
ETH Library

Reproducible Floating-Point
Aggregation in RDBMSs
Extended version

Working Paper

Author(s):
Müller, Ingo ; Arteaga, Andrea; Hoefler, Torsten; Alonso, Gustavo

Publication date:
2018-02-27

Permanent link:
https://doi.org/10.3929/ethz-b-000409592

Rights / license:
Creative Commons Attribution 4.0 International

Originally published in:
arXiv

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0001-8818-8324
https://doi.org/10.3929/ethz-b-000409592
http://creativecommons.org/licenses/by/4.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Reproducible Floating-Point Aggregation in RDBMSs
[Extended Version]

Ingo Müller1∗ Andrea Arteaga2 Torsten Hoefler1 Gustavo Alonso1

1Systems Group, Dept. of Computer Science, ETH Zurich
{ingo.mueller, torsten.hoefler, alonso}@inf.ethz.ch

2Federal Institute of Meteorology and Climatology MeteoSwiss
andrea.arteaga@meteoswiss.ch

Abstract—Industry-grade database systems are expected to
produce the same result if the same query is repeatedly run on the
same input. However, the numerous sources of non-determinism
in modern systems make reproducible results difficult to achieve.
This is particularly true if floating-point numbers are involved,
where the order of the operations affects the final result.

As part of a larger effort to extend database engines with data
representations more suitable for machine learning and scientific
applications, in this paper we explore the problem of making
relational GROUPBY over floating-point formats bit-reproducible,
i.e., ensuring any execution of the operator produces the same
result up to every single bit. To that aim, we first propose a
numeric data type that can be used as drop-in replacement
for other number formats and is—unlike standard floating-point
formats—associative. We use this data type to make state-of-the-
art GROUPBY operators reproducible, but this approach incurs a
slowdown between 4× and 12× compared to the same operator
using conventional database number formats. We thus explore
how to modify existing GROUPBY algorithms to make them bit-
reproducible and efficient. By using vectorized summation on
batches and carefully balancing batch size, cache footprint, and
preprocessing costs, we are able to reduce the slowdown due to
reproducibility to a factor between 1.9× and 2.4× of aggregation
in isolation and to a mere 2.7% of end-to-end query performance
even on aggregation-intensive queries in MonetDB. We thereby
provide a solid basis for supporting more reproducible operations
directly in relational engines.

This document is an extended version of an article currently in
print for the proceedings of ICDE’18 with the same title and by
the same authors. The main additions are more implementation
details and experiments.

I. INTRODUCTION

The continued progress of all areas of computer science has
led to digitization and automation of many everyday processes.
In particular, algorithms are responsible for making decisions
in an increasing number of commonplace situations [20].
Consequently—and understandably—, society has started to
demand accountability from the algorithms by which it is
affected. For example, the General Data Protection Regulation
of the European Union [19] has recently given the “right to
explanation” to individuals affected by automated decision-
making. Similarly, the ACM published a Statement on
Algorithmic Transparency and Accountability [1] including
explainability as a principle that algorithmic decision-making

∗Part of this work was carried out while this author was working part-time
at Oracle Labs, Zurich.

CREATE TABLE R (i int, f float);
INSERT INTO R VALUES (1, 2.5e-16);
INSERT INTO R VALUES (2, 0.999999999999999);
INSERT INTO R VALUES (3, 2.5e-16);
SELECT SUM(f) FROM R; -- Returns 0.999999999999999
UPDATE R SET i = i + 1 WHERE i = 2;
-- 'f' is unchanged, but rows are physically reordered
SELECT SUM(f) FROM R; -- Returns 1.0!

Algorithm 1: Example of non-reproducible SQL query.

should follow, a problem studied for example in the context
of computational journalism [15, 16].

In this paper we take steps towards improving explainability
of today’s data processing systems, namely the reproducibility
of algorithms based on floating-point arithmetic. This problem
was brought to our attention by several of our industry partners.
In addition to more classical use-cases like debugging, testing,
certification, and redundant computations, where reproducibil-
ity can be helpful or necessary [8, 10], they observe that
many users, in particular non-experts, are confused by non-
reproducible or, in general, non-predictable behavior.

Today’s data management systems often become non-
reproducible if floating-point arithmetic is used. The problem
with floating-point arithmetic is that, unlike arithmetic on real
numbers, it is not associative, so the order in which operations
are carried out may change their outcome [21]. The order
of operations, in turn, may be affected by a large list of
mechanisms: For example, concurrent execution of multiple
threads may be non-deterministic, the number of processing
elements may influence how the work is split into sub-tasks,
and the data storage layer may physically reorder data for a
number of reasons. As soon as floating-point numbers are
involved, most of today’s systems do not follow the principle
of data independence, which demands that changes on the
physical level shall not have an impact on the result of queries.

Algorithm 1 illustrates how the order of records in the
storage layer may affect query results in a subtle and potentially
surprising way. The situation shown was produced on a fresh
installation of PostgreSQL 9.5.1. The same query summing up
three floating-point numbers returns two different results before
and after the update of an unrelated attribute. Since, internally,
the update is implemented as the creation of a new record
and the masking of the old one, the physical order is different

ar
X

iv
:1

80
2.

09
88

3v
1

 [
cs

.D
B

]
 2

7
Fe

b
20

18

in the two queries, which, consequently, yields two different
results (differing on all digits of the decimal representation).

One may be tempted to brush away the problem of non-
reproducibility with the argument that the underlying rounding
errors are rather small and can, hence, be ignored. However,
these small errors may still lead to very different outcomes for
individual records, which are hard to explain to the affected
individual. For instance, the GROUPBY query of Algorithm 1
extended with a HAVING SUM(f) >= 1 clause could end up
returning specific records in some runs but not in others.

Such misclassifications can affect applications in obvious
ways: We ran PageRank on different permutations of a small
web graph with 900 k pages.1 We observed that, from one run
to the next, the ranks of about 10-20 pages would be different
enough to swap ranks with another page.

In this paper we show how to make GROUPBY aggregation
using SUM reproducible. This essentially solves the problem
for SQL: With a reproducible aggregate function for floating-
point SUM, all aggregate functions in SQL can be made
reproducible as well, including non-standard ones such as
VARIANCE, STDDEV, and some statistical functions, all of
which can be computed using SUM.2 Furthermore, many pro-
jections are intrinsically reproducible3 and window functions
can either be solved with our approach, define an execution
order, or they are not reproducible even with integers.4 Finally,
GROUPBY aggregation is not only used in relational database
systems, but in virtually every data processing system (possibly
under a different name including REDUCE or REDUCEBYKEY),
to which our results apply as well.

We start with proposing a format for floating-point numbers
that is—unlike formats typically supported by hardware—
associative. The format can be implemented in software
and builds on techniques from high-performance computing
(HPC) [3, 13, 14]. The key to this approach is to anticipate
rounding errors by subtracting lower-order terms from each
value before it is added to the aggregate of its group.

While this makes it possible to make any algorithm on
floating-point numbers bit-reproducible with little to no modi-
fication, it comes at a high price: We show that state-of-the-
art GROUPBY operators become about 4× and 12× slower
using this approach, depending on the desired precision. The
challenge is, hence, to keep the overhead of the additional

1https://snap.stanford.edu/data/web-Google.html
2Aggregate functions such as MIN, MEDIAN, COUNT, RANK, PERCENTILE,

and similar, but also functions such as LISTAGG and COLLECT, do not need
floating-point arithmetic. The remaining functions offered by the Oracle
database (see https://docs.oracle.com/database/121/SQLRF/functions003.htm)
can be computed with SUM.

3If arithmetic expressions are computed in their entirety only once all
operands are available, then executing them always in the same order is
trivial. However, if expressions are broken up and partially pushed through
joins, then their execution order may depend on the join order, which may
change even if the logical input has not changed. However, we believe that
this should be solved on the level of the optimizer, which is out of the scope
of this paper.

4Window clauses without sliding frame can be executed as aggregations
with GroupBy. Window clauses with ORDERBY clause have a definite order
and are therefore intrinsically reproducible and without ORDERBY clause, the
result may change even with integers.

calculations at an acceptable level. However, the tuning
techniques used in HPC work for the sum of a single vector,
while in a SQL GROUPBY, there is potentially a very large
number of sums involved. This is not compatible with known
data processing techniques, which usually aggregate input
tuples as early as possible instead of physically “grouping”
them. State-of-the-art aggregation algorithms used with our
data type, hence, switch between the summation of different
groups for every input tuple, which explains the high overhead.

To remedy this problem, we design a novel GROUPBY
algorithm based on a concept we call summation buffer. The
main idea is to buffer input values for each group and delay
their aggregation until it can be done efficiently for the whole
buffer. As we need a summation buffer for every group, the
number of groups that we can process efficiently at the same
time is limited by how many buffers we can keep in cache.
We thus tune the summation routine to small buffer sizes and
use highly-tuned partitioning routines as preprocessing. This
reduces the slowdown of aggregations due to reproducibility
to a factor between 1.9× and 2.4× over non-reproducible
aggregation on built-in floating-point numbers, depending on
the number of groups in the input. Integration into a real
system, MonetDB [9], shows that we can bring the overhead
of end-to-end query performance down to as little as 2.7%.
Since our implementation hides almost all computations behind
memory accesses, we can even increase accuracy with minimal
additional cost and, hence, as a side effect provide higher
accuracy than IEEE numbers at essentially the same price,
which is crucial in many scientific applications.

To summarize, the paper makes the following contributions:
• We propose a highly tuned algorithm for reproducible sum-

mation of floating-point numbers using SIMD instructions
(Section III).

• We show how state-of-the-art algorithms for aggregation
with GROUPBY can be made bit-reproducible and more
accurate with relatively little effort if compromises in
performance can be made (Section IV).

• We design a novel grouping algorithm that improves upon
this approach, which reduces the slowdown of reproducibil-
ity to a 1.9× and 2.4× (Section V).

• We show the trade-offs offered by the different algorithms
in extensive experiments and quantify their impact on end-
to-end query performance in a real system (Section VI).

II. PROBLEM DEFINITION

We start by illustrating the cause of non-reproducibility of
floating-point summation and by discussing potential solutions
for bit-reproducibility, which, unfortunately, either do not
actually solve the problem or have prohibitive costs.

A. Reproducible Floating-Point Aggregation with GROUPBY

For the purpose of this paper, we define aggregation with
GROUPBY as the operation that turns a sequence of 〈key ,
value〉 pairs into the 〈key , aggregate〉 pairs where each key of
the input occurs exactly once in the output and the aggregate
stored with a key is equal to the sum of all values with that

https://snap.stanford.edu/data/web-Google.html
https://docs.oracle.com/database/121/SQLRF/functions003.htm

key in the input. We say that it runs on floating-point numbers
if the value fields of the input pairs are floating-point numbers.
An aggregation algorithm is bit-reproducible, or reproducible
for short, if the aggregate of each group has exactly the same
bit pattern for any execution.

B. Floating-Point Numbers and Associativity

Floating-point values are numbers of the form x =M · 2E ,
where M ∈ [1, 2) is called mantissa and E ∈ {Emin , Emax}
is the exponent. As the number of relevant bits m in the
mantissa as well as the exponent are finite, only a finite
subset of real numbers can be represented exactly. Hence, a
rounding function rd is required in order to map real numbers
to representable floating-point values. This includes the results
of arithmetic expressions, which may not be representable even
if the operands are. For example, the floating-point sum of two
floating-point numbers a and b is defined as a⊕ b = rd(a+ b).

To understand why this can be a problem, consider the
numbers a = b = 1.012 · 20 and c = 1.112 · 21 in a toy
format for floating-point numbers with a mantissa of m = 2
(given as binary number) and truncation for rd. To compute
the sum of the three numbers, we can compute (a⊕ b)⊕ c =
rd(rd(a+b)+c). Since rd(a+b) = rd(1.0102 ·21) = 1.012 ·21
and rd(1.012 · 21 + c) = rd(1.1002 · 22) = 1.102 · 22, no
rounding errors occur and the sum is accurate. However, we
can compute the sum as well as a⊕(b⊕c) = rd(a+rd(b+c)).
In this case rd(b + c) = rd(1.00112 · 22) = 1.002 · 22 and
rd(a+1.002 ·22) = rd(1.01012 ·22) = 1.012 ·22, so rounding
errors occur in both operations (typeset in bold). Note that the
sum of the rounding errors is 1.002 · 20, which could be added
to a⊕ (b⊕ c) without rounding error.

Rounding errors are larger if the exponents of the two
summands are different. Therefore, if we compute the sum of
many numbers, the rounding error incurred during the addition
of a particular input value depends on the current value of
the accumulator, which depends on the order of execution.
Furthermore, even though each error is small, their sum may
be big enough to change the final result.

The problem also occurs in the most common floating-
point formats, which are the ones defined by the IEEE-754
standard [39] (even if the absolute error is obviously smaller
due to the higher precision than our toy format) and which we
use throughout this paper.

C. Non-Solutions for Reproducibility

We now discuss a number of naive approaches for making
aggregation with GROUPBY reproducible, but which do not
provide satisfactory solutions to the problem.

Higher precision. Using a truncated or rounded result pro-
duced by operations with a higher floating-point precision (i.e.,
using doubles instead of floats) is not sufficient, as it does
not make it more reproducible: Even tiny rounding errors can
make significant bits flip (such as from 0.999999 . . . to 1).

Deterministic order of operations. It is possible to make
the order of the operations deterministic. For linear algebra, the
cuBLAS library [27] and the Intel Math Kernel Library [32]

follow this approach. However, this does not solve the
entire problem for database systems, which aim for data
independence as discussed above. In addition to the example
given in the introduction, the physical order of the input
may also change due to compression, data placement on
distributed machines, backup and restore operations, and other
mechanisms, which in turn changes the order of operations.
The only way to make the order of the operations deterministic
is thus to use a static and deterministic schedule and to sort
the input,5 which may be more than an order of magnitude
slower [4, Figure 5.8] than state-of-the-art AGGREGATION
algorithms based on hashing.

Fixed-point arithmetic. In traditional workloads, it is often
possible to use fixed-point arithmetic for fractional numbers
(also called binary scaling or decimal-scaled binaries if the
scale has base ten). This is the case if all input numbers are
integer multiple of some common denominator and come from
similar orders of magnitude, such as all values in a salary
field are multiples of 1¢ and range between some thousand
and some million dollars. Operations can then be executed
using integer operations internally, which are cheap to execute
and reproducible most of the time.6 However, in many modern
data processing applications, these assumptions do not apply:
values from some domains, such as measurements or scientific
data, cannot be expressed as multiple of some smallest unit
and the values of different orders of magnitude such as those
handled in machine learning and other scientific applications
require a floating-point representation.

Arbitrary-precision operations. It is possible to push the
limits of fixed-point arithmetic by using high-precision or even
arbitrary-precision operations in software. Examples imple-
menting this approach include the GNU MPFR Library [35],
the BigDecimal class of Java [29], and numeric data types
offered by some database systems (such as PostgreSQL).
However, this not only requires many hardware instructions
for each arithmetic operation, but also variable-width storage,
which is much more difficult to handle than the fixed-width
built-in types. Similar arguments apply to unums [22].

III. REPRODUCIBLE ACCURATE SUM

In this section, we explain an algorithm that solves the
problem of reproducible floating-point summation where all
inputs are summed up to produce a single number (i.e.,
aggregation without grouping). For the sake of exposition,
we develop the algorithm in three iterations of increasing
completeness. In a fourth iteration, we show how to speed up
this algorithm using vector instructions. Table I summarizes
the variables and function names we use.

5Provably so: Visiting a set of elements in a fixed order solves the
PROXIMATENEIGHBOR problem, which is as hard as SORTING [23].

6Summing integers may experience overflows, which can lead to non-
reproducible results if the values have mixed signs and depending on how
they are handled. If overflows are to be prevented in software, this may incur
a slowdown as high as 3× as well [17].

Name Meaning

n Number of input values
L Number of levels
V Size of vector register
W Bit width of error-free transformation
NB Block size between carry-bit operations
m Size of the mantissa
f Exponent of the first transformation level

bi Input value
q
(l)
i Contribution of bi at level l
r
(l)
i Remainder of bi at level l
S(l) Running sum at level l
C(l) Carry-bit count at level l
Q(l) Sum of the contributions at level l

ufp(x) Unit in the first place
ulp(x) Unit in the last place
rd(x) Rounding function
x⊕ y ≡ rd(x+ y), floating-point sum of x and y
x	 y ≡ rd(x− y), floating-point subtraction of x and y

Table I: Summary of the parameters, variables, and functions
used in Section III.

A. Definitions

Two numbers related to any floating-point number x are of
importance in this section: ufp(x) and ulp(x). They were first
defined by Goldberg [21]. ufp(x) designates the unit in the
first place, i.e., the numeric value of the first bit in the mantissa.
If x =M · 2E as above, then ufp(x) = 2E . All floating-point
numbers with the same exponent as x have an absolute value
in [ufp(x), 2 · ufp(x)). Similarly, ulp(x) designates the unit
in the last place, i.e., the value of the last bit in the mantissa.
For x = M · 2E , ulp(x) = 2E−m. This value represents the
difference between x and its closest representable values.

B. Error-Free Transformation

Our reproducible summation algorithm is based on the
observation that the floating-point sum of two numbers a and
b can be performed exactly if the one with the smaller absolute
value has sufficiently many zeroes at the end of its mantissa. To
understand when this is the case, let us define a and b as integer
multiples of the same power of two: a := αa · 2p, b := αb · 2p,
where αa, αb, and p are integer numbers, and |a| > |b|, WLOG.
If the values |αa|, |αb|, and |αa+αb| do not exceed 2m, then a,
b, and a+b can be represented in the floating-point format and,
consequently, the floating-point sum is exact: a ⊕ b = a + b.
In other words, the sum is exact if these three numbers can
have a (possibly denormalized) floating-point representation
with the same exponent and without losing information.

As an example, the values a := 26.046875 and b := 2.8125
can be represented exactly with an 11-bit mantissa (which
corresponds to IEEE half-precision, where m = 10). Also,
they can be represented as αa ·2p and αb ·2p, with αa = 1667,
αb = 180, and p = −6 and their sum is a ⊕ b = a + b =
(αa + αb) · 2p = 28.859375. It can be computed exactly with
this format because said conditions are met.

Let us now consider any representable a and b with |a| > |b|.
One can split b as b = q+ r so that q is an integer multiple of

10000000000

10110011010

11011000010
11110011001

1024.

179.25

 56.0625
 30.390625

10110011000

11011000000
11110000000

 010
 011001

 00010

179.

 56.
 30.

.25
 .0625

Error-free
transformation11101100000 265.

Figure 1: Error-free transformation.

ulp(a), namely q := (a⊕b)	a and r := b	q. The sum a⊕q
can be computed exactly because the three aforesaid conditions
are met between a and q, with 2p = ulp(a). Also, b can be
recovered exactly through q+r = q⊕b. This procedure, named
error-free transformation, was defined by Ogita et al. [28].

For instance, a = 1.0102·20, b = 1.1012·2−2. q is computed
as (a⊕ b)	 b = 1.1012 · 20, while r = b	 q = 12 · 2−5.

We can now perform an order-independent summation of a
sequence of values b1, b2, b3 by applying the same error-free
transformation to all values bi. Figure 1 illustrates the idea.
The transformation produces qi := (a⊕ bi)	 a, ri := bi 	 qi.
We call the values qi and ri contributions and remainders,
respectively, of the input values bi and the value a the extractor
of the error-free transformations. Since all contributions qi are
integer multiples of the same power of two, and that their
sum is representable with the same format, their floating-point
summation is free of rounding error and thus order-independent:
q1 ⊕ q2 ⊕ q3 = q1 + q2 + q3 = 265.

While this procedure solves the problem of order-
independent bit-reproducibility, it has two problems: First,
it only works under the assumption that the absolute value
of every intermediate result of this summation, including the
final result, is strictly bounded by 2 · ufp(a). An obvious,
yet suboptimal solution would be to do two passes over the
data, the first one computing the maximum absolute value
for which all assumptions are fulfilled, the second one for
the actual summation. Second, the sum is inaccurate because
relevant parts of the input values, namely the remainders, are
discarded. We present an algorithm that solves both problems.

C. Accurate Reproducible Scalar Summation

In HPC, the problem of summing up long vectors of
numbers has been studied in detail. In this section, we explain
RSUM [14]. In the subsequent section, we discuss why it does
not work well with SQL GROUPBY.

In order to address the problem of accuracy, we recall
that the error-free transformation produces two outputs: the
contribution q and the remainder r. In the previous section, we
made use of the contributions to obtain an order-independent
summation. Now we make use of the remainders to improve
the accuracy of this summation: we perform an error-free
transformation on the remainder, this time using the smaller
extractor a(2) := 2−W · a (with W ∈ N \ {0}). We thus
obtain the second-level contribution and remainder of each
input value: q

(2)
i := (a(2) ⊕ ri) 	 a(2), r

(2)
i := ri 	 q

(2)
i .

These second-level contributions can be summed up to obtain a
second-level result: Q(1) :=

∑n
i=1 qi, Q

(2) :=
∑n

i=1 q
(2)
i . As

we show in Section VI-B, the final resultQ := Q(1)⊕Q(2) is of
comparable accuracy as a standard, non-reproducible floating-
point summation. If higher accuracy is needed, an arbitrary
number of levels L can be used. The value W expressing the
logarithm of the ratio of two consecutive extractors a(l), a(l+1)

is bounded by m− 2 and it affects the result (the higher, the
more accurate) and the cost (the higher, the slower) of the
algorithm. Good choices are 18 and 40 for single and double
precision respectively and we use these values in this work.

So far, the extractors a are never assumed to be powers of
two. The example in Figure 1 shows a power of two as the
extractor, but this does not necessarily have to be the case.
The only important factor is that the exponent of the extractor
never changes, nor do the intermediate results of the error-
free transformation. For this reason, the role of the error-free
extractor is taken by the running sums S(l) in the algorithm.
The running sum will never change its exponent, as is explained
later in this section.

We start with the values S(l) = 1.5 · 2f−(l−1)·W . The
value f can be chosen arbitrarily, as long as the resulting
extractor is large enough for the transformation of the first
value b1, i.e., f > log2 |b1| +m −W + 1. Each input value
bi is transformed using S(1), S(2), . . . , S(L) as extractors. The
resulting contributions q(1)i , q

(2)
i , . . . , q

(L)
i are added to S(1),

S(2), . . . , S(L) respectively. For |bi| ≥ 2W−1 · ulp
(
S(1)

)
, the

first level is not large enough to contain its contribution. In
this case, the last level S(L) is discarded, all other levels are
demoted (e.g., the first-level sum becomes the second-level
sum, S(1) := S(2), and the new first-level sum is initialized
to S(1) := 1.5 · 2W · ufp

(
S(2)

)
. This ensures that all input

values can be included in the summation without breaking the
assumptions for reproducible results, also avoiding the need
for a first pass to find the maximum absolute value in the input.

In order to avoid that the running sums S(l) change their
exponent (which would affect the error-free transformation), a
check is performed before its usage. S(l) is usable, if it lies
in the range

[
1.5 · ufp

(
S(l)

)
, 1.75 · ufp

(
S(l)

))
. If it does not,

a multiple of 0.25 · ufp(S(l)) is added to or removed from
it, and the corresponding value is subtracted from or added
to the carry-bit counter C(l), which is initialized to 0. For
instance, if S(l) = 1.84·ufp(S(l)), then 1·

(
0.25 · ufp(S(l))

)
is

subtracted from it, so that the running sum after this operation
is S(l) = 1.59 · ufp(S(l)); the value 1 is added to C(l). The
complete state of the summation is given by the running sums
S(l) and the corresponding carry-bit counts C(l).

Algorithm 2 summarizes this procedure. In this version
of the algorithm we assume that the summation state has
been initialized. A number of input values are added to this
summation state, and its state is stored to main memory again,
so that the summation can be resumed later. In order to finalize
the summation, the following sum has to be performed:

Q :=

L∑
l=1

((
S(l) 	 1.5 · ufp(S(l))

)
⊕ 0.25 · ufp

(
S(l)

)
· C(l)

)
(1)

This sum is not order-independent, thus a predefined order

1: Load state S(l), C(l) ∀1 ≤ l ≤ L
2: for i = 1 to n do
3: � Check extractor validity, update levels if needed:

necessary
4: while |bi| ≥ 2W−1 · ulp

(
S(1)

)
do

5: for l = L to 2 do
6: S(l) ← S(l−1); C(l) ← C(l−1)

7: S(1) ← 1.5 · 2W · ufp(S(2)); C(1) ← 0
8: � Load and transform value bi, update S(l):
9: r

(0)
i ← bi

10: for l = 1 to L do
11: q

(l)
i ←

(
r
(l−1)
i ⊕ S(l)

)
	 S(l)

12: S(l) ← S(l) ⊕ q(l)i

13: r
(l)
i ← r

(l−1)
i 	 q(l)i

14: � Carry-bit propagation:
15: for l = 1 to L do
16: Find d ∈ Z s.t. S(l) 	 d · 0.25 · ufp

(
S(l)

)
∈[

1.5 · ufp
(
S(l)

)
, 1.75 · ufp

(
S(l)

))
17: S(l) ← S(l) 	 d · 0.25 · ufp

(
S(l)

)
18: C(l) ← C(l) ⊕ d
19: Store state S(l), C(l) ∀1 ≤ l ≤ L

Algorithm 2: RSUM SCALAR.

�

1001.0

1.0000

11010.

11001.
110.01

1100000.

1.0000

1100000.

1001.0

1101000.

11001.

100.01

.01

11010.

1.0000

1101000.

100.01

1101100.

11010.

1.0101

11000.

1.0000

110.00

100

101

11001.

110.01

1101100.

- 1100000.

1100.

11010.

- 11000.

10.

1110.0

Figure 2: Application of the RSUM algorithm on three values.

has to be imposed. In order to avoid cancellation, we perform
it in reverse order, i.e., we start from the last level.

Figure 2 shows the application of Algorithm 2 on the values
b1 = 1.3125, b2 = 9, and b3 = 4.25, with the format defined
by m = 4, the parameterW = 2, the first extractor chosen with
f = 4, and two extraction levels. The figure uses only binary
digits. In the first iteration, the value b1 is added to the first-
level running sum S(1) (incrementing it by the contribution
q
(1)
1). The remainder r(1)1 is added to the second-level running

sum S(2). In the second iteration, |b2| ≥ 2W−1 · ulp
(
S(1)

)
,

thus triggering an adjustment of the levels, shown in the white
box: The second-level sum is discarded, the first-level sum
is moved to the second level, and a new extractor is set as
first level. Then, the extraction is performed normally. The
third value does not trigger the level adjustment. Finally, the
sum for each level is computed (Q(1) and Q(2)) and these
values are summed to give the final result 11102 = 14. C(l)

variables are never shown in this example because their value
is always zero, as S(l) ∈

[
1.5 · ufp

(
S(l)

)
, 1.75 ·

(
S(l)

))
at all

times. Figure 3 illustrates a carry-bit operation on one level

11011.
11.001

11.001

11110.

1

11010.

1

Figure 3: Example of a carry-bit propagation.

when the running sum S(1) has the value 110112, the carry-bit
counter C(1) = 0, and the value b4 = 3.125 is processed: after
the summation the running sum exceeds 1.75 ·ufp

(
S(l)

)
. The

adjusting number is found to be d = 1, and the sum and the
carry-bit counter are modified accordingly.

D. Vectorization of the Summation Algorithm

RSUM [14] was originally introduced in a MIMD context,
where each process performs the full summation of the local
data and the results are finally summed up globally using
MPI_Reduce. As a first step to make it suitable to GROUPBY,
we propose a SIMD variant of RSUM. In this variant, the
running sum of each level is represented in the registers as a
tuple of values

〈
S
(l)
1 , . . . , S

(l)
V

〉
, where V is the width of the

register (e.g., for double-precision values on AVX architectures,
V = 4). Similarly, the carry-bit counts are represented by a
tuple of V elements and V input values are transformed and
added to the running sums concurrently. Moreover, a tiling
optimization is performed: the extractor validity and the carry-
bit propagation are performed just once every NB iterations.
This is bounded by NB ≤ 2−m−W−1[14].

The summation state does not change format: one running
sum and one carry-bit count per level are stored in main
memory. When loading a summation state from memory into
the registers, the first element of the registers is set to the
value read from memory (thus, e.g., S(1)

1 = S(1)), while the
other elements of each register are initialized to 1.5 · ufp(S(l))
for running sums and to 0 for carry-bit counts. A horizontal
summation has to be performed at the end of the algorithm
when storing the state to the main memory: The resulting
running sum and carry-bit count of each level are:

S(l) := 1.5 · ufp(S(l)
1)⊕

V∑
v=1

(
S(l)
v 	 1.5 · ufp(S(l)

v)
)
, (2)

C(l) :=

V∑
v=1

C(l)
v (3)

with order-independent sums. Algorithm 3 summarizes this
procedure. For brevity and clarity, parts of the algorithm
constitute references to the equivalent lines of Algorithm 2.

IV. A REPRODUCIBLE FLOATING-POINT TYPE

As a first solution for reproducible floating-point aggregation
with GROUPBY, we propose a data type that can be used as
drop-in replacement for intermediate aggregates of floating-
point numbers in any state-of-the-art aggregation algorithm
with little to no modification.7 We base this type on the

7The only arithmetic operation that this type supports is addition, so in a
real system it would most likely be an internal type of the execution layer not
exposed to the user.

1: Load state S(l)
1 ← S(l); C

(l)
1 ← C(l) ∀1 ≤ l ≤ L

2: S
(l)
v ← 1.5 · ufp

(
S(l)

)
; C

(l)
v ← 0 ∀2 ≤ v ≤ V, 1 ≤ l ≤ L

3: for i = 1 to n, increment by V ·NB do
4: � Check maxi≤j<i+V ·NB |bj |, update levels if neces-

sary. See Algorithm 2, lines 3-7
5: for j = i to i+ V ·NB , increment by V do
6: � Load and transform values 〈bj , . . . , bj+V−1〉,

update
〈
S
(l)
1 , . . . , S

(l)
V

〉
.

See Algorithm 2, lines 8-13
7: � Carry-bit propagation. See Algorithm 2, lines 14-18
8: � Horizontal summation
9: for l = 1 to L do

10: S(l) ← 1.5·ufp(S(l)
1)⊕

∑V
v=1

(
S
(l)
v 	 1.5 · ufp(S(l)

v)
)

11: C(l) ←
∑V

v=1

〈
C

(l)
1 , . . . , C

(l)
V

〉
12: Store state S(l), C(l) ∀1 ≤ l ≤ L

Algorithm 3: RSUM SIMD.

uin
t32

t
flo

at
dou

ble

rep
ro<

flo
at,

1>

rep
ro<

flo
at,

2>

rep
ro<

flo
at,

3>

rep
ro<

flo
at,

4>

rep
ro<

dou
ble

,1>

rep
ro<

dou
ble

,2>

rep
ro<

dou
ble

,3>

rep
ro<

dou
ble

,4>
0
5

10
15
20
25

C
P

U
ti

m
e

[n
s]

pe
r

el
em

en
t

1.00x 0.99x 1.10x

3.73x

6.03x

8.37x

11.56x

3.91x

6.42x

8.85x

12.27x

Figure 4: HASHAGGREGATION with different reproducible
data types and 16 groups.

reproducible summation algorithm from the previous section:
It simply consists of an

〈
~S, ~C

〉
pair, where the symbols

~S =
〈
S(1), . . . , S(L)

〉
and ~C =

〈
C(1), . . . , C(L)

〉
are, respec-

tively, the L levels of the running sum and carry-bit counter
as introduced in Section III. In languages such as C++, we
can implement this data type as a class with member variables
S[L] and C[L] and overload its operator+= for summation
with scalars and instances of that type. We refer to this data
type as repro<ScalarT,L>, where ScalarT is either float or
double.

Figure 4 shows the performance of a start-of-the-art HASH-
AGGREGATION algorithm8 instantiated with different variants
of the repro data type. This algorithms looks up the aggregate
of the corresponding group in a hash table using the key field
of the input pair and adds the value field to that aggregate.
We choose the small number of 16 groups to eliminate effects
not related to the data types themselves (such as cache effects
or pre-processing costs). As the plot shows, the algorithm is
between 4× and 12× slower with the reproducible data types
than with integers or IEEE floats and the more so the more
levels of summation we use (i.e., the higher the precision). This

8The experimental setup as described in Section VI-A.

~S ~C next a0 a1 . . . absz

repro<ScalarT,L> accumulation buffer
Figure 5: Memory layout of an intermediate aggregate.

is not surprising considering the computational overhead: in the
operator+= of reproducible types, each level of summation
requires about 12 floating-point operations and 4 load and store
instructions, while the operator+= of standard data types only
requires a single one. Finally, there is virtually no difference
between single and double precision. This is due to the fact
that the algorithm is heavily compute bound and the latency
of most instructions does not depend on the operand width.

We have learned two things from this section. First, it
requires relatively little development effort to make a large class
of algorithms for aggregation with GROUPBY bit-reproducible
on floating-point numbers. Second, this approach comes at a
high price: If we want to match the precision of IEEE floats,
we need the types with L = 2, which, in the situation shown
above, makes the algorithm more than 6 times slower. In
the next section, we show a more involved algorithm that
improves the slowdown to between 1.9× and 2.4× for any
repro<ScalarT,L>.

V. AGGREGATION WITH SUMMATION BUFFERS

In this section, we present a novel algorithm for aggregation
with GROUPBY that achieves bit-reproducibility on floating-
point numbers efficiently. We first describe the main idea, sum-
mation buffers, which allows to use our efficient, vectorized
summation routine, and then incorporate that into a state-of-
the-art AGGREGATION algorithm.
A. Summation Buffers

The main idea for batching the aggregation of input values
can be used in any AGGREGATION algorithm: we store
a reproducible float along with a buffer of input values as
intermediate aggregates, which we call summation buffer. A
summation buffer consists of an array of input values and the
offset of the next free slot in the array (“next”). The layout of
intermediate aggregates is thus as shown in Figure 5.

For example, the textbook HASHAGGREGATION [25] with
summation buffers works as follows: Whenever we process a
〈key , value〉 pair, we first use the key to lookup the entry of
the group in the hash table and then use the offset to append
the value to the buffer of the group (incrementing the offset
accordingly). Only when a buffer is full, we aggregate the
buffered values and reset the offset to 0, i.e., to the beginning
of the buffer. This allows us to use our vectorized summation
algorithm RSUM SIMD (Algorithm 3), which is much more
efficient than the per-element summation from the previous
section. In languages such as C++, we can implement this as
new data type again, where the summation operators contain
the logic just described, and use this new data type in any
existing AGGREGATION algorithm transparently.

1: partitions← PARALLELPARTITION(input, key , F = fd)
2: for each p in partitions with index i parallel do
3: privateTables[i]← HASHAGGREGATION(p)
4: for each t in privateTables parallel do
5: for each 〈key , value〉 in t do
6: sharedTable[key] += value

Algorithm 4: PARTITIONANDAGGREGATE.

One important tuning parameter is now the buffer size (bsz).
On the one hand, the larger the buffer is, the better the constant
costs associated with a call to the summation algorithm can
be amortized. On the other hand, the larger each buffer is, the
larger is also the cache footprint of the algorithm, which may
decrease performance significantly. The rest of this section
shows how to design an algorithm that makes the best trade-
off in all situations.

B. High-Level Algorithm Structure

The overall structure of our AGGREGATION algorithm is
illustrated in Algorithm 4: We partition the input on the
hash value of the keys (Line 1), which can be done very
efficiently on modern hardware [9, 26, 33]. Since all input
records for a particular group are copied into the same partition,
each partition can be processed independently, which we
do using HASHAGGREGATION (Lines 2 to 3). Finally, we
combine the intermediate results into a single hash table shared
among all threads (Lines 4 to 6). We call this algorithm
PARTITIONANDAGGREGATE.

The partitioning effectively divides the number of groups
per partition and, hence, the cache footprint of HASHAGGRE-
GATION by the partitioning fan-out F , which may out-weigh
the additional costs for partitioning. Depending on the number
of groups in the input, a larger or smaller fan-out is needed in
order to fit the working set of HASHAGGREGATION into the
cache. For a small number of groups, no partitioning may be
required. In this case, i.e., if F = 1, PARALLELPARTITION
is a no-op that forwards its input. Since modern hardware
can run PARTITIONING efficiently only up to a certain fan-
out [9, 26, 33], we implementing it recursively using zero or
more levels of partitioning i.e., we partition with F = fd for
f = 256 and d = 0, 1,

All phases of the algorithm can be fully parallelized: The
partitioning routine called in Line 1 can be parallelized by
splitting the input in an arbitrary way (e.g., into equally-sized
chunks, using a work queue, or using work stealing) and
logically concatenating the corresponding output partitions
produced by different threads. After the partitioning, each
thread gets a subset of the partitions, which it aggregates
into a private hash table independently of the other threads
(Lines 2 to 3). With some care, the subsequent transfer to the
shared hash table (Lines 4 to 6) can be implemented without
synchronization since the threads work on non-overlapping
subsets of its content. If no partitioning needs to be done,
i.e., if F = 1, the shared hash table needs some form of
synchronization such as locks. However, since in this case

there are only few groups and each of them only appears
once in the hash table of each thread, this last phase takes
a negligible amount of time, so the overhead of locking is
acceptable.

In order to make this algorithm reproducible, we use
summation buffers as the data type for the intermediate
aggregates produced by HASHAGGREGATION in Line 3. In
the process of aggregating its share of the input or its partitions,
each thread calls operator+=(ScalarT) on the appropriate
intermediate aggregates, which makes it effectively alternate
between probing the hash table in order to append input values
at the end of their corresponding buffers and summing up the
content of buffers as they become full. The shared hash table
used in Line 6 has aggregates of type repro<ScalarT,L>,
i.e., it does not use summation buffers and operator+=(repro
<ScalarT,L>) is used for merging the intermediate aggregates
of the different threads.

The careful reader may wonder why the data of a particular
partition is first aggregated into a private hash table and then
transferred into a part of the shared hash table that the thread
has exclusive access to. It seems possible to save the transfer
by aggregating into summation buffers in the shared hash
table directly. However, this would have several disadvantages:
(1) for all but almost distinct inputs, the transfer is negligible
as argued earlier, so there is no need to speed up this phase,
(2) the result would consist of summation buffers, which take
up more space than needed, and (3) to finalize the computation,
we need to iterate over the results anyway in order to flush the
buffers.

C. Tuning Buffer Size and Partitioning Depth

PARTITIONANDAGGREGATE with summation buffers has
thus two parameters that influence its cache footprint: the size
of the summation buffers bsz and the partitioning depth d. We
now show how to choose these two parameters.

We first determine the size of the summation buffers given
a fixed partitioning depth. Since the access to the summation
buffers follows the random pattern given by the hash values
of the keys of the input records, the cache footprint of the
algorithm consists of the size of the hash table, which we can
quantify as ngroups ·sizeof(ScalarT) · bsz , where ngroups is
the number of groups in the input. The buffers should be as
large as possible in order to amortize constant costs of calling
the summation routine. We thus set the buffer size such that
they use the entire cache, which is given by the following
equation:

bsz = min

{
d|cache|/ (ngroups/F · sizeof(ScalarT))e
bszmax , (4)

where |cache| is the size of the last-level cache corresponding
to one thread, bszmax the largest buffer size available in the
system, and F the partitioning fan-out.

The optimal number of levels of partitioning d depends on
the number of groups: It must be large enough to reduce the
number of groups per partition to a point where the subsequent,
final level of aggregation can be done in cache. It should not

be larger, otherwise, the partitioning has no benefit and its
execution only constitutes overhead. In earlier work [26], we
propose to select this depth adaptively: start with a private hash
table of fixed size; while the number of groups is lower than the
threshold, process all input this way; if and when the threshold
is crossed, add a level of partitioning and recurse. This has
virtually no overhead, so the resulting runtime essentially
corresponds to the optimal partitioning depth for any given
input. Since the adaptation mechanism is orthogonal to the
topic of this paper and incorporation into our algorithm is only
a matter of implementation time, we simply determine the
optimal number of levels offline and use that in the remainder
of this paper.

D. System Integration

We envision the integration of our algorithm into real
systems either as a “fix” for SUM on floating-point numbers
or as an alternate aggregate function RSUM(〈expression〉, L),
which would give the user control on the desired precision.

VI. EXPERIMENTAL EVALUATION

In this section, we show micro-benchmarks that justify
design decisions taken in the previous sections, evaluate the
performance of our algorithms experimentally, and quantify
their impact on end-to-end query performance.

A. Experimental Setup

We run the experiments on a system with 256GiB RAM
and two Intel Xeon E5-2630 v3 CPUs, which belong to the
Haswell-EP product line. The CPUs have 8 physical cores
each clocked at 2.4GHz, each with private first and second-
level data caches of size 32KiB and 256KiB, respectively, as
well as a 20MiB last-level cache shared among all cores. The
system runs Debian 8 (jessie) with a Linux kernel v3.18.14.
HyperThreading and frequency scaling are switched off.

Unless otherwise mentioned, we use n = 230 〈key , value〉
pairs as input, where the key is of type uint32_t and the
type of the value is as follows: It is of type ScalarT if we
say that an algorithm runs on repro<ScalarT,L> (i.e., it is
of type float or double) and of type DECIMAL(p) if we say
that the algorithms runs on one of these types. We implement
the DECIMAL types as built-in integers of size 32, 64, and
128 bit9 for p = 9, 19, 38, respectively, which is a typical
way to implement them. The keys are drawn uniformly at
random from the range [0, ngroups). Due to the nature of
random distributions, this means that there are actually less
than ngroups groups in the input if ngroups ≈ n. We omit
experiments on other data distributions as known techniques
to handle data skew [11, 26] are orthogonal to the topic
of this paper and can be included into our algorithms. All
presented numbers are averages of ten identical runs, among
which we observed low variance.10 We express the runtime
as “CPU time per element” = T · P/n, where T is the total

9For 128-bit integers, we use the __int128 type available in recent versions
of GCC on our CPU.

10The relative standard deviation is mostly below 1% and never above 5%.

running time, P = 8 the number of processing elements, and
n the number of input elements, which simplifies comparison
across different machines.

We implemented our algorithms in C++, which we compile
with GCC version 4.9.2. Sporadic tests with newer compilers
did not bring significant improvements, probably because we
manually force optimizations such as function inlining, loop
unrolling, and vectorization wherever beneficial. In order
to reduce the impact of the operating system, we pin each
thread to a different core of a single socket and allocate and
initialize all memory on that socket before the experiment. We
refrain from using several sockets in order to avoid NUMA
effects, again referring to the fact that NUMA-optimizations
are orthogonal to reproducibility.

In experiments not shown in this paper, we compared our
baseline implementation to that of Cieslewicz and Ross [11].
Our implementation is somewhat faster, mainly because we use
IDENTITYHASHING instead of multiplicative hashing. This
is not unrealistic in column stores, where dense ranges are
common due to domain encoding. Using a real hash function
would make all our algorithms slower by the same constant and
thus result in even lower relative overhead of reproducibility.
Our implementation of PARTITIONANDAGGREGATE is up to 4
times faster than that of Cieslewicz and Ross [11] because we
use the highly-tuned partitioning routine used in other work [9,
31, 33]. Back-of-the-envelope calculations suggest that we
achieve the same performance as the implementations used
in [26], as well, thereby ensuring our baseline for GROUPBY
matches the state of the art.

We also ran experiments with an implementation of SORT-
AGGREGATION based on the highly-tuned sorting routines
of Balkesen [4], which, as discussed above, can be used to
make aggregation reproducible by bringing the input in a
deterministic order. Even on integers or built-in floats, this
algorithm needs a CPU time per element of over 60 ns, which
is 20× more than our algorithm in the best case and at least
3× more in any case where n/ngroups < 26, so we did not
pursue this approach further.

B. Vectorized Summation Algorithm

We first evaluate accuracy and performance of our summa-
tion routine presented in Section III.

1) Accuracy: The accuracy of our summation routine
RSUM SIMD (Algorithm 3) depends on the number of levels
of running sums and carry-bit counters, L. To quantify the
accuracy of our routine, we compare its absolute error with
that of the non-reproducible summation of conventional floats.
According to Demmel and Nguyen [13], the latter error can
be bounded by:

econv := (n− 1) · ε ·
n∑

i=1

|bi|, (5)

where ε represents a machine constant [21] and bi, i = 1..N ,
represent the summands. The error of our routine can be

n = 103 n = 106

U[1, 2) Exp(1) U[1, 2) Exp(1)

Conventional 1.7 · 10−10 1.1 · 10−10 1.7 · 10−4 1.1 · 10−4

RSUM (L = 1) 1.0 · 103 1.1 · 104 1.0 · 106 1.1 · 107
RSUM (L = 2) 9.1 · 10−10 1.0 · 10−8 9.1 · 10−7 1.0 · 10−5

RSUM (L = 3) 8.3 · 10−22 9.1 · 10−21 8.3 · 10−19 9.1 · 10−18

Table II: Maximum absolute error of conventional and
reproducible summation algorithms in double precision.

bounded the following expression, which is due to Demmel
and Nguyen [14] and the same for their and our algorithm:

eRSUM SIMD := n · 2(1−L)·W−1 · max
1≤i≤n

|bi|, (6)

where f and W are the exponent of the first extractor used
and the ratio of two consecutive extractors, respectively.

To quantify these expressions in a simple way, we consider
the summation of random arrays, with uniformly-distributed
values in the range [1, 2) and exponentially-distributed values
with λ = 1, with varying number of values n. With the latter
distribution, the probability of an input set with 106 values to
contain a value larger than 22 is lower than 0.03%, thus we
choose 22 as the maximum expected input value and we use it
to give a reasonable error bound. Table II shows the expected
values of the error bounds for the different algorithms and
different distributions in double precision. The error bound for
the single-level reproducible summation can be surprisingly
large. The reason for such large bounds is the low control
on the magnitude of the levels the algorithm has. The largest
extractor used for the summation could have a much larger
magnitude than the result (up to 2W−1 times larger). In this
unfortunate case, only one significant bit of the result is kept
by the first summation level. If this is the only level used,
the uncertainty on the result is as large as the result itself. In
many cases, the one-level summation can deliver reasonably
accurate results and, for large input sizes, its accuracy can be
comparable to the conventional summation. Nevertheless, it
gives no guarantee of accurate results beyond the error bounds
listed in the table. All error bounds for the reproducible
algorithm are up to 2W−1 times more pessimistic than the
actual error of the summations.

Conclusion: Our summation routine RSUM SIMD with
L = 2 has comparable accuracy as conventional floating-point
summation and achieves much higher accuracy with L > 2.

2) Performance: We also measure the performance of
several variants of the reproducible summation algorithm
(RSUM) for summing up a large array of random numbers.
Figure 6 shows the result. For RSUM SCALAR and RSUM
SIMD (Algorithms 2 and 3, respectively), we sum up the input
in chunks of c values for various values of c, i.e., we call
the respective algorithm for each chunk of c values. This
mimics the pattern of how the summation algorithms are used
in the aggregation algorithms of Section V, where they switch
between the summation of inputs of different groups. For
brevity, the algorithms are simply called SCALAR and SIMD
in the figure. We plot the performance in terms of slowdown

10−1

100

101

102

Si
ng

le
pr

ec
is

io
n

Sl
ow

do
w

n

+17.6%

c = 24

2 levels

+25.4%

c = 12

3 levels

21 23 25 27 29

Chunk size c

10−1

100

101

102

D
ou

bl
e

pr
ec

is
io

n
Sl

ow
do

w
n

−24.7%

c = 48

21 23 25 27 29

Chunk size c

−7.4%

c = 48

Conv Simd (c =∞) Scalar Simd

Figure 6: Relative performance of RSUM algorithms com-
pared to a conventional sum using std::accumulate (CONV).

compared to a conventional summation algorithm on the same
input, which is called CONV in the figure and implemented as
a single call to std::accumulate. Finally, as “lower bound”,
we also plot the performance of a single call to RSUM SIMD,
which we call SIMD (c =∞).

As the figure shows, RSUM SIMD is slower than RSUM
SCALAR for small chunk sizes, but faster for large chunk
sizes. For small chunk sizes, it suffers from a higher start-up
overheads because the state it loads and stores from memory
into registers and back is a factor V times larger than that of
the scalar version. For large chunk sizes, vectorization pays
off. The cross-over point (annotated in red) is somewhere
between c = 12 and c = 48 depending on the number of
levels L and the precision. As the chunk size reaches c = 512,
the start-up overhead of the multiple calls to RSUM SIMD is
amortized and the performance reaches that of SIMD (c =∞),
which consists of a single call. At this point, RSUM SIMD
is at most 25% slower than CONV and even somewhat faster
in case of double precision. We attribute this to the fact that
the compiler is not able to fully vectorize std::accumulate,
whereas RSUM SIMD (c =∞) is optimized to the point that
it is memory-bound.

Conclusion: Our summation routine is faster, the larger the
buffer size bsz , as constant start-up costs can be amortized
better. For bsz ≥ 26, SIMD is always better than SCALAR
and for bsz ≥ 29 or earlier, the difference to the maximum
throughput is negligible, where the routine is memory-bound.

C. Aggregation without Summation Buffers

We first present experiments of unmodified state-of-the-art
aggregation algorithms, i.e., we do not use aggregation buffers.
We compare two categories of data types: (1) The reproducible
repro<ScalarT,L> types presented in Section IV, which
corresponds to making AGGREGATION reproducible with
minimal development effort, and (2) DECIMAL(p) with various

0

10

20

30

40

50

C
P

U
ti

m
e

[n
s]

pe
r

el
em

en
t

DECIMAL(9)
DECIMAL(18)
DECIMAL(38)
repro<float,2>
repro<float,3>
repro<double,2>
repro<double,3>

20 26 212 218 224 230
Number of groups

0

2

4

6

8

10

Sl
ow

do
w

n
co

m
pa

re
d

to
fl
oa
t

Figure 7: PARTITIONANDAGGREGATE on various repro
<ScalarT,L> without summation buffers compared to the
same algorithm on float/DECIMAL(8).

precisions p (where p is the number of decimal digits), which
may be a good enough alternative for some applications. We
emphasize that, as discussed in Section II-C, the DECIMAL
types are not flexible enough for many modern applications,
which cannot determine the scale of the involved numbers
statically and thus need a floating-point representation. We still
include them as a reference point. We also ran the algorithms
with built-in floating-point types, but observed exactly the same
performance as DECIMAL(9) and DECIMAL(18) for float and
double, respectively, so we omit them in the plots shown
below.

In order to determine how much partitioning is needed
as pre-processing, we use the same procedure as described
below in Section VI-D for each data type separately: while
for built-in types, using one and two levels pays off starting
from 216 and 225 groups, respectively, the thresholds vary
somewhat for the reproducible data types. They range from
214 to 216 and 220 to 224, respectively. This is due to varying
amounts of overhead of operator+=, which exceeds the costs
of PARTITIONING sometimes sooner, sometimes later, but can
be easily accommodated for in practice.

Figure 7 summarizes our findings. For better readability, we
only show the results for L = 2 and L = 3, which are the most
interesting configurations in practice. As in the experiment
shown in Figure 4, the different levels are about equidistant
from each other, which gives an idea of the omitted data points.

The upper diagram shows that the runtime for all data
types follows the expected pattern: fast, in-cache processing
for small numbers of groups and more and more overhead
for the partitioning as the number of groups increases, each
“step” corresponding to an additional level of partitioning. For
DECIMAL(p), the steps are higher the larger p, which is due

24 25 26 27 28 29 210
Buffer size (bsz)

0

10

20

30

40
C

P
U

ti
m

e
pe

r
el

em
en

t
[n

s]
(a) 16 groups

24 25 26 27 28 29 210
Buffer size (bsz)

(b) 1024 groups

24 26 28 210 212 214
Number of groups

(c) repro<float,2>

bsz = 16
bsz = 64
bsz = 256
bsz = 1024

repro<float,2>
repro<float,3>

repro<double,2>
repro<double,3>

Figure 8: Impact of the buffer size on PARTITIONANDAGGREGATE with d = 0.

to the higher memory traffic for wider data types in that phase.
As the keys in the input become more and more distinct (for
most data types at around 227 groups in the 230 input records),
the costs of evicting the final result back to RAM becomes
noticeable. Furthermore, the larger L, i.e., the higher the
accuracy, the longer the runtime of repro<ScalarT,L> by
quite a large difference, slightly more so for doubles than for
floats. Finally, for DECIMAL(p), the steps due to partitioning
are higher the larger p, which is due to the higher memory
traffic for wider data types in that phase.

The lower diagram in Figure 7 shows the slowdown of all
data types compared to the algorithm on float. As shown
earlier, the slowdown of repro<ScalarT,L> ranges from a
factor11 4 to 10 for small numbers of groups compared to built-
in floats (which has the same performance as DECIMAL(9))
and steadily decreases to a factor 1.5 to 3 as the numbers of
groups increases. The latter effect is due to the fact that the
total runtime increases by the same constant amount for all
data types (the partitioning is exactly the same for all of them)
with an increasing number of groups, while the overhead of
operator+= is more or less independent of the number of
groups, making the former relatively more dominant than the
latter.

Conclusion: Using reproducible floats as drop-in replace-
ment in unmodified state-of-the-art aggregation algorithms has
an overhead of up to factor 6 compared to built-in floats with
comparable accuracy.

D. Aggregation with Summation Buffers

We now turn our attention to PARTITIONANDAGGREGATE
with summation buffers. We first show micro-benchmarks that
confirm our choice of the buffer size bsz and then evaluate
end-to-end performance.

In order to confirm our model of the cache footprint that
leads to Equation 4, we compare the performance of PARTI-
TIONANDAGGREGATE for several values of bsz and d = 0,
i.e., no partitioning. Figure 8 shows the results. According
to Figure 8a and like for the isolated summation routine in

11For the omitted configuration of L = 4, the slowdown is even up to 12×.

Section VI-B, for a very small number of groups, the larger the
buffer is, the better is the performance. However, performance
gains of buffers larger than 28 elements are only marginal. As
Figure 8b shows, the situation is different for slightly larger
numbers of groups. Here performance sharply drops for buffers
larger than 28 and 27 elements for single-precision and double-
precision data types respectively.

This is in line with our model of the working set introduced
in Section V-C: For all configurations shown in Figure 8b,
the performance drops when the modeled working set exceeds
1MiB, which is about half of the last-level cache per core.
Figure 8c details for which number of groups the caching
effect starts to be noticeable for a given buffer size using the
repro<float,2> data type: For each fixed buffer size, the
performance drops sharply once a certain number of groups
is reached. Again, this is the point when the working set
exceeds 1MiB according to the equation of Section V-C. The
performance of the other data types follows the same pattern.

If we compare the value of bsz predicted by Equation 4
with the buffer size performing best in Figure 8c, we can
see that the predicted value is very close to the optimal
in all situations, with only a few exceptions (for example,
bsz = 512 is slightly better than the predicted bsz = 1024
for 26 groups). However, we found through exhaustive search
that 75% of all combinations of number of groups and data
types deviate by less than 1% from the optimal performance,
90% of them deviate by less than 5%, and the largest
deviation is 20%. Appendix B shows the same procedure for
PARTITIONANDAGGREGATE with d = 1, where our model
predicts the optimal buffer size equally well (the percentiles
of the slowdown are even slightly lower).

Conclusion: We can predict a close-to-optimal buffer size
using Equation 4, which we use for the remainder of this paper.

In order to determine how much partitioning is needed as
pre-processing, we compare PARTITIONANDAGGREGATE for
different number of levels of partitioning. Each variant uses the
optimal value of bsz as predicted by Equation 4 for the given
number of groups. Figure 9 shows the result for repro<float,
2>: By comparing the performance of the three variants, we
can see that each level of partitioning has additional costs,

20 26 212 218 224
Number of groups

0

10

20

30

40

50
C

P
U

ti
m

e
pe

r
el

em
en

t
[n

s]
d = 0 d = 1 d = 2

Figure 9: HASHAGGREGATION variants with different amount
of partitioning on repro<float,2>.

which is only worth it if the number of groups is so large
that the inefficiency due to smaller buffers (or out-of-cache
processing) is even more expensive. Concretely, no partitioning
at all is faster as long as the number of groups is less than 210.
After that point, partitioning once is faster, so the partitioning
pays off.12 Similarly, two levels of partitioning are faster than
just one for 218 groups or more. This corresponds to 210

groups per partition—so the two thresholds are effectively the
same.

More levels of partitioning are not beneficial for the data
sets with 230 records used in this paper, but may be helpful for
even larger ones. The performance drop with more than 224

is not due to the number of groups becoming too large, but
due to the number of records per group becoming too small.
We discuss this effect in more detail in Appendix A.

In experiments not shown in this paper, we determine the
thresholds on other data types as well. The results are largely
the same, so we omit them here. Furthermore, we only do
the tuning with numbers of groups that are powers of two.
We could determine the thresholds more precisely, but since
small changes in their values do not have a drastic impact on
performance, we do not implement that in our prototype.

Conclusion: Partitioning the input helps to reduce the cache
footprint of our algorithm, which in turn improves performance.
The more groups there are in the input, the more levels of
partitioning are needed and our micro-benchmarks show the
cross-over points.

Figure 10 shows the performance of PARTITIONANDAG-
GREGATE using repro<ScalarT,L> and summation buffers
in comparison with unbuffered DECIMAL types. The upper
diagram shows the absolute running time, which exhibits
the same pattern of increasing cost due to more levels of
partitioning for increasing numbers of groups. Compared
to the algorithm without summation buffers, however, the
running time is generally lower and, in particular, there is
now little difference between different configurations of repro
<ScalarT,L>. The largest difference is caused by the fact that

12If the number of partitions is smaller than the number of threads, some
threads are idle while the others aggregate their partitions, which explains
the performance drop in these cases. However, the final algorithm uses
PARTITIONANDAGGREGATE only for much larger numbers of groups and
is, hence, not affected by this phenomenon.

0

10

20

30

40

C
P

U
ti

m
e

[n
s]

pe
r

el
em

en
t

repro<float,2>
repro<float,3>
repro<double,2>
repro<double,3>

DECIMAL(9)
DECIMAL(18)
DECIMAL(38)

1

2

3

4

5

Sl
ow

do
w

n
co

m
pa

re
d

to
fl
oa
t

20 26 212 218 224 230
Number of groups

1

2

3

4

5

Sp
ee

du
p

co
m

pa
re

d
to

un
bu

ffe
re

d

Figure 10: PARTITIONANDAGGREGATE with summation
buffers on various repro<ScalarT,L> compared to the same
algorithm on unbuffered DECIMAL.

the reproducible data types based on double are slower than
those based on float. This is mainly due to the fact that
PARTITIONING, which is memory bound, needs to move twice
as much data in the former case. This is the same effect that
slows down the DECIMAL types, which makes them about as
slow or slower as our reproducible types for 216 groups and
more (in addition to being less flexible). Finally, starting at
around 224 groups, where the keys become more and more
distinct, performance starts dropping considerably, an effect
that we explain in more detail in Appendix A.

If we compare this result with the known results for algo-
rithms on built-in types [11, 26], we see that the algorithms
here run out of cache already for much smaller numbers of
groups. This is due to the larger cache footprint of the
summation buffers as argued earlier. Running out of cache
has also a stronger effect caused by the additional indirection
(accessing the offset and the end of the buffer may cause two
cache misses instead of just one).

The middle diagram shows what the absolute performance
means in terms of slowdown compared to built-in floats. We
can see that the summation buffers have significantly narrowed
the gap between our new reproducible data types and the built-
in floating-point types. In many cases, this slowdown is in

data type slowdown

repro<double,1> 2.12
repro<double,2> 2.18
repro<double,3> 2.29
repro<double,4> 2.41
repro<float,1> 1.88
repro<float,2> 2.11
repro<float,3> 2.16
repro<float,4> 2.35

Table III: Geometric mean of slowdown of summation buffers
compared to unbuffered per data type.

the range of 1.3 to 2.5. Only for almost distinct data (more
than 226 groups) and for the range of 28 to 212 groups, the
slowdown may be larger than that. In the latter range, the
number of groups are such that the algorithm on built-in floats
can still fit its working set into the last-level cache, while the
algorithm using summation buffers cannot, and thus needs to
pay the additional price of partitioning the input first (on top
of the overhead of buffering and more expensive summation).

Table III shows that the slowdown is still reasonable: its
geometric mean of all numbers of groups ranges from 1.87
to 2.35 for types based on float and from 2.12 to 2.41 for
types based on double. We believe that this is an affordable
price for full reproducibility.

Finally, the lower diagram shows the speedup of our algo-
rithm with summation buffers compared to the naïve approach
without them. In particular for small data sets, the speedup is
considerable (between factor 2 and more than 5 for the shown
configurations and up to factor 6 for the omitted L = 4). As
expected, it is the higher, the larger L. The speedup drops
slightly below 1 for the largest number of groups, i.e., using
summation buffers is actually slower than not using them.
Since the difference is not large, we leave this as a small
open problem.

Conclusion: Thanks to efficient partitioning routines, care-
ful cache-management, and vectorized summation on summa-
tion buffers, the overhead of reproducibility on floating-point
numbers can be reduced to a slowdown of about a factor of
two.
E. End-to-End Query Performance

We integrated our reproducible data types into MonetDB [9]
v11.25.23 in order to quantify their impact on end-to-end query
performance. To that aim, we modified MonetDB’s aggregation
operator for sum on built-in doubles such that it first aggregates
its input into a locally allocated array using our reproducible
data types (with or without summation buffers) and then copies
the result converted to doubles into the result array allocated
by the system.13 We run a modified TPC-H benchmark as

13This does not technically make MonetDB reproducible because it par-
allelizes query plans as independent subplans on parts of the input whose
intermediate results are merged. Our changes make the aggregation operators
of each subplan as well as the merging reproducible, but the splitting of
the input remains non-deterministic. We argue that this still gives a good
approximation of the performance impact. A full integration would require
the introduction of a new type, which is a development effort out of the scope
of this paper.

double repro<d,4>
without buffer

repro<d,4>
with buffer

double
(sorted)

Aggregations 34.2 51.3 38.7 45.1
Other 65.8 63.1 64.0 682.1

Total 100.0 114.4 102.7 727.2

Table IV: CPU time of different approaches for TPC-H Query 1
relative to the total CPU time on built-in doubles in %.

workload where we replaced all DECIMAL columns by DOUBLE.
Table IV shows the CPU time of different approaches on

Query 1 relative to the CPU time of an unmodified MonetDB.
As additional baseline, we include the CPU time of modified
queries that sort the input to the grouping and aggregation
operators, which is the only way to make them reproducible
across input permutations without modifying the system.

As the table shows, using repro<double,4> without sum-
mation buffers takes about 14% longer due to a 50% CPU
time increase of the aggregation operators. This increase is
lower than the 10× increase observed with our own aggrega-
tion operator in Section VI-C due to the slower baseline of
MonetDB’s operator, which performs several overflow checks
for each input element. With summation buffers, however, the
overhead of reproducibility is a negligible 2.7%. Sorting, in
contrast, is more than 7× slower, which shows the importance
of a numeric solution such as the one we propose.

VII. RELATED WORK

Aggregation with GROUPBY on conventional data types is
a well understood problem. In recent years, it has been studied
extensively for in-memory, multi-core database systems [11, 26,
36, 37]. The focus of that work was contention-free paralleliza-
tion and cache efficiency. Which strategy is best to achieve
the latter goal mainly depends on the size of the result, which
directly depends on the number of groups. The consensus [11,
26] is that algorithms similar to PARTITIONANDAGGREGATE
with various levels of partitioning are best for different numbers
of groups, which is why we build on them in this paper. For the
case where the result is larger than a private cache, but smaller
than the combined shared cache of all threads, Cieslewicz and
Ross [11] show that SHAREDAGGREGATION may be a better
solution than the other two, which uses uses a shared (lock-free)
hash table, at least in the absence of skew. Similar techniques
have been proposed for JOIN and SORT operators [4, 5, 6, 7,
9]. As we show in this paper, these techniques alone are not
sufficient for reproducible floating-point numbers.

Since the number of groups is generally not known in
advance and hard to estimate, researchers have proposed
mechanisms to select the processing strategy adaptively [11,
26], which is possible with minimal overhead. Furthermore,
mechanisms for handling data skew in the input or a con-
strained amount of memory were proposed [11, 25, 26]. These
aspects are somewhat independent of reproducibility and the
proposed solutions can be applied to our algorithms as well,
so we do not go into further detail in this paper.

Variants of SORTAGGREGATION, have not been found
competitive by recent studies [4] (except for presorted in-
puts [11]), mainly due to much higher computational costs and
the difficulty to combine early aggregation with vectorization.

There is a line of research in High-Performance Computing
that studies the problem of reproducibility of numerical com-
putations using floating-point numbers [3, 13, 14]. However,
as argued throughout the paper, the proposed solutions are
not applicable to aggregation with GROUPBY. No work on
numeric reproducibility in the field of data processing is known
to us.

Our work may seem to contradict attempts to speed up query
execution either by approximating the computation or reducing
the precision. Prominent examples of the first class include
DBO [24], BlinkDB [2], and Sample+Seek [18], as well as
recent summarization techniques based on the principle of
Maximum Entropy [30]. We consider this work somewhat
orthogonal to ours since many sampling techniques are based
on deterministic pseudo-random number generators and could
require a technique similar to ours to be completely repro-
ducible. Maybe more importantly, from a user’s perspective, it
is clearly less surprising to get different results from a system
that gives approximate answers by design rather than from one
that is assumed to be deterministic. Examples of the second
class include work on neural networks with 8-bit and even
1-bit precision by Suda et al. [34] and Courbariaux et al. [12],
respectively, as well as the low-precision machine learning
framework ZipML [38]. However, as discussed in Section II-C,
precision and reproducibility are completely orthogonal (our
algorithms could be implemented based on lower-precision
floating-point types as well).

VIII. SUMMARY AND CONCLUSION

In this paper we have addressed the problem of bit-repro-
ducible aggregation in database systems. The main challenge
is that achieving reproducibility is expensive and cannot be
efficiently done with existing algorithms for reproducible
summation and for GROUPBY. Any naïve combination of
existing results in the two areas leads to prohibitive overheads.

The main insights from the work include identifying the
bottlenecks that result from the bookkeeping needed to keep
track of rounding errors and the effects that it has in cache
locality for high cardinality aggregation. Based on these
insights, we have proposed ways to extend existing aggregation
operators with bit-reproducibility in a way that the resulting
overhead is acceptable and comparable to that of conventional
aggregation over built-in types.

With these results, we establish the basis for exploring
more complex data types and operations inside the database
engine providing the same guarantees and meeting the same
requirements as those imposed on regular code processing
floating-point data. As part of future work we intend to look
into operators for machine learning, vector manipulation, and
series analysis based on the algorithms presented in this paper.

ACKNOWLEDGMENTS

We thank Eric Sedlar (Oracle Labs) for bringing the problem
of reproducibility in the context of database systems to our
attention, as well as for valuable feedback on this work.
We also thank Lefteris Sidirourgos for his feedback on the
integration of our algorithm into MonetDB.

REFERENCES

[1] ACM US Public Policy Council. Statement on Algorith-
mic Transparency and Accountability. 2017.

[2] S. Agarwal et al. “BlinkDB: Queries with Bounded
Errors and Bounded Response Times on Very Large
Data.” In: EuroSys. 2013. DOI: 10 . 1145 / 2465351 .
2465355.

[3] A. Arteaga, O. Fuhrer, and T. Hoefler. “Designing Bit-
Reproducible Portable High-Performance Applications.”
In: IPDPS (2014). DOI: 10.1109/IPDPS.2014.127.

[4] Ç. Balkesen. “In-Memory Parallel Join Processing on
Multi-Core Processors.” PhD thesis. ETH Zurich, 2014.
DOI: 10.3929/ethz-a-010168223.

[5] C. Balkesen, J. Teubner, and G. Alonso. “Main-Memory
Hash Joins on Multi-Core CPUs : Tuning to the
Underlying Hardware.” In: ICDE. 2013. DOI: 10.1109/
ICDE.2013.6544839.

[6] C. Balkesen et al. “Multi-Core, Main-Memory Joins:
Sort vs. Hash Revisited.” In: PVLDB. 2013. DOI:
10.14778/2732219.2732227.

[7] C. Barthels et al. “Distributed Join Algorithms on
Thousands of Cores.” In: PVLDB. 2017. DOI: 10 .
14778/3055540.3055545.

[8] G. E. Blelloch et al. “Internally Deterministic Parallel
Algorithms Can Be Fast.” In: PPoPP. Vol. 47. 8. 2012.
DOI: 10.1145/2370036.2145840.

[9] P. A. Boncz, M. L. Kersten, and S. Manegold. “Breaking
the Memory Wall in MonetDB.” In: CACM 51.12
(2008). DOI: 10.1145/1409360.1409380.

[10] W.-f. Chiang and G. L. Lee. “Determinism and Re-
producibility in Large-Scale HPC Systems.” In: WoDet
(2013).

[11] J. Cieslewicz and K. Ross. “Adaptive Aggregation on
Chip Multiprocessors.” In: PVLDB. 2007.

[12] M. Courbariaux et al. “Binarized Neural Networks:
Training Deep Neural Networks with Weights and Acti-
vations Constrained to +1 or -1.” In: (Feb. 2016). arXiv:
1602.02830.

[13] J. Demmel and H. D. Nguyen. “Fast Reproducible
Floating-Point Summation.” In: ARITH. 2013. DOI:
10.1109/ARITH.2013.9.

[14] J. Demmel and H. D. Nguyen. “Parallel Reproducible
Summation.” In: IEEE Trans. Comput. 64.7 (2015).
DOI: 10.1109/TC.2014.2345391.

[15] N. Diakopoulos. “Accountability in Algorithmic Deci-
sion Making.” In: CACM 59.2 (2016). DOI: 10.1145/
2844110.

http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1145/2465351.2465355
http://dx.doi.org/10.1109/IPDPS.2014.127
http://dx.doi.org/10.3929/ethz-a-010168223
http://dx.doi.org/10.1109/ICDE.2013.6544839
http://dx.doi.org/10.1109/ICDE.2013.6544839
http://dx.doi.org/10.14778/2732219.2732227
http://dx.doi.org/10.14778/3055540.3055545
http://dx.doi.org/10.14778/3055540.3055545
http://dx.doi.org/10.1145/2370036.2145840
http://dx.doi.org/10.1145/1409360.1409380
http://arxiv.org/abs/1602.02830
http://dx.doi.org/10.1109/ARITH.2013.9
http://dx.doi.org/10.1109/TC.2014.2345391
http://dx.doi.org/10.1145/2844110
http://dx.doi.org/10.1145/2844110

[16] N. Diakopoulos and M. Koliska. “Algorithmic Trans-
parency in the News Media.” In: Digital Journalism
(2016). DOI: 10.1080/21670811.2016.1208053.

[17] W. Dietz et al. “Understanding Integer Overflow in
C/C++.” In: ICSE. IEEE, 2012. DOI: 10.1109/ICSE.
2012.6227142.

[18] B. Ding et al. “Sample + Seek: Approximating
Aggregates with Distribution Precision Guarantee.” In:
SIGMOD. 2016. DOI: 10.1145/2882903.2915249.

[19] European Parliament and European Council. General
Data Protection Regulation. 2016. URL: http://data.
europa.eu/eli/reg/2016/679/oj.

[20] Federal Trade Commission. Big Data: A Tool for
Inclusion or Exclusion? Understanding the Issues (FTC
Report). Tech. rep. 2016.

[21] D. Goldberg. “What Every Computer Scientist Should
Know About Floating-Point Arithmetic.” In: ACM
CSUR 23.1 (1991). DOI: 10.1145/103162.103163.

[22] J. Gustafson. The End of Error: Unum Computing.
CRC Press, 2015. ISBN: 9781482239874.

[23] R. Jacob, T. Lieber, and N. Sitchinava. “On the
Complexity of List Ranking in the Parallel External
Memory Model.” In: MFCS 8635 (2014). DOI: 10 .
1007/978-3-662-44465-8.

[24] C. Jermaine et al. “Scalable Approximate Query Pro-
cessing With The DBO Engine.” In: TODS 33.4 (2008).
DOI: 10.1145/1412331.1412335.

[25] I. Müller. “Engineering Aggregation Operators for
Relational In-Memory Database Systems.” PhD thesis.
Karlsruhe Institute of Technology, 2016. DOI: 10.5445/
IR/1000055675.

[26] I. Müller et al. “Cache-Efficient Aggregation: Hashing
Is Sorting.” In: SIGMOD. 2015. DOI: 10.1145/2723372.
2747644.

[27] NVIDIA Corporation. CUDA Toolkit v8.0: cuBLAS.
2016. URL: http : / / docs . nvidia . com / cuda / cublas /
#cublasApi_reproducibility.

[28] T. Ogita, S. M. Rump, and S. Oishi. “Accurate Sum and
Dot Product with Applications.” In: ICRA 26.6 (2004).
DOI: 10.1109/CACSD.2004.1393867.

[29] Oracle. Java Platform, Standard Edition 8: API
Specification. 2016. URL: https : / /docs .oracle .com/
javase/8/docs/api/java/math/BigDecimal.html.

[30] L. Orr, M. Balazinska, and D. Suciu. “Probabilistic
Database Summarization for Interactive Data Explo-
ration.” In: PVLDB. Vol. 10. 10. 2017. DOI: 10 .
14778/3115404.3115419.

[31] O. Polychroniou and K. A. Ross. “A Comprehensive
Study of Main-Memory Partitioning and its Application
to Large-Scale Comparison- and Radix-Sort.” In: SIG-
MOD. 2014. DOI: 10.1145/2588555.2610522.

[32] T. Rosenquist and S. Story. “Using the Intel Math Kernel
Library (Intel MKL) and Intel Compilers to Obtain
Run-to-Run Numerical Reproducible Results.” In: The
Parallel Universe 11 (2012).

[33] F. M. Schuhknecht, P. Khanchandani, and J. Dittrich.
“On the Surprising Difficulty of Simple Things: the
Case of Radix Partitioning.” In: PVLDB. Vol. 8. 9.
2015. DOI: 10.14778/2777598.2777602.

[34] N. Suda et al. “Throughput-Optimized OpenCL-based
FPGA Accelerator for Large-Scale Convolutional Neural
Networks.” In: FPGA. 2016. DOI: 10.1145/2847263.
2847276.

[35] The GNU MPFR Library. URL: http://www.mpfr.org/.
[36] J. Wen. “Revisiting Aggregation Techniques for Data

Intensive Applications.” PhD thesis. University of
California, Riverside, 2013. ISBN: 978-1-303-71220-
3.

[37] Y. Ye, K. A. Ross, and N. Vesdapunt. “Scalable
Aggregation on Multicore Processors.” In: DaMoN.
2011. DOI: 10.1145/1995441.1995442.

[38] H. Zhang et al. “The ZipML Framework for Training
Models with End-to-End Low Precision: The Cans, the
Cannots, and a Little Bit of Deep Learning.” In: ICML.
2016.

[39] D. Zuras et al. “IEEE standard for floating-point
arithmetic.” In: IEEE Std 754-2008 (2008).

APPENDIX

In this appendix, we show two more experiments that allow
interested readers to understand our implementation in more
depth.

A. Performance of Partition and Aggregate on Almost Distinct
Data

Figure 10 in Section VI-D shows a performance drop
of PARTITIONANDAGGREGATE for almost distinct data, i.e.,
when the number of groups approaches the number of records
in the input. Here, we explain the reason for this drop and
sketch a possible solution. Figure 11 shows the performance
of our algorithm for distinct inputs of various sizes. As the plot
shows, the performance drops whenever the average number
of records per group n/ngroups < 26 independently of the
input size. Several effects add up in these situations: First,

220 222 224 226 228
Number of groups

0

20

40

60

80

100

C
P

U
ti

m
e

pe
r

el
em

en
t

[n
s]

n = 225

n = 226

n = 227

n = 228

n = 229

n = 230

Figure 11: PARTITIONANDAGGREGATE with bsz = 256 for
various input sizes on repro<float,2>.

http://dx.doi.org/10.1080/21670811.2016.1208053
http://dx.doi.org/10.1109/ICSE.2012.6227142
http://dx.doi.org/10.1109/ICSE.2012.6227142
http://dx.doi.org/10.1145/2882903.2915249
http://data.europa.eu/eli/reg/2016/679/oj
http://data.europa.eu/eli/reg/2016/679/oj
http://dx.doi.org/10.1145/103162.103163
http://dx.doi.org/10.1007/978-3-662-44465-8
http://dx.doi.org/10.1007/978-3-662-44465-8
http://dx.doi.org/10.1145/1412331.1412335
http://dx.doi.org/10.5445/IR/1000055675
http://dx.doi.org/10.5445/IR/1000055675
http://dx.doi.org/10.1145/2723372.2747644
http://dx.doi.org/10.1145/2723372.2747644
http://docs.nvidia.com/cuda/cublas/#cublasApi_reproducibility
http://docs.nvidia.com/cuda/cublas/#cublasApi_reproducibility
http://dx.doi.org/10.1109/CACSD.2004.1393867
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
https://docs.oracle.com/javase/8/docs/api/java/math/BigDecimal.html
http://dx.doi.org/10.14778/3115404.3115419
http://dx.doi.org/10.14778/3115404.3115419
http://dx.doi.org/10.1145/2588555.2610522
http://dx.doi.org/10.14778/2777598.2777602
http://dx.doi.org/10.1145/2847263.2847276
http://dx.doi.org/10.1145/2847263.2847276
http://www.mpfr.org/
http://dx.doi.org/10.1145/1995441.1995442

24 25 26 27 28 29 210
Buffer size (bsz)

0

10

20

30

40
C

P
U

ti
m

e
pe

r
el

em
en

t
[n

s]
(a) 4096 groups

24 25 26 27 28 29 210
Buffer size (bsz)

(b) 262144 groups

212 214 216 218 220 222
Number of groups

(c) repro<float,2>
bsz = 16
bsz = 64
bsz = 256
bsz = 1024

repro<float,2>
repro<float,3>

repro<double,2>
repro<double,3>

Figure 12: Impact of the buffer size on PARTITIONANDAGGREGATE with a partitioning fanout of 256 and d = 1.

the summation routine is less efficient for fewer elements
per call as discussed in Section VI-B. Second, as with the
algorithm on IEEE floats, the cost of bringing the memory
for the final result into cache and writing it back to RAM
becomes noticeable as the result size increases. And last,
the fact that our reproducible algorithm first produces local
aggregates using summation buffers and only then writes them
to the result represents additional costs that increase linearly
with the number of groups and become dominant after some
point. We believe that our algorithm can be improved upon for
these cases, but leave such an optimization for future work.

B. Tuning the Buffer Size in Partition and Aggregate

Figure 12 shows the impact of the buffer size (bsz) on the
running time of PARTITIONANDAGGREGATE for various num-
bers of groups in the input. Qualitatively, the impact is exactly
the same as without prior partitioning (see Figure 8). However,
the partitioning divides the number of groups processed at the
same time by the partitioning fan-out (256), i.e., data sets with
256 times more groups can be aggregated before the working
set exceeds the cache. At the same time, the running time
is increased by the constant costs of the partitioning routine,
which is independent of the buffer size or the number of groups.

