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Abstract In mammals, the development of reflexes is often
regarded as an innate process. However, recent findings show
that fetuses are endowed with favorable conditions for onto-
genetic development. In this article, we hypothesize that the
circuitry of at least some mammalian reflexes can be self-
organized from the sensory and motor interactions brought
forth in a musculoskeletal system. We focus mainly on three
reflexes: the myotatic reflex, the reciprocal inhibition reflex,
and the reverse myotatic reflex. To test our hypothesis, we
conducted a set of experiments on a simulated musculoskel-
etal system using pairs of agonist and antagonist muscles.
The reflex connectivity is obtained by producing spontaneous
motor activity in each muscle and by correlating the result-
ing sensor and motor signals. Our results show that, under
biologically plausible conditions, the reflex circuitry thus
obtained is consistent with that identified in relation to the
analogous mammalian reflexes. In addition, they show that
the reflex connectivity obtained depends on the morphology
of the musculoskeletal system as well as on the environment
that it is embedded in.
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1 Introduction

The human body is a complicated and high-dimensional
machine, and generating even the most primitive reflexes
often requires a tight coordination between many different
sensor and motor modalities (Bernstein 1967). In princi-
ple, hardwiring a given behavior implies pre-establishing
every connection mediating the afferent sensor inputs and
the appropriate α-motoneurons. For some reflexes this con-
nectivity might involve an extremely large number of connec-
tions. For example, the withdrawal reflex entails a significant
number of connections mediating afferent inputs from mec-
hano (and noxious) receptors and α-motoneurons belonging
to different muscles (Schouenborg and Weng 1994; Levins-
son et al. 1999); in theory, it is not fully understood how this
complex reflex circuitry can be developed in nature.

An alternative way to set the reflex circuitry is to branch
the axon connectivity along the reflex arc to sites near the
appropriate targets locations, and let experience prune the
unnecessary connections. In this way, the appropriate
connectivity can be statistically established in the different
circuits, and ontogenetic processes ensure the removal of
spurious connections. Similar processes have been observed
for different areas of the central nervous system (see for
example, Wang et al. 1995; Sharma et al. 2000), where local
neural circuitry seems to be determined by the input infor-
mation. In the spinal cord, there is also evidence that expe-
rience determines local neural circuits. For example, at birth
excitatory connections mediate the connectivity between
Ia muscle afferent inputs (which estimate muscle length infor-
mation) and α-motoneurons of the homonymous muscle as
well as of the antagonist muscles. However, during develop-
ment the antagonist connections disappear while the homon-
ymous connections are maintained (Myklebust and Gottlieb
1993).
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Historically, the observation of a given behavior shortly
after birth was considered as sufficient to conclude that the
behavior was developed independently of experience (Robin-
son and Brumley 2005), i.e., it was due to some genetic (or
innate) processes. This was certainly the case with many of
the reflex responses humans display at birth.

The question then arises, how the presence of a given
behavior at birth can be explained by ontogenetic processes.
Some clues in addressing this question might lie in recent
findings on prenatal development. Experiments have shown
that mammalian fetuses display significant motor activity
(Hadders-Algra 2007), responsiveness to sensor stimulation
(Smotherman and Robinson 1992) and have the capacity for
learning (Smotherman and Robinson 1998); all of which are
favorable conditions for the type of ontogenetic development
addressed here. In addition, it has been shown that the devel-
opment of the withdrawal reflex (which is present at birth)
can be explained ontogenetically using the method of motor-
directed somatosensory imprinting, MDSI (Petersson et al.
2003; see also Schouenborg and Weng 1994). This method
uses a form of Hebbian learning (the anti-Hebbian rule) to
self-organize the tactile-to-motor circuitry entailed by the
withdrawal reflex.

In this article, we propose a novel framework that charac-
terizes a few important aspects of ontogenetic development
in mammals. Our framework extends the MDSI method to
incorporate two additional sensor modalities—muscle length
and muscle force—to obtain three additional reflexes: the
myotatic reflex, the reciprocal inhibition reflex, and the
reverse myotatic reflex. These reflexes consist of fast (nega-
tive) feedback responses involved in local agonist and antag-
onist muscle interactions and they were chosen because they
are generally placed at the lowest level in mammalian motor
control (Latash 2008). Moreover, they are relatively simple
(they involve at most one interneuron in their reflex arc) and
fairly well understood, which allows for validation.

Our hypothesis is that these three reflexes can emerge
from the interactions between a mechanism capable of pro-
ducing spontaneous motor activity on a musculoskeletal
system and a correlation-based method applied on the
resulting sensor and motor activity. In our framework, spon-
taneous motor activity consists of spontaneous contractions
of individual muscles, or single muscle twitches (SMTs)
which typically occur during sleep (Blumberg and Lucas
1996). In addition, we hypothesize that two factors strongly
contribute to the normal development of the reflexes: a per-
turbation-free environment and the morphology of biological
muscles.

This is our first systematic investigation on the self-orga-
nization of reflexes. It is not yet intended to involve accurate
modelling of all human neurophysiological functions, but
rather to extract more general biological principles which
can also be used in the domain of artificial systems.

The remainder of this article is organized as follows.
Section 2 describes our framework. Section 3 provides the
implementation details of each mechanism in the framework.
Section 4 describes the methods and results of five experi-
ments: the first experiment investigates the self-organization
of the three reflexes using a biological muscle model, the
second investigates the role of sensor delays in the reflex
connectivity, the third analyses the reflex connectivity using
synergistic muscles, and the fourth and fifth experiments
investigate the role of the environment and the muscle mor-
phology, respectively, on the development of the reflex cir-
cuitry. Section 5 discusses the experimental results, and it is
followed by Sect. 6 which provides the conclusions and the
outlook of our research.

2 The reflex-learning framework

The proposed framework consists of five interacting models:
a musculoskeletal model (and its environment), a peripheral
model, a model of SMTs, a learning model based on the cor-
relations between sensor and motor activity, and a model of
the reflex sensorimotor mapping (see Fig. 1). It works as fol-
lows. First, SMTs activate the different motors of the system.
Second, the activated motors produce forces which are prop-
agated through the musculoskeletal system (and the environ-
ment that it is embedded in). Third, the changes produced in
the musculoskeletal system are captured by the different body
sensors, which (fourth) convert them into sensor activity. And
fifth, the correlation between the sensor and motor activity
establishes the reflex connectivity between each receptor and
each effector. These models interact in two stages: in the first
stage, the models interact to learn the reflex circuitry; in the
second stage, the models interact to produce the reflex activ-
ity. In this section, we will introduce each of the five models
of the framework, and in the next section, we will describe
their implementation.

2.1 Musculoskeletal and environment model

The musculoskeletal and environment model captures the
mechanical interactions among muscles, skeleton, and envi-
ronment. When a muscle contracts,1 it produces motion on
the skeleton which induces sensory information in the sys-
tem. These motions depend not only on the skeletal properties
(e.g., length and mass of the bones) but also on the charac-
teristics of the environment where it is embedded in (e.g.,
gravity or viscosity).

1 Often, a muscle contraction is associated to the shortening of a muscle;
here, we will use the term muscle contraction to mean the generation
of tension in the muscle, irrespective of whether this tension causes the
muscle to shorten or not.
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Fig. 1 The proposed framework consists of five interacting models:
a musculoskeletal model (and its environment), a peripheral model,
a model of SMTs, a learning model based on the correlations between
sensor and motor activity, and a model of the reflex sensorimotor map-
ping (see text). Numbers The order of events in the framework

The muscles in biology have two fundamental proper-
ties. First, they have asymmetrical conditioning, i.e., they
only produce active forces when contracting but not when
extending. And second, they impose a very small resistance
to movement when relaxed. All these properties are a part of
the standard Hill-type muscle model which is often used to
simulate the behavior of biological muscles (Hill 1938).

2.2 Peripheral system model

The peripheral system allows the communication between
the neural system and the mechanical system (e.g., the mus-
culoskeletal system), via sensor inputs and motor outputs.
In humans, afferent fibers collect the sensory signals from
the different sensory modalities, and efferent fibers carry the
motor signals to the motoneurons. In the context of our frame-
work, the relevant afferent fibers are the Ia and Ib fibers;
group II afferent fibers are out of the scope of this article.
The former estimate changes in the muscle length as well as
positional muscle length (Hulliger 1984); the latter respond
to small variations in muscle force, and fire mostly when the
muscle is being contracted (Jami 1992). The relevant effer-
ent fibers are the α-motoneurons which are responsible for
initiating muscle contractions.

2.3 SMTs model

SMTs are one type of spontaneous motor activity observed in
mammals (Blumberg and Lucas 1994; Blumberg and Lucas

1996); they consist of single muscle contractions which occur
in the absence of sensory stimulation. In mammals, this type
of activity has been observed prior to birth as well as after
birth, during sleep (Robinson et al. 2000). Before birth, spon-
taneous motor activity has been argued to be a major driving
force in the development and maturation of the nervous
system (Prechtl 1990; Smotherman and Robinson 1996;
Hadders-Algra 2004, 2007; Robinson and Brumley 2005).
In fetuses, development is intrinsically driven by self-
organization processes which structure the sensorimotor
information flow in the system according to the systematic
exploration of contingent sensor and motor activity
(Blumberg and Lucas 1994).

Spontaneous motor activity has been argued to be an essen-
tial mechanism in reducing the dimensionality of the motor
space (Sporns and Edelman 1993; see also Bernstein 1967)
through the formation of orderly connectivity (Blumberg and
Lucas 1996), the elimination of spurious synapses, and the
pruning of muscle fibers (Blumberg and Lucas 1994).

2.4 Correlation-based learning model

Correlation-based learning methods are unsupervised-learn-
ing mechanisms that rely only on the statistical properties
of their input signals. This is the feature that separates unsu-
pervised from supervised learning methods. In previous sim-
ulation studies, it has been shown that meaningful patterns
of sensorimotor activity emerge from self-generated move-
ments induced on a physical body (e.g., Lungarella and
Sporns 2005; Kuniyoshi and Sangawa 2006). More rele-
vantly, it has also been shown that local feedback circuitry
can be obtained through the self-organization of sensori-
motor activity (Todorov and Ghahrammani 2003; Petersson
et al. 2003; Grillner 2004; Berniker et al. 2009; Mori and
Kuniyoshi 2010).

The most famous self-organization principle in neural sys-
tems is that of Hebbian learning, according to which neu-
rons that “fire together should wire together” (Hebb 1949).
The self-organization principle used here is based on the
method of MDSI, which consists of the additive inverse of the
temporal correlation between the sensor and motor activity.
This mechanism is often referred to as anti-Hebbian (Földiák
1990) or a reversed type of Hebbian learning “with the post-
synaptic activity in reflex interneurons (and motoneurons)
preceding the afferent input” (Petersson et al. 2003; see also
Schouenborg and Weng 1994).

2.5 Sensorimotor mapping model

When the learning phase is completed, the outcome of the
correlation-based learning model is turned into a sensorimo-
tor mapping model. More specifically, as soon as the system
completes the muscle twitches, the learned connectivity is
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(a) (b)

Fig. 2 The three reflexes investigated. Stars α-Motoneurons, large
solid circles inhibitory interneurons, semi-circled arcs excitatory con-
nections, small solid circles inhibitory connections. a The myotatic
reflex is carried out through an excitatory connection between the Ia
fibers and the α-motoneurons of the homonymous muscle. The recip-
rocal inhibition reflex is carried out through an inhibitory connection
between the Ia fibers with the α-motoneurons of the antagonist muscle;
this connection is mediated by an inhibitory interneuron. b The reversed
myotatic reflex is carried out through an inhibitory connection between
the Ib fibers and the α-motoneurons of the homonymous muscle; this
connection is also mediated by an inhibitory interneuron

used to drive the whole system in such a way that sensory
stimulation induces muscle activity based on the reflex cir-
cuitry. A description of the target reflexes is given below.

The myotatic reflex counteracts an undesired stretch
imposed by an external load (Bear et al. 2007, pp. 439–440).
When a load causes a muscle to stretch, it activates its Ia
fibers which in turn excite the α-motoneurons of the homon-
ymous muscle (Kudo and Yamada 1985; Chen et al. 2003;
Pierrot-Deseilligny and Burke 2005, pp. 63–66). This results
in a muscle contraction which counteracts the force exerted
by the external load (see Fig. 2a).

The reciprocal inhibition reflex is involved in agonist–
antagonist interactions; the stretch and reflexive contraction
of one muscle inhibits the antagonist muscle and prevents
it from counteracting the movement initiated by the agonist
muscle (Pierrot-Deseilligny and Burke 2005, pp. 197–200).
The combination of the myotatic reflex and the reciprocal
inhibition reflex is often called the stretch reflex.

The reverse myotatic reflex is supposed to prevent
muscles from producing excessive forces (Bear et al. 2007,
p. 445), although its exact function is still disputed (Pierrot-
Deseilligny and Burke 2005, pp. 256–257). Strong muscle
contractions cause large force increases in the tendons which
activate the Ib fibers. This activity excites inhibitory interneu-
rons, which in turn inhibit the α-motoneurons of the homon-
ymous muscle (see Fig. 2b), resulting in a decrease of the
overall muscle activity.

3 Implementation of models

3.1 Implementation of musculoskeleton and environment

To simulate the interactions between two antagonist mus-
cles, we used a virtual 3D model of two human legs. The
simulation of the leg dynamics has been carried out using
CALIPER (Wittmeier et al. 2011b). The framework is based
on Bullet Physics2 and Coin3D graphics,3 and it allows to
simulate in real time the interactions between a large number
of rigid bodies, different types of joints and different muscle
models.

The skeletal model comprises two hip joints, which are
modeled as hinge joints. Each leg is a mechanically inde-
pendent system, i.e., no energy is transferred from one leg to
the other, to allow for an accurate validation of our learning
framework. For the actuation, we use an agonist and antag-
onist pair of muscles in each leg: the Gluteus Maximus and
the Illiacus, which are mainly responsible for hip extension
and flexion, respectively (see Fig. 3). Two additional mus-
cles, Ext.1 and Ext.2, have been implemented in each leg;
these muscles are used only to test the reflex circuitry (see
Sect. 4.2) and to test the impact of external perturbations
on the reflex connectivity (see Sect. 4.5). When referring to
one of these muscles, we will explicitly use the term exter-
nal muscle; unless stated otherwise, the term muscle will be
only used to refer to the leg muscles (i.e., the Illiacus or the
Gluteus Maximus).

Each muscle is simulated as a straight line between two
rigid bodies (see Fig. 3). The main muscle model used in our
investigation is based on a two-element nonlinear Hill model
(Hill 1938; Zajac 1989). The two elements are an active con-
tractile element in parallel with a passive elastic element (see
Fig. 4a). The contractile element models the active force gen-
erated by the muscle fibers. This element includes a damp-
ing mechanism that simulates the force–velocity relation of
biological muscles. The passive elastic element models the
muscle fiber’s resistance to deflection and prevents the mus-
cle from getting slack. The force produced by muscle i at its
attachment points is given by:

FMi
= FCHi + FSHi , (1)

where FCHi is the force produced by the Hill contractile ele-
ment of muscle i and FSHi is the force produced by the passive
spring element of muscle i. These forces are given by:

FCHi = Mi

1 + CHl̇2
i

(2)

2 Bullet Physics Library. Sony Computer Entertainment. Available
online: http://www.bulletphysics.com.
3 Coin3D. Kongsberg Oil and Gas Technologies. Available online:
http://www.coin3d.org.
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Fig. 3 Diagram of the implemented leg model with the projection of
the right leg onto the sagittal plane. This same model is used for the
right and left legs. Each muscle consists of a straight line (represented
with dashes) connecting two attachment points (filled circles). Each
leg has four muscles, M: the Illiacus, the Gluteus Maximus, and the
external muscles, Ext.1 and Ext.2. Each muscle has two sensors: one
that estimates the force, SF , produced at the attachment points, and one
that estimates the length, SL , of the muscle. The subscripts RI and RG
stand for the right Illiacus and right Gluteus Maximus, respectively. The
coordinates on the right show the position of all relevant elements in
the model (in centimeters)

(a)

(b)

Fig. 4 The schematics of the two muscle models used in this article.
a The Hill muscle model and b the artificial muscle model. Both models
include a contractile element (represented by a square) which produces
a force that brings the extremities of the muscle together. Spring and
damper elements are represented by their standard symbols

FSHi = KH(li − lr), (3)

where CH and KH are constant factors, Mi is the motor acti-
vation, li is current length of muscle i, l̇i is the rate of the
muscle length change, and lr is resting length of the muscle.

In biology, the force generated by the passive spring ele-
ment of the muscle, FSHi , is significantly smaller than the
force generated by the contractile element, FCHi . In our
model, we set KH = 1 and CH = 1e6, which fit with the
general muscle properties stated above. We have varied these

parameters within one order of magnitude and no significant
effect was observed on our results.

To compare the impact of the muscle model on the reflex
connectivity (see Sect. 4.6), we implemented a second muscle
model inspired in the artificial muscle model used in the
anthropomimetic robot, ECCEROBOT (Holland and Knight
2006; Wittmeier et al. 2011a). The artificial muscle model
simulates the dynamics of a DC motor with a gearbox in
series with a cable and an elastic shock cord (see Fig. 4b).
When the motor is actuated it reels the cable and expands the
shock cord; this produces a force that brings the attachment
points closer and simulates a muscle contraction.

The main reason to include an artificial muscle model in
our investigation originates from the fact that DC motors
behave differently from biological muscles; namely, they
are not back-drivable which prevents them from passively
extending when relaxed.

The force, FMi
, produced by the artificial muscle is given

by:

FMi
= FCEi = FSEi + FDEi = KE · (li − lr) (4)

+ DE · l̇i = τi

r
, (5)

where FSEi is the force produced by the artificial contractile
element, FSi is the spring force in the kiteline of muscle i,
FDEi is a damping force of muscle i, KE is the spring con-
stant, DE is the damping constant, r is the radius of the motor
shaft, and τi is the motor torque at the gearbox output shaft in
the artificial muscle i. This toque is calculated as a function
of the motor activation, Mi :

τi = f (Mi ), (6)

where f simulates the interactions of an electric motor and
a gearbox. As the muscle can only produce forces when
contracting but not when extending, the additional condi-
tion FMi

≥ 0 is added for all the artificial muscles. The
details of this model as well as its parameters can be found
in Wittmeier et al. (2011a).

3.2 Implementation of peripheral system

Both muscle models include two types of sensors: one that
measures the length of the muscle, SL (i.e., the distance
between the two attachment points), and one that measures
the force at the attachment points, SF ; when referring to sen-
sors collectively, we will simply use the symbol S. In our
simulation, the sensor activity consists of the derivative val-
ues of these sensor inputs, and the motor activity consists of
the motor activations, Mi , of all the muscles (see Sect. 2.2).
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Fig. 5 The reflex network before the self-organizing process; initially
the network is fully connected. Circles Sensor or motor elements,
shaded areas all possible connections between sensor and motor ele-
ments, arrow the direction of the connectivity, M stands for motor,
Ṡ stands for sensor derivative. The superscripts, F and L , stand for
force and length sensors, respectively. The subscripts, I and G, stand
for Illiacus and Gluteus Maximus, respectively, and the subscripts L
and R stand for left and right legs, respectively. The weight matrix, Q,
represents the network connectivity matrix (see text)

3.3 Implementation of correlation-based learning

The self-organization process uses a variant of differential
Hebbian learning (Kosko 1986), which utilizes the anti-
Hebbian rule. The process basically computes a negative
cross-correlation between motor and sensor signals. All pos-
sible combinations of sensor and motor connections are con-
sidered (see Fig. 5). The connectivity Qi, j between motor
element i and sensor element j is given by:

Qi, j = −ηi j

T∑

t=1

Mi,t · Ṡ j,t−D (7)

ηi j = 1

max(Ṡ j )
T∑

t=1
Mi,t

, (8)

where Ṡ j is the derivative of sensor j , Mi is the signal sent to
motor i, ηi j is a normalization factor, and D is the time delay
in the sensor response. Excitatory connections are character-
ized by positive values and inhibitory connections by nega-
tive values. The strength of each connection is given by its
magnitude. Initially, all the elements in Q are set to zero.

3.4 Implementation of spontaneous motor activity

In the simulation mode, SMTs are generated as follows.
First, at a given time the system randomly selects a mus-
cle from a uniform distribution. Second, the system activates
the selected muscle with a constant value (M = 2 mu)4 for

4 where mu stands for muscle units. Note that mu is used here as the
measurement unit used to measure the motor activity, and it is not to be
confused with the motor units existing in a muscle.

a fixed period of time (t = 1.0 s). Third, the system waits
for a another period of time before triggering the next twitch.
During this period all the muscles are relaxed (M = 0 mu).
A waiting period of t = 20 s was found large enough for the
system to recover from the previous twitch.

3.5 Implementation of sensorimotor mapping

Intuitively, the connectivity in Q describes motor-to-sen-
sor connections, as the directed flow of information is from
motors to sensors. However, Q can also describe directed
sensor-to-motor connectivity (see Petersson et al. 2003).

This operation can be technically achieved by computing
the motor activities from the sensory signals based on the
following equation:

Mi =
m∑

j=1

Qi, j
Ṡ j

max(Ṡ j )
, (9)

where m is the number of motors in the system.
To allow for a stable simulation, we compute the motor

activity based on an average of five samples of the sensor
derivative signals. The collection of the five samples starts
as soon as one sensor derivative is identified that goes above
a given threshold. The motor signal is kept constant for the
next five samples, time at which the previous five sensor
readings are averaged again and a new motor signal is com-
puted.

To produce the external stimuli, we contract the external
muscles, Ext.1 and Ext.2, in each leg. Each of these muscles
produces a given displacement in one of the limbs which is
detected by the different sensors and converted into reflex
motor activity using the matrix Q.

4 Experiments

This section describes five experiments. The first experiment
verifies our main hypothesis, i.e., that our framework is capa-
ble of self-organizing the three reflexes described above. The
second experiment demonstrates that sensor delays need to
be significantly large to influence qualitatively the reflex con-
nectivity. The third experiment uses a leg model with eight
muscles to show the scalability of our framework as well as
its potential for dimensionality reduction. The fourth exper-
iment investigates the role of external perturbations during
learning. And the fifth experiment investigates the impact
of using the artificial muscle model on the reflex circuitry
obtained. Before describing the experiments, we provide the
initial conditions for all the experiments.
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4.1 Initial conditions

All experiments follow the same methodology. They start
with all the muscles relaxed (M = 0 mu). In this condition,
the legs fall straight down due to the effects of gravity. All the
connections in Q are initially set to zero. A series of muscle
twitches are then carried out while sensor and motor data are
being collected.

4.2 Experiment 1: self-organization of basic reflexes

4.2.1 Methods

The main goal of Experiment 1 is to verify that in normal con-
ditions the reflex connectivity can be learned using SMTs and
the self-organization process mentioned above. The Hill-type
muscle model is used. No time delay is considered between
sensor and motor elements (D = 0). This experiment is
divided into two stages: the learning and the testing stages. In
the learning stage, the system learns the connectivity matrix
Q using the SMTs. In the testing stage, we test the reflex
behavior by contracting each one of the external muscles
and observe how the system reacts to the induced sensory
stimulation.

4.2.2 Results

The raw sensor and motor activity generated during the learn-
ing stage is shown in Figs. 6, 7, and 8. Figure 6 shows the raw
motor activity produced by the SMTs. As can be seen, at any
given time only one motor at most is active. Figure 7 shows
the raw length data collected for the two muscles of the right
leg during a SMT carried out by the Illiacus (a) and by the
Gluteus Maximus (b). As can be observed, the length sensors
change their values in response to contractions of both the
homonymous as well as the antagonist muscles.

Figure 8 shows the raw force data collected for the two
muscles of the right leg during a SMT carried out by the
Illiacus and by the Gluteus Maximus. In contrast to the length
sensors the activity of the force sensors is only observed dur-
ing contractions of the homonymous muscle but not during
contractions of the antagonist muscle. This is because when
a muscle is relaxed the only force in the muscle is due to
the passive spring element which has a negligible magnitude
when compared with the active force that can be produced
by the contractile element of the muscle.

The data collected during the learning stage suggests a
causal relationship between the force sensors and their hom-
onymous motors, and a causal relationship between the length
sensors and both their homonymous and antagonist muscles.
Figure 9 shows that this is in fact the connectivity obtained.
As expected, no connectivity has been created between sen-

Fig. 6 Motor activity produced by SMTs; the motor activity is given
in mu (motor units)

(a)

(b)

Fig. 7 The activity of the length sensors relative to the Illiacus (blue)
and Gluteus Maximus (green) of the right leg in response to a SMT (red)
carried out by a the Illiacus and b the Gluteus Maximus. For clarity, we
have subtracted the resting lengths to the total length of each muscle.
Similar data have been observed for the left leg. (Color figure online)

(a) (b)

Fig. 8 The activity of the force sensors relative to the Illiacus (blue)
and Gluteus Maximus (green) of the right leg in response to a SMT
(red) carried out by a the Illiacus and b the Gluteus Maximus. Similar
data have been observed for the left leg. (Color figure online)
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Fig. 9 The adjacency matrix, Q, obtained in Experiment 1. Black
blocks Inhibitory connections, white blocks excitatory connections

sors from one leg and muscles from the other (as the muscles
of one leg do not induce sensory stimulation on the other).

The connectivity matrix is shown in Fig. 9. The connec-
tivity obtained is in qualitative terms similar to that observed
in relation to the human reflexes (see Fig. 2). First, we obtain
excitatory connections between the length sensors and their
homonymous muscles as in the myotatic reflex (see for exam-
ple the connection between MRI and ṠL

RI). Second, we obtain
inhibitory connections between the length sensors and their
antagonist muscles as in the reciprocal inhibition reflex (see
for example the connection between MRI and ṠL

RG). And
third, we obtain inhibitory connections between the force
sensors and their homonymous muscles as in the reverse
myotatic reflex (see for example the connection between MRI

and ṠF
RI). The lower weight obtained with the force sensors is

justified by the fact that significant changes in force are only
observed when the twitch starts, which decreases the value
of the correlation for the entire duration of the muscle twitch.

A number of marginal connections can also be seen in
Fig. 9; these connections are shown as small dots (e.g., MLG

and ṠL
RI). The weights of these connections are three orders

of magnitude lower than those relative to the three reflexes,
and can therefore be safely neglected.

Though the main goal of this experiment is to analyze the
reflex connectivity obtained using our framework, we also
tested the corresponding muscle activity in response to a mus-
cle stretch caused by the external muscles. The testing of the
reflex behavior (during the testing stage) is shown in Fig. 10.
After the load is applied (light shaded area), the resulting
muscle stretch causes the Illiacus to contract (medium shaded
area), and at the same time inhibits the antagonist muscle—
the Gluteus Maximus—from contracting (medium shaded
area). This is consistent with the myotatic and reciprocal
inhibition reflexes, respectively. During this first activation
period, the rate of length change of the Illiacus decreases
(medium shaded area) and the force in the muscle increases
(medium shaded area). This causes a drop in the subsequent
motor activity of the Illiacus, which is accompanied by a
decrease in the inhibition of the Gluteus Maximus (dark

Fig. 10 Muscle activity generated in reaction to a stretch in the Illia-
cus caused by an external load imposed by the right Ext.2. From top to
bottom, (1) the motor activity of the right Ext.2, (2) the length of the
right Illiacus, (3) the motor activity of the right Illiacus, (4) the motor
activity of the right Gluteus Maximus, and (5) the force of the right
Illiacus. My refers to motor activity caused by the myotatic reflex, and
R.I. refers to motor activity caused by the reciprocal inhibition reflex.
Light shaded area The time between when the load has been initiated
and the activation of the reflexes, medium shaded area the activation of
the myotatic and reciprocal inhibition reflexes, and dark shaded area
the motor activity after triggering these reflexes

shaded area). Qualitatively, this behavior is consistent with
that observed relative to the analogous human reflexes.

To investigate the role of the reverse myotatic in the
decrease of muscle activity, we repeated the experiment with
and without the force component, and compared the muscle
activations in both conditions. We observed that the decrease
in muscle activity is mainly due to the decrease of the mus-
cle velocity (detected in the length sensor) rather than due
to the reverse myotatic reflex. The drop due to the presence
of the force component is in fact very small—0.25 mu (see
Sect. 5.3 for discussion).

4.3 Experiment 2: reflex connectivity with sensor delays

4.3.1 Methods

The absence of sensor signal delays in Experiment 1 is unre-
alistic; this is coped with in the experiment described in this
section. The goal of Experiment 2 is to evaluate the extent to
which sensor delays affect the reflex connectivity obtained.
In this experiment, we basically evaluate the data collected
for Experiment 1 but we introduce time delays in the sensor
input.
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(a)

(b)

(c)

Fig. 11 Adjacency matrices, Q, obtained for time delays: a D = 0.8 s,
b D = 0.9 s, and c D = 1 s

4.3.2 Results

Figure 11 shows the connectivity obtained for three different
delays. As can be observed the appropriate reflex connectiv-
ity is only broken at D = 1 s. Our framework is made to
capture overlaps between sensor and motor activity. Given
that at D = 1 s, the delay reaches the duration of the mus-
cle twitch (1 s), we observe no overlap between sensor and
motor activity, and therefore no meaningful correlations are
extracted.

In addition, we observe that the relative magnitude of the
connections changes with the sensor delay (compare Figs. 9
and 11a, b). We observe that the magnitude of the connections
with length sensors decreases relative to the connections with
force sensors. This is because the only meaningful activity
in the force sensors occurs only at the very beginning of a
twitch (when a force increase is observed). This means that
for lags smaller than the duration of the twitch the correla-
tion values remain basically unchanged. This contrasts with
the length sensors, the magnitude of which increases steadily
throughout the entire duration of the twitch. This makes the
magnitude of the correlation with these sensors more sensi-
tive to delays.

Fig. 12 Adjacency matrix, Q, obtained using eight muscles

4.4 Experiment 3: reflex connectivity with eight muscles

4.4.1 Methods

The goal of Experiment 3 is to show that our method scales
to more complex systems. In particular, this experiment con-
siders a system which, in addition to homonymous and antag-
onist interactions, includes synergistic interactions (i.e.,
muscles which produce similar motions at the joint). The
success of this experiment serves to strengthen our claim that
our framework can be used for the purposes of dimension-
ality reduction. For this purpose, we conducted experiments
similar to Experiment 1, but here we implement an addi-
tional synergistic muscle paired to each of the muscles in
Fig. 3. Each of the synergistic muscles is labeled by adding
the number “2” to the original muscle; for example, the syn-
ergistic muscle of RI is labeled RI2. The attachment points
of each of the synergistic muscles are located 5 cm below the
attachment points of the original muscle. Because, we now
have twice as many muscles, we carry out 60 SMTs during
training.

4.4.2 Results

Figure 12 shows the connectivity obtained in Experiment 3.
As in Experiment 1, connections with force sensors are only
identified within the same muscle. This is expected as the
muscle only presents a meaningful force change when it
is (itself) active. More relevant are the connections identi-
fied with the length sensors. The connections between motor
elements and length sensors belonging to synergist muscles
(e.g., MRI and ṠL

RI2) are consistently excitatory, whereas con-
nections between motor elements and length sensors belong-
ing to antagonist muscles are consistently inhibitory (e.g.,
between MRG and ṠL

RI, or between MRG and ṠL
RI2). This

means that the connectivity identified is capable of respond-
ing to a stretch in a given muscle by recruiting automati-
cally all its synergistic muscles and inhibiting all its antago-
nists.
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Fig. 13 Adjacency matrix, Q obtained for a perturbation probability
of 0.2

4.5 Experiment 4: the role of external perturbations

4.5.1 Methods

The goal of Experiment 4 is to investigate the role of exter-
nal perturbations during the learning stage (i.e., during the
SMTs) and validate the hypothesis that an environment free
of external perturbations (such as that provided by the uterus)
provides favorable conditions for the development of the
appropriate reflex circuitry (see Sect. 2.3). For this purpose,
we identify the reflex connectivity as in Experiment 1 but
we introduce small perturbations in the system during the
learning process. These perturbations consist of short con-
tractions with constant intensity (M = 1 mu) carried out
by the external muscles, MExt.1 and MExt.2, which are acti-
vated at any given time step with a given probability. We
varied the perturbation probability from 0 to 1 at 0.05
intervals.

4.5.2 Results

Our results indicate that for perturbation probabilities higher
than 0.1, we cannot obtain the same reflex circuitry as in
Experiment 1. This is because external perturbations induce
information in the sensor signals which interfere with those
produced by the SMTs. Figure 13 shows the connectivity
obtained for perturbations generated with a probability of
0.2. As can be seen connections are identified between length
sensors in the right leg and muscles in the left leg. These con-
nections are incorrect as no transfer of information occurs
between the two legs. In addition, the system identifies con-
nections with length sensors which are not grounded in the
physical system (e.g., the excitatory connection between
MLG and ṠL

LI). The force connectivity is similar to that iden-
tified in Experiment 1 because changes in force are detected
only when the muscle is contracted.

Fig. 14 Adjacency matrix, Q, obtained using the artificial muscle
model

4.6 Experiment 5: the reflex connectivity using different
muscle models

4.6.1 Methods

The goal of Experiment 5 is to investigate the role of the
muscle morphology on the reflex connectivity. For this pur-
pose, the system learns the reflex circuitry as in Experiment 1
but using the artificial muscle model instead of the Hill-type
muscle model (see Sect. 3.1).

4.6.2 Results

Figure 14 shows the connectivity obtained using the artificial
muscle model. The connectivity obtained between the length
sensors is the same as in the human muscle model. This result
is expected as when one muscle contracts it extends the elas-
tic shock cord of the antagonist muscle while decreasing the
length of the homonymous muscle. On the force sensor, the
connectivity observed includes extra inhibitory connections
with the antagonist muscles. This occurs because when con-
tracting one muscle the tension on the antagonist muscle also
increases due to the lack of back-drivability in the motors.
This experimental result suggests that the use of Hill-type
muscles would be essential to self-organize the reflexes we
observe in biology; muscles with different mechanical prop-
erties would lead to a different neural circuitry.

5 Discussion

5.1 Reflex connectivity

The main goal of this article is to show that circuitry of
three basic reflexes, in two different sensor modalities, can
be autonomously developed using SMTs and a simple corre-
lation-based learning method. The success of our framework
in self-organizing meaningful reflex circuitry provides a dou-
ble contribution. On the one hand, it provides a clear testable
hypothesis for the development of these reflexes in natural
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systems; one relatively simple experiment would be to impair
the normal functioning of the Ia and Ib at early stages of
development and to investigate the subsequent development
of the reflex circuitry. On the other hand, our framework pro-
vides a mechanism that can automatically endow artificial
systems with useful feedback responses.

5.2 Biological plausibility

While our approach so far is overly simplified, we gained a
number of insights into the motor development of biologi-
cal systems. First, our method is based on a well-established
plasticity rule, which is a variant of Hebbian learning similar
to that used in the MDSI framework (Petersson et al. 2003).
However, any variant of Hebbian learning is essentially a
rate-based mechanism in which connections are allowed to
change their nature (i.e., from excitatory to inhibitory or vice
versa) simply by changing their signal. In biology, the nature
of a connection is pre-established and it cannot be modi-
fied. This might be of fundamental importance for us as in
our framework the nature of each reflex connection is estab-
lished by our anti-Hebbian rule. We believe that establishing
an appropriate (and biologically grounded) network structure
as well as a plausible learning rule (e.g., a variant of spike-
timing dependent plasticity) are the greatest future challenges
of our approach.

Second, the sensor and motor models we use are only
approximations of their biological counterparts. With the
necessary augmentation, and with more precise biological
models, we expect to learn more details about the degree to
which this approach could hold in biological systems.

5.3 Timing, thresholding, linearity, and modulation of
reflex activity

Although this article focuses mainly on the developmen-
tal process of the reflex circuitry, we need to discuss fur-
ther the resultant behaviors observed. First, different reflexes
appear at different times depending on the number of inter-
neurons they entail. For example, the reverse myotatic reflex
takes longer to be active than the myotatic reflex because
it entails one interneuron in its pathway while the myotatic
entails none. In our simulation, the reverse myotatic reflex
also appears after the myotatic reflex, but this is because the
force sensors are active only after the muscles start contract-
ing (although this is also valid in biology).

Second, it is quite unlikely that the motor signal is a lin-
ear combination of the sensor values (see Eq. 9). Typically,
a nonlinear function such as the sigmoid is used. Although
that can easily be incorporated into our system, we see no
direct benefit in doing so at such a preliminary stage of our
investigation.

Third, and most importantly, all the reflex connectivity
seems to be modulated by the supra-spinal systems accord-
ing to the behavior being executed (Gottlieb and Agarwal
1973; Stein and Thompson 2006), i.e., the weights of all the
connections can be manipulated from hierarchically superior
systems (Hultborn 2001). For example, it is well known that
the activity of γ-motoneurons can modulate the intensity of
afferent Ia fibers. This is important because it reduces the
relevance of the exact strength of the connectivity identified,
and places a highest emphasis on the nature of the connec-
tivity identified (inhibitory or excitatory) which in biological
systems cannot be modified.

5.4 Emergence of reflex activity using the artificial muscle
model

In the experiment carried out using the artificial muscle
model, we can see that our approach scales rather well to
produce relevant reflex activity in the artificial system. In con-
trast to the human muscles, the artificial muscles require an
active extension. In this context, negative motor signals will
cause the motors to actively drive backwards, allowing for
an analogous of a muscle extension. Although the connectiv-
ity obtained with the artificial muscle model is different from
that of the biologically inspired model, the behavior expected
is similar (see Fig. 14). Relative to the myotatic reflex, muscle
stretches caused by external loads will produce a contraction
of the homonymous muscle. Relative to the reciprocal inhi-
bition reflex, muscle stretches caused by external loads will
produce an active extension of the antagonist muscle. Rela-
tive to the reciprocal inhibition reflex, increased muscle ten-
sions will relax actively both the agonist and the antagonist
muscles which results in a decrease of the overall tension in
both muscles. This suggests that our framework can establish
the appropriate reflex circuitry for a given body morphology
(see also Sect. 5.6).

5.5 Dimensionality reduction

As argued in Földiák 1990, the anti-Hebbian learning rule has
a potential for dimensionality reduction, by creating sparse
sensorimotor circuitry. Our results offer support to this claim.
If one analyses the connectivity matrix resulting from Exper-
iment 1 (Fig. 9b) or Experiment 3 (Fig. 12), it is clear that the
sensorimotor connectivity obtained is restricted to elements
which interact at the local level, i.e., there is no sensor from
one leg that has a connection to a muscle in the other. In the
case of Fig. 9, the algorithm is able to transform a system
which initially has 32 possible connections (4 motors × 8
sensors) into two separate systems with a total of 12 connec-
tions; in the case of Fig. 12, the total number of connections
has been reduced from 128 possible connections to 40 con-
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nections. Our experiments support the notion that Hebbian
learning can be used to identify and segregate muscles in
distinct groups of interacting homonymous, synergistic, and
antagonist muscles.

5.6 Homeostasis and negative feedback reflexes

Our results suggest that our framework is particularly suited
to produce homeostatic responses, or negative feedback
reflexes. The negative signal entailed by the anti-Hebbian
learning rule allows a system, natural or artificial, to learn
the muscles which can counteract a given sensory stimulus,
and thus maintain homeostasis. In this way, we believe that
the exact same principle can be used to learn similar reflexes
in other sensor modalities, such as pupillary light reflex in
vision, or the acoustic reflex in audition.

6 Conclusions and outlook

The main hypothesis of this article was that three basic spinal
reflexes could be self-organized from the interaction among
five biologically inspired models: a musculoskeletal model
(and its environment), a peripheral (sensory and motor)
model, a model of SMTs, a learning model based on the cor-
relations between sensor and motor activities, and a model of
the reflex connectivity. We have shown that the circuitry of the
reflexes obtained is consistent with that observed in biolog-
ical systems, and that the connectivity obtained depends on
the environment as well as on the morphology of the system.
In addition, we addressed the potential of our framework to
perform dimensionality reduction on the control signals, and
thus have a potential application in the domain of artificial
systems.

We are currently following two main research directions:
one scientific and the other technological. The first is to make
all the components of our system as biologically plausible
as possible to show that in principle spinal reflexes can be
self-organized in nature. The second is to analyze the func-
tional significance of reflexes for voluntary movement and
thus to contribute to the development of more robust artificial
systems.
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