
ETH Library

Mechanics of beams made from
chiral metamaterials: Tuning
deflections through normal-shear
strain couplings

Journal Article

Author(s):
Karathanasopoulos, Nikolaos; Dos Reis, Francisco; Diamantopoulou, Marianna; Ganghoffer, Jean-François

Publication date:
2020-04

Permanent link:
https://doi.org/10.3929/ethz-b-000397680

Rights / license:
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International

Originally published in:
Materials & Design 189, https://doi.org/10.1016/j.matdes.2020.108520

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-b-000397680
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.matdes.2020.108520
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Materials and Design 189 (2020) 108520

Contents lists available at ScienceDirect

Materials and Design

j ourna l homepage: www.e lsev ie r .com/ locate /matdes
Mechanics of beamsmade from chiral metamaterials: Tuning deflections
through normal-shear strain couplings
N. Karathanasopoulos a,⁎, F. Dos Reis b, M. Diamantopoulou a, J.-F. Ganghoffer b

a Chair of Computational Modeling of Materials in Manufacturing, Department of Mechanical and Process Engineering, ETH, Zurich, Switzerland
b LEM3, CNRS/Université de Lorraine, Metz, France
H I G H L I G H T S G R A P H I C A L A B S T R A C T
• The mechanics of chiral beams with
inner normal-shear strain couplings is
elaborated, starting fromfirst principles.

• Normal deformations create bending
deflections which are proportional to
the material’s shear-normal compliance
coefficient.

• The use of inner strain couplings as an
equilibration mechanism is numerically
and experimentally tested for the first
time.

• The bending deflections' equilibrating
force is inversely proportional to the
material’s shear-normal coupling
coefficient.
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In the current work, we demonstrate the potential of structures made of chiral artificial materials to balance
bending loads through tensile loads, exploiting their inner normal to shear strain coupling. To that scope, we em-
ploy beamstructureswhichwe architecturewith tetrachiral unit-cells. For the latter,wequantify their inherently
coupled normal to shear strain behavior, making use of homogenization analysis techniques. We subsequently
derive the equations that characterize the bendingmechanics of beamswith an inner bending to normal loading
coupling, starting from first principles. Thereupon, we compute the normal forces required to equilibrate the ef-
fect of bending loads on beam structures, providing relevant closed-form parametric expressions. Using the de-
rived analytical formulas, we carry out both numerical simulations and experiments for the case of cantilever
beams. Results suggest that the coupling of normal and shear deformations can be used as a primal load-
balancingmechanism, providing newpossibilities in the control of the artificial structure's kinematics and overall
mechanics.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

During the last decades, a new paradigm has been developed in the
design of materials, in which the material's macroscale properties are
los).

. This is an open access article under
designed through the appropriate organization of its inner structure
[1]. A new class of artificial materials appeared, that have been com-
monly named as metamaterials [2]. Metamaterials are typically based
on periodic unit-cell arrangements [3], engineered to a μm accuracy
scale thanks to the emergence and development of additive
manufacturing [4,5]. A basic cell is used as the repetitive material unit,
substituting the notion of atoms in conventional materials [6].
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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For the static or dynamic structural material attributes to be ob-
tained, experimental or numerical studies need to be carried out
[7–9]. The latter can be considerably computationally expensive, if
full-scale finite element models are employed [10]. A link between the
metamaterial's inner architecture and its equivalent continuum scale
properties can be derived using homogenization analysis methods
[11,12]. Suchmethods have been primarily based on asymptotic expan-
sion techniques for the static and kinematic variables of the
metamaterial's inner unit-cell architecture [13]. Discrete homogeniza-
tion methods allow for a complete characterization of the continuum-
scale compliancematrix, providing closed-form, parametric expressions
for each stiffness component [14].

The design of a wide range of unit-cells has been up to now directed
by the effective volumetric behavior of the arising continuum, quanti-
fied by the Poisson's ratio values. The latter has been long considered
to be a fundamental metric of material performance [15]. Within isot-
ropy, thematerial's normal and shearmodulus are directly anduniquely
related to its effective Poisson ratio value ν, so that a negative Poisson
ratio value entails an increased shear stiffness (G = E/(2(1 + ν)))
[16]. The observation gave birth to a class of artificial materials, named
as auxetics, as they laterally expand rather than contractwhen normally
stretched, contrary to most common engineering materials [17–19].
Well-known lattice architectures with an auxetic mechanical behavior
are the so-called re-entrant type unit-cell designs, such as re-entrant
hexagonal or star-shaped lattices [20–24]. Apart from auxetic unit-cell
designs, lattice configurations that oppose lateral expansion upon nor-
mal loading have been devised [25,26]. Representative unit-cells of
the kind are rectangular-shaped lattices or combinations of re-entrant
hexagonal with regular hexagonal lattice architectures, named as
semi-re-entrant structures [26,27]. Moreover, several lattice configura-
tions with a positive Poisson's ratio that is comparable to the one of
common engineering materials have been reported, typical examples
being honeycomb, kagome or triangular-shaped unit-cell architectures
[26,28].

Artificialmaterials have been engineered so as tomeet, not only cer-
tain effective volumetric behaviors, but primarily to satisfy flexibility
and weight requirements [29–31]. In particular, lightweight materials
with prescribed structural characteristics constitute primal objectives
in different engineering fields, among others in morphing and compos-
ite engineering [32]. Within isotropy, the range of attainable effective
material properties lieswithin rather confined limits, so that anisotropic
material architectures are required to broaden the feasible design space
[33]. In such a space, the material's normal and shear resistance can be
tuned independently from other primal material parameters, such as
from the material's effective Poisson ratio value [34]. Up to now, differ-
ent anisotropic unit-cell designs with ultra-soft or ultra-stiff effective
normal material resistance have been contrived [35–37]. Their normal
modulus can be controlled to substantially vary among the different
material loading directions, exceeding the isotropic limits by orders of
magnitude [38,39].

The inner material architecture and the degree of anisotropy of
architected media affect, not only their static, but also their wave-
propagation characteristics. More specifically, dispersion attributes
well differ between isotropic, hexagonal-shaped lattices and aniso-
tropic, auxetic inner material architectures [40–43].What is more, stiff-
ness anisotropy can be exploited to provide wave propagation isolation
features, both for normal and shear waves [39]. Anisotropic inner mass
density distributions can be aswell used tomanipulate longitudinal [44]
and flexural [45] waves over certain frequency regions. Such inner ma-
terial designs form the basis for the engineering of deviceswith focusing
and subwavelength imaging capabilities; attributes of primal impor-
tance in the field of non-destructive structural evaluation [46].

Most of the previously reported effective mechanical properties
arise from inner material designs whose effective bulk deformation is
uncoupled from rotations [47,48]. As such, when compressed or ten-
sioned, they simply normally deform, without changing their shape
(Fig. 1). However, this is not uniquely the case for a specific class of
metamaterials which have been named as chiral due to their inherent
lack of symmetry with respect to their mirror lattice image [49,50]. Up
to now, different chiral lattice designs have been reported, yielding ei-
ther isotropic auxetic –as for hexachiral lattices [51]- or anisotropic
and non-auxetic effective material behaviors, as in the case of chiral-
diamond and tetrachiral lattices [52,53]. For the latter, bulk deforma-
tions are coupled to rotations creating a normal to shear strain coupling,
already at the constitutive level [53]. This inherent coupling leads to a
macroscopic response where normal forces induce shear-forces and
vice-versa, so that normal loads induce lateral deformations, as sche-
matically depicted in Fig. 1.

Lateral bending deformations as of the application of normal
forces have been artificially created with the use of additional struc-
tural elements, such as cables. The latter constitute common practice
in the case of structures, for which some load equilibration mecha-
nism needs to be applied to counterbalance bending deflections,
with typical macroscale examples being bridge structures [54]. For
such systems, the additional element needs to be eccentrically
placed and normally pre-stressed to create inner moments and
shearing forces that cancel out the bending loading pattern of inter-
est [54,55]. However, the use of advanced materials with an inner
coupling of normal and bending deformations premises a bending
equilibration functionality, which arises from the material's very
constitutive behavior and not from the use of additional elements;
a potential that has not been up to now studied.What is more, the re-
lation between bending and normal deformations remains un-
known, along with the constitutive formulation of the effective
macroscale forces and moments.

In the current work, we investigate the potential of artificial mate-
rials to equilibrate bending deformations through tensile loads out of
their constitutive behavior. To that scope, we make use of tetrachiral
unit-cell structures that lead to a macroscopic, homogenized response
with an inherent normal to shear strain coupling. We introduce the ar-
tificial material's architecture and basic constitutive relations in
Section 2. Thereafter, we derive the bending equilibrium equations of
beam elements for the case of materials with an inherent normal to
shear strain coupling, starting from the full order compliance matrix
(Section 3.1). In Section 3.2, we summarize the numerical specifications
of a cantilever beam architectured with tetrachiral lattices, while in
Section 4 we elaborate the experimental fabrication and testing proce-
dures of micro-architectured tetrachiral cantilever beams. In Section 5,
after summarizing the effective mechanical properties of the tetrachiral
lattice (Section 5.1), we provide the deformation and equilibrium me-
chanics of cantilever beam structures with inner normal to shear strain
couplings (Section 5.2). We make use of the obtained results to equili-
brate the end tip deflection of a deflected beam structure through ten-
sion (Section 5.3), while we analyze both analytically and
experimentally the normal-load induced, bending kinematics
(Section 5.4). We provide an overall discussion on the implications of
the coupling between bulk and shear deformations in Section 5.5 and
conclude in Section 6.
2. Materials and methods

2.1. Metamaterial architecture

Among typical chiral lattice structures [49,51,52], we select the
tetrachiral lattice structure for the present work as a typical anisotropic
unit-cell design with an inherent normal to shear strain coupling. Fig. 2
shows a schematic of the lattice structure along with a detailed view of
its unit cell. The nodes of the primal unit-cell are represented with filled
black circles, while its periodicity vectors λ1, λ2 in red. In a first approx-
imation, the relative density ρ ∗ of the two-dimensional structure with
elements of thickness t and length L are expressed as a function of



Fig. 1. Schematic representation of the deformation mechanism for a common engineering material and for a material with an inner normal to shear strain coupling.
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their slenderness η = L/t and angle θ, as follows:

ρ� ¼ 2 sþ cð Þ=η ð1Þ

where s and c in Eq. (1) stand accordingly for sinθ and cosθ. Fig. 3a de-
picts the dependence of the unit-cell architecture on the angle θ, while
Fig. 3b provides the relative density ρ ∗ for different values of the slen-
derness ratio η and lattice angle θ.

The structure is of chiral nature so that its mirror image is different
from the structure itself [49]. This lack of mirror symmetry is responsi-
ble for an unconventional mechanical response, as shown in the sequel.
Different frommost engineering materials, no in-plane direction can be
found for which the application of normal stresses does not induce any
shear deformation. In other words, the normal and shear deformations
are coupled in the tetrachiral lattice, which will be mathematically
Fig. 2. Tetrachiral-shaped unit-cell alongwith its periodicity in dashed lines. The unit-cell intern
latin characters (a). Different realizations of the unit-cell structures are provided in (b)-(d) for v
square side length (a+ b)/a is provided as a function of the lattice angle θ in (e). (For interpretat
of this article.)
detailed and exploited at the structural level in the developments to
follow.

2.2. Constitutive relations

The elastic constitutive equations are developed for describing the
macroscopic stress-strain response of tetrachiral metamaterials for
plane stress conditions, i.e. for conditions where the structure can de-
form freely along the out-of-plane direction. For a general anisotropic
solid, the elastic stress-strain relationship may bewritten in the follow-
ing form:

ε ¼ Sσ→
εxx
εyy
2εxy

2
4

3
5 ¼

S11 S12 S13
S21 S22 S23
S31 S32 S33

2
4

3
5 σ xx

σyy
σxy

2
4

3
5 ð2Þ
al nodes are denotedwith red, while the numbering of the unit-cell's beam elementswith
arying lattice angles θ and slenderness ratio values η. The ratio of the total arm length to the
ion of the references to colour in thisfigure legend, the reader is referred to theweb version



Fig. 3. Tetrachiral lattice geometry as a function of the angle θ (a). The relative density evolution for different lattice angles θ and element slenderness ratios η (b). Normal and shear
modulus evolution as a function of θ for a lattice with η = 10 normalized with respect to the elastic modulus of the basis material (c). The dependence of the coupling coefficients on
the parameter θ for a lattice with a slenderness η = 10 (d).
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where εxx, εyy denote the normal strain components and εxy the mathe-
matical shear strain in an x-y-coordinate frame (small strain setting).
The corresponding Cauchy stress components are denoted as σxx, σyy

and σxy. The relationships among the six independent components of
the symmetric compliance tensor (in the x-y-coordinate system) and
the elastic normal and shear moduli, as well as the Poisson's ratios
read [33]:

Ex ¼ 1
S11

; Ey ¼ 1
S22

;Gxy ¼ 1
S33

; νyx ¼ −
S12
S22

;νxy ¼ −
S21
S11

ð3Þ

We define the non-dimensional normal to shear χx,xy,χy,xy and
shear to normal coupling coefficientsχxy,x,χxy,y, by dividingwith respect
to the shear (S33) and normal (S11, S22) compliance-related terms, as fol-
lows:

χx;xy ¼
S13
S33

;χy;xy ¼
S23
S33

;χxy;x ¼
S31
S11

;χxy;y ¼
S32
S22

ð4Þ

Using the definitions of Eqs. (3) and (4), the compliance tensor S of
Eq. (1) is written as follows:

S ¼

1
Ex

−νyx

Ey

χx;xy

Gxy
−νxy

Ex

1
Ey

χy;xy

Gxy
χxy;x

Ex

χxy;y

Ey

1
Gxy

2
6666664

3
7777775 ð5Þ

The components of thematerial's stiffness tensor C (in the x-y coor-
dinate system) are obtained by inverting the compliance matrix C =
S−1.
2.3. Models for computing the constitutive response

2.3.1. Discrete homogenization analysis
We compute the lattice effective mechanical properties using a dis-

crete homogenization analysis technique. As detailed in [13,14], the
stiffnessmatrix C is obtained through the Riemann integral of the stress
vector contributions Si of each node over the unit-cell.

Z
Ω

σ∂v f

∂x
dx ¼ 0; σ ¼ 1

g
Si⊗

∂R
∂λi

; Si ¼
X
b∈Ω

Fbδib ð6Þ

In Eq. (6), Fb stands for the normal and transverse forces in each
inner lattice element, while R for the position vectors of the lattice
inner nodes as defined by the periodicity vectors λi of the unit (Fig. 2)
andgfor the Jacobian of their transformation to the Cartesian systemX,
Y. The parameter δib describes the tessellation of the unit-cell, taking
values in the subset δib ∈ [−1,0,1]. The stress-vector contributions Si

in Eq. (6) are determined from the asymptotic expansion form of the
equilibrium equations over the lattice geometry. The asymptotic expan-
sion is carried out both for the static and kinematic variables, while the
overall equilibrium writes:

X
ν∈Z2

X
b∈Ω

Fb v f Oð Þ−v f Eð Þ� � ¼ 0

X
ν∈Z2

X
b∈Ω

MOw Oð Þ þMEw Eð Þ ¼ 0
ð7Þ

where in Eq. (7), vf(O), w(O) and vf(E), w(E) represent accordingly
the velocity and rotation fields and MO, ME the moments developed at
the origin and extremity of each inner unit-cell element. We provide
the complete tessellation of the structure entering the equilibrium
equations of Eq. (7) in Table 1, following the nodal and element num-
bering of Fig. 1a.
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2.3.2. Finite element homogenization analysis
For validation purposes, we compare the discrete homogenization

results with full-scale finite elementmodels comprised of 11 tetrachiral
cells in eachmaterial direction. The unit-cells follow an angle of θ=15°
while models of different slenderness are constructed by varying the
thickness of its arms, so that η takes discrete values between 5 and 30,
upon increments of 5. Compliance-based moduli verifications are car-
ried out, applying normal and shear stresses (Eq. (2)). For the normal
stress application, the models are constrained in the middle of their
left side and deformed at their right side along the X direction, upon a
free lateral contraction. For the shear tests, the left side of the models
is constrained and a stress along the Y axis is applied at their right
side. In each case, the elastic modulus Ex, the coupling coefficients χxy,

x, the shear modulus Gxy and the coefficient χx,xy are obtained, using
the definitions of Eqs. (3)–(4).

3. Structural analysis

To demonstrate the unconventional mechanical response of chiral
metamaterials at the structural level, the mechanical response of a can-
tilever beammade from the above tetrachiral metamaterial is analysed
in detail. For this, we develop an extended Timoshenko beam theory
(Section 3.1), as well as a detailed finite element model of a cantilever
beam with a tetrachiral mesostructure (Section 3.2).

3.1. Extended Timoshenko beam theory

We start with the standard kinematics of the Timoshenko beam the-
ory [56]. For the two-dimensional, small strain case, with no axial twist
moment development ϕx and zero out of plane deformations (θy = 0),
the motion of the beam centerline [57] is described through the axial
displacement u(x) and the deflection v(x), as depicted in Fig. 4. The dis-
placement of a pointwith coordinates (x, y) comprisedwithin the beam
then reads:

ux x; yð Þ ¼ u xð Þ−yθz xð Þ ð8Þ

uy x; yð Þ ¼ v xð Þ

where θz in Eq. (8) denotes the rotation of beam cross-section around
the z-axis (Fig. 4). According to the previously defined kinematics, we
compute the normal strain field component:

εxx ¼ ∂u x; yð Þ
∂x

¼ ∂
∂x

u xð Þ−yθz xð Þð Þ ¼ u0 xð Þ−yθ0z xð Þ; ð9Þ

and the shear strain field component, as follows:

2εxy ¼ ∂u x; yð Þ
∂y

þ ∂v x; yð Þ
∂x

¼ −θz þ v0 xð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼γy

ð10Þ

After inserting the stress-strain relations for a fully anisotropicmate-
rial (Eq. (2)), we have:

S11σ xx þ S12σyy þ S13σxy ¼ u0 xð Þ−yθ0z xð Þ; ð11Þ
Table 1
Tessellation of the tetrachiral lattice unit-cell architecture of Fig. 2a.

Beam (b) i ii iii iv v vi

O (b) 1 2 1 3 3 4
E (b) 2 3 4 4 1 2
δ1 0 0 0 0 1 0
δ2 0 0 0 0 0 1
S31σxxþS32σyyþS33σxy¼−θz þ v0 xð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
¼γy

: ð12Þ

Next, we integrate both the left and right hand sides of Eqs. (11) and
(12) over the cross-sectional area A. We neglect the normal stress term
in the y-direction and introduce the generalized forces N(x) = ∫ σxxdA
(axial force), V(x) = ∫ σxydA (shear force), and Mz(x) = ∫ − yσxxdA
(bending moment) [57]. The resulting normal and shear force equilib-
rium equations then reads:

S11N þ S13V ¼ u0 xð ÞA−θ0z xð Þ
Z
A

ydA

|fflfflffl{zfflfflffl}
¼0

; ð13Þ

S31N xð Þ þ S33V xð Þ ¼ −θz þ v0 xð Þð ÞA ð14Þ

The final expressions for the generalized axial and shear forces are
then obtained after substituting the compliances by the corresponding
moduli (Eq. (3)), as follows:

N xð Þ ¼ ExAu
0 xð Þ−S13

S11
V xð Þ ð15Þ

V xð Þ ¼ GxyA −θz þ v0 xð Þð Þ−S31
S33

N xð Þ ð16Þ

In close analogy, an explicit expression for the bending moment is
obtained, when multiplying Eq. (11) with y before integration:

Mz xð Þ ¼ θ
0
z xð ÞExIz ð17Þ

with Iz = ∫ y2dA denoting the secondmoment of inertia. Eqs. (15)–(17)
define a set of differential equations for the functions u(x), v(x) and θz
(x). In the case of statically-determinate systems, the generalized forces
are known from equilibrium and the solutions for u(x), v(x) and θz(x)
are readily obtained through integration.

3.2. Detailed cantilever beam finite element model

In order to numerically study the mechanics of beams architected
with materials with a fully anisotropic constitutive behavior, we con-
struct a beam structure with a length of 222 mm and a height of
55 mm, architected with 30 cells along its length and 8 cells along its
width, as schematically depicted in Fig. 7a. The tetrachiral cells follow
an angle of θ = 15o and are given a slenderness ratio of η = 10. The
modulus of the basis material is Es = 200GPa, while the out of x − y
plane thickness is 0.84 mm. The cantilever structure is held fixed at its
left end, while a normal force Nl is applied at its right end, as schemati-
cally depicted in Fig. 7. The structure is discretized with standard linear
solid elements with a fine enough refinement of approximately 10 solid
elements for each of the arms of the tetrachiral lattice (Fig. 7a).

4. Experimental procedures

We complement the analytical formulations and numerical models
by experiments. In the current section, we detail the fabrication process
and the experimental setup of a micro-architectured cantilever beam.

4.1. Fabrication

Micro-architectured cantilever beam structures are fabricated
with the use of a two-photon polymerization technique via a direct
laser writing system provided by Nanoscribe GmbH (Photonic Pro-
fessional GT). The structures of approximate dimensions of
180 μm × 200 μm × 600 μm (cross section and length respectively,
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Fig. 8) are written on glass substrates with the use of the IP-S pho-
toresist and the dip-in mode with a laser power of 40 mW and
scan speed of 10 mm s−1. For the development process, the struc-
tures were dipped in a developer solution (Mr Dev 600) for 12 min
and in isopropyl alcohol bath for another 2 min. Nitrogen gas was
used for drying the samples after the development process was
completed.
4.2. Microstructure imaging

The micro-chiral structures were observed with a Scanning Electron
Microscope (SEM) by FEI (Scios, Dual Beam). From the images captured,
the length, width and height of the specimens were measured, as well
as the feature sizes like wall thickness and the inner tetrachiral arm
length (Fig. 8a). Based on the measurements made, the slenderness
ratio of the tetrachiral cells was computed to be η = 6.5 ± 0.5, with
the variation to be attributed to imperfections during the polymeriza-
tion and solvation process.
4.3. Compression testing

Uniaxial compression experiments were conducted in order to
obtain the displacement profile of the structures, as schematically
represented in Fig. 4. A custom-made displacement-controlled
microtesting device was used for the purpose of this study [58];
the device features a 5-axis stage on which the glass substrate
with the micro-chiral structures is attached. The structures were
aligned and compressed against a flat punch of 1 mm × 0.5 mm di-
mensions that is connected to a strain-gaged load cell by Omega
(LCAE 6 N). The flat punch was moved by a piezolegs motor
(Micromo, model LEGS Linear Twin 40 N) at a prescribed speed
of 1 μm s−1. The flat punch was recorded during the compression
with the use of an optical microscope by Keyence (VHX-5000) at
400× magnification and a frequency of 15 Hz. The displacements
of interest were estimated in a post-processing step by utilizing
the digital image correlation software by Correlated Solutions
(VIC-2D). The corresponding results are summarized in
Section 5.4.
5. Results and discussion

5.1. Elastic properties of the tetrachiral metamaterial

Using the discrete homogenization analysis method
(Section 2.3.1), we compute the elastic and shear moduli as well as
the coupling coefficients of Eq. (4) for the tetrachiral lattice of
Fig. 2. The resulting analytical expressions for the normal and shear
modulus are given as a function of the modulus of the base material
Fig. 4. Beam kinematics accountin
Es as follows:

Ex ¼ Ey ¼ 4Es
η 8sc4η2 þ 2c5η2−9c2sη2−8c3η2−4c2sþ sη2 þ 4c3 þ 6cη2 þ 2sð Þ

Gxy ¼ 2Es
η −4sc4η2 þ 4c3η2 þ 2c2sþ sη2−4c3−2cη2−sþ 4cð Þ;

ð18Þ

The corresponding expressions for the coupling coefficients of
Eq. (3) are computed as follows:

χxy;x ¼
−8s2c3η2 þ 6η2−8

� �
sc2 þ 2s2 η2 þ 2

� �
cþ −2η2 þ 2

� �
s

2c5η2 þ 8sc4η2 þ 4−8η2ð Þc3− 9η2 þ 4ð Þsc2 þ 6cη2 þ s η2 þ 2ð Þ; χxy;y ¼ −χxy;x

χx;xy ¼
4s2c3η2 þ sc2 −3η2 þ 4

� �
−s2c η2 þ 2

� �þ s η2−1
� �

4sc4η2−4c3η2−2c2s−sη2 þ 4c3 þ 2cη2 þ s−4c
;χy;xy ¼ −χx;xy

ð19Þ

In Fig. 3c, we provide the dependence both of the normal and of the
shear modulus summarized in Eq. (18), as a function of the angular ar-
rangement of the unit-cell for a slenderness value η=10. The results in-
dicate that increasing the unit-cell angle θ leads to a lower effective
normal modulus and to an increased shear stiffness. What is more, the
normal to shear coupling coefficient χx,xy decreases for a lattice angle
of 20° with respect to an angle of 5° by approximately 50% (Fig. 3d).
Contrariwise, the χxy,x coefficient increases upon increasing lattice
angle, remaining however almost an order of magnitude lower than
the χx,xy coefficient (Fig. 3d).

In Fig. 5, we present the dependence of the effective normal and
shear moduli (Fig. 5 left), as well as of the normal to shear coupling co-
efficients (Fig. 5 right) on the lattice slenderness ratio η for a given lat-
tice angle θ, which has been set to 15o and Es = 1. In Fig. 5, we depict
the discrete homogenization results with continuous and dotted lines,
while we use red dots for the full-scale finite element computation re-
sults. The discrete and the continuous homogenization results of Fig. 5
lie in close agreement for all mechanical parameters and slenderness
ratio values η.

Comparing Fig. 3c with the left subplot of Fig. 5, we note that the
inner element slenderness η has amore prominent effect on the normal
and shearmoduli than the angular arrangement of the unit-cells. In par-
ticular, both the normal Ex and the shearmaterial modulus Gxy decrease
in a hyperbolic manner upon increasing element slenderness η, with
low and high slenderness effective properties to differ by orders ofmag-
nitude. Contrariwise, the normal to shear coupling coefficients χxy,x and
χx,xy remain either practically unaffected (χx,xy) or slightly increase for
higher η values. As of the lattices' tetragonal symmetry [34], the corre-
sponding y-axis related coupling coefficients are equal and opposite to
the x-axis ones, so that χxy,y = − χxy,x and χy,xy = − χx,xy; a result
that has been verified for the analytical formulas of Eq. (19).
g for Timoshenko mechanics.



Fig. 5.Normal and shearmodulus Ex,Gxy (a) and coupling coefficientsχxy,x andχx,xy (b), as a function of the unit-cell element slenderness η for the tetrachiral lattice structure of Fig. 2with
θ = 15°.
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5.2. Deformation and equilibrium mechanics of cantilever beam structures
with an inner normal to shear strain coupling

According to the extended Timoshenko-mechanics based theory of
Section 3.1, the deflection of an anisotropic cantilever beam for the
case of the concurrent action of a distributed load q and of a normal
load Nl (Fig. 6) is given in the form of a closed-form expression, as fol-
lows:

v xð Þ ¼ 1
GxyA

qlx−qx2=2þ S31
S33

Nlx
� �

þ 1
ExIz

−
ql2x2

4
þ qlx3

6
−
qx4

24

 !
ð20Þ

while the normal displacement field as:

u xð Þ ¼ 1
ExA

Nlxþ
S13
S11

qlx−q
x2

2

� �� �
ð21Þ

The deflection v(x) of Eq. (20) simplifies to the well-known cantile-

ver beam tip deflection of classical beam theories ðvðlÞ ¼ −
ql4

8ExIz
Þupon a

distributed load q, if the shear and normal to shear coupling constitutive
contributions are to be neglected. Using Eq. (20), we compute the nec-
essary end-forceNl for the end tip of the cantilever to be equilibrated (v
Fig. 6. Cantilever beam architected with a tetrachiral unit cell (Fig. 2
(l) = 0), as follows:

Nl ¼
S33GxyA
S31l

ql4

8ExIz
−

ql2

2GxyA

 !
¼ ExA

χxy;xl
ql4

8ExIz
−

ql2

2GxyA

 !
ð22Þ

In complete analogy, we obtain for the case of point load F at the end
of the cantilever (Fig. 6), the following expression for the normal force
Nl:

Nl ¼
A
S31l

Fl3

3ExIz
−

Fl
GxyA

 !
¼ ExA

χxy;xl
Fl3

3ExIz
−

Fl
GxyA

 !
ð23Þ

5.3. Numerical validation

We load the cantilever beam structure of Section 3.2 independently
oncewith a distributed load q and oncewith a point load F (Fig. 6). For a
concentrated load of F = 0.1KN, we compute a normal traction force
magnitude of Nl = 1.77KN to equilibrate the beam end tip deflection
using Eq. (23). The bending deflection due to F amounts to vF(l) =
7.34mm (downwards). Accordingly, we compute the bending deflec-
tion created by the normal traction force to be vNl

(l) = − 7.25mm
pointing upwards, in a counter-clockwise rotational direction, thus op-
posite to the bending deformation created by F. Fig. 7b provides a sche-
matic representation of the deformed specimen structure, created
) and a constitutive law with a normal to shear strain coupling.



Fig. 7.Numericalmodel of ametamaterial beam structure architectedwith tetrachiral unit-cells, clamped at its left end, end normally loaded at its right end (a). Its deformed configuration
after the application of an end normal load Nl is depicted in (b).
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solely by the application of the normal load Nl. The values exhibit a rel-
ative difference of ∣vF(l) − vNl(l) ∣ /vF(l) = 1%, suggesting a very good
agreement of the analytical formula predictions of Section 5.2 with the
numerical results.

In an analogous manner we compute the normal force required to
equilibrate the cantilever beam structure of Section 3.2 when subject
to a distributed load q = 0.01 KN/mm. Using Eq. (22), we obtain a nor-
mal load value of Nl = 13.64KN. The bending deflection created by
the distributed load q is vq(l) = 60.8mm. Applying the traction load Nl

at the end of the cantilever yields an upward, opposite direction deflec-
tion of vNl(l) = − 58.9mm. Its absolute magnitude lies in very close
agreement with the one created by the distributed load (∣vq(l) − vNl

(l) ∣ /vq(l) = 3%), counterbalancing the created bending deflection.
The results are summarized in Table 2.

5.4. Experimental validation

We subsequently analyze the bending displacement profile created
by the application of normal forces at the tip of the architected
tetrachiral structure. Using the analytical expressions of Eqs. (20) and
(21) for the displacement profiles and setting the terms related to the
external bending loads to zero (q = 0), we obtain for the horizontal
and vertical displacement field the following expressions:

u xð Þ ¼ Nl x
ExA

v xð Þ ¼ S31
S33

Nl x
GxyA

)
⇒v xð Þ=u xð Þ ¼ S31

S33

Nl x
GxyA

� �
=

Nl x
ExA

� �
¼ S31 � Ex

¼ S31
S11

¼ χxy;x ð24Þ

where in Eq. (24), the definitions of Eqs. (3) and (4) have been
employed. Eq. (24) suggests that the ratio of displacements v(x)/u(x)
is independent of the magnitude of the normal force applied and of
Table 2
End tip displacements of the cantilever beam upon the action of point or distributed bending l

Load F ∣ q (KN|KN/mm) Nl (KN)

Point 0.1 1.77
Distributed 0.01 13.64
the position x of interest, being a constant. The displacement ratio is
equal to χxy,x, which is a characteristic parameter for the cantilever
structure's normal to shear strain structural behaviour.

In Fig. 8, we experimentally investigate the bending displacement
profile created upon the application of normal forces, making use of
cantilever beam specimens architected with tetrachiral elements
(Fig. 8a, b). In Fig. 8c, the resulting vertical bending deflection v(l) at
the centerline of the cantilever tip is presented as a function of the hor-
izontal displacement u(l), throughout the loading time. In Fig. 8d we
provide the mean displacement ratio based on the slope of Fig. 8c.

We note that the ratio of the tip bending deflection to the tip normal
displacement (Fig. 8d) is in close agreement with the analytical predic-
tions of Eq. (24) for the design specifications of Section 4. In particular,
the ratio of the bending to the horizontal displacement v/u has been
computed to be v/u=1.97± 0.15, providing a mean value of 1.97 cou-
pling coefficient χxy,x. The slope variance is to be primarily attributed to
the variance of the element slenderness ratio η=6.5± 0.5 in the fabri-
cation process (Section 4). It is to note that the bending deflection v is
higher than the structures' normal displacement, so that a rather mini-
mal normal strain of 0.5% (u=3μm) induces a bendingdeflection that is
approximately 1% (v ≈ 6μm) of the cantilever beams' length. We pro-
vide a video of the cantilever deformation upon normal loading in the
form of complementary material.

5.5. Discussion

For the vast majority of common engineering materials, such as
metals, polymers and rubbers, uniaxial normal loads cause deforma-
tions within the direction of the load application [47,48]. As such, the
material's bending and normal deformations can be well separated, so
that changes in its bending or normal displacement field take place in-
dependently under small strains.

Coupling the material's normal and bending deformation modes
provides an additional design degree of freedom. In such a design
oads concurrently with a normal end force.

vF/q(mm) vNl
(mm) ðvF=q−vNl

Þ
vF=q

ð%Þ

7.34 −7.25 1
60.8 −58.9 3



Fig. 8.Micro-architected cantilever beam structure of a length of 600μm (a) architectedwith tetrachiral unit cells of a slenderness ratio η=6.5±0.5. The relation of the centerline end-tip
bending deflection v(x) to the horizontal displacement is linear for each of the 3 specimens tested (c), with a slope of 1.97 ± 0.15 (d).
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domain, bending effects can be modulated by normal loads and vice
versa. For the coupling of the material's mechanics to become feasible,
a non-isotropic constitutive material behaviour is required, so that the
off-diagonal terms of Eq. (2) are non-zero. However, anisotropy does
not uniquely entail a fully populated constitutive matrix [33]. For the
two-dimensional constitutive behaviour of Eq. (2), several anisotropic
inner material designs can be identified with a decoupled effective nor-
mal and bending behaviour, indicative examples being artificial mate-
rials architected with square or re-entrant hexagonal unit-cells [34].

However, when anisotropy is combined with chirality, as in the case
of a metamaterial that is architectured with the tetrachiral unit-cell
structures of Fig. 2, bulk deformations are coupled to rotations. As a re-
sult, normal forces induce lateral bending displacements, while bending
loads can be exerted to trigger contraction or extension. For the cantile-
ver beam of Fig. 6, the application of a purely axial loadΝl creates a hor-
izontal and a vertical displacement field u(x) and v(x) (Section 5.2)
which are related by the normal to shear load coupling coefficient χxy,

x (Section 5.4). The latter varieswithin rather narrowbounds for the dif-
ferent unit-cell designs (different θ Fig. 3d and η values Fig. 5b), contrary
to thematerial's normal and shear resistance, which can be tuned to ad-
just the extensional and bending strength of the cantilever by orders of
magnitude (Fig. 5a).

The mechanical behaviour arising from the constitutive coupling
among normal and shear strains can be effectuated both at a macro
(Section 5.3) and at a microscale (Section 5.4). However, classical
bending theories do not suffice to characterize a mechanical re-
sponse of the kind, as they a-priori assume simplified, uncoupled ki-
nematics [56]. As a result, an enhanced constitutive formulation is
required for the coupled mechanics to be captured (Sections 3.1,
5.2). Using the tetrachiral unit-cell structure of Fig. 2, tensile normal
forces need to be applied, in order to counterbalance the end tip
bending deflection of the architected cantilever structure
(Section 5.2). The sign and the magnitude of normal load to be ap-
plied, directly relates to the normal to shear coupling coefficient
χxy,x (which is strictly positive for the lattice designs of Fig. 5), a pa-
rameter that is controlled by the unit-cell design and can be opti-
mized to meet certain objectives for the homogenized response; an
analysis which exceeds the scope of the current work. Moreover,
the applied normal load is proportional to the length of the
architected beam structure, so that higher beam lengths require in-
creased normal forces to equilibrate (Eqs. (22)–(23)).
6. Conclusions

Overall, the current work has analysed the potential of structures
with a non-isotropic and chiral inner material architecture to balance
bending loads though tensile loads, harnessing their inherent coupling
of normal and bending deformations. To that scope, the enhanced for-
mulation required for the description of their coupled normal and bend-
ing response has been derived in the context of beam mechanics,
starting from first principles. Thereupon, closed-form parametric ex-
pressions have been elaborated for the equilibration of cantilever
beam structures under concentrated and distributed bending loads.
The analytical results have been complemented by dedicated numerical
and experimental investigations. The results suggest that the coupling
of normal and shear deformations is a constitutive material behaviour
that can be used as a primal structural deformation control mechanism.
We aspire that the current work provides the basis, not only for the
analysis and design of beam structures of the kind, but also for the engi-
neering of a wide range of structures, such as plates and domes, with an
inherently enhanced kinematic behaviour, which harnesses inner nor-
mal to shear couplings to balancemacroscopic, externally applied loads.

Nomenclature
ρ* relative density
η slenderness ratio
L lattice element length
t element thickness
θ lattice angle
λi lattice periodicity vectorsε strain tensorσ stress tensor
S compliance tensor
C stiffness tensor
E normal modulus
G Shear modulus
ν Poisson's ratio
χ coupling coefficients
Fb lattice forces
M lattice moments
vf velocity fields
w rotation fields
δ tessellation index



10 N. Karathanasopoulos et al. / Materials and Design 189 (2020) 108520
g Jacobian
ϕx beam axial twist
u beam axial displacement
v beam deflection
A beam section area
N beam axial force
V beam shear force
Mz beam bending moment
Iz moment of inertia
q beam distributed load
F beam concentrated load
Nl beam axial force

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.matdes.2020.108520.

Declaration of competing interests

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

CRediT authorship contribution statement

N. Karathanasopoulos:Conceptualization, Methodology, Formal
analysis, Writing - original draft.F. Dos Reis:Methodology, Validation.
M. Diamantopoulou:Investigation, Validation.J.-F. Ganghoffer:
Validation.

Acknowledgements

The authors would like to gratefully acknowledge the support and
insightful comments of Prof. Dr. Dirk Mohr.

Data availability

The raw data required to reproduce the experimental findings of the
work are available to download from https://karathanasopoulos.gr/
software/

References

[1] Y. Liu, X. Zhang, Metamaterials: a new frontier of science and technology, Chem. Soc.
Rev. 40 (2011) 2494–2507.

[2] T.J. Cui, D.R. Smith, R.P. Liu, Metamaterials: Theory, Design and Applications,
Springer, 2010.

[3] K. Liu, T. Zegard, P.P. Pratapa, G.H. Paulino, Unraveling tensegrity tessellations for
metamaterials with tunable stiffness and bandgaps, J. Mech. Phys. Solids 131
(2019) 147–166.

[4] D.R. Smith, J.B. Pendry, Homogenization of metamaterials by field averaging, J. Opt.
Soc. Am. B 23 (3) (2006) 391.

[5] Hao-Wen Dong, Sheng-Dong Zhao, Yue-Sheng Wang, Chuanzeng Zhang, Topology
optimization of anisotropic broadband double-negative elastic metamaterials, J.
Mech. Phys. Solids 105 (2017) 54–80.

[6] Y. Liu, H. Hu, A review on auxetic structures and polymericmaterials, Sci. Res. Essays
5 (10) (2010) 1052–1063.

[7] X. Zhu, L. Xu, X. Liu, J. Xu, P. Hu, Z.-D. Ma, Theoretical prediction of mechanical prop-
erties of 3D printed Kagome honeycombs and its experimental evaluation, Proceed-
ings of the Institution of Mechanical Engineers, Part C: J. of Mech. Eng. Sc. 233 (18)
(2019) 6559–6576.

[8] M.S. Rad, H. Hatami, Z. Ahmad, A.K. Yasuri, Analytical solution and finite element ap-
proach to the dense re-entrant unit cells of auxetic structures, Acta Mech. 230 (6)
(2019) 2171–2185.

[9] T. Tancogne-Dejean, N. Karathanasopoulos, D. Mohr, Stiffness and strength of
hexachiral honeycomb-like metamaterials, ASME. J. Appl. Mech. 86 (11) (2019)
111010.

[10] M. Mosby, K. Matouš, Computational homogenization at extreme scales, Extreme
Mechanics Letters 6 (2016) 68–74.

[11] M. Tabatabaei, D. Le, S.N. Atluri, Nearly exact and highly efficient elastic-plastic ho-
mogenization and/or direct numerical simulation of low-mass metallic systems
with architected cellular microstructures, J. Mech. Mater. Struct. 12 (5) (2017).

[12] L. Kaczmarczyk, C.J. Pearce, N. Bicanic, Studies of microstructural size effect and
higher-order deformation in second-order computational homogenization, Comp.
and Struct. 88 (23–24) (2010) 1383–1390.
[13] F. Dos Reis, J.F. Ganghoffer, Construction ofmicropolar continua from the asymptotic
homogenization of beam lattices, Comp. and Struct. 112-113 (2012) 354–363.

[14] F. Dos Reis, J.F. Ganghoffer, Equivalent mechanical properties of auxetic lattices from
discrete homogenization, Comp. Mat. Sc. 51 (1) (2012) 314–321.

[15] G.N. Greaves, A.L. Greer, R.S. Lakes, T. Rouxel, Poisson’s ratio and modern materials,
Nat. Mater. 10 (2011) 823–838.

[16] Y. Prawoto, Seeing auxetic materials from the mechanics point of view: a structural
review on the negative Poisson’s ratio, Comput. Mater. Sci. 58 (2012) 140–153.

[17] K.E. Evans, A. Alderson, Auxetic materials: functional materials and structures from
lateral thinking! Adv. Mater. 12 (2000) 617–628.

[18] J.N. Grima, L. Mizzi, K.M. Azzopardi, R. Gatt, Auxetic perforatedmechanical metama-
terials with randomly oriented cuts, Adv. Mater. 28 (2016) 385–389.

[19] X. Ren, J. Shen, P. Tran, T.D. Ngo, Y.M. Xie, Design and characterisation of a tuneable
3D buckling-induced auxetic metamaterial, Mater. Des. 139 (2018) 336–342.

[20] R. Brighenti, A. Spagnoli, M. Lanfranchi, F. Soncini, Nonlinear deformation behaviour
of auxetic cellular materials with re-entrant lattice structure, Fatigue Fract. Engng.
Mater. Struct. 39 (2016) 1460–2695.

[21] P.S. Theocaris, G.E. Stavroulakis, P.D. Panagiotopoulos, Negative Poisson’s ratios in
composites with star-shaped inclusions: a numerical homogenization approach,
Arch. Appl. Mech. 67 (4) (1997) 274–286.

[22] K.E. Evans, B.D. Caddock, M.J. Nobes, Microporous materials with negative Poisson’s
ratios. II. Mechanisms and interpretation, J. of Phys. 22 (1989) 1883–1887.

[23] N. Gaspar, X.J. Ren, C.W. Smith, J.N. Grima, K.E. Evans, Novel honeycombs with
auxetic behaviour, Acta Mater. 53 (8) (2005) 2439–2445.

[24] J.N. Grima, R. Gatt, N. Ravirala, A. Alderson, K.E. Evans, Negative Poisson’s ratios in
cellular foam materials, Mater. Sci. Eng. A 423 (1) (2006) 214–218.

[25] H. Yang, L. Ma, Multi-stable mechanical metamaterials with shape-reconfiguration
and zero Poisson’s ratio, Mater. Des. 152 (2018) 181–190.

[26] R.S. Kumar, D.L. McDowell, Multifunctional design of two-dimensional cellular ma-
terials with tailored mesostructure, Int. J. Solids and Struct. 46 (14) (2009)
2871–2885.

[27] J.N. Grima, L. Oliveri, D. Attard, B. Ellul, R. Gatt, G. Cicala, G. Recca, Hexagonal honey-
combs with zero Poisson’s ratios and enhanced stiffness, Adv. Eng. Mater. 12 (2010)
855–862.

[28] Y.H. Zhang, X.M. Qiu, D.N. Fang, Mechanical properties of two novel planar lattice
structures, Int. J. of Solids and Struct. 45 (13) (2008) 3741–3768.

[29] X. Zheng, H. Lee, T.H. Weisgraber, M. Shusteff, J. DeOtte, E.B. Duoss, J.D. Kuntz, M.M.
Biener, Q. Ge, J.A. Jackson, S.O. Kucheyev, N.X. Fang, C.M. Spadaccini, Ultralight,
ultrastiff mechanical metamaterials, Science 344 (6190) (2014) 1373–1377.

[30] S. Xu, J. Shen, S. Zhou, X. Huang, Y.M. Xie, Design of lattice structures with controlled
anisotropy, Mater. Des. 93 (2016) 443–447.

[31] M. Tabatabaei, S.N. Atluri, Ultralight cellular composite materials with architected
geometrical structure, Compos. Struct. 196 (2018) 181–198.

[32] L.R. Meza, S. Das, J.R. Greer, Strong, lightweight, and recoverable three-dimensional
ceramic nanolattices, Science 345 (6202) (2014) 1322–1326.

[33] M.L.M. François, L. Chen, M. Coret, Elasticity and symmetry of triangular lattice ma-
terials, Int. J. of Solids and Struct. 129 (2017) 18–27.

[34] N. Karathanasopoulos, F. Dos Reis, H. Reda, J.-F. Ganghoffer, Computing the effective
bulk and normal to shear properties of common two-dimensional architecturedma-
terials, Comput. Mater. Sci. 154 (2018) 284–294.

[35] X.Y. Yang, X. Huang, J.H. Rong, Y.M. Xie, Design of 3d orthotropic materials with pre-
scribed ratios for effective Youngs moduli, Comput. Mater. Sci. 67 (2013) 229–237.

[36] N. Karathanasopoulos, H. Reda, J.-F. Ganghoffer, Designing two-dimensional meta-
materials of controlled static and dynamic properties, Comput. Mater. Sci. 138
(2017) 323–332.

[37] L.D. Peel, Exploration of high and negative Poisson’s ratio elastomer-matrix lami-
nates, Phys. Status Solidi 1003 (3) (2007) 988–1003.

[38] Y. Wu, et al., Three-dimensionally bonded spongy graphene material with super
compressive elasticity and near-zero Poisson’s ratio, Nat. Commun. 6 (6141)
(2015).

[39] H. Reda, N. Karathanasopoulos, K. Elnady, J.F. Ganghoffer, H. Lakiss, Mechanics of
metamaterials: an overview of recent developments, Advances in Mechanics of
Microstructured Media and Structures, 87, Springer 2018, p. 273:296.

[40] A.S. Phani, J. Woodhouse, N.A. Fleck, Wave propagation in two-dimensional periodic
lattices, J. Acoust. Soc. Am. 119 (2006).

[41] S. Gonella, M. Ruzzene, Analysis of in-plane wave propagation in hexagonal and re-
entrant lattices, J. Sound Vib. 312 (2008) 125–139.

[42] A. Bacigalupo, M.L. De Bellis, Auxetic anti-tetrachiral materials: equivalent elastic
properties and frequency band-gaps, Compos. Struct. 131 (2015) 530–544.

[43] H. Reda, N. Karathanasopoulos, J.F. Ganghoffer, H. Lakiss, Wave propagation charac-
teristics of periodic structures accounting for the effect of their higher order inner
material kinematics, J. Sound Vib. 431 (2018) 265–275.

[44] R. Zhu, Y.Y. Chen, Y.S. Wang, G.K. Hu, G.L. Huang, A single-phase elastic hyperbolic
metamaterial with anisotropic mass density, J. Acoust. Soc. Am. 139 (2016)
3303–3310.

[45] R. Zhu, H. Yasuda, G.L. Huang, J. Yang, Kirigami-based elastic metamaterials with an-
isotropic mass density for subwavelength flexural wave control, Sci. Rep. 8 (2016)
483.

[46] C. Shen, Y. Xie, S. Yangbo, W. Ni, W. Wang, S. Cummer, Y. Jing, Broadband acoustic
hyperbolic Metamaterial, Phys. Rev. Lett. 115 (254301) (2015).

[47] X.N. Liu, G.L. Huang, G.K. Hu, Chiral effect in plane isotropic micropolar elasticity and
its application to chiral lattices, Journal of the Mechanics and Physics of Solids 60
(11) (2012) 1907–1921.

[48] C. Coulais, As the extension, so the twist, Science 358 (2017) 994–995.
[49] A. Alderson, K.L. Alderson, D. Attard, K.E. Evans, R. Gatt, J.N. Grima, W. Miller, N.

Ravirala, C.W. Smith, K. Zied, Elastic constants of 3-, 4- and 6-connected chiral and

https://doi.org/10.1016/j.matdes.2020.108520
https://doi.org/10.1016/j.matdes.2020.108520
https://karathanasopoulos.gr/software/
https://karathanasopoulos.gr/software/
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0005
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0005
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0010
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0010
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0015
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0015
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0015
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0020
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0020
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0025
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0025
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0025
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0030
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0030
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0035
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0035
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0035
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0035
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0040
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0040
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0040
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0045
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0045
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0045
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0050
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0050
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0055
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0055
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0055
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0060
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0060
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0060
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0065
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0065
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0070
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0070
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0075
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0075
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0080
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0080
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0085
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0085
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0090
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0090
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0095
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0095
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0100
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0100
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0100
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0105
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0105
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0105
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0110
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0110
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0115
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0115
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0120
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0120
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0125
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0125
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0130
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0130
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0130
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0135
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0135
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0135
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0140
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0140
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0145
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0145
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0145
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0150
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0150
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0155
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0155
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0160
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0160
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0165
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0165
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0170
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0170
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0170
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0175
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0175
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0180
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0180
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0180
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0185
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0185
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0190
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0190
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0190
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0195
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0195
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0195
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0200
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0200
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0205
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0205
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0210
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0210
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0215
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0215
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0215
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0220
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0220
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0220
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0225
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0225
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0225
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0230
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0230
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0235
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0235
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0235
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0240
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0245
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0245


11N. Karathanasopoulos et al. / Materials and Design 189 (2020) 108520
anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol.
70 (7) (2010) 1042–1048.

[50] H. Ebrahimi, D. Mousanezhad, H. Nayeb-Hashemi, J. Norato, A. Vaziri, 3D cellular
metamaterials with planar anti-chiral topology, Mater. Des. 145 (2018) 226–231.

[51] D. Prall, R.S. Lakes, Properties of a chiral honeycombwith a Poisson’s ratio of−1, In-
tern. J. of Mech. Sc. 39 (3) (1997) 305–314.

[52] W. Zhang, R. Neville, D. Zhang, F. Scarpa, L. Wang, R. Lakes, The two-dimensional
elasticity of a chiral hinge lattice metamaterial, Int. J. of Solids and Struct. 141-142
(2018) 254–263.

[53] A. Bacigalupo, L. Gambarotta, Homogenization of periodic hexa- and tetrachiral cel-
lular solids, Compos. Struct. 116 (1) (2014) 461–476.

[54] H.G. Kwak, J.K. Son, Span ratios in bridges constructed using a balanced cantilever
method, Constr. Build. Mater. 18 (10) (2004) 767–779.
[55] G.L. Balázs, G. Farkas, T. Kovács, Reinforced and prestressed concrete bridges, Inno-
vative Bridge Design Handbook, Butterworth-Heineman, ISBN: 9780128000588
2016, pp. 213–246.

[56] A. Bazoune, Y.A. Khulief, N.G. Stephen, Shape functions of three-dimensional Timo-
shenko beam elements, J. Sound Vib. 259 (2) (2003) 473–480.

[57] O.C. Zienkiewicz, R.L. Taylor, D. Fox, The Finite Element Method for Solid and Struc-
tural Mechanics, Butterworth-Heinemann, 2014.

[58] T. Tancogne-Dejean, M. Diamantopoulou, M. Gorji, C. Bonatti, D. Mohr, 3D plate-
lattices: an emerging class of low-density Metamaterial exhibiting optimal isotropic
stiffness, Adv. Mater. 30 (2018) 1803334.

http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0245
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0245
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0250
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0250
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0255
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0255
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0260
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0260
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0260
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0265
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0265
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0270
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0270
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0275
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0275
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0275
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0280
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0280
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0285
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0285
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0290
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0290
http://refhub.elsevier.com/S0264-1275(20)30053-8/rf0290

