

Case 5

0 < X3
2 < ε

Case 4

X3
3 = 0

Case 3

0 < X3
3 < ε

Case 2

Case 1
no no no no no

yes yes yes yes yes yes

no

Figure 5.3: Overview of the case study done in the proof of Theorem 5.11.

Case 1: In this case α = 1 and β = 1, therefore f̂ε = p−2(x∗) = f∗.

Case 2: We have that α = 1 and 0 < X3
3 < ε, therefore f̂ε = (1−β)p2(x∗)+βp−2(x∗)

where β can take any value in (0, 1). From (5.16), it follows that the condition 0 <
X3

3 < ε corresponds to

0 < |b−2 − b2| − x∗|a−2 − a2| < ε, (5.22)

where a−2 and a2 are the slopes of p−2 and p2, respectively. Recall that in (5.16) the
assumption that xki = i was made. It can however be seen that X3

3 is invariant to grid
translations and scaling. Indeed, when the grid size is scaled by h one needs to replace
x∗ by hx∗ and a±2 by a±2/h; this leaves X3

3 unchanged. If we now observe that from
α = 1 follows that |a−2−a2| 6= 0, then we can define y as the unique intersection point
of p−2 and p2, and obtain

0 < y − x∗ < ε

|a−2 − a2|
. (5.23)

Furthermore note that we can write p±2(x) = a±2(x− y) + p±2(y) where by definition
p−2(y) = p2(y). This leads to the estimate

|p−2(x∗)− p2(x∗)| = |a−2 − a2|(y − x∗) < ε. (5.24)

Case 3: In this case α = 1 and β = 0, therefore f̂ε = p2(x∗) = f∗.

Case 4: By looking at the definition of X3
2 in (5.16), we see that 0 < h|(a−2−a2)| < ε

(where the factor h was added to remove the assumption that xki = i). Furthermore we
have that X3

1 > 0. If z 6∈ I−1 ∪ I0 ∪ I1 then Lemma 5.6 and Lemma 5.8 guarantee that
f̂ε is a second-order accurate approximation of f∗. If z ∈ I±1, then p0 is a second-order
accurate approximation of p∓2 on I0. In addition, this leads to the bound

|p±2(x∗)− p0(x∗)| 6 |p±2(x∗)− p∓2(x∗)|+ |p∓2(x∗)− p0(x∗)|
= |(a2 − a−2)(x∗ − y)|+ |p∓2(x∗)− p0(x∗)|

6
3

2
ε+ Ch2 sup|f ′′|.

(5.25)

53

5. Second-order ENO-SR interpolation with ReLU neural networks

Finally we treat the case where z ∈ I0. Define p∗0 as the affine function through
(x−1, p−2(x−1)) and (x0, p2(x0)). It then follows from h|(a−2 − a2)| < ε that h|(a±2 −
a∗0)| < ε where a∗0 is the slope of p∗0. We also have that p∗0 is a second-order accurate
approximation of p0 on the interval I0. This then leads to

|p±2(x∗)− p0(x∗)| 6 |p±2(x∗)− p∗0(x∗)|+ |p∗0(x∗)− p0(x∗)|

6 |(a±2 − a∗0)
h

2
|+ |p∗0(x∗)− p0(x∗)|

6
ε

2
+ Ch2 sup|f ′′|.

(5.26)

Case 5: In this case α = 0 and therefore f̂ε = p0(x∗) = f∗.

Case 6: In this case we only know that I0 is a bad interval, since X3
1 > 0. It may or

may not contain the discontinuity. If z 6∈ I−1 ∪ I0 ∪ I1 then Lemma 5.6 and Lemma 5.8
guarantee that f̂ε is a second-order accurate approximation of f∗. We therefore assume
in the following that z ∈ I−1 ∪ I0 ∪ I1.

In the proof of Theorem 5.10, we introduced the quantity X2
q as a smoothness in-

dicator for the interval Iq. We first investigate how the quantities X2
q for f are

related to the same quantities for the piecewise linear function defined by g(x) =
f(z) + f ′(z−)(x− z) + [f ′](x − z)+, which we will denote by X̂2

q . Let ∆q = ∆2
hf(xq)

and ∆̂q = ∆2
hg(xq), as defined in (5.9), and define Φq = ∆q − ∆̂q. Since g is a second-

order accurate approximation of f , we obtain that

|Φq| 6 Cqh2 sup|f ′′|, (5.27)

where the constant Cq is independent of f and h. Using the triangle inequality and its
reverse, we find that for m,n ∈ N0,

|∆̂m| − |∆̂n| 6 |∆̂m + Φm| − |∆̂n + Φn|+ |Φm|+ |Φn|
6 |∆m| − |∆n|+ (Cm + Cn)h2 sup|f ′′|.

(5.28)

Now assume that 0 < X2
q < ε for some index q. We can then conclude that

0 6 X̂2
q 6 X

2
q + Ch2 sup|f ′′| < ε+ Ch2 sup|f ′′|. (5.29)

This allows us to restrict our further calculations to the piecewise linear function g.
We assume that z ∈ Is for some index s, and that [f ′] > 0. Furthermore we denote
by x the midpoint of Is. In Table 5.2 we calculate X̂2

s−1, X̂
2
s and X̂2

s+1. Note that for
s 6∈ {−1, 0, 1}, second-order accuracy is immediate.

First assume that s = 0, in this case x∗ = x. From the table, it follows that X̂2
0 >

[f ′]h/2. Combining this with (5.29) leads to the bound [f ′]h/2 < ε+ Ch2 sup|f ′′|. We
define again p∗0 as the affine function through (x−1, p−2(x−1)) and (x0, p2(x0)), which is
a second-order accurate approximation of p0. We also introduce two new second-order
accurate approximations of p0 on I0,

p−0 (x) = p−2(x) + [f ′]
(x0 − z)+

h
(x− x−1),

p+
0 (x) = p2(x) + [f ′]

(z − x−1)+

h
(x− x0).

(5.30)

54

5.2. Adapted second-order ENO-SR interpolation

xq xs−2 xs−1 xs xs+1

|∆̂q| 0 [f ′](xs − z) [f ′](z − xs−1) 0

(|∆̂q| −Mq)+ 0 2[f ′](x− z)+ 2[f ′](z − x)+ 0

(|∆̂q| −N+
q)+ 0 2[f ′](x− z)+ [f ′](z − xs−1) 0

(|∆̂q| −N−q)+ 0 [f ′](xs − z) 2[f ′](z − x)+ 0

X̂2
s−1, X̂

2
s , X̂

2
s+1 2[f ′](x− z)+ [f ′](2|x− z|+ min{xs − z, z − xs−1}) 2[f ′](z − x)+

Table 5.2: Calculation of X̂2
s−1, X̂

2
s , and X̂2

s+1.

Indeed, p−0 (x−1) = p∗0(x−1) = p−2(x−1) and p−0 (x0) = p−2(x0) + [f ′](x0 − z)+ are both
second-order accurate on I0, therefore p−0 is a second-order accurate approximation on
I0 of p∗0 and hence of p0. A similar reasoning holds for p+

0 . This then leads to

|p±2(x∗)− p0(x∗)| 6 |p±2(x∗)− p±0 (x∗)|+ |p±0 (x∗)− p0(x∗)|
6 [f ′]h/2 + |p±0 (x∗)− p0(x∗)|
6 ε+ Ch2 sup|f ′′|.

(5.31)

Next we assume that s = 1. Since X3
1 > 0, we have that x0 6 z < x. We distinguish

two subcases. First, if x0 6 z 6 x/2 then X3
1 = 2[f ′](x − z)+ > [f ′]h/2. Equation

(5.29) is still valid and a calculation as in (5.31) leads to the bound

|p±2(x∗)− p0(x∗)| 6 5

4
ε+ Ch2 sup|f ′′| (5.32)

where we used that (z − x−1)+ 6 5h/4. Second, if x/2 < z < x then the intersection
point y of p−2 and p2 will be located in I1. This result can be deduced from the proof
of Lemma 3 in [Aràndiga et al., 2005], by taking I = Is in the beginning of the proof.
The second-order accuracy then follows from Case 1 or Case 2, depending on the value
of X3

3 . The case s = −1 is completely analogous.

Case 7: In this case α = 0 and therefore f̂ε = p0(x∗) = f∗.

We can now summarize all seven cases by the error bound

|f̂ε − f∗| 6 Ch2 sup|f ′′|+ 3

2
ε, (5.33)

which concludes the proof. �

Theorem 5.12 Let f : [c, d]→ [−1, 1] be a globally continuous function with a bounded
second derivative on R\{z} and a discontinuity in the first derivative at a point z. For
every ε > 0, there exists a pure ReLU neural network with input fk ∈ [−1, 1]Nk+1 and
output f̂k+1

2i−1,ε for every 1 6 i 6 Nk, 0 6 k 6 K.

Proof Most of the work was already done in Theorem 5.5 and the discussion pre-
ceding Theorem 5.11. Indeed, we have already established that pki−2(xk+1

2i−1), pki (x
k+1
2i−1),

pki+2(xk+1
2i−1), X3

1 , X
3
2 and X3

3 , as well as the operation ? can be represented using pure
ReLU networks. It only remains to find a bound for all second arguments of the
operation ? in (5.21). Since the codomain of f is [−1, 1], one can calculate that

55

5. Second-order ENO-SR interpolation with ReLU neural networks

f(xki+q) for −5 ≤ q ≤ 4
10 neurons

Stencil selection DNN,
calculation of X3

ni,4 removed
5 hidden layers

20,10,11,9,5 neurons

P k
i−2,i+2 + λ, P k

i+2,i + λ,

pki (x
k+1
2i−1) + λ

5 identical hidden layers
with each 3 neurons

X3
ni,1,X

3
ni,1 −X3

ni,2,X
3
ni,3,X

3
ni,3 − ε,

P k
i−2,i+2 + λ, P k

i+2,i + λ, pki (x
k+1
2i−1) + λ

7 neurons

mi,mi − ε,P k
i−2,i+2 + λβ − λ,

−P k
i−2,i+2 + λβ − λ, P k

i+2,i + λ, pki (x
k+1
2i−1) + λ

6 neurons

P k
i+2,i + β ? P k

i−2,i+2 + λα− λ,

−P k
i+2,i − β ? P k

i−2,i+2 + λα− λ,

pki (x
k+1
2i−1) + λ

3 neurons

pki (x
k+1
2i−1) + α ? (P k

i+2,i + β ? P k
i−2,i+2)

1 neuron

A B

C D

E

F

G

Figure 5.4: Flowchart of a ReLU DNN to calculate f̂k+1
2i−1,ε from fk.

pki−2(xk+1
2i−1), pki (x

k+1
2i−1) and pki+2(xk+1

2i−1) lie in [−4, 4]. Using Lemma 4.7, we then find
that

pki+2(xk+1
2i−1)− pki (xk+1

2i−1) + β ?
(
pki−2(xk+1

2i−1)− pki+2(xk+1
2i−1)

)
∈ [−16, 16]

for all β ∈ [0, 1]. We can thus use the operation ? with λ = 16 in Definition 4.6. �

We now present the network architecture of a ReLU neural network that computes
the approximate ENO-SR prediction (5.21). The network we propose is visualized in
Figure 5.4 and consists of eight hidden layers with widths 23, 13, 14, 12, 8, 7, 6 and 3.
In the figure, the following notation was used,

mi = min{X3
ni,1, X

3
ni,2},

P km,n = pkm(xk+1
2i−1)− pkn(xk+1

2i−1),
(5.34)

for 1 6 i,m, n 6 Nk. We now give some more explanation about how all the layers
can be calculated from the previous layer in Figure 5.4. A.B. All quantities of the

56

5.2. Adapted second-order ENO-SR interpolation

first layer are linear combinations of the input neurons, where we also refer to Figure
5.2. From the proof of Theorem 5.12, it follows that we can take λ = 16. C.D.
Linear combinations. E. We refer to (5.21) and (5.34) for the definitions of β and mi,
respectively. F. We refer to Definition 4.6 and (5.21) for the definitions of ? and α,
respectively. G. From (5.21) it follows that the value of the output layer is indeed
equal to the approximate second-order ENO-SR prediction f̂k+1

2i−1,ε.

Theorem 5.12 can be used in two different ways. First, it justifies to train a network
with the architecture as in Figure 5.4, with data provided by the approximate second-
order ENO-SR algorithm. In practice, we can just use the exact adapted ENO-SR
algorithm, since we can take ε > 0 arbitrarily small. Second, this theorem proves that
there exists a pure ReLU network whose output satisfies the bound from Theorem 5.11.
Using that ENO-SR-2 is second-accurate itself, we can use any ‘approximately second-
order accurate algorithm’ to produce the training data, including the actual function
values on the finer grid. This approach will however not be pursued any further in this
thesis.

57

Chapter 6

Numerical results

From the two previous chapters, we know that there exist deep ReLU neural networks,
of a certain architecture that will mimic the ENO-p and the second-order ENO-SR
algorithms for interpolating rough functions. Next, we proceed to recreate or train
these networks based on a finite data set and investigate their performance. From now
on, we will refer to these networks as DeLENO (Deep Learning ENO) and DeLENO-
SR networks. More details on the training procedure can be found in Section 6.1, the
performance is discussed in Section 6.2 and illustrated by various applications at the
end of the chapter.

6.1 Training procedure

The training of these networks involves finding a parameter θ (the weights and biases
of the network) that approximately minimizes a certain loss function J that measures
the error in the network’s predictions. To achieve this, we have access to a finite data
set S = {(Xi, f(Xi))}i ⊂ D× f(D), where f : D ⊂ Rm → Rn is the unknown function
we try to approximate using a neural network fθ.

For classification problems, each Y i = f(Xi) is an n-tuple that indicates to which of the
n classes Xi belongs. The output of the network Ŷ i = fθ(Xi) is an approximation of
Y i in the sense that Ŷ i

j can be interpreted as the probability that Xi belongs to class j.
A suitable loss function in this setting is the cross-entropy function with regularization
term

J (θ;S, λ) = − 1

#S
∑

(Xi,Y i)∈S

n∑

j=1

Y i
j log(Ŷ i

j) + λR(θ). (6.1)

The cross-entropy term measures the discrepancy between the probability distributions
of the true outputs and the predictions. It is common to add a regularization term
λR(θ) to prevent overfitting of the data and thus improve the generalization capabilities
of the network [Goodfellow et al., 2016]. The network hyperparameter λ > 0 controls
the extent of regularization. Popular choices ofR(θ) include the sum of some norm of all
the weights of the network. It is advisable to not regularize the network biases as it can
lead to underfitting the data [Goodfellow et al., 2016]. To monitor the generalization
capability of the network, it is useful to split S into a training set T and a validation
set V and minimize J (θ;T, λ) instead of J (θ;S, λ). The validation set V is used to

59

6. Numerical results

evaluate the generalization error. The accuracy of network fθ on T is measured as

Tacc = #

{
(X,Y) ∈ T | Ŷ = fθ(X), arg max

16j6n
Ŷj = arg max

16j6n
Yj

}
/#T, (6.2)

with a similar expression for Vacc.

For regression problems, Ŷ i is a direct approximation of Y i, making the mean squared
error with regularization term

J (θ; S, λ) =
1

#S
∑

(Xi,Y i)∈S

‖Y i − Ŷ i‖2 + λR(θ), (6.3)

an appropriate loss function. Analogously to the classification setting, the data set S
can be split into a training set T and a validation set V, in order to minimize J (θ;T, λ)
and estimate the MSE of the trained network by J (θ;V, λ).

In the previous chapters, we have proven the existence of ReLU neural networks that
approximate ENO(-SR) well, or can even exactly reproduce its output. It remains
however a great challenge to reobtain these networks based on a finite training set.
In particular, the loss function J is usually highly non-convex, giving rise to a large
number of local minima. The minimization of J is therefore generally performed using
a stochastic iterative gradient algorithm. Such an algorithm splits the training data set
into a number of mini-batches, followed by taking an optimization step over every mini-
batch. A complete pass through the whole data set is called an epoch. After each epoch,
the data set is reshuffled and new mini-batches are created. It is this stochasticity that
assists the training algorithm to escape local minima. A single (generic) optimization
step is of the form

θt+1 = θt − ηt∇θJ (θt;Bk, λ), (6.4)

where ηt is the learning rate and Bk is a mini-batch of the data set. The learning rate is
an important hyperparameter that controls the step size while moving in the direction
of steepest descent. It is usually taken as a decreasing function of t. In this thesis we
used for instance

ηt = ηt−1
1

1 + βt
, η0 = 1.0 · 10−3, β = 1.0 · 10−5 (6.5)

and a mini-batch size of 1024. Several other, more advanced, stochastic optimiz-
ers have been developed, among which a popular algorithm is the ADAM optimizer
[Kingma and Ba, 2014]. When the simple optimization algorithm given by (6.4) and
(6.5) did not provide satisfying results, we used the ADAM optimizer, again with a
mini-batch size of 1024. More information on the training of the DeLENO(-SR) classi-
fication and regression networks can be found in the following subsections.

6.1.1 Training data sets

Apart from using a suitable optimization algorithm, the quality of the training data
set is of the utmost importance. In the previous chapters, we proved the existence of
networks that either exactly agree or approximate the ENO and ENO-SR interpolation
procedures. An unrepresentative training data set can cause the trained network to
significantly deviate from the interpolation procedure it is supposed to agree with. In
what follows, we list the different types of data we will use during the training. We
assume that the input of the network is m-dimensional.

60

6.1. Training procedure

• Random samples. We generate samples X ∈ Rm, with each component Xj ran-
domly drawn from the uniform distribution on the interval [−1, 1].

• Sinusoidal samples of the form

{(ul, ..., ul+m)>| 0 6 l 6 N −m, 0 6 q 6 39}

where ul is defined as

ul := sin

(
(q + 1)π

l

N

)
, 0 6 l 6 N, N ∈ N.

• Piecewise smooth samples. We use the piecewise version of n-term Taylor poly-
nomials pn defined by

pn(x) =
n∑

k=0

(ak(x− z)k− + bk(x− z)k+)/k!, (6.6)

for x ∈ R with parameters z, a1, . . . , an, b1, . . . , bn ∈ R and evaluate the function
on an m-dimensional stencil.

Furthermore, the input data needs to be appropriately scaled before being fed into
the network, to ensure faster convergence during training and to improve the networks
ability to generalize. The following two scaling functions can be used to scale the input
X,

Scale1(X) =

{
2X−(maxj Xj+minj Xj)

maxj Xj−minj Xj
if X 6= 0

(1, . . . , 1)> ∈ Rm otherwise
, (6.7a)

Scale2(X) =

{
2X−(maxj Xj+minj Xj)

maxj Xj−minj Xj
if maxj Xj −minj Xj > 2

X otherwise
, (6.7b)

which both scale the input to lie in the box [−1, 1]m.

Remark 6.1 When the input data is scaled using formula (6.7a), then Newton’s undi-
vided differences are scaled by a factor 2(b − a)−1 as well. Therefore scaling does not
alter the stencil shift obtained using Algorithm 1. The same holds for scaling using
formula (6.7b).

6.1.2 Training details

Next, we build a suitable training set for each network type, using the different sample
types from the previous subsection. In addition, we list other training details such as
the the value that was used for the regularization parameter.

DeLENO-p classification. We want to construct a suitable training data set S to
train a DeLENO-p classification network for interpolation purposes. The network will
take an input from Rm, with m = 2p− 2, and predict the stencil shift r. We generate
a data set S of size 460200-200m using Algorithm 1 with inputs given by:

• 400000 m-dimensional random samples.

61

6. Numerical results

• 60200-200m sinusoidal samples obtained by setting N = 100, 200, 300, 400, 500.

Thanks to the results of Section 4.3, we are guaranteed that for certain architectures it
is theoretically possible to achieve an accuracy of 100%. For any order, this architecture
is given by Theorem 4.2 and its proof. For small orders p = 3, 4 we take the alternative
network architectures described at the end of Section 4.3, as they are smaller. The
loss function J is chosen as (6.1), with an L2 penalization of the network weights and
λ = 7.8 · 10−6. The network is retrained using 5 times for 2000 epochs each, with the
weights and biases initialized using a random normal distribution. The last 20% of S
is set aside to be used as the validation set V. For each p, we denote by DeLENO-p
the network with the highest accuracy Vacc at the end of the training. The accuracies
achieved for DeLENO interpolation networks are given in Table 6.1. The training of
the DeLENO reconstruction networks was performed entirely analogously, with the
only difference that now m = 2p− 1.

DeLENO-p regression. In the case of DeLENO-p regression smooth sample func-
tions are required, therefore we take ak = bk for 1 6 k 6 n and we generate them from
the uniform distribution on [−1, 1]. Furthermore we set z = 0 and assume that the
x-values of the stencil are −1,−p−2

p . . . , 1. Since we will only train networks for p = 3, 4,
we take n = 4. Unless stated otherwise, we use a training data set of 500000 piecewise
smooth samples, which can optionally be extended by 50000 random samples. In this
way, the training set is hopefully sufficiently rich to achieve p-th-order accuracy using
the trained networks. Unless stated otherwise, the network architectures of the net-
works are those of Section 4.4. Other training details are the same as for the DeLENO
classification networks.

DeLENO-SR classification and regression. Recall that ENO-SR is designed to
interpolate continuous functions f that are two times differentiable, except at a single
point z ∈ R where the first derivative has a jump of size [f ′]. Locally, these functions
look like piecewise linear functions. Based on this observation, we create a data set
using n = 1. Higher values of n theoretically lead to a richer data set (i.e. one that
approximates the function class of interest better), but this was not reflected in the
training results. For notational simplicity we assume that the x-values of the stencil
that serves as input for the ENO-SR algorithm (Section 5.2) are 0, 1, . . . , 9. The interval
of interest is then [4, 5] and the goal of ENO-SR is to find an approximation of f at
x = 4.5. We generate 100000 samples, where we choose a1, b1, z in the following way:

• The parameters a1 and b1 are drawn from the uniform distribution on the interval
[−1, 1]. Note that any interval that is symmetric around 0 could have been used,
since the data will be scaled afterwards.

• For 25000 samples, z is drawn from the uniform distribution on the interval [4, 5].
This simulates the case where the discontinuity is inside the interval of interest.

• For 75000 samples, z is drawn from the uniform distribution on the interval [−9, 9],
which also includes the case in which f is smooth on the stencil.

The network architectures are described in Section 5.2. The networks will take an
input from R10 and either predict the stencil shift r or directly give an approximation
of the output of the ENO-SR algorithm. The training of DeLENO-SR was performed
in a very similar fashion to the training of DeLENO-p, only this time we retrained
the DeLENO-SR network 5 times for 5000 epochs each. Furthermore we used 8-fold

62

6.2. Performance of DeLENO(-SR) methods

cross-validation on a data set of 20000 samples to select the optimal regularization
parameter, resulting in the choice λ = 1 · 10−8.

Remark 6.2 Note that the detection mechanism of the ENO-SR interpolation method
(Section 5.2) labels an interval as bad when α−β > 0 for some numbers α, β ∈ R. This
approach causes poor approximations in practice due to numerical errors. When for
example α = β, rounding can have as a consequence that round(α− β) > 0, leading to
an incorrect label. This deteriorates the accuracy of the method and is very problematic
for the training. Therefore we used in our code the alternative detection criterion
α− β > ε, where for example ε = 10−10.

6.2 Performance of DeLENO(-SR) methods

We discuss the performance of the trained DeLENO(-SR) networks based on four test
functions q1, q2, q3, q4 : [0, 1]→ R which are defined by

q1(x) =−
(
x− π

6

)
· 1(−∞,π

6
](x) +

(
x− π

6

)2
· 1(π

6
,+∞)(x), (6.8)

q2(x) = sin(x/10), (6.9)

q3(x) = sin(x), (6.10)

q4(x) = sin(10x). (6.11)

These specific functions were chosen as they illustrate the performance of the different
networks well for functions of distinctive regularity. However, it was observed that for
some particular functions, the approximation accuracy reduced considerably compared
to the general behaviour as described in the following subsections. We assess the quality
of the approximation by their accuracy (6.2) for classification networks, by the MSE
(6.3) for regression networks and by the order of accuracy for both.

6.2.1 DeLENO classification networks

The accuracies for DeLENO classification networks for both interpolation and recon-
struction purposes are listed in Table 6.1. Scaling function Scale1 was used. It can be
seen that DeLENO and ENO agree almost perfectly on the training data set, as well
as the part of the data set that was left out during the training process.

type p hidden layer sizes Tacc Vacc
interpolation 3 4 99.36% 99.32%

interpolation 4 10,6,4 99.22% 99.14%

reconstruction 2 4 99.96% 99.97%

reconstruction 3 10,6,4 99.65% 99.65%

Table 6.1: Shape of DeLENO-p and DeLENO-SR networks with their accuracies for the interpolation and
reconstruction problem.

The obtained weights and biases for the trained third- and fourth-order DeLENO inter-
polation network are listed in Appendix A. As the networks do not have an accuracy of
100%, it comes as no surprise that the listed matrices and biases differ significantly from

63

6. Numerical results

their theoretical counterparts, which can be found in equations (4.19-4.24). This shows
that there are multiple neural networks which can approximate the ENO interpolation
procedure very well.

We investigate the effect of the minor disagreement between ENO and DeLENO on the
interpolation accuracy. With respect to the L∞ norm, this small discrepancy might
have a significant impact. Figure 6.1 however shows that this is not the case: for the
smooth function q4 and the piecewise smooth function q1, the DeLENO-p classification
networks lead to exactly the same result as ENO-p for p = 3, 4. As the error is evaluated
on a different grid for every grid size, the course of the graph deviates from a straight
line, as can be seen for q1 in Figure 6.1 (right).

Figure 6.1: Interpolation error when using DeLENO classification networks for the smooth function q4 (left)
and the piecewise smooth function q1 (right).

6.2.2 DeLENO regression networks

We first discuss the performance of the third-order DeLENO regression networks when
scaling function Scale1 is used. The network was trained on a training set of 100000
samples consisting of fourth-order Taylor expansions. Best results were seen when the
regularization parameter was taken to be λ = 10−8.

We discuss the performance of the network based on the test functions q1, q2, q3, q4. We
adopt the setting of Section 4.1 and set N0 = 16 and K = 11. In particular, we approx-
imate fk+1 using the ENO-3 interpolation procedure (cf. (4.13)) and a DeLENO-3
regression network, both times with fk as input data. We denote these approxima-
tions by ENO3[fk] and DeLENO1

3[fk], respectively, where the superscript 1 refers to
Scale1. In Figure 6.2, we plot ‖ENO3[fk]− fk+1‖∞ in blue, ‖DeLENO1

3[fk]− fk+1‖∞
in red and ‖ENO3[fk]−DeLENO1

3[fk]‖∞ in black. For the piecewise smooth function
q1, ENO-3 and DeLENO-3 visually agree and are first-order accurate, which is indeed
the expected order of accuracy. Interestingly, the discrepancy between ENO-3 and
DeLENO-3 is linearly proportionate to the grid size. This behaviour is also observed
for q2, q3 and q4. ENO-3 is third-order accurate, but DeLENO-3 is only first-order
accurate for the smooth functions q2 and q3. For q4, ENO-3 and DeLENO-3 agree on
coarse grids, but beyond a critical grid size, the third-order accuracy reduces to first-
order accuracy. We note that everywhere where DeLENO-3 is only first-order accurate,

64

6.2. Performance of DeLENO(-SR) methods

Figure 6.2: Plot of ‖ENO3[fk]−fk+1‖∞, ‖DeLENO1
3[fk]−fk+1‖∞ and ‖ENO3[fk]−DeLENO1

3[fk]‖∞
as a function of Nk for the test functions q1, q2, q3 and q4.

its approximation error agrees with the discrepancy between ENO-3 and DeLENO-3.
These observations can be summarized as

‖DeLENO1
3[fk]− fk+1‖∞ ≈ ‖DeLENO1

3[fk]− ENO3[fk]‖∞ + ‖ENO3[fk]− fk+1‖∞.
(6.12)

In other words, the DeLENO approximation error can be decomposed in how well ENO
approximates the test function on the one hand, and how well DeLENO approximates
ENO on the other hand. This observation also allows an explanation of the orders of
accuracy as observed in Figure 6.2.

First, we note that there are no outliers in the errors of the predictions of the DeLENO-
3 regression network, which makes the MSE (6.3) fairly robust to the size of the data
set (Figure 6.3). Keeping this in mind, we make the crude simplification that the
network makes for every new prediction a constant error of the size of the square root
of the MSE. In this case

√
MSE ≈ 3 · 10−3. However, before the network is used to

predict fk+1, the function values of the local stencil are rescaled to the interval [−1, 1]
using scaling function Scale1 (6.7a). For smooth functions, this corresponds to the
multiplication with a factor linearly proportionate to Nk. Indeed, a smooth function f
varies at most 3hk supx∈[0,1]|f ′| inside the local stencil of the ENO-3 method. On this

scaled data, the network makes an error of size
√

MSE, resulting in an error of size
C1hk

√
MSE supx∈[0,1]|f ′| for some constant C1 > 0 on the unscaled data. We therefore

65

6. Numerical results

Figure 6.3: Histogram of the squared errors of the predictions of the DeLENO-3 regression network on the
training data set (left) and the MSE as a function of the data set size (right).

have that
‖DeLENO1

3[fk]− ENO3[fk]‖∞ ≈ C1hk
√

MSE sup
x∈[0,1]

|f ′|. (6.13)

Since in addition ENO-3 is third-order accurate, we can rewrite (6.12) as

‖DeLENO1
3[fk]− fk+1‖∞ ≈ C1hk

√
MSE sup

x∈[0,1]
|f ′|+ C2h

3
k sup
x∈[0,1]

|f ′′′| (6.14)

for some constant C2 > 0. This formula explains many aspects of the phenomena
observed in Figure 6.2. For the sine function q2, the constants C1 and C2 of (6.14)
relate in such a way that the linear term dominates over the higher-order term. Every
time the frequency of the test sine function is multiplied by 10, the factor supx∈[0,1]|f ′|
in (6.14) increases by the same factor. This can be observed in Figure 6.2 by comparing
the second, third and fourth plot, and noting that the increase of the black line matches
the increase of the frequency. However, at the same time, supx∈[0,1]|f ′′′| increases by a
factor of 1000 if the frequency is multiplied by 10, leading to a much higher increase of
the blue line in the plots. Therefore the second term in (6.14) will dominate the first
term for highly oscillatory functions as q4. Finally, note that the value of

√
MSE is also

in agreement with Figure 6.2 under the hypothesis that (6.14) holds.

In an attempt to improve the order of accuracy of the regression network, we change
the scaling procedure function as the deterioration to first-order accuracy was caused
by the scaling. We investigate the approximation accuracy when Scale2, as defined in
(6.7b), is used. Instead of scaling the stencil such that the maximum and minimum of
the stencil are respectively 1 and −1, Scale2 only translates and rescales the stencil such
that the maximum is smaller than 1 and the minimum is larger than −1. The network
obtained using the training procedure from Section 6.1 and a data set of 100000 fourth-
order Taylor polynomials did not lead to a good approximation of ENO-3. There was
for both smooth and piecewise smooth functions no agreement at all between the ENO-
3 and the DeLENO-3 regression network using Scale2, nor did it show the expected
order of accuracy for smooth functions.

66

6.2. Performance of DeLENO(-SR) methods

The following approaches were pursued to improve the performance of the network.

• Increase of the size of the training data set from 100000 to 500000. We refer
to the obtained network as DeLENO-3 regression A or DeLENO2

3A, where the
superscript 2 refers to Scale2. The results of this approach are shown in Figure
6.4, where the approximation errors for the piecewise smooth function q1 (left)
and a sinusoid q3 (right) are plotted. For the smooth function, the network is
third-order accurate until a certain error is reached (in this case of the order
10−8) after which the error remains constant. Moreover, the network and ENO-
3 make the same approximation error for q1. Interestingly, these good results
do not mean that the network and ENO-3 agree. Using the notation from the
previous subsection, Figure 6.4 shows that ‖DeLENO2

3A[fk]− ENO3[fk]‖∞ is of
third order until 10−8 is reached. This means that we did not obtain ENO-3,
but merely a third-order accurate approximation of ENO-3, at least for this test
function. Moreover, the network may have not inherited all desirable properties
that characterize ENO-3. This is indeed the case: the network is seen to create
oscillations when interpolating functions with jump discontinuities. This is very
undesirable as the total variation boundedness is one of the key properties of
ENO.

10 1 10 2 10 3 10 4

N
k

10 -8

10 -6

10 -4

10 -2

L
-e

rr
or

piecewise smooth function

ENO-3
DeLENO-3 regression A
ENO-3 vs. DeLENO-3 regression A
DeLENO-3 regression B
ENO-3 vs. DeLENO-3 regression B

10 1 10 2 10 3 10 4

N
k

10 -10

10 -8

10 -6

10 -4

10 -2

10 0

10 2

L
-e

rr
or

smooth function

ENO-3
DeLENO-3 regression A
ENO-3 vs. DeLENO-3 regression A
DeLENO-3 regression B
ENO-3 vs. DeLENO-3 regression B

Figure 6.4: Plots of the approximation error when using the DeLENO-3 regression network for the piecewise
smooth function q1 (left) and the sine function q4 (right). The approximation error of ENO-3 is shown for
comparison. When not visible, the red crosses coincide with the black crosses.

• Increase of the size of the network, from three layers with respectively 6,4 and
3 neurons to six layers with each 10 neurons. As more data is needed to train
a larger network, we increase simultaneously the data set size from 100000 to
500000. Only unmeaningful approximations were obtained using this approach.

• Use of a different loss function. For a vector X ∈ Rn, n ∈ N, introduce the
notation ρ(X) = maxj Xj −minj Xj . When the (regularized) MSE (6.3) is used
as loss function, the loss is dominated by the errors corresponding to stencil
vectors X for which ρ(X) is relatively large. However, it is crucial for a good
performance on fine grids that the error for stencil vectors with a small ρ(X)
also contribute to the loss function. We therefore introduce a family of weighted

67

6. Numerical results

(regularized) MSE loss functions, parametrized by k ∈ N,

MSEk(θ;S, λ) =
1

#S
∑

(Xi,Y i)∈S

‖Y i − Ŷ i‖2
ρ(Xi)2k

+ λR(θ). (6.15)

The choice k = 1 corresponds to, up to a constant, to the mean squared relative
error. When trying to reobtain ENO-p using a neural network, the choice k = p
is relevant as well. Recall that on fine grids DeLENO2

3A had a constant error,
this modified loss function might remove this issue. It comes however as no
surprise that the weighted MSE loss for k > 0 is not robust towards stencils for
which ρ(Xi) is very small, which hampered the training. As a consequence, no
meaningful networks were obtained.

• Change the composition of the data set. Recall that the network DeLENO2
3A

was third-order accurate for smooth functions, but did not perform well on dis-
continuous functions. As DeLENO2

3A was only trained on smooth samples, this
does not need to be a surprise. Therefore we add to the training set a number
of random samples. The trained networks were seen to be very sensitive to the
ratio between the amounts of smooth and random samples. Too little random
samples lead to networks similar to DeLENO2

3A, whereas too much random sam-
ples result in a reduction of the order of accuracy for smooth functions. In Figure
6.4, the approximation error of DeLENO-3 regression B (DeLENO2

3B) is shown,
a network that was obtained using a training data set of 500000 sinusoidal and
50000 random samples. The approximation error behaves similarly to that of
DeLENO2

3B, albeit resulting in a larger error for fine grids, but with the major
difference that ‖DeLENO2

3B[fk]−ENO3[fk]‖∞ is now a constant. This is in con-
sonance with our hypothesis on the error decomposition of well-trained DeLENO
networks (6.12) of the previous subsection. Moreover, the different behaviour on
small grids between DeLENO1

3 and DeLENO2
3B is fully in agreement with the

distinct scaling procedures.

The performance of the DeLENO-4 networks are very similar to that of the DeLENO-3
networks and will not be further discussed.

6.2.3 DeLENO-SR classification network

As with the DeLENO classification networks, the accuracy of the second-order accurate
DeLENO-SR classification network is very high on the training and validation data set
(resp. 99.74% and 99.81%). In Figure 6.5, we check the order of accuracy for the
piecewise smooth function q1 and the smooth function q3. Best results were obtained
when using scaling function Scale1. On most grids, ENO-SR-2 and the method using
the DeLENO-SR-2 classification network perfectly agree. However, for very fine grids,
some instabilities might arise due to the nature and implementation of the ENO-SR
algorithm (cfr. Remark 6.2). This can indeed be observed for the piecewise smooth
function q1 (left graph of Figure 6.5). We also note that for coarse grids, (DeL)ENO-3
and (DeL)ENO-SR-2 make a very similar approximation error. In this case, it is thus
advisable to use DeLENO instead of DeLENO-SR as the first is computationally much
more efficient.

68

6.2. Performance of DeLENO(-SR) methods

Figure 6.5: Plots of the approximation error when using the DeLENO-SR-2 classification network for
the piecewise smooth function q1 and the sine function q3. The approximation error of ENO-SR-2 and
(DeL)ENO-3 are shown for comparison.

6.2.4 DeLENO-SR regression network

The DeLENO-SR regression network was trained on a data set consisting of piecewise
linear functions, as described in Section 6.1.2, and using scaling function Scale1. On the
validation part of the data set, it was seen that MSE = 5 · 10−10, which is considerably
lower than the validation MSE of the DeLENO regression network. We therefore expect
that, when using scaling function Scale1, the same reduction to first-order accuracy will
be observed as with DeLENO regression, but now only for very fine grids. This hypoth-
esis is confirmed in Figure 6.6, where the approximation errors of the piecewise smooth
function q1 (left) and the sine function q3 (right) are shown. In both cases the order

Figure 6.6: Plots of the approximation error of the DeLENO-SR-2 regression network for the piecewise
smooth function q1 and the sine function q3. The approximation errors of ENO-SR-2 and (DeL)ENO-3 are
shown for comparison.

of accuracy only deteriorates when Nk > 104. Although the DeLENO-SR regression
network is initially second-order accurate for the smooth function, the approximation
error does not agree with that of ENO-SR. This is in line with Theorem 5.11, where
we proved that there exists a network that is a second-order accurate approximation
of ENO-SR-2 (except for an error term that can be arbitrarily small, yet is fixed). A

69

6. Numerical results

second factor that might contribute is the fact that DeLENO-SR-2 was trained on
piecewise linear functions, which can be thought of as a second-order accurate approx-
imation of a smooth function, therefore leading to a higher error. Theoretically this
error can be decreased by generating a richer data set, with for instance piecewise
quadratic or cubic functions. In practice, however, a significant increase of the MSE
on the training set is observed, leading to a poor overall performance as the network
will only be second-order accurate for coarser grids. The same phenomenon occurred
when Scale2 was used as scaling function.

6.3 Applications

6.3.1 Function approximation

We demonstrate the approximating ability of the DeLENO interpolation method using
the function

u(x) =

−x if x < 0.5,

3 sin(10πx) if 0.5 < x < 1.5,

−20(x− 2)2 if 1.5 < x < 2.5,

3 if 2.5 < x,

(6.16)

which consists of jump discontinuities and smooth high-frequency oscillations. We
discretize the domain [0, 3] and generate a sequence of nested grids of the form (4.1) by
setting N0 = 16 and K = 4. We use the data on the grid T k, and interpolate it onto the
grid T k+1 for 0 6 k < K. As shown in Figure 6.7, the interpolation results using ENO-
p and the DeLENO-p classification network are identical on all grids for this particular
function and p = 3, 4. For the DeLENO-3 regression network, the approximation results
do not agree perfectly with the ENO-3 interpolation results. This however comes as
no surprise given the discussion in Section 6.2.2 and Figure 6.4.

6.3.2 Data compression

A second application of ENO and DeLENO is data compression, in particular the
compressed representation of functions. For this goal we introduce the multi-resolution
representation of functions, with notation and operators similar to those introduced in
[Aràndiga and Donat, 2000].

We define a sequence of nested uniform meshes {T k}Kk=0 on Ω = [c, d], where

T k = {Iki }Nki=1, Iki = [xki−1, x
k
i], xki = c+ ihk, hk =

(d− c)
Nk

, Nk = 2kN0, (6.17)

for 0 6 i 6 Nk, 0 6 k 6 K and where N0 is some positive integer. We call {xki }Nki=0 the
nodes of the mesh T k. Let BΩ be the set of bounded functions on Ω and Vn the space
of real-valued finite sequences of length n. Then we can define the following operators
associated with the various meshes:

• The discretizer Dk : BΩ 7→ VNk+1 defined by

Dkf = qk := {qki }Nki=0 = {q(xki)}Nki=0, ∀ q ∈ BΩ.

70

6.3. Applications

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 1

ENO-3
DeLENO-3

(a) T 0 to T 1, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 1

ENO-4
DeLENO-4

(b) T 0 to T 1, p = 4

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 1

ENO-3
DeLENO-3 reg.

(c) T 0 to T 1, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 2

ENO-3
DeLENO-3

(d) T 1 to T 2, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 2

ENO-4
DeLENO-4

(e) T 1 to T 2, p = 4

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 2

ENO-3
DeLENO-3 reg.

(f) T 1 to T 2, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 3

ENO-3
DeLENO-3

(g) T 2 to T 3, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 3

ENO-4
DeLENO-4

(h) T 2 to T 3, p = 4

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 3

ENO-3
DeLENO-3 reg.

(i) T 2 to T 3, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 4

ENO-3
DeLENO-3

(j) T 3 to T 4, p = 3

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 4

ENO-4
DeLENO-4

(k) T 3 to T 4, p = 4

0 1 2 3
x

-6

-4

-2

0

2

4

u

Exact on 4

ENO-3
DeLENO-3 reg.

(l) T 3 to T 4, p = 3

Figure 6.7: Interpolating the function (6.16) using ENO-3 and the DeLENO-3 classification network (left),
ENO-4 and the DeLENO-3 classification network (middle) and ENO-3 and the DeLENO-3 regression network
(right).

71

6. Numerical results

• The reconstructor Rk : VNk+1 7→ BΩ satisfying DkRkq
k = qk for qk ∈ VNk+1.

Thus, (Rkq
k)(x) interpolates the members of qk at the nodes of T k.

• The decimator Dk−1
k : VNk+1 7→ VNk−1+1 defined by Dk−1

k := Dk−1Rk. For
q ∈ BΩ, we have

qk−1
i = (Dk−1

k qk)i = qk2i, 0 6 i 6 Nk−1. (6.18)

• The predictor P kk−1 : VNk−1+1 7→ VNk+1 defined by P kk−1 := DkRk−1. The predic-

tor tries to recover the function values qk from the coarser data qk−1, for q ∈ BΩ.

The prediction error made by the predictor is given by

eki = qki − (P kk−1q
k−1)i, 0 6 i 6 Nk.

Clearly ek2i = 0 for 0 6 i 6 Nk−1 = Nk/2. Thus, the interpolation error is essentially
evaluated at the nodes in T k \ T k−1, which we denote as

dki = ek2i−1 = qk2i−1 − (P kk−1q
k−1)2i−1, 1 6 i 6 Nk−1. (6.19)

Given qk−1 and dk, we can recover qk using (6.18) and (6.19). By iteratively applying
this procedure, the data qk on the finest mesh can be fully encoded using the multi-
resolution representation

{q0, d1, d2, ..., dK}. (6.20)

This multiresolution representation (6.20) for a function f ∈ BΩ is convenient to per-
form data compression. The easiest compression strategy [Aràndiga and Donat, 2000]
corresponds to setting the coefficients dki in (6.19) to zero based on a suitable threshold
εk > 0:

d̂ki = G(dki ; ε
k) =

{
0 if |dki | 6 εk
dki otherwise.

(6.21)

When the thresholds are chosen to be of the form

εk = εtK−k, 0 < t < 1, (6.22)

then Proposition B.1 provides an error bound for the compressed encoded representa-
tion of the form

{f0, d̂1, d̂2, ..., d̂K}. (6.23)

The procedures for compressed encoding and decoding are listed in Algorithms 3 and
4 in Appendix B.

We now apply the multi-resolution representation framework of Appendix B to use
DeLENO-p classification to compress the function q = u from (6.16). We construct a
nested sequence of meshes on [0, 3] by choosing N0 = 9 and K = 5 in (6.17). We use
Algorithm 3 to obtain the multi-resolution representation of the form (6.23) and decode
the solution using Algorithm 4 to obtain the approximation q̂K . The compression
thresholds needed for the encoding procedure are set using (6.22).

Figure 6.8 provides a comparison of the results obtained using different values for the
threshold parameters ε, and shows the non-zero coefficients d̂k for each mesh level k.
Note that a larger number of non-zero coefficients are required to represent the data

72

6.3. Applications

in the high-frequency region (the graph of the function is shown in Figure 6.7). A
higher value of ε can truncate a larger number of d̂k components, as is evident for
p = 3. However, there is no qualitative difference between q̂K obtained for the two
ε values considered. Thus, it is beneficial to use the larger ε, as it leads to a sparser
multi-resolution representation without deteriorating the overall features. The solutions
obtained with ENO and DeLENO are indistinguishable. We refer to Table 6.2 for the
errors of the two methods.

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-3
DeLENO-3

(a) ε = 0.5, p = 3

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-4
DeLENO-4

(b) ε = 0.5, p = 4

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-3
DeLENO-3

(c) ε = 1, p = 3

0 0.5 1 1.5 2 2.5 3
x

0

1

2

3

4

5

6

k

ENO-4
DeLENO-4

(d) ε = 1, p = 4

Figure 6.8: Data compression of (6.16) using ENO-p and DeLENO-p classification networks with N0, L = 5

and t = 0.5. The non-zero coefficients d̂k at each level (right).

p ε
‖qK − q̂K‖1 ‖qK − q̂K‖2 ‖qK − q̂K‖∞

ENO DeLENO ENO DeLENO ENO DeLENO

3
0.5 5.125e-2 5.125e-2 8.701e-2 8.701e-2 3.281e-1 3.281e-1
1.0 2.072e-1 2.072e-1 2.421e-1 2.421e-1 4.102e-1 4.102e-1

4
0.5 1.032e-1 1.038e-1 1.268e-1 1.274e-1 3.027e-1 3.027e-1
1.0 1.122e-1 1.122e-1 1.356e-1 1.356e-1 3.947e-1 3.947e-1

Table 6.2: 1D compression errors for (6.16).

The compression ideas used for one-dimensional problems can also be easily extended to
handle functions defined on two-dimensional tensorized grids. We consider a sequence
of grids T k with (Nx

k + 1) × (Ny
k + 1) nodes, where Nx

k = 2kNx
0 and Ny

k = 2kNx
0 ,

for 0 6 k 6 K. Let qk be the data on grid T k and denote by q̂k+1 the compressed
interpolation on grid T k+1. To obtain q̂k+1, we first interpolate along the x-coordinate
direction to obtain an intermediate approximation q̃k+1 of size (Nx

k+1 + 1)× (Ny
k + 1).

73

6. Numerical results

Then we use q̃k+1 to interpolate along the y-coordinate direction to obtain the final
approximation q̂k+1.

To illustrate this method, we use ENO and DeLENO classification networks to compress
an image with 705× 929 pixels, shown in Figure 6.9(a). We set K = 5, ε = 1, t = 0.2
in (6.22). Once again, ENO and DeLENO give similar results, as can be seen from the
decompressed images in Figure 6.9 and the relative errors in Table 6.3. In this table
we additionally listed the compression rate

cr = 1−
#
{
dki,j |dki,j > εk, 1 6 k 6 K

}

(Nx
L + 1)(Ny

L + 1)− (Nx
0 + 1)(Ny

0 + 1)
, (6.24)

which represents the fraction of coefficients set to zero.

p Scheme Rel. L1 Rel. L2 Rel. L∞ cr

3
ENO 5.346e-2 8.368e-2 5.194e-1 0.996
DeLENO 5.343e-3 8.365e-2 5.194e-1 0.996

4
ENO 5.422e-2 8.485e-2 5.581e-1 0.996
DeLENO 5.422e-2 8.492e-2 5.581e-1 0.996

Table 6.3: Image compression errors.

(a) Original (b) ENO-3 (c) DeLENO-3 (d) ENO-4 (e) DeLENO-4

Figure 6.9: Image compression.

As an additional example of two-dimensional data compression, we consider the func-
tion

q(x, y) =

−10 if (x− 0.5)2 + (y − 0.5)2 < 0.0225

30 if |x− 0.5| > 0.8 or |y − 0.5| > 0.8

40 otherwise

, (6.25)

where (x, y) ∈ [0, 1] × [0, 1], and generate a sequence of meshes by setting K = 4,
Nx

0 = 16 and Ny
0 = 16. The threshold for data compression is chosen according to

(6.22), with ε = 10 and t = 0.5. The non-zero d̂k coefficients are plotted in Figure 6.10,
while the errors and compression rate (6.24) are listed in Table 6.4. Overall, ENO and
DeLENO perform equally well, with DeLENO giving marginally smaller errors.

74

6.3. Applications

p Scheme Rel. L1 Rel. L2 Rel. L∞ cr

3
ENO 3.341e-3 2.442e-2 4.302e-1 0.989
DeLENO 3.246e-3 2.367e-2 4.302e-1 0.989

4
ENO 3.816e-3 3.237e-2 5.876e-1 0.989
DeLENO 3.681e-3 3.130e-2 5.876e-1 0.989

Table 6.4: 2D compression errors for (6.25).

(a) ENO-3, k = 1 (b) ENO-3, k = 2 (c) ENO-3, k = 3 (d) ENO-3, k = 4

(e) DeLENO-3, k = 1 (f) DeLENO-3, k = 2 (g) DeLENO-3, k = 3 (h) DeLENO-3, k = 4

Figure 6.10: Non-zero coefficients d̂k for data compression of (6.25) using ENO-3 and DeLENO-3 classifi-
cation networks for mesh level 1 6 k 6 4. The results for (DeL)ENO-4 are similar.

6.3.3 Conservation laws

Next, we present an example of how the ENO and DeLENO can be used for reconstruc-
tion purposes, when used to approximate solutions of conservation laws. We work in
the framework of high-order finite difference schemes with flux-splitting and we use a
fourth-order Runge-Kutta scheme for the time integration.

As a first example, we consider the system of conservation laws governing compressible
flows given by

∂t

ρ
v
p

+ ∂x

ρv
ρv2 + p

(E + p)v

 = 0, E =

1

2
ρv2 +

p

γ − 1
,

where ρ, v and p denote the fluid density, velocity and pressure, respectively. The
quantity E represents the total energy per unit volume, where γ = cp/cv is the ratio
of specific heats, chosen as γ = 1.4 for our simulations. We consider the shock-entropy
problem [Shu and Osher, 1989], which describes the interaction of a right moving shock
with a smooth oscillatory waves. The initial conditions for this test case are prescribed
as

(ρ, v, p) =

{
(3.857143, 2.629369, 10.33333) if x < −4

(1 + 0.2 sin(5x), 0, 1) if x > −4
,

75

6. Numerical results

on the domain [−5, 5]. Due to the generation of high frequency physical waves, we
solve the problem on a fine mesh with N = 200 cells up to Tf = 1.8 with CFL = 0.5. A
reference solution is obtained with ENO-4 on a mesh with N = 2000 cells. As can be
seen in Figure 6.11, ENO-p and the DeLENO-p classification networks perform equally
well depending on the order p.

5.0 2.5 0.0 2.5 5.0
x

1

2

3

4

5

D
e
n
s
i
t
y

Reference

ENO-2

DeLENO-2

(a) p = 2

5.0 2.5 0.0 2.5 5.0
x

0.0

0.8

1.6

2.4

V
e
l
o
c
i
t
y

Reference

ENO-2

DeLENO-2

(b) p = 2

5.0 2.5 0.0 2.5 5.0
x

0.0

2.5

5.0

7.5

10.0

P
r
e
s
s
u
r
e

Reference

ENO-2

DeLENO-2

(c) p = 2

5.0 2.5 0.0 2.5 5.0
x

1

2

3

4

5

D
e
n
s
i
t
y

Reference

ENO-3

DeLENO-3

(d) p = 3

5.0 2.5 0.0 2.5 5.0
x

0.0

0.8

1.6

2.4

V
e
l
o
c
i
t
y

Reference

ENO-3

DeLENO-3

(e) p = 3

5.0 2.5 0.0 2.5 5.0
x

0.0

2.5

5.0

7.5

10.0

P
r
e
s
s
u
r
e

Reference

ENO-3

DeLENO-3

(f) p = 3

Figure 6.11: Solution for Euler shock-entropy problem with ENO-p and DeLENO-p on a mesh with N = 200
cells.

Next, we solve the Sod shock tube problem [Sod, 1978], whose initial conditions are
given by

(ρ, v, p) =

{
(1, 0, 1) if x < 0

(0.125, 0, 0.1) if x > 0
,

on the domain [−5, 5]. The solution consists of a shock wave, a contact discontinuity
and a rarefaction. The mesh is descretized with N = 50 cells and the problem is solved
until Tf = 2 with a CFL = 0.5. The solutions obtained with ENO-p and the DeLENO-p
classification networks are identical, as depicted in Figure 6.12.

76

6.3. Applications

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

0.75

1.00

D
e
n
s
i
t
y

Exact

ENO-2

DeLENO-2

(a) p = 2

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

0.75

1.00

V
e
l
o
c
i
t
y

Exact

ENO-2

DeLENO-2

(b) p = 2

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

0.75

1.00

P
r
e
s
s
u
r
e

Exact

ENO-2

DeLENO-2

(c) p = 2

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

0.75

1.00

D
e
n
s
i
t
y

Exact

ENO-3

DeLENO-3

(d) p = 3

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

0.75

1.00

V
e
l
o
c
i
t
y

Exact

ENO-3

DeLENO-3

(e) p = 3

5.0 2.5 0.0 2.5 5.0
x

0.00

0.25

0.50

0.75

1.00

P
r
e
s
s
u
r
e

Exact

ENO-3

DeLENO-3

(f) p = 3

Figure 6.12: Solution for Euler Sod shock tube problem with ENO-p and DeLENO-p on a mesh with
N = 50 cells.

77

Chapter 7

Conclusion

In this thesis, we considered the interpolation of rough functions, with special attention
to piecewise smooth functions. Despite their very distinctive approaches, deep neural
networks and the ENO(-SR) interpolation procedure are both suitable methods for the
interpolation of such functions. Their efficiency respectively relies on the universality
of deep neural networks and the data dependence of ENO. We argued that ENO in-
terpolation is a classification problem at heart, where the classes correspond to stencil
shifts, and subsequently proved the existence of a ReLU neural network that predicts
the ENO stencil shift with an accuracy of 100%. The same thing was done for a new
adaptation of ENO-SR that was proven to have the same order of accuracy. In addition,
we constructed explicit ReLU neural networks that directly approximate the output of
the ENO and ENO-SR interpolation procedures, proving error bounds where possible.
These surprising results provide a different perspective on the ability of neural networks
in approximating functions and reveal their enormous expressive power as even a highly
non-linear, data dependent procedure such as ENO is nothing more than a ReLU neural
network. By interpreting ENO as a neural network, we provide a natural framework for
recasting the problem of interpolation in terms of pre-trained neural networks such as
DeLENO, where the input vector of sample values is transformed by the network into
the output vector of interpolated values. Thus, these networks are trained once and do
not need to retrained for every new underlying function, in contrast to the methods of
[Yarotsky, 2017], which may therefore have only limited utility in practice.

We trained both classification and regression networks, using the architectures from our
theoretical results. The trained classification networks are able to predict the correct
stencil shift with an accuracy of near 100% and therefore agree with the original ENO(-
SR) procedure almost perfectly. On the other hand, the accuracy of the regression
networks was seen to be highly dependent on the nature and size of the training data set,
the network architecture and the chosen optimization algorithm. In particular, ENO’s
higher-order accuracy for smooth functions and its ability to interpolate rough functions
without creating spurious oscillations were hard to reconcile during the training. Even
when successful, a decay in the order of accuracy for smooth functions on fine grids
seems unavoidable. Depending on the scaling procedure, the higher-order accuracy
reduces to either first-order accuracy or a constant error. Nevertheless, the networks
proved their use in a plethora of applications, notably interpolation, data compression
and the approximation of solutions of nonlinear conservation laws.

79

Appendix A

Weights and biases for trained networks

We list the obtained weights and biases for the trained third-order DeLENO classifi-
cation network, obtained using the training procedure of Section 6.1. The theoretical
counterparts can be found in (4.19) and (4.20).

W 1 =

1.1951 2.0433 −11.7410 5.6383
2.9216 −2.8703 −2.5077 2.4624
−2.2775 7.6890 −7.2667 2.4914
3.2909 −5.8431 −5.6085 3.4171

 , b1 =

−0.1069
−0.3615
0.0389
0.0605

 ,

W 2 =

(
−11.6122 4.2986 10.7356 8.1240
11.5929 −4.2767 −10.7357 −8.1316

)
, b2 =

(
−2.5193
2.4493

)
.

Below we list the obtained weights and biases for the trained fourth-order DeLENO
classification network. The theoretical counterparts can be found in (4.21-4.24).

W 1 =

−0.0559 −1.0026 1.1115 1.001 1− 1.0569 −0.0001
−0.3547 0.3557 −0.8777 2.0707 −1.1983 −0.0051
−0.0060 −0.6155 1.6342 −1.4526 0.4599 −0.0370

0 0 0 0 0 0
0.0011 −0.1965 0.7964 −1.1817 0.7805 −0.1913
−0.3324 1.2088 −1.6946 1.0632 −0.2479 −0.0043
0.1432 −0.6459 0.9448 −0.5434 0.1271 −0.0154
−0.0076 −0.4239 0.8604 −0.0248 −0.8755 0.4517
0.0196 −0.1527 0.6286 −0.9194 0.6069 −0.1619
−0.0088 −0.2571 1.0627 −1.6288 1.0899 −0.2714

, b1 =

−0.0005
0.0029
−0.0005
−0.1217
0.0012
0.0007
−0.0010
0.0010
0.0027
−0.0005

,

W 2 =

0 1.6803 0.2910 −3.1738 0 1.5946
0 −1.9935 −0.7975 3.2015 0 −1.9124
0 −0.3125 2.7085 0.7264 0 −0.2819
0 0 0 0 0 0
0 −1.3886 0.6976 0.6071 0 −1.3514
0 2.1097 0.8511 −3.6655 0 2.0568
0 0.6645 0.1485 −1.2784 0 0.5052
0 −0.0061 −1.4376 −0.0073 0 −0.0082
0 0.4580 −1.0432 0.0474 0 0.4542
0 0.6597 −2.6379 −0.4588 0 0.7357

T

, b2 =

−0.0349
0.0993
0.0463
0.0284
−0.0570
0.0438

 ,

W 3 =

0 0 0 0 0 0
0 0 0 0 0 0
0 8.0933 0.6463 −5.7734 0 8.3502
0 2.0780 −10.0148 −0.3565 0 1.8241

 , b2 =

−0.0316
−0.0432
−0.3800
0.4131

 ,

W 4 =

0 0 2.3377 −11.5452
0 0 2.2965 11.1520
0 0 −12.6485 −0.8555

 , b4 =

 1.6841
−7.5807
8.2575

 .

81

Appendix B

Multi-resolution representation of functions
for data compression

In Section 6.3.2, the multi-resolution representation of functions was introduced to
provide a framework for data compression of one-dimensional and two-dimensional
functions. Below we list the algorithms to obtain the compressed representation of a
function as in (6.23) (Algorithm 3) and to decode this compressed representation again
(Algorithm 4).

Algorithm 3 Compressed encoding [Aràndiga and Donat, 2000]

Input: Highest resolution data fK , number of levels K, number of points N0 on coars-
est mesh, ENO order p, threshold parameters ε and t.

Output: Multi-resolution representation {f0, d̂1, ..., d̂K}.
for k = K to 1 do
fk−1 = Dk−1

k fk

end for
f̂0 = f0

for k = 1 to K do
f̂k0 = fK0
Construct P kk−1 using Algorithm 1 and (4.13)

f̃k = P kk−1f̂
k−1

N = N02k−1

for i = 1 to N do
dki = fk2i−1 − f̃k2i−1

εk = εtK−k

d̂ki = G(dki ; ε
k)

f̂k2i−1 = f̃k2i−1 + d̂ki
f̂k2i = f̂k−1

i

end for
end for
return {f0, d̂1, ..., d̂K}

83

B. Multi-resolution representation of functions for data compression

Algorithm 4 Decoding multi-resolution data [Aràndiga and Donat, 2000]

Input: Multi-resolution representation {f0, d̂1, ..., d̂K}, number of levels K, number of
cells N0 on coarsest mesh, ENO order p.

Output: Decoded function f̂K .
f̂0 = f0

for k = 1 to K do
Construct P kk−1 using Algorithm 1 and (4.13)

f̂k = P kk−1f̂
k−1 + d̂k

end for
return f̂K

In addition, we present the following result on the error bounds for the compressed
encoding in the form (6.23), the proof can be found in [Aràndiga and Donat, 2000].

Proposition B.1 Let {Ωk}Kl=0 be a sequence of nested uniform meshes discretizing the
interval [c, d] generated according to (6.17) for some positive integer N0 > 1. Assume
that some f ∈ B[c, d] is encoded using thresholds

εk = εtK−k, 0 < t < 1. (B.1)

to give rise to the multi-resolution representation of the form (6.23). If f̂K is the
decoded data, then

‖fK − f̂K‖n 6 Cnε for n =∞, 1, 2, (B.2)

where C∞ = (1 − t)−1, C1 = (b − a)(1 − t)−1 and C2 =
√

(b− a)(1− t2)−1. This
estimate is independent of the interpolation procedure used to encode and decode the
data.

84

Bibliography

[Aràndiga et al., 2005] Aràndiga, F., Cohen, A., Donat, R., and Dyn, N. (2005). In-
terpolation and approximation of piecewise smooth functions. SIAM Journal on
Numerical Analysis, 43(1):41–57.

[Aràndiga and Donat, 2000] Aràndiga, F. and Donat, R. (2000). Nonlinear multiscale
decompositions: The approach of a. harten. Numerical Algorithms, 23(2):175–216.

[Barron, 1993] Barron, A. R. (1993). Universal approximation bounds for superposi-
tions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3):930–
945.

[Cybenko, 1989] Cybenko, G. (1989). Approximation by superpositions of a sigmoidal
function. Mathematics of Control, Signals and Systems, 2(4):303–314.

[Dafermos, 2010] Dafermos, C. M. (2010). Hyperbolic conservation laws in continuum
physics, volume 325 of Grundlehren der Mathematischen Wissenschaften [Fundamen-
tal Principles of Mathematical Sciences]. Springer-Verlag, Berlin, third edition.

[De Ryck et al., 2020] De Ryck, T., Mishra, S., and Ray, D. (2020). On the approx-
imation of rough functions with deep neural networks. Technical Report 2020-07,
Seminar for Applied Mathematics, ETH Zürich, Switzerland.

[Evans, 1998] Evans, L. C. (1998). Partial Differential Equations. American Mathe-
matical Society.

[Eyink and Sreenivasan, 2006] Eyink, G. L. and Sreenivasan, K. (2006). Onsager and
the theory of hydrodynamic turbulence. Rev. Modern Phys., 78(1):87–135.

[Fjordholm et al., 2013] Fjordholm, U. S., Mishra, S., and Tadmor, E. (2013). Eno
recontruction and eno interpolation are stable. Found. Comp. Math, 13(2):139–159.

[Funahashi, 1989] Funahashi, K.-I. (1989). On the approximate realization of continu-
ous mappings by neural networks. Neural Networks, 2(3):183–192.

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep
Learning. MIT Press. http://www.deeplearningbook.org.

85

http://www.deeplearningbook.org

Bibliography

[Grohs et al., 2019a] Grohs, P., Hornung, F., Jentzen, A., and Zimmermann, P.
(2019a). Space-time error estimates for deep neural network approximations for
differential equations.

[Grohs et al., 2019b] Grohs, P., Perekrestenko, D., Elbrächter, D., and Bölcskei, H.
(2019b). Deep neural network approximation theory. IEEE Transactions on Infor-
mation Theory.

[Hanin and Sellke, 2017] Hanin, B. and Sellke, M. (2017). Approximating continuous
functions by ReLU nets of minimal width.

[Harten, 1986] Harten, A. (1986). On high-order accurate interpolation for non-
oscillatory shock capturing schemes. The IMA Volumes in Mathematics and Its
Applications Oscillation Theory, Computation, and Methods of Compensated Com-
pactness, page 71–105.

[Harten, 1989] Harten, A. (1989). ENO schemes with subcell resolution. Journal of
Computational Physics, 83(1):148–184.

[Harten et al., 1987] Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R.
(1987). Uniformly high order accurate essentially non-oscillatory schemes, iii. Journal
of Computational Physics, 71(2):231–303.

[Harten et al., 1997] Harten, A., Engquist, B., Osher, S., and Chakravarthy, S. R.
(1997). Uniformly high order accurate essentially non-oscillatory schemes, iii. Journal
of Computational Physics, 131(1):3 – 47.

[Hornik, 1991] Hornik, K. (1991). Approximation capabilities of multilayer feedforward
networks. Neural Networks, 4(2):251–257.

[Kingma and Ba, 2014] Kingma, D. P. and Ba, J. (2014). Adam: A method for stochas-
tic optimization. CoRR, abs/1412.6980.

[Laney, 2007] Laney, C. B. (2007). Computational gasdynamics. Cambridge Univ. P.

[Leshno et al., 1993] Leshno, M., Lin, V. Y., Pinkus, A., and Schocken, S. (1993).
Multilayer feedforward networks with a nonpolynomial activation function can ap-
proximate any function. Neural Networks, 6(6):861 – 867.

[Lu et al., 2017] Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. (2017). The expressive
power of neural networks: A view from the width. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems 30, pages 6231–6239. Curran
Associates, Inc.

[Lye et al., 2019] Lye, K. O., Mishra, S., and Ray, D. (2019). Deep learning observables
in computational fluid dynamics.

[Rolnick and Tegmark, 2017] Rolnick, D. and Tegmark, M. (2017). The power of
deeper networks for expressing natural functions.

86

Bibliography

[Shu, 1998] Shu, C.-W. (1998). Essentially non-oscillatory and weighted essentially
non-oscillatory schemes for hyperbolic conservation laws, pages 325–432. Springer
Berlin Heidelberg, Berlin, Heidelberg.

[Shu and Osher, 1989] Shu, C.-W. and Osher, S. (1989). Efficient implementation of
essentially non-oscillatory shock-capturing schemes, ii. Journal of Computational
Physics, 83(1):32 – 78.

[Shu and Osher, 1991] Shu, C. W. and Osher, S. (1991). High-order essentially nonoscil-
latory schemes for hamilton-jacobi equations. SIAM J. Num. Anal., 28(4):107–122.

[Sod, 1978] Sod, G. A. (1978). A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27(1):1
– 31.

[Yarotsky, 2017] Yarotsky, D. (2017). Error bounds for approximations with deep
ReLU networks. Neural Networks, 94:103 – 114.

[Yarotsky, 2018a] Yarotsky, D. (2018a). Optimal approximation of continuous func-
tions by very deep ReLU networks.

[Yarotsky, 2018b] Yarotsky, D. (2018b). Universal approximations of invariant maps
by neural networks.

[Yarotsky and Zhevnerchuk, 2019] Yarotsky, D. and Zhevnerchuk, A. (2019). The
phase diagram of approximation rates for deep neural networks.

87

Eidgendssische Technische Hochschule ZUrich
Swiss Federal Institute of Technology Zurich

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

On the Approximation of Rough Functions with Artificial Neural Networks

Authored by (in block letters)
For papers written by groups the names of all authors are required.

Name(s):
De F:yck

First name(s) :
Tim

With my signature I confirm that
I have committed none of the forms of plagiarism described in the 'Citation etiquette' information
sheet

I have documented all methods, data and processes truthfully.
I have not manipulated any data.
I have mentioned all persons who were significant facilitators of the work

I am aware that the work may be screened electronically for plagiarism.

Place, date
Zarich, 31/01/2020

Signature(s)

For papers written by groups the names of all authors are
required. Their signatures collectively guarantee the entire
content of the written paper.

